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The problems of estimation and control of discrete, linear, time-

varying systems are considered.. Previous solutions to these problems in-

volved either approximate techniques, open-loop control solutions, or

results which required excessive computation.

The estimation problem is solved by two different methods, both

of which yield the identical algorithm for determining the optXmal filter.

This algorithm is the partitioned equivalent to a solution suggested in

1964 by formulating the time delay system in an "expanded state" repro-

sentation. The partitioned results achieve a " substantial reduction in

computation time and storage requirements over the expanded solution.,

.^ however. The results reduce to the Kalman filter when no delays are pre.-

sent in tine system.

The control problem is also solved by two different methods,

both of which yield identical algorithms for determining the optimal

control gains.	 This result is also a partitioned solution to the "ex-

panded state" representation of time delay systems and also achieves

-' time and	 Theof computation	 storage requirements.	 stochasticsavings

control is shown to be identical to the deterministic control, thus ex-

tending the separation-principle to time delay systems. 	 The results

a obtained reduce to the familiar optimal control solution when no time
F

delays are present in the system.
s
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The principle of duality, of estimation and control is shown to

be, extended ' to time delay systems.

Necessary, and sufficient conditions are,deyeloped , for the obser-

vability and coat°rollability of discrete linear systems with time delay.
1	 ,{

An exhaustive bibliography of publications dealing with optimal

estimation and control of time delay systems over	 period 1960-1970

is included,
Y1
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CHAPTER" l

INTRODUCTION	 t'
4	 k	 s 

j}[
.	 1..1.	 Introduction..

4	
is	

•	 y	 .

The study of systems vzi,th time delay is not a new one. 	 During

the past decade (1960-1970) over 200 papers have appeared dealing Frith

the optimal control and estimation of linear systems with time &.-lay.
r

Closed-form solutions , are difficult to obtain because the analytic ex-

'	 pression for a time delay differ. from the torus used to describe the

rest of the- system.	 For examp:.e, in the frequency domain, the system

is usually described by a ratio of polynomials in s, but the time 	 ^.dy

is expressed as the transcendental function, e,Ts.	 This may be put in

as an infinite series in s.	 Unfortun-a common Form by expressing a TS 

•	 at 1y, this results in a system of infinite order- with an.-infinite  ` num=-

bet of poles.	 Since the exact solution tci such a system is computa-

tionally impossible, the normal procedure is to truncate the approxima-

.	 This results in a solution which is suboptimal.Lion to the time delay.	 '•	 p

'	 In the time domain, the describing equations which are ordinary

linear differential equations when no delay is present, become differen-

tial-difference equations to describe the time-delay effect. 	 The time

delay may be represented by e differential equation of infinite order.

This also results in a system of infinite order, however, so a truncated
sr

series is generally used, resulting again in a suboptimal solution.
It

;F

^	 1
t
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A, third stay of , describing the system is in discrete time. This
is nalturally suited for time delay representation, because the system and

- time del can be described as difference equations. A major problem,

exists in sucTx a representation because tim resulting system is directly

proportional to the gagnitude.of. the longest time delay. Once again the

computation can quickly become excessive.

The approach of, this paper is further exploration o f the discrete-

time representation of systems frith time delay-. Substantial savings in

both computation time and storage requirements are achieved over previous

discrete-tl,ma solutions to systems with time delay.

1.2	 Previous Work

An extensive bibliography is presented in Appendix C which con -

tains a list of more than 200 papers published in.the last decade, which

deal with time delay sys tems.	 In genera,. these papers fall into three

F
categories tzhich limit the practicality of their i.istpl,ementation.

•r

1.	 The majority of the control results are open-loop. 	 This is

of little value for stochastic systems where plant disturbances occur.

2.	 The computational requirements of the proposed solutions are.J

rt^ too	 teat for practical implementation.g	 p	 p

3.	 Approximate methods are used, resulting in suboptimal solu.-

tions.
{

The previous work,pertaining to this dissertation is discussed in detail

in Chapters 2 and 3.	 +
m

,y
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1.3 Organization

Chapter 2 develops an algorithm for optimal e.s.timat;,on of d'

crete linear systems W:Lth. time delay , us:Wg properties of conditional ex-

peCtati:on. This result is shown to reduce to the Kalman filter when no

time delay is present.

E
Chapter 3 develops an algoritthm for optimal control of discrete

linear systems with time delay using dynamic programming. 	 The stochastic

control is shown to be the same as the deterministic control for time

delay systems, thus extending the separatio, pzinciple to such systems.
w

Botk r,:esults are then shownz to reduce to the familiar optimal control

•. solutions when no time delay is present.

`i [A Chapter 4' introduces the "expanded state" form,, an alternate re-

presentation of time delay systems in discrete time.	 This new form is

then used to obtain results identical to those of Chapters 2 and 3. 	 The•

expanded state representation of time delay systems is not inique to this

SY

•	 .

paper.	 It has been examined by previous. ,authors and found 'to be compu-

^^
tationally unattractive because of the resulting increase in system or-

t

der which is proportional to the magnitude of the longest time delay,

Chapter 4 results in a partitioned algorithm solution whereas previous

authors retained the entireexpanded matrices in their original form.

Analytical expressions are developed in Chapter 5 for the com-

putetional and storage requirements of the partitioned solutions and

t^ compared with the requirements of the expanded state representation. 	 -

Although identical results are obtained to the estimation and control

it`
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problems , the paztUioiied solutions of this papeK result in a 30% to

r	 }' 90% reduction an computation time 'and a 30% to 60% reduction in storage

requirements over the expanded form.

Chapter 6 summarizes the results and suggests future areas of

study for time delay systems.
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CHAPTER rl,

OPTIMAL ESTIMATION I,N LINEAR DISCRETE SYSTEMS,
ZUK TIME DELAY

2.1	 Introduction

In this chapter, the-problem of estimation is examined for sto-

chastic linear discrete systems idLth.time delay. 	 It is, assumed that

both.plant and measurement noise are present. 	 An algorithm is obtained

i
A

for estimating the state of the system.

Section 2.1 formulates the general estimation problem for dis-

crete systems., whether, time delay'is present or not. 	 The familiar dis-

crete-time system model is modified to incorporate the effects of de-

layed state values into the system behavior.

1. in' S eA^tion 2.3, previous work on stochastic time delay systems

is revi^ewed.	 One of these works	 Ithat of Priemer and Vacroux, 	 obtains
0,

a similar result to that obtained in Section 2.6.	 The result in this

chapter is achieved using properties of conditional expectation whereas

the referenced work uses orthogonal projection.	 This result also in-

cludes systems iqi,th, a control input whereas the work of Priemer and

Section 2.4 6stablishes basic results in estimation theory which'

are necessary for the results of Sections 2.5 and 2.6.	 In some instances

the proofs accompany ' these basic results.	 In others where the proofs

are considered unnecessary or burdensome, t1le reader is referred to the
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literature.

i

0

Section 2.5 uses the properties of conditional expectation to

develop an-expression for the one-step prediction process..

Properties of conditional expectation are again used in Section

2.6 to develop the estimation algorithm for stochastic discrete-time

systems with, time delay. This-result is demonstrated to reduce to the

familiar Kalman filter when no delay is present in the system.

Section 2.7 summarizes the results, of-this chapter and discusses

the computational aspects of the estimation algorithm obtained.

2.2 Optimal Estimation for Dis.cre.te. Systems

I:n this section the general problem of estimation for discrete

systems is considered. That is, the state and measurement processes of

a dynamic system are discrete-time stochastic processes.

^ Consider a dynamic system S whose state as a function of time

is an n-dimensional discrete-time stocha.s.ti,c process (x(.k) , keI) where

either I	 Jk:k	 0, 1,	 , N} ^or I	 (k k	 0, _1, 2,	 } . Sup-

pose that it is desired to know the value of x(k) for some fixed k,}

but that x(k) is not directly accessible for observation.. In addition,

Suppose that a sequence of measurements z(l), ... , z(j) are available	
u

	

y	
y

which. are causally related: to x(k) b means of some measurement s ystem

It as shown in Fig. 2.1 and it is desired to utilize these data to infer,

the value of x(k)	 Let
.
iz(i) i	 1,2s.., j) be an m-dimensional,

discrete-time stochastic process.

	

[T'

y	 (	 , ,z (j) are available from Since only the measurements z 1), ..,

which to estimate x(k),-let the estimate of x(k) based on these

z,





f

8

measurements be denoted by x(klj) and define it to be some n-dimensional,

vector-valued function ;fk of the measurements:	 .

x kl 3)	 fk1z (i) i	 1, .. , , *J)

Tba estimation problem is, one of determining f'^ in some rational

and meaningful manner. The approach. to be used in this chapter is based

on consideration of the estimation. error, x"(klj), which.i.s defined by

the relation

x(kl J)	 x0c) •^ R(kl j)	 (2.1)

+	
rIdeally.,. X(kl .j) = 0 and the estimate is exact.	 14h.en x.(.kl j) j 0

t; a penalty-is assigned for the incorrect estimate.	 This is done by

ss~± specifying a penalty or loss function L = L{x(kl j) } which has the follow-
ing properties:

•
+	 •

1.-L, f,s a scalar valued function ofthe n variables 	 =

2. L(0) _ 0	 where 0 denotes the n411 n-vector

3. L^Xb (k j )]	 L[Xa (k `)] whenever	 [xb (k	 ]	 xa ki^	 p	 I^)	 _ p C 	 (lj)]

where p is a scalar-valued, non-negative, convex function

^•.,
of the n-variables -

i; 4•	 L x (klj)] ,= L[-k
(k l j)	 i

•

The first property is essential to the obtaining of a unique
a i

minimum associated with a family of vectors.
i

r- The second property sim ply specifies that there is no penalty

when the estimate is exact. 	 ik

rt In the third property, p is a measure of the distance of x (
kl

j)

From the origin in n-dimensional euclidean space, and L is specified to

,
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be a non-decreasing function of this, distance. That is, as i(k j3) be-

comes "closer" to zero, the penalty decreases,.
r	 '

The-fourth.property requires that L[ • j be symmetric about'the
t

origin.

A loss function that possesses, the above four properties is

termed an admissible loss function. It should be noted that L need not

be a convex function.

Since x (k) and x (kj j) are random vectors, it follows that i (k j )

is also a random vector and that L is a random variable. In order to

obtain.a useful measure of the loss, a 2erformance ' measure J is defined

as the mean value of L.

The familiar discrete—time model for a stochastic process may be

expressed as

x (k+l) _	 (k+l , k) x (Q + V (k+l , k) u (Q. +	 (k+l , k) w (k)	 (2.5)

r+ z (k+l) = H (k l) x (k+l) + v (k,+l)	 (2.6)

-' where	 x = n vector (state)

u _ r vector (control)

w _ p vector (plant disturbance)

z = m vector (measurement)

v =.m vector	 (measurement disturbance)

n x n (.state transition matrix)

^r r = n a p (disturbance transition matrix)
s

^tn x r (control. transition matrix)_

H.= m x n (measurement matrix)
n

1
at

.....,.:....»a...,...........,.:.:.W,_..s...._...,.:..:.:.,o-..,.aa.o...:a....,....._::...:-.-.aa:a....w:wa:..,..a........._,,....,.. w...»......._w:.M:;	 .	 _.	 ...	 _	 '.". 	 -
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.{w(k), k = 0 0 1 9 ...)	 zero mean gaussan white sequence having a Posi,--

fS

r

tive semi--defi:nite p x p covariance matrix ' (Q (k) k - 0, 1,	 ... } .	 That

tiw(k))	 0,	 k	 0, 1,	 .. (2.7)

t jw(j)W (k))	 Q(k)a: jk (2 .8)

there S jk ts, the Kronecker delta.

{v(k+l), k=0,1,...) is a zero mean gaustian white sequence having aq	 g	 osi-P

tive semi- definite m x m covariance matrix (R(k+l) , k-0,1,...).

t v (k+l)) _ 0, k = 0, 1,	 , . .

k iv C3 +1) v' (k+1) } = K Ck+l>
j
 k (2.10)

Attention i,s restricted to the case w.?iere. the two stochastic processes

1V U) , k= Op is	 .. ,. } and	 iv (k+l)	 k= 0, 1,	 } (2.11) z	 ,

are independent of each other.	 That isF,

.	 E v (.J) w' (.k) } = 0 for all	 _ 1	 2	 k, .J	 ,,	 ,	 ---0, 1, ...	 (.2.12.)

The initial state h(0) is a gaussian random n-vector with zero mean,

- having an n x n positive semi-definite covariance matrix

a
kIx (0)x' (0) } _ F 0) (2.13)

It is assumed that x (0) is independent of ' (ia(k) , k _ 0 1 	 1 1 ...} and
5

_
iv(k+l), k - 0, 1,	 .'} so that

,	 .{

a

x

'rt
:t

E jx(0)w' (k)) = 0, k = 0,	 1, ...
'

(2.14)

i

a
1
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1

b(x(0)v" (lc+l))	 0, k = O f l l	 . • .	 (2.15)

i.

4

It is also assumed that the control sequence is either knows or may be

E specified.	 •`

Expression► (2.5) states that the value of the state vector at

the-next instant of time depends only on the present values of the

state, control, and plant noise vectors.	 If; h6wever, this future value

of the state vector is also dependent upon past values of the state vec-

torj then E,q. (2.5) must be modified to indicate this dependence 	 This

` is done by re-writing Eq. 	 (,2.5) as

. x(k+l)	 i (k+l,k)x(k-i) +	 (k+l,Qu(k) + p (k+l,k)w(k) (2.16)
.'' i=0

The index J in Eck.	 (,2.16) indicates the mos-t 'distant (in true) value of

n state vector, x(k-,J), that affects the state vector at the next instant
t	 ^

in time.	 Lt is recognized, of course, that many- of the ^ i (k+l,k) may

Y. be zero, indicating that not all delayed states back to x(k-J) affect

bl

: the expression for x(.k+l.). 	 Thus q(k+l. k) i,s the state transition matrix

n;
-

associated with the delayed state vector x(k-i) in Eq. (2.16) . 	 Proper-

ties expressed by Eq. (2.13), (7.14) and (2.15) must also be modified

accordingly, as below, to include systems with time delay.

The initial and delayed initial state (x(-i), 1= 0 9 1, ... , J)
r;. R

t
E

is a gaussian random n-vector with mean

E Ix(,i) } _ 0,	 i ' 0 ,1• •	 J	 (2.1.7)
F

..,
^

having the n x n positive semi:definite covariance matrices

t



t
M

at

Ef x (—i)x' (-'j >}	 V (_i I -j >	 i s j = O f 1 0 ... , J

x

12

(2.18)

It is assumed that' {x(--i), I -- 0,1,...,J) is independent of
t

{w(k),'k = 0 1 1, ...) and (v(k+l), k	 00 1, ...) so than`

t{x(:-i)w' (k)) T O	 i=0,1:,100.,J	 k s;, 0, 1 1 ...	 (2.19)

..	
E{x(-i.)v' (k+l)) -- 0 - :. = 0 9 1 5 ..0, J 	 k	 O f 1, ...	 (2.20)

°In addition, it should be noted that the system described by

Eq. (2.16) and Eq. (2.:6) must be observable or the following theory has

little. meanipg. A syst^:m is "observable" if every state in the corres-

ponding deterministic system can be exactly- determined from measurements

of the output over a finite interval of time. Tree reader is referred

to Appendix A for a discussion of observab .li,tj; ► of discrete linear sys

tems- with. time delay-.	
-

With the system model des.cribed by Eqs. (2.6) 	 (2.11) and Eqs.

(2.16)	 (7: 20), the specific estimation problem may now be formulated. 	 1

Given the state sequence 6t(k), k ; 0, 1, 	 } and the measure-

ment sequence fz U), 1	 1 1 2 1	 , J) determine the estimate, k(k j) ,

of x(k) such that the expected value .of 'the mean square filtering error

is.minimized	 That is, it-is desired to minimize E{L[x(kj j) ]') where

LIM (j)]	 a.(k I j )X' (k(7	 _	 (2.21)

X (k ^ j )	 x(k) .	 X(k1J)	 (2.22)

w
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The remainder of this chapter is devoted to determining the op-

timal filtered estimate ; ^c (k 1 i l , k--,J). As a byproduct, however, e5c-

pressions are also obtained for the one-step prediction estimate

1*(Ylj), k=j+l) and for a lim ited range of smoothing estimates
IR(klj) s k=j -1 j-.2, ... , 3-J).

These estimates are all obtained for discrete linear systems

with time delays.

2.3. Review- of Previous Work on Estimation of Time Delay Systems

Despite the great number of papers: extending the original work

to 1960 of Kalman and Bucy 2 on lineax filtering, a number of years

passed by before optimal filtering of systems Nit"n. time delays was dis-

cussed. The bibliography contains an extensive list of such Literature.

The three articles which discuss linear systems with delay in the plant

; only (not in measurement or control) are di s cussed below.

In 1967, the theory, developed by- Kalman and Bucy was first ex-

tended to linear systems with. multiple time delays by Kwakernaak3 	 whose

development is for continuous systems.	 The single-variance equation of

the Kalman-Bucy theory is replaced by a partial differential equation

and three boundary conditions. 	 The boundary condit^...ons are also partial

differential equations.	 No explicit solution to these equations appears

possible in closed form and solutions are not feasible for on-line anal-

ysis of discrete time systems. 	 Thus, although.the solution is theoreti_

'
.

cally presented, i..t is impossible to implement in practice due to the
,k {

extensive computation required. 	 This-is substantiated by the fact that

no literature appears in which this method is implemented.

Vi
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The problem of developing a filter that was computationally

more feasible and that could be used iji practice was resolved in 1969

by Pri:emer and Vacroux. l They offered a solution for discrete linear

systems kitk time delay Oi.ch avoided the necessity of expanding the

order of the system, The computation time was considerably reduced

	

b	
from that required by the method of kwakernaak. 3	Chapter 4 of

this dissertation demonstrates that Pri.emer ' aiid Vacroux's result is iden-

tical to that obtained by expanding the state space,

In addition to these papers is the method of approxima ting the

f time delay-by a Taylor's Series enpansion or by a Pade approximation.

Unfortunately-, the solution obtained is suboptimal since a truncated

approximation to the delay is used. 	 No work appears in the litera+-11re

^y
discussing this type of approximation in relation to filtering of time

delay systems.

Borth gapers. discussed above consi.:ler the filter problem only	 JJ

and do not provide a complete solution for optimal control of stochastic 	 !

Ij
time--delay systems.	 In 1969, however, Larson and. Wells 4 	 were able to

do so by restricting attention to serial systems:.	 Although their solu-

tion was	 noptimal only for single-input, single-output s stems with delayp	 _ Y	 utg	 P^Y	 Y

j; in the plant, it is very easy to implement and computationally

faster than any of the methods discussed in the above paragraphs. 	 Their

paper comliines optimum estimation, prediction and control..

It is also recognized that if it can be shown that the separationr

 a	 liesto time delay, systems then the optimal filter mayprinciple	 Pp	 S''	 y	 ^	 P_	 y be

developed independent of the optimal, e4pntrol solution.	 This is, in fact,

demonstrated in Chapter 4 of this dissertation,

Eli r
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In summary, them, with one exception, the results shown thus far

in the literature t for estimating systems wr ,th, delaya in the plant, are

limited, as to practical application, by one or more of the following:

1. Excessive computation, time

t
2. Excessive computer storage reclui;xements

3. Approximate methods resulting in suboptimal results

The.one exception i.s the paper by Priemer and Vacroux. Their results

are obtained by two alternate Ynethods in this dissertation.	 Conditional

expectation properties are used in this chapter and an expanded state,

representation is: used in Chapter 4.	 In both.cases. the work of Priemer

and Vacroux is extended to include control inputs„

2.4. Fundamental Theory of Estimation

J, In this section some fundamental results of discrete estimation

theory-are obtained. Although,, in some cas.es ,'more general results may

be established; only-those which, are necessary-to the development of

Sections 2.5 and 2.6 are presented. The reader is referred-to the

literature in those cases, where the presentation of the proof is felt

to be burdensome .or unnecessary.

..` j
The following properties of gaus.s,ian conditional expectation are

of fundamental importance in the next tigo sections. 	 Here x, y, z are

gaussian random vectors. 	 For proofs the reader is referred to Meditch 5

(PP .	92-103).

1.	 E x y}_ is a gaussian random vector which is a linearr com-	 t

z bnation of the elements of y. (2.23)

I
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2.	 x	 Z{xl y}	 i•9 independent of the- random vector obtained by

any linear transformation on (2.24)

.
ttt

3.	 If y and z are independent ) where z is a random • m-vector tlhen
w

E{xI Y" z)	 E{xI y) + E" {x z} -- x (2.25)

I 4.	 For y and z not necessarily independent,

E{xI y,z} = E{xI y,z} _, E{xl y), + E{x1 z}	 -- x

♦

(2.26)

Fy' where I =. z -^ E lz I 
T )

s
The following theorem can now be proved.

x

•	 Theorem 2.1.	 if the-loss function is defined as

n L	 [x(k) -- :k(k lj)J' [x(k) - R(kl j )I	 and

•' '
U

(k (.k),	 kcl} and	 {z (i) ,	 i = 1,	 ...	 , j) are dis-

Crete time stochastic processes, then

; 
t

tk (k•I j )	 Lx (k) 	 (j)} (2. 27) 	 _

-^ • tahere	 ^r	 Z* U) _ z (4 } ,	 -
m

Z

pi,
•

E

Z(J) 

Proof:	 Recall from the problem statement, Eq_.	 (2.21) and Eq.	 (2.22) ,

that x (kl j) is to be chosen such that L is minim ized.	 By taking the

gradient of L in Eq.	 (2.21) with respect to x and setting it equal to

zero
5

Q„L = -2E {K(k)	 - x(I `jj) Iz(1),	 ...	 z (J) }	 0 (2.28)a

_.:..::..	 .......a_......w..m..........,...ti.:r..w<•m«aw.. ..w....	 r»;.wa.m. na .rv::: r:	 ..	 -	 cc.n	 .<aa_xx	 ..a	 _:..:.x	 ._	 -	 _.	 ..	 _... ..	 .xy
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Taking the transpose of hoth. sides of Ect. (•2.28)

E(x(k) jz(l), ... s z(j))	 t fX(kjj) jz(1)," ... r z(j)) (2.29)

But the right--hand side of Eq. 	 (2.29) is just

E[(k.lj) 1z^(i)} , :k(kl j) (2.30)

By substituting this. result into'Eq.	 (2.29)

:R(kl j)	 E(x(),-) jz•(l),	 ...	 zQ)}' (2.31)

4# v and the theorem is, proved..
•

Now, the final four properties necessary to the development of

this chapter -can be stated.	 The reader ig again referred to Meditch5

.5
(pp. 92-103) for proofs. •

5.	 x(k,l j) and x(kh) are gaussan random n-vectors

' where x(k1j)	 x(k)	 :k(k1j). (2.32)

s 6.	 x(.k1 j)	 .s, independent of any, linear combination of the

i available measurements. (2.33)

7.	 X(k1 j) is unique. (2.34)

8 .	 E {x Y } = x + P -y.(y-y) (2.35 )
XY Y

•
where	 P	 _. E fxy' }M4 xy.

P	 -	 1yy' }
yy`

•
r X = Ex}

y -E{y}

`r
'	 This concludes the results•necessary'to develop the optimal

Filter.

It it

it

'	 s a
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2.5• Optimal Prediction for Discrete Linear Systems with Time Deli

Although, the results of the preceding section are fundaimental

ones, they-are of limited practical utility. Consider the gaussian case

where the optimal estimate is given by Eq . . (2,35) as

F x( I ) = x(k) +	 k(1c)zx(j)pz!`(jwo)lz*(J) - z*(j)J 	 (2.3G)

. there	 z*(j) = z(0)_

z (1)

Z(j)

For each set of measurements, it is necessary to compute the inverse of

P	
/J
	 ,, / 	a jm x jm matrix, where j is the number of-measurements and

=k

J m is the number
.of el

ements.in the measurement vector,	 If m is I and

r there are 50 measurements 	 then a 50 x 50 matrix must be inverted. 	 If

it is des,ired to perform estimation "on-line", application of the above

expression to generate the optimal estimate becomes impractical.

What are desired	 from a computational point of view,^	 P	 P	 , are

efficient and practical algorithms for ,-processing the measurements se--

quentially, hopefully in real time, to obtain a current estimate.	 All

!y' of the results stated , thus far ate independent of the system model. 	 For

this reason they are valid for the time delay case also. 	 The remainder
x

i of this chapter is devoted to developing such, algorithms for prediction

and estimation of the states of a discrete linear system with time delay.

