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ABSTRACT

The problems of estimation and control of discrete, linear, time-
varying systems are considered. Previous solutions to these problems in-
volved either approximate techniques, open-lcop control solutions, or
results which required excessive computatibn.

~ The estimation problem is solved by twé diffeéeqt méthods, both.
of which yield the identical algorithm for determining the optimal filter.
This algorithﬁ is the pértifioned equivalent to a solution suggested in
1964 by formulating the time delay system in an "expanded state! repre-
sentation. The partitioned results achieve a substantial reduction in

computation time and storage requirements over the expanded solutiorn,

however. The results reduce to the Kalman filter when no delays are pre-

~ sent in the system.

. ’

The control problem is also solved by two different methods,
both of which yield identical algorithms for determining the optimal

control gains. This result is also a partitioned solution to the "ex-

‘ panded state" representation of time delay systems and also achieves

savings of computation time and,stbrage requirements. The stochastic
control is shown to'Se ida@t;cal to the deterministic contrql, thus ex-~
tending the separation principle to time delay‘systems. The results
obtained reduce to the familiar optimal control solution when no timé

delays are present in the system.
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The principle of duality of estimation and control is shown to
be. extended to time delay systems.

Necessary and suffici;nt conditions are déveloped,for the obser-
vability and controllability of discrete linear systems with time delay.

An exhaustive bibliography of publications dealing with optimal
eséimation and control of time delay systems over it2 period 1960-1970

is included.
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CHAPTER I

INTRODUCTTON K

l.l Introduction

The study of systems with time‘delay is not a new one. During
the past decade (1960-1970) over 200 papers have appeared dealing with
the optimal control and estimation of linear systems with time d@lay.
Closed-form solutions are difficult to obtain because the analytic ex-
pression for a time delay differc from the form used to describe the
rest of the system. For example, in the frequency domain, the system
is usually described by a fatio of polynomialslin S, ﬁut the time fuiay

15 expressed as the transcendental function, e~Ts

+ This may be put in
a common form bx éxpressing e TS as an iﬁfinite serieé in-s. Unfortun-
ately, thi; results in a syétem of infinilte order with an infinite num-
bef of poles. SinCe.£he exact solution to such a system is computa-
tionally impossible, the normal p¥o¢edure is to truncate the approxima-
tio; to the time delay. This results in a solution which is suboptimal.

e .

In the time domain, the deseribing equations which are ordinary

. linear differential equations when no delay is present, become differen-

tial-difference equations to describe the time-delay effect. The time
delay may be represented by a differential equation of infinite order.
This also results in a systém of infinite order, however, so a truncated

series is generally used, resulting again in a suboptimal solution. -



=

A third way of describing the system is in diserete time. This
is naturally suited for time delay representation because the system and

time delay can be described as difference equations., A major problem

exists in such. a representation because the resulting syskem is directly
proportipn@l to the magnitude of the longest time delay. Once again the
comﬁutation can quickly become excessive.

The approach of this paper is furthér'exPioration of the discrete-
time representation of systems wixh,timg delay. Substantial savings in
both computation time and storage requirements are achieved over previous

discrete-time solutions tc¢ systems with time delay.

1.2 Previous Work

An exténsive bibliography is presented in Appendix C which con-
tains a list of more than 200 papexs published in the last decade, whigh
deal with time delay systems. In general, these‘gﬂpers fall into three
categories which;l}hit the practicality of their implementation.

l. The majo:ity of the control results are open-loop. This 1is
of little value for stochastic systems where plant‘distugbances occur,

2. The computational requirements of the proppsed solutions are
too great for practiCaI implementaéion.

- 3. Approximate methods are used, resulting in suboptimal soluf

tions.
The previous work. pertaining to this dissertation is discussed in détail

in Chapters 2 and 3.
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1.3 Organization

.

éhapter 2 develops an algorithm'for ;ptimal estimation oé'dis-

crete lirear systems with time delay using brOperties of fonditional ex-
pectation. 'This result is shown to reduce to the Kalman‘filter when no
time delay is present.

 Chapter 3 develops an algorithm for optimal control of discrete
linear systems with time delay using dynamic:progrémming. The stochastic
control is shown té be the same as the deterministic congroi for time
delay systems; thus extending the separatior principle to such systems.

Both results are then shown to reduce to the familiar optimal control

i

solutions when no time delay is present.

- Chapter 4 introduces the "expanded state" form, an alternate re-
presentation of time delay systems in discrete time. This new form is

then used to obtain results identical to those of Chapters 2 and 3. The

expanded state representation of time delay systems is not unique to this

paper. It has been examined by previous -authors and found to be compu-

tationally unattractive because of the resulting increase in system or-

dexr which is proportional to the magnitude of the longest time delay.

Chapter 4 results in a partitioned algorithm solution whereas previous

- e -

authors retained the entire expanded matrices in their original form.
Analytical expressions are developed in Chapter 5 for the com-

putational and storage requirements of the partitioned solutions and

‘compared with the requirements of the expanded state representation.

Although identfcal results are obtained to the estimation and control

N

N
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.requirements over the expanded form. .

problems, the partitigoned solutions of this papey result in a 307 to

90% reduction in computation time and a 30% to 60% reduction in storage

k4

Chapter 6 summarizes the results and suggests future areas of

study for time delay systems. §
: %
|
i
o Beo T ,
o
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s

OPTIMAL ESTIMATION IN LINEAR DISCRETE SYSTEMS
| WITH TIME DELAY .

2.1 Introduction

In this chapter, the. problem of estimation is examined for sto-
chastic linear discrete systems with time delay. It s assumed that
both.plént and measurement noise are present. An algorithm is obtained -
for estimating the state of the system.

Section 2.1 formulates the general estimation problem for dis-
crete systems, whether time delay is present or not. The familiar dis-
crete-time system model is modified to incorporate the effects of de-
layed state values into the system behavior.

In .S,e'cti.on 2.3, previous work on stochastic time delay systems

1 obtains

Is reviewed. One 6f'these works, that of Rriemer and Vacroux,
a similar result to that obtained in Secﬁidn 2.6. The result in this
chabter is achieved using properties of conditional expectation whereés
thg referenced work uses orthogonal projecﬁion. This result also in-

cludes systems with a control iﬁbug &heféas the work of Priemer and
Vacroux doéS'not.

Section 2.4 establishes basic results in estimation theory which-

 are necessary for the results of Sections 2.5 and 2.6. In some instances

the proofs accompany these basic results. In others where the proofs H

are considered unnecessary or burdensome, tlie reader is referred to the



literature.

.

Section 2.5 uses the properties of conditional expectation to

*

.develop an ‘expression for the one-step prediction process..

Properties of conditional expectation are again Jsed in Section
2.6 to develcp the estimation‘algorithm for stochastic discrete-time
syétems with, time delay. This result isldemonstrated to reduce to the
famili;r Kalman filter when no delay is present in the system.

Section 2.7 summarizes the results of 'this chapter and discusses

the computational aspects of the estimation algorithm obtained.

2.2 Optimal Estimation for Discrete Systems

' " In this section the general proble@ of estimation for discrete
systems is considered. That is, the state and measurement processes of
a dynamic system are discrete-time stochastic processes.

Consider a dynamic system S whose state as a function of time
is an n~dimension§i discrete—time stochastic process'ﬁx(ki, kel} where
either I = {k:tk =0, 1, ... , N}or I'= {ktk=0,1, 2, ... } . Sup-
pose that it is desired to know the value of x(k)Jfor some fixed k,
but that x(k) is not directly accessible for observation. In addition,
suppose that a sequence of measurements z{1), ... , z(j) are available
which,afe causally‘related to'x(k) by means of some measurement system

M as shown in Fig. 2.1 and it is desired to utilize these data to infer

/
the value of x(k). ‘Let'{z(i), i=1,2,..., j} be an m-dimensional,
discrete-time stochastic process.

~Since only the measurements z(l), evs 5 2(j) are available from

vhich to estimate x(k), let the estimate of x (k) based on these
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measurements be denoted by %(k|j) and define it to be some n-dimensional,

vecﬁor-valued function fk.of the measurements:
Rkl = £ f2(), £ =1, ..., 3}

The estimation problem is one of determining fy in some rational
and meaningful manner. The approach‘té be used in this chapter is based

on consideration of the estimatio& exror, i(klj), which. is defined by

the relation,
%0 3) =x() '~ 2] ) (2.1)

Ideally, %(k|i) = 0 and the estimate is exact. When x(k|j) # O

a penalty is assigned for the fncorrect estimate. This is done by

specifying a penalgy or ldss function L = L{;(klj)} whicb has the follow-
ing properties: . .
1. L is a scalar-valued function of the n vériablqs
2. Lkg) = 0 ﬁhere 0 denotes the null n-vector
3. LI ()] < LI%(k|1)] whenever p[#P(k]3)] < plx®(k|)]
where p is a scalar-valued, non-negative, convexlfunction

of the n-variables -

4. LIx(k[3)] = L[-k(k[1)] -
The first property is essential to the obtaining of a unique
‘minimum associated with a family of vectors.

The second property simply specifies that there is no penalty

-

when the estimate is exact.
In the third property, p is a measure of the distance of %(k|j)

from the origin in n-dimensional euclidean space, and L is specified to



.

be a non-~decreasing function of this distance. That is, as i(klj) be~
comes "closer" Eo zero, the penalty decrease;.

The: fourth. property réquires that L[+] be symmetr{c about ‘the
origin. ' '

A loss function that possesses the above four properties is

terﬁed an admissible loss fnnction. It should be noted that L need not

be a convex function.
Since x(k) and i(k]j) are random vectors, it followg that i(k]j)
is also a random vector and that L is a random variable. 1In order to

obtain a useful measure of the loss, a performance\measure J is defined

as the mean value of L.

The familiar discrete-time model for a stochastic process may be

-

expressed as

x (k+1) : ¢ (ktl,k)x(k) + y (ktl,k)ulk) + I‘&k+l,k)W(k) (2-55

]

z(k+1) = H(k+1)x(k+1) + v(k+l) (2.6)

vhere X = n vector (state)
u = r vector (control) , o

vector (plant disturbance)

=
]
4~

z = m vector (measurement)

v = m vector (measurement disturbance)

¢ =n x n (state transition matrix)

P =nx p (disturbance transition matrix) .
v = n x r (control transition matrix)
,H.= mXxn (meaéurement matrix)

o
P T e e e -
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“{w(k), k = 0, 1, ...} & zero mean gaussian vhite scquence having a posi-

*

tive semi-definite p x p covariance matrix'{Q(k). k=20,1, «ees }. That

,1sb. ' s
Em(k)} =0, k=0,1, ... . (2.7)
Bu(v () = QU . (2.8)

where ajk}is the Kronecker delta. '

T (k+1l), k=0,1,...)} is a zero mean gaussian wvhite sequence haviﬁg a posi-

tive semi~definite m x m covariance matrix {R(k+l), k=0,1,...}.
CEfvGketl)} =0, k=0, 1, ... (2.9)
E{v(+L)V' (eH)) = (kG . (2.10)

Attention is restricted to the case where the two stochastic processes

Tek), k=0,1, ...} aﬁ&'{y(k+l), k=0, l,'...} ' (2.11)

are independent of each other. That is

ENGIW'(K)) =0 for all § =1, 2, vo. , k=0, 1, ... (2.12)

. The initial state x(0) is a gaussian random n-vector with zero mean,

having an n x n positive semi-definite covariance matrix
E{x(0)x'(0)} = P(0) | , (2.13)

’It is assumed that x(0) is independent of fw(k), k = 0, 1, ...} and

"v(k+l), k =0, 1, ...} so that

Ex(w' ()} =0, k=0, 1, ... , | (2.14)

ES
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E{x(0)v' (k+1)} =0, k=0, 1, ... (2.15)

EY

It is also assumed that the cdntrol sequence is either known or may be

.'

7z

Expression (2.5) states that the value of the state vector at
the  next instant of time depends only on the present values of the

state, control, and plant noise vectors. If, however, this future value

of the state vectax is also dependent upon past values of the state vec-
tofjthen Eq. (2.5) must be modified to indicate this dependence. This
is done by re-writing Eq. (2.5) as

J
- x(ktl) = % ¢y (et K)x (ki) o+ P (etl,k)ulk) + TC(k+l,k)w(k) {2.16)
i=0,

The index J in Eq. (2.16) indicates the most ‘distant (in time) value of
state vector, x(k-J), that affects the state vector at the next instant
in time. It is recognized, of course, that many of the ¢i(k+l,k) may

be zero, indicating that not all delayed states back to x(k-~J) affect

" the expression for x(k+l). Thus ¢i(k+1,k) is the state transition matrix

assbciated with the delayed state vector x(k-i) in Eq. (2.16). Proper-

ties expfgssed by Eq. (2.13), (2.14) and (2.15) must also be modified

~accordingly, as below, to include syétems with time delay.

The initial and delayed initial state {x(-i), i =0, 1, ... , J}

is a gaussian random n-vector with mean
Ex(-i)} =0, i =0,14...,J , (2.17)

having the n x n positive semidefinite covariance matrices
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E{x(-1)x"(~3)} = p(~4i, -§) 4, 3 =0,121, ... , J. (2.18) /
It is assumed that' {x(-i), % = 0,1,...,J} is independent of .
fwk), x =0, 1, ...} and {v(k+l), k=0, 1, ...} so that” ;
E{x(~1)w'(K)} = 0 4=0,1,...,J kw0, 1, ... (2.19)

CEx(-1)v'(k+1)} =0 4 =0,1,...,9 k=20,1, ... (2.20)

In addition, it should be noted that the system described by
Eq. (2.16) and Eq. (2.6) must be observable or the following theory has
little meaning. A systum is "observable" if every state in the corres-
ponding deterministic system can be exactly determined from measurements
of the output over a finite interval of time. The reader is referfed
to Appendix A for a discussion of ohservability of discrete linear sys~
tems with time delay. '.

With.£h¢ system model described by Eqs. (2.6) - (2.11) and Egs.
(2.16) -~ (2.20), the SPecific estimation problem may now be formulated. ‘ | %f

Given the state sequence %&(k), k=0, 1, ...} and the measure-
ment sequence  @), 1 =1, 2, ... , j}Jdetermine the estimate, ﬁ(klj),
of x(k) such that the expectéd value .of the mean square filtering error

is. minimized. That is, it is desired to minimize E{L[i(klj)]} wheré

LI%(k 1)) = ﬁ_ﬁ(klj YR (kiF) ' (2.21)
Z(k[§) = %) - 2(k]3) R - (2.22) ;
( N c i
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The remainder of this chapter is devoted to determining the op-

timal filtered estimate'{ﬁ(klj), kajj. As a byproduct, hovever, ex-

. pressions are also obtained for the one-step prediction estimate
& (k]4), k=j+1} and for a limited range of smoothing estimates

gk|i), k=j-1, j-2, ... , 3-J}.

These estimates are all obtained for discrete linear systems

witn time delays. ' ‘ ,

2.3. Reviey of Previous Work on Estimation of Time Delay Systems

Despite the great number of papers extending the original work
in 1960’of Kalman and Buc;y2 on linear filtexing, a number of years
passed éy'befbre optimal filtering of systems with. time delays was dis-
cussed. The bibliography contains an extensive list of such literature.
The three articles which discuss linear systems with delay in the plant
only (not in measurement or control) are discussed below,

In 1@67, the theory developed B&-Kalman and Bucy was first ;x-
tended to linear’systems with:multiple time delays by Kwakernaak3 whose
dévelopment is for continuous systems. The single-variance equation of
the Kalman-Bucy theory is replaced by a partial differential eguation
‘and three boundary conditions. The'bohqdary conditions are also partial
differential equaticns. No explicit‘solution to these equations aépears
possible in closed form and solutions are not feasible for on-line anal-
ysis of diSc;éte time systems. Tnus, although the solution is éheoreti-
cally presented, it is impossible to implement in practice due to the
extensive éomputation required. This is substantiated by the fact that

no literature appears in which this method is implemented.



*

The problemn of developing a filter that was computationally

more feasible and that could be used in pracéfce was resolved in 1969

_ by Priemer and Vacroux.l They offered a solution for discrete linear

4

systems w{pﬁ‘time delay vhich avoided the necessity of efpanding the
order of the system, The computat?on.time was considerably reduced

from that required by the method of Kwakernaak .3 Chapter 4 of .
this dissertation demonstrates that Priemer and Vacroux's result is iden-
tical to that obtained by expanding the state space,

'In addition to these papers is the method of approximating the
time delay by a Taylor's Series eapansioq or by a Padé approximation.
Unfortunately, the solution obtained is suboptima%)since a truncated
approximation to the delay is used. No work appears in the literature
discussing this type of approximation in relation to filtéring of time
delay systemns. |

Bgth,pgégrs discﬁssed above consider the filter problem only
and do not provide a complete solgtion for optimal control 6f stochastic

4

time—delay systems. In 1969, however, Larson and Wells' were able to

do so by restricting attention to serial systems. Although their solu-

tion was optimal only for single-input, single-output systems with delay

in the plant, it is very easy té-iﬁpiemént and computationally

-

faster than any of the methods discussed in the above paragraphs. Their

paper combines optimum estimation, prediction and control.

It is also r;cognized that if it can be shown that the separation
principle applieszto’time delay systemséthen‘the optimal filter'may be
developed independent of the;optimaﬁrﬁpntrol solution. This {is, in fact,

demonstrated in Chapter 4 of this dissertation.
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In summary, them, with one exception, the results shown thus far
in the literature for estimating systems with delays in the plant, are
limited, as to practical application, by one or more of the following:

1. Excessive computation time

2. Excessive computer storage requirements ,

3. Approximate methods resulting in suboptimal results
Ihe;one exception is the paper by Priemer and Vacroux. Their results
arz obtained by two alternate methods ih this dissertagion. Conditional
éxpectation properties are used in this chapter and an ekpanded state.

representation is used in Chapter 4. 1In boih.cases the vork of Priemer

and Vacroux is extended to include control inputs.,

2.4. Fundamental Theory of Estimation

-

In this section some fundamental results of discrete estimation
theory are obtained. Although, in some cases, more general resﬁlts‘may
be establisﬁed; only those which are necessary- to the development of
Sectiaons 2.5 and 2.6 are presented. The reader is referred: to the
literature in those cases where the presentation of the proof is felt
to be burdensome .or unnecessary. |

The following properties of gaugsian conditional expectation are
of fundamental importance in the next two sections. Here X, ¥, 2 aré
gaussian random vectors. For proofs the reader is referred to Meditchs
(pp. 92—103). |

1. Ek|y) is a gauésian random vector which is a linear com-

bination of the élements of y. ' S (2.23)
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2. x - E{x|y} is independent of éhe.pandom vector ohtained by
any linear transformation on y-. ’ : (2.24)
3. 'rf y and z are Independen%,where 2z is a random'mrvectog)then
E{x|y,z} = Elx]y) + Elx|2} - X ' (2.25)
4. TFor y and z not necessarily independent,
Elx|y,z} = Elx|y,2) = Elxly} + Elx|2) - & (2.26)
;here 2 =z - Efz|y}. ‘

The following theorem can now be proved.

: Theorem 2.1. TIf the-loss function is defined as
L= [x(k) ~ 2| [x®K) - 2%|1)] and
“f{x(k), keI} and {z(i), i =1, ... , j} are dis-
crete time stochastic processes then

2|1 = EBG) 2% () | (2.27)

vhere  z*(j) = z(0) ]
z(1)
z(j)_-J

Proof: Recall from the problem gtaéeméht; Eq. (2.21) and Eq. (2.22),

that ﬁ(klj) is to be chosen such that L ié minimized. By taking the
gradient of L in Eq. (2.21) with respect to X and setting it equal to

Zero

xe

VL= <28 g0 - 2k]3) |21, ..., 2(i)} = 0 (2.28)



vfilter.'

R
S

& ¥

Taking the transpose of hoth sides of Eq. (2.28)

Elx) |2@L), ..v 5 2()) = EGE|§) |20, .v. , 2(i))  (2.29)

K
4
.

But the rfght-hand side of Eq. (2.29) is just
ER(k|3)[2%(4)} = R(Kk]3) (2.30)

By substituting this result into Eq. (2.29)
2kl = E&®)|2Q), ... , z({)} (2.31)

;nd the theorem is proved.
Now the final four properties necessary to the deGelopment of
this chﬁpter~can be stated. The reader is again referred to Meditch®
(pp. 92-103) for proofs.
| 5. i(k]j) and i(kfj) are gaussian random n-vectors .
where %(k|j) = x(k) - 2(k|j). o (2.32)
6. %(k|j) is independent of aﬂy linear combination of thé
available measurements. . | - (2.33) | {
7. i(klj) is unique. B (2.34)
8. Efx|y} =x+ P;yp;;,(y-;) | (2.35)

Efxy'}

)|

where ny
P = Edyy')

"I
n

E ix}

Efy)

<1
3

This concludes the results -necessary to develop the optimal

o
o
Q:\x
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2,5, Optimal Prediction for Discrete Linear Systems with Time Delay
Although the results of the preceding section are fundamental
ones, they are of limited practical utility. Consider the gaussian case

where the optiﬁal estimate is given by Eq. (2.35) as
PS ’ - = ‘ ' -1 -
R(k|3) = R0 + By sy Bahghan gy [240) = 24D] (2.36)

where .z*(j) = z(0).| ‘

z(1)

o

z(jz_

For each set of measurements, it is necessary to compute the inverse of
P vr7.ns @ jm X jm matrix, where j is the number of measurements and . ‘
2% (3)2%(3) ’ .

m is the numﬁgr’of elements .in the measurement vector. If m is 1 and
there are 50 measurements, then a 50 x 50 matrix must be i;verted. If '
it is desired to perform estimation "on-line", application of the above
expression to generate the optimél estimate becomes impractical.
What are desired, from a computational point of view, are

efficient and practical algorithms for-processing the measurements se-

quentially, hopefully in real time, to obtain a current estimate. All

gt e

of the results stated thus far afé independent of the system model. For
. ' tnis reason they are valid for the time delay case also. The remainder
of this chapter is devoted to developing such algorithms for prediction

and estimation of the states of a discrete linear system with time delay.
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System Model Properties

The system model is ﬁescrihed by Eqy (2.6) - (2.11) and Eq.-

{2.16) =~ (2:20) where the fundamental system and measurement equations

are

\

J .

x(kHl) = I ¢ (bl k)x (ki) + T(RHLKIwCk)+p (k1 kulk)  (2.37)
i=0 .

z(k+l) = H(k+1)x(k+1) + v(k+1) o (2.38)

This model has the following propcrtigs: Proofs are fn Appendix B.

