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Abstract

This report Is concerned with the selection of an estimator which

Is unbiased when applied to structural parameter estimation (i.e., the

estimation of a set of unknown parameters contained In a vector h

relating certain states, Y and X , which are measured with uncertainty).

The form of this relationship Is known and follows from the structure

(nature) of some process (I.e., Y * X h). Structural parameter estlma-
© Q

tlon Is differentiated from conventional parameter estimation In which

Y is measured with uncertainty but X Is known exactly. The parametere e

h may vary with time according to the difference equation h » <J>h + Fw

where <j> and F are known and w is a random noise term. If X is known
Q

exactly a weighted least squares objective function (J) is defined where-

in the error vector depends on estimates of h, resulting In a conventional

weighted least squares (CWLS) estimate of h.

It is shown that the CWLS estimate is biased when applied to

structural parameter estimation. Two distinct approaches to bias re-

moval are suggested: (I) change the CWLS estimator or (2) change the

objective function.

Two methods are discussed with reference to the first approach.

In the subtraction method, the noise statistics are used to eliminate

the bias approximately, in addition, methods are suggested for

estimating the noise statistics if they are unknown. Unfortunately the ,

new estimator eliminating the bias at the cost of Increasing the

variance of the estimate. In the instrumental variable (IV) method, an

additional measurement is taken which. If available, removes the bias.



With reference to the second approach, an augmented objective

function is minimized by linearizing the partial derivatives about

previous parameter estimates. The result is a linearized Iterative

weighted least squares (LITWELS) technique which is the major contribu-

tion of this report* The LITWELS estimator is shown to be unbiased

in an asymptotic manner when the noise statistics are known. Methods

.of estimating unknown noise statistics are suggested. The LITWELS

estimator minimizes the residuals associated with the estimate of Xe
and Y » A simple example problem is presented and solved using the

G

above methods. Applications are suggested with reference to adaptive

control, prosthetic devices, and image enhancement.



1.0 Introduction

Figure I contains a block diagram of the basic system considered

In this report. The composite system is Interconnected and designed

to control the system output given the reference Input. The control

law may result from an optimization criteria, root locus considerations,

etc. Contained within the system Is a relationship between certain

system states Y and x_. The form of this relationship Is known and

follows from the structure (nature) of the process. The relationship

may be written In two ways.

Y « HX_ (I)

e (2)

In (I), Y Is a column vector containing the process output states
6

(In contrast to the system output), whereas x Is a vector containing
3

the process Input states (in contrast to the system input). The

actual parameters contained In the matrix H are unknown. In (2), all

the states contained In the vector xe are reformed Into a matrix X .

All -the unknown parameters contained in H are reformed Into a vector

h.

As an example, suppose (I) is

el

e2

0

Xe"

e,2

*e2l

*e22j



Accordingly, (3) can be written In the form of (2)

el

'e2

ell

e22

(4)

The structural parameter estimation problem as discussed In

this report Is a logical extension of conventional weighted least

squares theory and Is characterized by the following which refers

to (2).

.1. Y and X are measured with uncertainty ;

e •. e

2. h is estimated in a weighted least squares sense

3. h may be time varying of the form

*h Tw (5)

where * and T are known and w is a random noise term.
A A

In this case the estimate of hi Is to 8 4ho
4. the estimate of h must be unbiased.

In conventional weighted least squares (the abbreviation CWLS

wl 1 1" be used) the parameter estimation problem Is simpler than (5) in

that X Is known exactly. . ... .
0 . — ._ - — •-•

Four basic cases are considered with reference to (5).

Problem
Designation

I
II

I I I
IV

Measurement

Noisy
Noisy
Exact
Exact

Parameter
Matrix h

Time Varying
Constant
Time Varying
Constant



Problems III and IV are within the realm of CWLS theory, whereas, •=i I :

Problems I and II are within the realm of structural parameter

estimation theory. Problems II and IV are simpler forms of Prob-

lems I arid III respectively and fol low by letting * = I and T = 0.

In this report. Problems I and III are treated. The results may

easily be applied to Problems II and IV.

I* The conventional weighted least squares (CWLS) parameter

becomes a minimum covarlance estimator If the weighting matrices are

properly chosen (Problem III).

2. The CWLS parameter estimator is biased when applied to
• \

structural parameter estimation (Problem I).

3. If the CWLS parameter estimator is changed by the subtrac-

tion method, the bias may be removed approximately by estimating the

bias using noise statistics and noisy sensor measurements (Problem I).

4. If the CWLS parameter estimator Is changed by introducing

a properly chosen Instrumental variable (IV), the bias may be removed

(Problem I).

5. If the objective function Is augmented and If the resulting

partial derivatives are linearized about previous parameter estimates,

a linearized Iterative weighted least squares (LITWELS) parameter

estimator results. If the noise statistics are used properly, the
THestimator Is unbiased in an asymptotic manner, that is, if the n

estimate Is correct, then the n+l estimate Is unbiased (Problem I).

6. An example problem is worked

7. Unknown noise statistics may be estimated from the residuals

of the objective function.

"8,. Applications are suggested



2.0 Conventional Weighted Least Squares (Problem 11 1 ) .

The sensor equations for measurements of Y and X are;

(6)
Xs ' Xe

The noise statistics are

E(w) = E(v) a o

Cov w » 0 C7)

Cov v « R

Subject to the equations of 5, 6, and 7 we wish to estimate h. To

estimate h, a weighted least squares objective function Is defined as
st

a function of an error e depending on h . One estimates h by taking
/\ *
h a *h .o

J « 7Me ^

a (Y - X *h )T M(Y - X *h )s s o s s p
A

In order to select h to minimize J let us differentiate J with respect
A

to h . If we equate the resulting expression to zero, the following
A

value of h minimizes J for positive definite H.

V" C*Txs
TMX

s*J"' *
TxsTMYs <9>

With regard to the matrix M which weights the error terms of
A -

the vector e, Gauss made the following statement In |:809 concerning

orbital parameters.

"if the astronomical observations and other
quantities on which the computation of orbits is based
were absolutely correct, the elements also, whether
deduced from three or four observations would be
strictly accurate (so far Indeed as the motion Is



supposed to take place exactly according to the taws
of Kepler) and, therefore, I f other observations were : '•=
used, they might be confirmed but not corrected. But,
since all our measurements and observations are nothing
more than approximations to the truth . . .the most
probable value of the unknown quantities w i l l be that
in which the sum of the squares of the differences
between the .actual observed and computed values
multiplied by numbers that measure the degree of
precision Is a minimum.

The "degree of precision" has since been defined to be the Inverse of

the covar lance matrix of e, where

© « Y. - X *h " '.s s o
• X Fw + v

6 T T <IO)

cov e » x rpr'x + Re e

"optimal SCWV + R:r'

Hence, for low noise values, terms of M are large (High degree of

precision) and for high noise values, terms of M are low (low degree

of precision).

As e result of the choice of M tjm ., the covarlance of the

estimation error becomes simply

It may also be shown that (9) is an unbiased estimate of h , that Is

E{h } » h , (12)o o

Equation II represents the minimum covarlance matrix for the
A

estimation error related to h under the following conditionso
Class of Estimators Measurement NoJ se

weighted least squares zero mean, finite variance
linear white
linear and nonlinear white Gaussian



Let us now consider the effect of uncertain I ty In measuring
^

X upon the expected value of h .e o

3.0 Bias of the CWLS Estimator For Problem I

In addition to Equations 5, 6, and 7, let us assume that sensor

measurements of X contain a noise N
G •

Xs" Xe* N

E(N) n 0 (13)

E(NNT) « S,

The sensor equation for Y can be written

Y o (X - N)*h + X Fw + v (14)
s s o e

If (14) Is substituted Into (9) and If the expected value Is taken,

the following Is the result where the noise sequences w, v, and N are

assumed to be uncorrelated

E{h } - C? - T3 h
0 ° (15)

T » E(C*TX TMX *]"' *TX TMN*}
S S S

We conclude that when N » 0 (CWLS parameter estimation) the result Is

unbiased but when N / 0 (structural parameter estimation) the result

Is biased and the bias must somehow be removed.

4.0 The Subtraction Method (Problem Ij^

One obvious method suggests Itself for removing the bias present

In (15): premultiply the estimator by Cl-Tj~ . The expected value of
<\ • • .
h would then becomeo •

E{h } « DI-TT'CI-TD fi = »> (16)o o o
which Is an unbiased estimate of h .o •



Note that for Problem I, T (the bias) depends on *, M, X and
G

the noise statistics. We must therefore know the deterministic signal

X , however, the entire bias problem Is caused by noisy measurements

of X , referred to as X . Hence, any practical bias removal method
O S

Involving the matrix T requires the estimation of T (I.e. T) as a

function of the noise statistics and X . The net result Is that thes
bias Is approximately but not completely removed using T. Suppose that

T Is chosen from (15).

T « OTx TMX * J"' *T 7*
3 S (17)

T «• E{XS
TMN) » E{NTMN)

The following estimator results from premultiplying (9) by CI-T3"
A

where T Is defined In (17)

h = [*TX ThX * - *TT*3"' *TX TMY (18)
o s s s s

Note that the term *T T* attempts to "subtract off" the effect of the

bias, hence the term "subtraction method."

Although the bias Is approximately removed by the subtraction

method, there are four objections to consider. (I) The covarlance of

the estimation error Is Increased as compared to the biased CWLS

estimator. (2) The above matrices contain k sets of data for multi-

stage processes. Subtracting the probabilistic means and variances

Included in T when k is small may result In grossly Inaccurate results

since the sample means and variances may be quite different from their
i

probabilistic counterparts. As more samples are Included In the above

matrices, then this method becomes more useful since the sample means

and variances approach the true means and variances. (3) The sta-

tistics may be unknown, hence procedures must be sought for ej&tlmating



e

the necessary statistics. (4) Selection of the weighting matrices

is not at all well defined as In Problems III (Equation 10).