5 ,j
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2.5.1., System Model Properties

The system model is ,described by Eqt ' (.2.6) _ (2.11) and Eq.'

.(2.16)	 (2.20) where the fundamental system and measurement equations

are

x(k+l)	 Z $I(k+l,k)x(k—i) + r(.k+l,k)w.(k)+^(.k+l,k)u(k) (2.37)
i=0

z (-k+l) R(k+l) x (k+l) + v (k,+l)	 (2.38)

`a
This model has, the following properties. Proofs are in Appendix R.

:M	 1. The stochastic processes {x(k) , k = 0, 1, .. } and

Iz(k), k = 1,	 ...	 , J} are gaussian., (2.39)

2.	 Efx(j)w' (k)}	 0 for all k > j, j = 0 9 1 9 2,	 .„ (2.40)

, 3.	 E {z (j )w' (k)) _ 0 for all k, > j	 j = 0, 1, 2 9	 ... (2.41)

4,	 E Ix(j)v' (k)) = 0 for all j and k. (2.42)

K 5.	 E (z (j )v' (k)) = 0 for all k.:> J., (2.43)

It is helpful in the sequel to,'define the following error

covariance matrices in terms of

Al
P(^4,m^k)	 = E^[x(R)	 ^ R(RIk.)]Ix( ► )	 -. ^(

m ^k)J'} (2.44)

Case 1: k, m>k; Prediction Error Covariance Matrix (2.45)

Case 2-: k>k, m = k; Prediction/Filtering Error Covariance Matrix (2.46)

Case 3: S>k, m<k; Prediction/Smoothing Error Covariance Matrix (2.47)

Case 4: P, = m = k; Filtering Error Covariance Matrix: (2.48)

Case 5: S, = k, m:; Filtering/ Smoothing Error Covariance Matrix (2.49)
h

Case 6:r., mdc; Smoothing Error Covariance Matrix. (2.50)

r

a

 ,

yyi

q

.

rjdJ



It should also be clear from Eck. (2.44) that

P ^^ ,m (
k) ^ p (m, ^ I ,.^

W x (. l k)	 x (R) -^ x l k) 

prediction error if Z k

filtering error if R k

= smoothing error if R < k

2.5.2. Optimalimal One-Step Prediction

The algorithm for the optimal one-step predicted estimate

x(k+llk) is developed below. Some important properties of the corres-

ponding one-step prediction error x (k+l l k) = x (k+l) x (k+l I k) are also

established. Of particular interest is the nature of the stochastic

process x 1 1k) ,  k 0 9 1, ...	 and the behavior of its corresponding

covariance matrix

(J^,+1, k+l I k)	 (k+1 l k) x' (k+l I k))	 (2.55)

It is assumed that the optimum estimates ♦ IX (k-i I k) ,	 i=0, ^, ... J,}

•and the n x n covariance matrices fP (k-i k-' k), i,j 	 0	 1) 

of the corresponding filtering and smoothing errors x(k-i) and x(k-j)

are known for k-= 0
1
	1,	 ...	 i,j = 0 0 	1 2 	...	 , J. The procedures for

obtaining a (k, - i, l k) and P (k-i,,k- j l k) are given in the next section.

From the property given by Eq. 	 (2. 39) and Theorem 2 .1	 i

x	 i •	 _	 (X	 i	 I'z	 1	 ...	 z 2.56

is the optimal estimate of x(j-i) for j = 1 0 2,	 ... ;	 i. =	 0 0 ; 1 3,	 ...	 ,	 J.

` For j = 0,' these are no measurements and i,t follows from Theorem 2.1 than

x

_

r	 S

k

_

I t ,^^

a-

20
t

(2.51)

(2.52)

(2.53)

(2.54)



$(- fl 0) E [xC-i) I ncf measurements)

0	 x
(2.57)

s

It is clear that :k(j-i,I j) is gaussian from property (2.32).

i
Similarly the filtering error St (J -41 j) , = X(J) - R (j --i j i) is a zero mean

gaussian random n-vector for which. it is assumed the covariance matrix

P(j-i,, j--A' j) is given.	 For j = 0,

IK'

' n.
m x C-,)	 -, 0

t

(2.58)

" so that P (--i., -k 0)	 (:-i, 0) X (R I O)

E N (:,i) x' C--P)

j k PC-i,,-^)	 ,	 4 - O t i s.	 0 9 1i.
`

(2.59)

where the latter is assumed given in the system description.

i The following result can noes , be established for optimal pre-

ad i.^. ion .

'. a Theorem 2.	 filtered2	 If the optimal 	 estimate
A

R(j-ilj) and the covariance matrix 1'(;j-i,j-£lj)

j of the corresponding filtering error

:R(j—il j) ^ x(j-•i,)	 R(j - i.j j) are knom for some

j	 0 0	 1 0	 ...	 it	 k - 0 9	 17	 ...	 , J.	 then for

k'	 j + l

(a)	 The optimal predicted estimate x(k+llk)

for all,admissble loss functions is given by the
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.f
express3^gn

•	 J
• x (k+l k)	 (k+l , k) x (k.--x, k)

. ^ 1	 •	 r fii_

+	 (k+l ,k) u (k) .
^	 r

(2.60)

{b)	 The s tochas tic process • (x (k+l k)

k	 01 1, 2 1 ...) defined by- the prediction
r error relation

x (k+1 Q	 x (k+l) -- x (k+l k)

is a zero- mean Gauss Markov-(.J+l) 	 sequence whose r	 '

... covariance matrices are governed by relations

J	 J
" P (k+l, k+l 1k)	 £	 i (k+1, k) P (lc-i, k-j k) ¢ ! (k+l , k)

Jr	 i__p 3 =p

a, x

+ T(k+l^k)Q(k)P'(k+l,k) (2.61)

b
x

Proof;	 From Theorem 2.1 and Eq. (2.16)

x(k+1 k) = Ex(k+l) z(1), 	 ...	 , z(k)} (2.62)

x(k+l) =	 E ^i(k+l,k)x(k-i) + r (.k+1,k)w(k) + ^(k+1,k)u(k)
i=0 J

i
(2.16)

The substitution of Eq. 	 (2.16) into Eq. 	 (2.62) yields

a

t
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J
A (k.+l k)	 E{	 Ck^t•1, k) x GlcRi,) + r (IL+l , k) %+ (k)	 tt

M

f 	 t

r
J

0 i(k+l k)E{x(k i) z (l), ,.. , z(k))
i,=0

+ (k+1, k) E (w (k) I z (1) , ... , z (k) )

	

+ (k+l , k) E {u (k) z (1) ,	 , z (k))	 (2.63)

The application of property., (2.41) and Eq. (2.7) to the second term

causes it to vanish.

E 1w (k) I z (1) , • •	 z (k) }	 E {« (k-) }	 0	 (2.64)

Under the assumption that the control sequence ' {u(k), k=0,'1,	 } is

knotm or can be specified as desired, the third term, in Eq. (2.63) be-

comes

^ (k+l ,Qfu^(k) ( z (1) ,	 z (k) }.	 (k+l,k)u(k)	 (2.65)

The substitution of Eq. (2.64) and Eq. (2.60) reduces Eq. (2.63) to

(k+l Lk)	 ¢. (L+l,k)R(k-, ,'k) + (k+l,k)u(k)	 (2.66)
i=0

which. verifies Eq. (2.60) of Theorem 2.2. From, the definition of pre-
s

diction error (2.52), filtering error (2.53) and smoothing error (2.54),

application of Eq. (2:.16) and Eq. ' (2.66) yields

'	 v

7

R

m^.r^aruswrrvmde n.- -	 ..rn.klrtn Me+.a.nws...: .z	 ^	 .:..-	 -	 -	 ..	 ,xx' ...-..,	 ,. ...	 ^	 ..^
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R (k+l k)	 x (k.+l) .. (k+l j k)

J
Z 0 (k+l , k) x (k- i) + r (k+l k) w (k) + 0 (k+l , k) u (k)

t	
1.90	 t ,

1 E

¢ i (k+l , k) I (k-i I' k)	 (k+l , k) u (k)
i=0

J

•^ ; Z	 (k+l,k)	 k.) + I,"(k+lsk)w(k)	 (2.67)
3.=0

It remains to establish that x(k+11 k) .s a zero mean Gauss-Markov

(,J+l) sequence. This can be done by examining Eq. (2.67) . Since w(k)

Is gaussian and 1x(,--fl 0) , i _ 0, 1, 15 00 , J) i..s gaussian, it follows

that 3C(jc.+l1 k) is a zero-mean discrete-time, gaussian sequence. The

Markov property also follows nmAedi,ately , from Eq. (2.67). In fact this

has a *riarkov --(J+l) property since the sequence depends on events occur-

ring (J+1) time intervals in the past.

Nock -::he expression may be determined for the prediction error

covariance matrix.

'	 F (k+l k+l l k) _ E { k (k.+l Q30 (k+11 k)}

•	 J
E(^£ i (k+l,k)k(k ij, k) + T (k+l,k)w(k) ]

i.W0

• [ E 4 (k+l,k)x(k: jj k) + r (k+l,k)w(k) ]`'}
j 

=0	 .

J J
E (k+1 QE' , 	k)k (k -j k))¢^ (	 ,k+1 k

i=0 j-0
J

+ 2E i(k+l	 k),k)E{a(k-i^ w' (k)}t' (k+l.	 ,k)

+ r (kA-1 Qk{w (k)w' (k)) r' (1-,+I, k))	 (2.68)
t

n 	 .

zat].atmexx^^M•gerc^.mxts^xu-^a...^:.^-.•u;i.^n_rxo^_._.st...«rwanea^^Ln..4a^mw••».r^.rt.,.au..^-..3 ..a.^n^..u..i.5:a.-r_.r.. 	 .....	 . ._,:.:.__	 .:	 _.	 _	 __	 ..::	 .._._	 3	 ,.	 ,.. _:.. ...	 ._.:....	 .^. _......	 _.:._	 t....__	 ; ..\	 -.
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]From the de4 ini,taoa of fi lteri ng error, Eq. (2.53), and smoothing

error, Eq. (2.501

E^ Xk^i k) ^,t ` {k) }	 E ({x (k-^. •- X ^k i k) J ^^' Ck)) 't
•

E {x (k^ )ir' (k, j } - E {X (k,-fl k)w' (ic) }	 (2.69)

The first term of Eq. (2.69) is identtoally zero clue to property, (2.40) .

]Further, since x(k-i lk) :,s a linear combination of the measurements it

may be expressed as

k
x()L_i,Ik)	 E1,(,)z(A)	 (2.70)

R=l

The substitution of Eq . . (2.70) in thee, second term of Eck. (2.69) causes

it to vanish also.

k	 ,
E fx (k-- i j k) w' (k) }	 E # E A (A) z (A) w' (k) }

k^l

k	 ,

0	 (2.71)

The application of property (2.41) causes the cross-product terms of

Eq. (2.6$) to vanish. Thus Eq,. (2.68) becomes

'	 J	 J
P (k+l , k+1) k)

	

	 E	 E i{M-1, k) E {x (k--i, k) x (k-j k) } ¢j (k+l k)
- i=0 j =0

+ r (k+l , k) E (w (k) w' (k) } P' (k-+l , k)

....ism:.w.au.e.,a.,w«.rm.wmtrfi+z3a3wmmheL., m+!e.vxv.^w.^fv4v"3.TandA.6:af:^.aibtn.. «"'.Zi::aSU:LG. •• 	..:• . 4	 ,,• Nei.':far:L1sM^'v^mzSt...t..X:t..^.u.+^....^ 	 __.	 w
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e	 +	 f

,

f

The substitution of Eck.	 (2,44) and Lcj.	 (2.8) ,gives

J	 J	 '

P (k+l, k+l k)	 ^. (Y_+I k) k (k-d, f k^j, k)^ j (),-4- -, k)
K0 3 =0

{
1

+ r (k+J.,Q (k)	 (k+l,k)	 (2-72)

Note, tat this point:, that the solution to the single-stage opti-

mal pred ,ctioa problem is solved.	 The associated error covariance matrix

expressed by Eq. (2.72) requires knowledge of P(k-t,k.-jjk), however, and

this is knouts only for k m 0.	 in the next section this problem is re-

solved and expressions for the filter ng• aad smoothing error covariance

'	 matrices F(k--i,k jj k) are obtained. 	 This information is then combi,,ned,

with. that of the single-stage optimal ,predictor to obtain the optimal

filter for time,-delay , systems.

2,^;	 Optimal- Filtering for Discrete 'Linear Systems With Time Delay

Zn developing the algorithm for optimal filtering for the sys-

tem of Eq.	 (2.37) and Eq. (2.38) it is assumed that only the initial

estimate * {(-il 0) _ 0, i=0,1, ... ,J},	 the covariance matrices of the

filtering and smoothing errors at the initial time PC-i,-J 0)

r, E{x(-^0)x' (-J^0)?	 E^:^(-^)x(-j")} ^'^,.G^a.,-j) 	 and the set, of measure-

mints' {z (1) ,	 ...	 z (k) , z (k+l) , k >_ 0} are given.

From Theorem • 2.1 the optimal filtered (,-U) and smoothed

(i-1, ..	 , J) estimates :R(k+1-ij k.+l) are given by the relation

A(.k+l-. k+l)	 E{x(k+1-i),z(1),	 ...	 , z(k), z(k+l)} i=0,1,...,J

' (2.73)

M
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Property (2.26) may now be applied to exame (2.73) .

LIXI y',z} = k{xl Y} + ttxl z} - x	 •♦ (2,. 26) 	. +

where z - z -- E{zl yl .

By, substituting (2.26) into (2.73) and noting that x = ^ (k+1,k)u (k)

^t

. f St (k+1-ij k+1)	 E Ix (k+1-3.) I z (,7) ,	 ...	 , z (k) }

+ k(x (k+l- ) 11 (k+f k)) - (k+l, k) u (k) (2.74 )

for k	 0, 1, ... and cohere

z (k#1 k)	 z (k+l) - z (k+l^ k)

z (k+l) - E {z (kc.+l) z (1)., 	 .:.	 z W) (2.76)

This difference i (1.+1j k) is called the measurement residual. By sub-

st tuting Eq. . (2.38) and solving for "z (k+1l k)

z (k+l l k) = E {H (k.+l) x (k+l) + v (1%+l) z (1) ,,	 , ..	 , z .(,k) }

11(k+1) E {x (k+l) z (1) , 	 • • •	 z (k) },

+ E{v(k+l) z(1),	 ...	 z(Jc)},

K(k+l)X:.(k+l	 + E{v(k+l.) z(1), 	 ... z(k)} (2.77),

The second term vanishes by Eq. 	 (2.43) and Eq.	 (2.77) becomes

,.
2 (k+l k) _ H (I:-f-1 )	 (k+l k) ,	 k =, 0 , 1,	 ... (2.78) 	.

With these preliminaries completed, the-basic theorem for optimal filter-

ing of disc ,̂ 4e linear systems with time delay may now be proved.
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I

Theorem 2.3. (a') The optimal 0,1tered estimate

k(k+lj k+1) for the system described fey Eqs. (2.37) and

(2.38) is given by the recursive relation
r•

x(ku k4+1) -, x(k+l 1) + K0 (Y-4-1)1z(1,+l)	 k(k+ljk)• ]	 (2.79)

which is a specific case of the more general expression

^2 (rk+l ^a, k+]) = x (k+1-:. l k) + K (k+l) [ z (k+l) -• X (,k+l j k:) ] 	 (2.80)

for k 0, 1,	 where x(-,i l0)	 0, 1 M 0, 1, . . . , J.

(b) IC,.(k+1) is an n x m matrix which is speci-

fied by the set of relations

Ki (k+l) = P (k+l--3., k+l I k) R' (k,+l) I H. (k-` l) P (k+l , k+l I k) H' (k+3. )

+ R(k-+1)j -1 i = 0, 1, ..., J	 (2.81)

J
PKk-j,k+llk)	 '(k-i,k-j IQ (k+l,k} j	 0,1^,, ^J-1 (2.82)

P (k,:i $ k-,j k)	 P (k-i 'k j ) k-1) - K. ,(k) J (.k) P (k 3, 	 I k-1)	 (2.83)
i ) j ;r- 0 1 1 ,..	 J'	 J	

J
P (k+l , k+l (k)	 E	 (k+1, k) P (k^i,, ka I k) ^,' (k:1.1, k)'

i=0 j

+ (k hl , k) Q (k) (k+l , k) 	 (2.84)

for k = 0, 1, ,	 and P (-i., - j 10) = P (.-i, - j) is the ini-

R	 tial condition for Eq. (2.84)

(c) The stochastic process

Ix (k+1 k+l), k = 0, 1,	 } which. is defined by	
-

x (k+l_ k+l.) =:x (k,+l)	 x Ck+l k+l) , k = 0 2 1, .. .
1

y	 is a zero mean Gauss Markov (J+1) sequence chose cow
i

7

vari.ance matrix is. given by Eq. (2 `.83) for i j = 0.

v

m>s^a.r,^,vr	 :uraizarh:..ear..u....o.w„«,...mb.,x.....».w.a ..............^..^ ...._ .,_...., .-... .... ...... 	 -	 • •	 ^_.	 .^_
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Proof: From E.R. (2.74)

I (k+l-:L I k+l)	 x (,k+1--^ ( k) + E {x (k+1-1,) z (k+l k) } -- (k+l , k) u (k)
(2.85)

Further, since x(k+l) and L(k+l1k) are gaussian, property (2.35) may be

invoked.

E1x1 i) - x + PxZPZZ Z 	 (2.35)'

:y to obtain the f ollml-ling result	 I
i^ (k+l--t k+l) 	 (,+l. , k) a (Jc) + R (k+l-i k.) + E x (k+l-i) P. (k+l k) }

t (E 12 (k+l k) z (k+l k) } ] z (Y-+l k)	 ^ (k+l , k) u (k)

^t
(2_.86 )

B	 def inin	 K	 = E x (I-i z' k 1 k } E {i 	 +1	 ' '	 k}k+l	 ^lBy	 g .klC+) ^	 ^ G	 )	 C+I) I	 Ck	 k̂)	 C	 I)
(2.87)

0	 i s	 ...	 ,	 J
{ Eq. (2.86) may, be rewritten

x(. +1--,ilk+l) _ x(k+1-ilk) + K (k+l.) L (k+1 j k) 	 (2.88)

However, it is clear from E	 2.75) and E	 2.78	 that

4 (k+l k)	 'z (k+l) - z (k+1 k)
s

....^ Z k+l^	 H (k+ 1) x (k-h1	 (2.89)	 ~
)

The substitution of Eq. (2.89) into Eq. (2.88) yields

k(k+l-ijk+l) = x(k+l-i+k) + K. Ck+l) (z(k+l) - H.(k+l):k(k+l(k)]
(2.90)

which. is the result postulated in ,Eq. ' (2.75) .	 The appropriate initial

conditions are obviously
,
{x(--.j0) _ 0

2
	 - 0 3, 1 2	 ...	 , J}.	 This result,

j.
Eq.	 (i!.90) , combined with that of the one-step predictor, Eq.	 ( 2 .66) , is

sufficient to describe the structure of the filter which is shown in
J

. Figu `e ,2.2.

k+l k=Z 	 k+l k u k	 2
":' •	 '	 °

14 j

r .

x
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Evaluation of K.( +l) .. From the def Znition of prediction error and Eq.

(2...89)

1:(k+l k)	 z(k+1) 7 2tk+1 k)
4

	

4	

Z (k+l) - H(k+l) x: (1,-+1 k)

= H(k+l)x(k+l) + v(-k+l) - R(k+l)k(k+l k)

= H(k+1)x(k+l k) + v(L-+l) 	 (2.91)

Consequently,

kz (k+l) z (k+l) _ E iz (k+l I k) "z t (k+l I k) }

E IH.(k+l) x (k+l k) + v (k+1) ] [ x' (k+l I k) H ` (k+l)

(2.92)

H (k+l) E Ix, (IL+1 I k) V (k•+1 I k) } H' (k+l
1

+ H (k+l) E {: (lc+l l k) v' (k+1) }

-h E {v (k-1-1.)x' (k+l k) } a' (k+l )

sj + E{v(k+l)v (k+l) } (2, 93)

The middle two terms of Eq.	 (2.93) are now, shown to vanish. Since -one.

i, just the transpose of the other it is sufficient to examine only one.

E Lk (k+	 k)v (k+l) } _ E {x (k l)v' (k+l) } - E {x(k+1( k)v' (k+l) }	 (2.94)

From Eq. (2.43) the first term of Eq.	 (2.94) vanishes.	 From Eq.	 (2.23)

and Eq. (2.27) the estimate is a linear combination of the measurements	 j

A(k-i+ljk) _
k
E, A. (Q)z(Q)	 i =•0,	 1,	 ...	 J (2.95)2.	 ,

1
The substitution of Eq.	 (2.95) in the ''second term of Eq.	 (2.94) yields

k
{ E fR (k+l k) v' (k+l) } = E { E AO (9.) z (Z) v' (k+l) }

k

E AO W E {z (0 v' (k+l) ,} 	 - 0 (2.95)

w ,c

1f
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Therefore, Eq. (2.93) may be

PI	l (k+l) r (k.+l , k+11 k) H' (k+X') + R (k+l ). '	 (2.97)

Evaluation of PXZ in Eq. (2.35) and substitution of Eq. (2.89) yieldsi

PXZ	 {x(k+l-i):z' (k+1 k))

E{, , k (k+l-ail k) + x (k+l--i l k) J f x ` (.k+l.j k) R' (k+l) + v (k+l)^ }

E{x(lc+l-i1 k)x (k+11 k). f1 (k+l)

+ E{x(k+l.-i.1 k)v' (JL+].))
`f	

+ •E f ^; (k-t•1-ij k)x' (k+]; k) ) H' (k+l)
;.1

+ E { (k+l-i.1 k) v' (.k+l) }
	

(2.98)

The second -term, in Eq. U.98) vanishes due to Eqs. (2.42), (2.96) and

.;	 (2.58) . By property (2. 33) and Eq. (2.70) the third term vanishes. The

r.	 fourth term in Eq. (2.98) vanishes due to Eq. (2:96). Therefore, Eq.

Lj	 (2.98) becomes
R	 ,

•

Px(k+1-i) z (k+l , ^ k)	 E'{ (k+l-i.^ k):' (k+1 Q R' (k+l)

P {k+l-i,k+l ( Q H' (k+l) (2.99)

,t	 The substitution of Eq. (2 .97) and Eq. (2.99) into the defining relation,

'x	 Eq. (2.87), for K. (.k+l) gives
rf	 .

t Kjkf-1) _ Px (k+1-i.) 2 (k+l k) P2 (k+l.) . 2 (k+l.)

P(k+l-i.,k+llk)H' (k+l) (H(k+l)P(k+l,k+llk)H' (k+l)

+ R(k+l)) ^x	 (2.100)

for k = 0, 1,	 and Eq. (2.109)' of Theorem 2'.3'is proved. Note that

J.:	 if _R(k+l) is assumed to be posi-tive definite, it follows that the re-	 {

quired inverse always exists since P(k+l,k^ llk) is positive semi-

definite.
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' Evaluation of P(k+l-i,k+ll k)

From Eq. (2. 72) the expre lion for V(Y,+I,k+1l k) is known to be

J	 J	 ,r
P (k+l , k+] I k) 	 k)^0 	Z. O i (L-+l k) P (k.- , k: j I	 (,k+l k), 

} + T(khl,Q (1)P ` (k+l, k)	 (2.72)

Xt remains to determine the error covariance matrices
i^

l' (}:+1-i,^ k+1 k) and P (k-i, k-j l k) . 	 For 3, -= 0, P (.ki-1, k+l	 is def fined by
rk Eq.	 (2.72j . so the cases of interest are 'for i = 1, ...	 , J.	 Now to de-

termine P(k+1-i,k+1(k) for 1 = 1, ... 	 J.	 From Eq. (2.37) and Eq.

