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Abstract

This report Is concerned with the selection of an estimator which
is unblased when applied to structural parameter estlmation (i.e., the
“estimation of a set of unknown parameters contained in & vector h r
relating certain states, Ye and Xe, which are measured with uncertainty).
The form of this ralationship is known and follows from the structure
(nature) of some process (i.e., Yo © xeh). Structural parameter estima-
tion Is differentiated from conventional parameter estimation In which
Ye Is meagured with uncertalinty bu+~xe is known exactly. _The parameter
h may vary with time according to the difference equation h = ¢ho + I'w
where ¢'énd I' are known and w is a random noise term. |f xe'ls known
exac+lyAa weighted least squares objective function (J) is defined where=-
in the error vector depends on estimates of h, resulting in a convenfionaf
weighted least squares (CWLS) estimate of h.

It Is shown that the CWLS estimate is blaséd when applied to
structural parameter estimation. Two distinct approaches to blas re-
moval are suggested: (l)‘ change the CWLS estimator or (2) change the
- objective function. |

‘ Two methods are discussed with referénce to the flrsf'approach.
In the subtraction method, the noise statistics are used to eliminate
the blas approximately. In addifion; méfhods are suggested for
estimating the ﬁolse statistics if they are unknown. Unfortunately the |,
new estimator eliminating the bias at the cost of increasing the
varlénce of the estimate. In the instrumental variable (IV) method, an

addlflonal'meaSuremenf is taken which, If avaiiable, removes the bias.



"With reference to the seéond approacﬁ, an augmented ob jective
function Is minimized by linearizing fhé parf}al derivetives abouf
| prevlous paramefer estimates. The result Is a linearized iterative
| welghted least squéreé (LITWELS) technique which is the major contribu-
tlon of this report. The LITWELS estimator Is shown to be unblased
An en asymptotic manner when the nolse statistics are knouﬁ. Methods
of esflmaflng‘unknoun nolse statistics are suggested. The LITWELS
estimator minlmfzes the residuals associated with the estimate of Xq
and Ye‘ A simple example problem is presented and solved using the
above mhfhods. App ltications are suggesféd with reference to édapflve

control, prosthetic devices, and image enhancement. .



1.0 Introduction

Figure | contains a block diagram of the basic system coﬁsldered
in this report. The composite system Is Interconnected and designed
to control the system oufpuf given the referénce'lnpuf. The control
law ‘may result from an dp?lmlzéfldn crfferla. root locus considerations,
etc. Contained within the system is a reléflonship between cer?a}n
sysfemlsfafes Ye and Xy The form of this relationship Is known and
folldwsvfrom the structure (nature) of fhe process. The relaflonshlp
may be written in two ways. ‘

| Yo = HXg | ¢

Yo © Xgh (2)

In (l?, Ye is a column vector contalning the brocess output states
(in contrast to the system output), whereas xe-ls a Qecfor containing
the process Input states (in contrast to the Sysfem tnput). The
actual parameters contained In the matrix H are unknown. In (2), all
‘fhe_s*afes contalined in the vector Xo are reformed Into a matrix Xe.
All the unknown parameters contalned in.H are reformed into a vector
he
As an example, suppose (1) Is

-

Xell
Yel hI h2 0" 0 xe|2
Yez |0 0. hl'! h2 erl



Accordingly, (3) can be wrfffenjln the form of (2)

Yol Xoll
.
YeZ xe2l

erZ] "y

X

e22

4)

The structural parameter esflmaflon problem s discussed In

this report Is a logical exfénslon of conventional weighted least .

~ squares theory and Is characterized by the following which refers

to (2),

1 Ye and Xe are measured with uncertainty

2. h is estimated in a weighted least squares sense

3. h may be time varying of the form

h=¢h + I'w
o .

(5)

~where ¢ and T are known and w Is a random nolse term.

_' ”~ ~
In this case the estimate of hilg h = ¢h°

4, +the estimate of h must be unblased.

In conventional welighted least squares (the abbreviation CWLS

wli 1l be used) the parameter estimation problem is simpler than (5) In

that Xe is known exactly.

Four basic cases are considered with reference to (5).

Prob lem Measurement
Designation N of Xe
| Noisy
it Nolisy
1 Exact
IV Exact

Parameter
Matrix h

Time Varying
Constant
Time Varying
Constant



Problems {11 and lV are within the realm of CWLS theory, whereas, v«i | u-

Prob}ems | and'll are wifhln the realm-of sffucfural parameter
estimation theory. Problems {i and |V are slmblér férms of Prob-
.Iéms | and 1141 réspecflvely and foilow,by laf?fng ¢=1andT =0,
" in this report, Problems | and (11 are freafed. The resul+s may
easily be applied to Problems |1 and IV. .