5.0 The Instrumental Variable Method (Problem I)

Let us now consider the use of an additional variable whose

purpose Is to achieve an unbiased estimator for Problem I. This

method Is called the Instrumental variable (IV) method since the

additional variable Is an instrument for the desired result̂ 18'19'20-'.

" For Problem I one simply rewrites the CWLS algorithm (9) to

include the Instrumental variable (Z). The Instrumental variable

replaces X In such a way that the resulting estimate of h Is unbiased.

no « C*
TZTMX ̂ T'Ĉ Vd MYs (19)

The instrumental variable must be uncorrelated with the noise terms N,

v, and w. If 2 Is thusly chosen, then substituting (14) Into (19) and
St

taking the expected value results In the proof that E{h } » h , that Is,

we have an unbiased estimate of h .o

One advantage of the IV method Is that no statistics need be

known.to remove the bias. It Is necessary, however, to find ways of

choosing an Instrumental variable 'or forcing some variable to

approach X . The paper by Young describes an Interesting hybrid
6

(analog and digital) scheme. The end result Is that Z approaches X by
0

proper adjustment of the model parameters. If Z Is highly correlated

with X , then the weighting matrix M Is chosen as suggest (10), I.e.,
6

M = CzrgrTzT + R].
In summary, an Instrumental variable Z is used as per (19). If

Z is uncorrelated with the noise terms, the resultant estimator Is unbiased



at the expense of the covarlance matrix for the estimation error. If

Z Is highly correlated with Z , the covarlance matrix for the estimation
0

error may be reduced by selecting M as above,

6.0 The Linearized Iterative Weighted Least Squares Technique (Problem I)

Let us consider a "new approach for achieving unbiased structural

parameter estimates. This approach follows directly from a weighted

least squares minimization problem. It may be shown that unbiased

results follow from a specific selection of the weighting matrices,

similar to the weighting matrix selection of (10). Recall that the

basic linear relationship between the states and parameters can be

written In two ways

Y = X h (20)e e

= Hxe (21)

In view of (21) let us write the sensor equation for x.

E(n) * 0 (22)

cov n » S

In (5) the time variation of the parameter vector h was defined.

In a similar manner, the time variation of the parameter matrix H may

be defined "

H » H 6 + WD (23)o.

where W Is a random noise term. Subject to Equations 5, 6, 7, 13, 22,

and 23, we wish to estimate h. To estimate h, a weighted least squares

objective function J Is defined by two equivalent expressions. The

first term of each expression for J depends on estimates of the noise
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sequence n whl le the second term depends on estimates of both nr-and
/\ <s • . . , . - „ . _ , .

h . One estimates h by taking h = $h- .
*>• A /\«p A

J « n'Mfn + y'My

J « JPM.n + CYc - (Y - N)4ih ]TM[Y - (X - N)*h D (24)
I S S O S S O

« nTMjn + CY - Hoe(Xs - n)]TM(lY - H 0(x - n)3

The first expression above may be differentiated with respect
A • •

to h whl le the second (equivalent) expression may be differentiated

* 3J 3Jwith respect to n. At this point, the partial derlvates — x— and —
dh dno/* A

form a set of nonlinear coupled equations since N depends on n and
A A

H depends on h . It Is possible to linearize the partial derivatives
A A A A

and decouple the variable n from h by assuming that N and H are
A A

constants determined by the last estimates of the variables n and h .

The derivation of the solution to (24) begins by selecting

TH """ **the n estimate of n to obtain N . It Is useful to definen

3T = X - N (25)s s n A
The next step Is to differentiate (24) with respect to h to obtain

A

an equation not Involving n. The solution of this equation for the

st *.^ estimate of h fol lowso

(26)

Having a value of h .... we Immediately use that to obtain H . ByJ ovn-r 1 1 oA
differentiating J with respect to n we obtain an equation independent

* stof h which may be solved for the n+l estimate of n

CM, + eMH eTlCeTHTMH ex., - eT?MY n (2?)I o o o o s os



I I

The algorithm of (25) - (27) Is therefore Iterative and begins

with an Initial estimate of N. If the Initial estimate Is zero the

first estimate of h Is Identical to the CWLS estimate.

In summary we have developed a linearized iterative weighted

least square algorithm, which may be abbreviated LITWELS. This method

Is both Iterative (requiring a fixed amount of data storage) and

recursive. In contrast, the CWLS algorithm Is only recursive (that Is,

given a fixed amount of data, only one optimal filtered result occurs).

The following procedure may be used to demonstrate that the

algorithm of (25) - (27) converges in expected value to h In an asympto-
A • •

tic mannert assume that h , ... B h and show that the expected value
oin+i; oA

of h . +2) Is h . To do so, however, requires substituting the noise
A A

estimate n ,. Into the parameter estimate h . .-. which requires some
A • A A A

way of relating n to N and H to h . These relationships are difficult

to establish In general since elements of the column vectors must be

arranged Into matrices. It must be stressed that the LITWELS technique

may converge In general but that proving so Is quite difficult. Conver-

gence can be established for problems with a scalar output (I.e., each

of the sets of data contained In Y_ satisfy a single equation linearly

relating one output state Y . to n other states XQJ and n parameters

TH • 'h.). Hence, for the I set of data

Ye. ' Xe.h.

"h!XeV (28)

° HlXel

The third expression tn (28) follows since X- . Is a column

" Tvector (as Is X .) and h, Is a row vector (as Is H. when Y . Is ael I I ei
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scalar). Since X and Y may be related, then the sensor noise terms

N arid n may be related. Similar ly the parameters H and h may be

related. It Is now possible to demonstrate the convergence of the

LITWELS algorithm as follows
A A A 41

1) Let h .' ,\ » h so that H » H . Calculate n . .oin+1 / o o o n+1
2) Substitute N ., Into (25) to obtain h f- ...n+1 oin+zJ

3) Take the expected value of the result

The resulting expected value Is of the form E{A B} where A

and B are matrices. Expected values of this type are quite difficult

to evaluate, even when the probability density of the noise terms are

.known. Let us assume, however, that A and B contain relatively large

amounts of signal and relatively small amounts of noise. Hence, A

and B are correlated only through the noise terms. If the higher

moments of the noise terms are negligible (as when the noise has a

Gaussian amplitude), then one can approximate the desired expected

value by E{A }E(B) since A~ and B are nearly uncorrelated. If this

Is done, then E{h } •» h when (as per (10))
~ 2 °

T . „-,-!

°n+2

M » L >s s (28)

Mi H S~'

Note that complete knowledge of X implies that S approaches zeroe

(little sensor noise is present), hence M approaches zero for all

Iterations, hence (25) becomes the optimal conventional weighted least

squares estimate as we would expect.

The above asymptotic convergence property of the LITWELS

estimator, Is a rather weak property. It may be possible to establish

the following.
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1. If the expected value of h »^.% equals the expected value
/v.

of h , the expected value must be h .on . o

2. The expected value of the estimator converges uniformly to

h. This phenomenon was observed In an example problem.In which the

mean of the LITWELS algorithm converged exponentially to the correct

parameter value.

r The storage requirements of the LITWELS algorithm Is of Interest.

When Y contains scalar measurements and h Is a constant parameter vector

of dimension n+l, the CWLS estimator of (9) requires the storage of n n
2

running sums. It Is possible to combine (25) - (27) Into one equation

for the constant parameter case. As a result, only one additional

running sum must be\ stored for the LITWELS estimator. The data storage

requirement is therefore minimal for the LITWELS estimator.

7.0 An Example Problem

The analysis presented In sections 1-7 appears to treat a single

stage process with one set of measurements. However, the matrices Y ,
0

X , h, etc. may be defined to contain k submatrlces, each one defined

for one stage, that Is, the equation Y = X , may be defined to contain
6 6n

k equations of the form Y . *> X ,h.. Hence, the analysis Is also valid61 el I

for a multistage process. For example, (9) may be written In terms

of a k stage process where , X , etc., each contain k components.

M̂ ,: (29)

In the fol lowing multistage .example problem, the parameter is

constant, hence *. = I and T = 0 for al I stages of the process. The

parameter estimation equations may be simplified accordingly and written

using summations similar to (29).
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Suppose we are In an automobile traveling at a constant, but

unknown, velocity. The distance y. at time t. Is related to the time
•

t. by the constant velocity v, that Is

V, • t. v (30)
1 1 ^ , •

In order to estimate the velocity, distance measurements are taken

by reading the mil epos ts at five second Intervals, Suppose, however,

that a random error exists in the spacing of the ml leposts. Suppose,

In addition to the random distance measurement error, the clock has a

random error associated with its timing, hence the distance measurements

may be taken at actual time Intervals of 4.95 sec, 5.10 sec, 5.15 sec,

4.9 sec, etc., even though the clock shows elapsed time Intervals of

5.0 seconds. This type of parameter estimation problem Is termed

structural parameter estimation since the actual structure (parameter

matrix) of the process relates quantities which are known with uncer-

talnlty.

Let us define y . as th& measurement of y. and let us define

t . as the measurement of t.. Now suppose we take k sets of measure-

ments. A weighted least squares fit to a plot of y. versus t . may

be used to estimate the constant velocity. The weighted least squares

"objective function J corresponding to this problem follows from (8)

Let us assume that each of the error terms Is weighted equally (all
A

the M. are equal). The CWLS value of v which minimizes J follows

from (9) or (29) where the M. cancel.
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From (15) we know that the expected value of v Is (l-T)v where

T may be defined from the random clock error N^,

T = E{ ;' f-l} (33)

<

In order to remove the bias due to T, let us estimate T as per (17) where
2

the variance of each noise N.. Is a .

* k»2

T « ~£2~ (34)

Using this estimate of T, the subtraction method estimator (18) follows

by premultlplylng (32) by I/(I-T).

" .''Ztmlyml... ,«.v = —5 9 (35)
Z'm|-k°

2The term ko "subtracts off" the bias due to the noisy clock readings.