(2.66)

x (k+l k)	 x (k+l)	 x (k+1 k)
,,

0 (k+l,k)x(i	 3,) + '(k,-h1,k)w(k) + ^(.k+l,k)u(k)
i.=

'a J
--	 E ¢	 (k-+l , k) k (k-41 } --	 (k.+l , k)u (k)

0^
"_

J
^'	 E	 . (k-f-1, k) x (k^i, j'k) -1- T (k+l , k) w (k) 	 (2.101)

i-0

From the defini '' on of error covariance matrix and Eq. (2.101)

F (k-j , k+l I k) - E {x (k- j ( k) x' (k+l k)
-1 ]

{	 , J
E{x (k--j	 k) [^,t^ (ic)^'' (k-t-1,k) 	 -F	 E x' (k-il k)^' ('k+l,k) ]}

i_p

= E { k (k- j I k) w' (Q) r' (),+1, k)

J	 '	
I

E{^(l:,j k)x' (1c-a.l k)}', (k+l,k) 	 (2.102)
iap	 i

4

The first term in Eq.	 (2.102) vanishes due to Eq..(.2.40), Eq. 	 (2.95) and
IJ w

Eq.	 (2.41).	 Therefore, Eq.	 (2.102) becomes
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J

P (k.-j , k+l k)	 ' (It- j , k ^i, k) (Y-+l , k) j -- 0 , 1, .. , J-1,.^
	i 0r c.	 (2.103)

which completes the proof of Eq. (2.84) of Theorem 2.3.

Recall that for i - 0,

P (k+1--i,, k+l I k) - P (k+l , k+l k)

which is already known from Eq. (2.72).

Evaluation of P (k-i, k- .1k)!A ^

Finally, it remains to determine. thE. error covariance matrix

P (k-.i: 0 k--3 k) - E Bc (k-:L k):k (k.- ,j k.) }	 (2.100

From the definition of estimation error and substitution of Eq. (2.90)

w and Eq. (2.38)

M-ilk)	 x (k-) -- x (k-i, I k)

x (k-i) -, [ 2 (k-:L k..-1) + K. (,.k) {z (k) 	 H (k) ;k (k k-1) } ]
M1	

}

X(k it k-1) - Ki (k) [IL(k)x(k) + v(k) -- 11(k)#k(k k-1) I

o (k-i- l k-1) -- K (k) H.(k) x (kl k-1) - Ki (k) v (k) 	 (2.105)

Substitution of Eq. (2.105) into (2.104) yields

' P (k--i k.:	 k	 E x k i k-•1 x'	 _,' I k- 1

t

" {x (k-i I k^1):k' (lc k--1) } It' (k) K (k)

{ -- E	 (k--i k--1) v' (k) } K' (k)_(k

K.	 H. k E h k k-1 X k-	 k-1(	 (
' 	 I

Ki(k)H(k)E ^x (1c) k-1)x' (k^ k-1) }LYr ('k)K (K)

+ K. (k) IN (k) E f5t (k I k--1) v' (k) } K^ (k)

K. (k)E{v (k)k (kl k- -1) 	 (k)K, (k)
s

' + Ki{k)	 (v (k) v' (k) } K (k)	 (2.106)

S1

x_.

1

st
t
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F00	 ( ,
•,	 )	 (2.107)

', ;° 	 •-.^	 ^' Ck^l, k[ k-.l) H,r Ck) _ K.

6O that
'(^c) [I(k)p(k'
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F
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^J+1 s e
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tut	
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random n-vec tor independent of ig (k) and v(k+a.) for all k = 0 0 1, . ..

Xn addition, jE jx( ij 0)) , i ^ 0 0 l p ... - , J3 is a zero mean random
YsF

n-,vector independent of w(k) and y(jt.+l) for all k = 0 9 , ^'... by define

tion and Eqs, (2.19) and (2.20). However, -YAJ O) is not independent of

jx (—i j 0) , i = 0, 1_, 	 , J) as is` shown. by (2. 67) . Therefore, it must

be concluded that {x (k+l—fIk+l), 	 019	 , J)'is a Gauss-Markov

,(3+1) sequence. This concludes the proof of Theorem 2.3.

y
2.6 .1 Estimation in Systems With. No Time Delay►

It is of interest to examine the results of Theorem 2_.3 for the

case ,where there-is no time delay. This is easily done by setting J 0

in Theorem 2.3 and results in the following theorem:

Theorem 2.A (a) The optimal filtered estimate X(k+llk+l)

for the-system described by Eq. (2.5) and Eq. (2.6)> is

given by- the recursive. relation

Xm+11 k+l) - c (k+l k) + 1 (lc+l) j z (k+l) X (.k+l I k) ] (2.109

for k 0, 1,	 where X"(010) - 0.

(b) K(k+l) is an n x m matrix wb ch is specified

by the set of relat,i,ons

K(),-+l)	 P (k+l k) H! (k+1) s H.(k-+l) P ( k+l k) H I (k+l) + R ( 1-+1) I^1 `

	

(2.110)	
1

P (,k+l	 (k+l , k) P (k Q (.k+l , k) + ' (k+l , Q (k) r (k+l , k}

	

(2.111)
	 I

P (k+1 k+l )	 ( 2.112)

for k 0, 1, . , . where i is the n x n identity matrix

and P(0 0) _'P(0) is the in.i., ; ial condition for Eq. (2.111)

	

.seeccte.ones.^ea!,uwsxstderays_vwmkruce 3. z:r.. F 	 :	 •	 .. 	 -	 ._
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(c) The stochastic prgcess' Ox (k+l1 k+l), k=0,1,...}
p

whiclt is defined by the filtering error relKation,

I(k+l^ k+l) ^ x(k+l) .x(k^l^ k-h1) is 1 zero mean Gauss--
1	

K

Markov sequence whose covariance matrix is given by

Eq. (.2.112).	 K

Thus the results of Theorem 2.3 reduce to the familiar Kalman1	
,	

-

#flier when no delay is present ia1. the system.
i

*	 2.7. Computational Aspects

One of the significant features of the filter developed in
R

;:.	 Sections 2.5 and 2.6 is its recursive form;. The measurements can be

processed as they .occur and there is no need to store any measurement

data. In fact, so ,far as storage of th,a measure,•nent, and state is con

cerned, only LR (.k-,ij k) , i _ 0, I J} need be stared in proceeding.

from time k to time k + 1.

The information flow in the filter can be discussed by consider- 	 <

ing the block diagram of Figure 2.2.

`

	

	 Suppose that D;, ilk), i, 0, 1, .. , J) is known: for some k

and that it is desired to determine x(k+11 k l) given z (kMl) . The compu-

tational cycle would proceed as follows:

1. The estimates IR (L—il l Q s i	 0, 1,	 , J) are "propagated

` forward" by premultiplying them by the state transition matrices,

^ i(k+l,k) . The sum of these is added to V,►, (k+I k)u'(k.) , giving the pre-
3

dieted estimate fi(k+l l k)

r.

{
r

!S.££Yiw;..ua4ai,v1. .:i6:^.2	 ...»'353:.abSMiS"'C' Ya:M.es.::' 	 ..J'Nk:.a'.,::..w.^...«...m:.......a......«,,...._:.a.:ri.,. ,...<»..-...«. _.. ....... .. '. 	 -	 •	 ,.	 _.	 -	 .	 4 	 ._... :..
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2.	 (k1.1 k) is premultiplied by nOti-1) giving z (k+1) k) which

Is subtracted from the actual measurement z(k+l) to obtain the mea'suxe-

ment residual i (k+11 k) .

•,
3.	 The residual is premultiplied by the matrix KO (k+l) and the

result is added to x (k+l (k) to give- x(k+l (k+l) . 	 At the same time, the

delayed residual z (kj k-,l) is premultiplied by K :,(.k) .	 The ith sum is

z L! to various delayed sum	 as indicated in Fig. 2.2 to give

'. ^i. (k+1--3.l k+l) , 	 1 _ 0 $	 i t	 ...	 , J)&

4.	 fx(k+l- it k+l) , i r 0, 1,	 ... , J} is stored until the next

IJ measurement is made at whi,ck time the cycle is. repeated.

The interplay between prediction, ^iltaring and smoothing is evi-

dent at this point. 	 I t can be observed that each estimate is obtained

n using t1te. other.	 The filter equations are

1(k±11 k):	 (k-4-14.1 k 	 (k-'ij k) +	 (Y-+I k} u (Q	 (,11 )
M0

+t x	 k+1)	 5: (k.+l Y-	 k)	 - Kii(k+l) [ z (k+l) x (k.+1 k) j	 (2.114)

f To initiate filtering,	 BSc (--il 0) V,-O, i	 a, 1,	 ...	 , J}	 is used

" and Eq. (2.114) can be solved. 	 The equations then proceed recursively
A

as described in the four steps above.

Consider next the computation of the filter gain matrices

(Ki(k+l) , i = 0 j 1,	 ..	 , J} and the three covariance. matrices

P (k-+l 	 k) , {P (k- j , ^+1: j Q * j _ O p 1 0	 ...	 , J--1}	 and' {P (k-	 k-j l k) ,

i, j 	09 1,	 ...	 , J}.	 The relevant equations are

.fix+ 1

s

...^-..x.a.:^:rrvmaxi.	 ^ <<o-cx^s..La -_	 '•.m.....
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t
s

A P (k+l, k+ll k)	 F	 Z. ¢ i (k+1 QP(k.^^,,k—jI Q) 	 `(k+l.,k)
--0
	 =0	 j

+ r (k+l , k) Q (k)r (k+1, k) 	 (2.115)

K, (k+l) a P(k+l—i,k+lI k) H s (k+l) (H(k.+l)PCk-+1,k+lI k) R' (lc+l)

+ R(k+l) ] ^l , ^; - 0, 1 1 	, ..	 J	 (2.116),

. P(k-,j,k+ll k)	 E p(k-'j,k-i.I k)	 (k+1 ,k) I j ^, p , 1 3 	...	 , J-1
1-0	 (2. ],17)

P (k—xi,  k,	 k	 P k^-i k^	 k-1	 ..
j I	 )	 (	 ,	 j (	 )	 (k)H(k) P (k,k `J i k-1)

• i', j	 = 0,	 1,	 ...	 , J	 (2.118)

for k0, I,	 ..'.	 , with P(-3:,4 0) = E {x(.-i)X' (- j ) }i	 •,j =0 , 1 , ... ,J.

a A typical computation cycle would proceed as follows:

1.	 Given P(kI k) ) Q(k-),	 (	 (k+1,k), 1 - 0, 1,	 ...	 , J) and

r (k+l ,k) ; P (k+l, k+l k) and ' (P (k-j , k+l (k) , j = 0, 1,	 ...	 , J-]) are com-

puted using Ea.	 (2.115) and Eq. ,(2.116) respectively.
y

2.	 F (k+l , k+l (k) , ' ;P (k- j , k+l I k) , k 	 Os 1 9 	...	 , J-11 9 H (k+l )

`. and R(k+l) are substituted into Eck. 	 (2.117) to obtain {K. (k+l)	 i=0,1,,	 ,J)

which, is used in Step 3 of the filter computations discussed in the

". "' previous paragraphs.

3.	 P (k+1, k+l I k) , [P (k-j , k+1 L k) , j _ 0 1 1,	 ...	 , J-1; ,	 {Ki (k+1,

_

i = 0, 1 9	 .,.	 , J} and H(k+1) are substituted into Eq.	 (2.11$) to yield	 I
1

1P(k-i,+l,k-j+1jk+l), i g j = 0, 1 3	 ... , J}.	 These values are stored

until the time of the next measurement ĝhen^ the cycle is repeated.Y	 p	 i

t The matrix inverse which must be. computed in Eq. (2.117) gener-

ally poses to real- problem.	 The matrix to be inverted is m x m, where
a

.ta r m is 'the number of elements in the measurement vector, 	 In most systems

_.,_.,..__.,.._..,.W:.i....xsv..:seh.srr, 3nu ur_vs..:aux^.«iav5u.3ssy sns.as.Ss...: ,.s_...,.._.,_.....,.,...u...v..,wam,c,.^.,..	 .:..:.	 .:
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o^	 kept small to avoid the high.cost of complex instrumentation.

r	 Consequent ly, it is not unusual to encounter system s with 20 state

. variables but only, 2 or 3 measurement variables.
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CHAPTER UI,

OPTDAL CONTROL OF LINEAR DISCRETE-TII{iE STOCH.ASTIC,ISXSTEMS

WINK TME DELAY

3.1 Introduction

The problem considered in this chapter is that of controlling a

system which is subject to disturbances and measurement errors such that

some measure of the system's behavior is optimized. It is shown, in

addition, that the results may, also be applied to the deterministic case.

Nei,the-r • the stochastic nor deterministic results obtained here have ap-

peared in, previous literature.

Section 3.2 establishes the particular class of problems to be,

solved, the system, model being that def;;ned in Chapter 2. The perfor-

mance. measure is the expected value of a quadratic form in the state,

and control variabl^s ' over a fixed interval of • time. The resulting

problem is called the stochastic linear regulator problem.

Section 3.3 reviews previous work in the area of control of

time delay systems. The majority of the work has been done for open-

loop deterministic, continuous time systems. Very little appears in the

literature on discrete-time systems and even less on the stochastic

control problem for systems with time delay.	 -

Section 3.4 introduces the. concept of opt mal ty and applies it
i

to obtain the solution to the stogy hsst%6 control problem. In Section
r

.3.5 the computational aspects o" iix)l. n  I, n  the algorithm are presented.
t

41 	x
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In Section 3,6 those results axe. converted tq than for a deterministic

system and the separation principle of estimation and control is dis-

cussed in light of these results. The separation principle states that

the optimal control system consists of the optimal filter in cascade

,x
4 with the deterministic optimal controller.	 The result is also shown to

reduce to the standard optimal controller when no time delays are pre-

sent in the sys tem.

7

3. 2 	 Rroblem Formulation

In this section the system Model is, presented as in,Chapter 2..

j The quadratic performance measure of interest i,s'defined. 	 Physically

a realizable controls are discussed and the problem statement formulated.

t .

3.2.1	 System Model

- The system model is defined by the relations
tt ,

k)x(k-i) + r(k+l,k)(k) + ^(k+1,k)u(k)	 (3.1)x(k+l)¢i(k+l,	 w.
i=0

z(k+l) = H.(k+l)x(k+l) + v(k+l)	 (3.2)
w

for k - 0, 1, 2, ... 	 The model is the same as that formulated in

` Section 2.2.3 and for which the optimal estimation problem was solved.

The following definitions and properties are repeated for reference.

• x	 n, vector (state)

u = r vector (control)

W - P vector (plant disturbance)
k

_{ - z	 m vector (measurement)

x '! v = m vector (measurement disturbance)

,
•s
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n x n (state transition matrix associated with the
x	 }

delayed state vector x(k-:L) )

r n x p (disturbance transition matrix)

n x r (control transition matrix)

R m x n (measurement matrix)

i,=0,1 .... ,J} Zero mean gaussian random n vector with

positive semi,-definite covariance matrix

P (^i. ,-'j ) = E {x(.-i) x` (-WS i sj=0, 1 9 ... ,J

(3.3)

#r(k.), k-0,1,2,,.. ) = zero mean ,gaussian white sequence which

is independent of (x -i 	 , i=0,1,...,J)

and has a p x p positive semidefinite

covariance matrix Q(k-) , k=0,1,. , .

(3.4)

41 iv (k+Y), k=0,1,..,} - zero mean gaussi,an white sequence which

is independent of

_a and' {w(k) , ^;=0,1, .. , } and has an m x m

positive s,em,defini,te covariance matrix
•

R(k+l.) ,	 k=0,1, ...	 .	 (3.5)

i
Ju (k) , k-0,1, , .. } cont rol - sequence which is either known

i

or can, be specified as desired.	 (3. 6)

The following propertiesg p	 P are recalled from Section,2.5.1 and are needed

.- for the development of 'Section 3.4.

1.	 Ix(i) ,	 i _ 0, 1, ...} is a Gauss-Markov-(J+1) sequence (3.7)

r . 2.	 x(i) and .w(i) are statistically independent for all
i,

1 _ 0	 Is

wv.w.w...mwsxer..H,wav:rmaswww.nn.ex.wuwu r+:.N::v n+.msa wma.x.+ie	 irr.rx 	 ..,w.,:,.i	 s... ..,..	 ..	 .....	 a	 (	 .	 'I



P

N	 ;Y^

[I

,j

i	

{tr

r--

A'	 44

3. z (:t,) and w,(,•j) are statistically, independent for all J? :L,

i - 1 0 2, t oo ,	 (3.9).

11 addition to these properties, the system equations (3.1)

and (3.2) must be "controllable," A discussion of "controllability"

:Ls presented in Appendix A. In general, a system, is said to be control-

lable, if, for the corresponding determ,3,nistic system, any initial

I
tate x(0) can be transferred to any final state x (t f ) in a finite time,

tf ^,- 0, by some control u. If a system is not controllable, then there

is no guarantee that a control sequence {u (k) , k - 0, 3. ... } can be

found which transfers the system to some desired final state from arbi

trary, :nit ial conditions.

3..2.2 Performance Measure

A control sequence ' (u (k) , k ; 0 2 1, ... } is to be constructed

to control. the s 'tate ' (x(k), k 0, 1,	 } of the system over some

fixed interval of time [0,N], N positive: integer, such that the per-

farmance measure
y

N
r JN - El; Z jx' OA(i)x(i) + u' (i--1)B(i-1)u(i-1)]l 	 (3.10)

Y - is minimized.	 A(i) and B(i) are; symmetric -positive semidefinite_matrices*
t ,

which. are n x n and r x r respectively and E{ • l denotes the expected

I
value operation.	 The expectation is over x and u.

JN is usually interpreted as a "system error plus control effort"

messuxe of performance.	 T.he first term on the right-hand side of Eq.

(3.10) implies that the desired state is zer'^. 	 If at each point i, the

desired state is soma arbitrary x d (i) then x(i) would be replaced in

dry ' i
iii

g.r•

r

.•e4.vw.^++merz'	 ^wm+.«..

tt
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Eq,, , (3,10) by x (i)	 Xd (i,, ) ,

Although. xd ti) 0 for the system model of this paper, this is

not a.requirement for obtaining a soluta;on. Unfortunately ,, if xd (') 0 01

the mathematical development is quite complicated and obscures the basic

results. This 3s obvious from the results obtained by Wil.li.ams6 for

the case where. no time delays are present:. Thus, as a matter of mathe-

matical convenience xd (i) is chosen equal to zero. Note that the quad-

vatic nature of the term implies that the measure of error here is one

of error-'squared and actually of weighted-error-squared because of the

freedom in choosing A(i).

.The second term, of Eq. (3.10) is sometimes called "control energy"

as a, consequence of the quadratic nature of the term. As with the first'

term it is referred to as "weighted control effort" because of the arbi-

trary, nature of BU 1)

Thus JN may be viewed as a measure which-provides for a trade-

off between'system error and control input. The relative importance of

the two terms is reflected_ in the choice of AW and B(i-1) . Because

JN is monotone and non-decreasing, a unique minimum _exists for the con-

trol sequence . IU U-1) , i = 1,	 , N) which minimizes JN

3:2.3 Mysically Realizable Controls

The control sequenceAu(i-1'), i, 1, 	 , N) which minimizes Eq. 	 N

(3.10) is not arbitrary. For example., the solution may lead to control

sequences which cannot be mechanized in practice such as those which {
1

require input data that is not pliysi.cally available when required Ad-

ditionally, since it is anticipated that variations in the system's

w^.m.^.fti..YlaYhti4raYb^xLa...,x.HZ:^a.Hr,.f 	 ».-att•nw,w.rn.<.<.........w..„...a.,.., a-,+,nk^w^.n.><. 	 ...	 •
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state occur, i.,t .% desirable to have the control sequence depend upon

information which. is available about the state., namely, the measurements.

-Thus the control sequence is to involve feedback. If no plant distur -

bances were present and if the initial conditions were perfectly known
ah;

ii	

then an open--loop control law would be sattsfactory r, assuming, however,

wMe plant is precisely known.	 Plant and measurement disturbances, how-

ever, :4i the system described by Eqs. 	 (.3.1) and (3.2) make a feedback con-

trol law necessary)	 In the sequel, the-,control sequences depend only

upon information about the system's state which is available for pro-

cessing.
a4 •

For any given k	 0, 1,	 ,.	 , N-1 it is obvious that , the avail-

able data on the system's state consists of th.e sequence of measurements

•z (1) ,	 ...	 , z (k.)) and the mean value of the. delayed initial states

i = 0,	 ...	 , J}.	 The control vector at k can then be written in

the form

^ u(k) w Nkj z;k (k), X : (0)J (3 .11)

vthere. z* (k) is the mk vector

t z* (k)	 z (l)
•

z (k) (3.12)

and R*(0) is the n(J+l) vector
f

R* (0 )	 x(0)

r
•

t
F

I

^(-J) (3.13)

{!^

...

1

t

.e,u>e1ir;. -. nosaR^x• M,vaa.w,..mmv..n.;w,x,.	 _. -------- 	 ..	 .__... 	
{I
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an4 
P  

is an, r"dimensional vector-valued functlpn of the indicated vari-

ables. Note. that p  is to be determined such, ghat JN is minimized and

it is-not necessarily restricted-to be of the same Form for all k.

+	 A control vector of the type defined by Eq. (3.11) which depends

only qn, available data is a physically real,izabl.e. control and pk,

k += 0, 1,	 N--1 is a p^Zsically realizable control law.	 For k = 0,

' u(a) can only be a function of x* (0) since no measurements are available.
r^

r'

If 
Nk 

is independent of z* (k) for all k, then V (k) is an open-loop core-

trol lair.	 I

k !" 3.2.4	 Problem Statement

k '. Y The problem can now be stated as follows.

"Determine a physically-realizable control law of the form

x (3.11) for the system described by Eqs. 	 (3,1) and (3.2)
h 

MI wh.i:•ck mina;mizes the • quadratic performance, measure ( •3.10) ."

Such a control law is called an o tinial control and the problemp	 p._.._.

H^,lt itself is called the discrete stochastic linear regulator problem (with

^;. Hi ll
delay).	 The word	 regulator	 arises because xd(i) =constant.•
3.2.5	 Discussion

Three important restrictions on the class of problems are:

1.	 The performance index is time independent. 	 The terminal

time ,itself may not be part of file perforn^ance index.r

;. 2.	 No amplitude bounds are. placed on the control vector. 	 How-

t." a - termever, the secondin J 	 tends to'li.mit excessive control.

s

"'L..	 €
+	 . •,

"eikSb^^wimu.Y.emarnL.n

!_	 '
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3. The state at the terminal time is not constrained. As with

the control vector the state at the terminal time may only be affected

indirectly through judicious selection of A(i) in the performance meas-

ure.
f

3.3. Review of Previous Work on Optimal Control of Linear S stems with
Time Delay	 '•

4

Attention is restricted below to work appearing in the litera-

' ture which may be applied to the stochastic controlY	 Pp	 problem with timef

delays in the plant.

Thus, the large number of papers which develop open--Loop control

•s
are omitted.	 Similarly, those papers whichh employ unity feedback and

vary only the gain in the forward path are not discussed. 	 Briefly, then,

the papers discussed below have the following characteristics:	 r.

1.	 Use of state-variable feedback

2.	 Presence of delays in plant
•

w The reader inter-es+ted in other characteristics of the control of time

delay systems is referred to the extensive bibliography compiled in

,i the bibliography.

A number of approximate techniques appear in the literature

(Bibliography:	 73, 116, 118, 157, 159, 161 0 164 9 212). These methods

use either a Pade- 7 approximation to the time delay which expresses a-ST

as a. ratio of polynomials in s or they express the delayed state x('t-h)

as a Taylor Series.

Ix(t-h) = x(t) - ha(t) + h2 Z - ..
2!

i
_	 3t;
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t.

Once either of these approximations is mad'e,.the problem may then be

treated as one with no`delays and the weld.-known optimal control results

may be applied. Since, by definition, these methods are Approximate,

they yield a sub-optimal solution and are not discussed further. It is

recognized, however, that such methods may be very good, depending on

the accuracy of the approximation.

In 1969, Eller et a1 8 developed an exact deterministic control

law for continuous systems with time delay. The solution, however, is

similar in form to the estimation solution by Kwakernaak 3 mentioned ear-

lier ana suffers from the same computational disadvantages.* Both results

r 	 are limited to plants with a single delay, although the authors suggest .

that the theoretical results may be easily extended to include multiple

delays. It should be remarked, however, that even for a single delay	 ^.
F,'

 the computation is so excessive that with a large cothputer (CDC 6600)

only scalar examples are worked.

In-1969 Koivo9 derived the solution to the stochastic controll	 ,	 f

^r
problem for continuous systems with time delay. He showed it to ba the

same as the result obtained by Eller et al, thus verifying that the 	 7

.separat:ion principle also holds for ccnitlnuous systems with time delay.

Larson and Wells 4* overcame some of the computational problems

in a paper published in 1969. Attention is restricted to serial systems,

where the delay is in the forward path only, but this represents a large

number of practical problems. Their results obtained are optimal only

for single input-single output systems, however.

r
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f The expanded state representation for.discrete systems with

time delay presented in Chapter 4 of this dissertation was first intro-

duced by Koepcke l0 	in 1964	 An alternate form of the expanded state

representation was later used by Day 11 in 1968.	 The results achieved

by both authors require extensive computation and storage.
a

The results obtained in the remainder of this chapter can also

be obtained by examining the submatrices of the solutions of Koepcke and

Day.	 Solutions of these: submat;rices requires considerably less computa-

tion and storage time.