1. The stochastic processes.{x(k), k=0,1, ... } and

“{z(k), k=1, ... ; j} are gaussian, ' (2.39)

covariance matrices in terms of

Q
)
n
()
| &~

Q)
N
"
m
jon

2. EIx(j)w'(k)i =0 for all k2 j, j =0, 1, 2, ... (2.40)

0 for all k2 j, §=0,1, 2, ... (2.41)

3. Efz(j)w' ()}
4, E&Xx@)v'(k)}
5. Elz(i)v' ()}

[}

0 for all j and k. (2.42)

0 for all k » j. (2.43)

It is helpful in the sequel toédefine the following error

Vi
1

P(,m[k) = E{[x(2) - 2(|K)][x(m) - £(m|k)]") (2.44)

%, m>k; Prediction Error Covariance Matrix ' - (2.45)
2>k, m = k; Prediction/Filtering Error Covariance Matrix (2.46)

£>k, m<k; Prediction/Smoothing Error Covariauce Matrix  (2.47)

% =m = k; Filtering Error Covariance Matrix ; (2.48)
£ = k, m<; Filtering/fmoothing Error Covariance Matrix (2.49)
%, m; Smoothing Error Covariance Matrix | (2.50)

L
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It should also be clear from Eq. (2.44) that
P(%,mlk) = P'(m,&|k) (2.51)
where i(&]ki = x(2) - £(2|k) - ‘ ‘ S
= prediction error if 2 > k (2.52)
= filtering error if 2 = k (2.53)
= smoothing error if & <k : (2.54)

2.5.2. Optimal One-Step Prediction

The algorithm for the optimal one-step predictéd es:imaté

i(k+llk) is developed below. Some important properties of the corres-
ponding one-step prediction error i(k+1|k) = x(k+i) - ﬁ(k+1|k) are also
estahlished. Of particular interest is the nature of the.stoéhastic
process i(k+1|k), k=0, 1, ... and thé,béhavior of its correspching

covariance matrix
CRQHL, k1K) = E & (kL] K%' (ktl|k)) o (2.55)

It is assumed that éhe.optimum estimates:{i(k—ilk), i=0,1,...J}

and the n x n covariance matrices'{P(kfi,krjlk), i,j =0, 1, ... , J}

. of the corresponding filtering and smoothing errors %(k-i) and %(k-j)

are known for k.= 0, 1, ... ; 1, = 0, 1; .«+ 5 J. The procedures for
obtaining i(k—i[k) and P(k—i,krjlk) are given in the next section.
Fron the property given bnyq. (2.39) and Theorem 2.1
#G-il3) = Ex@G-1) |z, ... , z(§)} (2.56)
is the optimal estimate of x(j-i) for j =1, 2, ... ; i;= 0,1, ... , J.

For j'= 0, there are no measurements and it follows from Theorem 2.1 that




£(~1]0) = E{x(~i)|n¢ measurements}
| = Bix(-1)
g =0 . ' : . (2.57)

3 It is clear that x(j~i|j) Is gaussian from property (2.32).
5 Similarly the filtering error x(j-i|j).= x(j) - 2(j~i]|j) is a zéro mean
gaussian random n-vector for which it is assumed the covariance matrix

P(j-1,1-2]4) is given. For j =0,

%(-1]0) = x(-1) - £(-1]|0)
= x(~i) - 0 , (2.58)

n

so that P(~i,~2]0) = E{2(~1|0)%' (~2]0)
= E {x(~i)x' (~4)

: = P(-1,-2) 1, =0,1,...,3 T (2.59)
%l where the latter is assumed given in the system description.

B

The following result can now be established for optimal pre-

i . dietion.

Theorem 2.2 If the optimal filtered estimate

2(j-i]j) and the covariance matrix P(j-i,j-%]j)
| . of the corresponding ;ilgeri;é error
%(j-1]3) = x(j~1) - #(j-1|j) are knoun for some
j - 0, 1, é.. ; i, 2 =0, 1, oo , J, then for

k=3j+1

P g

(a)‘ The optimal predicted estimate ﬁ(k+1lk)

for all admissible loss functions is given by the

s
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expressign
. 3 ,
X0t k) = & ¢ Ot k)% (i) )
. . i=0 .
“+ Y (ktl,k)ulk) (2.60)
(b) The stochastic~process'{i(k+llk),
k=0,1, 2, ...} defined by the prediction
erxor, relation ‘
X(kt1]k) = x(k+1) - %(k+1| k)
is a zero mean Gauss Markov-(J+l) sequence vhose
_ covariance matrices are governed by relations
J J o
POcHl,ktl|k) = % % ¢  (ktl,k)PCk~1,kj|K)9} (k+1,k)
* i=0 =0 J
+ T (k+1,k)QC)D " (ktl k) (2.61)
Proof: From Theorem 2.1 and Eq. (2.16)
X(k+l|k) = Ex(k+1)|2z(1), ... , z(k)} (2.62)
J
x(k+l) = ¢ ¢4 (ktl,k)x(k~1i) + I (k+1l,k)wi(k) + ¢ (k+1,k)u(k)
i=0 '
(2.16)

The substitution of Eq. (2.16) into Eq. (2.62) yields

Yo
i

oy
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5 |
K(tLlk) = E{ & ¢ g ety K)x (ki) + T (bl k)w(k)
. 1=0 >
0L ul) |20, v, 200))

b

, J '
B ixo¢i(k+l ’k-)E{x (k~1) I z(1), ... » 2(k)}

+ DO, OE () | 201), oee , 200

‘+ 'l'(k+1.k)11{u(k)|z(l), ves g z(k_)} (2-'53)

-

The. appiication of property ,(2.41) and Eq. (2.7) to the second term

causes it to vanish.

Efw(k)]z(1), ... , z(k)} = E{u(k)} =0 | (2.64)

Under the assumption that the control sequence {u(k), k=0,’1l, ... } is
known or can be specified as desired, the third term in ﬁq. (2.63) be~

_ comes

“‘(k-'i‘l:k)E{u(k)lz(l), ses g Z(k)} = ‘p(k-+l»k-)u(k) (2‘65)

The substitution of Eq. (2.64) and Eq. (2.60) reduces Eq. (2.63) to

~

5 |
RCktl|k) = 5 ¢ (D, kIR (k-L]K) + Pletl,k)u(k) (2.66)
1=0 .

.
.

which. verifies Eq. (2.60) of Theorem 2.2. From the definition of pre-
diction error (2.52), filtering error (2.53) and smoothing error (2.54),

application of Eq. (2.16) and Eq. (2.66) yields

B

PLd




% (ktl] k) = x(kd1) - & (k1] k)

* N J » '
= I ¢i(k+l,k)x(k-i) + P (ktl,k)w(k) + ¢ (kHl,k)ulk)
* igo . )

’
>
2
’

J -
- X ¢4 Octl, k)% (k~1[k) = ¢ (ktl,k)u (k)
1=0 " .

J
=By el )R (1] k) + Ik, k) w (k) (2.67)
=0 =

It remains to establish that x(k+1|k) is a zero mean Gauss-Markov
~(J+1) sequence. This can be done by examining Eq. (2 67) Since w(k)
is gaussian and.{x(—iIO), 1i=0,1, «.. , J} is gaussian, it follows
Fhat i(k*llkb'is a zero-mean discrete-time gaussian sequence. The
Markov property alsa follows immediately from Eq. (2.67).' In fact this
has a Markoy -(J+1) property since the seépence depends on events occur-
ring (J+1) time intervals in the past.
| Now the expression &ay be deterqined‘for the prediction error

covariance matrix.

P(kHL, k1| k) = B3 (ktl] k)% (k)] k,)}

J
= E{[Z ¢ 1(1‘“ k)x(k-i! K) + T Ot K)w(k) ]
1=0

; ' - -
S ¢j(k+1.k)'5<(k-j|k) + T (k+1,k)w(k)] '} o
j= . . ‘ 5‘ -

J J
= L I ¢ (kH,K)E&K(K~1 !k)x (k—J[k)M' (k+1,k)
i=0 j=0 |

J
+ 2% ¢, (ktl k)E{x(k-ll k)w' (k)T (et k) ‘
i=0 > b

4 T (k1L K EW (v (R)IT ' (ke k) (2.68)



o

From the definition of filtering error, Eq. (2.53), and smoothing R

e.rr.or, Eq. (2.54),
E(R(k~L]K)wt (k) ) = E{[x(k-1) - #(k~2]K)][w' ()]}~
= Edx(k~0)u' (k))} - E R (k~L|Kk)w' (k) } (2.69)

The first term of Eq. (2.69) is identically zero due to property (2.40).
Further, since #(k-1]k) 1s a linear combination of the measurements it
may be expressed as
k ,
% (k~ilk) = hillA(h)z(Z) R | (2.70)

The substitution of Eq. (2.70) in the second texrm of Eq. (2.69) causes

it to vanish also.

.. | ok
E&(k-i|k)w' ()} = EL % AQ)z (0w (k))
T =1,

K
- I

f=1
= 0 ' (2.71)

AQ)E & ()W (k) )

The application of property (2.41) causes the cross-—produpt terms of
Eq. (2.68) to vanish. Thus Eq. (2.68) becomes
: J J s |
P(k+l,k+1|k) = £ & ¢~i(k+l,k)E{i(k-ilk)i'(k—jlk)}d):'l (k+1 k)
- 1=0 j:o

+ I(k+1,k)E fo(k)w® (k) IT" (k+1,k)

B T e
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The substitution of Eq. (2.44) and Eq. (2.8) gives
J J
P(k+l,k+l|k) = & & ¢i(k+l,k)1’(k~i,k-j| k)é 5(}¢+-l,k)
_ 1=0 §=0 .
+ 1 (k+1,k) QI (k+1,k) (2.72)

Note, -at this point, that the solution to the single-stage opti-

mal prediction problem is solved. The associated crror covariance matrix

ExpresSgd by Eq. (2.72) requires knowle&ge of P(kri,krjlk), however, and
this is known only for k = 0. In the next section this problem is re- .
'solved and expressions for the filtering.and smoothing error covariance
matrices ﬁ(ksi,krjlk) are obtained. This information is then combined
with that of the éingie—stage optimal predictor to obtain the optimal

filter for time;délay*systems;

2.6. Optimal‘Filteringwggﬁ Discrete Linear Systems With Time Delay

In developing the algorithm for optimal filtering for the sys-
tem of Eq. (2.37) and Eq. (2.38) it is assumed that only the initial
estimate’ {&(-1|0) = 0, 1=0,1,...,J}, the covariance matrices of the

filtering and smoothing errors at the initial time P(fi,—j|0) =

1

E{x(-i]0)%' (~5]0)} = Elx(~1)x(~i)} 'FZFi,—j) and the set of measure-

v

ments {z(l), ... , z(k), z(ktl), k 0} are given.
From Theorem-2.l the optimal filtered (i=0) and smoothed . ;.

(i=1, ... , J) estim#tes ﬁ(k+l—ilk+1) are given by the relation

ROAL-1[k41) = Efx(itl-1)[2(1), «o. , 2(k), z(k+1)} 1=0,1,...,J

(2.73)
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Propernty (2.263 may now be applied to examine (2.73).
E{x|y,2} = E{x|y} + E{x]z} -k ~ ‘ (2.26) .°

vhere z = z - Efz|y}.

By Fubstituting (2.26) into (2.73) and noting that x = y (k+1,k)u(k)
| & (ketl~1] k+1) = E{x(l',tel-l-i)[z(l); UPT)!
+ E{x(k+1¥1)|2(£¢11k)} 71:» (k+1,k)u(k). (2.74)
for k.= 0, 1, ... and where
B(ktl]K) = z(ktl) = 2 (ktl| k)
= z(k+l) - E{z(kt1)|2Q1), .i. , z(k)) (2.76)

This difference Z(k+l|k) is called the medsurement residual. By sub-

stituting Eq. (2.38) and solving for ﬁ(k*%lkJ {

]

2Octl|k) = E{H(HIx(H) + vikil)|2(1), ..., 2(Kk))
= H(k+D)Edx(k+1) ]2 (1), ... , 2(K)}
+ i:{v(kﬁ-l)l'z.a), cer 20}
= g(k+1)§.(k+1lk) «;i:{v(kﬂ)lz(l), coe 5 2(R)Y T (2.77)

The second term vanishes by Eq. (2.43) and Eq. (2.77) becomes

2(ktl]|k) = H(HD)&#1|K), k=0,1, ... (2.78)
With these preliminaries completed, the basic thecrem for optimal filter-
© ing of dlsct)f:e linear systems with ‘time ‘d’ela‘y- may now be proved

T

AEINE/ R



C(k+Llk+1), k = 0, 1, ...Y which is defined by

28
Theorxen 533. (a) The optimal filtered estimate
% (k1] ktl) for the system described by Eqs. (2.37) and
(2.38) is given by the recursiyé relation |
‘:‘;(k+1|k+1) = fc(k-{‘lik‘) + Ky 1) [2(Jebl) = %‘:(k-i*lik)'i. (2.79)

which is a specific case of the more general expression

RUAHLL| k1) = R(kH1-d|k) + K, (tl) [2(kHl) ~ R(k+1[K)]  (2.80)

for k = 0, 1, ... where £(~1]0) =0, 1 =0, 1, ... , J.
(b) Ki(k+l) is an n x m matrix which is speci-
fied by the set of relations
K (kt1) = P(ktl-i, kel [K)H' (k1) [H(kt1) R Oekd kL [ KR (lebl)
+ RG] 1=0, 1, ..., T - (2.81)

P{k~j,k+1|k)

.
420P(k—,i.k-j!k)¢£(k+l,lg) j=0,1,...,J-1 (2.82)

P(k-i,k-j|k~1) - Ki(k)J(,k)P(k,k—j |k~1) (2.83)

i

P (k~i,k~j |k)

J J
L L ¢g GkHLIP (k-1 kj k) ¢t (kHl k)
1=0 j=0 , |

]

B (ktl,k+1 k)

+ Tkt K)QUOT (kb k) (2.84) B
for k = 0, 1, ... and P(~i,-j|0) = P(-i,-j) is the ini-
tial condition for Eq. (2.84).

—d a

(c) The stochastic process

PR

RO kD) = x(k#l) ~ RCt1]kt1), k=0, 1, ...
is a zero mean Gauss-Markov -(J+1) sequence whose co-

variance matiixAis given by Eq. (2.83) for i = j = 0. - 1
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Proof: From Eq. (2.74)

ROA1~2| k1) = R~k + Bk (kt1-4) |2 (1K)} - lp(k-l-l,lz,)u(k;
e 2.85

, . -
Further, since x(k+l) and 2(k+l|k) are gaussian, progertj (2.35) may be

invoked
by -1, .
Efx[2} = x + P ;P 5% ' (2.35)
to obtain the following result ‘
R (k11| kt1) = Y{ktl,k)ulk) + R(ktl-i]k) + E f(ktl-1)2" (k+1]k)}

. [r’:{z(kﬂ[k)z"(k+1|k)}512(k+1|k) - P k41, k) u(k)

(2.86)
By defining K, (kt1) = Efx (kt1-1)%" (kb1 K)} [EZ (k+1|k)a'(k+1|k)}]"tz -
£20, 1, eeo , J | "
Eq. (2.86) may be rewricten . -
% (ktl-L|kt1) = R(kt1-1|K) + Ki(k-!:l)"z (k+1] k) | (2.88)
However, it is clear from Eq. (2.75) and Eq..(2.78)wthat
Z(kH+1|K) = z(k+1) - £ (k1] k)
= 2(lctl) - QL) R b1 1) (2.89)

The substitution of Eq. (2.89) into Eq. (2.88) yields

£ (ktl-1]kt1) = K(kA1-i|k) + Ky (k1) [2(kt1) = HCk+1)R(k+1]K)]
| (2.90)

Which.is the result postulated in Eq. (2.75). The appropriate initial
conditions are obviously {&(-i|0) =0, 1 =0, 1, ... , J}. This result,
Eq. (2.90), combined with that of the one-step predictor, Eq. (2.66), is

sufficient to describe the structure of the filter which is shown in

Figdﬁgy?.z.

s J ' ~
R(HLIK) = T ¢, (kb1 R)K(k-1]K) + (kL k) u(k) ; (2.66)
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Evaluation ggﬁgi(k+l).. From the definition of prediction error and Eq.

(2.89)
z(k+l]k) = z(k+l) - 2{k+l|k) !
=z&ﬂ)~ﬁunﬂyﬂm
e ROHD)x(eH) + v0b) - KR (et )
= HOHL)X (L] K) + v (k1) (2.91)
Consequently, '
R (t1)3 (ktl) = ELz (1] K)Z* (bl | K)} _
= E{[H(HAL)R (k41| k) + vCk+1)][%' (k1] k)H' (k1)
+ v' (ktl)]} (2.92)
= HOAHD B (et [ 1% (ot | k) JH (ebL)
' ' + H(HL)E & (K1 k) v' (k+1) )
+ Efv (L)% (L] k) 3u' (k+1)
+ Efv(ktl)v' (kt1)} | (2.93)
The middle two texms of Eq. (2.93) are now shown to vanish. Since ome

iz just the transpose of the other it is sufficient to examine only one.

E &kt k) v (k1)) = Efx(k+1)v' (kt1)} = E{&(HL|K)v' (k1) } (2.94)

From Eq. (2.43) the first term of Eq. (2.94) vanishes. From Eq. (2.23)

~and Eq. (2.27) the estimate is a linear combination of the measurements

, . k ' ,
f(k-i+l]Kk) = LA (Wz()  4=0,1, ., (2.95)
: 2=1 . |

The substitution of Eq. (2.95) in the second term of Eq. (2.94) yields

_/,';:/ k
LERGHLIV D)} = E{ 2 A ()2 (V! (ktl) )
| 2=l
Tk .
= AGE{(Q)v' (k1))
=1 S

0 ~(2.95)

n

e
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by the property expressed in Eq. (2.43). Therefore, Eq. (2.93) may be
rewritten, using Eq. (2.10), '
"R (kt1)z (erry = MORHLIRGRHL kL KR! (k1) + R(kHL). (2.97)
Evaluation of P_, in Eq. (2.35) and substitution of Eq. (2.89) yields
P s = E(x(ktl-1)%" (k1] k)} - |
= EL%(bl-i] k) + & (ktl~2] k) [ Cetl] KYH' (k1) + v (k1) ]
= E{x (kt1l-1] k)% ' (k1] k)R (kt1)
+ E{% (ketl-1] k)v' (etd)}
+ E{& (b1~ k% (et| k) PR (kb))
+ E{&(ktl-1i] k)v' (k+1)} (2.98)
The second texrm in Eq. {2.98) vanishes due to Eqs. (2.42), (2.96) and
(2.58). By property (2.33) and Eq. (2.70) the third term ;anishes. The
fourth term in Eq. (2.98) vanishes due to Eq. (2.96). Therefore, Eq.
(2.98)‘becoges ) .
Py (et 1-1) 3 (b | ) = B (b1 1% ek | 1) JHY (i)
= P{k+lfi,k&l|k}ﬁ‘Ck$l) (2.99)
The ﬁubstitution of Eq. (2.97) and Eq. (2.99) into the defining relation,

Eq. (2.87), for Ki(k+l) gives

-1
Ky (el = Py 41293 (ot | 1) T3 (kb1 ) 2 (k1)

= P(kHi-i, k1| K)H' (ktl) [HOHL) P (kL k1 | KB (kH1)
+ RG] | (2.100)
for k =0, 1, ... and.Eq. (2.109) of Theorem 2.3 is proved. Note that
iﬁkR(kil) is assumed to be positive definite, it followsﬁthat the re-

quired inverse always exists since P(k+l,k%1‘k) is positive semi-

~ definite.
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Evaluation of P(ktl-i,k+l] k)

i
Shatk

YoM

o:d

b
HETICE

From Eq. (2.72) the expression for P(h+1,k+1lk) is known to be

K
4

J J - .
P(k+l,k+1] k) = p 3 ¢i(k+l,k)l?(k.-i,k—j|k)¢5(,k+1,k)
: 1=0 3§=0 :
+ T0HL,K)QU T (kL , k) (2.72)

It remains to determine the érror covariance matrices
P(k+l-i,k+1]k) and P(k-i,k~j|k). Fox & = 0, P(kil,k+l|k) is defined by
Eq. (2.72) so the cases of interest are for i = l, ... 4 J. Now to de-

texmine P(k+l-i,k+1|k) for i =1, ... , J. From Eq. (2.37) and Eq.

- (2.66)
" xOHL|K) = x(ktl) ~ % OckL[K)

J . .

= I ¢5(ktl,k)x(k~1) + I (ktl,k)w(k) + ¥ (ktl,k)ulk)
= |

= I ¢ 0t k)R (k~4]K) ~ (bl K)u (k)

. i=0 .
J -' : |

=" T ¢, (bl k)% (k1K) + T (ktl,k)u(k) (2.101)
1=0 .

