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POLYNOMIAL APPROXIMATIONS OF THERMODYNAMIC PROPERTIES
OF ARBITRARY GAS MIXTURES OVER WIDE PRESSURE
AND DENSITY RANGES

By Dennis O. Allison
Langley Research Center

SUMMARY

Computer programs for flow fields around planetary entry vehicles require real-gas
equilibrium thermodynamic properties in a simple form which can be evaluated quickly.
To fill this need, polynomial approximations were found for thermodynamic properties of
air and model planetary atmospheres. A coefficient-averaging technique was used for
curve fitting in lieu of the usual least-squares method. The polynomials consist of terms
up to the ninth degree in each of two variables (essentially pressure and density) including
all cross terms. Four of these polynomials can be joined to cover, for example, a range
of about 1000 to 11 000 K and 10-5 to 100 atmosphere (1 atm = 1.0133 x 105 N/m2) for a
given thermodynamic property. Relative errors of less than 1 percent are found over
most of the applicable range.

INTRODUCTION

Computer programs used to analyze the flow field around a vehicle traveling at plan-
etary entry velocities require real-gas equilibrium thermodynamic properties in a simple
form which can be evaluated quickly. In the preliminary design studies for such vehicles,
thermodynamic properties are needed for chemically reacting gas mixtures similar in
complexity to air. However, the elemental compositions of other planetary atmospheres
are not yet known, and the proposed models change as new discoveries are made., Further-
more, the flow fields around blunt body shapes, which are being considered for entry vehi-
cles, require the thermodynamic properties over wide ranges of pressure and density. A
simple and versatile means of handling the thermodynamic properties consistent with the
above considerations is needed.

One approach is to read large tables of properties into the computer memory for
interpolation purposes. However, the storage required by such tables can be prohibitive
in view of the number of other variables which must be carried in the high-speed memory
for a detailed flow-field calculation, especially in three-dimensional problems. Another
approach is to represent the tables by two-dimensional approximate functions. (For such



a problem, see ref. 1.) For air, Grabau (ref. 2) determined approximate functions by
constructing two-dimensional continuous equations from straight-line segments, transi-

tion functions, and eighth-degree polynomials. However, Grabau's approach requires

tedious hand calculations which would have to be carried out for each model planetary
atmosphere. Another approach, the one-dimensional spline fit (ref. 3), was used in ref-

erence 4 but is not easily adaptable to two independent variables such as pressure and

density (ref. 5). Also, in references 2 and 4 approximate functions are determined for 4
first-order properties only and are differentiated to obtain second-order properties,
(Second-~order properties are those which depend on the partial derivatives of the species
concentrations, for example, heat capacity and speed of sound. (See ref. 6.))

The present two-dimensional curve-fit procedure is designed to convert thermody-
namic properties to a simple form suitable for automatic computation for various model
planetary atmospheres. This procedure employs a 100-term polynomial of ninth degree
in each of two variables to approximate any thermodynamic property. Since the input data
(refs. 6 and 7) are not experimental, the type of smoothing of the least-squares method
(which is discussed in ref. 8, for example) is not appropriate in determining the polynomial
coefficients. That is, many thermodynamic properties are characterized by large varia-
tions due primarily to chemical reactions; a least-squares curve fit tends to smooth out
variations in computed data just as it smooths out scatter in experimental data. In an
attempt to preserve the variations but to smooth out oscillations which may occur between
input data points, the coefficients are determined by taking the average of polynomials
which exactly reproduce alternate points of an input data array. No error criterion is met
uniformly over the entire range of input data. Instead, large errors are concentrated on
the edges of the range, and good accuracy is found throughout the central area. The cen-
tral areas of several polynomials can be joined to accurately cover wide pressure and
density ranges. Curve fits of the present type have been applied in the calculation of a
blunt-body flow field in reference 9.