3.4	 Stochastic Control Problem

r

3.4.1	 Problem Formulation

From Eqs.	 (31),	 (3.10) and (3.11) the problem becomes

' J
X	 + r(k-+lOk.)w(k) + ^(kc+l k)u(k)	 (3.1:4)

F	 .. im0

z(k+l) = 11(k .)x(k-^1) + v(k-1.1)

N
'	 JN _ E { E x' (i)A( .)x(i) + u' (i-1)B(i-l)u( -1.)	 (3.15)

i=1

u(k)	 uk(z'''(k),R*(0))	 (3,16)	
Y

where z* (k) is the ink vectur

Z*(k) _ Z(l)

z (k) (3.17)	
«

{
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i	 rr

X(-J)	 (3.18)

In the &,terministic case, the expected value would be removed

from the expression for JN , and the measurement process would become

z(k+l) H(k+l)x(k+l). Assuming the system is observable the state var-

iables could be calculated exactly, and the uncertainty associated with

	

:	 the delayed initial states would be removed. The estimates

(- ,), i.7-0, 1, ...	 J) would be replaced by tae actual values of the	 k

r	 delayed initial states, fx(-i), i=0, 1, .. , J). The stochastic regu-

for problem may now be stated.1a\	
.

1

3.4.'x Problem; Statement

Determine a control law of the form (3.16) for the system of

Eq. (3x,14) which minimizes` the performance measure in Eq. (3.15) .

The resulting system has the block-diagram. which is given in

	Ji 117 11 	 jig. 3.1._ The problem is to specifythe controller which will operate

upon the output states, z-(k+l), to determine the control vector which

minimizes the performance 'measure. -In 'general, the resulting control

law could involve feedback of all the preceding values of the measure-

ment vector. From a computational point of view this poses a similar

pwroblem to that of estimation discussed in Section 2.5. By applying the

Principle of Optimality,to'this problem (discussed in the next paragraph)

-a set of recurrence equations are found which resolve this problem quite

f

--	 - _	 ---- _ ----	 - -	 -	 --
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t, handily. Another problem is that of determining the optimal controller

when not all of the states are available for measurement. The separation

principle, which was first suggested by Kalman and Koepcke1 2 and later

proved by Joseph13 and Gunchel 14 provides a neat solution to this t1vas-

tion. This important result reduces the optimization problem to two

,	 separate optimization problems, one of estimation, the other of control.

It states that the optimal controller is the same as the deterministic

1 , controller which operates on the optimal state estimates as if they were

the actual, values of the states. In this chapter the separation princi

e is inodifi,ed slightly and also shown. to apply to the delay case. ThePl_	 g y	 PP Y	 y

stochastic control solution is shown to rely upon the availability of

the optimal estimates of the delayed states for implementation. Subse-

quent comments are merle to show that the deterministic controller and 	 ''

the stochastic controller are the same.

7

3.4.3 'Principle of-Optimality

The principle of optimality may be stated as follows:

v^ • Theorem 3.1. For any initial state and initial con

s
`	 trod, the-remaining optimal control at any subsequent

r4	 time must constitute an optimal .one for the remainder

of the trajectory.

it

♦ 	 •

A simple-interpretation of the principle of -optimality would be

as follows. Suppose that, for some discrete-time system whose initial

state is x(-i.), the optimal control {u 0 (t) , tl t ^ t z } minimizes some

,a
f	 performance measure J over the interval [t l , t 2 ] Then the principle of



.y.	 optimality states that the control {u°(t), t < t < t2 ,} minimizes the
y	 F•

same J for the same system over the interval [t', t 2 ] with the initial
Y

state x(t`) , which resulted from u°(t) acting over the interval [tl , t'].

A proof of 'Theorem 3.1 is given in Meditch5 	 (P. 331) and is a

' 4 powerful result for use in the solution of control systems optimization

problems.	 In discrete-time problems with no delay, the problem can be

reduced from one of determining an entire control sequence at once to

one of determining the control as a function of a state of time k based
n

on the results at time k + 1. 	 For the discrete time problem with delay

J A the same technique again results in , a set of recursive equations for the

control..

3.5	 Stochastic Control Problem For Systems `W1ith. Time Delay

VN is defined do be • the minimum value of the performance measure
r

s4	
.

yq
r

•	
•	 .JN' in (3.15).

N

VN = min , , . min	 E { Z x' (i)A(i)x(i) + u' (i-1)B(i-1)u(i-1)}
U(0)	 u(N-1) 	 i-=1

(3.19)

e•Th	 roblem is one of selecting rN variables 	 namely u 0	 u(1)	 ...P	 B	 ^	 y	 (	 ) ,	 ,

u(N-1) to minimize JN.	 A Lagrangian formulation would require the solu-
°o

i
tion of rN algebraic equation subject to the constraints expressed by

the system equation (3.14).	 Even for modest problems this approach de-

s _	 mands excessive computation.

The problem can also be viewed as an .N-stage decision process

where the N decisions, u (0) , u (l) , 	 ...	 , u (N-1) minimize	 the quadratic

cost.	 By applying the principle of optimality the decisions are made
x

Ef
rl

.a

^ q

.am.Y...,...,:.a..:w.....au:.w...w......., ^.r-.,...^..^......w,..M.t.w..-....b.......,....-_ 	 r	 .......:...	 .................+.w...- .......e, .. 	 -.«....	 ...	 _	 -.	 }'.



,S	 1	 one'at a time, rather than simultaneously, the N-stage problem is re-

duced to N one-stage problems. This technique starts with the final

stage'of control and uses induction to proceed backwards in time to an

arbitrary initial time as shown below.

, t 3.5.1	 Single-stage	 •

.,>l Suppose that the problem is simply that of selecting a control

f[(g

which minimizes the performance measure for the last stage of control.

4,
{6+Ha That is, the problem is a single-stage optimization problem

' i V	 =	 min	 E {x' (n)A(N .x(N) + u' (N-1)B(N- 1)u(N-1) }	 (3.20)

! However•, from Eq .	 (3.14)

,,	 « x(N)	 F ^i(N,N-1)x(N-i) + r(N,N-1)w(N-1) + ^(N,N-l)u(N-1)
i=O

(3.21)

Substituting this result into Eq. (3.20) ,and dropping most time indices

for convenience

s -Y, J	
J

Vl	 min	 E {[ F x' (N-i-l)¢	 + u'^' + w'r' ]A[ E	 jx "N-j-1)

u (N-1)	 i=0	 j=0
, •

4i
+ ^u + rw] + u'Bu]	 (3.22)

By noting that the individual product terms are scalars and that A is
•

symmetric, the terms may be combined to yield 	 r

J	 J	 J
V	 =	 min	 E {E	 E x' (N-i-1)¢'k .x(N-j-1) + 2u''^'A E	 ,x(N-i-].)

1	 3.
u (r-1)	 i=0 j =0	 i=0 i

+ 2w 1 r 1 A E ¢ .x-(N-i-1) + 2u'^'Arw + u' [^'A- +B]u

i=O
,.Y
;; + w'r'Arw}

	
-

(3...23)
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:.' where the indicated expected value is over x, w and u. 	 Making use of

the matrix identity

trace (ABC) - trace (BCA) = trace (CAB)

and since each term, in Eq . .	 (3.23) is a scalar the third and fourth terms

of Eq. (3.23) vanish

J	 J
E {w' r' A E	 . x (N-i-l)) = E {tr [ r' A E ^ . x (N-i-1) w' (N-1) ] )

i_;0	 i__0

a trace [ r' A E	 E {x (N-i-1)w (N-1)}]ii^p

U	 by property (3.8) .	 (3.24)

t i Similarly, E{u'^'Arw) = u'^'APE {w) - 0	 (3.25)

by properties (3.6) and (3.4).
•

From Chapter 2 the property of conditional expectation gives

E {x) = E {E(xl y) ), where the outer expectation on the right--hand side is

over Y. thus allowing Eq.	 (3.23) to be rewritten'

J	 J
Vl	 min	 E {E[ E	 E x' (N-i-1) ¢' A^ x (N-j -1)

u (N-1)	 i.=0 j=0

+ 2u'^'A E ^.x(N-i-1) + u'[^'A^ + B]u
:E i=0 3"

+ w'r'Arw zx(N-l),R*(0)3}	 (3.26)

This equation can be minimized by minimizing the inner expected value
•	 1

in Eq. -(3426) with respect to u(N-1) for all z^(N-1) and x^(0) 	 The

physical realizability condition requires that u(N-1) be some determin-

- istic function o	 z(N-1} and x (0).	 Thus the second 'and third terms of

Eq.	 (3.,26) become respectively

'. F:: -	 -
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J
E{2u'^'A E	 x(N-i-1) z*(N-«1),R*(0))

i=0 i

2u'^'A EE {x(N_ -1) z% (N-- ) ,x*(0)) (3.27)ii=0
{ and t{u' [V'AU + B]u z*(N-1),5E (0)} = u [^'AV + B]u (3,28)

j f Now, setting the gradient of the inner expected value of Eq. (3.26) equal

to zero,

a 8 yl	 0	 2^' A E Oit {x (N-i-1) z'* (N-1) ,Fc* (0) )
Z u (N-1)	 i=0

HI + 2 [^ A^ + B]u(N-1) (3.29)

and solving for u(N-1), expression (3.30) is obtained.

t

'
J

u(N-1)_	 -[^'A^ + B] -1^'A Z ^ x (N-i-1JN-1) (3.30)x
i=0 

where	 _ ^(N,N-I)

^ (N, N-1) .

Hi
B _ B (N-1)

?gr A	 A(N) (3.31)

Notice that the separation principle is evident in this one-

«^: •stage case.	 The optimal control is a set of gain matrices each of

which is associated with a, separate filtered estimate, where the gain

E

matrices and filters are computed independently. 	 Define

W00 (N) _ AM	 and (3.32)

note that"'00 (N)	 W' O (N) since AM is symmetric.

Si (N-1)	 _ -[)S'A'P + BI 4'A i (3.33)

'	 as..i

.
t

♦ •	 r

r

•

'	 mC:crns: .['. : .'vn+.xnx..un'. 	 r	 .r=x . -	 :..:t'._ a ^a.,..	 '.--;.	 -.	 •	 •	 w•	
^u..aa>;....wuvu,.savrwsa.s.aza...wwa:zwuwuarawn.exnac.3uWx^su^:^er..a.easssaar-..bcrsx§ux 	 —	 Gu.w,+.za..s•,.	 .a..... 	 .....	 a .....	 ...	 -. _.	 Lr
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J-

p and write u(N-1)	 E Si (N-l)R(N- i-1 N-1)	 (3.34)
i=0

'rr Vl may now be evaluated by substituting Eq. (3.31) into Eq.	 (3.23) (less

the third and fourth terms). 	 "f

^ J	 J	
A

r.
-J -1)v	 E f E	 E x' (N-i-1 ) ^'W00^jx(N

i=0 J=O
}

- 2 E	 E V (N-:L,l N-1 )^j'WOO^[^'WOO^+B]-1 ► 'W00¢ x(N-j- 1)
i=O J=O	 ,

.p J	 J
.	 £	 ' (N-i,-1IN-l)^

'W00^ 
[^

'W00^
+B]-1(^'WOO¢+B]

:L=O J =O

' IWOA^+
Bj-YWOA^jR (

N-j-11N-1.) + w'r'WOOI' w)	 (3.35)

This expression may be simplified by noting that

R (N- i-1 I N-1)	 x (N-i.-1) -- x (N-i-11 N-1)	 (3.36)

Then, letting , .A. denote the n x n matrix

nij =
	 W00y [^ ' WOOS+B ] 

-

1^' WOOS j	
(3.37)

t

The second and third terms may be combined in the following way.

{-2R' (N-i-1 N-1) . x(N-j-1) + R' (N-i-1 N-1) AijR (N-j `1 N-1) J
i=0 j =0

,
J	 J

3.  	 '=o j=0 -,	 1j	 j

.{ E	 E [ ,.2x! fi.	 x . + 2xlll .x • + 
x 1lijxJ - X	 71	 xj	 i	 ijJ=O J =O	 j	 ;

- x' :^1. X .	 +X'.11	 X .) ]	 (3.38).	 r^,

k
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The second, fourth and fifth terms cancel since each term is a s aalar,
t , A^3 i , acrd the equation results *tn a double sum where each sum con-

tributes the same range of indices.	 Thus Eq. (3.33) reduces to

J	 .T
E	 E (X lij :k

j 	
xi /L X (3.39)(3.39)

i-0 j-0

Wherefore Eq. (3.35) may be written

Vl = E	 E E x!	 ' [141J	 V [YI	 I?	 V+BI	 W	 ]	 x }i 1	 00^ 00	 00	 00	 j1-0 j=0

J	 J
+	 { £	 E Xi J^ja

j
 } +	 (^a 'r ` W00rw) (3.40)

i=0 j=0

Since the last two terms of Eq.	 (3.40) are scalars, these terms become

;^	 J	 J`	 E {	 X 1 jx j + wI r' WOOFw)

i=0 j=0

J J
E (trace[ E	 E x'. /V j xj + w' r' WOprw} }i==0 j=0

•	
J	

J	 r

i ftrace[ E	 E,, 
l^j:k R 

+ 
rlW00 rww, ] )

h

=0 •-0

trace[ E	 E . t •P.. + rlw rQ]	 (3.42)
i=0 j=0 ij v.	 00

where P
3i

,_.is the n x n filtering covariance matrix

P	 = P(N-j-1,N-i-1 j N-1) 	 E (x(N-j-i)x' (N-i-1) }	 (3.43)
jl

and	 Q	 Q(N-1) _= E Iw(N-1)w' (N-1) } 	 (3.44)

Denote Eq. (3.42) as a(N-1) and define 11 (11-1) as
. J	 :L jJ

Mi (N-1)	 ¢i[Sti00^-j'001)[`•^'^Wpp^+B],-1^1Wpp)¢ j	 (3.45)	 ^	 ^t
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l	 a„
fk

A

Repla6ing the time arguments, the above r esults may now b e summarized

for the single-stage problem.

J
u(N-1)	 E S (N-1):k(N- -1 N-1) 	 '^ (3.46)

i=0

I# S (N-1)	 N N--1 W	 (N) r N N^-1
#

B(N--1)]-1q)' (N gN-1)«00 MN	 (NON-1)

i = 0 0	 1,	 .,,	 9 J (3.47)

KY'
Ur	 (N)	 i(N)	 i = j = 0

0	 elsewhere (3.48)

V	 { E	 E x' (N-i-1)M•	 (N-1)x(N-,j-^1) } + a (N-1), (3.49)
:L=O j=o

M	 (N-1) _ ¢' (N,N-1) (W	 M -W	 (N)v' 	 ^'^' (N,N-1)Wi,	 00	 00	 00 (N)WIN"'AL
+ •

+ B(N^1)1 -1^ (N,N-1)W	 (N))^	 (N,N-1)

$ (N,N-1)W00(N)^ (N,N •-1) + ¢ I (N,N-1)W00(N)

^ (NsN-1) S (N-1) (3.5))

`
J	 J

a (N-1)	 trace{ E	 E A A. (N-!1) P (N- j -1, N-i.-1 j N-1)
-.

f i=0 J=0

,. + r' (N,N-1)tJ	 (N)r (N,N-1)Q(N-1) } (3.51)

S! (N-1) LV'(N,N-1)100(N)^(N,N-1) + B(N-1)] -1 S (N--1)
(3.52)

where the initial, conditions are

W 	 _ 9, u(N) _ 0

a

.w
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,
3.5:2	 Double-Stage Problem

}f

y

The two-stage problem may now be written

°	 V2	 Mir.	 min	 E {[x' (N--1)A(N-l)x,(N-1) - u' (N-2),B(N-2)u(N-2)
u (N-2) u (N-1)

+ [x' (N)A(N)x(N) + u' (N-1)B(N-1)u(N-1j) (3.53)

where the expected value is over x(N), x(N-1), ii(N-1), u(N-2). Note

that u(N-1) and u(N-2) are required to be physically realizable. Util-

izing the principle of optimality, Eq. (3.53) may be rewritten
^ t

V2'- min	 EW (N-1)A(N-1)x(N-1) + u' (N-2)B(N-2)u(N--2) + V'}
u (Iv 2) '

(3.54)

From Eq.	 (3.49) and (3.51) it can be seen that

E (V1 }	 E;E{ E	 K x' (N- .-1) Mij (N-1)x(N--j-1) + a(N-11) (3.55)
`

i=0 J=0

E( Z	 X x' (N-i,-1)Dl	 (N-1)x(N-j-1))	 A- a(N-1)
i j

(3.56)

Hi^

_	 _
;L=

O j -0
.

since the inner expectation of Eq. (3.55) is e44t x.

ss Thus Eq. (3.54) can be written

 V2 	 min	 E {x' (N-1) A (N-1) x (N-1) + u ' (N-2) B (N-2) u (N-2 )
u (N-2)

J	
J

+E	 E x (N i 1,)1`iij (N-1)x(N J 1)) + a (N-1) (3.57).	
j1_0	 _p

J

'	 min	 E( E	 E x'(N-i-l)W..(N-1)x(N-j-1)
u(N-2)	 i,=0 j=0	

i^
i

+ u'' (N-2) B (N-2) u (N-2)) + a (N-1) (3.58)

where a (N-1) -i s taken out of the minimization procedure since its value
,1

' does not depend on u(N-2) and the following definition is used

x
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w 
j 

(N-1)	 'Mij (N-1) + A(N-1)	 1 -- a	 0

ij	 (except i = 3 0)

0	 i,j >0	 (3.59)

Since W and M are symmetric Wij = W' and rill = M3! i . This definition is

a matter of convenience for later development. Because of the system

equation (3.14)

	

.;s	 J
xck+l)	 E ¢ (k+l,k)x(k) + * (k+l,k)u(k) + r (k+l,k)w(k)	 (3.60)

i=0 i

A	 u(k) cat,' only affect x(k+l). Therefore, since W i	 ^J' , the minimiza-j	 ji
u tion of Eq. (3.55) may be rewritten

}

	

}$	 V _ min E {x' (N-1) W00 (N-1)x (N-1)r

	

i	 2	 u (.iii•-.2)

J-1

	

x	
+ 2 E x' (N-1)WO `+1(N-l)x(N-j-2)

=O

Eli

+ u'(N-2)B(N-2)u(N-2)} (3.61)

Substituting the plant equation (3.60) into Eq. (3.61) and momentarily

dropping the time indices

	

^^	 ,^	 J	 J	 J
Vmin t f E	 E x.¢ . 4.	

.x.	 --	 ' Q^	 x +2u' 'W	 E2	 u(AT-2)	 =D j=0 i^ -00¢ j` J-	 00i_O i i

J
+ 2w'r'W60 E ¢lxi + 2u'^'W N + u'[y'W ^+B]u

=0	 00	 00i 

. J-1 J	 J-1

	

i	 + ^`^' r' ^ti' rca' + 2 E	 E x • ¢' W	 ''	 X.00	 Rio .+lxj +2E u W 	 1,^
j =0 i=0	 j=0

2 E w' r'w	 x }	 (3.62)0,a- l j
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As in the development of Eqs.	 (3.24) and (3.25) for V 1 , the third, fourth
an

and ninth terms vanish.	 Because the terms xi ={x(N-i-2), i = 0, ... 	 , J}
rt

occur at or before N-2, they do not depend on u(N-2).	 Thus the minimiza-

tion of (3.62) depends only on the second, fifth and eighth terms.

3
Utilizing the properties of conditional expectation as in equa-

tions	 (3.23)	 through (3.26), Eq. 	 (3.62) becomes

Ax
J	 J	 J

V2	 mi n_ ° t {E [ E	 E x l ^ W00^ x^ + 2u' ^ ' W00 E ^ ixi
u(N-2)	 i=0=n	 i=0

,j

e

• + u,'[V,W00^+B]-1u + w'r'W00r
w

J-1	 J	 J-1
+ 2 E	 , E xi^!WO .+l 

Jx . + 2 E u' ^' WO	 +lx . z* (N-2) , R* ( 0 ) ] }
^^3=0 i=0	 3_O	 Sj

.b (3. 63)

Now Eq.	 (3.63) is minimized if the inner conditional expectation

E {• z'* (N-2) ,x'* (0) } is minimized with respect to u (N-2) . 	 Since
r

i
x	 x(N-,i-2)'then x. is unaffected by the minimization. .Thus the first

b	 and fifth terms of Eq_ (3.63) are unimportant. Similarly the fourth

term is unaffected by the choice, of u(n--2) . By, setting the partial der-

`	 ivative of the inner expectation (less the first, fourth and fifth terms)

with respect to u(N-2) to zero

J	 J'1

L u o 
V _ - 0 = E {y' 1J00 r'OO • xi + [ ^I WOOV+B ] u + iE0W0, i+Ixi z " x f

/	 1

(3.64)

R By solving for u, this becomes

J	 J-1	
i

u(N-2)	 W00i1+B]-1,' 
[W00 .E iii + E c?o,i+lei]	 (3.65)

1=0	 i=0

x

tti
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Define Si (N-2) = -[Waa ^i + '
10,1+1^	 j	

0 ' 'y ..	 , J	 (3.66)

and recall from Eq.. (3.59) that I- i j - 0 if i or J > 'J

J

u (N-2) _	 Z S. (N-2) x (N-i-2 j N-2)
J=O 3.

V
2 
may now be evaluated by substituting Eq. (3.60) and Eq.	 (3.65) into

Eq. (3,57), omitting the third, fourth and ninth. terms which have been

shown to vanish.

J-1 J--1	 J	 J
=	 min	 t { E	 E x ! W	 x	 +	 E	 E xis iw 00 ^ . xy2	

i +1,x+1 j	 J j'_ u(N-2)	 =0 j=0	 i=0 j=0

- 2 L	 E R¢iW00Y'[`^'t^00`Y+B]
-1T T W

00^ •xj., i=0 j=0

-
.	 J-1	 J -
- 2 E	 E :kIWI	 ^W00^+B]-1OgooO

i=0 J=O	 +1^C	
jxj

• •	 J _	 J	 1
+	 E	 E *! ^^.WOOV[V'W

OO 	
0'	 •^+B]	 ^ 'S'^ 0jRjis=0 j =0

j J-1

+ 2 E	 E x!Q !W	
X

i 3 O,j+1i=0 j=0
J	 J-1	 r	 .

+ 2 E	 Z X ! ¢ !WOOF [ V' W0	 ] -Y 
WO '

0OB
i=0 j=0	 ^? +1

J-1 J-1
+	 E	 E x'W'	 0[V'k'OOV+B]	 ^' W 	 R

i Q,1-i''	 0^j+l
	 1

i=0 
j=0

J-1
- 2 E	 Ex'¢'.W	 V(U'W	 V+B ]	 ly 'W	 x .

i=0	 0 i 1 00 :	 00	 O, j+l
j=

J-1 J-1
1- 2 E	 E R! 14'

	 'W	 +B	 '
=0 

j=0 
1 0, i+1	 00	 O S j+1 j

'	 x
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(3.67)

rh

^r

h

,This definition of W expressed. by Eq. (3.59) allows all upper limits on

the sums to be J, Combining terms, Eq, (3.67).may be rewritten

J	 J	 '

v	
E	 z E{x'[W	 + ¢ 1 14 0 +	 W	 ]x } .

2 i=0 j=0 i i+1J+l	 00	 f 0, j+l j

+ E Ni
l 

[ -2^ 114001, [yl 1 WOO 1 +B ] -] 
WoO^ j

2w' .+ ^ [^ 't1 ^+BI -1^ I Wo, ^. a.	 ou	 00
I 
j

2^' W00fl ^' W0O
^+B ] -1 ^ WO 

S j+I

	

2W	 X 104 ^ -1B] - ^'W	 ]xj)
o,i+l	 00	 O,j+l

+ E {x V [ ^ iW0 0 [ ja00^+B ] ^ 
WOO j.

l

+ 0 i+1^ [ W' W0
04)+B ] - ^ ' W02j+1

  
.	 ,

1	 .	

s+ 2^ W ^N,W ^+B]-','«	 } }
00	 00	 09j+1 J

e	 +E {w' I''W00rw} + a (N -,1)	 (3.68)

	Substituting Ri = x.1 i n Eq. (3.68) and noting that

E{R'Yx)	 tr E"{Yxx'}	 0 since the term in parentheses is a scalar

s

r.