Let us now consider the Instrumental variable method where an

additional measurement Is used. For this case, the measurement must

be uncorrelated with the random distance and clock errors. After

each.mllepost reading suppose we write down the last digit of the

license number of the next passing car. As an Instrumental variable

z. for the I reading, let use use I.times the selected digit. Since

the digit Is uniformly distributed In the Interval 1-10, the mean v

value of z. is 51, which is also the mean value of the I. time measure

ment (since the readings are taken at 5 second Intervals). Although

z. Is uncorrelated with the random time and mllepost placement errors,

It Is also uncorrelated with t., which degrades the covarlance of the
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estimation error but removes the bias. The IV estimator, as applied

to this example, follows from (19).

Sz.y . (36)

let us consider the LITWELS appraoch to this problem. The

objective function (24) Is as follows where all the M • are equal to

M| and all the M. are equal to m

I - (tm| -n?l)vDm \(37)

THIf we have an n estimate of the clock measurement errors, then the

n+l estimate of v follows from (25) and (26)

f«l

Vl

(38)

'«!• .

ml

stWith the above velocity estimate we can select on n+l estimate of

each measurement error from (27)
AM •*

x. . v . ,mt . - v ^,my .
n'| • . n + l mi - "+l mt (39)

n m. + rtiv . ,
I . n+l

2
If o Is the variance of each time measurement error, then m should

2 2
be I/a . If a Is the variance of each distance measurement error,

2
then m should be 1/0.. Equations 38 and 39 can be combined, resulting

In the LI TV/ELS estimator for the unknown velocity problem.

2 2

U0)
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In comparison with the CWLS estimator of (32), only one additional r

2running sum must be stored, that Is, the summation of the terms y .,

It Is Important to note If the time measurement errors are

small, ° approaches zero, hence the subtraction estimator (35) and

the LITWELS estimator (40) both approach the CWLS estimator (32). For

some case, as the Instrumental variable z. approaches time values t.

the IV estimator (36) approaches the CWLS estimator. In summary, all

three estimators reduce to the CWLS estimator when time Is correctly

measured.

Figure 2 contains the results of a simulation concerning a

constant parameter problem similar to the above but of a higher

dimension (2 parameters were unknown). Plotted are the sample means

for 20 repetitions of each estimator. ; i

The preceding theory is verified by Figure 2. The CWLS

estimator is obviously biased from the correct value. The subtrac-

tion method results in a less biased estimator. The IV estimator

Is unbiased. A perfect Instrumental variable was chosen. For the

unknown velocity example, a perfect IV may be defined as a variable

z. equal to the correct time value t.. A practical case where z.

must be generated would result In a power performance. The LITWEL

estimator's sample mean converges toward the correct parameter value

and, In fact, does so exponentially.

The above remarks support the conclusion that the four types

of estimators can be ranked as follows In ascending order of their-

Success in providing unbiased estimates with a low estimation variance



18

1. LITWELS

2. IV

3. Subtraction

4. CWLS

8.0 Unknown Covartance Matrices

• We have considered three methods for achieving unbiased estimates

with regard to the structural parameter estimation problem. The Instru-

mental variable method requires no knowledge of. the noise statistics.

However, both the subtraction method and the linearized iterative weighted

least squares (UTWELS) method require knowledge of certain covarlance

matrices. This section considers the problem of estimating the covarl-

ance matrices when the statistics are unknown. Residuals (errors and

squared errors) are unknown.

For Problem I it Is necessary to estimate the covariance matrices

0, R» and S which are defined for the noise vectors w, v, and n respec-

tively. Recall that each noise vector may correspond to a k stage pro-

cess so that w may contain k terms of dimension of k x I, v may contain
W

k terms of dimension k x I, and n may contain k terms of dimension

k: x I. Suppose that the covariance matrices Q, R, and S are alt non-. n

symmetric, that Is, the noise sequences are correlated and nonstationary.

There must be enough equations to estimate all the elements of Q, R, and

2 2 2S, hence (kk ) + {kk ) + (kk ) equations would be required. The

resulting large number of equations would be most diff icult to solve.

Suppose that the covariance matrices Q» R, and S are diagonal, that Is,

the noise sequences are uncorrelated but not necessarily stationary.

For this case, one would be required to generate kk. + kk^ + kk, equations
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to estimate the diagonal elements of 0, R, and S. There would still be

a rather large number of equations Involved since k represents the num-

ber of stages. Suppose that the noise sequences are uncorrelated and

stationary. In this case, only k. + k2 + k_ equations would be required

since k., k_, and k- elements along the main diagonals of Q, R, and S

would be unique. For the purposes of this discussion, one additional

simplification Is used to reduce the complexity of the analysis such

that only inner products (scalars) need be evaluated. It Is assumed

that the ratio of the elements of Q, R, and S are known, hence one need

only determine scalar multiplying factors q, r, and s in order to

completely specify all the matrix elements of Q, R, and S. As a result,

only three scalar equations must be generated If we assume that

1. The noise vectors are uncorrelated and stationary.

2. The covariance ratios are known.

In order to generate two of the three scalar equations, one

may utilize a modified CWLS estimator In which Q and R are set equal

to Identity matrices In (10) and the resulting value of M is used In
st

(9). For the first equations, the sum of the residuals e from (8) may

be equated to the expected value of the sum (which depends on s, h ,

.$, F, and X ). Since X , not X is available, the following approxi-
G 5 0

mat!on to this relation Is made
^ . .
Ze s fj (s, hQ, *, T, Xg) (41)

'Vr For a third equation, J may be evaluated for a CWLS estimate

where M In (8) and (9) Is an Identity matrix. The result (let us use

J to specify the new objective function) Is set equal to an approxi-

mate expression for Its expected value
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J, » f3 Cs, r, q, hQ, *, r, Xs)

In summary, we now have three equations In four unknowns (s, r,

q, and hQ).

Using the above three equations, let us consider how the sub-

traction method and the LITWELS method may be adjusted for the case

where the noise covarlances are unknown.

For the subtraction method, recall that we need an estimate

of the bias matrix T which estimate depends on s, *,Tt and X . The

modified CWLS estimate may be set equal to an approximate expression

for Its expected value

h = P - T (s, *, r, X )] h (43)o s o

Equation (41) may be solved for s as a function of the unknown h and

the result may be substituted into (43). A Newton Raphson approach is

then necessary to obtain h from (43) since (43) is a nonlinear function

of h . ^o .

For the LITWELS method It Is necessary to use all three covarlance

matrices hence all three sealars must be obtained. The following scheme

Is suggested

1. Set h equal to the latest LITWELS estimate. Start with

the modified CWLS estimate. -

2. Solve (41) for s using h from I. -

3. Solve (42) and (43) for r and q. Use s from 2 and h from

I. Use a Newton Raphson approach

4. Obtain a LITWELS estimate using the covariance matrices

resulting from 2 and 3.

5. Repeat" the above steps.
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The general method suggested In this section may be applied

to the example problem reported In Figure 2 wherein the noise statistics

are assumed to be known for a 2 dimensional unknown constant parameter

problem and estimates of one of the parameters are plotted. The unknown

statistics case Is shown In Figure 3. The CWLS and IV estimators which

do not use the noise statistics for bias removal are repeated here for

reference. Note that the subtraction method estimator is less biased

In Figure 3 than In Figure 2. This occurs because the subtraction method

Is highly dependent on the accuracy of the noise statistics and, as

shown In Figure 4, the sample variance of one noise term Is somewhat
2

different than the constant (<J. ) used In adjusting the CWLS estimator.

For the unknown statistics case, the subtraction method procedure Is

able to Identify the sample variance of the noise as shown in Figure 4,

hence the resulting estimates are less biased as shown in Figure 3.

The LITWELS method Is degraded somewhatiin its asymptotic appraoch to

the correct parameter value. For the constant parameter problem, it

Is necessary for the LITWELS method to estimate r and s whereas the

subtraction method estimates only s. The resulting performance Is

apparently degraded by this requirement. Performance, however, Is

quite satisfactory. ..... ._....-

9.0 Applications

Structural parameter estimation has been discussed analytically,-

an example problem has been worked, and simulation results have been

presented. Parameter estimation problems which can be cast into the

form (5) can be solved using the methods of this report. In general,

If we are concerned with a process Y » X h where both Y and X arer e e e e
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measured with uncertain I ty and where the time variation of h may be

modeled as In (5), structural parameter estimation techniques are

applicable. In this section, problems related to adaptive control,

prosthetic devices, and image enhancement are discussed In relation

to the structural parameter estimation.

9^J Adapt I ve Con tro I

An adaptive control system has two Inter-related goalsi (I)

estimate the system parameters, and (2) derive .a control law, using

the parameters, which causes the closed loop system to perform In some

P26ldesirable manner . The system "adapts" to changes In its structure

by adjusting the control law in an appropriate manner, Figure I may be

related to an adaptive control system for the structural parameter

estimation problem by adding a disturbance at the input and by using

the parameter estimates to generate the control law . If it Is possible

to describe the corresponding parameter variations by (5) and If noisy

measurements are taken of the states (Y and X ) related by h, then
© 6

the adaptive control -parameter estimation problem becomes one of struc-

tural parameter estimation. One may estimate h using the methods of
A <\

this dissertation and then utilize h » *h to generate an appropriate

control law. Let us consider applications which call for the use of

adaptive control

(I) The handling characteristics of a vertical or short take

off and landing (VSTOL) aircraft on take off are similar to that of a

helicopter, but. In level flight, the handling characteristics are

similar to that of a conventional airplane. It is desirable to generate

a control system s.uch that handling characteristics are constant.
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(2) A shuttlecraft system has been proposed as an economical

T28 29"!way of transporting men and material to and from space stationsu ' .

Each boost vehicle Is to "fly" back to earth for future use. The

shuttlecraft which rides "piggy-back" with the booster is to be highly

maneuverable such that Its occupants may land at certain pre-selected

locations. Each suttlecraft (somewhat like a flying bathtub) must

maneuver with precision since the earth's atmosphere is reentered at

a very low angle and since the landing speed Is in excess of 100 mites

per hour. The aerodynamic conditions under which the shuttlecraft

must operate are Indeed varied, since the craft must fly from a near

vacuum down to sea level causing the handling characteristics to vary

accordingly.