SYMBOLS

Because of the lack of lower case letters and subscripts on the computer, some of
the symbols in the figures are different from those in the text. These symbols are indi-
cated in parentheses in the symbol list.

a (A) speed of sound

p\1/2
ag (AO) reference speed of sound, (1.4 p—°>

0
ALx) polynomial coefficients (see eq. (2))
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A (x),ALx) coefficients whose average is Ap(x)

Bm,n polynomial coefficients (see eq. (3))

Cp (CP) heat capacity at constant pressure per mole of undissociated mixture
h (H) enthalpy of mixture per mole of undissociated mixture

i (X index

j (IW) index

My molecular weight of undissociated mixture
p pressure
P, reference pressure, 1.0133 X 109 N/m2 (1 atm)
R universal gas constant, 8314.3 J/kmole-K
s (S) entropy of mixture per mole of undissociated mixture
T absolute temperature
To reference temperature, 273.15 K
. W-W; 1
w normalized W, ——— ~-=
Woo - W1 2
p/Pg
W = log10<p/p>
o
Wj jth value of evenly spaced W's (see fig. 1)
X-Xq 1
X normalized X, ——M— - =
X9p - X7 2

X= 10g10<pL>
(o)



X ith value of evenly spaced X's (see fig. 1)
Y= log10 T
zZ any thermodynamic property
Zi,j input thermodynamic-property value corresponding to X; and W]- (see
fig. 1)
p . mass density
Pg reference mass density, MyPo
0

CURVE-~FIT PROCEDURE

The analytical form of the curve-fit polynomial will be given, and will be followed
by a discussion of some numerical studies used to determine parameters which give use-
ful results. The problem is to find a procedure which gives accurate results over fairly
wide ranges of two independent variables and which can be programed so that as model
atmospheres are updated, the new versions can be treated automatically.

The input thermodynamic properties can be obtained from a number of sources, and
therefore, the calculation of these properties is not described herein. The properties for
all the curve fits in this report were computed by use of the methods in references 6 and 7.

Analytical Form

The basic curve-fit polynomial for any thermodynamic property Z is of ninth
degree in each of two variables x and w, thatis,

Z(x,w) = 29: i B, nx™wh (1)

n=0 m=0

The coefficients Bp,  are determined in two steps. First, for a fixed value of x,

9
Z(x,w) = Z An(x)wn (2)
n=0



is solved for the 10 coefficients Ap(x). Next,

9
An) = ) By pxm @)
m=0

for n=0,1, .. ., 9 is solved for the 100 coeificients Bm n. In both of these steps, the
coefficients are determined by taking the average of polynomials which exactly reproduce
alternate points of an input data array. That is, the thermodynamic property Z(xi,w]-)

is known for 20 evenly spaced values of x; and wj. For a fixed value of X =xj,

10 simultaneous equations are formed by substituting Z(xi,w]-) and wj for

j=1,3,. .., 19 into equation (2) and are solved for a set of 10 coefficients Ap(xj).
Another set, A[j(xj), is determined for j=2,4,...,20. A final set of Ap(xj) is found
by simply averaging the first two sets,

An(x;) + An(x;)
2

Ap(xj) = (4)
for n=0,1,...,9. The Bpyp are found in the same way from equation (3). The
details of using the 400 input property values Zi,j in figure 1 to determine the 100 coef-
ficients Bm,n are given in the appendix. The relationship between the variables in
equation (1) and those in figure 1 is

X-X1 1
X909 - X1 2

and B (5)

X

W - W1 1
W=——mm—m———— -~ —
Wop - W1 2

<

In order to assess the accuracy of the fit whose form is given by equations (1) to (5),
both relative and absolute errors are monitored for each property as follows: Relative
errors (percent deviation from input values) are displayed by a chart of error codes,
defined in table I. A chart (fig. 2, for example) contains one error-code entry for each
input Zi,j in figure 1. Absolute errors are checked by a series of six plots (fig. 3, for
example) which compare curves from equation (1) with the input Zij values. These
curves cover the range of independent variables as follows: Two of the plots cross through
the center and four pass near the edges of the X and W range.

The large error codes found on the edges of a chart such as figure 2 are to be dis-
regarded since the valid range is taken to be X3 =X =X;9 and Wg =W = Wyg, which



excludes the outermost rows and columns. Similarly, for a series of six plots such as
figure 3, the deviation of each curve from the first and 20th input data points is to be dis-
regarded. The valid range of each curve is takentobe 2=i =19 or 2 =j =19,
Greater accuracy could be achieved by choosing a smaller valid range. When the valid
ranges of polynomials are joined as in figure 4, the 19th column of one chart lies on top of
the second column of the next chart, The maximum of the two error codes is given for

each entry in that column.