1
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^^	 J	 J
'

yy	

V2	 z	 E Ix jmq 1, -1 + ^^-W00^ .+ i,t?0, +1'.t

1-0.	
J

0
	

a
t

i

^C

YYY^

tV

w'1

4

.	 i

aWO, 3^-1-x.^ ^ ^'' W
OOS+B ]-1 Wood

U 1 W00^ W WOOF+B ] .
i^' Wo q j+l

2W0 ,i+l^ [ ^ 'WOOD+B]-1^'WOgj+l

+ 0jW00^[04OOoB]-11PI1400$j

+ WO i_,^ [ ^ ' WOOS,+B ] -1^' 
WO 

.+l

+ 2^!W u[^'W ^+B] -1^,'W	 ]x J,}
i 00	 00	 _O, J+1 

Ei [ ¢ 00	 00
[^ ^ WO^.t-B ] -1 

W00^ j

+ W0 ", 1+1
, 	 IWOO^+B3^'Wogj+1.

+ 
2
^IWOO

[ ^ W00^+B3-YWO 1 ]x }

^i	 +' E iw'r ' ^` Tw} + a (N-1)	 (3.69) i

.	 a
*	 MDefine . 111	 [^1W00 + Wi+1,0I' [V' ^^ppV`^-$]-]`[WO^^+1 + W 00 ^]	 (3.70)

i
r	 Substitution from Eq. (3.05) yields

2- = S [^'WOO^ +B] • 15
J

The second expectation of E . (3.69 m ay be written as
kr

P	 q	 )	 Y

9	 ,

}

4 a	
,

•s

;s

A
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(3.71)
i J

E {,F, 	 E R I
i 
Aij

1-0 3= 0
•

►ef ine	 W	 +	 +
I WOO^i+l J+l	 N, 1 +1

01W
00^ 	

1W 00^+B]_'^'WOOF
i 

• W1,+1, & 
[VW	 *+B]_'^'W

000	 9j+1

2W
i+1, 0 W I W	 VWOO^ J.00

(3.12)

Substitution of Eq.	 (3.66) into Eq.	 (3.72) yields

":Lj	 "'i+i,i+i + ^iwoj+i

+ [^ I w	 + W	 +	 (k)]
00 	 i,+l C)

(3.73)
:L

By letting a(N-2)	 E	 E 
x i 

, .A	 R	 + w I r I W00 rw	 + a (N-1).
i=O J-0

R,	 Z tr(,A j Pji) + tr(VWoorQ) + a(N-1) (3.74)
L_-O J=O

The expression for V	 may now be written from Eq. (3.69) as
2

i

i4F.
 X!Mx	 + a(N-2)

2 ij i (3,75)
=0 j=0

The results for the two-stage optilnization process may now be summarized

With,the time indices restored in Table 3.1.

•
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Table 3.1
F	 #

Summary of.Optimal Control Algorithm for 2-$tage Sequence

u(N-2)

	

	 E S (N-2)R(N-i-2jN-2)	 (3.76)

i=0 i

S
:L

(N-2)	 -[^' (N-7.,N-2)"00(N--I)^ (N-1 0 N-2) + B(N-2)]-1

V (N-1,N-2) (W00(N--1)^i(N-1,N-2) + Woo i+i
(N )

(3.77)

wij (N-1)	 A(N-1) + M
ij 

(N-1)	 i _ j 0
" (N--1)	 i, j - 0, ... , J except i= j-0-^	 ;

0	 .isj>J	 (3.78)
J J

V2 E E	 E x' (N--2)ri.. (N-2)x(N-j -2)} + a(N-2)	 (3.79)
i=0 j=0 i^

1.1 (N-2)	 [^ (N-1,N-2)W00(.N-1) + Wi+1 0
(N-1) ] [^ j (N-1,N-2)

+ V (N-,1,N-2) S . (N-2) ] + 	 (N-1 N`2)WU .+l (N-1)
^^

+ W	 (N-1)	 (3.80)i+1,+1
r	 ,

J	 J 	 '

a (N-2)	 trace[ E	 E . A, • (N-2) P (N-j -2 ,N-i-2 I N-2) ]
i=o j=6

+ trace [ri(N-19N-2)W00(N-1)r(N-1,N-2)Q(N-2)]

+ a(N-1)	
(3.81)

J j (N-2) - S!
3.

 (N-2 ) [ jIj (N-1 ) N-2) W00 (N-1) U (N-1, N-2 )

1+ B(N-2)1-S,(N-2)	 (3.82)

i

y

•
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Despite the complex nature of the various equations note that

the computation for the two-stage process is quite straight forward,
I

-First, the feedback gain matrices ' (Si (N-2), S (N-I), i=0,, •... , J} are
F

r
determined and they are used in conjunction with the optimal filtered

k	

'

	 ,

r !

	

	 estimates	 (N-i.-2 N-2) ,i^,(N- i-^l N-1) , =0, see , J) respectively, to im-

plement the control signals. Thus the'separation principle is again

apparent. Comparison of Egs.(3.76) through (3.82) with the results for

the single-stage case, Eqs. (3.46) through (3.52), the results are seen
• s.r +

' to be identical except for the change in time 'index. In effect, Eqs.

r , a (3. 76) through (3.82) reduce direci ly to Eqs-.	 (3.46) through (3.52) by

y° recognizing that W00 (N)is the only non-zero term of W for the single-

stage case,

- 3.5.3	 t -1 Stages
c .;x

Assume now. that the results of the tc^o-stage case may be gener-

alizedto t-1 stages. 	 The equations characterizing the control as ex-

r.r pressed in Eq.	 (3.76) through (3.82) then become as in Table 32;

t

3.5 A t Stages

	

1	
.	

<

	

rta	 From the principle of optimality

vt = min E {x' (N-t+l)A(N-t+l)x(N-t+l)
u (N-t

+ u' (N-t) B (N- t) u (N- t). : + Vt_1 }	 (3.90)

Examine v t_l from Eq. (3.86) and express it in a slightly different

form so that the minimization becomes more evident.,ti

F

`r t
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Table 32

Summary of Optimal Control Algorithm for a (t--l)=Stage Sequence

u(N-t-1) _ E Si (N-^t-l)R(N-t-i+ljN--t+l) 	 (3,83)
i=0

S (N-t+l)	 -- [ ^ ' (N=-t+2 , N-•t+1) t ►100 (N-t+2) ^ (N-"t+2 , N- t+l) + B (N-•t+l) ]i
•^ (N-t+2,N-t+l) [W00(N-t+2)^ i(N-t +2 ,N•-t+l) + W0, +l(N-t+2) )

f	 00 is ... , J	 (3.84)

W 3

	

(N-t+2).= jNfij (N-t+2) + A(N-t+2)	 i.=j=0

r ij (N-t+2)	 i-.j	 0, .., , J 'except i=1

0	 i,3?J	 (3.85)

" (11-t+l)	 [¢! (N-t+2,N-t+1)1400 (N-t+2) + Wl+l,O(N-t+2)]

• [ j (N--t+2,N-t+l) + ^ (N-t+2,N-t+l) S
j
 (N-t+l) ]

	

+ 0'(N-t+2,N-t+l)W	 (N-t+2) + W.	 (N-t+2)o, JA-I	 -1, j+l
pj m 0, 1,	 J	 (3.86)

yd	 J

Y.._l ='EI E,	 E x' (N-t-i+1)M j (N-t+l)x(N-t-j+1) + a(N-t+1) 	 (3.87)
i=O j=.0	 ,

J J
a, (N-t+l)	 trace[ E,	 £ J^j (N-t+l)P (N-t-j+l,N-t-i+11 N--t+1) ] + a (N-t+2)

i.=0 j =0

+ trace[ r' (N-t+20N-t+1)l%too(N-t+2)r(N-t+29N-t+l)Q(N-t+l)]

(3.88)

I
j (N-t+l) = S i (N-t+l) [V' (N-t+1, N-t+2)1'100 (N- t+2)u (N- t+1,N=t+2)

I
+ B (N t+1) ] -lsj (N-t+1)

i s j - 0 0 1,	 , J	 (3.89)

where M
ij 

- tip 
i 

and . J i = A^ i and W 
j 

W!

{

is
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J-1
` + • Y	 a	 thin.	 ^Ix' (N- t+l)Y^	 x(N-ti-1) + 2 E, x' (N^t+].)M	 x(N-t-j)r,l	 00	 01j+1u(N-C)	 3M0

J-1 J-1
' ,t-j)) + a xN-t+1)	 (3.91)+	 X	 E, x' (N-t--1)11:L+1,

1.40 J=O	
j+lx(N-

x

Since the expectation is over,x, w and u, Et -1} _ Vt-1 as expressed in

Eq.	 (3#90).	 Substitution of Eq.	 (3.91) into Eq.	 (3.90) yields

Yt 4	 min	 k(x' (N-t+l) [A + 100 ]x(N--t+l) + u' (N-t)Ru(N-t)
u(N-,t)	 .

a J-1
, + 2 4 x' (N--t+l,)M0, j+lx (N--t- J )

j=o

J-1 J_1
 4

+	 Z	 F x' (N-t--i)M	 x (N-t-j) ) + a (N-t+l)	 (3.92)t

i.0 
j =0	 i+1,3.1

y

Once again, using the properties of conditional expectation, Eq. (3.92)

becomes

Vt'	 min	 E	 x' (NTt+1 [A+1,100]x(N-t+l) + u' (N--t)Bu(N-t)
u (N-t)

` J-1	 . J-1 J-1
4 + 2 Z. x' (N- t+l)M	 x	 +	 Z	 F, x'M	 x .0, j+1 j	 i i+l s j+l J

xs (N-t	 ,j=0	 -=0- j =p

x* (0) } + a (N-t+1)

where x	 x(N- t- .).	 Expansion of the inner expectation and substitution

of Eq.	 (3. 14) and (3.85) in Eq.	 (3,.93) yields

Wl
j

-Mi j + A	 10

riij	 ^.; j = 0 s	 ...	 , J (except i _ j = 0)

0	 elsewhere	 (3.94)

a

w^ t

K
fj

7

`J

:
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t	 t

.	 J	 J	 J
Yt 	min	 E	 Z x l 

^' W00¢ 
x	 -^ 2u' ^ ' w00

u (N--t)	 im0 J=O	 no

J

2w ' r 1,00 F ^jxi + 2u ,'WQOrw + u w W004+B] ► i

{ J-1	 J	
J-1

+ w'r'w00rW 
+ 2 E	 E x' 'W 	 +lX^ + 2 E u' ' WO	 +1X3ii=O i=0	 J=O	 ,

J-
t + 2 E w'r'W	 x.	 0, +l^ 7'' (N- t) ,k:, (0) ) + a (N-t+l)	 (3.95)

3=0

As shown by Eqs. (3.24) and (3.25), the third, fourth, and ninth terms

vanish And a (N-t+l) does not depend on a (N--b) . 	 The time i A.dices are
e

xi, = x (N--t--i)

U = u (N-t)	 ► _ W-t+1 9 N-t)

_e

w _ W (N-t)	 Wig	 Wig (N-t+l)
E - B (N-t-1)

^4

Observe that- the first and sixth terms are unaffected by the choice of

u(N-t) and min:bdze Eq,	 (3.95) with respect to u(N-t) .

J	 J
a yt^	 :^ 0 = [2V ^WQ4 E ¢ xi + 2i ' Z W0,3+1x3

a u(N-t)	 i=0	 1-0

_
Z*'x^^0)^	 .

•

+ 2[y'W000+B]u 	 (3.96)

By.solving,tor u and restoring the time indices

-J

u (N-t) -	 F S. (N-t)it (N-t-i j N-t)	 (3.97)
i=O

S (N-t) _ --[, ' (N-t+l N_. t)W
00

(N-t+l)t (N-t+l N-t) 4- B(N-t)]`-1

T
^' (N-t+l) [WOp(N'-t+l)^ 	 (N-t+1,N-t)

+ W	 (N-t+l)]	 (3.98)
0,i+1

_,wt 	 r
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+ a

3
Now v t must be wgaluated from Eck.	 (3.91).

Yt	 E {x l (N-t+l)W
00

x(N-t+l) + u' (N-t) B (N-t)u (N-t)
Q

I

J-1

(N-t-j )
• 2 E x' (N-t+l) ^I

0.3+1xjwo

J-1 J-1
' +	 E	 E x'(N-t•-i)W	 x(N—t—J) + ac(N-t+l))	 (3.99)

i=0 j=0	 i.+l 3+3-

Substitution of the system equation (3.14) int q Eq. (3.99) as well a 's the

expression (3.97) for u (N-t) yields

^ J	 J	 J	 J
Y	 F E( E	 E x'^'W	 x+ 2 E x'5'	 'W	 E	 xt	 1 ^, 00 J j	 i' i	 00	 i

Y
i=0 j=0	 i=0	 j=0

A'

J	 J
{	 +	 E x S` [V'W^O ^ +B] -1S x

=0	 i	 j j
+ w'r`WOOrW

J-1J	 J-'1	 J

+ 2 E
,	

E x!¢'W	 x+ 2 E	 E AIS'^'W ,	 x
10,3+i 3

J=O i=0	 +1 J	 =0 f=o J j	 o, j

J-1 J-1
+	 E	 E x!W +1
	

+l x.) + a(N-t+l)	 (3.100)
JJ=O j=0

Once again, since Wi	 -- 0 for i or j > J,	 the upper limit on the sums
j

^a
may be J 'for each sum without changing the expression (3.100). 	 Therefore,.

Eq. (3.100) may be rewritten, letting xi _ x i - xi and noting that

. E (xix )	 0 for all I., j.
I

n

{
f

.:.>.	 _..,..__,:, pia	 T	 .da.^.•„	 ....u^.......__...rw_:......... ...:µ.a...w,..:.,.. .a:cc_....,.:.K ....:.........:.....,:.. -..,.. 	 _	 ,.	 ........_..	 .	 _	 ...	 _.,..	 ..	 :	 _	 . .... __.	 J
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V	 E 	 x! ^W	 2s''tt^i c¢. ' + S' [^,'W ^,+B1S^t	 ^=0 3 ^p x 1 00 J	 00	 00

iWp j j+1 + S^ 
WO j+l + Wi:+1, j+1 xi

E x! 
sl V "00^ +B1—lsi R  }i=0 j=0

• E(wtrtW00rw
# a (N-t+1)	 (3.101)

where the -time indices are

Xi = x(N--t-i.)	 ¢i O j(N-t+1,N-t)

• S3. - S (N-t)	 ^ (N-t+ ,N-t)

Wij = W (N-t+1)	 T(N- t+1,N-t)

w - w (,N-t )

DefineS t. t td ,+B 1As lI^ 00	 Sj	 (3.102)

Mid, = 10!W00 + Wi+l Cpl j + *S 
1 ''}' ^ . WO ,j+1 + Wi-1, j+l	 (3.103)

A	 ,

J	 J	
r

	

a(N-t) _ trace E E	 pi + r,
tW00pQ1	 (3.104)

i=0 j =0 d 3

	

+ a (N- t+l)	 i

then Eq. (3.100) becomes

J J
V	 E E.	 E x!M..x } + a(N-t)	 (3.105)t	

i=0 j =0

But this is the same result as E 	 3.86 with the time index chap ed.o	 ,

It remains to be demonstrated.tha't,-in fact, the u(N-t) expressed

by Eqs: (3.94), (3.96:) and ,(3.102) minimizes the performance measure

i;
1;	 ,
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Ell
^.e

S

w M1Yk ^

>t
k

,	 given by Eq. (3.90), Recall from, differential calculus that the van-

fishing of the gradient with respect to u, which led in the general case

to Eq. (3696) is only a necessary condition for Vt to be a minimum.

That is, u(N--t) in Eq. (3.97) only guarantees that V  attains a station-

ary value. A sufficient condition that V t attain a minimum. is that the

second gradient of V  with respect to u(N-t) be positive. This condi-

tion is determined by examining the gradient of Eq. (3,96).

J	 J .
V(Vd	 2[ y 'W00 E yiki + 

^' E WO,j+1Rj + [^'W00*+B]u]	 (3.96)
u (fit--t)	 i--0	 i=0

The "second gradient" of Eq. (3,96) becomes

Vu(N- t ) 
[Vu(N-t) ( Vt ) ] = ^'wpoV+B

I n

•.k

P r

.•9

i^

Thus a sufficient condition that a minimum be obtained is that

the matrix

*' (N-t-1,N--t)W00(N-t)y(N-t-1,'N--t) + B(N-t)

be positive definite for all t = 1, 2, 000, N.

The control algorithm and associated performance measure equa-

tions may now be written, letting k = N to These results are sununar-

ized in Table 3.3. Block diagrams of the optimal controller and the

Yoptimal control system are,shown in Figures 3.2 and 3.3 respectively.P 

t

	

	 The control law expressed by Eq. (3.105) requires the optimal

estimate of the delayed states at each stage. The form of the control

lacy indicates the following theorem.
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t

Table .3.3

Summary of Optimal Control Algorithm for k Stage Sequence

r u (k) =	 E Si (k) R (k-i l k) (3.106)
i=0

Si(k)	 _[V' (k+l,k)W00 (k+l)V (k+l 9 k) + B(k)]-1

-^' (k+l,k) [1JO0 (k+l)q(k+l,k) + IqO, +l(k+1)]

i = 0, IS	 ...	 , J (3.107)

Wij (k+l) = .'M ij  (k+l) + A(k+l) 	 i=j=0

' M.
j
(k+l)	 i^3=Q^	 •..	 , J except i=j=0

0_	 isj?J . •	 (3.108)

P ij(k) _ [ i(k+1,k)Wo (k+l) + Wi+1,0(k+l)][$j(k+l,k) +	 (k+l,k)Sj(k)]

+ ^' (k+l , k) l	 (k+l) + Wi+l)j+1	 +l , j-}-1(k

i,j = O, 1,	 ...	 , J (3.109)

J
V^._	 —E { X	 E x (k- )U. (k)x(k-i) } + a (k), k (3.114)_

i-0 • j-0	 J

r^

;r
J	

J

a (k)	 trace{ E	 E j 14 . (k)P (k-j ,k-i k) } + a (k+l)

i.

i=O J=O

+ trace {r' (k+l , k)W00 ( lc+l)r(k+l, k)Q(k)} (3.111)	 4

•I	 (k) _ S! (k) [^' (k+l,k)W00(k+l)V (k+l,k) + B(k) ]-1SJ 
(k)x

i,j	 0,	 1,	 ...	 ,	 J (3.112)

for k	 N-1 3, N-2 ,	 ...	 0, .where a (n) = 0, 14(N) _ A(N) ,00 and W	 (N) is
ij

zero elsewhere.	 The rx. r .matrix	 (k+l k)W	 k+1 ► k+l k+ B k	 is

required to be positive definite for all k.	 The minimum value of the

performance-index, for (N-k) stages of control is given by Eq.	 (3.110).	 r
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Theorem 3.2 The owl control system for the sto-

chastic linear regulator problem consists of the

optfma;l linear filter cascaded with. the optimal

feedback gain matrix. The parameters for the two

parts of the control system are determined inde-

pendently. The performance measure is governed by

Equations (3.109) through (3.112) where the,boundary

condition is a (N) = 0.

_

ri

IA

I'A

A

The next section verifies that the gain matrix is the same as

that for the deterministic controller. This confirms the separation

principle as applied to time delay systems.

3.6 Discussion of Results

3.6.1	 Comparable Results for Deterministic Case

It is interesting to relate the results expressed in Eqs. (3,106)

through (3.112) to the deterministic case where no plant disturbances or
•

' r
measurement errors-are present.	 For such.a case the noise covariance

matrices, R and Q	 are identically zero.	 The estimates of the sta*es 	 -

.: are equal to the statesq	 themselves forcing the filtering error covariance

matrix to zero and the expected value operation is over a deterministic

F, quantity, yielding the quantity itself.	 The resulting equations (3.106)

'

through (3.112) are presented in Table 3.4.

Note that the computation of the control law expressed by Eqs

r: (3.113) through (3.119) once again verifies the separation principle.
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z

G Table 3.4

Summary of Optimal Control. Algorithm
for Deterministic Time Delay Systems

J
'u(k) - Z S (k)x(k-i)	 (3.113)

i=0

Si (k) _ -[V' (k+l 0 k) Woo (k+l)y(k+l,k) + B(k)^-1
E

*' (k+l,k) [W (k+l) (k+l,k) + W	 (k l) ]t	 00	 i.	 0 i.+l
= 0 2 1, ... , 1	 .(3.114)

Wi (k+l) - iii , (k+l) + A(k+l)	 i=j=0

IiZj (k+l)	 i, J=0,	 , J except i=3=0

0	 elsewhere	 (3.115)

24 (k) = [¢ ! (k+l ) k)t	 (k+l) + W -	 (k+l) ] [ ♦ (.k-f-1,k) + ► (k+l k) S • (k)]

^i(k+l,k)W0^J+1(k+l) + Wi+,j+l(k+l)

i>, _ 0, 1,	 , J	 (3.116) -

VN-k	 Z_ ' Z x' (k-i)Mi . (k) X (k-i) 	̀ (3.117)
-0 J=0

•
a (k)' = 0	 (3.118

Ai (k) = don't care	 (3.119)

Frir

Eli

,

II

.0
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That is, the control law is identical to that expressed by Eqs. (3.106)

through (3.108) except that x(k- ilk) is replaced by x(k--i). Thus the

controller in the stochastic case treats the optimal estimate o f the

states as if they were the actual values of the states.

The value of the performance index is not the same, however. It

is, as expected, less for the deterministic case than the stochastic case.

3.6.2 Comparable Results for Stochastic No-Delay Case'

If " no delays are present in the'system, the results expressed by

Eqs. (3.106) through (3.112) should reduce to the standard optimal con-

trol law. The transformation may be made by letting J = 0 and writing

x	 the resulting equations which are presented in Table 3.5. These results

are, in fact, identical to the standard optimal controlresults such as
•

.	 5-those obtained by rieditch	 Chapter 9.

3.7 Computational Aspects of Optimal Controller-

The recursive nature of the computations required to generate

the optimal control sequence and to evaluate the performance index is

}	 evident from Eqs. (3.1.06) through (3,112).•

1. Given {W. (k+l), i,j =0,1,.. ,J) compute , {Si (k), i=0,1,...,J1ij

from Eq. (3.107).

2. Substitute the values of {S (k), i=0,1,.9.,J} and W00(k+l)

into Eq. (3.112) to obtain. U. k.	 i '=0 1 ... J

Substitute R{A. j (k) , i, j=O,X ... ,J}, W (k+l), a(k+l), and-	 00

-^j,k-ilk),	 s	 ,k), i j=	 ,	 ,	 q ( 3 .111)the error covariance matrix {P (k	 0 1 ... J} into E

to obtain a (k)

^	 i
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Table 3.5

Summary of Optimal Control Algorithm for Stochastic Systems
With No Time Delay

U(k)	 S0 (k)P (k I k)	 a	 (3.120)

SO (k) — IV'' (k+l,k)WOO (k+l)V(k+l,k) + $fk)rl

	

-0' (k+l,k)IJ00 (k+l)¢0 (k+1,k)	 y	 (3.121)

W
00 

(k+1) _ a
00 

(k+l.) + A(k+l)	 (3.122)
.^ 

(k) _ ¢ (k+l,k)WUO (k+l)1¢ (k+l,k) + ^(k+l,k)S (k)l 	 (3.123)
M00	 .0	 0	 0

VN_k = E {x' (k)Af00 (k)a(k)) + a (k)	 (3.124)

a(k) = a(k+l) + tracer'(k+1,k)ji00(k+l)r(,k+t,k)Q(k))

+ trace{1 (1:)P(kik)}	 (3.125)
:a	

a E	 GO

100 (k) = S' (k) [^" (k+l,k)WOO (k+l)^(k+l l k) + B(k)] S0 (k)

7C	 _ —0'
0
(k+l,k)W 

00 
(k+l)V(k+1,k)S 

0 (k)	 (3.124) ,

0

1

1

«

s

__.^...	 ._az.,...._sxari'^xrra,vuna..xra*.zzr^..rv^:racrre•,..u.al.^.: ,_.......,,. 	 .^.^a,rekrasib ., _...«_ .._	 ._ _.....	 -_....	 ..._.._.	 _. :._.	 .-,..	 ::..	 _.	 ..:	 .	 ..	 ..:	 ___;....	 ...:_.	 ..	 __.	 ^__.	 .____._I
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4. ' ISi(k) ,,=0, ]., ... ,,} and' 
{ q 

(k1) , i 3 O,1, ... ,J} are sub.,

stituted into Eq, (3-.110) to obtain. ` Ofij
 
(k) ) t, j=0,1, .. ,J} .