. I+ The conventional weighted least squares (CWLS) parameter
becomes a minimum covarlence estimator |f +he welghting matrices aré
properly chosen (Probfem {}{). )

2. AThe CWLS parameter esflha?or Is blased when applied to
structural paremeter estimation (Problem 1), o

-3. If the CWLS parameter estimator is changed by the subtrac-
-tlon method, the bias may be removed approximately by esflmafing the
bias using noise statistics and nolsy-sensbr measurements (Problem 1).

4, ¢ the CWLS parameter estimator is changed by in*roduclng
a pfober!y chosen instrumental variable (iv), the bias may be remove&
(Problem 1), |

5. 1f the ﬁbjec#ive:funcflon Is augmented and 1f the resulting
parf}al derivatives are linearized abouf previous parameter estimates,
a linearlzed Iterative weighted least squares (LITWELS) parameter:.
ésfimafor results. |f the no!ée sfaffsflcs are used properly, the
estimator is unbiased in an asymptotic manner, fhéf Is, 1f the nTH
estimate is correct, then the n+lST estimate Is unbiased (Problem 1).

6. An example problem is worked

7. Unknown nolise statistics may be estimated from the residuals

- of the objective function.

"8,. Applicatlions are suagested

i



2.0 Conventional Weighted lLeast Squares (Problem 111).

The sensor equations for measuremenfsfofAye"andiXe~are

Y, - Y, v o .. E )
. | t6)
Xg = Xq

The nolse statistics are

" E(w) = E(v) = 0 -
Cov.w = Q - o 3!7,

Cov-v = R
Subject to the equations of 5, 6, and 7 we wish to estimate h. To

estimate h, a welghted least squares objective function is deffnéd as
a fuhcflon of an error e depending on ho. One estimates h by taking

h = &h .

T ' __—

J = e Me o (8)
v | K o ~

= (Ys - Xs¢h°) 4M(Ys_ Xs¢ho)

In order to select ﬁo to minimize J let us differentiate J with respect
- to ho’ If we equate the resulting expression to zero, the following

~

value of h° minimizes J for positive definite M.

h e [o'x Mx ¢17' oTx_Tmy T (9
(o] S S S s .

With regard to the matrix M which weights the error terms of
the vector e, Gauss made the following statement In 809 concerning
orbital parameters. |

" "|¢ the astronomical observations and other
quantities on which the computation of orbits Is based

were absolutely correct, the elements also, whether

~ deduced from three or four observations would be
" strictly accurate (so far Indeed as the motion is.



supposed to take place exactly according to the laws
of Kepler) and, therefore, if other observations were
used, they might be confirmed but not corrected. But,
since all our measurements and observations are nothing
more than approximations to the truth . . .the most
" probable value of the unknown quantities will be that
in.which the sum of the squares of the differences
between the actual observed and computed values
multiplied by numbers that measure the degree of
precision is a minimum,

The "degree of precision” has since been defined to be the Inverse of
the covariance matrix of e, where
es Ys - Xsého 
s XTw+ v
e T (o)
cov @ = xeror xe + R

| Mop#lmal b [XeFQPTxeT +'R].l

Hehce, for low noise values, terms of M are large (High degree of
precision) and for high nolse values, terms of M are low (low degree
of precision).

. As 8 result ot the cholice of Mopflma("*he covariance of the
estimation error becomes simply _ ,

- R Ty ey Ty el
E{(ho h,) (h, = b)) } . [o X st¢] ()

I+ may also be shown that (9) is an unblased estimate of h,» that Is

E(h } = hy . R (12)

- Equation Il represents the minimum covarience matrix for the

estimation error related to h° under the following conditions

Class of Estimators Measurement Nolse
weighted least squares zero mean, finite varlahce
{inear . -white

{Inear and noniinear _ white Gaussian

4
1
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Let us now consider the effect of uncertalinity in measurlng'v

Xe upon- the expected value of ho'

3.0 _Blas of the CWLS Estimator For Problem |

in addition to Equations 5, 6, and 7, let us assqme'fhaf sensor
measurements of Xe contain a noise N
xs " xe +N . _
E(N =0 - o O3
T

E(NN') = S'

The sensor equation for Ys can be written
Y = (X_~No +XTw+y (14)
) 8 'S o e :

It (14) Is substituted into (9) énd‘lf the expected value Is taken,

the following Is the result wheré t+he noise sequences w, v, and N are

assumed to be uncorrelated
;ub}sti-rlho

(15)
T T.

T e e{fe'x mx o1 o'x_Tune}

. s s . s -
We conclude that when N = O (CWLS parameter estimation) the result Is
unblased but when N # 0 (structural parameter estimation) the result

ls'ﬁlased and the bias must somehow be removed.

4.0 The Subtraction Method (Problem 1)
One obvious method suggests itselt for removing the blas present »
In (15): premultiply the estimator by [l-T].|. The expected value of
ho would then become _ A '
A ) " '
Eh} = -1 '[1-TIh = h (16)

which Is an unblased estimate of ho.'