Numerical Studies

Numerical studies show that the accuracy of the fit varies with choice of independent
variables, degree of polynomial, coefficient averaging, and range covered by the indepen-
dent variables. The present numerical studies were not exhaustive; therefore, the best
combination of all these aspects may not have been found. The accuracy resulting from a
good combination is illustrated in figures 4 and 5, which are for h/RT of air. The inde-

p
pendent variables are X = logm(pL) and W = 10g10<p; °>, the polynomial is of ninth
o) p/P

o
degree, each coefficient is an average of two coefficients, and the ranges of the variables
for a given polynomial are AX =5.0 and AW =0.4. Note that these four aspects are
not entirely unrelated. For example, if the range of a variable is restricted, an accurate
fit can be made with a lower order polynomial. However, in several subsequent examples,
three of these aspects will be kept the same as given here while one will be changed. In
each of these examples, the resulting error-code chart will be compared with that in fig-
ure 4.

Independent variables.- One alternate set of independent variables which was tried
is X and Y = loglo T. Error codes for h/RT of air are given in figure 6. The X
range is the same as that in figure 4, whereas the Y range is similar to that for W.
A comparison of figure 6 with figure 4 shows that the errors in figure 6 are larger. This
difference indicates that the independent variables X and Y are not as effective as X

and W,

Degree of polynomial.- The choice of the degree of the polynomials is arbitrary;
ninth-degree polynomials give accuracy comparable to that of the input thermodynamic
properties (refs. 6 and 7). The use of lower order polynomials might be desirable to save
computer storage space, provided that sufficient accuracy is achieved for the intended
application. Figure 7 gives error codes for seventh-degree polynomials approximating
h/RT of air in the same X and W ranges as in figure 4. The maximum error code
is 2 in both figures 7 and 4. However, more error codes of 1 and 2 appear for seventh-
degree polynomials than for ninth-degree polynomials.




Coefficient averaging.- The coefficient averaging is eliminated by using a 10 by 10

array of input data which consists of entries for every other X and every other W

~ from the 20 by 20 array in figure 1. A ninth-degree polynomial exactly reproduces these

100 input data points; these points must therefore have zeros for error codes in figure 8,
which is for h/RT of air. The remaining 300 error codes are a measure of the oscil-
lations between the 100 input data points. Figure 8 corresponds to the second polynomial
of figure 4. It can be seen that the errors are larger (particularly for W = 0.9630) for
the case without averaging.

Range covered by a polynomial.- An attempt was made to approximate a thermody-

namic property over very wide X and W ranges with one two-dimensional polynomial.
An X range of Xjg - X9 =8 is covered in figure 9, compared with the previous range
of Xjg -Xg =5 infigure 4. The range of W for the error codes of the polynomial in
figure 9 is about the same as for the four polynomials combined in figure 4. The errors
shown in figure 9 are judged to be much too large to justify the use of one polynomial to
approximate a property over such wide ranges of variables. Although this case is
extreme, it illustrates that the accuracy deteriorates rapidly as the range is increased.

For applications in which higher pressures are encountered, variations in thermo-
dynamic properties are generally weaker and are consequently easier to approximate.
Smaller errors are shown in the valid range of figure 10, which is for -3 <X < 2, than in
the third polynomial of figure 4, which is for -5 <X < 0. The W range is the same in
both figures.

DISCUSSION OF RESULTS

The discussion will be limited to a few sample results for several thermodynamic
properties of air and carbon dioxide. For all these results, the independent variables are

X = log 10<L> and W = logj P/Po , the polynomial is of ninth degree, each coefficient
Do P/Pq
is an average of two coefficients, and the ranges of the variables for a given polynomial
are AX =5,0 and AW =0.4. Second-order properties are more difficult to approximate
than first-order properties; however, some results will be given for both types. Polyno~
mials approximating h/RT and ¢p/R are generally found to contain the largest errors
of the approximations for all first- and second-order properties, respectively. Therefore,
results for these two properties will be emphasized.

Properties of Air

Temperature.~ The polynomial approximations of thermodynamic properties are
functions of pressure and density but not temperature. I, for example, properties are



needed at a given temperature and density, the polynomial for temperature can be used in
an iterative process to determine the corresponding pressure. All other properties can
then be evaluated from the computed pressure and known density. This process is accu-
rate because temperature is accurately approximated, as illustrated by the typical results
in figures 2 and 3. (Recall that the outermost rows and columns of an error-code chart
such as figure 2 are outside the valid range of the polynomial.)