From the definition of error covariance matrix and ﬁq. (2.101)

E{% (k~3| k)% ' (kt1] k)

P(k~j,k+1]k)
[5=0,...,J-1]

' J
= Efx(k~3|K) [w' ()T ' (kt1,k) + I %' (k-1|k)¢ ' (k+1,k)]}
: igo . . '

n

E{% (k=3 | k)w' (K)}T ' (k1 , k)

J A _
+ I E{S:(k--jlk)i'c'ﬂc—ilk)}¢£(k+l,k) (2.102)
i=0 ‘

The first term in Eq. (2.102) vanishes due to Eq.. (2.40), Eq. (2.95) and

- Eq. (2.41). Therefore, Eq. (2.102) becomes

-~

o
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; .
ROk ktl|k) = X R(ked,kei]l)gf (kt1,Kk) 3 =0, 1, wony J1
i=0 (2.103)
which completes the proof of Eq. (2.84) of Theorem 2.3.
Recall that for i = 0, -
P (ktl-i., k1| k) = P(k+1,k+1|k)
which is already known from Eq. (2..72).
i:lvaluat;ion of P(l‘c-wl:\,k-ﬂ k)
‘ .Finally, it remains to determine the errox covariance matrix
Pkt kg k) = B R (k-1] K%' (k= [K)) (2.104)

From the definition of estimation exror and substitution of Eq. (2.90)
and Eq. (2.38) '
(k1K) = x(k-1) -~ £ (k-1]k)
= % (k=1) - Iﬂk—ilk«i) + K, (k) {z (k) ~ H(K)% (k[ k=1) )]
= ROl - K 00 TR + v = BRG] k-1))
= %(-1]k=1) - K (OHMX(K|k-1) - Ry(K)v(k)  (2.105)
Substitution of Eq. (2.105) into (2.104) yields .
P(k-i,k-j|k) = E{%(k~1|k-1)%"* (k~j|k-1)
= Bx O[5 G| km1) F! (K] (1)
~ B (i kel )v' (k) 3K (K)
- K, GOH(K)E fx (k| k=1)% (k-1 ]| k~1)}
- Ky (RVROOE £ <] k1) (] k=1 ! (R)K (k)
-+ Ky GHGE fx (e k1) v () JK} (k)
. Ki(k)l'aiv(k.)i' (i)} |
+ xi(k)ia{v(k,)s:(k| k-1)}H' (k) K, (k)

+ Ky (0RO (I, (k) ~ (2.106)
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= Plk1,k (k1)1 (k)KJ' (k)
= Ky GOH (kS (k,knj [k=1)
+:Ki(k)H(k)P(k,k[ k~1)H! (.k)KJ‘ (k)

+ Ki(k)R(k)KJ' (k) (2.107)
Bug from kg, (2.100)

Einally, it may be demonstrated that'kak+1’k+1),k =0,1, ...
is g Zero meap Gauss~Markov -(J%l) Sequence,

into Eq. (2.105) yields

By definition w(k) and v(k+1) are, independent

Markoy Sequences, It was shown in'Section 2

k=0, .

independent of w(k) and v(k+1), Theref
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random n~vector independent of w(k) and v(kil) for all k = 0, 1, .... .
In addition, [E{x(-1]0)}, 4 =0, 1, .., , J) is a zero mean random
n-vector independent of w(k) and v(k+l) for all k = O, l,r... by defini-
tion and Eqs. (2.19) and (2.20). However, x(ilO) is not independent of
-{x(—ilO), i=0, l; ... , J} as 1s shown by (2.67). Thegg;gre, it must
be concluded that k(k+l-ilkt1), 1 =0, 1, ... , J}'is a Gauss-Markov

-(J+1) sequence. This concludes the proof of Theorem 2.3.

2.6.1 Estimation in Systems With No Time Delay

It is of interest to examine the results of Theorem 2.3 for the
case vhere there-is no time delay. This is easily done by setting J = 0

in Theorem 2.3 and results in the following theorem:

Theorem 2.4. (a) The optimal filtered estimate &(k+1|k+1)

for tpg»systemdeseriﬂed by Eq. (2.5) and Eq. (2.6) is
giveﬂ by the recursive relation
i(k+1|k+1) = ﬁ(k}llk) + K(k+1)[é§k+1) ~ f(k+1]K)]  (2.109)
for k = 0, 1, ... where x(0/0) = 0.

(b) K(k+l) is an n x m matrix which is specified

by the set of relations = . '

K(ktl) = P(k+l'k)Hf(k+l)1H£k$l)P(k&l[k)H'(k+1) F RO1)]L -

(2.110)

P(k+l]k) = ¢(k+l k)p(k{k)¢ (b1, k) + T (kb ,K)Q(RI T (k+1,k)
(2.111)

POkt |ktl) = [T - K(HDH(k41) IR (LK) (2.112)
for k =0, 1, +e+ , Where T is the n x n identity matrix

and P(0]0) =-P(0) is the iniﬁial.condixion for Eq. (2.111).

]



(c) The stochastic process {X(k+l| kt+l), k=0,1,...)
which is defined by the filtering exrxor relation
R(kfllk+l) = ;(k+l) ~»§2k*1!k&1) is a zero mean Gauss-—

Markov sequence whose covariance matrix is given 5&

Eq. (2.112).

Thus the results of Theorem 2.3 reduce to the familiar Kalman

filter when no delay is present in the system.

*

2.7. Computational Aspects

One of the significant features of the filter developed in
Sections 2.5 and 2.6 is its recursive form. The measurements can be
processed as they occur and there is no need ;o store any measurement
data. In fact, so %ar as storage of the measurement.and state is con-
cerned, only {&(k-ilk), & =0, 1, ... , J} need be stored in proceeding
from time k to time k + 1.

The information flow in the filter can be discussed by consider-
ing the block diagram of Figure 2.2, |

Suppose that'{ﬁ(kéilk), i=0,1, ... , J} is known for some k
_and that it is desired to determine ﬁ(k+l[k+1) given z(k+l). The compu-
tational cycle would proceed as follous:

1. The estimates {&(k-i|k), i =-0, 1, «.. , J} are "propagated
forward" by premultiplying them by the state transition mattrices,
¢i(k+l,k). The sum of these is added to y(k+l,k)ulk), giving the pre-

dicted estimate ﬁ(k+l|k).

Presy
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2. ﬂ(k*llk) is premultiplied by H{ctl) giving 2(k$1|k) which
is subtracted from the actual measurement z(k+l) to obtain the measure-

ment residual i(k*llk). .

/

3. The residual is premultiplied by the matrix Ko(k+l) and the
result is added to %(k+L|k) to give %(k+l|ktl). At the same time, the
delayed residual E(klkrl) is premultiplied by Ki(k)' The ith sum is

added to various delayed sums as indicated in Fig. 2.2 to give

IR (kHL-L) K1), =0, 1, ... , J).

4. Ix(ktl-i|k+1), 4 =0, 1, ... , J} is stored until the next
measurement is made at which time the cycle is zepeated.

The interplay between prediction, filtering and smoothing is evi-
dent at this point. It can be observed that each. estimate is obtained

using the other. The filter equations are

J , . |
ROALKY = & (kL K)R(kmd] k) o+ ¥ Okl K)u (k) (2.113)
- i=0 , |

RO k1) = K(ktled] K) + K, (bl [2(H) R (k41]10]  (2.114)

To initiate filtering, {&(-iJ0) =0, i =0, 1, ... , J} is used
and Eq. (2.114) can be solved. The equations then proceed recursively -
as described in the four steps above.

e

Consider next the computation of the filter gain matrices

'{Ki(kil), i=0,1, ... , J} and the three covariance matrices

P(k+1,k+1] k), {P(k-j,k+2{ k), 4 = 0, 1, ... , J=1} and {P(k-i,k-j| k),

i,j =0, 1, ... , J}. The relevant equations are -

-
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A | |
P(ktl, k1| k) = B % ¢, (et KR (kd kd] )9 ! (et k)
1=0 §=0 ' 3
+ [ (kt1,k)QU)T ' (ketd, k) - (2.115)
K, (ktl) = P(k+l-1,k+1] k)H' (kt1) [H(kt1)P (ktl ket | K)H' (k1)
+ RO, £=0, 1, oo, , J (2.116)
J .
P(k~§,kH1|k) = X P(k~3,k~i]k)¢}(ktl,k), § =0, 1, ... , J-1
1=0 - (2.117)

B(k-1,k~j| k) = P(k~i,k~3|k-1) ~ K, (K)H(R)P (e, k=5] k1)
. 1, j = 0, 1, «.. , J (2.118)
for k=0, 1, ... , with P(~1,-310) = i’i:{x(ﬁi)x‘(;-j)};‘ 1,5=0,1,...,J.
",'A,tyéibal computation cycle would proceed as follows:

1. Given P(k|k), Q(k),’ {o;(k+1,k), =0, 1, ... , J} and
L (ktl,k); P(k+1,k+1|k) and’ {p(k~j,k+1]k), j = 0, 1, ... , J-1} are com-
puted using Eq. (2.115) and Eq. (2.116) respectively. |

2. 'F(k+1,1cgq1lk),'E(k-j,kﬂlk), k=0, 1, ... , J-1}, H(k+1)
and R(k+1) are substituted into Eq. (2.117) to obtain K, (kt1), 1=0,1,..,3}
which. is used in Step 3 of the filter computations discussed in the A "
previous paragraphs. |

3. RUekl,ktl]K), RO kL)), § = 0, 1, oon 3213, TR, (i,

i=0,1, ... , J} and H(k+l) are substituted into Eq. (2.118) to yield

P (k—it1,k=j+1|k+1), i, =0, 1, ... 4 J}. These values are stored

until the time of the next measurement when the cycle is repeated.
The matrix inverse which must be computed in Eq. (2.117) gener-
ally poses no real problem. The matrix to be inverted is m x m, where

m is the number of elements in the méasurement vector, In most systems

-
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CHAPTER TIT )
" OPTIMAL CONTEOL OF LINEAR DISCRETE~TIME STOCHASTIC, SYSTEMS

WITH. TIME DELAY :

3.1 Introdug:tionﬁ

The.problem‘CQnsidered in this chapfei islthat of COntrolléng a
system which is subject to disturbances and measurement errors such that
some measure of the system's behavior is optimized. It is showﬁ, in
addition, that the results may also be applied to the deeerministic case.
Neither, the stochastic nor deterministic gesults obtéined here have ap-
peared in fre&ipus literature.

’Section 3.2 establishes tﬁe particular class of problems to be
solved, the system model being that defined in Chapter 2. The pérfor—
mance measure is the expected value of a quadratic form in the state
and control vaéiablés'over a fixed interval of time. The resulting

problem is called the stochastic linear regulator problem,

.

Section 3.3 reviews previous work in the area of control of

time delay systems. The majority of the work has been done for open-

loop deterministiiz continuous time systems. Very little appears in the
literature on discrete-time systems and even less on the stochastic
control problem for systems with time delay.

‘Section 3.4 introduces the concept of optimality and applies it

~ to obtain the solution to the sto&hasticEcontrol,problem. In Section ' ‘

- B .

.3.5 the computational aspects of implementing the algorithm are presented.
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In Section 3.6 those results are converted tg that for a deterministic
system and the separati;n principle of estimation and control is dis-
cusse& In light of these resulté. The. separation principIé states that
the optimal control system consists of tﬁe optimal filter in cascade
with the deterministic optimal controller. The result is also shown to
reduce to the standaxd optimal controller when no time delays are pre-

sent in the system.

3.2 Broblem.Formulation

. In this section the system model is presented as in Chapter 2.-
The quadratic performance measure of interest is defined. Physically

realizable controls are discussed and the problem statement formulated.

The system model is defined by the relations

. J . .

x(k+l) = % ¢'i(k+1,k)x(k-i) + plktl,k)w(k) + plktl,k)u(k) (3.1)
i=0 ‘ . '

z(ktl) = H(k+t1)x(k+l) + v(ktl) - - (3.2)

for k = 0, 1, 2, ... . The model is the same as that formulated in
‘Section 2.2.3 and for which the optimal estimation problem was solved.
The following definitions and properties are repeated for reference.

n vector (state)

i

X

r vector (control)

b

u

w = p vector (plant disturbance)

N .
I

m vector (measurement)

<
n

m vector (measurement disturbance)
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¢i," n x n (state transition matrix a%sociated with the
delayed state vector x(k-i))
I=nx p (disturbance transition méttix) :
¢V =nx r (control transition matrix)
H=mx n (neasurement matrix)
" & (~1), i=0,1,...,J} = zero mean gaussian random n vector with
. positive ;emirdefinite covariance matrix
P(~i,~j) = E&(~D)x'(~-})}, 1,1=0,1,...,d
(3.3)
" fr(k), k=0,1,2,...} = zero mean gaussian white sequence which
is independent of {x(-i), 1=0,1,...,J}
and has a p x p positive semidefinite
covariance matfix Qlk), k=0,1,... .
| | (3.4)
'{v(k+i), k=0,1,...} = zero mean gaussian white sequence which
_is independent of {x(-i), i=0,1,...,J}
and {w(k), k=0,1,...} and has an m x m
positive semidefinite covariance matirix
R(kH1), k=0,1,... . S (3.5)
“{ulk), k=0?l,...'f' = control-sequence which is either known
or can be specified as desired. (3.6)
Thé following pfopereies are recalled from Section 2.5.1 and are needed .
., for the developnment of Section 3.4.
1. '{x(ii, i-= 0, 1, ...} is a Gauss-Markov-(J+1) sequence (3.7)
2. "x(i) and.w(i) are statistically indapendgnt for all

1=0,1, ... .
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3. 2z(i) and w(j) are statistically independent for all jzi,
£=1,2, ..., | j 3.9)
In addition to thesc propexties, the system equations (3.1)
and (3.2) must be "controllable," A discussion of "contr;}lability"
is presented in Appendix A. In general, a system is said to be control-

lable, if, fqp the corresponding deterministic system, any initial

" state x(0) can be transferred to any final state x(tf) in a finite time,

tf 2 0, by some control u. If a system is not controllable, then there
is no guarantee that a control sequence {u(k), k =0, 1, ...} can be
found which transfers the system to some desired final state from arbi-

trary initial conditions.

3.2.2 Performancg Measure

A control éequence'{u(k), k =’O, 1, «..} is to be constructed
to control. the state'{x(k), k=0, 1, ...} of the system over some
fixed intervai of time [O,N], N = positive inteéer, such that thé per-
formance measure

. N , .

Iy = E{izllx'(i)A(i)x(i) + u' (i-1)BU-1)u(E-1) ]} (3.10)
is minimized. A(i) and B(i) are,szmgetric positive semidefinite matrices
which are n xn and r x r fespectively and E{+} denotes the expected
value operation. The expectation is over x and u.

Jy is usuallf interpreted as a "system error plus control effort"
measure of performance. Theyfirst term on the.rigﬁt—hand side of Eq.

(3.10) implies that the desired state is zer-. If at each point i, the

desired state is éomé arbitrary xd(i))then x(i) would be replaced in

il
B



Eq..(3.10) by x(i) - xd(i).

AJthough.xd(i) = 0 for the system moéel of this paper, this is
not a.requirement4for obtaining a soiutipn. Unfortunataly, if xd(i) # 0,
the mathematical development is quite complicated and obgcures the basic
results. This is obvious from the results obtained by Williams®  for
the case wvhere no time delays are present. Thus, as a matter of mathe-
matical conyenience xd(i) is chosen equal to zero. Note that the quad-
ratic nature of the term implies that the measure of error here is one
- of error-S&uared and actually of weightednerrhr—squared because of the |
freedom in choosing A(i).

. The second term of Eq. (3.10) is sometimes called "control energy"
as a consequénce of the quadratic nature of the term. As with the first'
term it is referred to as "weighted conﬁrdl effort" because of the arbi-
trary nature of B(i-1). |

Thus Jy may be viewed as a measure which.providés for a trade-
off between'sy;tem error and control inpuét The relative importance of
the two terms is reflected in the choice of A(i) and B(i—lf. Because
JN is monotone and non~decreasing, a unique minimum exists for the con-

trol sequence fu{i-1), i =1, ... , N} vhich minimizes Iy

3.2.3 Physically Realizable Controls

The control §equenée‘{u(i—l), i=1, ... , N} which minimizes Eq.
(3.10) is not arbitrary. For example, the solution may lead to control
sequences which cannot be mechanized in practice such as those which

J

require input data that is not physicaliy available wheh required. Ad-

e

ditionally, since it is anticipated that variations in the system's
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state qccur, it is desirabla to have the con%rol sequence depend upon
;nﬁormatﬁoanhich.is availablg about the state, namely, the measurements.
‘Thus the coﬁtrol‘sequence is to inVélve feedback. If no'plant distur-
bances were present and if the initial conditions were perfectly known
then an open-loop control law would be satisfactory, assuming, however,
the plant is precisely known. Plant and measurement disturbances, how-
ever, in the system described by Eqs. (3.1) and (3.2) make a feedéack con~
trol law necessary! In the sequel, the. control sequehces depend only
upon information about the system's state which is available for pro-
cessing.

- For aﬁy given k = 0, 1, ... , N-1 it is obvious that the avail-
able data on the system's state consists of the sequence of measurements
"{z(1), ... , z(k)} and the mean value of Lha delayed initial states
"{X(~i), £ =0, ... , J}. The control vector at k can then be written in
the form ‘ . ' B o

u@) = pylze(), ¥4(0)) (3.11)
whege z%(k) is the mk vector
,z*(k) = z(1T> |

2()] o ‘ | (3.12)
and %%(0) is the n(J+l) vector

%%(0) = %(0) |
x(~1)

-0 R (3.13)
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and uk is an r~dimensional vector-valued function of the indicated vari-

ables. Note that uk is to be determined such, that JN is minimized and

e )
o
L N

i}
.
[N )

it is-not necessarily restricted.to be of the same form for all k.
* /

A control'Vector of the type defined by Eq. (3.11) which depends

ot

o only on available data is a physically realizable control and g,

k=0, 1, ... , N-1 is a physically realizable control law. For k = 0,

Rkt s,

u(0) can only be a function of x*(0) since no measurements are available.

If ”k.is independent of z*(k) for all k, then p(k) is an open-loop con-

trol law. , .

3.2.4 Problem Statement
lg . ‘ The problem can now be stated as follovs.

"Determine a physically realizable control law of the form

(3.11) for the system described by Eqs. (3.1) and (3.2)

which minimizes the, quadratic performance measure (3.10)."

o ‘ - Such a control law is called an opfimal control and the problem

= itself is called the discrete stochastic linear regulator problem (with

delay). The word "regulatér" arises because xd(i) = constant.,

w

AR

T 3.2.5 Discussion
Three important restrictions on the class of problems are:
1. The performance index is time independent. The terminal

time itself may not be part of the performance index.

2, No amplitude bounds are placed on the control vector. How-

i

ever, the second term in In tends to limit excessive control.

_?
Uasmetnd
13
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3. The state at the terminal time is not constrained. As with
the control vector’the state ?t the terminal time may only be affected
Jdndirxectly through judicious selection of A(i) in the performance meas-
ure. |

3.3. Review of Previous Work on Optimal Control of Linear Systems with
Time Delay "

'

*

Atéention is restricted below to work appearing iﬁ the litera-
ture which may be applied to the stoéhagtic coiitrol problem with time
delays in the plant.

Thus, the large number of papers which develop open-loop control
are omitted. Similarly, those papers which empléy unity feedback and
vary only the gain in the forward path are not‘discussed. Briefly, then,
the papers discussed below have the follo&ing characteristics: '?

l. Use of state-variable feedback

2, Presehce of delays in plant
The reader interesfed in other characteéistics of the control of time
dglay systems iS‘referred to the extensivngibliography compiled in
the bibliography. i

A number of approximate techniques appear>in the literature

(Bibliography: 73, 116, 118, 157, 159, 161, 164, 212). These methods

7 ST

use either a Padé ° approximation to the time.delay which expresses e
as a ratio of polynomials in s or they express the delayed state x(t-h)
as a Taylor Series.

x(t-h) = x(t) - hx(t) + bf_;sm - e " @
: 21 : | .
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Once either of these approximations is made, the problem may then be
treated as one with no 'delays and the well-known optimal control results
- may be applied. Since, by definition, these methods are approximate,
they yield a sub-optimal solution and are not discussed further, It is
;ecognized, however, that such methods may be very good, depending on
the accuracy of the approximation. '

In 1969, Eller et a18 developed an exact deterministic control
law for continuous systems with time delay. The solution, however, is
similar i; form to the estimation solution by Kwakernaak? mentioned ear-
lier and suffers from the same computational disadvantages. ' Both results
are limited to plants with a single delay, although the authors suggest .
that the theoretical results may be easily extended to include multiple
delays. It should be remarked, however, that even fnr a single delay
tpe computation is so excessive that with a large computer (CDC 6600)
only scalar ‘examples are worked. '

In 1969 Koivo?

derived the solution to the stochastic control
problem for continuous systems with time delay. He showed it to bao the
sare as the result cbtained by Eller et al, thus verifying that the

-separation principle also holds for pont inuous systems with time delay.

4

Larson and Wells overcame some of the computational problems

in a paper published in 1969. Attention is restricted to serial systems,
where the delay is in the forward path only, but this represents a large

number of practical problems. Their results obtained are optimal only

for single input-single ouiput systems, however.

-
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The expanded state representation for discrete systems with
time delay presented in Chapter 4 of this disserxtation was first intro-
duced by Koépckelo in 1964. An alternate form of the expanded state

1“1& 1968. The results'achieved

representation was later used by Dayl
by Poth authors require extensive computation and storage.

The results obtained in the remainder of this chapter can also
be obtained by examining thé submatrices of the solutions of Koepcke and

Day. Solutions of these submatrices requires éonsidefably less computa-

tion and storage time,

3.4 Stochastic Control Problem . ,

3.4.1 Problem Formulatiqﬂ

From Eqs. (3.1), (3.10) and (3.11) the problem becomes

J
x(k+l) = I ¢i(k+l,k)x(kai) + Pkl R)w(k) + yltl,K)ulk) (3.14)
=0 ‘

2(kHL) = HQeH)x(kH) + v(ki1)

N .