(3) There are cases where unmanned spacecraft might utilize

adaptive control. For example, spacecraft attempting unmanned landings

on Mars and Venus encounter large aerodynamic variations. American

Venus probes have Indicated that surface atmospheric pressure is 75 to

100 times that of

9.2 Prosthetic Devices

Recent medical research has utilized the mi I I(voltages generated

by muscular contractions (myoelectric voltages) to actuate artificial

limbs. The patient learns to use certain muscles to manipulate the

limb.

A law governing artificial limb movement can be defined as a

solution to a structural parameter estimation problem. Suppose the

vector Y Is defined to be sensed myoelectric voltages. Let the con-

stant parameter vector be defined to be the three desired torques (t)
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and the three desired translattonal forces (f) at the time when the

voltage measurements are taken. '

f
ho (44)

Suppose we define a connection matrix X which relates the myoelectrlc

voltages (muscle contractions) to the six degrees of freedom (h ). A

random error vector e can be defined as

e » Y - X h (45)s so

The voltage measurements (Y ) contain a random error. The connection

matrix (X ) Is an approximation to the true relationship between the

muscle contractions and the desired movement of the limb. Since we

have satisfied the conditions for structural parameter estimation, h

In (9) may be a biased estimate of the desired limb movement, making

It necessary to use the methods of this dissertation to remove the bias.'

9.3 Image Enhancement

With regard to received radio signals, filtering methods are

used for removal of Interference due to transmission of the signal. ">

The received signal, a time function, contains the desired transmitted

signal plus a noise term (the Interference) which Is strong In certain

finite frequency bands.

Ah analogous problem exists when a picture Is transmitted through

space. The Mariner 4 took pictures of the planet Mars and reduced each

Image to a grid of numbers which were encoded and transmitted to Earth

where the signals were decoded. The resulting data can be treated as

a function of distance (by recording the numbers at intervals on a

sheet of paper). The string Is a sensed function y (x)
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y (x) a y(x) + s(x) (46)

where y (x) contains the desired signal y(x) plus a coherent noise term

s(x) which Is strong In certain frequencies. Current techniques remove

the coherent noise by using convolution filtering In the spatial Fourier

Transform domain. Conventional least squares parameter estimation can

be used as an alternate scheme.

Let us assume that the frequencies of the coherent noise terms

have been identified from the power spectral density of y (x). For each

frequency, the variation of s(x) with respect to (x) can be written

s(x)

s(x)
= *

s(o)

s(o)
(47)

The values of s(o) and s(6) determine the amplitude and phase of the
•N.

signal s(x). If we consider the vector on the right side of (47) to be

a constant parameter vector h , then we can estimate h to minimize a

least squares error where the ,TH error Is

e, » ys(x,) - [OIL] 4>,ho
A A

The result of determining h is a function s(x) which, when subtracted

from y (x), results In an estimate of y(x) which Is optimal in a least

squares sense.

I0.0 Conclusions

It has been demonstrated that the conventional weighted least

squares estimate Is biased when applied to the structural parameter

estimation problem. The three methods of bias removal, In order of

effectiveness, are

I.' LITWELS

2. IV s

3. Subtraction
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The LITWELS method and the subtraction method require the use of noise

covariance matrices. When these matrices must be estimated, the LITWELS

technique Is somewhat degraded whereas the subtraction method may actually

be improved at the expense of greater complexity. The IV method does

not use the covertance matrices for bias removal, but the IV must be

generated to be uncorrelated with the noise terms and correlated with

X . If minimum variance is desired for the IV method, the noise cover!ance

matrices must be known or derived.
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ON SEQUENTIAL SEARCH FOR THE
MAXIMUM OF AN UNKNOWN FUNCTION

S. Yakowitz
i

'I. INTRODUCTION

Many problems arising In engineering and operations research contexts

have the following structure: The decision maker Is provided with a class

F_ of. functions, whose common domain, X» 's specified. Some mechanism selects

a function $ from F. The decision maker Is not Informed of this choice. He

would like somehow to find a point x*eX at which f assumes Its maximum value

(denoted by Iffjj). Toward this end, the decision maker may sequentially and

without constraint select elements x.,x2,... fromX. Upon choosing x , he

Is Informed of the value f(x ). Thus he may come to learn certain features

of f. Any (perhaps randomized) strategy for choosing x on the basis of the

sequence of pairs {(x.,f(x.))}j . . w i l l be termed a search procedure.
J J J"~

The problem of finding a search procedure S under which, for all feF, {f(x )}

converges to jjfJL In some specified sense, has generated a lively body of

research papers, some of which w i l l be referenced and described in the present

paper.

As an example of the sort of engineering question giving rise to a search

problem, suppose that an airplane Is to fly with a fixed velocity. Its fuel

efficiency w i l l then be a function of the carburation setting. If x is the

relative mixture of fuel and air and f(x) the associated fuel consumption

required to maintain the aircraft's velocity, then the framework for a search

problem Is present. For this problem, X may be taken to be the unit Interval

and F» perhaps, may be considered to be the set of continuous functions on

the unit Interval.

35
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Under certain restrictions on F and X, effective search procedures have

been revealed. The most publicized of these Is the "gradient method" which,

In Its simplest form, determines x.+. from x by estimating the gradient Vf of

f at x. (by difference approximations derived from local samples) and then

setting x.+. = x. + A V f(x.). X is a scalar chosen from heuristic considera-

tions and may vary as the process evolves. If the functions In f are concave

or at least uhlmodal and X Is bounded and sufficiently regular, the'gradient

method can perhaps provide a Cauchy sequence (f(x.)} converging tojjf||.
- J '

Hadley's book Nonlinear and Dynamic Programming CG devotes a nicely written

chapter to the gradient method and Its variations. The review paper by Spang

f.23 has an extensive bibliography on the gradient method, more recent

techniques of which are described in the book by Osborn and Kowllak Q3D.

J. Kiefer C4,5] has published Interesting analyses for the case thatx

Is a bounded Interval In the real line. In particular, under the search

procedure he proposes. In n trials (the number n must be specified In advance)

the point x* at which f(x*) = |If|jcan be located within a distance of I/L , L

being the nth Fibonacci number, when F is the set of unimodal functions on

CO, G. Further, the search procedure Is mlnlmax In the sense that no non-

randomized strategies can Improve on this operating point error uniformly

In F. Bellman and Dreyfus C6] devote a chapter to this optimization approach.

To this writer's knowledge, an analgous search which also possesses the-

mtnlmax property has yet to be revealed for muItl-dimensional X'

An Intriguing search model (which Is slightly closer to the path to be

followed here In that probabilistic Ideas are prominent and multi-modal

functions are included In F) was proposed by H. Kushner C7,8] who supposed f

to be a sample function from a Brownlan motion process on a bounded linear
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Interval, X- An advantage to this viewpoint Is that, In addition to

Including multi-modal functions, ideas from Wiener prediction theory can be

brought to bear on the problem of designing an optimal search procedure.

Kushner points out that numerical evaluation of the optimal procedure is

computationally prohibitive, but suggests (without proof) a search procedure

under which lim l/n Z f(x.) = I ML almost surely.
n-*» 1 = 1 ' ' "

The research reported in this paper follows an approach sketched by S.

Brooks C9]. Presumably, Brooks took X to be a bounded subset of a Euclidean

space, and the loss associated with the function ftp and operating point

xeX to be

L(x,f) = relative (with respect to X) volume of points x1 such that
f(x') > f(x).

Then, given any positive numbers and, a smallest number N is readily

calculated such that If X., X2...X.. are selected uniformly from X. Then for

any real-valued function f,

PCmaxJ<J<n L(Xj,f) > c] < d, for n >_ N.

Brooks, as well as Kushner, consider the possibility that the measure-

ments ff^X.)] may be corrupted by additive noise. These considerations w i l l

be detailed, along with a brief review of "stochastic approximation" In a

later section (Section 4) of this paper.

Let us loosely summarize the results of our Investigation. (X,A) w i l l

be a measurable space, and M, the set of measurable functions on X. P is a

probability function on (X,A). Examples show that no search procedure

achieves f(X.)-+- Jf , even over the continuous functions on the unit Interval
s ;_

or functions f on a countable X. However, a search Is presented such that
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for all feM, f(X )•*• f In P-probabi I Ity. Also, we reveal a search which
n •

achieves P-almost-sure convergence to f of the terms l/n Z f(X.K
. 1 - 1 '

The section closes with a description of various Important subsets of M

for which there are searches achieving Cauchy convergence of (f(X.)) to ||f.||

Generalizing the Idea of Brooks mentioned above, Section 3 proposes,

as the loss associated with operating point xeX and criterion feM, the function

L(x,f) » PC{y:f<y) > f(x)}3. The motivation Is that we are able to derive

upper bounds on the number of search Iterations needed to achieve some given

level of performance. Specifically given positive numbers c and d, we compute

searches S. and S_ and numbers N. and N_ such that under S., If n > N

PCL(Xn,f) >c] < d;

under

n *. . - -
PCsup l/n Z f (X. , f ) > c3 < d

1=1

Section 4 generalizes the search problem previously discussed by allowing
»

that the observations of f(x) may be corrupted by measurement noise. In the

first theorem of the section, It Is shown that If the measurement noise Is

additive and Identically and Independently (of x and f(x) as well as previous

samples) distributed, then under our search procedure (which Is Independent of

the noise distribution) -

f(xj) *llf||. Fn P-probablllty,

and " . >

L(X j , f ) * 0 ' . . i •
-• •• •„ ! •

In P-probabi I Ity. Also, for positive e, c, and d, a procedure Is revealed

for finding the sampfe size N such that, under the search described, If n>N

PC y : f (y) > f ( x ) + e > c]<d.
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This last result does require that the noise distribution be known.

In Theorem 4.6, the noise Is allowed to depend on x and f(x), but various

assumptions are made about Its mean, median, and variance.