Entropy.- Entropy is also an easy property to fit. Figures 11 and 12 indicate that
entropy is accurately approximated.

Enthalpy.- The approximation of h/RT of air is shown in figure 4, where the valid
ranges of four polynomials have been joined to cover a wide W range (corresponding to
temperatures of about 1000 to 11 000 K). The edges of each error-code chart have been
omitted from figure 4. Where the 19th column of one chart coincides with the second col-
umn of the next chart, the maximum of each pair of error codes is shown. Note that most
of the relative errors are less than 1 percent and none are larger than 2 percent in the
valid range for h/RT. The plots in figure 5 correspond to the error-code chart of the
third polynomial in figure 4, where the largest error codes are found.

Heat capacity.- Second-order properties are more difficult to approximate because
they have stronger variations. Results for one such property, p R, are given in fig-
ures 13 and 14. Figure 13 is constructed from error codes for the valid ranges of four
polynomials in such a manner that the X and W ranges are the same as in figure 4.
The plots corresponding to the third polynomial are given in figure 14 because the largest
relative errors occur there. Note, for example, that the first row (X9 = -5.1112) in fig-
ure 13 contains a large error code of 5 where the value of cp/R is small at IW =12 in
figure 14(a). In this case, the large error code is misleading since the absolute error is
small. A similar situation exists for Xjg = -2.7408 for IW = 17, 18, and 19. Most of
the valid range contains relative errors of 1 percent or less; reasonably small absolute
errors are found throughout the valid range.

Speed of sound.~- The X and W range for the a/ag results in figures 15 and 16
is the same as that of the third polynomial in figure 13 because the largest errors in a/ag
are found there. Most of these errors are less than 1 percent, and none are larger than
5 percent in the valid range.

Properties of COg

Results similar to those for air were found for the model Mars atmospheres con-
sidered in reference 9, where the present method was used. Results for those mixtures
of carbon dioxide (COg), oxygen (Og), and argon can be illustrated by considering 100 per-
cent COg. Actually, the dissociation of 100 percent CO2 is more complicated (hence,
curve fitting is more difficult) than that of air. This complexity is caused by the three



major dissociation processes for COg (2COg — 2CO + 09, Oy — 20, and CO - C + O)
compared with the two for air (Og - 20 and Ng — 2N).

Enthalpy.- Figures 17 and 18 are for h/RT of COg, which is negative at tempera-
tures below about 3000 K. The negative values pose no problem in curve fitting except
that the error code is meaningless where h/RT passes through zero. This problem has
been avoided in the error codes of figure 17 by simply adding a constant to h/RT to pre-
vent the property from passing through zero. The first polynomial approximates
h/RT + 45; the second, h/RT + 15; and the last two, h/RT. The X and W ranges in
figure 17 are the same as those for air in figure 4. The largest of the relative errors in
the valid range is 4 percent, and most of the errors are less than 2 percent. Since the
largest error codes occur in the third polynomial, plots for it are given in figure 18.

Heat capacity.- Results for Cp /R of CO9 are given in figures 19 and 20 for the
same X and W ranges as before. In figure 19, as in previous figures, the largest
error codes occur in the third polynomial, for which plots are given in figure 20. These
plots indicate that the value of Cp /R is small in areas where the error codes are largest.
In these areas the plots in figure 20 show that the absolute errors are reasonably small,

CONCLUDING REMARKS

Ninth-degree two-dimensional polynomials can be used with a coefficient-averaging
technique to approximate thermodynamic properties of air and model planetary atmo-
spheres. For a temperature range of about 1000 to 11 000 K and a pressure range of 10-5
to 10° atmosphere (1 atm = 1.0133 X 105 N/m2), four polynomials can be joined to approx-
imate a single thermodynamic property. These four polynomials would be stored in a
computer as 400 polynomial coefficients. Relative errors of less than 1 percent are found
over most of the applicable range.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., June 27, 1972,



APPENDIX
DETERMINATION OF POLYNOMIAL COEFFICIENTS

The 400 values of any property Z, as illustrated in figure 1, are used to determine
the 100 coefficients of the two-dimensional ninth-degree polynomial

Bo,o Bo,1 Bo2 ... Bog|ll
Bio Bi1 Bia -:. Bpg||Ww
9 9 B2,0 B2,1 32,2 . . B2’9 w2
Z(x,w) = z By pxmwh =|:1 x x2 x% '
m=0 n=0
Bgo Bg1 Bgpg Bg g| w9
(A1)
where
X - X4 1}
X = -=
X90 - X1 2
and L (A2)
W -Ww
W = _—1 - _];