5. Substitute ' Oi
ij

 (k) ,	 into Eq. (3.,110) to obtain

VN-k'
b. Substitute • Of (k) e i,J=0,1, ... ,J} and A(k) into Eck. (3.108)

f	 e

to determine ' 114 3 (k) , i, J=0,1, ... ,J} .

The cycle is then repeated, letting k become k-,l in the above

procedure.. Note that although • {Hii (k), i,J=0,1,...,J) must be computed

at each stage, VN_k is not necessarily of interest and, therefore, need

only be computed at k = 0 to obtain the minimum value of the performance

measure for all N stages of control. The values of o(k) and

i,J=0,1,..,.,J) must be computed at each stage, however, because.

of their interrelationship and the dependence of VN_ k on a(k). Note

also that the error covar;,ance matrix from the optimal filter must be

known at eaca stage. If only the optimal control is required then steps

i`
	

2., 3 and 5 may be omitted.	 ,	 {.

l	
•	 .

The optimal control is physically realizable since it is simply

,.,

	

	 a linear transformation on the estimates of the delayed states. The con

e

-	 j

troller in Fig. 3.2 is a set of time varying gain matrices

{Si (k), i=0,1,...,J1.	
+

Since the computations proceed backward in time, it is clear

that the time history of [Si(k), i=0, 1, ... ,J) must be determined prior'

to system operation. That is, it must be precomputed and stored for

later use.	 ^^

L

x
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CHAPTER xV
w,

EXPANDED STATE REPRESENTATION AND DUALITY'
A

4.1 Introduction
,

In this chapter an alternate representation of discrete--time

systems witk time delay is formulated. The system equations (2.6) ,and

(2.16) are imbedded in an "expanded state" form. This representation,

discussed in detail in Section 4.2, expands the state dimension of the

system in direct proportion to the magnitude of the time delay. Once

t	 the time delay system is expressed in the expanded state form the solu

tions are well--i:noiwn. 2,5	 since this form does not express explicitly

the time delay dependence. Unfortunately, since the resulting system

dimension is directly proportional to the time delay magnitude, the re 

sulting computation required for a solution is often considered too ex-

tensive for practical application: As a consequence the expanded state

form does not receive much attention. in the literature.

The major results of this chapter are obtained using the expanded

state formulation. One consequence of casting the time delay problem in

the expanded state form is that the resulting matrices have a large num-

ber of null elements. Thus, rather than work with expanded matrices (as

previous authors have done), it may be more efficient to partition the

matrices. The solutions to these submatri.x equations are obtained in

Sections 4.3 and 4.4. The results are identical to those of Chapters 2'
i

and 3. In Chapter 5 the computational savings are demonstrated, by

84	 }
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comparing the partitioned results to those obtained by wovking with the

entire matrices.

In Section 4.5 the expanded state form is used to demonstrate

the duality of estimation and control for time Belay systems.	 Duality
E

1

follows as a natural consequence of being able to express a time delay
N	 •

, f
•

system as an expanded system with no time delays.	 It is also shown, how-

ever, that duality can not be extended to the partitioned solutions to

' a the estimation and control. problems.

K
4.2	 Expanded State Representation of Systems with Time Delay

The system equations of Chapters 2 and 3 are

x(k+l) =	 E ¢ (k+l,k)x(k-i) +	 (k+l,k)u(k) + P (k+l,k)w(k)	 (4.1)
i=0

z k+l	 = H k+l x k+l	 + v k+lC	 >	 C	 )	 C	 )	 (	 >	 C4 .2

These equations ma 	 be also written as an expanded state toq	 y	 resentation-	 P	 P

qqnpnp ` x(k+l) =	 (k+l,k)'X(k) + x(M.1,k)u(k) + P(k+l,k)w(k) 	 (4.3)

z(k+l) = 1(k+l).X(k+l) + V(k+l)	 (4.4)

where the following definitions apply

^(k+l) = x(k+l)
x(k)

^ u

x (k-3+1) (4.5)

U (k)	 u()t)	 (4. 6)

•

ry
f,

a
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..	 I a	 l 	 t

<	

4	 ..

..	 x(k+l,k)	 ^(k+l,k)
{

F e	
R

0 ^^ (4.7)

H(k+i)	 Ix(k+l)	 0 ... 0^ (4.8)

¢(k+l,k)	 0(k+l k)	 1 (k+l I Q 	 ... ,	 f j(k+lsk)
I I	 0	 ... a0

0	 1	 0	 ..• 0

aF	 ;	 a^. 0	 I
` x 0	 0

0	 ., .	 0 1	 0 (4.9)

-?-(k+l,k)- _.	 r(k+l.,.k)
_. 0

t,	 f	 ^
i	 t

•

0 (4.10)

v(k+l) = v(k+l) (4.11)M1	 G ,;

.r ^k
Y

VOL)	 i#(k) ' (4.12 )
 `a

From the previous properties of the smaller matrices.
PA

Lr	 ^r

n(J+l) vector (state)

u = r	 vector (control)

p	 vector (disturbance)
1

m(J+1)	 vector .(measurement)

v -= n,	 vector (meas.urement error)

;, ¢ = n(J+1) x n(J+1)	 state transition matrix

•_ n(J+l) x p	 disturbance transi.tign matrix t
. .. is

i

•

*^

e

a
r

.	 I

y
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'	 V n(.J+l) x r(J+l) control transition matrix•

R m(J+1) x n(j+l) measurement matrix

x	x(0)' = zero wean gaussian random n(J+1) vector with positive

semidef inite covariance matrix P(0)

k-0 1iwr(k), - , , .} _ :zero mean gaussian white . sequence which is

independent of x(0) and has a positive semidefinite p x p

covariance matrix Q(k), k:0,1,...

' 0(k+l) ,k=0,1, } zero mean gaussian white sequence which is

independent of x(0) andw(k), kX0,1, . } and has a pos-

tive semidefinite. m x m covariance matrix R(khl), k+O,1, ..

(k), k=0,1,...} = control sequence which is either known or can

be specified as desired

4.3 Opt.mai Estimation Solution of Expanded State Representation

With the system described by,Egs. (4.3) and (4.4) having the	 L

properties expressed in the preceding-section, the solution is well-

known (Meditch 5 Chapter 4) for this is the standard estimation

problem. Once again, of course, the system must be "observable" as

described in Appendix A or the estimation problem cannot be solved.

Under the assumption of observability, then, the following theorems

from Meditch 5 , (pP. 174-177 and p. 356) are stated for a system	 j

described by Eqs. (4.3) and (4.4)

t,



o

i 88
,

A

Theorem 4.1	 U the optimal filtered estimate x(k[k)
and the coyar .aace. matrix • F(k1 k) „of ehe corresponding
filtering error x(kjk) _	 (k) - 5?(klk) are known for
some k = 0, 1,	 ...	 , then

e	 a.	 The single--stage optimal predicted esti-
mate for all admissible loss functions is given by
the expression

'J (k+l k) _ //̂̂ ^^
/ (k-h1, k)	 (k k) + 'T{/ (k+l ' k) v (k)	 (4.13)

I 	 Ipp
A

,

3
b.	 The stochastic process . 0(k+1. I k) ,

byk = 0, 4 1, ...) defined	 the single-stage prediction
error, k (k+l l k)	 (k+l) - -^(k+1 I k) is a zero mean

! Gauss-Markov sequence whose covariance matrix is
t

., given. by the relation
IN
^a V(k+ljk) _ y (k+l,k)^(kjk)T` (k+l,k)

' f +	 '(k+l,Q (k)	 (k+l,k)	 (4.14)

x .

a^

Theorem 4.2
a.	 The optimal filtered estimate ^(k+11k+1)

j is given by the recursive relation

ti (k+l)(1.+1 ^ k+1) _ R (k+l k) - k(k+l) [ N	-- h(k+l)h (k+l ^ k) I
(4.15)

for k = 0, 1,	 ...	 , , where -(010) = 0

•.	 •;. b.	 k(k+l) is an n(J+1) x . m matrix which is
specified by the set of relations

1Z'(k+1)	 (k+J.lk)W' (k+l)	 (k+T)	 (k+llk:)	 (k+l) + W(k+l)]^l

G {̂
(4.16)

^(k+ljk) =	 (k+l,k)	 (klk)	 ' (k+l,k) + ^(k+l,k)	 (k)	 ' (k+l,k)
;. (4.17)

(k+l I k+l) _ [I-k(k+l)^(k+1)1^(k+l k)	 (4.18)

for k = 0, 1, ... where I is the n(J+1) x n(J+1) identity
matrix and ^ 010) - ^(0) is the initial condition for

I
Eq.	 (4.17).	 _

c.	 The stochastic process	 ^-:(k+llk+l), k=0,1 ; ... }
which is defined by the filtering error relation

t x (k+l k+l)	 x (^.+1)	 (k-+l k f-1)	 (4.19)

k = 0, 1, ...	 , is a zero mean Gauss-^Harkov sequence
whose covariance matrix is given by Eq. (4.18).

4

_	 r
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For 'these theorems, the f olfgK: ng de^inittons hold

(k+1 k) E fx (k-1 k)' (k+lk) }

'	 where P (k+l l' k) is n (J+l) x n (J+I )

(k+l k) i R (k+l, Q

R (kj k)

2 (k-J+1 k)

where A (.k+l	 is n (J+l) x 1

•	 gg

(4.20)

(4.21)

The use of Eq. (4.20) allows ^(k+llk) to be expressed in terms of its

submatrice.s as

^i V (k+l Q _ P (k+l , k+l k) P Ck+l , k k) . . . P (k+l k-J+1 k),
If

A P (k, k+l l k) P (k,k(k)

P (k-J+l , k+l (k) P (k-j+l k l k) .... P (k-J+l k-J+l l k),	 ,
(4.22)

r Similarly,

^ (k ,jk) =	 P(k,k1k)	 P(k,k-11k)	 ... P(k,k-Jlk)

P(k-l,klk) P(k-l,k-l.jk)K .

e .

P(k-J,k k)` .	 .	 .	 .	 .	 P(k-J,k-J(k) (4.23)

4.3.1	 Partitioned Representation of the Expanded State Solution to
the Estimation Problem

The solution to the optimal estimationp..	 problem for systems with

time delay is expressed by Eqs. (4.13) through. (4.18)., As mentioned

o earlier, however, the dimensions of the matrices involved in this expande d
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x , =	 state solution may render the computation prohibitive. The appearance
i

of a large number of null elements in the defintig equations for these

matrices [E s. 4.5) - (4.12,) r 4.22q	 (	 (.	 ), (4.23)] indicate that partitioned

solutions may be advantageous. Thi,G is, in fact, the case as Eqs. (4.13)

through (4.18) are examined below in partitioned form.

y -	 Eq. (4.13) may be expressed in partitioned form as

=	 X (k+l k)	 $ 0 	 X (k (k)	 u (k)

¢	 x (kl k)	 I 0	 3	 9(k-1 i k)	 0

x: 3 t	 0	 I	 .

R (k+l-J k)	 0	 • 0 I 0	 R (k-.y k)	 0	 (4.24)

The expansion of Eq. (4.24) in partitioned form yields

x	 , x(k+llk) -	 E ^ i (k+l,k)R(k-ilk) + ^ (k+l,k)u(k)	 (4.25)
i^0

which : is. identical to Eq.	 (2..66) obtained 111 Chapter 2..

k a ' Eq. (4.15) may be expressed in partitioned form as

R (k+l k+-l)( R(k+l k)	 K	 [z]- ,HO	- _ 0, R(k+llk)l
Asir

_	 0t
$'	 t, R(klk±l) =	 R(k1 k)	 -	 Kl	 R(k ic)l	

.

, A

R (k	 -J l k+1) R (k+l-J l k)	 J	 k (k+] ♦ -J l k)

r
= R (k+l l k) - ISO (k+l) [ z (k+l) - H (k+1) R (k+l l k) ]

}

R(k+1-Jll:) - K` (k+l) [z(k+l) - H(k+l)`R(k+l- k) ]

(4.26)
i

^A

#	 x

vt'

• w.u..arcl_3'ivua.ncsv..,....s...msY..iura'.aiti-ars.euaw,.i...	 ... «...,.. ...	 ,.	 ..	 .	 ..	 -.	 .
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r Tha partitioned result of Eq. (4.26) may be expressed as

r•R (k+1--i k+l) = R (k+l-i.l k) - Ki Ck+l) [ z (k+l) - H (k+l) St (k+l k)

(4.27)•,
which is identical to Eq. (3.90) obtained in Chapter 2.

Eq. (4. 16) may be expressed in partitioned form

KO (141) x'
00

.	 P^ J ,H - 0 ...	 0^	 PQO 	. P J	 H'	 +	 R l
3

Kl (k+l)	 _ 0 0

4
KJ(k+l)	 PJO ...	 .PJJ	 0 PJ0 . .	 pJJ	 0

'
,a Q p1 H t 	l	 -1

00	 [HP00H	 + R)

+

P10H1

, P JOH' (4.28)

where P 	 {:k(k+l-i k) R' (k+l-j (k) } _ P ^k+l- ,k+l-j (k}

H _ H (k+l) "

R = R (k+l)	 r
r=

.

y Restoring the time indices to Eq. 	 (4.28) the partitioned gains become

K,(k+l) = P(k+1-i k+llk)H' (.k+l) [H(k-+l)P(k+l,k+l k)H` (k+l)
' + R(k+l.) ]	 (4.29)

which is identical to Eq.	 (2.100) obtained in Chapter 2.

To ease notation below, the following time indices are used

a P3	 P (k+l-i, k+J_-j k)
i,j

P1
	 P (k-i , k-j ^k)r,

r
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Examination of the paztiti,oned forte of Eo. (4.29) yields

3	 P300	 01 P 
3-
Oj ^O	 0-1	 0 j 'P I
	 .	 .
00

. POs
  1

1	 1 0 0.	 .0

10
1	 0	 0 0 1

0

o

LPj 0 Pjjj

0

0	 0	 10 -1 jo Pij W 0 .	 .	 .	 0

. M

+	 r	 Q,r	 o	 o,

0

0

J*	 3

E qP1
ii J

z yi'O	 E¢ ji J_l	 rQry	 o
I

o
i.=0 j =0 J=O	 i=0

+	 0	 0

E P P1	 P
i=0 0

Ut P 
J-1 1 i i

131	 P	 0	 .	 .	 .	 .J-111	 J-1 J-1
0

0 I

(4.30)

Restoring the time indices, the following submatrix relationships result

from Eq.	 (4e30)

P(k+l,k+llk) E	 E ¢i(k+l9k)P(k,kjk)¢(k+l2k)
i=O j=O

+ r(k+l,,k)Q(k)r'(k+l,,k) (4.31)

P(k-j,k+llk) E P(k-j,k-ijk)¢j(k+l,k) 	 J =0 1 1 9 ... 9 J-1 •(4.32)
i=o

P (J,-+. k—j I Q P'(k—a,k+ljk) (4.33)
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Expresaiana (4.31) and (4.3 2) correspond to (2.108) and (2.,110) ^espec--
.s

r	 t .Yely,.

Equation (4 .18) is noes , examined in terms of , its submatxices,

r

r

Vol
R

{
ti r^
`ta+

'd

dropping the time indices

() s o PO T^^
I 0	 • 0 KO 1I 0	 ..+.	 0	 P00 •	 PJJ

. 0 1 K1

,PJ s O	 • PJ J 0 .	 0 I KJ PJ^0
PJoJ

7	 -- KD^L 0 . ... 0 P0 0 P01 •	 P3
J

K H1 I 0	 .. 0 P ].0 .

_K2H 0 i •

.

0.•

--KJH 00	 0 1 P

3

.	
PJ.Ta

JO
,

y, if

1

•
	 ',,[II -' KOH] P00	 [ i - KOH] 

PO1	 • - K
O 

HI P 0J

+

_.

-.r - KP3	 -HP 	 P 3	 - K HP3	

P3_

-• K HP 00^	 110	 1	 11	 Ol e	1J 1	 OJ

r^4

JO	 J	 00 i	 J1	 J	 O1^	 PJJ KJHPOJ 4.34

'Restoring the time indices to Eq. 	 (4.26) the submatrices of P(klk) may

be expressed as

P(k-i:+1sk-j+1jk+1)-= P(k+1-i,k+l-j lk) --Ki(k+l)H(k+l)P(k+l,k+l-j lk)
,p

,A (4.35)

91 .
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which. 1,s identical to the result Mck . (2.111).] obtained earlier using

properties of conditional expectation.

In summary, then, the results of Chapter 2 expressed by Eqs.

(2.86) 2 	(2.61) 0 	(2.108) 9 	 (2.109) 9 	 (2.110) , and (2.111) have been obtained

in this section as shown by expressions ( 4 .25) , (4.27), (4.29) , (4.31),
r

(4.32) and (4.35) respectively.

4.4	 Submatrix Representation of Expanded State Solution to Optimal
r

` Control Prcbl.em	 ,
q •

The optimal control solution is well,-known. (Meditch 5	 Chap-

ter 9) for the system described by Eqs.	 (4.3) - (4.12), for this is t1-Le

formulation of the standard discrete-tiraae optimal control problem. 	 Once

again, of course, the system must be "controllable" as described in
r

.^ Appendix A or thepp	 control problem cannot be solved. 	 The familiar optimal

control solution is stated below in Theorem 4 * 36	 This is followed by
•

examining the submatrices' ,of the solution equations. 	 These submatrix

4 results are identical to the optimal control solution obtained in Chap-

ter 3.

If the system is controllable the following results from.Medit,ch,

p. 356, can be ,stated.	 Recall that the stochastic linear regulator

problem is that of minimizing the Performance Index expressed asg	 P

P. I.	 iE	 X' i X i x	 + u' i^-.1 B i-1 u i-1 OOC)	 (	 )(	 )(	 )^	 (4.36)
=1	

,

where x and u are defined by Eqs.	 (4. 5), (4.6) and

^. A(k) = A(k)	 0	 . , .	 0
l	 ^t

0 .

0 n(J+^l) x n(J+l)	 (4.37)

a
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.0.38)

Theorem 4.3.	 For a system described by Eqs. (4.3)
end	 a.O the optimal control system for the stochas-
tic linear regulator consists of the optimal linear
filter cascaded with. the optimal feedback gain matrix
of the deterministic linear regulator. 	 The parameters
for the two parts of the control system are determined
separately.	 The performance measure for the complete
control system is governed by

YN_k	 ;E (x' (k)H(k)X(k) } + a (k) 	 and (4.39)

a(k)	 oc(k+l) + tr[v~  (k.-1,k)l (k+1)?(k+l,k)^(k)]

' - tr[Z(k+1,k)W(k+l)' (k+l,k)B (k)B(k l k) ] (4.40)

' where the boundary condition is d(N) = 0'

Theorem 4.4	 The optimal control law for the stochastic
linear regulator problem-is the linear Feedback control law

u (k) _	 (k") X (k k) (4.41)

u where the r x n (J+1) feedback control matrix ^ (k) is
' determined recursively from the set of relations

W(k+l) _ M(kf-1) + A(k+l) (4.42)

.' ^'(k) _ -W (k+l,k)W(k+l)^(k 1,k) + B(k+l)]-1

.	 •^' (k+l,k)W(k+l)^(k l,k) (4.43)
,E

M(k) fi.= d' (k+l,Q)1 (k+l)¢(k+l,k) + " (k+l,k)W(k+l)'^(k+l,k)S(k)

y

.	

N^ (4.44)

The procedure is now to express Eqs. 	 (4.39) through (4.44) in

terms of their submatrices to obtain the results of Chapter 3.

{

First

the following definitions are made to enable a relationship to be estab-	 +i

l,.shed between the results of Chapter 3 and those obtained below. In

'$ the performance measure, Eq.	 (4.39)-, Mij (k) is associated with the state

vector x (k-i) and x (k-j) of the form

U1,

U1
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x' (k-i.)x
i4 

(^.) x Ck-^3) (4.45)

so that the f ollovting def ini t:Wn holds

M(k) M00 (k)	 • MO J (k)

P

M• (k)
J O	 MJJ('k) (4.46)

Similarly,. in Eq. (4,40), w(k+l) may be expressed in partitioned form as

^(.k+l) Woo (k+l) •	 r - WO J (k+l)

WJO (k+l) . . .	 WJJ(k+l) (4.47)

t where W(k+l) is n(j+l) x n(J+l) and W i3 (k+l) is n x n.
1( r

tek

Finally, the feedback control gains in Eq. (4.41) may be expressed in

partitioned form as
•

^S (k) --	 S (k)	 S(k) 	 S J (k) (4.48)	 -
F

1

'

where S(k) is r x n(J+l) and S i (k) is r x n.	 From Eq. (4.41) it can be

seen that S!(k) is the gain multiplying the estimated state vector

till M-ilk).	 Equation (4.41) may n9w be expressed inpartitioned form as
'	 u `k) - =	

SO 

(k);

	 JS

 

J 
(k)	

x (k)

x (k-)

r
x (k-J)

^: w
J

Z S. k x k-O (	 ) 4.49(	 )
w, i=0 z

w
This is identical to the result expressed by Eq. (3.10,0'-	 ,.

•.,-;:•e,.:-	 .nswzri+mW.essrram++srsm'2=o-tran^sem^•!scne Sraatvl!s.u.ltwxxtt m+ias-+Eeen,...asa-c^..- 	 sz.sm2.	 f •• :. y..	 ....	 ....	 -. _..	 -. _.	 _-- -...	 ....	 ....	 ...:.	 _.:	 .:.._	 .-•	 •.-	 ^^	 -•
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at.	
Eqi. (4.42) may , be expressed in partitioned form, using definitions

(4.46) , (4.47) and. C4.37).

W00 Gt+l) .	 • . WOJ (k+l)	 M00 (k+ l) . . . MO f (k+1)	 A(k-{ •^.) 0 ... 0
0

•	 Q	 +

WJ0 (k+l)	 .	 VtJj(k+I)"JO(k+1) . . MJJ (k+l)	 0

The partitioned equivalent of this equation is

W (k+l) R M (k+l) + A(k+x)	 .^j=0
{},	

Ri (k+l)	 i.,J=0,1,...,J except i=3=0
N	 0	 i,J>J 	 (4.50)f

which is identical to the result--expressed by Eq. (3.108).
µ	 ,

To exam;ne Eq. (4.43) first express the inverse of Eq. (4.43) in
. ^ k	 r

Rt 	 partitioned form by dropping the time indices.

tivvti	 -1
w^+B] 	 _ ^ ' 0	

0^W00	 •	 WOJ V' + B

z	 .	 •

WJO	
W JJ 0

IV WOOV 
+B] -1	 (4.51)

'Therefore Eq. (4.43) may be written

So	 sJ	 [! lWOOVI+B]_41 0	 0^ W	
WOJ '0 

1	 .	 J

1 0	 0'

	

•	 0 I	
k

•	 I

W JO
	 Wi ii

^	 0 T -p

	

(V► l W Y+B] -1V, t^1 ¢+ W i.	 W	 + W	 W
00	 00 0	 01	 r 00 J-1	 OJ 00 J

.i	 (4.52)•

{
f• ,
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tlhen the time indices are restored to Eq	 (4.52) the following results

are obtained.

S(k) _ [ , ' ( -+'l , k) WOO (k+l) ^ (k+l , k) + B (Y+l) ) -1

-^ ' (k+l,k) [W00 (k+l)^ i (k+1 2 k) + W03i,+l (k+l.) l (4.53)

Recall that WO,J+l -- 0 from Eq. (4.50).	 Thus Eq. (4.53) is identical to

t Eq.	 (3.107).	 .,Eq.	 (4. 44) may be expressed in partitioned form as
Y

i

MOO .
	

MOJ	
^6 I 0 . .	 0	 WOO	 WSJ

. l 0	 •	 0

t

iJO JJJ 0	 .	 .	 0 11JO 	.	 .	 .
	 wjj mj

f
O	 J

-{- l SO 	SJ
#„s I 0	 0 0

0 •

0..0 ao

^ U1?O o+Wl O	 ^ I W	 +W	 •	 .	 •	 ' W	 +W
0 O1	 11	 O O,J	 1,J

4, + S
0	 0

+^ S
J	 J

6

^' 
WOO+W20

1
1	 0	 ., e . 0•

0
yu

'

+j1JJ
J--1 00	 JO	 OJ-

1W0J

(4.54)

When Eq. (4.54; is completely expanded and the time indices restored,

the apartitioned result for 11 	 (k+l) becomes
ij

' r (k+JM	 (k+l) _ [c '• (k+l k)W	 1 + Wl+l 0(k+1)l [^ (k+l,k)i^	 1	 ,	 00	 , ,
ti I

+ ^ (k+1,k) S • ( k) a + ¢ ! (k+l,k)WO . +l (k+l)
J ̂^

3
.