Nofe that for Probiem |, T (fhe blas) depénds on &, M, Xe énd
»fhe,noisevsféfisf!cs. We must therefore know the deterministic signal
Xe;'houever. fhé entire blas problem is cause¢ by noisy measurements
M-pf Xe; referred to as Xs' Hence, anY practical blas removal method
Involving the matrix T requires the estimation of T (i.e. T s a
function of the nolse statistics and Xgo The net result is that the
blas Is approximately but not completely removed using T. Shppose that
'r Is chosen from (15).

T=[% X MX 0] o T¢
an

T = E{X TN} = E{NTMN}
The follouing estimator results from premulflplylng (9 by [l-T] ‘
where T Is deflned In (17) _ _

hy = [o'x Thx 0 - T TeT! oTx T 18
Note fhaf the term 0 T attempts to "gﬁbfracf off" the effect ot fhe-
bias, hence the term "subtraction method." |

Although the bias Is abproxlma?ely removed by the subtraction

method, there are four objecflons_fo cbnsider. (1) The co;arlance of
fhevgsflmaflon error Is increased as.compared to the blased CWLS
estimator.. (2) The above matrices contain k sets of data for multi-
stage processes. Subtracting the probabllistic means. and varlancés ’
Included in T when k is small may result In grossly inaccurate results
élnce the sample means and variances may be quite dlfferenf from their
probabilistic counferbarfs. As more samples are'lncluded'ln the above
matrices, then thls method becomes more useful since the sample heans

and variances approach the true means and variances. (3) The sta-

- tistics may be-unknomn, hence‘procedufes must be sought for estimating



the necessary statistics. (4)° Se{ecflon'of the weighting matrices

is not at all well defined as in Problems Il (Equation 10),

5.0 The Instrumental Varlable Method (Problem 1)
Let us now consider fhé use 6f an additional varisble whqéév

‘purpose‘ls'fo achleve an unbia#éd esflmafor‘for Problem I, This
method Is called the !nsfrumenfal vaf{able (IV) mathod since the
additional variable Is an Instrunent for the dosired resultl'8s!9:20],

“'Fon Problem | one simply rewrites the CWLS algorithm (9) to
include the instrumental varlable (Z). fhe Instrumental variable
»replaces_xs In such a way that the resulting esTimafe of hé is unbiased.
| | h = [¢TzTst¢j"[¢Tsz'MYs ey
The instrumental variable must be anorrela?ed with the nolse terms N,
v, and w.' If Z Is thusly chosen, then substituting (14) Into (19) and
taking the expected value resulits in the broof that E{;o} = h,, that is,
ve have an unbiased,esfimafe ot ho. |

" One advantage of the 1V method Is that no- statistics need be

known.to remove the bias. It Is necessary, however, to find ways of
[18,19]

[20]

choosing an Instrumental variable

: apﬁroach Xetzo]. The paper by Young

or forcing some yariable to
describes an lnferesflng'hybrld
(analog and digital) scheme. The end result is that Z approaches X; by
proper adjustment of the mode! parameters. |f Z Is highly correlated
wifh Xe, then the weighting matrix M is chosen as suggest (i0), I.e.,

M = [zrr'z' + RI. |

In summary, an Instrumental variable Z is used as per (19). If

Z Is uncorrelated with the nolise terms, the resultant estimator Is unblased



at the expense of the covariance matrix for the estimation error. If
Z is highly correlated with Ze’ the covarlance matrix for the estimation

error may be reduced by selecting M as above.

6.0 The Linearized lterative Weighted Least Squares Technique (Problem |)

Let us ‘consider anew approach for achieving unblased sfruéfural
parameter estimates. This approach follbws directly f?om a weighted |
least squares minimization problem. |t may bé shown that unblased
results follow from a specific selection of the Qeighflng matrices,
siml lar fo the welghting matrix selection of (10). Recall fhaf the
basic linear relationship between the states and paramefers'can be .

written in two ways

Y =Xh - (20) -
e e
u'er , | | (21)
in view of (21) let us write the sensor equation for X
X=Xt
E(n) = 0 | C (22)
covne=3S

In (5) the time variation of the parameter vector h was defined.
In a similar manner, the time varlation of the parasmeter matrix H may
be defined |
H= HO + WD | | 23
» where W is a random noise term. Sﬁbjec* to Equations 5, 6, 7, IB; 22,
and 23, we wish to estimate h. Jo estimate h, a weighted least squares
objective function J is defined by fwo equivalent expreséions. The

tirst term of each expression for J depends on estimates of the noise
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sequence n while the second ferm depends on estimates of both n~and

7 bo. One estimates h by taking h = ¢h

nTM 0+ y My |
J -';Tmln +0yg - v - N)&h J M[Y - (X = N)oh ] (28)
= nMn+ [Ys - Hop(xs - n)] M[Ys - Hoe(xs -n)]

The first expression above may be differentiated with respect

Ja

to ho‘wblle_fhe second (equivalent) expresslon'may be differentiated

with respect to n. At thls point, fhe parflal derlvates Ei_ and~2i
3h _ an-

~

form a set of nonlinear coupled equafions since N depends on n and

H depends on h_. It Is possible to linearize the partial derlivatives
and decouple the variable n from h by assumlng that N and H are