2. ON THE EXISTENCE OF CONVERGENT SEARCHES.

We first Introduce the notation and terminology to be used in the

sequel. Let (X,A> be a measurable space and M the set of real-valued

measurable functions or X. We shall always assume that each singleton set

Is In A. Let G be a subset of M and let|l|f|}|= supxeXf(x) for feM (liffll^ r. * 00

Is possible). (We note that||fj|is not a true norm as it may be negative,

for example.) A deterministic search procedure Is a collection of measurable

mappings (m,;k = 0, I, 2, ... of X XR Into X (where R Is the real line).

Given a deterministic search procedure, for feG define inductively x(0,f)=m0

and x(k+l,f) = mk (x(0,f), .. , x(k,f), f(x(0,f)) ... f(x(k,f)). We say

that G has a deterministic search if a deterministic search exists such that

j£g f(x(n,f)) =||f||for all fee. Of course, the intuition behind this

definition Is that x(n,f) is the next point at which we observe the value of

f after having observed f(x(j,f)), j=l,2,..., n-l.

A random search procedure consists of a mapping m.(B;x., . , x., y|»»»Y|J

defined for BeA and x{eX and y. R, k=0, I, 2, .... Further for fixed,

x., ... , xk, Y., ... , y., m.(.;x., ... , y.) Is a probability measure-on

(X,A) and for fixed BeA, ro,(B ; . ) Is a measurable function on X *R .

We Interpret Mi.(.; x., . , x , y., . , y ) as the conditional probability

distribution of X. , if we observe x,, . , x., f(x.) = y., ...̂ , f(x. ) = y..
KT I I K I I K r K

For each feG we may find a probability distribution on the sequence space
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oo k
X by defining a consistent family of measures on X for each k. Let

P. •» mQ and Inductively,

Pk (A X B) « gU) mk_( (A; Xj,..., xk_( f (Xj),..., f(xk_()

k~ Iwhere AeA and BeA . Let P, be the resulting probability measure on X

We say that G has an almost sure search if there Is a random search

such that for all feG,

00
where X is the Identity function on the nth coordinate of X . We say that G

has a sear'ch in probability If for all feG, Hn»n Pf<f<Xn> e N(||f}|)) ° I for

each neighborhood N(||f|j) of ||f|| (with the usual neighborhood system at

.Infinity). If ||f||is finite this is the same as requiring that i ..

Urn P (f(x ) - ||f II | < e) = I for each e > 0.
n-H» T n. i ii

In most spaces If we consider G s M, then ft fs too much to hope for

any sort of convergence since a function may be large at a "small" set of

points. To get around this trouble It Is convenient to allow the function

to be arbitrarily defined on a small set. Let P be a probability measure

on (X,A) and for each f e M let | f | L be the P-essentlal least upper bound

of f. The measure P may take into account a priori knowledge of which x values

1 are Important, but we w i l l not elaborate this point.

We say that(? has a P-almost sure search If there Is a random search

such that for al I f e G,

P.dlm Inf f(X ) >llf||D) «l.T n — 1 1 1 1 r
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;We say. that G has a P-search Improbabi l i ty If there Is a random search such

that lim P. < f<X ) e (IHI - e , + « ) ) = I .

""** 1 1 1 1
fpr each e>0. (The obvious modification holds if f j f j j p = + °°. )

We first consider two examples to show the trouble one may have finding

search procedures.

Examp le 2.1; Let X be countable with each single point set In A • Let 6

consist of functions taking rational values on)(« Let P put positive measure

on each one point set. Then G does not have P-almost sure search.

Proof; Let f be the Indicator function of (x) where P({x>) > 0. Find N

such that Pf(X * x f n > _ N ) > 0 and then find x., . , x . . . such that

P,({ <X.,.,XN_|,X,X,..)} ) > 0. Consider g(z) * I If z =x, z = 2 l f z » y

where P({y)) > 0 and y {x., . , x _ . } , and g(z) s 0 if z J x or y. Then

Pg(g(Xn) + llgjfp) 5.1.

Example 2.2; Let X B CO,lU, A= The Borel field of CO,O, G = continuous

functions and P be Lebesgue measure. Then G does not have a P-almost sure

search. (

Proof: Let f have. a unique maximum at I. If f(X ) ^jf almost surely

then there Is some interval l£ [0,1/2] such that P f<*n^ I , n = I, 2, ... ) > 0.

Consider any continuous function g which agrees with f outside of I and takes

Its maximum in 1. It is easy to see that g(X ) -*• ||f| J< j jg|| wi th positive

probability.

Note that In the two ex amp I es ||f|jp - (jf for all f eG« Further, since

each single point set is In A any deterministic search procedure is also a random

search procedure. Thus, In the two examples G does not have a deterministic

search.
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There are at least two ways of getting around this problem: I)

Consider smaller classes of functions, (e.g. unimodal C5]. 2) Use i

different criteria for convergence.

We now see that a P-search In probability is possible even when

G = M.

Theorem 2.3; Let G a M. Then for each P, G has a P-search In

probablIIty.

Proof: Let X., X_, ... be Independent identically-distributed random
""""""—"—— i ^

mappings each with distribution P. Then for each f

P,( max f(X.) -*-||ft|D> = I. (I)
' >r

The proof is completed by using the following lemma.

Lemma 2.4;- Suppose that G has a random search such that (I) holds.

Then G has a P-search in probabi IIty.

Proof; We sketch the proof. Let Y. be Poisson random variables

with parameters A. -»• + «» which are mutually independent of each other and
*

Independent of X.,X_, ... . For each n, let X = value of X., .. , X

which maximizes f(X.). Consider the random sequence

# •- • • • «• • ' ••• : - •••-• • • • • • • • •••

' ' X2' " *J

Yj - times Y2 - times

We can find "new" m which lead to the same distribution as the random
K

sequence just given. It is easy to verify that this random search works to

give convergence In probability.
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The same method of proof yields: ~?

Lemma 2.5; Let each f e G have P-ess inf f(x) >-«° and (I) hold; then

6 has a random- search procedure such that

pf (I i-f <v+||f.||p>- .

f or a II f e G.

In reference to Theorem 2.3 It Is the opinion of the authors that In

practice, convergence In probability Is as useful 'as convergence almost

surely. In either case one would like some Information on the rate of con-

vergence (a point we return to later).

Let us turn to the other approach of finding searches by restricting

the class 6. The following results are all easy.

Lemma 2.6: Let X be an arbitrary topological space. If for every e > 0

there Is a finite collection c .. t £ of sets with union X and points

S.v InE., 1 = 1, 2, .. ,.n such that

sup sup |f (S.) - f (S)| < e
f eG

then G -has a deterministic search.

Proof; Lete. = I/21, 1=1, 2, ... . Find E(( I ),..., En(|)
(l) sets

associated with e.. Let X. » x. eE ,(!),..., X ,.. = x ... eE ... (I).I I I I nil) n v. I J nil;

Let f(X.) = max f(X ). If f(X ) - f(X.) > 2e. deleted from the space- X.
' l<j£n(l) J ' - j 3 J

a 1 1 over again with the new space and::e7, etc. ' " • -
^ s.

Cpr6l lary 2.7; Let X be compact, metric and A the Bore I slgma-fleld. Then

any equ I continuous family of functions G has a deterministic search.
»

Proof; As X Is compact, G Is uniformly equl continuous. -J
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Corollary 2.8; Let X be compact and metric and A the associated Borel

stgma-fleld. Then any compact subset (with respect to .the sup-norm metric)

of the continuous functions on X has a deterministic search.

Proof; Ascoll-Arzela theorem and Corollary 2.7.

Corollary 2.9; Let X be compact and metric and G uniformly satisfy a

Llpschltz condition. Then G has a deterministic search.

Proof; By Corollary 2.7.

Corollary 2.10; Let X be a compact, dlfferentlable manifold, A the

generated sigma-field and all f In G have uniformly bounded derivatives.

Then 6 has a deterministic search.

Proof; By Corollary 2.7 since the family Is equlcontinuous.

Corollary 2.11; Let X be a compact metric space, A the Borel f ie ld of X

and let C(X) be the continuous functions on X with the sup-norm. Let y

be a probability measure on COO with Its Borel slgma-fleld. Then for each

e > 0 a deterministic search may be found such that

y( f ; f(X ) + ||f|| ) > I - e.n '' 11

Proof; First note that we may think of f as a sample path from a

stochastic process with domain X. From the conditions of X it follows that

C(X) Is a complete separable metric space ([JO, pp 94,103]), and hence y Is

a tight measure [II). Thus, we may find a compact set K such that y(K) > I - e.

Use Corollary 2.8 on K.

Observe that If X *> [0,1], the slgma-field of this process Is the same

field that Is generated by the usual "product-field" construction (a proof of

this statement Is In Parasarathy [12] p. 212). In particular. Corollary

2,11 Is related to a study by Kushner [7] which proposes a search for
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finding the maximum of Brownian motion sample functions. '

The problem of characterizing subsets 6 that have a deterministic

search Is quite Interesting, but the authors have not been able to make

much progress. The problem appears to lie In the domain of mathematical

logic. ^

Note that under the conditions of Corollary 2.11 we may find a count-

able dense set of points In X. Let P be a measure putting positive mass

on each point of the set. Then for continuous f, ||fi| = I fjj p and Theorem

2.3 and Lemma 2.5 hold for the stochastic process.

3. RATES OF CONVERGENCE

In applications of sequential search procedures It Is highly desirable

that there be some way of assessing what can be done in a finite number of

Iterations. For example, one would be interested in knowing, if possible,

how fast f (X ) •* jjfjj. In this section we consider questions of this sort.

To see the difficulties involved we consider an example In random

search.

Example 3.I; As a criteria of the amount of convergence one might

consider ||f|| - f(Xn> or <||f||-
 f (x

n
)}/| |f|'| • More generally, we w i l l use

g(||fj|, f(X )) where g(x,y) is a function satisfying:

I) for fixed x, g(x,y) Is strictly decreasing as y approaches x from

I •-••. below.

2. g(x,x) =» 0

3. For fixed y, g(x,y) Is strictly Increasing as x Increases (where x ̂  y)

with a limit ]> I for al I y as x •*• °°.