Y

These variables x and w are normalized to range between ~0.5 and 0.5 to avoid the
possibility of ill-conditioning (ref. 10) in matrices whose elements are powers of x's or
w's, The normalization is also numerically convenient, since the x's and w's always
have the same values: xj; =Wwj = -0.5, X9 =Wwg =-0.44737, X3 = wg =-0.39474,. . .,
X1g = W1g = 0.39474, x39 =Wjyg = 0.44737, and x4, = Wgq = 0.5.

The solution for the 100 coefficients Bm,n of equation (Al) begins by determining
two "'exact' one-dimensional polynomials for each given x value, with w as the vari-
able. (An "exact'" polynomial is referred to as a polynomial interpolating function in
chapter 3 of reference 11. It passes through every point.) One polynomial is required to
exactly reproduce the first, third, . . ., and the 19th property values while the other exactly
reproduces the second, fourth, . . ., and 20th values. For the ith x value, one of these

polynomials is found by solving
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APPENDIX - Continued

Zl,l 21’3 Z1,5 o« e 0 Zl,lQT al’o al,l al’z PR 2.1’9 1 1 1 « e 1 W
Z31 233 225 ... Za1g| |a20 231 2z ... aggfiwi W3 W5 ... Wy
. 2
Z3,1 Z3’3 Z3’5 « .. Z3’19 33’0 2.3’1 a3,2 .« .. 2.3’9 W1y W32 Wsz ... W]_g2
Z41 243  Zas - -- Za19| |40 41 242 - 249
251 %453 Z55 .- Z519|_|250 251 a2 --- 2a59/|| "’ (A3)
V4 Z V4 P V4 a a a . a, ’
6,1 6,3 6,5 6,19 6,0 6,1 6,2 6,9 N R
. %201 Z203 Z20,5 - - - Z20,09] [2200 220,11 2202 .- 2209

for the ith row of a; , and the other by solving

Z1,9 Z1,4 Z1,6 .o Zl,ZOT b10 bi,1 by 2 PN bl’gﬂ 1 1 1 . e 1
Zao2 Zg4 226 ... Z220 byo ba1  bg2 ... bagllWa Wwg W5 ... Wy
Z32 234 23 --- Z320 b3g b3y bza ... bgglwy? we2  wg? ... wyo?
240 P44 Z4g - Zapo bgog Pg1  Pga ... Pag
Z52 %54 %56 .- Z520|=|Ps0 P51 P52 ... P59 (A4)
Zg2 Zg4a Zgp --- Zg20 bgo bg1 bga --- Dbgg wed  w®  wd . W209
L i
Z20,2 220,4 “Z206 - - - Zzo,zoJ boo,0 b20,1 b20,2 --- Db20,9

for the ith row of bj y. The left-hand side of equation (A3) is formed from the odd-
numbered columns of figure 1; the left-hand side of equation (A4) is formed from the even-
numbered columns. The two polynomials are then averaged to obtain one polynomial given
by the ith row of equation (A5),

[z w) | [Aro  Arg Ay .. Agglll
Z(xg,w) | |Ag20 A1 Agp ... Aggi|W
Z(x3,w) A3 0 Az 1 A3 2 -. - Az gl|W
Z(g,w) | | Ao A1 Ag2  -. - Aggll -
Z(x5,w) | _|A5,0 A51 As2 .- Asp (A5)
( Z(xgW) | | Ag,0 Mgl  As2 ... Agg

Z(xg0,W)| |A20,0 A20,1 Ag0,2 - .- A20,9)

ajn+*bin

where Ai,n = 5

for i=1,2,...,20 and n=0,1,. . ., 9.
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APPENDIX — Continued

At this point, the ith row of Z; ; is approximated by a polynomial such that

]

9

Z(xy,w) = Z Ai,nwn
n=0

for i=1,2,3,. . .,20. Now the nth column of Ai,n is to be approximated by a polyno-
mial function of x. Two "exact” polynomials are formed for the nth column of Aj by
first solving