A

.consfan?s determined by the last estimates of the variables n and h .
The derivation of the soiution to (24) begins by selecting
the nTH estimate of n7¥o obTalh:Nn. I+ is useful to define |
X, = X, - N, o (251
The next step Is to differentiate (24) with respect to h° to obtain

~

an equation not involving n. The solution of this equation for the

n+l§:wes*1mafe of h follo&s

o T=T,
Rotnt 1) © [é'x THX, ¢3 [¢ X ]MY ‘
~ A _ (26)
Poe 112 Potae iy o |
~ Having a value of h oln+1) "€ immediafely use that to obtain H . By
differentiating J with respect to n we obtain an equation lndependenf

f

of h which may be soived for the n+1%' estimate of n

g =M+ 6TH MH T [eTATMH ox, TGZMYSJ

oy (27)



The algorithm of (25) - (27) Is therefore lterative and begins
with an Inftial estimate of N. f the Initial estimate is zero the
first estimate of h.is identical to the CWLS estimate.

‘ In summary we have developed a linearlized Iterative welghfed
least square algorlthm, whlch may be abbreviated LITWELS. This method
Is both iterative (requlrlng a fixed amount of data storage) and
recurSIve.' In contrast, the CWLS algorithm Is only recursive (that lIs,
given a fixed amount of data, on{y one optimal filtered résujf occurs).

The following procedure may be used to demonstrate that the A
aigorlfhm of (25) - (27) converges in expected value to ho in an asympto~

tic manﬁer: assume that h

ot h(ne2)

estimate n

oln+) = h° and show that the expected value

lS-ho. To do so, however, requlires substlituting the nolse
nt+1 into the parameter estimate ;o(n+2) which requires some
way of rglaflng ; fo‘a and Go to ;o‘ These relationships are difflcult
to establish In general since elements of the column vectors must be
arranged into matrices. It musf bé sffessed that the LITWELS technique
may converge in general but that proving so is quffe dlffléulf. Conver-
gence can be established for problems with a scalar output (i.e., each
' ofifhe sets of data contained in Ys satisfy a single equation linearly
relating one oufpuf state Yel to n other states Xel and n paramaters
h,). Hence, for the I'" set of data’

Y. =X

ol h

el i

o Tkl | (28)
1" el . .

© Hlxel

. The third expression tn (28) follows since XZ' s a column

vector (as is Xe|) and h{ Is a row vector (as Is H' when Yel ls_a
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scalar). Since X, and X, may be related, then the sensor noise terms
N and n may be related.. Similarly the parameters H° and h° may be
related. 1t Is now possible to demonstrate the convergence of the

';LlTWELS algorithm as fol léws

1) Let h , s h so thatH =2 H , Calculate n
o(n+l)6 o o )

2) Substitute N

n+|

Into (25) to obtaln'h

nt+l o(n+2)

3) Take fhe expected value of the result

| The resulting expected value Is of the form E{A~ '8} where A
and B are matrices. Expected values of this fype are quite difficult
fb evaluafe. even when the probabllity denslity of the nolse terms are
_known, ‘Let us assume, however, fhaffA and B contaln relatively - large
amounfﬁ'of signal andvrelaflvely small amounts of noise. Hence, A-'
and B are correlated only through the noise terms. |f the higher
moments of the noise terms are negligible (as when the noise has.a
Gausslian amplitude), then one can approximate the désired expected

value by E{A"'JEB) since A™! and B are nearly uncorrelated. I|f this

'Is done, then E{h "} = h _when (as per (10))
. On+2 ° '

- T, !
M= ')?_'SI‘QI‘YS + R]J

(28)
-l- .

Mi =S
Note that gomple?e knowtledge of Xé Implies that S approaches zero
(little sensor noise is present), hence Ml abproaches zero for sail
lterations, hence (25) becomes the optimal convenflonal.weighfed least
squares estimate as we would expecf. |
- The above asymptotic convergence properfy of the LITWELS

estimator, Is a rather weak property. |t may be possible to establish

. the following,
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1. 1f the expected vaiue of h equals the expected value

ol{n+!)

~

of h;n’ the expected value must be ho.
2. The expected value of the estimator converges unlformly to
'hb. Tﬁ!s phenomenon was observed In an example pfoblem.ln which the
mean of the LITWELS algorithm converged exponentially to the correct
parameter value.
? The storage requirements of the LITWELS algorithm is of Interest.

When Yé contalns scalar measurements and h Is a constant parameter vector
n{n+3)

of dimension n+i, the CWLS esflmafor of (9) requlires the sforége of
‘ ' 2

running sums. It [s possible to combine (25) - (27) [nto one equation’
for the constant parameter case. As a result, only one additional
running sum must be)s?ored for the LITWELS estimator. The data storage

requirement IS fherefofe minimal for the LITWELS estimator.