Jy = ELCE x' (1)AE)x(1) + u'(1-1)B(i-1)u(i-1) © (3.15)
i=1

ulk) = u, [2%(k),%%(0)] ' (3.16)

where z*(k) is the mk vector
z%(k) = z(1)]

z(@Lv | | | (3.17)

-
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and x%(0) is the (J+l) vector
x*(0) = x(0) | _— .
i(-Jl ' (3.18)

In the 4. %terministic case, the expected value would be removed
from the expressivn for JN’ and the measurement process would become

z(k+1l) = H(k+1)x(k+1). Aésuming the system is observable K the state var-

{

iables cquld be calculated exactly, and the uncertainty associated witﬁ
the delayed initial states would be removed. The estimates

’fE(-i); i=0, 1, ... , J} would be replaced by tne actual véiues of the
delayeé initial sFates,'fx(-i), i=0, 1, ... , J}. The stochastic regu-
lgfor problem may now be stated.

Vo .t
Y
)

h
3.4.8 Problem-Statement

Determine a control law of the form (3.16) for the system of
Eq. (3.14) vhich minimizes the performance meééure in Eq. (3.15).
The resulting system has the block ‘diagram which ié given in
Fig: 3.1. The problem is to specify the controller which will operate
_upon the outpﬁt'étates, z(k+1l), to determine the conérol'vector which
‘m;nimi;es'the performance measure. ‘In ggneral, the resulting control
1éw could involve feedbéck of'all fﬁe pfeceding values of the measure-
ment vector. From a computational point of view this poses a similar
g;obleﬁ to that of estimation discussed in,Sectidn 2.5, By applying the
Uéginciple of Optimaligy;td'this problem (discussed in the next paragraph)

- a set of recurrence equations are found which resolve this problem quite

< . -

: PO
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handily. Another problem is that of determining the optimal controller

when not all of the states are available fof measurement. The separation

. principle, which was first suggested by Kalman and Koepckglz and later

proved by Joseph13 and GunchellA provides a neat solution to this ques-
tion. This important result reduces the optimization problem to two
separate optimization problems, one of estimation, the other of control.
It states that the optimal controller is the same as the deterministig
contrbller_which operates on the optimal state estimates as if they were
the actuai values of the states. In this chapter the separation princi-
pie is modified slightly and also shown to apply to the delay case. The
stochastic coﬁtrol soluti&n is shown to rely upon the availability of

the optimal estimates of the delayed states for implementation. Subse-

quent comments are made to show that the deterministic controller and

the stochastic controller are the same.

3.4.3 ‘PrinCipie g£'Optimality
The principle of optimality may be stated as follows:

Theorem 3.1. For any initial state and initial con-

trol, the remaining optimal control at any subsequent
time must constitute an optimal one for the remainder

of the trajectory.t

A simple-interpretation of the principle of optimality would be

as follows. Suppose that, for some discrete-time system whose initial

v .
state is x(-i), /the optimal control {uo(t), ty St 5'tz} minimizes some
i '

‘performance measure J over the interval [tl, ty]. Then the principle of

4
)
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optimality states that the controi'{uo(t), t' <t < t,} minimizes the
same J for the same system over the interval-[t', t,] with the initial
state z(t')  which resulted from u®(t) acting over the intgrval‘[tl, t'].
A proof of Theorem 3.1 is given in Meditch5 (p.'331) and is a
poverful result for use in the solution of control systems optimization
problems. In discrete~time problems with no delay, the problem can be
reduced from one of determining an entire control sequence at once to
one of determining the control as a function of a'state'of time k based
on the results at time k + 1. For the discrete time problem with delay

the same technique again results in a set of recursive equations for the

control.

3.5 Stochastic Control Problem For Systems ‘With. Time Delay

VN

"in (3.15),

is defined to be the minimum value of the performance measure

N ) o
. _ N '
V., =min ... min E{Z% x"(@)A)x(i) + u'(i-1)B(i-1)u(i-1)}

(3.19)
The-problem is one of selecting rN variables, namely u(0),u(l), .. ,
u(N-1) to minimize JN. A Lagrangian formulation would require the solu-
tion of rN algebraic equaticn subjectmto the constraints expressed by
the system equation CBQl&), Even for modest problems this approach ﬁe—
mands excessive computation.

The problem can also be viewed as an N-stage decision process

‘where the N decisions, u(0),u(l), ... , u(N-1) minimize the quadratic

cost. By applying the principle of optimality the decisions are made

7
7
W
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one' at a time, rather than simultaneously, the N-stage problem is re-
duced to N one-stage problems. This technique starts with the final
stage of control and uses induction to proceed backwards in time to an

arbitrary initial time as shown below.

3.5.1 Single-stage

Suppose that the problem is simply that of selecting a control
which minimizes the performance measure for the last stage of control.
That is, the problem is a single-stage optimization problem

V¥, = min E &' (m)AW x(N) + u' (N-1)B(N-1)u(N-1)} (3.20)
u(N=1) ~ '

However, from Eq. (3.14)

J ,
x(N) = & ¢i(N,N-l)x(N~i) + I(N,N-1)w(N-1) -+ $(M¥,N-1)u(N-1)
1=0 (3.21)

Substituting this result into Eq. (3.20) and dropping most time indicss

for convenience

J - - J
v1 = min E{f £ x"(N-i-1)¢' + u'y' + w'T'"JA[ & ¢ . x(N-j-1)
u(N-1) i=0 L 5= k|
"+ VYu + Tw] + u'Bu) o (3.22)

By noting that the individual product terms are scalars and that A is
symmetric, the terms may be combined to yield

J J J

V.= min E {8 T x'(¥-1-1)¢ 1A x(N-3-1) + 2u"'A T ¢ x(N-i-1)
u(N-1) i=0 j=0 3 " 4=0 *
J ’ .
+ Zw'pfAi§o¢ix(Nfi—l) + 2u'y'Arw + u'[y'Ay+Blu
+ w'T 'Arw) | o (3.23)
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wnere the indicated exbected value is over x, w and u. Making use of
the matxix identity
trace (ABC) = trace (BCA) = trace (CAB) ‘

and since each term in Eq. (3.23) is a scalar)the third and fourth terms

of Eq. (3.23) vanish

: J J
E{w'T'A £ ¢ x(N-i-1)} = E{tr[I'A L ¢, x(N-i-1)w'(N-1)]}
1
i=0 1=0 ,
3 J " . '
= trace[l'A I ¢ E {x(N-i-1)w"'(N-1)}]
=0 *
=0 by property (3.8). (3.24)
Similarly, Efu'y'Alw} = u'y'ATE fe} = 0 (3.25)

by properties (3.6) and (3.4).
From Chapter 2 the property of conditional expectation gives

Ex} = E{E(xly)}, where the outer expectation on the right-hand side is

over y, thus allowing Eq. (3.23) to be rewritten

J J
V.= min EE[ = I x'(N—i—1)¢iA¢jx(N-j—l>
-~ u(N-1) i=0 j=0 ‘ .
J .
+ 2u'P'A ¥ ¢ix(N—i—1) + u'[y'Ap + Blu
i=0 A
+ W'P‘Arw z%(N-1) ,%x%(0)]} (3.26)
This equation can be minimized by minimizing the inner expected value
in Eq. (3.26) with respect to u(N-1) for all z%(N-1l) and %%(0). The
physical realizabiiity condition requires that u(N-1) be some determin-

istic function of z*(N-1) and X*(0). Thus the second and third terms of

Eq. (3.265 become respectively

56
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¥ EQu'y'A I ¢ x(N-i~1) [ 2% (N-1),%%(0)} "
i=0 :
» J . . l..—
= 2u'P'A L ¢iE{x(N—-i-l) z*(N~-1),x*%(0)} (3.27)
i=0
g and E{u'[{'Ap + Blulz*(N-1),%%(0)} = u'[y'Ap + Blu (3.28)
3 Now, setting the gradient of the inner expected value of Eq. (3.26) equal
i .
8
to zero,
£
{ 3
i V) =0 =2)'A L ¢4E{x(N-i-1)|z*(N-1),%%(0)}
3 u(N-1) g i=0
p{:}’!
i | + 2[p'Ap + Blu(N-1) ' (3.29)
r“; and solving for u(N—l‘), expression (3.30) is obtained.
4 ;5
- u(N-1) = ~[9'Ap + B} 7Ly A & ¢ R(N-1-1]N-1) (3.30)
i ' 1=0 |
n} where § = Y(N,N-1)
2 by = ¢i(NN-1)
’;‘% B = B(N-1)
4 | |
A= A(N) : (3.31)
! | Notice that the separation principle is evident in this one-
'stage case. The optimal control is a set of gain matrices each of
which is associated with a, sepa,r,atfe filtered estimate, where the gain
matrices and filters are computed indepeﬁdently. Define ..
W () =AM) and | (3.32)
note that WOO(N) = W(')O(N) since A(N) is symmetric.
= S;(N-1) =-[y'Ay + Blp'As, . (3.33)
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J '
and write u(N-1) = i(N-l)x(h—x—lanl) (3.34)
: 1=o : ~ ,

V1 may now be evaluated by substituting Eq. (3.31) into Eq. (3.23) (less

K]
/
¥

the third and fourth terms).

vV, = E/ go jgox (N-1~1)¢'N00¢jx(N 3-1)
J J
-2 20 jzog (N-1-1|N- 1)¢lw00w[w w00w+B] w Wy ¢jx(N-jTl)
J J , 1
+ 150 j«box (N-1-1|N-1)¢" ooxp[w'wooxpw] [y Wyoo+B)

[w'w00¢+31‘1w'woo¢jx(N—j-1|N-1) + W' Wyolw}  (3.35)

This expression may be simplified by noting that
R(N-1-1|N-1) = x(N-i-1) - %x(N-i-1|N-1) ' (3.36)

Then, letting, j:\\.j denote the n x n matrix
=" ! N - . ,
Ny = 0gob 9 HggtBI Y Wb, (3.37)

. The second and third éerms may be combined in the following way.

J J 4
L & [-2%'(N-i-1|N- -1) A x(N-3~1) + &' (N-i-1|N-1) A 2(N7j~1|N~l)]
i=0 j=0
J J
= I E[Z(x-x),&x +(x-x)/\ (x x)]
i=0 j=0
J J ‘
= ~2 2% A x + xIALx. - k!
iEO j-;iO[ x:LAJXj xiAinj *11\13){3 xiAijxj

R B SP 51 -
xill\ijxj + x,iAij.ij)] : - (3.38).
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The second, fourth and fifth terms cancel since each term is a scalarn,

L3
* >

A= A‘i, and the equation results #in a double sum where each sum con-

ij b .
tributes the same fange of indices. Thus Eq. (3.38) reduces to

4
’

J J . '
£ I (x!]LA.R, -x{A.X) : (3.39)
1=0 j= 171373 13373 .

Therefore Eq. (3.35) may be written

J J ' .
. -.1
V. =E{z = x¥!W, -W wlv'W y+B] “p'W_ Jo x.}
1 1m0 §=0 1700 00 00 00°7373
J J
R ) Y A L% R AD tAA .
+ E{izo jﬁoxijb_:,}.j} + Ef'r WOOI‘W} (3.40)

Since the last two terms of Eq. (3.40) are scalars, these terms become

J

J .
E{L I &'A.% +wIl'W I'u}
. J J
. P | o R Y k
= E{trace[izo jioxi/\ijxj +w'l WOOI‘w]}
' J J
= F. . 2t ' '
: E[trace[izo Jﬁé Aiji_jxi + T WOOI‘WW ]}
J J
= I A .+ I 42
trace[iio j=6 AiijiL_ r WOOI‘Q] (3.42)

where P i is the n x n filtering covariance matrix

By EROI-1N-E-1[N-D) 2 B (N-j~1) %" (N-1-1)} (3.43)

~ and Q =Q(r-1) _=.E{w(N—1)w'A(N-1)} | ‘ (3.44)

Denote Eq. (3.42) as a(N-1) and define Mijk (N-1) as

. 1Y = ol -1 » )
Mij(N 1) .= ¢i[woo wopw[@‘w00u+nl w'w00]¢j (3.45)

e
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Replacing the time arguments, the above results may now be summarized

for the single-stage problem.

J Jé

u(N-1) = I 8, (N-1)%(N-1i~1|N=1) ' (3.46)
i=0 * |

Si(N"'l) = "N" (N:N"l)wﬂo CI‘IM’(N;N“J-)

+ BOV-1)171 " (N, N-1)W, o (), (N, N-1)

1i=0,1, .c. , J (3.47)
W, (V) = {h(N) i=3=0 . '
3 0 elsevhere . (3.48)
, 33
Vo =E{Z B x"(N-1-1)My  (-1)x(N-3-1)} + a(N-1) (3.49)
1 i=0 j=0 ‘ :

M, (1) = ¢i(N,N-15{WOO(N)-WOO(N)w(N,N-l)[w'(N,N~1)WOO(N)¢(N,ﬁw;)

3

\

+ BO-1) )R (@, N-1)Hg, () 9, (N, N-1)

= ‘bi(N’N—l)wOO(N)Q’)j (N;N"l) + ¢J!-(.N’N-I)WOO(N)

. w(N;N—l)Sj(N-l) (3.59)
, -3 J
a(N-1) = trace{ L I, 4i,(N-l)P(N-j-l,N-i—llN—l)
i=0 j=0 ™I
4 T (N, N-1)W,, (N (¥, N-1)Q(N-1) } (3.51)

A (N<1) = Y (N=1YTU ' (N N— - ‘ "1...
Ay (L) = S{ (-1 B (N, N LW (NP (N,N-1) + B(N-1)]7"s  (N-1)

3 (3.52)

where the initial conditions are

wij(N+1) =0, a(N) =0

U
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3.5.2 Double-~Stage Problem

e "3
T
.

-+

The two-stage problem may now be written :

V2 = min min E{[x' (N~1)A(N-1)x(N-1) - u (N~2)B(N—2)u(N~2)]
u(N-2) u(N-1)

+ [x'(NAN)Ix(N) + u' (N-1)B(N-1)u(N-1§} (3.53)
where the expected value is over x(N), x(N-1), u(N-1), u(N-2). Note
that u(N-1) and u(N-2) are required to be physically realizable. Util-
izing the principle of optimality, Eq. (3.53) may be rewritten

V. =min Efx'(N-1)A(N-1)x(N-1) + u (N-Z)B(N—Z)u(N~2) + V.}
2 ' 1 .
u(h—Z)
(3.54)

From Eq. (3.49) and (3.51) it can be seen that

J J
E{vl‘} =E{E[ £ % x PN-i-1)M, | (N-1)x(N-3-1) + a(N-1]1}  (3.55)
120 =0 ij |
R I
=E{L 1§ x (N—J-l)M (N—l)x(N“j-l)) ¥ a(N=-1) (3.56)
i=0 j=0

since the inner expéctation of Eq. (3.55) is cver x%.
Thus Eq. (3.54) can be written

V2 = min E{&x'(N-1)A(N- l)x(V—l) + u' (N-2)B(N-2)u(N-2)

u(N—Z)
J J
+ I I x'(N- 1—1)M (N—l)x(N—j—l)} + a(N-1) (3.57)
i=0 j=0
J J

= min E{% I x (N-l-l)w (N—l)x(N-j 1)
‘u(N-2) i=0 j=0

+ u' (N=2)B(N-2)u(N-2)} + a(N-1) (3.58)
where a(N-1) is taken out of the minimization procedure since its value
.does not depend on u(i-2) and the following definition is used

- e
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Wij(N—l) 2| M5 (N-1) + AG-1) Lm0
I'I“(N_l) . i’j = 0’1) s s 0y J
ﬁ 1] " (except i = § = 0)
Lo . i,3 >0
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4%

(3.59)

Since W and M are symmetric W,, =W, and M, = Mgi. This definition is

i3 .34 ij

a matter of convenience for later development. Because of the system

equation (3.14)

J . _—
x(kHl) = T ¢ (kHL,KIx(k) + Ykt k)uck) + I (ktl,k)w(k)
i=0

u(k) can only affect x(k+1). Therefore, since wij 3
tion of Eq. (3.58) may be rewritten

V.= min E{x'(N- 1)W (N-l)x(N-l)
2 UaN 2)

o J-1
+ 2 5 x"(N-1)W
3=0

0’j+1(N-1)X(N-j-2)

.+ u' (N-2)B(N-2)u(N-2)}

(3.60)

= W'i, the minimiza-

(3.61)

Substituting the plant equation (3.60) into Eq. (3.61) and momentarily

dropping the time indices

J J RN |
v, = un(lll;;iIZ)E{iZO jzoxiep {I:’Oéqulxj, + 2u'y'W §0¢.xi
+ Zy'r‘woOi£0¢ixi + 2u'w'woorw + g'[w'w00¢+B]u
J-1 J | J-1
.+ wfr'woorw + 2 Eo izox ¢ Wo J+1x + 2Jzou Uk W,
. f Zsiow'#'wotémlxj}

X
0,5-1";

(3.62)
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As in the development of Eqs. (3.24) and (3.25) for V,, the third, fourth

and ninth terms vanish. Because the terms X, =" x(N-i-2), 1 = 0,

occur at or before N-2, they do not depend on u(N-2). Thgs the minimiza-

oo 3 J}

tion of (3.62) depends oﬂly on the second, fifth and eighth terms.
Utilizing the properties of conditional expectatibn as in equa-
tioés (3.23) through (3.26), Eq. (3.625 becomes
| J J ‘ J

Vo, = min B{E[ T T x!¢W d.x. + 20"'P'Wyq L ¢:X
2 u(-2)  4=0 j=n L1700737] ¥ 00, 2

T |' ] -1 Tt
+ u'y W00w+B] u+wr WOOPW
J-1 J ' J-1
+23zI Ix} ¢ + 2 % u'y'w x, |z%(N-2),x%(0) ]}
§=0 1=0 i%0, 34153 3=0 0,j+1"] ’

(3.63)
Now Eq. (3.63) is minimized if the inner éonditional expectation
E{-lz*(N-Z),i*(O)} is minimized with respect to u(N-2). Since
xifz x(N~i—2)}theﬁ ] is unéffected by the minimizagion. .Thus the first
énd fifth terms of.Eq‘.= (3.63) are unimporfant. Similarly the fourth
term is unaffected by the choice. of u(n—2).' By setting the partial der-
ivative of the inner expectation (less the first, fourth and fifth terms)

" with respect to u{N-2) to zero

J ' J—1'

8V, E{u'w z ¢ x; + [y ¥ 1,)+B]u + ' AKX 2% X%
aucN_%) 00 O i 0 0 1.+l 1 ’
(3.64)
By solving for u, this becomes
: ‘ 1 J J-1
- = =ft! - ]
‘ u(N-2) = -[= woonyﬁs] P [wo Lg%, + I lo i+1%4) - (3.65)

i=0 i=0

s A

——
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Define Si(N—Q).E —{Noo¢i + “o,r+1] i=0, «c. , J (3f66)
and recall from Eq.. (3.59) that EQJ.E 0if L or j >J
. J * . ,
u(N-2) = IS, (N-2)R(N-i~2|N-2) ’
i=0 *
V2 may now be evaluated by substituting Eq. (3.60) and Eq. (3.65) into

(3.57), omitting the third, fourth and ninth terms which have been

shown to vanish.

J-1 J—1 ’ J J
V. = min E{% x'W 3

+ ‘o! W .x
2 u(N-2) i=0 j= fod 1+1:J+1 A Zori100% 5%

J J . :
-2 ¥ ' “ly 1y
2 5 z xi¢i oow[w woow+B] y woo¢jxj !
i=0 j=0 . |
- J-1 J i
=21 I RW w[w W ¢+B] W, ALK, %
1=0 §=0 T 0»i+l 00 007373
J J | ’ i
g 1 1 :
’ + I I RIpW ooV ¥ w00¢+B] w w00¢ x ;
1.-0 j =0 i
J J-1 |
+22 I x[¢iW ?
i=0 3§=0 1 0,J+l 3
3 3 ) | SR
+2 % L xie N IR BT R |
i=0 §=0 00 0,341 j ‘
J-1 J-1 :
+ L orgig . L olpt p+B] 'w R
i=0 j= o+ 0,i+1 "00 0,j+1 j
J J-1 1
-27 816! A oty
iio j§0*1¢1w009fv WooPtBl vy %,

e

- J-1 J-1 : | -1 :
=21 & W ple'W_v+B)] V'V x|
4=0 j=0 » 0,i+1""" "00 0,j+1" 3
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"
+ w'l woon

+ o (N-1) o (3.67) T

This definition of W expressed by Eq. (3.59) allows all upper limits on
the sums to be J. Combining terms, Eq. (3.67).may be rewritten

J J

vV, = 120 jioE{xi[Wi+l o ¥4 00¢ + ¢, W 0, lxg

+ BIR (=20 [Wqb 0 "Wy 481 M 'Wggt 4

| -1,
“2W6,1+1w[¢'wbow+33 Y ¥00%y

VIO W ob+B] Nt

:I. 00 0,j+1

- \ -1
- 2w0 sV [V Woov-1B] wao,j+1]xj}

+ E{Qi[¢ W

-1 ' -
i 00¢[¢ W 0¢+B] ¢’Woo¢i | | i

+ oyt W, w+B]‘lw'w

%o, 141 0,j+1 | o

‘ 1 -1, ,
+ ¢i Oow[w w00w+B] w'wo,j+1}ﬁj}.

+ EQ' T W W)+ a(N-1) R (3.68)

Substituting %, = X; - ii in Eq. (3.68) and noting that . L

E&'yx} = tr E{yxx') = 0 since the term in parentheses is a scalar
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J' 3
, v '
Vp= B B CEDGIV G san 900ty 050, 4
g 1=0 j-0
-3 -: ' n _l ' ‘
20 3Wo oW [v ' Wo+BI ™9 "W p

. -1
1 - 1] nt )
% QWO. 1+1“’[‘" WOO‘P"‘B] Y W00¢’ i
- ' ' e
1 203¥00% [V Wgo*B] 9 Wy 54
&

- ' ' ] -1
g 2o, 1419 [V Woo¥+B) WV, L
& . : ‘ ' ' o A
. B HNSAUR UL MRS
’ o eyt gl ey
0,i-1 00 0,j+1
: 1 ! t !