+ W.	 (k+l)i+1 J+1 (4.55)t

. _:  of . sff	 xr;:
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which. is identical to the result of Eq.	 (3.109).	 It should be noted,

' of course, that Wij	 0 if t or j > J.
Next expand Eq. (4.39) in partiti#onal form using the following

definition

jx i _. x (k-i)

VN-k n' 'E 	 x0 .	 xi "00'.	 MQJ X }	 + a(k)

f"L rt	 riJO	 JJ x .T

J	 J	 .
•	 a if X	 Z x!M..x }+ cx (k)zJ k (4.56)

i=0 J=O i

When the time indices are restored to -Eq.	 (4 .56) it becomes#

d	 J
VN-k= E{ Z	 Z_x'"(k-i)fi j(k)x(k-j)} + a(k) (4.57)

:L=O j =o

which is identical to the result obtained in Eq. (3.110) assuming afk)

-is the same.

Finally, examine a(k) o,,^ Eq.	 (4.40)- dropping time indices
•

ti	 l/li'V	 ti	 l/Vlfla(k)	
_ tr(r'WrQ) - tr(¢'W^SP) + a(k+l)

i
(4.58)

° Examine the f irst-term of Eq. (4. 58) in partit ioned form

LI''	 0	 .	 .- o W00	 W0i I' [.Ql=r'WOOrQ (4.59)

0

wJ0 `	 •	 . w,,-, 0
+

•	 Examine the second term of Eq. (4.58) in partitioned form
, {

1
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d

4	 z 0.	 ..	 0 100	
k'OJ 0

S0 S J	 Poo

_

POJ
0 z

'I

V
.'i 0 .	 .	 . 0i UJ JO .	 Wjj Oj L PJO . .	 .	 P J J

^. J J

0 1 0 ... 0 w00'^ ESjPjo .	 ' '	 E O SjPjJJ'--O j
0

0

t

0	 0	 wiOu

j¢;WQO + 1103' E SjPj O^ '	 •	 ESjpj! J J J=O	 =oW ^	 ^ ^
-

•

.	 .,,
•10 1W 00 + j110J4,

^1w00 (4.60)

FIJI Let C	 denote the i th	 n x n submatrix of.	 j E	 (4. 60).

Jx i3 -^ ! W00 + Wi+l , 0	 E' SIPZ j (4.61)
^0 1

The trace of the total matrix involves only iii and

J	 J	 J ,
r[ trace E C	 _	 {

ii	
trace	 F	

1 00
.	 4S P..)
i.+1,0	 j ^^ (4.62)

i--0	 i=0 j=0

-H By substituting- Eqs..	 (4.59) and (4:,,62) into Flog	 (4.58) and restoring the

time indices, Eq.	 (4.58) becomes.

{r
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f	 o; (k)	 a (P-+l) + tr (r (k+l,k)w(k.+l) r(k+l,k)Q(k) I
♦ 	 ♦

:.J	 J
-- t r { r,. OE t ¢ Ck+l , k) W06 (.k+l) + 

V,+1, 0 (k+1)
i	

J

•, (k+l,k)Si
 (k)F(k--j,k-,il k) } 	 (,4.63)

	

f ,	 which is identical to, Eq. (3.111) .

In summary, then, the solution to the optimal control problem is

	

S H	 •
r^f

determined in this section using an alternate system representation,

namel.y,.an expanded state representation. The partitioned results aret.

identical to those obtained using dynamic programming in Chapter 3 and .
)4:

the correspondence is:

This section	 Chapter 3

Eq. (4.49)	 Eq. (3.1,-06)

Eq. (4.50) Eq.	 (3.108)

•	 Eq.. (4.53) Eq.	 (3,107)

,° Eq. (4.55) Eq.	 (3.109)

... Eq. (4.57) 'Eq.	 (3.110)

Eq. (4.$3) Eq.	 (3.111)

4.5	 Duality of Estimation and Control in Systems with Time Delay

w For discrete-time linear • systems with no time delay, Kalman

observed that a "dual" relationship exists between the solution to the

optimal estimation problem and the solution to the optimal control prob--

xr

lem.	 His results are presented in the paragraphs below.	 Section 4.2

demonstrates that time delay systems may be expressed equivalently in 	 t

an expanded state form.	 Kalman 's
•

s;'results apply directly to time delay s

_...:.:  _..._.v._.._.	 ...,....ate	 ..	 ........ ... _.	 ,...	 .. _....,_.J.: .	 _.._...-,.:.	 .a....	 •r	 w : :^	 r	 es,.._:..	 e..., -.. 	 _	 ..	 .._..	 ..._.-	 ..__	 _. ...	 ^.	 ..	 ,..__..	 ...	 •..w•.v..	 -
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systems in this form and the optimal estimation and control solutions to

such systems axe duals.

Kalman's notation is retained for this discussion since the vari--

,ables in the notation of this paper are not duals $ whereas those of Kalman

are.. The relationship between Kalman's notation and that of this paper

is also presented for reference.

Since the partitioned solutions to the estimation and control

problems yielded significant results, the question arises as to the

duality of these partitioned solutions. It is demonstrated that the

principle of duality does not extend to the partitioned solutions of the

optimal estimation and control problems.

4.5.1 Kalman's Dual Transformation

L
	

Consider the estimation and control problems presented below

Optimal Estimation Problem.	 Consider the dynamic system described by

Eq.	 (4.64) and (4.65)
,

9k (k+ l) =	 (k-hl 	 + tZi ^k+1, k) u (k) -4- 	 (k-kl , k) w (k) (4.64)

^+n	 tiZ (k-F1) _	 (I,-+')' 	 + v(k+l)
(4.65)

t	 where these equations have all the properties described in Section 4.2. 
71y

Given the observed values z(0),z(l), ... ,z(N 1) find an estimate

x(k+llk+l) which minimizes the expected loss

N-1
3	 _ E	 E	 [	 (1,+l)- x (k+l l k+l) ] [ x (1,	 -- x (k+l L k-+1) ] ' } (4.66),

•
k,0

Optimal Control problem.	 Consider the dynamic system described by Eqs.

(4.64) and (4.65) where these equations have all the properties described

"T
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in Section 4.2. Given any state x(k), determine a sequence

-u (k) , u (k+1) , ... , u (k+T--1 } of control vectors which minimizes the per-

formance index
k#k

v[X(k) 9u(k)	 X [X I (i.)X (i.) x(i) + 'U' (i-1)B(i.-1)uU-1) I
i-k

(4.67)

The recursive relations which express the solutions to these

problems are expressed by Kalman as

Estimat3 ort Pr oblem

A*(t) = ¢(t+l,t)P*(t)M' (t)[M(t)P"(t)M'(t) + R(t)1 -1	 (4.68)

 (t+l, t)	 (t+l, t) -x (t)M(r.)	 •	 t?t0 (4.69)

•
P*(t+l) = 0(t+1 9 t)P*(tW (t+l,t) + Q(t)	 (4.70)

Control Problem

A	 11

Q*(t) ~. [M' (t)P*(,t)M(t) + R(t) ~1M" (t)P -(t)¢(t+iot) (4.71)

(t+1, t)	 ¢ (t+l t) - bW (t) t T	 (4 . 72)
A.*(	 ) _ 	 (	 ) ^' O	 ' (	 , )	 QOP	 t-1	 --	 t+l t P^ t	 }^ t+1 t+	 t (4 .73)

where the correspondence between,Kalman's notation and that of this

paper is given in Table 4.1.

The principle of duality states. that if the form of the solution

to the optimal estimation problem is known then the form of the solution

to the optimal control problem may be obtained by a simple transformation

On the solution to the optimal estimation problem. The converse is also

true. Kalman's Duality Theorem may now be stated. {

'	 l

ff

...

w

}{ 

J1	 .

i	 . 1
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Table 4 . l	 .

Correspondence between Kalman Notation and Allgaier Notation
R

rKalman Allgater
Estimation

A* ( t ) Z(k+l,k)K(k+l)

' *(t+l,t)k- l,k)(k+1jk+1)P-1 (k+llk)

p*(t+l) ^(k+l k)

M(t) H(k)

R(t)
R(k)

(k+l k) " (k) r (k+l k)

Control

O 4,(k)

,, (t+l,t) (k+l,k)'W(k+l)A(k)
. rY

J..,I,

M(t)i(kfl,k)
f .

s	

^ R(t)(k)

., ^	
•

Q(t) ^

Ck)	 c

••, si ^	 1

{

t.	 a

a ^

..^:..	 .. r:x^;;a»,•.z...w:^ .^.^..z^-,:^,+,,.,>ew•.^,sr...v^,.^, ..^,:,^a...f.^..,.nU^::	 ...,.... _... ,..,.	 -	 ^_...:_
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Theorem. 4 5. The optimal estlmektUn. problem and the

optimal control problem are duals of each, other in

the following sense. Let T 4 0. Replace every mar

trix F(t) = F(teT) in Eqs. (4.68) through. (4.70) by

P I (t)  = F' (T--T) . Then one .has Eqs . (4.71) through

(4.73). Conversely, replace every matrix

F(t)	 F(T-T) in Eqs: (4.71) through (4.73) by

F' (t)	 F' (to+T) . Then one has Eqs . (4.68) through

(4.70) where the quantities described by Eqs . (4.68)

through (4.73) are presented i,n Table 4.2.
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f

The question now arises as to whether the same theorem yields a

duel: result when applied to the submatrices. Consider, For example, the

filter gain. matrix, 4.^ (t) , and the control gain matrix, O (t) , and make

f the following-definition

2t

i

P"
e3 (t)

x

A. 	 = 4*(t) 11 	 a2(t)	 4(t)	 '

The problem is now that of determining whether the transforme,tion of

Theorem 4.5 app lied to 0 (t) will	 field 0(t). 	 Define the followingpp	 yrg
3.

u

matrices :Ui terms 
of 

the submatrices described earlier.	 r
r

tl li •y



Table. 42

Aelattonship Between. Estimation and Control Variables
• in Kalman 'Notation

•

Estimation Control

1. •x(t) (unobservable) state vari- x(t) (observable) state variables
ables of random processes of plant to be regulated

2. y(t) observed random variables u(t) control variables

3 t0	first observation T	 lasi control action

r
4. ¢ (tQ+T+I, t0 +T)	 transition

A

(T-T+1,T-T) transition matrix
s matrix

5. P*(t0+T) 	covariance of esti,- P*(T-T) 	 matrix of quadratic form
:- mation• error for performance index

y 6. O(t +)	 weighting of obser-0 E*(T-T)	 weighting of state for
,.i

01
vation for optimal estimation optimal control

7. ¢ (t +T+l,to+T) 	 transition (T-T+1,T-T)	 transition matrix
matrix for optimal estimation under optimal regulation

tT_Y w16$$I error

.ry S. k(to+T)	 observation matrix M(T-T)	 control transition matrix

r.'. 9. t +-r)	 covariance matrix ofQ( 0 Q(T-T)	 matrix of quadratic form
'

.
plant noise d'ef'ining state error

' 10. R(tb+T) 	covariance matrix of R(T-T) 	 matrix of quadratic form
measurement noise defining control effort

•

4

i

r'e •	 •
r

h
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s rxom Eq. (4.68), Q*(t) may be expanded	 4

t

4 ^)

r

00	 OJ	 P00	 ROJ	 mOpoQMO + RI

•

k o JO •	 .	 .	 • PJJ PJO	 `^ '	 PJJ +M'J

.4	 K f

X00	
•	 •	 • 

1̂ OJ
J
£ P M` WOPQ0MO + R)-1

Y

k-0 • k k	 •

Y

t OJO	 •	 • o ii_i N"JAlMOPOO	 + PkE0,.

lot f'	
O^P^,kMk 

Im P00M0 + R] _1
=0 k.: O

..,;	 r J	 J
z ^JkPtkr^I"OPOON + R]

1	
k'

=O k,0
,. ^ J	

J

^ j r	 t ' ^M P - -M 	 +R]
A, kk -Ic	 0 OU O

E. =O k=0X	 o

t `' Eroom Eq.	 (4.71), p*(t) may be expanded as

a fi	 4
4Ct, _ [Ti + P 	 M	

+ RI_1	
M^

0 00 0	 0	 MJ^ P00
POJ ¢00	 .	 . ¢0J

PJO PJJ
Jo JJ

I

k

'
 J.

^p +	
J	

OrlkPkt
! Mp 'PO 0`	

R] "	 E rikPkO	 +
¢00	 OJ i

k=0	 k

x JO
.	

'	 ^JJ

x	 ^^, t
4
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t
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!

{	 I

`Y

	

^	 I

Y ^ t

d'" s

I*

r

k	 '

x

1146POOMO + R3	 VkOtoRRO km0
Y	 ^

J J

IgP0UKO + R3
.1 j j MkP i J

X&xO k=0

J J
or,	 q(t) = [MOPOOMO + R]-1	 rEl^.

t 0 k;0

Application of Theorem 4.5 to Eq. (4.74) yields

J J
I¢ ()]'	 $-iRPkl.r^k[MOPOOMO + R11-1

X=0 k=0

or,

J J
A (t)	

E`	
E 

[`^Op00ri0 
+ R]

.,l1ti pRk^i.Z

1--0 k 0
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(4.75)

f	

"	

r

(4.76)

r
From comparison of Eq.	 (4.75) and (4.76) it is obvious; that Theorem 4.5

can not, in general, be extended to the submatrix results.	 Since, in
A

general, this is not true, then it can be • concluded that the duality

expressed by Theorem 4.5 does not apply to the correspondii.ng  submatrices.

Attempts by the author to modify the duality theorem such that the re-

' su'lts may be extended to the submatrices have not been fruitful. 	 If such

P"
a ,relationship c^,)ld be demonstrated then the results of Chapters 2 and

3 _should be the duals of each other.

x	 ^

4. 6	 Summary and Conclusions

Fx In tlUs chapter an alternate expression for discrete systems

with time delay has been developed.	 This expanded state representation

X' is not new, yeti it is shown to yield the same results as Chapter 2 and

,
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which used a different approach These results are, then:, submatr3.x

fr	 solut;Wns to the expanded state representation. This method presents
lyAi

substantial savings in computation time as well as storage`. Examples

of these reductions areresented in Cha tet S.	 !P	 P

EL111
Finally, the expanded styte representation allowed demonstration

of duality for time delay systems, although.this result could not be ex-

E4
1tended` to the corresponding submatrices.
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CHARTER V

COMUTATIONAL ADVANTAGES OF PARTUXONED SaLUTiONS

TO OPTIMAL ESTUTATTON AND CONTROL PROBLEtIS

•	 5.1 	 xt,._ roduction

Cb,apter 4 demonstrates that the filter and control gains obtained

in this dissertation are identical to results published many years ear-

lier 2010	 using an, expanded state representation of time delay systems.

The principal difference is that a partitioned form of the resulting al-

gorithms are used rather than the expanded matrices. Since the expanded

state representation is generally discredited because of the resulting

extensive computation required, one might ask whether or not the parti-

tioned results represent a significant computational savings.

In this chapter analytical -expressions are developed for the

number of multiplicative and additive operations required for digital

1

computer solution. Options are presented which reduce the number of op-

}.

	

	 erati,ons even further in the partitioned form. These are at the expense 	 w

of additional software requirements, however, and in some cases this more

than offsets the advantages of the partitioned form. This is generally

true where the system dimension and time delay are small.. The savings

in	 ucom tation time are strong functions of the system order, n and theP 	 _g_	 y	 ,

time delay magnitude, J. No further attempt is made here to define the

additional software requirements for the partitioned solution since that

depends to a great extent on the ingenuity of the. programmer.

x
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o-

r	 Some illustrative examples are presented, where computation time

is reduced by more-than 00% and storage by more thain 60%. For a unit

delay, a.30% reduction in both storage requirements and computation, time

is typical.

t

• 5.2 Computational Requirements for Estimation Algorithms

Tan this section a method of determining he number of discreteg	 ,

=O tiplicative and additive operations is presented. This method is

then used to develop analytic exp r"sions for the number of required

operations in terms of the dimensions of the system matrices. Examples

are presented at the conclusion of this section which demonstrate a sig -

nificant reduction in computational requirements for the partitioned al -

ry	 gorithm when compared with the entire matrix algorithm of the expanded

state form;.

Consider--the multiplication of two matrices A and 	 of dimensions, B

I x m and m x n respectively.	 The number 'of discrete multiplicative; op-

erations is Amn.	 The number of discrete additive operations required is

4(m-1)n.	 For ease in	 calculations, it is assumed for the remainder of

this chapter that the number of required additive operations is Rmn.

I
The number of required m ultipli•cative wad additive operations

*s determined for the partitioned algorithm expressed by Eqs.	 (2.115),

(2.116), (2.117) and (2.118). 	 The dimensions of the matrices involved

are:	 P(k+l	 ) - n xk+l i k	 n	 k+l k) -- n x n	 F(k-i k-' k- n x n
^ -	 '	 Vii(

	 ^	 ^	 J ^	 )	 ,

P (k+1--i k-+-1 k) -- n x n 	 ^' (k+l k) - n x^	 (	 >	 p, Q(.k) " P x p., H(k+l) - m x n,

- R,(k+l) -- m x m, Ki (k) - n x m.

4

u
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J
+l , k+l ( k,?	 F	 F.	 (k,+1, It.) P	 k,4 k) ¢ ` (k.+1, k),

i i --o	 Ro

x	 +	 +7. , k) Q (k) r (.k+l , k) 	 (5.1)

The product ^ jk+l,k)P(k i,,k j jk) requires n 3 multiplicative opc rations.
a

This product multiplied times 
^3 

(k+l,k) requires an additional n3 multi.-

li
.	 .

plicative operations, resulting in 2n3 multiplicative operations to .dorm

the product

- .: ^ $i (.p,.+l ,k) ^' Ck^^„ k^^ ^ k) ^ 3 (.ic-!°3 , k) 	 .

The double sum means there are (J+1) 2 such terms, or, a total. of

+3 2n3(J+1)2 multiplications in the double sum.	 Similarly, the second term

requires a total of n2 	 + p n operations, yielding a total of

2n3 (J+1)` -.. n2p + p 2 multiplicative operations.	 The number of additive

operations are 112 [(j+1) 2 = 1] for the double sum, plus n2 by adding

J T(k+l,k)Q(k)1;' (k+l,k) to the double sutra, or a net of n2 (J+1)2 ,	 To this

must be added the number of additive operations due to the multiplica-
r

Lion process or 2n3 (j+1)2 + n 2p +p2n such additions.	 The total number

' of operations required in determining P (k+l,k+l k) , are

' multiplications:	 2n3 (J+l) 2 +n2p +p2n
.'

additions;	 2n5 (J+1) 2 + n2 	 + p2 	 + n2(J+l)2

A similar analysis 	 the following results for theyields	 remaining equa-

tions of the partitioned estimation algorithm.

Ki(k+1) _ P(k+l-i,k+ll )H' (k+l) [H(k+l)P(k+l,k+llk)H (k+l) 	 (5.2)

+ R(k+l] -1	i = o; 1,	 ...	 , J	 (5.2)

F.
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Total Number of 02erations for 1 0 1 1,

multiplications: n 2mtj+2] + 2=2

additions: n2mlJ+21 +'2nm2 + M2

i
P (.k-j 9 k+l I k) 	& P Ck-j j k,i I Q (k+l x k) 	 j	 0 9 1 0 * to )$ i

1-0
(5.3)

Total Number Of 02eratiohs for , j	 0, 1,

multiplications; n3j(j+l)

additions; n3 J(J+l) + n2 J2

R (k-i., k-j I k) = P (k-:L) k-j ( kl) 	 X H (k) P (k k-j I k-1) 	(5.4)

Total Number of Operations for i,j	 0, 1,	 too

multiplications:	 n2m[(j+1) 2 + (j+,)]

2	 2'	 n	 J+1) 2 + (J+l) I + n2 (J+l)additions:	 MI(

The total numbat of operations required for one complete iteration of

the partitioned estimations algorithm are given in Table 5.1.	 These

results are referred to as PARTITION E-1.

The number of required computations may be further reduced by

recognizing that not all of the delayed state's affect explicitly the

one step transition.. 	 That is, some of,• the operations are not required

since some of the ¢j(,k-+l,k)	 0.	 Let j be the number of ^ i (k+l,k) which.,

are not identicall 	 zero.	 Then it can be shown that the number of , com-

putational oper4tions ',becomes as shoum in Table 5.1.	 Hereafter, these

results are referred to as PARTITION E-2.

Similarly, it can be show-n, for the expanded algorithm given

by Eqs.	 (5.5), (5:6)'and (5.7) that the number of required operations
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.	 Table 5.1

Analytic Expression of Number of Computation-al Operations

•

F,

Required for Various Estimation Algorithms

t PARTITION E-11

multiplications; 	 n3 [2(J+1) 2 + J(J+l)] + n2m[(J+1) 2 + 2J + 3]
i

• + 2m2  + n 2p +p2n

additions;	 n3 [2(J+1) 2 + J(J+10] + n2m[ (J+1) 2 + 2J + 31
Y. f + 2m2n + nzp + r2n + m2 + n2 [2(J+1) 2 + J2]

PARTITION E--2
' f Y

multiplications; n 3 [2j 2 + Jjj- n2m[2J + 3 ' + (J+1) 2 ] + 2m2n + n2p + p2n
k

additions:	 n3 [2j 2 + Jj] + n2mj2J + 3 + (J+1) 2] + 2m2n +n 2p +p2n
f a

+ n2 Ij2 
+ J (j '1 ) + CJ+1) 2 ] + m2

EXPANDED
Ya

multiplications;	 2n3 (J+1) 3 + 4n2m(J+1) 2 + 2m2n
f ,^

a' •. additions:	 2n2 (J+1) 2 + r2 + 2n3 (J+l) 3 +4n2m(J+1) 2 + 2m2n

•

•

:,a

f

a .	 •.	 •	 •	 •	 w	 w

v

Y

A

1
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I is as shown in Table 5.1. The matrix diva ensions are given in Table 5.3.

?C (k+l)	 Ck-^l k) " (k • l) j (k-+l)	 - -] ) (k-f1) + W (k+l) ] "1 (5.5)

r
(k+1 I k)	 ¢ (k+l Q (k 4 Q	 (k+l , k) +	 (k+1, k) Q (k) r (k+l , k) (5.6 )

I	 I	 . I

W (k+l k+l) - 11	 (5.7)

The effect of system order- (n) and time delay magnitude (J) on

the required computational effort can be seen from Table 5.2 { where a

' number of different examples are considered. 	 The data for PARTITION E-2

j assumes,a single delay (j = 2) in the system, where the delay magnitude

is still specified by J. 	 Note for the cases where there is Just a unit
r

"'t>y ti

k :: delay (n - 2, J	 1) or (n	 10, J = 1)	 hat the partitioned computations

require only 60% of that required by the expanded form. 	 For multiple

delays, where the delay is longer (n =; 1, J = 19) the computational re-

+I quirements are less than 10% of those required by the expanded, Form.

In general, the savings achieved are an increasing function of the time

° < delay magnitude.

5.3	 Storage Requirements for Various Estimation Algorithms

f The storage requirements are specified by the size of the ma-

•= trices used in, the algorithms. 	 The partitioned algorithm is given b^P	 g	 8	 Y

Eqs.	 (5.1) -- (5.4) and the expanded -state algorithm is given by Eqs,

(5.5) - (5.7).	 The matrix dimensions and required storage are given in

. Table 5.3.	 Recall thai: PARTITION E-2 requires storage only for those

values of ^ i(k+l,k) which are not null matrices. 	 Storage requirements
dy 

F
y	

•

are computed for a number of examples in Table 5.4.	 A 30% reduction in

N V required storage is achieved for a unit delay (J 	 1) and a maximum

r

-

;t
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.f
Table- 5.2

Examples of Required Number of Computational Operations
For Various Estimation Algorithms

n J m• p operation EXPANDED PAR ITION E-l' PARTITION E-.2

1 3 1 1 mulct. 200 +	 73 45
add. 233 115 69

2 1 1 1 mult. •200 126 126
add. 233 163 163

4 0 1 1 mule. 200 200 2001
add. 233 233 +233

` 1 19 1 1 mutt. 18060 1625 491
` add. 18861 2786 915

" 2 9 1 l mule. 18060 2812 702
add.._ 18861 3937 1155

. 4 4 1 1 mult. 18060 5084 1628	 i
add. 18861 6140 2157

10 l 1 1 mult. 18060 11030 11030
°. add. 18861 1.1931 11931

1 1 mult. 157087 37457 13790
add. 161616 41890 16486

r
1

i

+

t

1
 I

lJ

pyry-+
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savings of 60% can be seen frond the analytical expressions for storage

requirements in Table 5, 3. 	 As in tile. preceding section, storage re-,

%ul.rement savings i'.ncrease as the time delay magnitude increases.
_

5..4	 Com2utational Requirements for Control Algorithms

The methods of Section 5.2 .are'used in t is section.to  deter-
.,.

mine the computational requirements for the partitioned and expanded

control algorithms.	 Results are obtain,? for the partitioned algorithm

F ' under three conditions. 	 First it is examined for the general case with

all ^i not equal to zero. 	 Next the computation is reduced by eliminating
s

all operations for which ¢i is equal to zero.	 Finally, it is shown that,

at a nominal cost in additional storage requirements., a substantial re-
r

Ix,
d

V
uction in computation time may be achieved by:storing the results of

some operations which. are repeated. 	 As in the estimation problem, the

partitioned algorithm represents a computational savings of 30% to 90%
.