7.0 An Exa@gje Problem

' The snalysis presented in sections |-7 appeafs to treat a single
‘stage process w}fh one set of measurements. However, the matrices Yoo
Xe, h, etc. may be defined to contaln k submatrices, each one defined
. for one stage, that Is, the equation Yo = Xon May be detined to contaln
k équaflons of the form Ye! ] xelhl‘ Hence, the analysis Is also valld
for a multistage process. For example, (9) may be written In terms

of a k stage process where , X_, etc., each contain k components.

h = CZoTx . M X! @l]"[zalx

-
LIS o MY ] - (29)

st 1 sl

In the following multistage example problem, the parameter is
constant, hence Q| = 1 and T' = 0 for all stages of the process. The
‘parameter estimation equations may be simplified accordingly and written

using summations similar to (29).
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Suppose we are In an automobile traveling at a constant, but
unkﬁown, velocity. Thé distance Yy at time *l Is related to the time
?l by the consfanf_veloclfy v, fhafAls‘ '_'
| y; =t v . ; o (30)
in order to eéflmafe the velocity, distance maasurémenfs are fakenAi
by reading the mileposts at five second intervals, Suppose, however,
fh#f a random error exists in fhe.spaclhg of the mileposts. Suppose,
in addition to the random dlsfance measurement error, the ciock hes a
random error associated with its timing, hence the distance measurements
~may be taken at actual time intervals of 4.95 sec, 5.10 sec, 5.i5 sec.i_
4.9 sec; etc., even though the cloék'show5'elapsed time Intervals of
5.0 secbnds. “This fybe of paramefer estimation problem is termed
structural parameter estimation since the actual structure (paraméfer
matrix) of the process relates quanflfles which are known with uncer-
talnlty. g R
Let us deflnefymi as fhénmé§5uramen? of y, and let us dofline
*ml as the measurement of t- Now supéose we take k sets of measure-

ments. A wélghfed least squares fit to a plot of y ., versus fml may

mi

be used to estimate the constant velocity. The welghted least squares

objective function J corresponding to this probiem fol lows from (8)

v)2 (31)

J = ZM‘(ym' - fml

Let us assume that each of the error terms Is weighted equally tall

the Ml are equal). The CWLS value of v which minimizes J follows

. from (9) or (29) where the M, cancel.

A It. v
ve = 2' ml (32)
It

mi
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From (15) we know that the expected value of v is (I-T)v where

T may be detined from the random clock error Nyi

I+ _.N )
T= g5 S (33)
zfm‘ | |
In order to remove the bias due to T, let us estimate T as per (17) where

the varliance of each noise N?‘ Is 02.'-

PN "2
Ta -kg (34)
.

Using this estimate of T, the subtraction method estimator (18) follows

by premultiplying (32) by 1/(I-T).

A .yzf y
v = -.7§£L12Lf2_ : , (35)
'ztmi - ko

The term ko2 "subtracts off" the blas due +o the nolsy clock readings.
| Let us now consider the instrumental variable method where an
addi tional measﬁreméhf is used. For this case, the measurémenf must
be uﬁcorrelafed with the random distance and clock errors. Affer
,eaéh.mlleposf reading suppose we write down the last digit of the
iicense number of the next passing éar; As an Insfrumenfal vaflable
z; for the iTh reading, let use use I times the selected digit. Since
the digit Is uniformly distributed in the lnferQal 1-10, the mean s
value of z is 5i, which Is also +he mean vélue of the lTh t+ime measure-
ment (since the readings are taken at 5 second Intervals). Although
zl Is uncorrelated with the random flme.and mllepoéf placemén?~errors,
1t fs also uncorrélafed with f', whlch'degrades +he covarlance of the

. : e e Lt e i s f e - \e L.t . . I .
e A N N A A C A T B
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estimation error but removes the bias. The IV estimator, as spplied
to this example, follows from (19),

v 'E-Z--_r—- ) o ‘ (362
I mi o
Let us consider the LITWELS abpraoch to this problem. The
objective function (24) Is as follows where all the Mr"are'equal'fo

M| and all the M' are equal tom

- nw whm 1)

~2 T
Jo= Ingymy + 3y - Uy

if we have an nTH estimate of the clock measurement errors, then the

n+157 estimate of v follows trom (25) and (26)

— ~

Tt = Yt " "t
- (38)
; H - mFmiyml
n¥i
Ty

With the abovafvéloclfy estimate we can select on n+|sf estimate of

each measuremant error from (27)

A v mt . -v my . -
n nt! mi An+l mi (39)
ﬂn m, + mv2
{. n+
i f 62 Is the variance of each time measuremenf error, then m, should

" be l/o A § 03 Is the varlance of each disfance measuremenf error. .

then m should be l/oy. Equations 38 and 39 can be combined, reSulflng
in the LITWELS esfimafor for the unknown velocity problem.
MéA |
% . 2
{ + Vn*l'l Z*mlyml + vn+lzyml}
n+2 ° 2
-y—- 112, + 2 -:/.2- v Z'r mi¥mi ¥ Zyzl-