To get a grasp on the rate of convergence one might hope to find a random

search such that for each c > 0 and 0 > d > I, there Is a number N(c,d) such



46

that for f e G and for n >^ N(c,d)

P (g(| ML f(Xn» > c) < d .

We now show that this cannot be done If X * CO,lD and G Is the set of

continuous functions. Let c £ 1/2, 0 < d < I, and n be any fixed Integer and

some random search procedure also be fixed. Pick any f e G and let I be an

IntervaI such that

Pf(I HXj, ..., Xn = <$)> d.

Let h e G agree with f on the complement of J and g| |n j |» IMP > '/^. Then

we have

P (g(l|h|/, h(X )) > c) >_ P (gllhll, h(X )) > 1/2)
y * . y

^ P (h(X.) = f(X.), 1=1, 2, . , n)
y

1 p ( x,, . , xn n i = <j> = pf( x,, . ,xn n i = «5>

> d

ending the example.

A great weakness In the theory of search procedures Is the fact that for

G the class of continuous functions on L"0,lDf under no search procedure can

bounds on the rate of convergence of f(X ) tollfll or E, . f(X.)/n tojjfjlbe

established which are uniform on G. The practical consequence of this weakness

Is that the experimenter cannot estimate the level of performance attainable

In a finite number of search Iterations. One approach to overcoming these

difficulties Is to redefine the search problem by proposing a different (but,

hopefully, not unreasonable) criterion of goodness.

We do this by following some of the Ideas Implicit In Brooks C9.U. Asso-

ciated with each operating point x e X and f e G Is the set a(x,f) » (y:f(y)

> fCx) , which Is here called the domain of Improvement (of f over f(x)).
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As In section II, let a probability measure P be given onCL(X,A). As a loss

function we propose the P measure of ct(xff). That Is,

L(x.f) = P (a(x,f)).

Strictly speaking, L should also contain P as a variable, but since P wl I! be

fixed we shall omit this notation.

Thus, L(x,f) is the probability that a person choosing a point Y at

random In X with distribution P w i l l find that f(Y) > fCx). If X Is a set of

1̂finite volume In R and P Is proportional to volume (I.e., P Is proportional

to Lebesque measure) then L(x,f) Is the fraction of the volume on which f

exceeds f(x).

We find that for certain search procedures It Is possible to obtain

Information on how close L(X ,f) Is to zero. W e - w i l l say that X., X7, ..,

are chosen at random If X., /2» ... are Independent, Identically distributed

X- valued random mappings with distribution P. Let f e M be fixed and for

each n define n* by I £ n* <^ n and

f(X ») » max f(X.) .
l<J<n '

Proposition 3.2; Let X., X2, ... be chosen at random and 0 < a < I;

then for each Integer n and f e M,

P.(L(X' f) > a) < (l-a)n. ' -t n* —

Proof t Let t1 = sup (t: P({x:f(x) > t}) > a] then P({x:f(x) >_ t-J) <, a.

Thus, P f(L(Xn.Tf) > a) - P f ( f ( X j ) < t', I £ I £ n) « ftr P%:f(x)< t']) £ (l-a)n.

By considering any random variable f (X ) with a continuous distribution function

we see that equality may hold.
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With this criterion of accuracy, the rate of convergence Is Independent

of the dimensionality of the space X. With other criteria of convergence

this might not be true. This point Is discussed further by Spang L"9, page

3623 who uses two concepts of convergence and appears to doubt Brooks' C^3

comment that the rate of convergence Is Independent of dimensionality.

Further Information on the rate of convergence Is contained In the next

theorem. In what follows, M Is defined to be the random variable L(X a,f)

defined In Proposition 3.2, and X Is distributed, randomly. .

Theorem 3.3; Let f(X) have a distribution function F such that for some

e>0, F(x) >^ I - e Implies F Is continuous at x. Then nM converges weakly

to be exponential distribution with parameter I.

Proof; Let a > 0; then for large n,

P.CnM < a) = P. (M < a/n)f n — f n —

« I - Pf(Mn > a/n) » I - n
n Pf(L(X,,f) > a/n)

« I -nn P ({x:f(x) > tn» = l-(l-a/n)n

where t » sup {t;P( x: f (x) > t}) > a/n . This approaches I - e~a as n •»• «°

completing the proof. For a > 0, by Taylor's theorem with remainder on the

logarithm of e /(I - x/n)n, we see that (large n);

exp(-a2/2n) < e"a/(l-Pf(nMR ^ a)) < exp(-a2/2n + a3/6n2)

In the same vein as Lemmas 2.4 and 2.5, It Is shown that we can use

Proposition 3.2 to get searches which converge at a known rate.

. Theorem 3.4; One may compute a search procedure S. under which, for

any positive numbers c and d, a number N(c,d) may be found for which
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n
Ptsup l/n Z L(X.,f) > c]<d

n>N(c,d) 1=1 '

for every feM.
oo

Proof; Let {n(D} be a sequence of numbers such that n( l) = I and
1 = 1

l/n(I) converges to 0 monotonlcal ly (e.g. 2 ). By Proposition 3.2, we

may compute a number N1 such that

(c/2)

Search procedure S. requires that X be sampled Independently with distribution

P at times t=n(J) (j*l ,2,.. . ), and for tyn(J),x. Is chosen to be the best

value In the sequence (X n/iJ sampled thus far: f(x.) = max (f(Xv> : v <_ t) .

Thus evidently f(x.), t t (n(J)} Is monotonlcal ly Increasing In t. Observe

that from the choice of N1 and the definition of S . ,

PCL(Xn(Nf),f) > c/2D < d. .

Let 0 be the event (with reference to the process determined by S. on f) that

L(X ( Ni\»f> <. c/2. If Q occurs, then by the choice of W" (and observation that

L(x,f) £ I, always)

• n
SUPn*N» Z Kn L ( XJ»tVl C.

ll̂ li * *-. * I / ' • - I - • - *

In summary, • .
• n

PCsupn>N,,iii| i/n [ L C X j . f ) > cD < P CQC: < d,

and consequently the theorem is proved, with the understanding that N'

suffices for N(c,d).
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Theorem 5.5: One may compute'a search procedure S,,, under which,

for any positive numbers c and d, a number N(c,d) may be found for

which

PL~L(Xn,f) > c] < d

•'•' r for all n > N(c,d) ahd'al l feM.

Proof; Let (n(j)} be a sparse sequence as In the proof of Theorem

3.4. From this we construct a random sequence{N(J)} where N(j) has the

sample space {n(j), n(j)+l, n(j)+2,...,n(j+l)-!> and Is chosen by the

randomization which assigns equal probability to each element of this

sample space. S7 is the search procedure which samples X independently

and uniformly at times In {N(j>}. At other times, x. Is chosen to be the best

operating point thus far sampled. The condition Imposed on (n(j)} that

l/n(j) converge monotonica11y to 0 as j tends to infinity ensures us that a

number N' can be found such that

P[N(j)=nI] < d/2 for all j > N1, all Integers n.

From Theorem 4, a number N" may be found such that PL~MNM > cD <! d/2. If

k » max{N'+l,N"} then for n > n(k)

• PL~L<Xn,f) > cD <. PL~MN,, > c] + P[ne[N(J)}3 < d

ending the proof.

Without going into detail It Is clear that in results 2.6 through 2.10

one may find integers N(e) such that if n > N, ||f||- f<X n > < e for all feG.

A modification of Coronary 2.11 also holds). In order to find N one must

know quite a bit about the structure of G« For example, in Corollary 2.8

one must know the compact set. In general, there Is no one search which

works for all compact sets. If one knows the compact set, not only may a

convergent deterministic search be found but also a uniform bound on the time
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necessary for any degree of convergence.

In closing we note that If G consists of unlformly bounded measureable

functions, then the central results of this section obtain under the loss

,.ti J J tifunction L'(x,f) " J f(y)P(dy), where B «={y:f(y) £ f(x)}
B

Proposition 3.6; Let g be a function In ̂having a finite expectation

with respect to P. Assume for every feG, f £ g, and that X. Is a random

sequence. Then for every positive c and d, a number N may be computed such

that for every feG, In the notation of Proposition 3.2.

pL~L'(XN#,f> > cD < d.

Prooft By the assumption that the integral of g Is finite, one can

find a positive number k such that if PCAD < k,

JAg(x) P(dx) < c.

NIf N Is such that (l-k) < d, from the proof of Proposition 3.2, we know

that with probablIIty greater than l-d, L(XN#,f) < k. By the definition

of L and the choice of k, this means that with probability greater than l-d,
m

.g(x)P(dx) < c, (A = x:f(x) > f(X «) (3.1)
f\ l»

Finally, as g major!zes f, (3.I) gives us (letting AH x:f(x) > f(X #)

L'(XN#,f) = f f(x)P(dx) £ J g(x)P(dx) < c
T\ * A '

From this proposition, the other major results of Section III fol low with

L' replacing L, with at most minor modifications of the proofs.

4. SEQUENTIAL SEARCH USING NOISY MEASUREMENTS

In this section we consider the problem of the'earller sections with the

additional comp 11cat-lon that errors of measurement are present. To be more

specific,, if X Is the rrrh operating point, the decision-maker observes:
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f(X ) + Z (X ,f(X )) (4.1)n n n n

where Z (X f(X )) Is a random variable conditionally Independent of X.,..,

X ., Z., .. , Z _. (given X and f(X )) whose distribution Is conditional

on the values of X and f(X ). We w i l l assume that If X. «* X., then Z. and

Z. have the same distribution.

Physically, f(X ) + Z may be regarded as arising from a noisy meter

which measures f(X ), the noise being dependent upon the operating point X

and f(X ) the value at X . "Noisy measurements" refer to observations ofn n

the form (4.1) (In contrast to f(X ) which Is considered a "noiselessn

measurement").

The basic Idea In the section Is the standard one of replicating

observations to minimize the effect of observational error (see. e.g. Brooks

C9 3)« We consider several different cases. The first case Is when the

measurement error does not depend upon X or f(X ). The distribution F

of the error Is assumed unknown in the next theorem.