+ 2¢iWOOV[1P Woolp'*'B] 1 wO,j-i-l]xj}

K‘\k “ @ {3 ! o —1 '

S t i Tt .
e + ‘:JO,,:L-l-le) woo‘l"*'B] ] WO,J’*‘]-,

' | -1

. ! ] + 1 ~

+ 203 WogV L Wo¥tBl YTy L 1%y
} R + Ef'T Wy W) + a(N-1) ' (3.69)
. ) N R .
b ] , . = ! Tk ] ‘
1 Define, Jy5 = l93Wog * Wyyy ol IV WgoWtBL."IHg 54y * Wogt) 3.70)

Substitution from Eq. (3.65) yields
ooty an1—1
A S$ ¥ "Wy +B]7 ,S'j

] L The second expectation of Eq. (3.69) may be written as

i e

———
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J J ,
E{Z I %x'A.%.} . ' (3.71)
1=0 j=0 * 11 ‘ |
Define M:Lj 3“1+1,5+1 ¢i 00¢j + d)i 0,_']+1 Vs
-1
' -1 '
Wisa 0¥ ¥ woow+B] Vo, 541
M, AL w+B] Yy 005 . . (3.72)
Substitution of Eq. (3.66) into Eq. (3.72) yields
Mig = Y, 50t %M, 50
l ' . .
‘ R B :
By letting a(N-2) = E{Z I %!A .%. +w T W, Pw + a(N-1)
4=0 gm0 1 113 00
J
= I X tr( ) + tr(r W PQ) + o (N-1) (3.74)
1=0 §=0 33
The exbression for V2 may now be written from Eq. (3.69) as
'{J y }
Vv, =E{Z I x!M .x.}+ a(N-2) (3.75)
2 gm0 j=0 L 1373

The results for the two-stage optimization process may now be summarized

with the time indices restored in Table 3.1.




Table 3.1’

Summary of .Optimal Control Algorithm for 2-Stage Sequence
J r

u(N-2) = & Si(N~2)2(N-i—2|N-2) ' (3.76)
i=0

5, (N-2) = =[y" (¥=1,8-2)Wg (N-1)y (N-1,8-2) + B(N-2)]"1

. w'(N-l,N-Z)[WOO(N-1)¢1(N—1,N—2) + Wo’i+i(N—1)]

(3.77)
| ~ .
wij(N-l) = | A(N-1) + Mij(N—l) i=3=0
4 ' Mij(N-l) i, =0, ... 4, J except i=j=0
! 0 ) 4,3>J ‘ (3.78)
N ‘ .
N B |
V,o=E{Z I x'(N-1i-2)M,.(N-2)x(N-3-2)} + a(N-2) (3.79)
2 1=0 3=0 J
Mij(N-Z) = [¢] (8-1,N-2)W  (N-1) + wi+1’0(N—l)][¢j(N-l,N-2)

+f¢(N-1,N~2)Sj(N—2)J + ¢i(N~1;N~2)WO,j+1(N~L)

W g D - | (3.80)

J J '
«(N-2) = trace[ & %, A (N-2)P(N-j-2,N-i-2|N-2)]

i=0 j=0 *J

‘

+ trace[r'(N—l,N—z)woo(N-l)r(N—l,N-é)q(u-z)]
+a@-1) (3.81)

jkj(N-Z) = s;(N—z)[¢'(N—l,N-Z)WOG(N—l)i(N-l,N-Z)'

+ ﬁ(N-z)]"lsj(u~2> e (3.82)

W
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Despite the complex nature of the various equationﬁ/note that

the computation for the two-stage process is quite straight forward.

‘First, the éeedback gain matrices'{si(N-Z), Si(N-l), 1=0,. 000 J} are

determined and they are used in conjunction with the optimal filtered
est}mates'fk(N-i—2|N~2),2(N~i~l|N—l), i=0, ... , J)} respectively, to im-
plement the control signals. Thus thewsepgration principle is again
apparent. ‘Comparison of Eqs.(3.7§) through (3.82) with the results for
the single-~stage case, Eqs. (3.46) through (3.52), thé results are seen
to be identical except for the change in time index. In effect, Egs.
(3.76) through (3.82) reduce direc&ly to Egs. (3.46).through (3.52) by
recognizing that WOO(N) is the only non-zero term of W for the single-

stage case.

‘3.5.3 t-1 Stages

Assume novw that the results of the two-stage case may be gener-
alized to t-1 stages. The eﬁuations characterizing the control as ex-

pressed in Eq. (3.76) through (3.82) then become as in Table 3.2,

3.5.4 ¢t Stages

From the principle of optimality

V. = min E&'N~t+1)A(N~-t+1)x (N-t+1)
u(N-t) .

+ u' (N-t)B(N-t)u(N-t). + V__,} R ‘ (3.90)

Examine V__, from Eq. (3.86) and express it in a slightly different

form so that the minimization becomes more evident.

-
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Table 3.2
Summary of Optimal Control Algorithm for a (t-l)-Stage Sequence
J . ) ‘ '["
u(N-t-1) = & Si(N~t~1)x(N—t-i+1|N~t+1) _ (3.83)
i=0 ‘

Si(N~t+l) = ~[ " (N-t+2, N-t+1) W o (N-t+2)y (N=t+2, N-t+1) + B(N-t+1)] 7}

ow(N—t+2,N-t+1)[wOO(N-t+2)¢i(N~t+2,N—t+1) + Wb,i+1(N"t+2)]

. i t.':, 0, l’ ces J (3.84)
Wy g (N-t42) = r;xij(N—r.Jrz) + A(N-t+2) 1=4=0
<‘Mij(N—t+2) i, =0, ... , J except i=j=0
0 1,323 ' (3.85)

-
| - = o - ~t N~ SRR
Mij(N t+1) [¢i(N t+2,N t+1)w00(w t+2) + Wi+l’0(N t+2) ]

. [¢j (N-t+2 ,N-t+1) + ¢ (N~t+2,N~t+1) Sj (N~-t+1) ]

1 - - ] — -
o (N-tH2 Noth D)W gy (N=042) o Wy g4 (F-£42)
i’j = 0, 1’ eoe g J (3.86)
N J. ’ '
Ve =E{r I x'(N-t-it+1)M, K (N-t+1)x(N-t=j+1) + o(N-t+1) . (3.87)
T > s __ ij * '
i=0 j=0 ‘ .
. J J : .
a(N-t+l) = trace[ I 2;Aij(N—t+l)P(N-t-j+l,N—t—i+l|N»t+l)] + a(N-t+2)
i=0 j=0

+ trace[r‘(N—t+2,N-t+1§w00(N-t+2)r(N—t+2,N—t+1)Q(N~t+1)]

Ay (eH1) = S, (N=t+1) [y ' (N=t+1, N-t+2) W ) (N=t+2) § (N-t+1 N-t+2)
+ B(N—t+1>]“1sj(N-t+1)
1,5 20, 1, veuo , J (3.89)
X = M! .= A .=‘~» Ve,
where Mij. IJi and; Ajl ) Aji and wij le
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3 B L8
2 Vg = min B! (N-t#)M ) x (N-t+) +21x PN-EH)M) L x(N-t-])
j u(N-t) . $=0 0,3+

! - 3-1 J-1 r

: + N-t-=1)M x(N-t~ + o {N-t+1 3.91

120 3§ox ( M L41, §+1 (N-t-3)} + « ) (3.91)
é Since the expectation is over x, w and u, E{Vt_l} = vt-l as expressed in
3 ' Eq. (3.90). Substitution of Eq. (3.91) into Eq. (3.90) yields
& V, = min Bf -t [A + M lx(N-tH) + u' (N-£)Bu(i-t)
, u(N=-t) ) _
$
4 J=1
, 2 0 xR x(N-t)
§ 3=0 » I
A
J=-1 J-1
VNt - (N :
+ 120 jiox (N-t i>M¢+1 +1x(‘q N} + a(g t+l)‘ (3.92)

Once again, using the properties of conditional expectation, Eq. (3.92)

becomes

oersncy SR cover = |

Vt = min E{f x'(N~t+1) [A+M 0]x(N—L+l) + u' (N-t)Bu(N~t)

u(N-t)
- J-1 . J=1 J-1
~l IN_

+ zjﬁox (N.t+1)M0’j+lxj + x szi 1+1 ,+1%4 (2" *(N-t) ,
: x%(0) } + a(N-t+1)
ti _ where X, = x(N-t-i). Expansion of the inner expectation and substitution
1 of Eq. (3.14) and (3.85) in Eq. (3.93) yields
. Wij =:}}I .'+ A i=3=0
 § M 4,5 =0, ve. , J (except L =3 = 0)
.o 0 elsevhere = (3.94)
¥ \ .

el %
-~
N

Bk
-

£S
49,8
&
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. J J | J
V. = min E{Z 62 WootaXs = 2uty'W T ¢.x
t uE) 30 jao *172°00% 473 00, o L%
J .
+ 2w‘r‘w0 izo¢jx + 2u'w~w00rw + u' [y ' WyoutBIn
J-1 J J-1
+ w'r W, .JTW+ 2% ‘o1v X, +2FL u'y'wW x
00’ 4=0 i =0 *1%1%0, 34174 4=0 0,3+173
\”'1 ’
+ 27wy z%(N-t) ,%%(0)} + o(N-t+1) (3.95)

420 0,3+1%3

As' shown l;)' Eqs. (3.24) and (3.25), the third, fourth, and ninth terms

vanish and o (N-t+1) does not depend on u(N-t). The time iitdices are

Xy = x (N-t-1i) ¢i = ¢i(N~t+1,N—t)
= u(N-t) P = P(N-t+1,N~t)
v = w(N~-t) | . wij = Wij(N—t+l)
B = B(N-t-1)

Observe that: the first and sixth terms are. unaffe.cted by the choice of

u(N-t) and minimize Eq, (3.95) with respect to u(N-t)

a‘?&,—t) :_\0 = [2&!}'WOO gocb X+ Zlb'igow 0,3+1%] z%,%%(0))
\ + 2[y‘w ooV +Blu o (3.96)
By. solving for u and restoring the time ‘indices
J .
u(N~-t) = ifos (w-t)x(N-t-mln-c) (3.97)

5, (N-t) = ~[¢'(N-t+1,N~c)woo(N~t+1)¢(N—c+1,N~c) + B(N-£)]7}

. w'(N-t+1)[WOOZN~C+1)¢1(N-t+l,N—t)

+ W

0, i+l(N_t+l)] : (3.98)



Now V must be evaluated from Eq. (3.91).

V = E{x‘(N-t:+1)W x(N-t;+1) + u (Nat:)B(N--L)u(N'-t)

J-1 . '
. Y UN-— X
4 Zjiox (N t:+1)wo. 41

P

x(N~-t-31)

J-1 J-1

+ 120 jiox'(N-tui)wt+1’j+lx(NTt~j) + a(N-t+1)} (3.99)

Substitution of the system equation (3.14) inta Eq. (3.99) as well as the
expression (3.97) for u(N-t) yields

J J ' J J

V. = E{ & ¢ x 4+ 2 z x!

'

J J
2

+ Z

-1
R1S W'W y+B] S %

h|
o+ W'T Wy TW

J-1 J - J-1 J
+2f % x! w x, +2 5 L&'SWW’
20y Zotitalo ga®y T2 B ESG, 0s

CJ-1 J-1

+ I Xx
= 120 §=0 itl,3+17 3

x.} + a(N-t+1) ° (3.100)

. Once again, since Wi = 0 for i or j > J, the upper limit on the sums
3

nay be J for each sum without changing the expression (3.100). Therefore, .

Eq. (3.100) may be rewritten, letting ﬁi =X; - ii and noting that

E{ilx:"} = 0 for all i, j.
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I
] ] L ! * 1 ]
Ve = E{iﬁo jioxi ¢3Vogty + 2859 Wogdy * S3l¥ WoutBIS,
] 1., 1 N
os¥o,500 T8V VG g Y Va5 ¥y o
3 J -
%! S![yp'W_y+B] 75,
+~i§0 jioxl S{ 1YW VB TS, %,)
1 tnt
+ E{w'r Wbon‘
+ o (N-t+1) (3.101)
_ where the -time indices are
Xy = x(N=t-1) ¢y = ¢35 (N=t+l,N-t)
5y = S(N-t) ¥ = P (N=t+l,N-t)
-wij = wij (N-t+1) [ = T(N~-t+1,N-t)
v = w(N-t)
e =at ! 21—l
Define *Jij .,Si[w W00w+B] Sj (3.102)

= ' ", '
Moy Z03Mo0 + Wigg ol[05 + U830+ ¢gWg 54 + Wy q4q  (3.103)

J J .
- = L] * !
u(N‘t) = trace iio'jiblﬁj Pij +Tr WOOPQ] (3.104)

. | © 4 a(N-t+1)

then Eq. (3.100) becomes

J J

V. =E{I % x"M,.x.} + a(N-t) ' (3.105)
t i=0 j=0 * *.J '

But this is the same result as Eq. (3.86) with the time index changed.
It remains to be demonstrated.that, in fact, the u(N-t) expressed

by Eqs: (3.94), (3.96) and (3.102)kminimizes the performance measure
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given by Eq. (3.90). ﬁecall from differential calculus that the van-
ishing of the gradient with respect to u, which led in the general case
to Eq. (3.96) is only a necessary condition for Vt to be a minimum.

That is, u(N-t) in Eq. (3.97) only guarantees that Vt attains a station-
ary'value. A sufficienﬁ condition tha? Vt attain a minimum is that thg
second gradient of Vt with respect to u(N-t) be positive. This condi-~

tion is determined by examining the gradient of Eq. (3.96).

J J .
V(V,) =2[p'W L $.%. +P' I W 2, + [p"W ,y+Bluj  (3.96)
u(NEt) 'Ooi=0 i1 i=0 O,jfl i o0

The "second gradient" of Eq. (3.96) beconmes

Thus a sufficient condition that ; minimum be obtained is that
the matrix

W'(N—t-l,N—t)woo(N-ﬁ)w(N*t-l,N~t) + B(N-t)
be positive defini£e for all t = 1, 2, J..', N.

The control algorithm and associated performance measure equa-

tions may now be written, letting k = N - t. These results are summar-

" ized in Table 3.3. Block diagrams of the optimal controller and the

optimal control system are shown iﬁ Figures 3.2 and 3.3 respectively.
The control law expressed by Eq. (3.105) requires the optimal
estimate of the delayed states at each stage. The form of the control

law indicates the following theorem:
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Summary of Optimal Control Algorithm for k-~Stage Sequence

ulk) = i:rzosi(k)sa(k—:tlk)
S, (k) = =[y" (KL, k)W (k+1)Y (bl k) + Bk)) ™
-w'(k+l,k)[Woo(k+l)¢i(k+l,k)'+ WO,i+l(k+1)]
‘ 1=0,1, ... ,J

.fmij(k+1) + A(k+1) " 1=4=0

0 1,3>J .

3

+ ¢i(k+l,k)wo’j+l(k+l) + W (kt+1)

it1,5+1
1, =0, 1, ... , J

J J
Vo =E{r I x"(k-i)M,  (kK)x(c-1)} + a(k)
N " 0 520 1]
3 3
a(k) = trace{ & Z,Ai.(k)P(k-j,k-i[k)} + o (k+1)
. . * i::o j.—.o J .

+ trace {f' (k+1,k)Wgqo (H1)T (et k) Q(K) }
- ] |' _1
.-gj(k) = 85 (k) [y (k+;,k)w00(k+1>¢(k+1,g) + B(k)] Sj(k)

i,j=0,1, ... , J

4

(3.106)

(3.107)

' M ; Getl) 1,550, ... , J except i=j=0

(3.108)

M, (k) = [¢i(k+1,k)wod(k+l) + Wi+l’0(k%1)][¢j(k+l,k) + w(k+1,k)sj(k)]

(3.109)

(3.110)

(3.111)

(3.112)

for k = N-1, N-2, ... , O,.vhere a(n) = 0, WOO(N) = A(N), and wij(N) is

" zero elsewhere. The r X r .matrix [w'(k+l,k)woo(k+l)¢(k+;,k) + B(k)] is

required to be positive definite for all k. The minimum value of the

performance index for (N-k) stages of control is given by Eq. (3.110).

e e S gt o

B e i L

R
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Theorem 3.2 Tﬁe optimal contxol system for the sto- .

chastic linear regulator problem consists of the
optimal linear filter cascaded with the optimal
feedback gain matrix. The parameters for the two
paxts of the control system are determined inde-
pendengly. The performance measure is governed by
Eqdﬁtions (3.109) khrough (3.112) whe;e the boundary

condition is a(N) = 0.

The next section verifies that the gain matrix is the same as ‘
that for the deterministic controller. This confirms the separation
principle as applied to time delay systems.

.

3.6 Discussion of Results

3.6.1 Comparable Results for Deterministic Case

It is interesting to felate the results expressed in Eqs. (3.106)
through (3.112) to the deterministic case where no plant disturbances or - | %
measurement errors -are present. For such a case the noise covariance

matrices, R and Q, are identically zero. The estimates of the states

e

are equal to the stateé themselveé forcing the filtering error covariance
matrix to zero and the éxpeﬁned‘value operation is over a deterministic
quantity, yielding the Quantity itself. The resulting equations (3.106)
through (3.112) are presented in Table 3.4.

the that the computation of the control law expressed by Eqs.'

(3.113) through (3.119) once again verifies the separation principle.
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Table 3.4
Summaﬁy of Optimal Control Algorithm
for Deterministic Time Delay Systems
3 | 4
u(k) = & Si(k)x(k—i) ' (3.113)
i=0
§;(k) = —[9" (kH1, k)W (kL)Y (kt,k) + B(k)]™L
1] . b
) ) (k+1,k)[woo(k+1)¢i(k+1,k_) + wo' i+1(1\4-1)] |
i = 0’ 1, e o J ,(3!114)
f‘
' =M , < ==
Wij(k+l) , tij(k+1) + A(k+1) i=3=0
4 Mij(k+l) 1,j=0, ... , J except i=3j=0
0 elsewﬁere (3.115)
~

My () = [8] (oL, K0 Hgo (td) + W (1+1) )[4 (b1, K) + w(k+1,k)sj(k)]

i+1,0

'
+ ¢i(k+l,k)W0.j+l(k+l) + wi+1,j+l(k+l)

i,j=0, 1, ...’, J - (3.116)

3 3 | - -
v,?_k = iio jzox‘(k—i)Mij(k)x(k-i?' | o (3.117)
aly=0 | \ - (3.118)
vl&j(k) = don't ca&e - (3.119)
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That is, the control law is identical to thag expressed by Eqs. (3.1065
through (3.108) except that xX(k-i|k) is replaced by x(k-1). Thus the
controller in the stochastic éase treats the optimal est%pate of the
states as 1f they were the actual values of the states.

The value of the performance index is not the same, however. It

is,.as expected, less for the deterministic case than the stochastic case.

3.6.2 Comparable Results for Stochastic No-Delay Case’

1f no delays are present in the'system;'the résults‘expressed by
Eqs. (3.106) through (3.112) should reduce to the standard ﬁptimal con-
trol law. The transformation may be made by letting J = 0 and writing
the resulting equations which are presented in Table 3.5. These gesglts

are, in fact, identical to the standard optimal control results such as

‘those obtained by Meditch? Chapter 9.

3.7 Computational Aspects gg_optimal Controller

The recursive nature of the coﬁputations required to generate
the optimal control sequencé and to evaluate the-pgrformance index is
evident from Eqs. (3.106) through (3;112).

1. Given'{wij(kﬂ), 1,j=0,1,...,J} compute'{si(k), 1=0,1,...,J}
from Eq. (3.107). .

2. Substitute the ;alues of'{Si(k), i=0,1,...,J} and woo(k+1)
into Eq. (3.112) to obtain'.'{Aij(k), a},j=o,1,...,J}. | .

3. Substicute"{/\ij(k), 'i,j=0,1,...,J}, woo(k+1), a(k+1), and
‘the error covariance matrix {P(k-j,k—ilk), i,j=0,1,...,J} into Eq. (3.111)

~to obtain a(k).
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Table 3.5
Summary of Optimal Control Algorithm for Stochastic Systems
) With No Time Delay
u(k) = S,(k)2(k[k) ' ' (3.120)
So(k) = =[¥' (kL k)W (kL)Y (kb k) + B(k)]~
'-w'(k+1,k)w00(k+1)¢o(k+1;k) B - (3.121)
Woo (kH1) = M (kHl) + A(k+l) , : T (3.122)
Moo (k) = &g Ukl k)Wgo (k) [ (kt1,k) + P(kt1,k) S, (k)] (3.123)
Vg = .E{x'(k)l-loo(k)x(k)} + a(k) | (3.124)
a(k) = a(k+l) + trace {I' (k+l,k)Wy, CktL)T {kt1,k)QK)}
+ tracé{Ago (K)B(k[k)) : (3.125)

Ao () = ST Y (L, 1)y (HLY (e, k) + B(k)] s, (k) ,

= -¢6(k+1,k)woo(k+1)w(k+1,k)sock)' | : (3.124)
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4.'{Si(k). 120,1,...,J) aud'{wu(kﬂ)_, 1,j=0,1,..,,J} are sub~

stituted into Eq. (3.110) to qbtainf{Mij(k), 1,3=0,%,...,J}.
5. Substitute'{bi‘ij k), i,jno.,.e.,...,J} into Eq. (3,110) to obtain
N-k’
’ 6. Subscitute’{uij(k) y 1,3=0,1,...,J} and A(k) into Eq. (3:108)
to determine’ {wij k), 1,3=0,1,...,J}.

The'cycle is then repeated, letting k become k-1 in the above
procedure. Note that although'{Mij(k),,i,j=0,1,...,J} must be computed
at each stage, VN-k is not necessarily of interest and, therefore, need
only be computed at k = 0 to obtain the minimum value of the performance
measure for all N stages of control., The values of o(k) and
'jﬁij(k), i,j=0,1,...,J} must be computed at gach stage, however, beéause
of their inter-relationship and the depenhence of Vy_i on a(k). Note
also that the error covariance matrix from the optimal filter must be
known at eaca stage. If dnly the optimal poétrol isrrequired then steps
2, 3 and 5 may be omitted. |

The optimal control is physically realizable since it is simply
a linear transformation on the estimates of the delayed states. The con-
’/troller in Fig. 3.2 is a set of time varying gain matrices
s, k), 1=0,1,...,J}. |

Since the computations proceed backward in time, it is clear
that the time history éf‘{Si(k), i=0,1,...,J} must be deter&ined prior
to sysﬁem operation. That is, it must be precomputéd and stored for

later use.