+
AU mi o mi Yo+l

(40)

<>
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In comparison with the CWLS estimator of (32), only one additional &
running sum must be stored, that is, the summation of the terms y;'.
It Is Important to note It fhe'flmé measurement errors are
‘small. 02 aﬂproaches zero, hence the subtraction estimator (35) and
the LITWELS estimator (40) both approach the CWLS estimator (32). For

some case, as the instrumental variable z, approaches time values t

i i
the IV ésflmafor (36) spproaches the CWLS estimator. In summary, all
three estimators reduce to the CWLS estimator when time Is correctly
measured. ’ | |

Flgﬁre 2 contains the results of a simulation concerning a
‘éonsfanf parameter problem similar to the above but of a higher
dimension (2 parameters were unknown). Plotted are the sample means
~for 20 repetitions of each estimator.: -

The preceding theory Is verified by Figure 2. The CWLS
esf!méfor is obviously blased from the correcf value. The subtrac-
tion method results in a less blased estimator. The |V esfima*or
is unbiased. A peffecf instrumental variable was chosen. For the
unknown velocity éxample, a perfect |V may be defined as a varliable

z, equal to the correct time value f'. A practical case where z

l
‘must be generated would result in a power performance. The LITWEL
estimator's sample mean converges fowérd the correct paramefervvalue
ahd, in fact, does so exponentially. . |

The abbve remarks 5u§porf the conclusion that the four types

of estimators can be ranked as follows in ascending order of thelr:

guccess In providing unbiased estimates with a low estimation variance
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1. 'LITWELS
2. v
3. Subfréc?[op

4, CWLS

8.0 Unknown Covariance Matrices

Ve have considered fhrée methods for achieving unbiased esflmafes
with regard to. the structural parameter estimation problem; The instru-
menfalivariable method requires no knowledge of the nolse statistics.

’ Howe?er, both the subtraction method and‘fhe linearized Iterative weighted
;easf squares (LITWELS) method requfre,knowledge of certalin covarlance |
matrices. Thls section considers the problem of estimating the covari-
ance mafrlces when the statistics are unknown. Residuals (errors and
squared errors) are unknown.

For Problem | It Is necessary to estimate the covériance matrices
Q, R, and S which are deflined for fhg nolse vectors w, v, and n respec-
tively. Recall "rhaf each noise vector may correspond to a k stage pro-
cess so that w may contain k terms of dimension of kw x |, v may contain
k ferms of dimension kv x 1, and n may contain k terms of dimension
,kﬁ x |l. Suppose that the covarlance matrices Q, R; and S are all non=-
symmetric, that Is, the noise sequences are correlated and nonstationary.
There must be enough equations to estimate all the elemen+s of 9, R, and
S, hence (kk')2 + (kkv)2 + (kkn)2 equations would be required. The
resulting large number of equations would be most difficult to solve.
" Suppose that the covariance matrices Q, R, and S are diagonal, that lIs,
the nolse sequences are uncorrelaféd but not necessarily stationary.

For this case, one would be required to generate kk| + kk2 + kk3 equations
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to esflhafe the diagonal elements of Q, R, and S. There would sfilllbe
a rather large number of equafiéns involved since k represents the num-
ber of sfages.“Suppose fﬁaf'fhe noise sequencés aré uncofrelated and
statlonary. In this case, only k. f'kz + k3 equations would be required
since k‘, kz, and k3 elements along the maln diagonals of Q, R, and S
would be unlqbe. For the purposes of this discussion, one additional
simplification is used to reduce the complexity of the analysis such
_ thet 6n|y lnner products (scalars) need be evaluated. |t is assuméd
fhaf the ratio of the elements of Q, R, and S are known; hence one need
6nly defefmlne scalar mulflplylng.facfors q, r, and s In order to
completely specify all the matrix elements of Q, R, and S. 'As a result,
only three scalar equations must be generated 1If we assume that

I. The noise vectors are uncorrelated and stationary.

2. The covariance ratios are known.

In order to generafe two of the three scalar equations, one
may utlilize a modlfled CWLS estimator In which Q and R are set equal
to ldentity matrices In (10) and the resulting value of M l; used In
(9). For the first equations, the sum of the residuals ;_from (8) may
’ be equated to the expected value of the sum (which depends on s, ho,
.0,.F. and Xe). '§lnce XS. not Xe Is avallable, the following approxi-
mation to this relation Is made

~

Ie = f, (s, h , ¢, r, Xg) a1)

I

For a third equafion; J may be evaluated for a CWLS estimate
where M In (8) and (9) is an identity matrix. The result (let us use
Jl_fo specify the new objective function) is set equal to an approxi-

‘mate expression for its expected value
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Jy=tgts, a0, 8, T, X)

R In summary, we now have three equations in four unknowns (s, r,
q, and ho). )

Using fhe.above three Qquaflons, let us consider how the sub-
traction method and the LITWELS method may be adjusted for the case
where the noise covariances are unknown.