Lemma 4.1: In the noisy measurement case, let Z., 7.~, ... be unknown

Independent Identically distributed random variables Independent of

(X.,f(X.)) (X2,f(X_)), .. for each f e M. One may compute a search

procedure S, under which, with P-probabllity I, as n CO

n
l/n I L(X ,f) * 0

t-l '

II

(thus l/n I f (X l )* | | f | |p If f is P-bounded below)

l»,l ' • • ' . . -

for each feM such that P[f(X) = | |f| p = 0.
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Remark: For plecewise continuous functions f, this last restriction is

satisfied if f does not assume its maximum on a plateau.

Proof! The description of the search procedure S, uses the following*"~™~~~ • j

notation: (u.(n)} is an observation of a sequence of independent values (U(n)}

P-distributed on X. Class F denotes the empiric distribution function
"i J

constructed from the observations which, during the first N observations of

the search, have been made at u(j), j » 1,2,... . (An empiric distribution

function F constructed from any sequence {x. } n , of n real numbers is the

cumulative distribution function determined by the expression

nF (x) » number of elements x. of (x. } such that x < x.
n J i i=1 J-
is the cumul

f(u(j)) + Z; i.e.,

F . * is the cumulative distribution function (cdf) for the random variables

» for everv real *•

More generally, F is the cdf of f (x) + Z. If H(x) is any real function,
X

let ||H||* « sup ^ |H(x)|. (K(v)} is a sequence of integers such that if

n>K(v), then for any cdf F, and empiric distribution function F constructed

from n independent observations distributed as F,

HllF-Fjl * >. 1/vJ < 2~V/v.

Massey [13] gives an algorithm capable of computing a minimum such number

K(v).

(M(V)} is a sequence computed inductively by the following rule:

M(2) « 1.

M(v) - M(v-lHA(v)+v K(v), v > 2

where A(v) is some positive integer such that

[M(v-l)+v K(v)+(v+l) K(v+l)]/A(v) < 1/v (4.2)

Having described (K(v)} and (M(v)}, we are in a position to reveal the search

procedure S_.
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Step I ;

For each Iteration v, v » 2,3,..., of these Steps 1-3 the points

are chosen, at each n, from the set of points (u(J): J =

l,2,..,v }, so that each u(j) Is sampled K(v) times. Therefore, by time

N » M(v) + vK(v).

PD|FN,j " Fu(J)H * - I/V' J*1'2""^ > ' - 2"V' <4-3)

Step 2;

At time N = M(v) + vK(v), a positive integer v* <_ v Is selected such

that for every real number z,

Fw « (z) > FM L (z) - 2/v for I < k < v. (4.4)N j V N p K • "" ™ *

If no such v* can be selected, v* is chosen arbitrarily.

Step 3;

At times n, M(v) + vK(v)<n<M(v+l ), X = u(v»). At time M(v+l), repeat

the process, with v increased by I. Toward outlining a proof that S-, as

Just described, possess the property asserted in the theorem, It is necessary

to recognize that with probabi I Ity I, (4.4) w i l l hold for all but finitely

many v. For demonstration of this, let u(v') be any positive integer not

greater than v such that

f(u(v')) » maxj ̂  . < yf<u(J)).

Then for all z and all i<y,

FU(V|)(Z) » Fz(z+f(u(v'))) £ F (I) (z) « Fz(z+f(u(t))).

The event (which w i l l be denoted by B(v)) that
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Implies, by the triangle inequality, that for j <_ v,

FKI »• (z) > Fw . (z) ~ 2/v« al1 real z
IN, V IN , J

and thus (4.4) holds with v* = v'. Note that by construction of {K(v»,

P(B(v)C) < Z 2TV

v*2

and consequently, by the Borel-Cantel If lemma, B(v) occurs for all but

finitely many v, concluding our assertion that for all but finitely many v,

v* can be picked to satisfy (4.4). We w i l l hereafter assume without comment

that v* always has the property (4.4). As our only concern is with limit

theorems, this assumption wl 1 1 not lead us astray. .- • •

The completion of the proof that S, leads to the convergence of
n

l/n Z L(x.,f) to 0 Is at hand. By the choice of M(v) and A(v), we have that
i»l

at all time Q during the vth Iteration of steps 1-3 (v>2) that

Chlumber of Observations x;, M£Q, taken at (v-D* or v*U/Q>(v-l )/v,

and thus for all n >M(3),

n
l/n Z L(x,,f) < l/v+((v-l)/v) max (L(u(v*),f), L(u( (v-l )*) ,f )} (4.6)

t=l '

.The proof Is completed by showing that almost surely,

L(u(v*),f) + 0.

Let x' be any point in X such that L(x',f)>0. Then almost surely some

u(h) in an observation of (u(v)) gives f(u(h)) > f(x'). If H Is a number

such that •

-6/H

then for all v > max{H,h) , If f (u(j) ) £ f (x1 ),

F N , v » ( z ) > F u ( h V ( 2 ) - 2 / v > F u ( J ) <z) + 6

. > FM - , (z) + 6/H-4/V > F w . (z) + 2/v, (a l l real z),N* J N i j
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which Implies that J cannot be chosen to satisfy (4.4) for v*. From this

we deduce that

Mm sup L(u(v*),f" <_ L(x',f). (4.7)

Let fw ) be a sequence (whose existence Is Implied by the hypothesis that

PCf(X) =||f||p3
 a 0) such that L<*n,f> > 0 and L(*n,f) •• + 0. Then (4.7)

holds almost surely simultaneously for all the w (In place of x1) and we

conclude that with probability I,

Mm L(u(v*),f) 5 tnfnL(wn,f) » 0

Theorem 4.2; Under search S' described below, Lemma 4.1 remains

true In the absence of the hypothesis PL~f(X) = I Ifj L-. •» 0.

Proof: S,1 differs from S, only in step 2, where for S,1 the restriction~ j j . j

Is made that v* be the greatest positive integer <^ v such that for every

real number z, *

FN,v*(2) > FN,k(z) ' 2/v' '-klv' (4'8)

Observe that S,! is a version of S,, and consequently it achieves con-

vergence under the hypothesis of the preceding theorem.

In the absence of a sequence {w } as described In the proof of the

previous theorem, there Is a number t1 such that

P[f>t'3 " 0 and P[f » t'3 > 0. _ (4.9)

(The abbreviation PCf > bD Is used to denote the P-probablllty of the

domain of Improvement (x:f(x) > b}). We use the notation of the proof to

the preceding theorem." Let h be an integer (surely there Is one) such

that f(u(h)) * t1. Then for v > h, under S,1, v becomes v* by virtue of

one of the events A (v ) ' o r 'B (v ) (in the stgma-fleld of the process

determined by S, and f) occurlng:
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A(v) f(U(v)) - t1' !

B(v): B(v) « B.(v) O B2(v).

•riitrc - • •» x \ * i t w ^ * y x \ \ ^_ •! f \Bj-(v): t > f(u(v)) > •£ ; a(v)
and

B-(v): F.. satisfies (A.A)
2 N,v

Here a(v) •« inf (a:j| F , - F 11 * <. 2/v}, || * being the sup norm.

Note that P[A(v) tl B(v)] i P[A(v)] - P[f»t'] which is positive and

independent of v. Thus under S_', during evolution of the process

infinitely many different v are chosen as v*. Our proof consists of show-

ing (below) that

limv P[B(v) A(v)U B(v)] - 0 (A.10)

Note that A(v) and B (v) are independent of {U(k):k̂ v}. Thus (A.10)

implies.that limv P[F(D(v*)) = -t* ] " 1, which in turn implies that

(L(̂ (v*),f)} converges in probability to 0. This (in view of equation

(A.6)) concludes the proof. :

We proceed now to the demonstration of (A.10).

P(B(v) | A(v) U B(v)] <. P[Bx(v) I A(v) U B(v)]

-Pit1 > fOKv)) > t1 - a(v)]/Ptt' > lf(U(v)) >.t''- a(v)l.

As (a(v)} converges to 0 monotonlcally, by the continuity property of

measures*

limy Pit' > f||UKv)) J f
1 - a(v)] = 0.

Similarly*

limv Pit' i f(I/(v)) if' - a(v)] o P[f(U(v)) » t'l > 0

Thus PfB^v) | A(v) |) B(v)I •»• 0. which in turn implies that

P[B'(v) I A(v) UB(v)] * 0.
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.Corollary 4.3; Under the conditions of the theorem, one may compute

a search procedure S. such that the results of the theorem stt11 obtain,

and further

L(Xj,f) •»• 0.

(and consequently f(X.) -*JH| ) In P-probablllty for all feM .

We describe the modifications of S,' which achieve the result, leaving

verification to the reader. For v=l,2,..<, choose the K(v) samp I ing. times
>,

randomly (I.e. uniformly) from M(v), M(v)+l,..., M(v+|) - I. At the

remaining times between M(v) and M(v+l), let X(t) = U((v-l)*). Observe that

the sample times become sparse. .

Proposition 4.4: Given positive numbers c,d, and e, and FZ, the

common distribution of the independent noise samples, there is a number

N(c,d,e) such that for n > N(c,d,e), under the search described below,

for all feM,

PjXf'> f(X ) + eD > c3 < d.
T n ., ,„ ..,. , ; i. ...

Proof: (U(j)} Is a sequence of N. independent, 'X-valued, P-distributed

observations, where N. is a number large enough to assure (In accordance

with-Proposition 3.2) that

P[min L(U(j),f) > c] < d/2. -
JIM

Let h be a mapping with domain L~-I,G such that h(a) = F,+ . Then h

Is I to I and continuous with respect to the Prohorov metric (Prohorov

on the space of distribution functions. Consequently h is uniformly

continuous. 6 is defined to be a modulus of continuity associated with e

(assumed less than I). N_ Is a number such that. In the notation of the

Gllvenko-CantelII Theorem, for n > H,
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' PC I F - Fn I * > 6/2] < d/2N .