CHAPTER. 1V

¥

* EXPANDED STATE REPRESENTATION AND DUALITY'

4.1 Introduction

In this chapter an alternate répresgntation of discrete-time
systems with time delay is formulated. The system equations (2.6) rand
(2.16) are imbedded in an "expanded state" form. This representation,
dlsmu;sed‘in detail in Section 4.2, expands the state dimension of the
system in direct proportion to the magnitude of the Qime delay. Once
the time delay system is expressed in the expanded state form the solu-

2,5 since this form does not express explicitly .

‘tions are well-known
the time delay dependence. Unfortunately, since the resulting system
dimension is directly proportional to the time delay magnitude, the re-
sulting computation required for a solution is often considered too ex-
tensive for practicgl'application; As a conseéuance the expandedhitate
form does not receive much attention in the literature.
The major results of this chapter are obtained using the expanded

> state formulation; One consequence of casting the timé delay problem in
the expanded séate form is?;hat the fesdlting matrices haveva large num-~
be¥ of null elements. Thus, rather than work with expanded matrices (as
previous authors have done), it may be more efficient to partition the
matrices. The solutions to theée submatrix equations are obtained in

Sections 4.3 and 4.4. The results are identical to those of Chapters 2

and 3. In Chapter 5 the computational savings are demonstrated, by

84




85

comparing the partitiohed results to those obtained by working with the
entire matrices.
In Section 4.5 the expanded state form is used to,demonstiate

the duality of estimation and control for time delay systems. Duality

follows as a natural consequence of being able to express a time delay

ra .

system as an expanded system with no time delays. It is also shown, how-
ever, that duality can not be extended to the partitioned solutions to

»

the astimation and control problems.

4.2 Expanded State Representation of Systems with Time Delay

The system equations of Chapters 2 and 3 are

J * ~
x(ktl) = I ¢, (ktl,k)x(k-1) + ¢ (ktl,k)u(k) + I (k+l,k)w(k) (4.1)
1=0 .
z(k+l) = H(k+1)x(k+1l) + v(k+1l) ' (4.2)

These equations may be also written as an expanded state representation
XL = § (L K)N(K) + ROk IOUCK) + ¥, k)W (k) (4.3)
Z(ktl) = N(kH1)X(kHL) + V(k+1) : (4.4)

where the following definitions apply
¥(k+l) = x(k+l) |
x(k)

' x(k=J+1) - (4.5)

CUk) = u(k) 4 (4.6)
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Hoetl) = mGkH) 0 ... 0,

$acHL ) = [6,(H,Kk) ) (kHL,K)
| I 0

0 I O
o 0 I
0 LN BN

P+l k) = T(k+l,k)]

' 0

0

n
v

(kt+l) = v(k+1)

V) = w(k) .

., @9 e 0
o0 0
I O 0

o I 0

cer ¢J(k+1,k)"

. From the previous properties of the smaller matrices

e @0 <0 N - g2 N

= n(J+1l) vector (state)

=T veétor (control)

= p vector (distprbance)

= m(J+1l) vector (measurement)

= @ vector (meésurement error)

= 5(J+1) x n(J+1) "stéte transition matrix
= n(J+1} x p disturbance tgansitigm matrix

86

(4.7)
(4.8)

(4.9)

(4.10)
(4.11)
(4.12)
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$ = n(J+l) x r{J+1) control transition matrix

N )
H = m(J+1l) x n(J+l) measurement matrix

?(oy = zero'mean gaussian random n(J+l) vector wiéh positive
semidefinite covariance matrix P(O)

:ﬁ;(k), k=0,1,...} = zero mean gaussian white sequence which is
independent of ¥(0) and has a positive semidefinite p x p
covariance matrix Q(k), k=0,1,...

'fy(kﬁl),k=0,l,...} = zero mean éaussian white sequence which is
independent of Q(O) and'ﬁs(k), k=0,1,...} and has a posi;
tive semidefinite m x m ;ovariance matrix R(k+l), k+0,1,...

!ﬁﬁ(k), k=Q,1,...} = control sequence which is either known or can

be specified as desired

4.3 Optimal Estimation Solution of Expanded Stdte Representation

With the system described by Egs. (4.5)'and (4.4) having the
properties expresséd in the precedin;~section, the solution is well-
known (Meditch 5 Chapter 4) for this is the standard estimation
problem. Once agzain, of éourse; the system nust be ﬁogservable" as

'deééribed in Appendix A or the estimation problem cannot be solved.
Under the assumption of obgervability, then, the following fheorems
from Meditch ° . (pp; 174-177 and p. 356) are stated for a systém

€

described by Eqs. (4.3) and (4.4).

v
TR e
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Theorem 4.1 If the optimal filtered estimate m(k[k)
and the covariance matrix. P(klk) of the corresponding
filtering error %(klk) = ¥ (k) - &(klk) are known for
some k = 0, 1, ... , then

a. The single~stage optimal predicted esti-
mate for all admissible loss functions is given by
the expression

am«i

1
AR

brmarads

—
Loimarmr b B

¥ |x) = Foerr, 0% k|0 + ¥ et k)v(k) (4.13)

b. The stochastic process Ek(k+1|k),
k = 0,.1, ...} defined by the single-stage prediction
error X (k+l|k) = ¥(k+l) - ?(k+1|k) is a zero mean !
Gauss-Markov sequence whose covariance matrix is
given by the relation

e
ek ¥

?(k&llk) $(k+1 k)?(k[k)$'(k+1 k)
' + i‘(k+1,k)ﬁ(k)'1"“ (k+1,k) (4.14)

=2

e ‘-*.v’t

Theorem 4.2
a. The optimal filtered estimate Q(k+1|k+l)
is given by the recursive relatlon

ﬁ(k+1|k+1) (1|l - Ret1) [ (etL) - ﬁ(k+1)h(k+1[k)]
(4.15)
for k = 0, 1, ... , where $(0]0) = 0

| © ®(k+1) is an n(J+l) x m matrix which is
r,_‘spec1£1ed by the set of relations

. Rt1) = %(k+3|k)ﬁ'(k+1)[ﬁ(k+1>%(k+1[k)ﬁ'(k+1) + %(k+1>]

- o © (4.16)

% Lo ?(k+1[k) T (k+1, k)%(k[k)¢'(k+1 k) + ?(k+1 k)&(k)%'(k+l k)
4.17)

?(k+1jk+1) = [1-k<k+1)ﬁ(k+1>]%(k+1|k) (4.18)

e m:»‘:i

for k = 0, 1, ... where I 1s the n(J+1l) x n(J+1) identity
matrix and %(O[O) - P(0) is the initial condition for
T Eq. (4.17).

c. The stochastic process ' '&(k-!‘llk-l-yl) s k=“0,1: «eo}
which is defined by the filtering error relation

RO kL) = Y(HD) - RQr1|kHL) (4.19)

whose covariance matrix is given by Eq. (4.18).

it

E% - - k=0,1, ... , is a zero mean Gauss-Markov sequence
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;{ Fox ‘these theorems, the following definitfons hold

» . . s . '

Blt|) = BB GHL| R' (k1)) . : (4.20)

where P(k*lrk) is n(J+1) x n(J+l) ’ o
ROt1|K) = x(kt1[k)
x(k|k)
* R (k=J+1| k)| (4.21)

where %(k+l|k) is n(J+l) x 1

L

The use of Eq. (4.20) allows ?(k+1lk) to be e#pressed in terms of its

e

.

submatrices as
BGA1]K) = [Pl kt1[K) P(RHLK[K) . . . PQkbl,k-341|K) ]

P(k,k+1]k) P(k,k|k)

P(k-J+1,k+1|k) B(k~J+1,k|Kk)...P(k=J+1,k-J+1]|k)

Eg | ‘ | -(4.?2)

Similarly,
: | Bfo) = [ROok]) ROGk-1R) .l BOGKIR) ]
‘ P(k-1,k|k) P(k-1,k-1|k) :
bP(k—J:ka) C e e P(k=J,k=J|k)| (4.23)

4.3.1 Partitioned Representation of the Expanded State Solution to
the Estimation Problem

The solution to the optimal estimation problem for systems with

~ time delay is expressed by Eqs. (4.13) througn (4.18). As mentioned

earlier, howéver, the dimensions of the matrices involved in this expanded

HCE ¥ M - :
’ . ) . . . . PR - -
I . N - - - =
. PO .
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state solution may render the computation prohibiéive. Thé appearance

of a large number of null elements in the defining équations fép khese
_matrices [Eqs. (4.5) - (4.12), (4.22), (4.23)] indicaée that partitioned

solutions m;y be advantageous. Thiﬁ»is, in fact, the cas; as Egs. (4.13)‘

through (4.18) are examined below in partitioned form. |

Eq. (4.13) may be expressed in partitioned form as

- - - . .
% (et | 1) bg 8y« - o b5 RG&lw V| ule)
% klx) B E R R § B Y | |5 0
R = 0 I . . .
% (kt1-J | k)| 0 . . 01 0] #&k-J|K) 0| (4.24)
The expansion of Eq. (4.24) in partitioned form yields
X J
X(kt1[k) = 1 ¢ (el k)R(k-1]k) + p (L, k)u(k) (4.25)
i=0 , :
which is identical to Eq. (2.66) obtained in Chapter 2.
| Eq. (4.15) may be expressed in partitioned form as
- ) - - * f
£ (k1| k+1) 2(k+1 | k) Ky [z]-HO ... O, 2(k+l|k)
2 (k|k+1) = 2(k|k) - K | ' 2 (k| k)
£ (k+1-J | k+1 )| R(kt1-d | k)] K| R (k+1-J| k)|

—

= £(k+l|k) - Ko(k+1)[z(k+1) ~ H(k+1)R(k+1|k)]

R#1-I[K) - Ry (et1) [z (k1) = HH)R (k-] ]

(4.26)
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The partitioned result of Eq. (4.26) may be expressed as
R(kH1-L|kH) = R(kHL-2]K) = K, (kD) [2 (k1) = H(kHL)R (kH1]K)]
: | s (4.27)
which is identical to Eq. (3.90) obtained in Chapter 2.
Eq. (4.16) may be expressed in partitioned form
o el 17 11T mpl T ] 1
Kq (k+1) Phye + - By HO...0 [®r, ...k Ju]+ R
l_(l(k+1) = . . 0 . .10
] ’ 1 . 1 1 »
KJ(k+1) h-PJO !:l .PJJ_ 0-‘ LL "PJO . L] L] PJJ- 0- d
= P%OH‘ [HP%}OH' + r)L
1 g '
PlOH
1‘. ' ) v ¥ . ,
PyoH" | (4.28)
where Pij = E &H-1[K)X" (kbl=f [K)} = B fetl-1, k13 k)
= H(k+l) | ' : y
R = R(k+1)

Restbring the time indices to Eq. (4.28) the partitioned gains become
K, (k1) = P(ktl-i,ktl |K)H' (k+1) [H(K+L) P (kHl, k+1 | K)H" (ktl)

+ RG] T (4.29)

which is identical to Eq. (2.100) obtained in Chapter 2.

To ease notation below, the following time indices are used
P *
i,j

1 C oy
Py g = P(k-l,kejlk)

]

P(k+1-i,k+1-3]k)
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Examination of the partitioned form of Eq. (4.29) yields

3 3 37
POO POl s o POJ
o3 '

PlO .
3 3
Fy0. * ¢ ¢ P3a
r-J" J 1
= | L I ¢;B .4}

i=0 j=0 =~ 113
J
1 '
[ ] z P .d’ e s e
i=0 0;1 i
J .
: 1 i
& P 7_ 0¢! &c‘-.
_i=0 J=-1,ivi "

| from Eq. (4.30)

P (k+1,k+1]k)

" p(k-j,k+1]k)

- | " 1 -
¢o ¢-l ¢J EOO [ ] . [ ] POJ
= I 0 O . . 0 .
0 . .
0...0 1 0] [P} P
+ r{ qr'o.. ..o,
b 1)
0 (]
J ! 1 o,J 1‘ _—
%oPrg e e o LGP rqr'
g=0 L+ %50 =0 + LsJ-1
. + 0
1 1°
Pl.’l [ ] L] . [ ] Pl’J—l L[]
1 1 ,

J - J -
LI ¢y(ktl
1=0 j=0

KB (K, k|k)o

j(k+1,k)

+ [P(k+1,k)Q(k)T" (ktl,k)

J
D
i=0

P' (k-j,k+1]k)

do L

i 0
CANY
0 e 0 0
0
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OHO-* =« « O

0

(4.30)

- Restoring the time indices, the following submatrix felationships result

(4.31)

P(k~j,k-1|k)¢] (k+l,k) 3=0,1,...,J-1 .(4.32)

(4.33)
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o)

Expressions (4.31) and (4.32) correspond to §2.108) and (2,110) respec-

e

tively.

. Equation (4.18) is now examined in terms of, its éubmatrices,

o *‘-:3
.

dropping the time indices

g ol 17 T (e o a3 3 ]
PO’O « o 8 ?O.JK I 0 s = @ 0 Ko }I 0 ---‘0 POO " s PJJ
: : = 0 I : - Kl . ' .
P i .o o P “\ . . : . ¢« o o
{E 23,0 3,9 -_p o1] [k 250 PJ’Jﬂ
pe | <&~ - 3 3 3 -
. = I - Ko}l: e 0 POO P01 e o o o POJ
L S 3
. t . L4 .
%g KH'0I . .
2 L}
[ ] . L] °
[ ] ' [ ] L ]
'
R ol -
. : 3 3' *
. -K.H ' 00 O0T1Il|P .« i 4 s
gg. | oL RHE 00 0TS, SRR
| ‘ T ex H 3 : 4 H 3' : , : . 3 7 '
S| I o XMPog i 1T 7 KoMIFgy: cc - TR KgHEy |
§§ 3 3, .3 _ 3 - Y03 _ o3
PlO__ -E(-l}ﬂ’gg-i‘P];% : K]-HPOI: ‘ « o e e | !;PlJ | KJ.HPOJ

e =

o oo o0 @ ww o o= ---—---‘-—- - - s e ..—.-_--l- Dl e ol
%]

3 30,3 K R N 3 '
-PJO.‘ KjHPoo t Pyy = KjHPG 4« o+« (Pgy KJHPOJJ (§.34)

"Restoring the time indices to Eq. (4.26).the submatrices of P(klk) may

be expressed as

P(k-i+l,krj+}|k+l) = P(k#l-i,k+l-j[k) = 'K (L) H(k+1)P(k#1,k+1-3 | k)

%

(4.35)

L

s, \

m
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vhich is identical to Lhe resuit [Eq. (2.1111] obtained earlier using
propexties of conditional expectation.

In éummary, then, the results of Chapter 2 expressed by Egs.
(2.86), (2.61), (2.108), (2.109), (2.110), and (2.111) have been obtained
in this section as shown by expressions (4.25), (4.27), (4.29), (4.31),

(4.32) and (4.35) respectively.

4.4 Submatrix Representation of Expanded State Solution to Optimal
| Control Precblem '

, The optimal control solutiog is well-known (Meditch S s Chap~
ter 9) for the system described by Eqs. (4.3) -~ (4.12), for this is the
formulation of the standard discrete-time dptimal controliproblem. Once
again, of course, the systeﬁ must be “"controllable" as described in
Appendix A or the control problem cannot be solved. The familiar optimal
control solution is stated bélow in Theorem 4.3. This is followed by
examining the submatrices of the solution equations. These submatrix
results are identical to the optimal control solution obtgined in Chép-
ter 3.

If the system is contfollabi; the following results from Meditch,
p. 356, can be stated. Recali that the stochastic linear regulator
problem is that df,minimizing the‘ferformance Index expressed aé

N T .
P.I. = ifllk'ci)ﬁci)x(i) + u' (1«1)B(i-1)u(i-1)] (4.36)

where X and U are defined by Eqs. (4.5), (4.6) and

Ay = [ac) o ... o0
0 e . .
" oI n@D) x n(a+1) O (4.37)

0 - .

-
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Bo) = B, ‘ 4.38)
Theorem 4.3. For a system described by Eqs. (4.3)
and (4.4) the optimal control system for the stochas-
tic linear regulator consists of the optimal linear
filter cascaded with the optimal feedback gain matrix
of the deterministic linear regulator. The parameters
for the two parts of the control system are determined
separately. The performance measure for the complete
control system is governed by
Yy x = B %" (k)M(k)x(k)} o+ a(k) and (4.39)
alk) = alk+l) + tr[l"(kl-l k)'\J(k+1)'f‘(k+l k)a(k)]
- tr [3 (k+1 ,k)'\'?(k_-i-l)w (k1K) S () B (k| k) ) (4.40)
where the boundary condition is o(N) = 0 ’
Theorem 4.4 The optimal control law for the stochastic
linear regulator problem is the linear feedback control law
Uk) = SR (k|K) : (4.41)
where the r x n(J+l) feedback control matrix g(k) is
determined recursively from the set of relations
W(kt1) = MkH1) -+ K(k+l) ) . (4.42)
¥k) = [T (k41, k)w<k+1)'¢f(k-!-1 k) + Bex+1))7?
-q,'(k+1 k)w(k+l)q>(k+l k) (4. 43).
M(k) ] é'(k+l k)%(k+l)¢(k+l k) + ¢'(k+l k)W(k+1)w(k+1 k)S(k)
T (hadb)

The procadure is now to express Eqs. (4.39) through (4.44) in

terms of their submatrices to obtain the results of Chapter 3. First

the following definitions are made to enable a relgtionsﬁip to be estab-

- lished between the results of Chapter 3 and those obtained below. In

(
the performance measure Eq. (4. 39), My (k) is associated with the state

vector x (k-1) and x(k-j) of the form

o
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x* (ke (k)= (kn3) ' | (4.45)
sa that the followling definition holds
Moy [k Lo )
x( ) Moo( ) ¢« o 8 e T OJ ) ’,.r
| Myg(k) o .. MJJ(kZ (4.46)

Similarly, in Eq. (4.40), w(k+l) may be expressed in partitioned form as

— L1 ]
Hxtl) = Woo(kH1) « « + W (ketl)

&
[ ] [ ]

., .

_W.Jo(k'i'l) o« o WJJ(k:l‘l)‘ (4.47)
where W(k+l) is n(J+1) x n(J+l) and wij(k+l) is n x n.
Finally, the feedback control gains in Eq. (4.41) may be éxpressed in

partitioned form as

§5(k) (4.48)

L g .
where g(k) is r x n(J+l) and Si(k) is r x n. From Eq. (4.41) it can be

] |
’ k) = Lso(k) | s, (k)

e o i

seen that Si(k) ié the gain multiplying the estimated state vector

x(k-i]k). Equation (4.41) may npw be expressed in.partitioned form as

! ' "
u(k) lSo(k)i., ‘ .;SJ(k)| x (k)
x (k-1)
x(ééJ)
J ‘ &
= I Si(k)x(k—i) | (4.49)
i= 0 . . ; .

i

This is identical to the result expressed by Eq. (3.103)%

P R e
S
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Eq. (4.42) may be expressed in partitioned form, using definiticms

4.46), C4.47) and . (4.37). »
To ey 1T T T y
Woo(}:-!-l) e e oa e WOJ(k+1) Moo(k+1) ‘e MOJ(ki‘l) %(k-!l) 0...0
. . = ] . . + | :
L.WJO(k:H') . = WJJ(k-'.l).J —-lliJO(k+1) e o }tJJ(k:‘_l)_J L_O . . s o_l
The partitioned equivalent of this equation is
4 ) .
Wij(k$l) = :Mij(k*l) + A(k+l) ‘ i=3=0
}}%J(k*l) 1,3=0,1,...,J except i=j=0
| |0 1,4>3 ' (4.50)

which is identical to the result -expressed by Eq. (3.108).
To examine Eq. (4.43) first express the inverse of Eq. (4.43) in

partitioned form by dropping the time indices.

‘ i - q o "
T T R -1
[y 'wi+B) lw'o...gjwoo...ww yl+B
| . . 0
L-WJO L] [ ] L] WJJ‘ 0d
- ‘ Jd
= [¥'WyuB) _ (4.51)

"Therefore Eq. (4.43) may be written

. . o, = '] -l 1 ’ r | T-' . T
lSO s & SJl [w wooip"*'B] c.w 0 « e e oj ‘qoo s 2 e WOJ 4)0 ¢1 ¢ e @ ¢J
. . I0 . 0

. Jlo1 :

_WJO WJJ,L.O ° . . 0 I o.i
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When the time indices are restored to Eg. (4.52) the following results

are obtained.

85 (k) = [y Gl k)W (etL)y (k1K) + B(ktd)] 7L

oy * (kt1,k) [Wgo (kt1)g ; (it k) + wo,ri_*_l(k-’i-],)]

(4.53)

Recall that W = 0 from Eq. (4.50). Thus Eq. (4.53) is identical to
0,J:+1

Eq. (3.i07). Eq. (4.44) may be expresséd in partitioned form as

_ “ar, — -y
1400 L] LJ -* OJ 1’0 I 0 . e * ? woo L ] L] [ ] WOJ
4 . « Ipy O . 0 . .
gi . e ’ L] H 1 - . . .
. . “ e . I . .
::‘x ° . . 3 L]
‘3 _L.MJO ] - . MJJ.. i):,r 0 . o ° ] 0.‘ L‘JJO [y —- . WJJ-
r ¢« o o -1 T e l ’
7 R B L I ]
4 I10...0 0 | '
0 . .
A?:i 4 '.'. .
R 0..010 e
=-$'W ;W &'W AW ¢V W -T ; +S ¢'+ws~ﬂ
000 710 o0o01L 11 ° * * V00,3 1,J 0 o °* °° J 7J
¢iWOO+W20 I O . 0
. ‘ 0 .
e . A . . .
§¢J-1WOO+WJO J_1W0J+WjJ . K
Lty "0y .- ‘ '
L?JEOO e e ¢JW1 i 0. I O _
' 4.54)
;g When Eq. (4.54) is completély expanded and the time indices restored,
the partitioned result for Hij(k+1) becomes
Mij(k+1) = [@i(kfl,k)woo(k$l} + wi+l’0(k+1)][¢j(g+1,k)
- ‘ . . . 1 '
+ w(k+l,k)sj(k)] + ¢i(k+1,k)wo’j+l(k+l)
+ W 1(k{-l) (4.55)

itl1,j+

N
i
paa .
1
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¥

which. is identical to the result of Eq. (3.109). It should be noted,

of course, that W

ij.
* Next expand Eq. (4.39) in partitional form using the following

=0 4f £ or § > J. .

definition
' xif-:x(k—i) |
' . ’ 7] T
Vg ® E{lxo e %P Mg = - MOJ‘ Xy | } ,+ a (k)
My -+ - - Myg] %y
o J 3 . ,
= E{ L ix xiMijxk} + alk) | : (4.56)
i=0 j=0 .