For the subtraction method, recall that we need an estimate
gf the blas mafrlxIT which egflmafe depends on s, ¢, T, and XS. The
‘moalfled-CNLS estimate may be set equal to an approximafé expressiqn
for Its expected value _

| ﬁo =(1-7T(s, &, X)]h (43)
Equation (41) may be solved for s as a function of the unknown ho and
the result may be substituted into (43). A Newton Raphson approach Is
thn necessary to obtain ho from (43) since (43) is a nonlinear function
of h . f

For tﬁe LITWELS method 1t is necessary to use all three charlance
matrices hence all three scalars must be obtained. The fpllowing scheme
Is suggested

l. Sef'ho equa!l to the latest LITWELS estimate. Start with

the modi fied CKLS estimate.

2. Solve (41) for s using ho from |.

3. Solve (42) and (43) for r and'q. Use s from 2 and ho'from
t. Use a Newton Raphson approach

4. Obtain a LITWELS estimate using the covariance matrices
resulting from 2 and 3.

5. :Repeat  the above steps. -



The genebal method suggesféd In this section may be applied
to the example problem reported in Figure 2 ﬁheraln the noise statistics
are assumed to be known for a 2 dimensional unknown cons?énf.paraméfer
'problem and estimates of one éf the porameters are plotted. The unknown
statistics case Is shown in Figure 3. The CWLS and |V estimators which
do not use the noise statistics tor bias removal are repeated here for
reference. Note that the subtraction method estimator is less blased
!n Flgure 3 than In Figure 2. This occurs because the subtraction method
Is highly dependent on the accuracy of the noise sfaflsflcs and, as
shown in Figure 4, the sample variance of one noise ?érm is somewhat
different than the constant (052) used in adjusting the CWLS estimator.
For the unknown statistics case, the subtraction method procedure is
able to identify the sample variance of the nolse as shown in Figure 4,
hence the resultlng estimates are less blased as shown in Figure 3.
The LITWELS method is degraded somewhaf;léwlfs asymptotic appraoch to
the correct péramefer value. For the constant parameter problem; it
Als necessary for the LITWELS method to estimate r and s whereas the
subtraction method estimafés only s. The resuiting performance is
appérenfly degraded by this requirement. Performance, however, is

quite satisfactory, . e

9.0 Applications

Structural parameter estimation has been discussed analyflcally;;
an example problem has been worked, and simulation results have been
presénfed. Parameter estimation problems which can be casfllnfd the
form (5) can be soived using the methods of this report. In general,

If we are concerned with a. process Ye = xeh where both Ye and X are
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heasured with uncertainity and where the time variation of h may be
modeled as in (5), structursl parameter estimation techniques are

applicable. In this sécfion, problems refafed to adaptive control,
prosfhatlc devices, and image enhancement are discussed In relation

to the structural parameter estimation.

9.1 Adaptive Control N

"~ An adépflve control sysfém has two inter-related goalst - (1)
esftmafe the system parameters, and (2) derive .2 control law, using
the paramefers, which causes the closed‘loop sysfém to perform In some

[26]

desirable manner . The system "adapts" to changes in its structure
by adjusting the control law in an appropriate manner, Figure | hay be
related to an adaptive contro! system for the structural parameter
estimation problem by adding a disturbance at the input and by using
the perameter estimates to generate the control law . If it is possible
to describe the corresponding parameter variations by (5) and if noisy '
measurements are taken of -the states (Ye and Xe) related by h, then
 the adaptive controi-parameter estimation problem bgcomes one of struc-
tural parameter estimation. One may estimate ho uﬁlng the methods of
_ this dissertation and then utilize G s ¢;0 to generate an appropriate
control !av.. Let us conslider applications which call for the use of
adapflye control

(1) The handling characteristics of a vertical or short take
off and landing (VSTOL) alrcraft on take off are similar to that of 8
helicopter, but, in level flight, the handling characteristics are
similar to that of a conventional airplane. It is desirable to generate

a control system such that handling characteristics are constant.
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(2) A shuttlecraft system hasbbeen proposed as an economical
way of transporting men and material to and from space staflonstza’zgj.
Each boost vehicle Is to "fiy" back to earth for future use. The |
shuttlecraft which rides "piggy-back" with fhe'boosfer is to be highly
maneuverable such fhaf'lfs occupants may land at certain pre-selected
locations, Each suttlecraft (somewhat like a flying bathtub) must
maneuver with préclslon since the earth's atmosphere is reentered at
a8 very low angle and since the landing speed Is In excess of 100 miles
ﬁér hour. The aerodynamic condfflons under which the shuttlecraft
must operate are indeed varied, since the cfaff must fly from a near
vacuum down to sea level causing the handling characteristics .to vary
accordingly.

(3) There are cases where unmanned spacecraft might utitize
adeptive control. 'Fof example, spacecraft attempting unmanned landings
on Mars and Venus encounter large aerodynamlc variations. American

Venus probes have lnd(cafed that surface atmospheric pressure is 75 to

100 times that of Earfhtsoj.