NaN.N2 and our search consists of sampling at each point U(J) and then

letting N* be the number J such that for some x and all k

F. M(x) > F. ..(x) - 6/2. (4.11)
J i™ K,N

At times greater than N, the operating point Is chosen to be U(N*). Toward

showing that the strategy has the property given In the theorem, let U1

denote the observation U(k) which minimizes L(U(j),f). With probability

greater than I - d, simultaneously

U) L(U',f) < d

and for .l<j<Nj,

*"* ''Fj>N~FZ+f (U(J))" < <S'2*

Assuming (I) and (II) hold, by the triangle Inequality and rudimentary

properties of the translation parameter family F7. , we see that (4.11)

Implies

n *s -
FZ+f(U(N*)) " FZ+f(u')H

HI FT. ~ Fz+(f<u f)-f(u*)) ^'^ 6'
which, In view of the fact that the sup norm majorizes the Prohorov metric

and also the way 6 Is defined, implies f(U') < f(U(N*)) + e. This completes

the proof. .

We offer below some further refinements In the noisy measurement case.

The proofs are only sketched as the ideas are similar to proofs already

used.

Let o B f(X ) + Z , the nth observed value. By f(n) we w i l l denoten n n — '

any estimate of ||f||p« That Is, f(n) Is a measurable function of
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(X., .. ,(X , 0 • .. o ). The basic Idea tn the next two results Is theI n I n

standard one of replicating observations to minimize the effects of

observational error (see Brooks L"9]]).

Theorem 4.5: Let the Z be I.i.d.r.v.'s with a known distribution /-• n /t
function F7. One may compute a search procedure S and estimates f(n) such

that

1) f(n)-*fff]|p a.s. <Pf) for all feM.

2) L(Xn,f) •*> 0 I.p. (Pf) for all feM.

n
3) Z L(X.,f)/n * 0 a.s. (P.) for all feM.

1-1 ' f

Sketch of the proof; Pick Z a unique pth percentlle for F-, that

Is FZ(Z) >^ p and FZ(Ẑ D f. p (for some fixed p, 6<p<l). At any particular

x by using the Kolmogorov-Smtrnov approach and observing the pth percentl le
A

of f(x) + Z , n»l, .. , N(e) we may estimate f(x) by the pth percentlle f
In such a way that "•••;•;.'"•--x,." :

Ff(|f-f(x)| <e) £ l-e

Let Yj,Y2,... be l.l.d. X valued r.v.'s with distribution P. We

proceed In Iterations as In earlier theorems. During the nth Iteration
A A

we have estimates f , .. , f of f(Y.), .. , ̂ ^Yn^» respectively, all

within e with probability > I - e . During the n-Ust Iteration mostn n J —

observations are at a point among {Y., .. , Y_) picked at random from
^ A A

among those Y. satisfying fj > max{f., .. , f ) - e . The other

observations give estimates of f(Y.), ... , ̂ <Y
n^» ^

(Yn+|} to wl'*'nln

e. with probability > I - e
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During any given Iteration, f(m) the estimate of j | - f jL Is the maximum

^of the f. of the previous Iteration.

By choosing the e such that the Borel-CantellI lemma holds and bv' n

choosing (during each Interatlon) a smaller and smaller fraction of X.'s

to be used In estimating the f(X.)'s one can show that the results of

the theorem hold.

Theorem 4.6; For all XeX suppose that the noise Z(x,f(x)) satisfies

one of the following:
2

a.) Z(x,f(x» has a n(u, (x,f(x))) distribution, y known

2a (x,f(x)) unknown.

b.) Z(x,f(x» has a distribution which Is symmetric about the known

unique median y.

c.) Z(x,f(x» has a known mean y and variance bounded uniformly above.

Then one may find a search procedure and estimates f(n) such that

I), 2) and 3) of Theorem 4.5 hold.

Sketch of proof; The thing to note Is that In a), b) and c) for

a fixed point x, e, X If we repeatedly sample X+ W., W. Independent

and Identically distributed with distribution the same as Z(x,f(x» then

for each e > 0 we can find a stoptng ruje T and T-measureable estimates -

f(x) of f(x) such that -

Pf(|f(x)-f(x> | 5 e) ̂  l-e.

In a) one could use the t-varlable, In b) use the Ideas expressed In

Kendall and Stuart, C153 pages 513-522 and use Chebyshev's Inequality In

case c).

We thus can app-ly the same Ideas as In Theorem 4.5.
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If \i were unknown It would still be possible to satisfy conditions

2) and 3), but not condition I.

We close this section by mentioning related studies. We have stated

that In Kushner theory C?D H" 's supposed that f Is a sample function of

a known Brownlan motion process. If Is further allowed that the measure-

ment may be corrupted by Gaussian noise having zero mean and a known

variance, which Is allowed to depend on the operating point x. The frame-
o

work for computing an optimal search procedure minimizing E[(||f||- f(x )) D

Is sketched, but It Is not proven that these methods yield convergence of

the above expectation to 0.

Our studies are also somewhat related to the subject of "stochastic

approximation," initiated by Monro and Robbins CIS] and placed in an

optimization setting by Klefer and Wolfowitz CI73. A definitive survey

of stochastic approximation has been written by Schmetterer Cl8D. Briefly,

the stochastic approximation problem in determining the maximum of a

regression function may be viewed as the problem of finding a search

procedure yielding a sequence{X.)converging (either In probability or

or almost surely) to x*, where x* Is the unique operating point maximizing

f. The stochastic approximation setting Is more general than ours In that

the noise process, while (as in our studies) being independent of earlier

observations, may be unknown and yet depend on x. But It Is at the same

time more restrictive than our theory because f must be a function which

Is unlmodal. There are various other assumptions imposed on both F and

the noise process; the reader is Invited to consult the stochastic

approximation literature.
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5. COMMENTS

The goal In this paper has been to delimit what can be done by sequential

search procedures when the set of objective functions Is rich enough to

Include all continuous functions. This goal Is more In the tradition of

automata theory than numerical analysts. Where possible, we have sought

bounds to the number of observations needed to accomplish those results that

can be accomplished. Toward this goal we have revealed several search'

procedures giving convergence (In various senses) to optimal performance.

Many of these results, especially In the noisy measurement case, are

believed to be new.

For particular numerical problems wherein some prior knowledge of the

criterion function f Is available, we expect that often heuristic considera-

tions w i l l yield more rapid convergence than our algorithms. The literature

suggests that heuristic "creeping search" programs (e.g. Schumer and

Stelglltz Cl9]) have been used for some time. In any event. In computation, •

once the designer has found the number of searches, N, required to satisfy

his tolerance of error, If the criterion function possesses any regularity

whatsoever, It would seem sensible to sample at evenly spaced grid points

rather than randomly chosen points as per the preceding algorithms. We

suspect that the procedures we have proposed may have merit If the function

f Is easily evaluated (such as In linear or quadratic programming problems,

etc.). Regardless of Its computational merits (or lack thereof), the

preceding analysis should have practical value In pointing out that certain

search problems which are much more difficult than those currently studied

are, In principle at least, amenable to solution.
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Our viewpoint and procedures differ from other approaches to the

sequential search problem in that the nature of the domain space can be

suppressed. As noted above, the dimension of X plays little role, and In

contrast with any other studies, the closeness of the operating poiqt x to

an optimizing point x* Is of no consequence; It Is on the closeness of f(x)

to f(x*> that our attention focuses.



65

REFERENCES

G. Had ley, "Nonlinear and Dynamic Programming," Addison Wesley,
Reading, Mass., 1964. •

C23 H.A. Spang I I I , A review of minimization techniques for nonlinear
functions, SI AM Review, 4, (1962), pp. 343-365.

C3U J. Kowallk and M. Osborne, "Methods for Unconstrained Optimization
Problems," Elsevier, New York, N.Y., 1969.

C4] J. Klefer, Sequential mlnlmax search for a maximum, Proc. Amer. Math.
Soc., £, (1953), pp. 503-506.

C53 J« Kiefer, Optimum sequential search and approximation under minimum
regularity assumptions, SI AM Journal, 5_, (1957, pp. 105-136.

C6U R. Bellman and S. Dreyfus, "Applied Dynamic Programming," Princeton
University Press, Princeton, N.J., 1962.

C7D H. Kushner, A versatile stochastic model of a function of unknown
and time-vary ing form, J. Math. Anal, and Appl., 5_, (1962), pp. 150-167.

•C8D H. Kushner, A new method for locating the maximum point In an arbitrary
multipeak curve in the presence of noise, ASME J. Baste Enqr. 86,
(1964), pp. 97-106.

C9D S. Brooks, A discussion of random methods for seeking maximum,
J. Opers. Res. Soc. of Amer., £, (1958), pp. 244-251.

CI03 A. Taylor, "Introduction to Functional Analysis," Wiley, New York,
N.Y,f 1958.

ClQP. Billlngsley, "Convergence of Probability Measures," Wiley, New
York, N.Y., 1968.

K. Parasarthy, "Probability Measures on Netrlc Spaces," Academic
Press, New York, N.Y., 1967.

F. Massey, A note on the estimation of a distribution function by
confidence limits, Ann. Math. Statist., 22, (1950), pp. ||6-l19.

Yu. Prohorov, Convergence of Random Processes and Limit Theorems,
Theo. Probab1Hty AppI.. I, (1956), pp. 157-214.

CI53M.. Kendall and A. Stewart, "Advanced Theory of Statistics," Vol. II,
3rd ed., Hafner Publ. Co., New York, N.Y. 1967.

Cl6D H. Robblns and S. Monro, A stochastic approximation method, Arm.
Math. Statist., 22, (1951), pp. 400-407.



66

J. Klefer and J. Wolfowitz, Stochastic estimation of the maximum
of a regression function, Ann.Math. StatIst., 25, (1952), pp. 462-
466.

CI83 L« Schmetterer, Stochastic approximation, In "Fourth Berkely
Symposium on Probability and Statistics," Vol. I, University of
California, Press, Berkeley, California, (1961), pp. 587-609.

Cl9j M. Schumer and K. Stelglltz, Adaptive step size random search,
IEEE Trans. Auto. Control, J2» (1968), pp. 270-276.