When the time indices are restored to Eq. (4.56) it becomes

Vyr = E{ & 2 x'"(k-i)M, . (K)x(k-3)} + a(k) ' (4.57)

N-k . ij .

i=0 j=0

which is identical to the result obtained in Eq. (3.110) assuming a(k)
‘Is the same.

Finally, examine o (k) o§ Eq. (4.40) dropping time indices

ak) = (PTG - tr(§'WEE) + a(k+l) | ‘ (4.58)

Examine the first.term of Eq. (4.58) in partitioned form

. . p— -— -1 . . ‘ '
lr' 0 L} ¢ o ol WOO LI ) WOJ r [Q]"‘ ’I"WOOPQ . (4059)

L] . . 0

_W.JO « s 0 WJJ-‘ 0-4

Examine the second term of Eq. (4.58) in partitioned form ﬁ




. L o
; . o e .
0 N * v -
v g . » @
- . - . »
2. g N ¥ wooL
N 3 ¥ &
L e g . s
S e ' ot f; *
: BN A
. * v
, . .
. .
A € T 2 IS %
\
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B ¥ T B \ T T T i
¢0 I 0 . [} . ? {‘loo 3 . . ‘\OJ ‘Jé l SO . . ) SJ| POO . . . POJ
q)i O I . . . . . .
: : 0 : : : : o :
[ ] L I - . L L) [ ]
] A
~¢J O [ o . . OJ _WJO . 3 [} WJJ- 0- L—PJO. [} . PJJ-
- - - A | J
' . 0 a e e 0 ' S P L ] L ] [ ] S P ;
' : L. - )
T SN
e o 0 : ]
o L4 I .
: L
-¢J 0...0 | dep__
" 1 ) Ly
= [$g¥50 + W, 510 jizosjpjo:. . . EjiosjpjJ
' : L ' ! 1
[o3%g0 + ¥pol¥ |1
L ) i
I“"ono + wmju
¢ 3%00 iy | | _ ‘ (4.60)
Let gij denote the ijth n x n submatrix of Eq. (4.§O).
. J ’
€15 = 1o5Wo0 + Wigq 01V 2 SpPyy : (4.61)
The trace of the totél matrix involves only gii and
J J J : : '
trace I £.,, = trace{ % ¥ [o}W.. + W, 1ys.P..} (4.62)
j=0 i =0 §=0 i"00 i+1,0°""37 317 .

By substituting Eqs. (4.59) and (4}52)_into Eguy(4.58) and restoring the

time indices, Eq. (4.58) becom@gyﬁl'?
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a (k) = a(ktl) + £r{P' (k+l,k)w(k+1)T (k+1,k)Q(k)}
REE B .
- tr-&io j§0[¢i(k+l,k)Wbd(k+l) + wi*l’efk+l)]
. w(k+1;k)8j(k)P(k»j,k-ilk)i, (4.63)

which is identical to.Eq. (3.111).-

In summary, théﬁ, the solution to the optimal control problem is
déterﬁined in this section uéing an alternate system representation,
éamely,.aﬁ;expandedrstate representation. The partitioned results are
identical to thosé obtained using dynamic programming in Chapter 3 and

the correspondence is:

This section ‘ Chapter 3
Eq. (4.49) Eq. (3.106)
Eq. (4.50) ’ . Eq. (3.108)
Eq.. (4.53) A Eq. (3.107)
éq. (4.55) . Eq. (3.109)
Eq. (4.57) ~ "Eq. (3.110)
Eq. (4.63) Eq. (3.111)

4.5 Duality of Estimation and Control in Systems with Time Delay

For discrete-time linear'syS£eﬁs'hith no time delay, Kalman
observed!that a "dual" relationship exists between the solution to Lhe
éptimal estimation prpbiem’and the sdlution to the optimal control prob—-
lem. His results aré presénted in the paragraphs below. Section 4.2
demonstrates that time delay systems may be expressed equivalenély in

an expanded state form. Kalman‘s results apply directly to time delay

-
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systems in this form and the optimal estimat%pn and control solutions to
such. systems are duals.

Kalqan's notation is £;tained for this discussion since the vari-
ables in the notation of this paper are not duals, whereas those of Kalman
are. The relationship betweeanalman's notation and that of this paper
is élso presented for reference.

‘Since the partitibned solutions to th; estimation and control
problems yielded signifiéant results, tbe question arises as to the

duality of these partitioned solutions. It is demonstrated that the

principle of duality does not extend to the partitioned solutions of the

optimal estimation and control problems.

-~

4.5.1 Kalman's Dual Transformation

Consider the estimation and control problems presented below

Optimal Estimation Problem. Consider the dynamic system described by

Eq. (4.64) and (4.65) o o

~§:(k+1) = '&#(k+1,*,ﬁ<;}fs‘;€iif£f;5 + $(k+1,k)§(k) +"1“(k+1,k)$(k) (4.64)

'é’(k+15 = '}‘I(k+'”'l~(»ﬂ, + V(k+1) ' o (4.65)
- where these equations ﬁa§éja11 the ptoﬁerties descriﬁed in'Section 4.2,
Given the observed values %(0),%(1),...,§(N-1) find an estimate
§£k+llk+l) which minimizes the expected loss

N-1 : A A
Iy = E{kio [X(etr1) - X (ot kA1) ][R (kD) = K(HL[kHD) 1"} (4.66)

Optima1'Contt01 Problem. Consider the dynamic system described by Eqs.

—

- (4.64) and;(4.65) wvhere these equations have all the properties described
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in ¢ ectmpn 42, Giyen any state x(k) determine a sequence
'{”(k) u(k*l), ..,u(L+T—1)} of control vectors which minimizes the per-
formance 1ndex y
k+‘ ’
VI¥Go) u(k)] - E{ 1 X OXWEW + ¥ ci-1>ncm—1>u(i-1>1}
i=k
(4.67)

The recursive relations which express the solutions to these

éroblems are expressed by Kalman as:

Estimation Problem

A(E) = ¢ (L, )P ()M (6) [MCE)PH(e)M' (£) + R(t)] L (4.68)
$*(EHL,t) = ¢(t+l,t) - A% (EIM(t) ' t2to (4.69)
PH(EHL) = ¢*(t+l,£)PH()d " (t+1,t) + Q(t) o (4.70)

Control Problem

6*(t) [w‘(t)Pfct)u(t) + RCE)Y M (t)Pf(t)¢(t+1 t) (4.71)
4>(t+1 t) = ¢(t+1 t) - MAa(t) ct ST (4.72)
’ - P*(t—l) = ¢'(t+l £)b* (t)¢“(t+l t) + Q(t) o (4.73)

where the correspondence between Kalman's notation and that of this

paper is given in Table 4.1.

The principle of duality states that if the form of the solution';

to the optimal estimation problem is known then the form of the solution

to the optimal control problem may be obtained by a simpie transformation

on the solution to the optimal estimation problem. The converse is also

true. Kalman's Duality Theorem may now be stated.

s g et gt
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Correspondence between Kalman Notation and Allgaier Notation

Estimation

Control

Kalman

Ak (t)
¢*(t+l,t)
P¥(t+l)
M(t)

R(t)
Q(t)

B (t)

6 %(t+1,t)
B (1)
M(t)

R(t)

Q(t) |

" P (k+1,k)

.
Ls

Allgaier

¢ (L, KK (k+1)

C (kL KB (et | k1) P (b | )

'xf‘(k+1 | x)

()

Kx)

¥ (1, K) QK T (kL k)

I (k- N 1) M (k)

Mk

B(x)
X(x)

e T P A e S et e e SR e e i g e
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L4

Theoxem 4.5. The optimal estimatign.p;oblem and the
optimal control problem are &ﬁals of each. other fn
the following sense. Let t 2 0. Réplace every mar
trix F(t) = F(td+r) in Eqs. (4.68) through,(4.70)'by
ﬁ‘(t) = ﬁ'(I-T). TPep one.has Eqs. (4.71) through
(4.73). Conversely, replace every matrix

ﬁ(t) = ﬁ(T-T) in Eqs. (4.71) through (4.73) by

.E'gt) = F'(t0+T). Then one has Eqs. (4.68) throﬁgh
(4.70) where the quantities described by ﬁqs. (4.68)

through (4.73) are presented in Table 4.2.

The question now arises as to whether the same theorem yields a
dual result when applied to the submatrices. Consider, for example, the
filter gain matrix, A*(t), and the control gain matrix, &*(t), and make

the foilowing.definition

A% (e) = AB(E)
A;(ﬁ)
a5(e)| o
) .
Ar(e) = Ex(r) a§<t>; .. E B (x)
. ! i

-
o o - -

The problem is now that of determining whether the transformation of

Theorem 4.5 applied to Ag(t) will yield &i(t). Define the following

-
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Table 4.2 . '

Relationship Between Estimation and Control Variables

fn Kalman Notation ?

Estimation

]

x(t) (unobservable) state vari~

ables of random processes
y(t) observed random var;ables
ty first observation

¢(t0+r+l,t0+1) transition
matrix

P*(t0+r) covariance of esti-
mation error

A*(t0+ ) weighting of obser-
vation for optimal estimation

¢*(tytr+l,tytt)  transition
matrix for optimal estimation
error :

ﬁ(t0+r) observation matrix

Q(t0+r) covariance matrix of
plant noise

R(t0+T) covariance matrix of
measurement noise

/

’

Control

x(t) (observable) state variables
of plant to be regulated

u(t) control variables

T 1last control action
$(T—T+1,T-T) transition matrix
P#(T~t) matrix of quadratic form
for performance index

A%(T-t) weighting of state for
optimal control

$*(T*T+1;T-T) transition matrix
under optimal regulation
M(T-1) _control transition matrix

a(T"T) matrix of quadratic form
defining state error

R(T-1) matrix of quadratic form
defining control effort
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From Eq. (4.68), A*(t) may be expanded ac ,
- 16 'y ] -1
* = [ ] [} [] L] [} . 1 l
axe) = [o,, d05 | [Boo + + + Rog| Mo | [MgBoos * RI
930+« + 433) B50 » ¢+ Pyg) M
r- - -
BN AR | g M'[M.P. M + R)™L
. "o Ok k00070
. sl W 1
g+ o o & » P_M'[M P, M' 4 R)™
| 430 35|k Fax Mo oo |
J J —
= & L¢P MIMP M'+ R]T
oo 1o’ 0eF ' MaFaoo
J 3. o 1
L I ¢, P, M[MP M + R]
10 10" 2 MoF oot
J 7 : 1
| A% PoM M -
. AT B Bt FadkPoPodty * M) . 74)
From Eq. (4.71), A*(t) may be expanded as
AR(E) = : -1 ' 11 .
A (t)_.:“. [}iOPOOMO +R] IMO L I ] . M‘!. FPOO ) . . POJ ¢00 . . ] ¢0J
[ Pyo o« Bygllbso - - ¢ ¢5s
= [M'P, M +R]“-‘-%ME ’ : iqg K 6.
07000 - kot * o " kJ 00 " * * Y0J
k=0 : = k=0 ]
; | %50 ° " " %ag
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L

J J
= M3y + RI7E T P ¢ ‘
6°°° . .&-Okmot“k@m

. 1’3 J ,
nr +R)™ 1 xup¢
%ooo a0 o ety

- J .
or,  A§(e) = [Mp Mo + RI7L % ALV (4.75)
) i |

4

Application of Theoxem 4.5 to Eq. (4.74) yields
J J ' .,

A6 = zzo kzo‘pupik“kmél’c')o”‘o +r']L

or,
.A J J 1
I &L [M'P. .M 4+ R} M!P,, 0 (4.76)

020 k=0 07000 k. Ek R

From comparison of Eq. (4.75) and (4.76) it is obvious that Theorem 4.5

can not, in general, be extended to the submatrix results. Since, in

general, this is not true, then it can be ‘concluded that the duvality

expressed by Theorem 4.5 does not apply to the corresponding submatrices.

»

Attempts by the author to modify the duality theorem such that the re-
sults may be extended to the submatrices have not been fruitful. If such
a4§élationship‘qgnld be demonstrated then the results of Chapters 2 and

3 should be the duals of each othef.

4.6  Summary and Conclusions

In this chaptef an alternate expression for discrete systems
with time delay has bcen developed. This expanded state representation

is not new, yet it is shown to yield the same results as Chapter 2 and

-
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which used a different approach. These results are, then, submatrix

solutions to the expanded state representation. This method presents

. substahtial'savings in computation time as well as storage. Examples

of these reductions are presented in Chapter 5.

Finally, the expanded stgte representation allowed demonstration

of duality for time delay systems, although this result could not be ex-

A

tended to the corresponding submatrices.
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. CHAPTER V
COMPUTATTONAL ADVANTAGES OF PARTTITIONED SOLUTIONS

TO OPTIMAL ESTIMATION AND CONTROL PROBLEMS

/.

5.1' Inﬂyoduction

Chapter 4 demonstrates that the filter and control gsins obtained
in this dissertation are identical to rgsults published many yeaxs éar-
liex 2,10 using an expanded state representation of éime delay systems.
Tﬁe principal differxence is tﬁat a paﬁtitioned form of the resulting al-
gorithms are used rather than the expanded matrices. Since the expanded
;tate representation is generally discredited because of the resulting
extensive computation requirad, one mightéagg whether or not the parti-
tioned results represent a significant computational saviﬁgs.

U In this chapter aﬁaiytica1~éxpréssioﬁs are &eVeloped for the
nuﬁber of multiplicative and additive operations reduired for digital

computer solution. Options are presented which reduce the number of op-

erations even further in the partitioned form. These are at the expense

- of additional software requirements, however, and in some cases this more

. than offsets the advantages of the paftitioned form. This is generally

true where the system dimension and time delay are small. The savings

~in computation time are strong functions of the system order, n, and the

time delay magnitude, J. No further attempt is made here to define the

additional software requirements for the partitioned solution since that

depends to a great extent on the ingenuity of the programmer.

L S o 110
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Some illustratiye examples axre presented, where computation time
is reduced by more.than 90% and storage by more than 60%. For a unit
delay; a 30% reduction in both sforage requirements and computation time

is typical.

: /

5.2 Computational Requirements for Estimation Algorithms

. | In this section a method of determining the number of discrete
mu)tiplicative and additive operations is presented. This method is
then used to develop analytic expressions for the number of required
operations in terms of the dimensions of the system matrices. Examples
are presented at the conclusion of this section which demonstrate a sig-
kificant redéctinn in computatio;al requirements for ﬁhe partitioned al--
gdrithm when compared with the entire matrix algorithm of the expanded
state form.

Consider the multiplication of two matrices A and B of dimensions,
&:k m and m x ; resbéetively. The number of discrete multiplicative op-
gﬁations is &mn. The number of éiséreie additive operatioﬁs required is
&tmrl)n. .For ease in calcuiations, it is assumed for the remainder of
.this chapter that the number of required additive operations is 2mn.

The number‘oﬁ required multiplicative &nd additive operations
is determined for the partitioned algorithm expressed by Egs. (2.115),
(2.116), (2.117) and (2.118). The dimensions of the matrices involved
are: P(k+1,k+1lk) - h X n, ¢i(k+l,k) - n x n, P(k-i,k-j|lk) - n x n,
P(:Fk+1—ii,k+l|k) ~nxn, I(ktl,k) - nxp, Qk) - px p, H(k+l) - m x n,

-R(k+1) = m x m, Ki(k) - n X m
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RUHL kLK) = B % ¢ Cetl, IR Gty kg [ )6 (et )
' - 1=0 j=0 ‘
+ [(ktl,k)Q(KIT ' (kitl, k) , (5.1)
The. product ¢i(k$l,k)P(kri,krj|k) rgguires n3 multiplicative opgrations. S

Tﬁﬂs product multiplied times“¢5(k$l,k) requires an additional ng'multi—

plicative operations, resulting in 2n3

multiplicative operations to form
the product

¢i§k+l,k)P(k-i,krj|k3¢3(k+l,k) '
The double sum means there are (J+1)2 such terms, or, a total of
2n3(J+1)2 multiplications in the double sum. Similarly, the second iterm
requires a total of nzp + p2n operations, yielding a total of
2n3(J+l)2 %'nzp + p2n multiplicative operations. The number of additive
operations are nz[(J+1)2 = 1] for the double sum, plus n2 by adding
P (ktl,k)Q(K)T ' (ktl,k) to the double sum, or a net of nz(J+1)2. To this
Qust be added the number of additive opergtiéns dué to the multiplica-

2n such additions. The total number

tion process or 2ﬂ3(J+1)2 + n2p + p
of operations required in determining P(k+l,k+l|k)~are
multiplications: 2n3(r+1)2 + n?p + p?n

) ,

additions: 2n3(J+l)2 + n“p + p2n + nz(J'-!-l)2

A similar analysis yields the following results for the remaining equa-

tions of the partitioned estimation algorithm. | ;
K; (k#1) = P(k+1-1,k+1[k)H' (kbl) [H(KHL) P (kL kb1 [K)H (k#1)  (5.2)

+ RO 120,11, o0, J (5.2)

- -

o {\{
3




5 ey

113

Total Number 3§»0perations‘for‘; =0, 1, e o J

-y

nultiplications: nzm[J+ZJ + 2nm2
edditions: n2m[J+2J +.2nm2 + mz g

- J -
P(k~j,k+l]k) = 3 P(kvj,knilk)¢£(k+l,k) - 34=0,1, ...,, J
1=0 ' '

(5.3)

Total Number of Operations for 1 =0,1, voo , J

multiplications: n3J(J+1)
additions: n3J(J+l) + n2J2

P(k-i,k-j|k) = P(k-i,k~3|k-1) - gi(k)uck)P(k,k-jlkrl) (5.4)

Total Number of Operations for 1, = 0, 1, ... , J

multiplications: nzm[(J-lel)2 + (J+1)]

‘additions:  nm[(3+1)2 + (3+1)] + n?(3+1)?
?he total numpar of operations required for one complete iteration of
the partitionéd estimations algorithm are given in Table 5.1. These
results are referred to as PARTITION E-1. -

The number of required computations may be further reduced by
recognizing that not all of the delayed states affect explicitly the
bne step transition. That is, some of.the operations are not required
since some of thé‘¢i(k+1,k) = 0. Let j be the number of ¢ (ktl,k) whigh..
are not identicallyfzero. ‘Then it can bé shown that the number of com-
putational operitioné becomes as shown in Table 5.1. Hereafter, these
results are referred‘td as PARTITION E-2.

Similarly,rit_can be shown, for the'expanded algorithm given

by Eqs. (5.5), (5.6)and (5.7) that the number of required operations

/4
i
P
P

s
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Analytic Expression of Number of Computational Operations
Required for Various Estimation Algorithms

4
.

PARTITION E-1 ,

multiplications: n3[2(J+1)2 + J(J+1)] + nzm[(J+l)2 + 2J + 3]

%p + p2n

+ Zmzn + n
additions: n[2(3+1)2 + J(3+10] + nZu[(3+1)% + 27 + 3]

+ 2n?n + n2p + pZn + n? + n2[2(3+1)2 + J2)

PARTITION E-2

multiplications: n3[232 + Ji] ¥ n®m(23 + 3 + (3+1)2] + 2020 + n2p + pn
additions: n3[2j2 + Jjl + n2m[2J + 3 + (J+l)2] + 2m?n + n2p +~p2n

+ 0232 + J(G-1) + (H1)2) + n?

EXPANDED
multiplications: 2ﬁ3(J+1)3 + 4n2m(J+1)2 + 2mZn

additions: 2n2(J+1)2 + r2k+ 2n3(J+l)3 +4n2m(J+1)2 + 2m2n
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is as shown in Table 5.1. The matrix dimensfons are given in Table 5.3.
k(k+1) = ?(kﬂlk)'}\i' (kt1) [?i(k+1)'i‘&+1lk)’ﬁ(k+1) + 'K(k+1) 17t (5.5)
Blktl|k) = ¢(k+1|k)'i5(k|k)¢'(k+1,k) + %(k+1,k)q(k)1;. (k+1,k) (5.6)
i‘(k+llk+1) = [I - k(k+1)ﬁ(k+1)]§0c+11k) | (5.7
The effect of system order: (n) and time delay magnitude (J) on |

»

the required computational effort can be seen from Table S.Z{Where a
;umber of different examples’are considered. The data for PARTITION E-2
éssumes,a §ingle delay (j = 2) in the system, where the delay magnitude
is still specified by J. Note for the cases where there is just a unit .
delay (n = 2, J = 1) or (n = 10, J = 1) that the partifioned computations
require only 60% of that required by the expanded form. For multiple
delays, where the dela§‘is longer (n =1, J=19) the compugational re~
qﬁirements are less than 107 of those required by the expanded form.

In general, the savings achieved are an increasing function of the time

delay magnitude.