9.2 Prosthetlc Devices

Recent medical research has utilized the milllvoltages generated
by muscular contractions (myoelectric voltages) to actuate artificlal
[imbs., Tﬁe patient learns to use certain muscles to manlpul;fe the ’
| ilmb. -

| A law governlhg artificial 1imb movement can be defined és a
solution to a structural parameter esflmafioh problem. Suppose the
vector Ys is deflned to be sensed myoglecfrlc voltages.  Let the con-

stant parameter vector be defined fo'be the three desired torques (t)

o H " . B Do AN LN A . < - A
I P : Lo .
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and the three deslred transiational forces (f) at the time when the

voltage measurements are taken.
h, = - N (44)

Supposg we define a connection matrix XS which re\afes fhe_mypelecfrl;
volfages (muscle contractions) fq the six degreés of freedom (ho). A
random error vector e can be deflned as

es Ys - Xsh0 '“';'f ' (45)
The volfagg.measuremenfs (Ys) contaln é random error. The connection
méfrlx (Xs) is an approximation to the True'relafionship_befween the
muscle contractions and the desired movement of the Iimb. Since we

~

have saflsfled the condlfions for structural parameter estimation, h°
in (9) may be a biased estimate of the desired |imb movement, making

It necessary to use the methods of this dissertation to remove the blas.

9.3 Image Enhancement

With reéard to reéelvéd radio signals, flltering methods are
used for removal of Inferférence.duenfo fransmlssion of the signal.- I
,Thé received signal, a time function, contains the desired transmltted
signal plus a nolse term (the lnferférence) which Is strong In certain
finite frequency bands. |

An'analogous problem exists when a plcture Is transmitted through
space. The Mariner 4 took pictures of the planet Mars and reduced each
Image to 2 grid of numbers which were encoded and transmitted to Earth
where the signals were decoded. The resulting dafa can be treated as
p_funcflon of dls*ance (by recording the numbers at intervals on a '

sheet of paper). The string Is a sensed function ys(x)
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Y (X)) = y(x) + s(x) o (46)

where ys(x) contains the desired signal y(x) plus a coherent noise term
s(x) which Is strong in certain frequencies. 'Currenf techniques fémove
the coherent noise by using convolution filtering in the spatial Fourler
Traﬁsform domain., ConVenfional least squares parameter estimation can
be used s8s an alternate schems.

Let us assume that the freduenéles of the coherent nolge terms
@ave been identified from fhé poéef'spééfral density of ys(x). For each

frequency, the variation of s(x) with respect to (x) can be written

s (x) e .
= ¢ : (47)

s(x) s(o) :
The values of s(o{\and ;(6) determine fhe»ampllfude and phase of the
signal s(x)., 1f we consider the vector on the right side of (47) 16 be
a consfénf parahefér vector ho' then we can eSflmafe ho to minimize a
leasf squares;efror where the iTH error Is

e, = ys(x‘) - [o1] ¢i;o
The result of determining ;o is a function ;(x) which, when subtracted
from ys(x), results in an estimate of y(x) which Is optimal in a least

squares sense.

10.0 Conclusions

I+ has been qemonsfrafed that fhé conventional welghfed least
squares estimate Is biased when appiled to the sfrucfural paraﬁefer
estimation problem. The three methods of bias removal, in order of
effectiveness, are |

I. LITWELS _
2‘. 1V :

3. Subfracflon'
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The LITWELS method and the subfracflbn'mefﬁod requlre the use of nblse
covariance matrices. When these matrices must be estimated, the LITWELS
technique Is somewhat degraded whereés the subtraction method may écfually
“be improved at the e?pense of greafer4complexffy. The |V method does

not use the covariance matrices for blas removal, but the IV musf_be
generated to be uncorrelated with the noise terms and correlated with

Xe. 1f minimum Qarlanca is dgsired for the 1V method, the nolse covarliance

matrices must be known or deflved.
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ON SEQUENTIAL SEARCH FOR THE
MAXIMUM OF AN UNKNOWN FUNCTION

S. Yakowitz

7. INTRODUCT{ON

Many probiems arising in engineering and operations research contexts
have the following structure: The declsion maker Is provided with a class
F of functions, whose common domain, X, is specified. Some mechanism selects -
a function § from F. The,decisionrmaker is not informed of this choice. He
would like somehow to find a point x*eX af_whléh f assumes ffs maximum value
(denoted by ‘F‘b; Toward this end, the decision maker may sequentially and
“without consf;ainf select eleménfs X|sXgpees from X. Upon éhoosing X he
Is informed of the value f(xn). Thus he may come to learn c¢ertain features
bof f. Any (perhaps randomized) strategy for choosing X, on the basis of the |
' sequence of pairs ~Kx3 J))ﬁ‘g;: will pe termed a search procedure.

The problem of finding a search procedure S under which, for all feF, {f(xn)}

,