;`	 r over the expanded form.
s  ,

PARTITION C-1:	 The Partition algorithm is expressed by Eqs.

•.1r

(5.8) and	 (5.9) .
w

S(k)	 W (k+l,k)W00(k+l)y (k+ljk) + B(k) ] ^1^' (k+l,k)

[Woo (k+l) i (k•hl,k) + WO, +l (k+l) ]	 (5.8)	 R

W(k) _ J^ i `(k+l,k)1400 (k+l) + Wi(k+l) ] [^j (k+l,k) + ^ (k+l,k) S3 (k) ]+l,p

# fl (k+l,k)WO , +1 ('k+l) + lii+,,s j+1(k+l) + A(k)j

The matrix dimensions are given in Table 5.7. 	 Application of the methods

of Section 5.2 yield the number of required operation's given in Table 5,5.

1	 K _..	 ..

.: i'^' M_.=::•y.^^.a.. ^s^re_^_z^r..e_.»,..:..zit
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Table S. 4

` ExamplesP o^ Ra u^,xed S Cy a^^	 g r
• For Various Est :Wation Algorithms

n J m • p MANAEA PARTITION E r-1 rPARTITION E°-2

l 3 1
r

1
r

62 32 30

2 1 1 1 62  44 42

4 0 ]. 1 62 62 62

1 19 1 1 1262 464 446

. 2 9 1 1 1262 506 474

4 4 1 1 1262 590 542

10 1 l 1 1262 $42 842

7 5 1 1 5420 2410 2263
(J=3)

i

x)

.

•

1

I

a

e	 .
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! XARTXTION L-2:	 if the operations are eliminated for those

¢ :L(k+l,k) wfUch are equal to zero, the' number of operixt ons is reduced.

i It the number of 0 (k+l,k) not equal. to zero is J $ the resulting number

of computations can be shown to be those given in Table 5.5

PARTITION C-,3:	 Examination of gqs,, (5.8) and (59) reveals that

` the term	 W00 (k+1)¢ (k+Z,k) + W	 :L+J(k.++1)1 occurs in the first equation

its transpose occurs in 'Eq. 	 (5.9).	 This term, may be stored at a
U"!

aced

storage cost of n2 (J+l) locations, these eliminating the necessity of

R' re-computing a second time for each iteration. 	 The ' resultant computation

r requirement s are given in Table 5.5.

EXPANDED:	 The algorithm for the expanded form o f control solu-

M
Eli tion is expressed b	 E s.	 5.14..) and	 5 .11).p	 y	 q	 (	 (

" (k)	 [T' (k+l,k)^(khl)^(k+l,k) +(k) "^ ..1 , (k+l,k)W(k+l)¢ (kF'x,^c)
w4

+».

iM

ti	 ti	 ti	 ti
W(k) _' (k+]:,k)W(k)

ti 	
[ ¢
ff 

(k+l,k) •4- t^ (k+1 ,k) S (k) ] + A(k) 	 (5.11)

' irl The matrix dimensions are given in Table 5.1.	 The required number of

ri
operations per iteration are given in Table 5.5

The effect of system order (n) and time delay magnitude (J) on

the required computational effort can be seen in Table 5.6 where a num-

ber of different examples are considered.	 The data for PARTITION C-2

and PARTITION 0 -3 asstzmas a single delay (j	 2) in the system where

the delay magnitude is still expressed by J.	 For the cases where there'

is just a unit delay, (n = 2, J 	 1) and (n	 10, j-= 1), the PARTITION	 f

C--3 computations are 'only about 30% of those required for the. expanded

t

f
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Takle 5.5

AaAly^t:,c Expressions for the Number of Computational Operations
I	 Required for Various Control Algorithms , ,,

PARTITION C-1

mulri.plication c. n2j2(J+1) 2' + J + 11 + n2r[l + (J+1) + (,J+l) 2 ] + 2nr2

additions: n2 [2(J+1) 2 + ,T + ] + n2r j l + J + 1 + (J+1) 2] +

+ 2nr 2 + r2 + n2 (J2 + J + 2(J+1)21
I

PARTITION C-2

multi itcations: n3 C (,J+1)2 + j (J+2)] + n2r[l + (J+l) + (j+1)2] + 2nr2

additions n2[ (J+1) 2 + j(J+2)] + n2r [ l + (J+1) + (J+1) 2 ] + 2nr2

+ x2 + n2 [ J2 + 2Jj + 4j -J -21

PARTITION C-3

ukult zp,li cations : n3 [ (J+l) 2 + j (J+1) ] + n2r [ 2J+3 ] + 2r2 f

y

additions	 n3 [ (J-^•1) 2 + j (J+1) ] + n2r [ 2J`1.3 ] +'2r 2n + r2

+n2 [.T2 + jJ +2j]	 1

additional storage required: n2(J+i)

EXPANDED	
i4

a	 .	 ..	 ..	 '♦

multiplications: 3n 3 (J+1).3 + 3n 2r (J+1) 2 + 2n(J+1) r

additions: 2n2 (J+1) 2 + r2 ' + 3n3(J+1) 3 + 3n2z(.T+1) 2 + 2n(J+l)r
1

;:	 Vii,	 f.	 r	 fi
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Table 5.6

Comparison of Required Numbex of Computational Operations
For various Control A1gor:;thms

j=2 `3=2
N J r operation EXPANDED PARTITION PARTITION PARTITION EXTRA

i C--1 C-2 C-3 STORAGE

1 3 1 mult. 20 59 47 35 4
add. 281 103 71 55

2 1 1 mult. 248 112 112 88 8
• add. 281 153 153 117

4 0 1 tnult. 248 248 248 184 16
add. 281 281 281 217

1 19 1 mule. 25240 1243 863 449 20
add. 26041 2420 1288 853

2 9 1 mult. 25240 2048 1424 1048 40
add. 26041 3209 1881 1453

4 4 1 mult. 25240 4016 2872 ,2424 80
add. 26041 5137 3417 2912

10 1 mult. 25240 10720 10720 8520 200
add. 26041 11721 11721 9221

J=3 j=3
7 5 -1 mult. 227640 28875 20228 19183 294

add. 231169 33874 23169 21437

r

aI
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form. For multiple delays, where the delay ia longer (n 1, 3 19)

the computational requirements of PARTITION C-1 are • less than 5% of those

required by the expanded form. Xn general, the savings achieved are an

Increasing function of the time delay magnitude.

5.5 Storage Requirements for Various Control Algorithms-_

The storage requirements are specified by the size of the ma-

trices used in the algorithms. The partit1oned algorithm is given by

^qs. (5.8) •1 and (5.9) and the expanded state algorithm is given by Eqs.

(5.10 and (5.11). The matrix dimensions and required storage are given

in Table 5.7. Recall that PARTITION C-2 requires storage only for those

values of ^,(k+l,k) which are not null matrices. PARTITION C-3 requires

(j+,) storage in addition to that of PATn
2	

C1	 PARTITION C-2 as explained in the

preceding section. Storage requirements are computed for a number of

examples in Table 5.8. A 30% reduction in required storage is achieved

for a unit delay (J-=*l) and a maximum sav:Lngs*of 60% can be postulated

from the analytical expressions for storage requirements in'Table 5.7.

Storage requirements decrease as the time delay magnitude increases.

Summary

As.demonstrated in . the preceding sections .,the partitioned algor-

ithms obtained in this dissertation represent a 30% - 60% reduction in

storage requirements when compared with. the expanded state represer,'.^ta-

tion. A reduction in computational effort of 30% - 95% is also demon-

strated. Even 'greater savings can be realized depending on the example

selected. Both the reduction ,-in computation time and storage make the

11^
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Table 5.8

Examples of RelTuixed Storage
for Various Control Algorithms

r	 y •

n 3

a

M

r EXPANDED	 PARTITION C-1

i

PARTITION C-2 Q=2)

1, 3 1 57	 26 25

2 1 1 57	 35 35

t 4 0 1 57	 37' 57

1 19 1 1241	 441 425

'	 2 9 1 1241	 449 435

4 4 1 1241	 505 473

10 1 1 1241	 _..	 731 731
.7.

f

7 5 1 5377	 2010 1961 (j=3)
a

Y
Ix

•

di

--7.,_.W..a,..ua:e<,ara.-ac..ax:t 3, ,,,.,.,..r..r.ea: ,...x ,..	 ,. 	 -	 .•	 -..	 x	 x .	 ..._.. +lt	 ,.	 .......	 x._:I
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partitioned solutions quite attractive. 	 In retrospect, the expanded

state representation of time delay systems, does provide algorithms which
r,

f

are computationally feasible after all.	 The need for a method to solve
i

the expanded equations efficiently, is resolved by+th.is paper as the ex-

amples of this chapter clearly demonstrate. 	 Tt	 be	 how-should	 recalled,

ever, that the partitioned solution has additional software requirements

and this may offset the postulated advantages when J is small..
,F
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CHAPTER vT,

CONCLUSIONS ANll FUTURE WORK

6.1	 Conclusions

rt` 1jn Chapters 2, 3 and 4, algorithms are obtained for determining'

the optimal filter and optimal control gains for discrete linear systems

with time delay.	 In Chapter 4, it is demonstrated that theseresults

are actually partitioned solutions to the expanded state representation

of such systems. 	 This expanded representation of time delay systems has

been studied but deemed computationally unacceptable by previous authors.

=t
The unique nature of such a representation for time delay systems, how-

ever, yields a substantial reduction in the computational requirements 	 a

,K when the solution is expressed in partitioned form. 	 It is not unlikely

that the computations, resulting from the partitioned solutions be 80%

to 90% less than that formerly required by the expanded matrix solution. 	 y

Many problems previously considered computationally unfeasible can as a.;

consequence, now be solved.

. 6.2	 Future Work ^

In the course of achieving these results, a number of related

problems associated %4ith time delay systems have arisen.

1, What are the conditions under which continuous stochastic

Eli systems may be ex ressed as discrete systems?	 The initial conditionsy	 y	 p	 y 	 ^,

t
on the delay, since it is continuous, and the problem of delays which

are not integral multiples of the sample period cause difficulty here.

u	 127
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nal	 Soule preliAiaAAry vtork, by the author suggests that this may be possible

	

-°	 for serial systems.

2. Can controllability and observability as expressed in Appen-

dix A, be. expressed in partitioned form? The achievement of significant

results by partitioning the expanded representation of time delay systems

suggests that this approach may be extended to other aspects of time de-

lay systems. In Chapter 45 this effort failed in examining duality, how-

ever, so there are some limitations on extending this approach.

3. Are the results of this paper computationally superior to a

high order approximation of the time delay? Since the required computa-

tion increases as a significant function of the time delay magnitude,

it may be more economical (and ,just as precise) to use a high order ap-

proximation to the delay and then use standard techniques such as the

Kalman filter for obtaining the final result.	 I

.4. C4n continuous algorithms be obtained by examining the lim-

	

-7,	
i,ting case of the discrete solutions? The continuous estimation and con-\

	

iS	
1

trot solutions are known 3'8	 for systems with time delay, but they are

computationally untractable for high order systems (greater than n = 2)

or more than a single unit delay Perhaps the solution to these contin-

uous-time equations may be determined by examining the limiting case of

the discrete-time equations. This is certainly true for systems with no

time delays.

is

,
u

•	 rr
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REQUIRED-PROOFS FOR CHAPTER 11

Xn this appendix necessary and sufficient conditions are devel-

oped for the observability and controllability of discrete linear systems

with-time delay. The development below is for the expanded state repre-

sentation of time delay, systems. The reader is referred to Section 4.2

E	 for definitions of the matrices and vectors o,f'the system and measure-

ment equations (A.1) and (A.2).

X (k+1.) = r (ki-1_, k) x (k) + ^ (k+.1, k) u (k)	 (A.1)

(k+l)	 (k+l,) x (k+l)	 (A.2)

'	 Observability: First, an observable system is defined as follows;

Definition: The discrete linear 'system of Eqs. (A.1) and
ti

(A.2) is observa.ble . if x(0) can be determined from the

set of measurements'	 z (N)) for some f ilite

N. If this is true for anv initial time (k = 0 corres-

ponds to to), the system is completely observable.

The following theorem can now be proved.

~

	

	 Theorem A.1: The disexete'li,near system of Eqs. (A.l)

and (A;.2) is completely observable if and only if the

auN x n (J+l) matrix

W(2) (2,1)¢ (1,0)

l;

r .m^^ :,^, A. ^.: ,. 	 ., 	 ^.a^^ ^, ,;^:^...,,,.^,.^.,^.R.._..^.w a. n ^ .,..w.,..	 ...:::.^.., ._	 . , _ ...	 a	 •.•-
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o	 rank. n(j+l) tog some N ? 0.

3 Pry;	 It is sufficient to consider the case where U(k) w.0.
d4 V

x (k+l)	 (k+l, k) a (k) U^ • 1+ )

z (k.+l)	 'h(k+1.) x, (k+l) (A. 5)	 w

k.	 0, 1, .... since ^(k) is assumed known for all k.

Consider the sequence of measurements Z(N)j- In

" order for the matrix defined by Eq. (A.3) to be of rank n(3+1) 	 N is

chosen sucli that the inequality.mN Z n(J+1) is satisfied.

-From Eqs.	 (11,.4) and (A.5) the following equations result from
r

>.
,

the sequence of measurements.
•	 !

Z(l)	 kl)'' (1) = H (l) a 0)x (0)
^(2)	 0)(2)X(2)(2)	 (.2 1)	 (1,x(0)

A

j
,

z(N)	 H(tJ)x(N)	 R(N)$(N,N,1)	 (10)X(0)
}

These equations may , b. written in matrix form as
r

z t1 X (0)N	 N (A .6)	 r

a

where	 zN ._ z (1)

!
z (N^

HN .= 1L(1)' (1, 0),^
W(2)	 (2 , 1 )	 (1 0)

A,
r 	 •

Y

lt' i ss clear that - z N is an mN vector and x (0) is an n.(J +1) vector.	 Since

mN > n(J+1) and x(0)_is arbitrary, the theory of linear equations may
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. n,oi^ be, invoked.	 Thls theory state;, that there ex&sts a unique solution

to Eq. (A.6) iR and only 9 the, matrix "N , as expressed by, Eq. Ok,, 7) , is

L
.of rank n.(J+I) .	 Thus Theorem A.1 i s established.

i "
•	 •

Controllabi,7 i,ty:	 First, control laKliiy -s defined in the follorzing
i

sense.
•

7

.4 1. Definition A.2:	 The discrete linear system of

^fk , Eq. (A.l) is controllable at tame k	 0 (corres-

ponding to an initial time to ) JU there exists

k	 ,'

g control sequence 	 (0) ,u (,1) , ... , ^ (N-1) }	 end-de p

q i ng on W(0) and the initial time, for which 9^ (N)

may be selected arbitrarily, where; N is finite.

If this is true for all X(0) and initial times,

the system is completely controllable. 	
i

4
i

s
The following theorem can now be proved.

Theorem A.2:	 The discrete linear system of
• Y

;

•

Eq. (A.1) is completely controllable if and only

t if the n(J+l) x rN matrixr
. [¢(N,N-1)...	 (2,1)y,(1 1 0)	 ... 	 ^,(N,N--1)y(N-1.,N-2) 	 (N N-1)

Jti
(A:8)

is of rank n(J+1) for some N > 0.

Proof:	 The relationships for xw may be expressed in terms of x(C) and

the control from Eq. (A.1) as
k

•

,
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k C2
XCl) ^
	 a: 0 )' (0 )	 f^l a 0 ) u (0 ) A-.'

(2^l)T(l,0)x (0) + ^(2,1)	 C-^.,0)u(.0) +	 (2 1 ) 'U" (1)

1
 1

x(N)	 T(N,N--1)	 (1,0)x (0)

To
r -	 3 .

A

This sequence may be expressed in matrix :form as

w 7

where x (N) is arbitrary
•

ZN	 T(N,N--1)	 .	 .C2,1)(1 0)	 (A.10)
F;

• TN 	
(NI	

-1) ... Q Qsl)V(1,0)	 ... 0(141N--1)y(N-1,N--2) *(N,N--1)
z

t
(A•1)

u(N_1)	 (A.12)

The definition requires that x(N) be arbitrary and it can be seen that

E

r

rw
x(N) is an n(J+l) vector and uN is an rN vector where rN >_ n(J+1) .

Once again,, Eq. (A.9) has a unique solution, it and only if the matrix

defined by (A.,11) is of rank n(J+1) and ,Theorem A.?, is established.
I

1

i
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'-° OBSERVABILITY AND CONTROLLABILITY OF TIME DELAY SYSTEMS,

70 In this appendix, properties (2.39) - (2.47) are established.

Recall the system and measurement equations for systems with time delay.

k ' x(k+1)	 E ^i(k+l,k)x(k-i) + r(k+ ,k)w(k) + ^ (k+l,k)u(k) (B.1)
i=0

z(k+l) = R(k+l)x(k+l) + v(k+l) (B.2)

These equations may also be imbedded in an expanded state representation
y

x(k+l.) = '^"(k+l,k)x(k) + ?(k+l,k)'(k) + ^(k+l.,Qrul(k) (B.3)	 --
r; z (k+l) = k(k+l) x (k+l) + v (k+l) (B-4)

where the reader is referred to Section 4.2 for definitions of the ex-

+f paraded matrices and vectors.

The following properties of the vectors, are recalled for later

use in the proofs below.

r' . ! ix(^i) 	 1, 0,1, ... ,J} is a zero mean gaussian random n-vector
(B.5)

4 {W(k), 'k=0,1, ... } is a zero-mean, p-dimensional gaussian w;:ite

sequence (B.6)

F	 a (v(.k) , k=1,2, ... }	 a zero;-mean, m-dimensional gaussian white

r
sequence (B.7)

_ {v(j), j=1,2,...} and	 j (k), k=0,1,...} are independent (B.8)

;, i=0,1, ... ,J} is independent of '-(v(k+l) , k=0,1, ... } andt

^..
fw(k),	 k=0,1,...}. (B.9)

lu(k) , k=0,1 , ... 	 known or may be spec,f i,ed as desired (B.10)

135
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Y	 I,t can be. shave that for a system described by Eq, . (B.3) , the

state of the' s̀ystem• at time k maybe expressed in texts of the initial

state, noise disturba,nca and control vector as

ruI (k)	 T (k, O)X (0) -	 C	 )
I,. (R ^^l) CR^1)

R^1	 '
k,

•Ck,^)C^,R ^1)w(Jrr^1)	 (B.11)
=1

The partitioned expression for x(k) can then be written as

J	 J k
x(k)	 E Oi(k,O)x(-i) +	 E ^i0(.k,^,)I'(A,,k-1)wC^,-1)

i=O	 :L=O k=1

J k
+ T	 F,^ i0 (k,k) CR,,k--1)u(R,-1) 	 (B.12)

:,=0 A,1

where ¢ - (k,k) is the ij th n x n submatri,x of ^ (k,.Z) . With the above

results, the. &operties of Chapter 2 can now be established.

Property (2.39): The stochastic processes
. 

{x (k) , k=0,1, ..,. } and
a	 ^

	

• fz (i) , i=l, 2, ... , j j are gaussian'.	 (B.13)

M

Proof:	 Consider Eq.	 (B.12) . Recall that	 {u (j) , J=0,1,...) is a deter-

mini.stic quantity by	 ro ert (B..10),	 -Since+{x(-:L) , i=0 1	 ...	 J} and

' {w(;,-l),	=leach	 R2 .. o k . are{	 >	 >	 ^	 } hypothesis ,gaussian b	 thatg	 Y	 YP	 it follows t

x(k) is also gaussian for k - 0, 1,	 ..,	 , since it is merely the sum of

u
gaussian random vectors plus a deterministic vector.	 Consequently, for

any integer m and set: of time points ' {t1 , t2,	 ...	 t el} the set of -ran-
{

dom n vectors x(tl), x(t 2 ),	 ..., x(tm) is jointly gaussian distributed

and the assertion is•proved

a. sx r

-.,,w,,._»-suw,.,+;e-97x5.i^L4sG.azd:.r+Futnaete..nc^H...m e.̂ , :». 	 .om•..^,.wa_.-..5.^,.W...m.a._;:._...v....,.... 	 _ ..	 ......	 ..... 	 ....	 ,_.	 -._	 .	 ..	 ., 	 _	 .._..	 -.	 __	 __._.
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k'r- 4 .e- . ?'-. (2. 4Q) .- E ( ,7) t (Q)	 0 f ox all k,	 ,	 0, 11 ...	 (B.14)

Proof: Eck: (B . 12) may, be' substituted' into Eck. (B.14) to yield

J;
E{x(Dw (k))	 E ^Oi(kME(x(-i)w (k)}

f im0

J

	

a	 tiJ
+ B	 ¢ ,0 ( ,R)r (R,lL-1)E(w(1-l)w' (k)}

Err
J J

	

:.	 + E	 Z ^i0 0 gz4(k ,,P,--l)u(2-1)E{w' (k)} (B.15)
a i,=0=1

From property, (B.9) the first term on the right-hand side of Eq. (B.15)

for	 k = 0, 1,	 {w(k), k 0,1,	 isvanishes	 all	 ... .	 Since	 ...)	 a white se-

"Fiji

quence• it follows that E {w(2 -l)w' (,k.)} = 0 for all k ^ R -•1,	 Since

A, ; 1, 2 9	 ., 3	 it is clear that the second term vanishes for all

k > j-1 or R: z J.	 The third term vanishes since {w(k) , k=0,1,...) has

^,. zero mean,.	 Hence, Property (B414) is established.

i

Pr6pe'c. ty (2.41):	 E {z (J )w' (k) } = 0 for all• k Z j , J - 0, 1, 	 ...	 (B.16)

' Proof:	 Substitute Eq.	 (B.2) into Eq.	 (B.16)

:.
E,{zQ)w' (k)} --_ H(J)E-Jx(J)w' (Q) + E{v (1)w ' (k)}	 -(B.17)

B	 virtue o£ E .	 B.14	 the first term on the right-handy	 q	 ^,	 ) 	 side. of Eq.

{ (B.17) vanishes for all k z J , j = 0	 1	 , ..,	 ,	 The second term. vanishes.

by property (B.8) and the assertion (B.16) is established.

f

•
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' Property (2.42): Efx(j)v' (k)}	 0 For all j	 0 9 1 0 	and k	 1 9 2 9 ...
!	

(B.18)

Proof: Substitute Eq. (B.12) into Eq. (B.16).
i

El(j)v' (k))	 £ TOi(J,0)E{x(-,i)v' (k))i=0

p	
j=0 L=1

s	 + E	 E i0 (j ,k)V^ ^R^l)u(^-1)E{v' (k) } (B.19)!
i= 0 R=1

+ t	 The first term an the right-hand side vanishes by property (B.9). The
y
=.	 second and third terms vanish by properties (B,8) and (B.7) respectively,

and property (B.17) is established.

Property (2.43) : E {z (j )v' (k)) = 0 for all k > j where j ,k 1, 2,
.r

(B.20)

Y Prod£: Substitute Eq. (B.2) into Eq. (B.18)

t Iz (j )v ' (k)}	 H(J)E{x(J)v' (k)) + E{v(j)v' (k))	 (B. 21)

gThe first term on the riht-hand side of E . 	 y propertyG	 q (8.19) vanishes b

g `	 (B.17)	 The second term is equal to zero except for 3 = k since
i

iv(k), k=1,2,...) is a white sequenco.."'''But k > j by hypothesis and the

assertion (B.20`) is eatablished,

{
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