5.3 Storage Requirements for Various Estimation Algorithms

The storage requirements’ are s;ecified by the size of the ma-
trices used in the algorithms. The partitioned algorithm is given by
Eqs. (5.1) - (5.4) and the expanded state algorithm is given by Egs.
(5.5) - 65.7). The matrix dimensions and required stotage are give; in
Table 5.3. Recall th?t PAEIITION E-2 requires storage only for those
values of ¢i(k+l,k) whieh ére not nuil matrices. Storage requirements
are computed for a number of examples in Table 5.4. A 30% reduction in

rgquired storage is achieved for a unit delay (J = 1) and a maximum
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Examples of Requirxed Number of Computationsl Operations

m

P

1

" For Various Estimatfon Algorithms

operation EXPANDED PARTITION
’ \

mult. 200 73
add. 233 115
nmult., 200 126
add. ' 233 . 163
nult. 200 200
add. 233 233
nult. - 18060 1625
add. 18861 2786
mult. 18060 2812
add. 18861 3937
mult. ‘ 18060 5084
add. 18861 6140
mult. 18060 11030
add. 18861 11931
mult. - 157087 - 37457
- add. B 161616 - 41890

(3=3)

4
E-1" PARTITION E-2

45
69

126
163

200
1233

491
915

702
1155

1628
2157

11030
11931

13790
16486

(=3
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savings of 60% can be scen from the analytical expressions for storage
requirements in Table 5.3. As in the preceding section, storage re-

quirement savings increase as the time delay magnitude increases.

L3

5.4 Computational Requirements for Control Algorithms

The methods of Section 5.2 are'used in this sectfon to deter—
mine the computational requirements for the partitioned and expanded
control algorithms. Results are obtaine! for the partitioned algorithm

under three conditions. ¥First it is examined for the general case with

» x

all ¢; not equal to zero. Next the computation is reduced by eliminating

all operations for which ¢i is equal to zéro. Finally, it is shown that,
at a nominal cost in additional storage requirements, a substantial re-
duction in computation time may be achieved by storing the results of

some operations which are repeated. As in the estimation problem, the
partitioned algorithm represents a computational savings of 30% to ?0%

over the expan&ed form.

PARTITION C-1: The partition algorithm is expressed by Eqs.

¥

(5.8) and (5.9).
() = [p* (kHL, )Wy (etL)p (kL k) + BCk) ]y (kb k)

¢ Iigo QD)o (kHLK) + Wy i (k41)]  (5.8)

WCk) = [4y (kb1 I)Wgo (L) o+ Wy o (k) TTgg (keHL, k) + g (bl k)8, (k)]

| (5.9)

‘The matrix dimensions are given in Table 5.7. Application of the methods

"of Section 5.2 yield the number of required operations given in Table 5.5.
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Table 5.4
Examples of Required St:ox:age.
For Various Estimation Algorithms
nJ m-p EXPANDED PARTITION E-1 - 'PARTITION E-2
103 1 1 62 32 30
2 1 1 1 62 , 44 42
4 0 1 1 62 .62 62
119 1 1 126£ ~ 464 446
2 9 1 1 1262 506 . 474
4 4 1 1 1262 590 542
10 1 1 1 1262 T 842 . 842
7 5 1 1 5420 2410 2263
(1=3)

e
i ety e iy s g T e g e oy
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PARTITION C-2: If the operations are eliminated for those

¢i(k+l,kj which are equal to zero, the number of operations is reduced.
If the numberx of ¢i(k+1,k) not equal to zero is j, the resulting number

of computations can be shown to be those‘giwen in Table 5.5.

PARTITION C-3: Examinatipn‘of Eqs. (5.8) and (5.9) reveals that
the term [woo(k*l)¢i(k+l,k) + wo,i+l(k+l)] occurs in the first equation
and its transpose occurs in Eq. (5.9). This term may be stored at a
storage cost of n2(3+1) locations, these eliminating the necessity of ’

re-computing a second time for each iteration, The resultant computation

requirements are given in Table 5.5.

EXPANDED: The algorithm for the expanded form of control solu-
tion is expressed by Eqs. (5.10) and (5.11).

S0 = [P (k1 OGP et k) + Bl (et )W (k1) (et )

' | P (5.10)

W) = ¢ (kL K)WCK) [§ (k1 k) + ¢ kil k)SCK) ] + ACk) (5.11)
The matrix dimensions are given in Table 5.7. The required number of
oParhtions per iteration are given in Table 5.5.

The effect of éystem order (n) and time delay magnitude (J) on
the fequired computational .effort can be seen in Table 5.6 where a num~

ber of different examples are considered. The data for PARTITION (-2

and PARTITION C-3 assumes a single delay (j

i

2) in the system where

. the delay magnitude is still expressed by J. For the cases where there

is just a unit delay, (n =2, J3=1) and (n = 10, § = 1), the PARTITION

C-3 computations are only about 307% of those required for the expanded

- -
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Table 5.5

.

Analytic Eﬁpréssions for the Number of Computational Operations
' Required for Various Control Algorithms .’

PARTITION C-1

multiplications: n3[2(3+1)2 + J + 1] 4 ne[l + (J+1) + (F1)2] + 2nr?
additions: n?[2(3+1)2 + J + 1] + [l + J + 1 + (FH1)2] +

+ 2002 422 4 n2[02 + T + 2(341)2]

'PARTITION C-2

multiplications: n3[(I+1)2 + j(I+2)] + n?r[l + (J+1) + (J+1)2] + 2nr2
additions: n2[(F1)2 + j(342)] + o[l + (J+1) + (F+1)2] + 2nr?

+ x2 + n2[32 + 23§ + 4§ ~T =2)

PARTITION C-3

multiplications: n [(I+1)2 + j(3+1)] + n2r[2043] + 2r’n

additions; n3[(341)2 + J(I+1)] + n?r[23+3] +‘2r2n'+ r? f{t
+ n2(3% + 33 + 2§)

additional storage required: n2 (J+1)

EXPANDED

multipliéations: 3n3(J+l)? + 3n2r(i41)2 + 2n(J+l)r

additions: 2n2(J3+1)2 + r2-+ 303¢3+1)3 + 3n2r(I+1)2 + 2n (Il
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Table 5.6
Comparison of Required Numher of Computational Operations.
For Various Control Algorithms
. 3=2 =2
N J 1r operation EXPANDED PARTITION PARTITION PARTITION EXTRA
c-1 c-2 C-3  STORAGE
1 3 1  nmult. 248 59 47  + 35 4
add. 281 103 71 55
2 1 1  mult. 248 112 112 88 8
. add. 281 153 153 117
& 0 1  mult. 248 248 248 184 16
\ add. 281 281 2810 217
119 1 mult. 25240 1243 863 449 20
add. 26041 2420 1288 - 853
2 9 1 nult. 25240 2048 1424 1048 40
add. 25041 3209 1881 1453
4 & 1 mult. 25240 4016 . 2872  .2424 80
add. 26041 5137 3417 2912
10 1 .1 : mult. 25240 10720 10720 8520 200 :
add. 26041 11721 11721 9221
| j=3 j::
7 5 1  mult. 227640 28875 20228 19183 294

it
N
t
)
i
i
H
i
!
{
i
fe

add. 231169 33874 23169 21437
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form. For multiple delays, where the delay is longer (n =1, J = 19)
the computational requirements of PARTITION C-l are:less than 5% of those
required by the expanded form. In general, the savings aphieved are an

fncreasing function of the time delay magnitude.

5.5 Storage Requirements for Various Control AlgorithmsM

The storage requirements are specified by the size of the ma-—
trices used in the algorithms;. The partitioned algorithm is given by
Egs. (5.8) and (5.9) and the expanded state algorithm is given by Egs.
(5.10 and (5.11). The matrix dimensions and required storage are given
in Tablg 5.7. Recall that PARTITION GmZ‘Eequires storage only for those
values of ¢i(k+l,k) which are not null matrices. PARTITION C-3 requires .
nz(J+l) storage in addition to that of PARTITION C-2 as explained in the
preceding section. Storage requirements are computed for a number of
examples in ?ablg 5.8.. A 30% reduction in required storage is achieved
for a unit deléy (J'= 1) and a maximum saQings'of 607 can be postulated

) \

from the analytical expressions for storage requirements in Table 5.7.

' Sﬁorage requirements decrease as the time delay magnitude increases.

5.6 Sumnary

As. demonstrated in the preceainé sections, the partitioned algor- -
ithms obtained in this dissertation represent a 30% - 60% reduction in
storage requirements when compared with the expanded state representa-
tion. A reduction in computationalfeffOrt of 30%Z ~ 95% is also demon-
strated. Even greater savings can be realized depending on the example e

‘selected. Both the reduction in computation time and storage make the
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Table 5.8

Examples of Required Sforage
for Various Control Algorithms

125

-
J
’

PARTITION C-2 (§=2)

5377

EXPANDED PARTITION C-1

57 26

57 35

57 57
1241 441
1241 449
1241 505
1241 731

2010

25

35 ‘

731

1961 (j=3)

<o vl
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L4

partitioned solutions quite attractive. In retrospect, the expanded
state representation of time delay systems d;es provide algorithms which
are computationally feasible after all. The need for a m?thod to solve
the expanded equations efficiently ifs resolved by this p;per as the ex~
amples of this chapter clearly demonstrate. It should be recalled, how-
ever, that the partitioned solution ha; additional software requirements

and this may offset the postulated advantages when J is small. ‘

v S——

g



CHAPTER VT

CONCLUSIQONS AND FUTURE WORK ’

6,1 Conclusions

In Chapters 2, 3 and 4, algorithms are obtained for determining’
the optimal filter and thiﬁél control gains for discrete linear systems
;ith.time delay. In Chapter 4, it is demonstrated that thege results
are actually partitioned solutions to the expanded state representation
of such systems. This expanded representation of time delay systems has
‘been studied but deemed computationally unacéeptable‘by previous authors.
The unique nature of such a representation for time delay systems, how-
i ~ever, yields a substantial reduction in the computational requirements
wben the solution is expressed in partitioned form. It is not unlikeiy
that the coméﬁtations resulting from the partitioned solutions be 80%
to 907 less tﬁan that formerly required by the expanded matrix solution.

Many problems previously considered computationally unfeasible can as a

consequence, now be solved.

6.2 Future Work

In the course of achieving these results, a number of related

¢

preblems associated with time delay systems have arisen. . .
1. What are the conditions under which.con@inuoué stochastic

systems may be expressed as discrete systems? The initial conditions

-

on the delay, since it is continuous, and the problem of delays which

are not integral multiples of the sample period Causevdifficulty here.
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Some prelimipary ugrk.by the author suggests that this may be possible
fof sexial systems. ‘

2. Can controllability and observaﬁility as expressed in Appen-
dix A, be,egpressed in partitioned form? The achievement of significant
results by parxtitioning the expanded representation of timerdelay systems
suggests that éhis approach may be extegded to other aspects of time de-
iay systéms, In Chapter 5 this effort failéd.in examining duality, how-
éver, so there are some limitations on extending this approach.

3. Arxe the results of this paper computationally superior to a '
high order approximation of the time delay? Since the required computa-
tion increases as a significant function of the time’delay magnitude,
it may be more economical (and just as precise) to use a high order ap~
proximation to the delay and then use standard techniques such as the
Kalman filter for obtaining the final result.

: ‘4.<.Cén continuous algorithms be obtained by examining the lim;
iting case of the dis;rete solutions? The continuous estimatioﬁ and con-

3,8 for systems with time delay, but they are

trol solutions are known
computationally untractable for high order systems (greater than n = 2)
or more than a single unit delay Per@ags the solution to these contin- .
uous-time equations may bé‘determined by exagining the‘limiting case of

the discrete-time equations. This is certainly true for systems with no

time delays.
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REQUIRED'PROOFS FOR CHAPTER IIX

In this appenai; necessary and sufficient condixi;ns are devel=
oped for the observability and controllability of discrete linear systems
uitﬁvtime delay., The development beloé‘is for the expanded state repre-
sentation df time delay systems. The reader is referred to Section 4.2
for definitions of the matrices and vectors of’ the system and measur;—
ment equations (A 1) and (A 2).

0e1) = §lett, %00 + TR TN (A.1)

Y (ktl) = h(m)x(m) | . (A.2)

Observability: First, an observable system is defined as follows:

Definition: The discrete linear 'system of Eqs. (A.l) and

(A.2) is observable if g(O) can be determined from the
set of measurements {Z(1), ..., %(N)} for some finite
N. If this is'trUe for any initial time (k = O corres=-

ponds to to), the system'is completely observable.

- The following theorem can now be proved.

Theorem A.1: The discrete’ linear system of Eqs. (A.1)

and (A. 2) is completely observable if and only if the
mN x n(J+l) matrix

'1‘1(1) 1,0),
?1(2>§(2 1)3(1,0)

‘*\.l(N)%\ZN.’N-l) c e 30,0) e (A.3)

. - 13¢
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is of xank n(J+l) for some N » O. .
_ Proof: It: is suﬁficient: to consider the case where u(k) = 0.
XCk+l) - (k+l.k)>~(k) ' ' (A.4)
FOerl) = HOH1)H (k1) : A5

k=0, 1, ... since Y(k) is assumed knc‘sw,n for all k.

Consider the sequence of measuxements {z(l), ... , z(N)}. , In
order for the matrix defined by Eq. (A.3) to be of rank n(J+l), N 1s
chosen such théé the inequality mN 2 n{J+1) is satisfied.

. From Eqs. (A.4) and (A.5) the following equations result from
the. sequence of measurements ‘

Z(1) ='}\'l(1)x(1 ?ia) , )x(O)
¥(2) = H(2)%(2) = H(2)F(2,1)F(1,0)%(0)

no

Nt A n N
z(N) = H(N)x(N) = H(N)$(N,N-1) . . . ¢(1,0)x(0)
These equations may, be written in matrix form as

= ?‘[NX(O) e . (A'G)

vhere %‘N =2(@1)

I
Hy, = H(l) a, 0)
N '}‘((2)§(2 1) (1,0)

P ® & .
i‘i.(N)%‘(.N ’N"‘l) « ¢ 0 ¢ (l, 0) (Ao 7)
It is clear t‘h_a,t:“%'N is an mN vector and X(0) is an n(J+l) vector. Since

mN > n(J+1) and 9('(0) is arbitrary, the theory of linear equations may
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now be invoked. This theory states that there exists a unique solution

to Eq. (A.6) if and only if the matri;'ﬁN, as expressed by Eq. (A.7), is

I3 *

of rank n(J+l). Thus Theorem A.l is established. -

Controllability: First, controllability IZs defined in the following

sense.

1. Definition A.2: The discrete linear system of

Eq. (A.1) is controllable at time k =.0 (corres—
‘ponding to an initial time to) if there exists

a control sequence'fﬁ(O),ﬁ(l),...,é(N-l)} depend-
ing on é(O) and the initial t£me, for which,§(N)
may be selected arbitrarily, where N is finite.
If this_is true for all ¥(0) and initial times,

the system is completely controllable.

The ﬁollowing'theorem)can now be proved.

Theorem A.2: The discrete linear system of

Eq. (A.1) is completely contréllable if and only

ifrthe n(Jfl) x rN matrix

[¢(N,N-l)...¢(2,l)¢(1,0).,.u ¢.(N,N-1)y(N-1,N-2) y(N,N-1)]
(A.8)

is of rank n(J+l) for some N > O.

Proof: The relationships for X(k) may be expressed in terms of X(C) and o

the control from Eq. (A.l) as
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Q) = %a 0OXO) + Wa 0) (0) :
%(2)- = §(2,1)8(1,00%(0) + ¥(2,1)¥(1,0)u(0) + ihcz 1)u(1)
CXGD = FauN-D) L L. S, 00%¢0)
S
+ & [1¢q,1-0IYPE,1-1)u@E-1)
- {=] j::]_
This sequence may be expressed in matrix form as
X00 - H0) = Py | (A.9)
where x(N) is arbitrary
'.}’ _.Q:(N N-1) . . . §(2, 1)2:(1 0) ' ' T (A.10)
By = 00LN-1)...0(2,100(1,0) +ou § (N, N-1)p (N=1,8-2) y(N,N~1)
(A.1)
3N 53(0)
Y O-1) - . (A.12)

The definition requires that g(N) be arbitrary and it can be seen that
Q(N) is an n(J+1) vector and 3N is an rN vector where rN 2 n(J+l).
~ Once again, Eq. (A.9) has a unique solution, if and only if the matrix

defined hy (A.ll) is of rank n(J+1l) and Théorem A.2 is established.
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OBSERVABILITY AND CONTROLLABILITY OF TIME DELAY SYSTEMS
[’I

In this appendix, properties (2.39) - (2.47) are established.

Recall the system and medsurement equations for systems with time delay.

J . |
x{kt+l) = % ¢ (ktl,k)x(k-1) + T (kt1,K)w (k) + p(k+Ll,k)ulk) (B.1) '
1=0
z (kL) = H(k+1)x (k+1) + v(k+l) - ’ | ' (B.2)

These equations may also’be imbedded in an expanded state representation
X(t1) = §lerl, X (K) + FltL, W) + Pk, k)Y (k) (B.3)
Z(kt1l) = M)XK (kH1) + V(ctl) (B.4)
vhere the reader is referred to Section 4.2 for definitions of the ex-
panded matrices and vectors.
The following properties of the veétprs are recalled for later
use in the proofs Belowu.

C{x(-~i), i=0,1,...,J} is a zero mean gaussian random n-vector

"{w(k), k=0,1,...} is a zero-mean, p-dimensional gaussian white
sequence - ' ‘ ' (B.6)
" {v(k), k=1,2,...} s a zero-mean, m~dimensional gaussian white

sequence : - (B.7)

v, j=1,2,...} and {w(k), k=0,1,...} are independent (B.8)

" fx(-1i), 1=0,1,...,J} is independent of “(v(k+l), k=0,1,...} and

{wik), k=0,1,...}. B (B.9)

] f{u(k), k=0,1,...} is known or may be speéifiéd as desired (B.10)
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It can be.shoyn that for a system degcribed by Eq. (B.3), the
state of the system at time k may be expressed fn terms of the initifal

+ +

state, nofse disturbance and control vector as ”

. . k . »
(k) = $(k,00%(0) + 1 §,2)T R ,2~1)w(z=1)
. 4=1 ’

k ' v L
+ .7 $0k, 0¥, 0~1)%(e-1) (8.11)
=1

The partitfoned expfession for x(k) can then be wfitten as

3o J k.
x(k) = i;()'$Oi(k,o)x(-i) * I zl$10(k,z)r(z,g-1)w(g-1)
= = 2:=
J k., e =
+ ao L ¢50(k,2)v(2,2-u(e~-1)  (B.12)
1=0 g=1

" v, o
where ¢ij(k,z) is the ijth n x n submatrix of ¢(k,2). With the above

results, the properties of Chapter 2 can now be established.

Property (2.39): The stochastic processes {x(k), k=0,1,...} and

“{z(1), 1=1,2,...,j} are gaussian. (B.13)

Proéf: Consider Eq. (B.12). Recall that {u(j), j=0;l,...} is a deter-

ministic quantity by property (B.10). .Since {x(-i), i=0,1,...,J} and

each {w(g-1), 2=1,2,...,k}. are gaussian by hypothesis, it folldws that

x(k) is also gaussian for k = 0, 1, ... , since it is merely the sum of

gaussian random vectors plus a deterministic vector. Consequently, for
any integer m and set of time points'{tl, toy seey tmei} the set of ran-
dom n vectors x(t;), x(tz), cews x(tm) is jointly gaussian distributed

and the assertion is proved.

rovirn o
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Property (2.40); E{x (5)w' (k)} = 0 foxr all k2 j, §=0,1, ... (B.14)

Proof: Eq. (B.12) may be substituted into Eq. (B.1l4) to yield

iy

*
K
)

Efx(1)u' (K)} = itogoi(k,O)E{xC-i)w' ()} '
I3, |
+ L X 950007 (2 -DE{w(R-1)w" (k)}
120 2=1.

J 3 A
+ I R0, DuG-DEM (K))}  (B.15)
$=0 2=1 \ '

From property (B.9) the first term on the right-hand side of Eq. (B.15)
vanishes for all k=0, 1, ... . Since {w(k), k=0,1,...} is a white se-
quence it follows thgt Efw@-1)w'(k)} = 0 for all k # g-1, Since

£ =1, 2, ...y ] it is clear that the SECan term vanishes for all

k> j=1 or k 2 j. The third term vanishes since {w(k), kéo,l,...} has

zero mean. Hence, Property (B.14) is established.

Property (2.41): E{z(j)w'(k)} =0 for all k 2 j, § =0, 1, ... (B.lé)

Proof: Substituée Eq. (3.2) into'Eq. (B.16)

| Elz(Hu'(k)} = H‘(j)E'IX(j‘)W' (k)} + E{v{i)w' (k)} (B.17)
By virtue of Eq. (B.14) the first term on the right-hand side'of Eq.
’(B.l7) vanishes for all k 2 j, j = Q, 1, ... . The second term vanishes

by property (B.8) and the assertion (B.;6) is established.

.~
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Property (2,42): E{x(j)v'(k)} =0 for all 1 =0, 1, ... and k=1, 2, ..,
"(B.18)
Proof: Substitute Eq. (B.12) into Eq. (B.16). p
- ” J J. ¥ . )
EX(VI()Y = T §0,(1,00E&(-1)v' (k)}
i=0 .
h B | ,
+ %I §00E,000,2-DEMG-1)v! (k)
i=0 =1
J 3 »
+ I ¥ e, DuC-1EW ()} (B.19),
1=0 =1 *© |
The first term on the right-hand side vanishes by property (B.9). The
second and third terms vanish by properties (B.8) and (B.7) respectively,

and property (B.l7) is established.

Property (2.43): E{z(j)v'(k)} = O for all k > j where j;k =1, 2, ...

"(B.ZO)
Proof: Substitute Eq. (B.2) into Eq. (B.18)
Efz(1)v'(k)} = H(DEXGIv' ()} + Ef(i)v' (k)} (2.21)
The first term on the right-hand side of Eq.‘(B.l9) vanishes by ﬂropergy
(Bfi7). The second term is equal to zero except for j = k since

"fw(k), k=1,2,...} is a white sequence.” ‘But k > j by hypothesis and the

assertion (B.20) is eatablished.
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