' ] 2 9] 7
Bl,o A1l Arg .. Alg ﬁ Xy Xy . 1 F:0,0 € ,1 ©,2 --- 09
2
A3,O A3,1 A3’2 PO A3’9 1 X3 X3 e x39 cl,O cl,l CI,Z P 01’9
2 9
As’o A5,1 A5,2 PP A5’9 1 Xs X5 PR X5 02,0 C2,1 62,2 . .. C2’9
=]. . (A6)
9
A19,0 A19,1 A19,2 . A19,£L 1 X1g x192 .. xlgj c9,0 c9,1, cg’2 P cg’9
for the nth column of Cm,n and then solving
[-Az,o Ayl Agg ... Agg 1 X %P oxD . x® Eio,o do,i Y2 --- dog
A40  Bg1 A - Aggl |1 x4 x2 x3 %9 fldjo dpp dyp ... dig
A6,0 A6,1 AG,Z PR A6,9 1 X6 XGZ X63 P X69 dz’o d2,1 d2’2 . e . dz’g
=l. . (A7)
Az0,0 Azo,1 Az0,2 - - - AZO,QJ 1 xgp " xg02  xp9° x90%|dg,0 do1 dga ... d9,9_J

for the nth column of dpy p. The left-hand side of equation (A6) is formed from the odd-
numbered rows of Aj , of equation (A5); the left-hand side of equation (A7) is formed
from the even-numbered rows. The two polynomials are then averaged to obtain one
polynomial given by the nth column of equation (A8),

Boo Bo,a Bpa2 ... By
Bio Bi1 Bia ... Big

’ H )
Bao Bg1 Bza ... Bgyg
[Ao(x) Ailx)  Aylx) ... Ag(xil =[:1 x x2 ... xg] ’ ’ ’

s

B9,0 B9,l Bgg ... BQ’QJ

(A8)

12



APPENDIX — Continued

where

Cm,n + 9m,n

5 (A9)

Bm,n =
for m, n=0,1,. . .,9. The two-dimensional polynomial approximation is finally
formed by substituting Bp n of equation (A9) into equation (Al).

The set of Bm,n and Xy, Xgg9, Wi, and Wy, for the third polynomial of fig-
ure 4 for h/RT of air are given here, and a sample evaluation of the polynomial is given.
The Bm,n are ordered as follows:

Bo,0 Bo,1 Bo,2 Bo,3 Bo,4
Bo,5 Bo,6 Bo,7 Bo,8 Bo,9
Bg 5 Bg 6 Bg 7 Bg g8 Bg g

The integer following the E is a power of 10; for example, 1.2081E+03 = 1.2081 X 103.

—

m = 0:

m = 1:

8

= 2:

g8
i
w

1] 1

I

1

58 8 B B 8
Omlcﬁu’ll&

1l

1.8842E+01
2.2529E+01
-1,9223E+01
-4.9694E+03
5.7650E-01
4.0263E+04
1.5838E+01
-3.8374E+04
-2.3310E+01
-5.8825E+05
1.8278E+01
1.5589E+06
3.1957E+01
2.3622E+06
-5.9066E+01
-9.2474E+06
1.1476E+01
-2.9386E+06
-2.2317E+01
1.6827TE+07

1.8724E+01
1.2081E+03
5.9860E+00
-8.4302E+03
-7.9885E+01
-3.0717E+04
1.7215E+02
3.4992E+05
-2.6170E+02
-4.4625E+05
-2.6375E+02
-2.3791E+06
1.7667E+03
5.3044E+06
-1.0437E+03
4.2249E+06
-2.6431E+03
-1.3065E+07
2.1902E+03
1.6364E+06

~1.9274E+01
1.8045E+03
1.4767E+02
1.5751E+04
-4.7190E+02
-2.8412E+05
7.5910E+02
6.2886E+05
1.8817E+03
3.6933E+06
-1.0231E+04
-1.3535E+07
5.0661E+03
-1.3483E+07
2.9512E+04
7.5263E+07
-2.1784E+04
1.3530E+07
-2.5838E+04
-1.3486E+08

-7.4597TE+01
-2.4644E+03
4.5817E+02
2.7259E+04
-1.2060E+03
2.8112E+04
-3.2372E+03
-9.1143E+05
3.1578E+04
1.7799E+06
-4.6790E+04
5.7175E+06
-1.4085E+05
-1.7221E+07
3.4704E+05
-7.1884E+06
1.9858E+05
4,.1034E+07
-6.5313E+05
-1.3248E+07

For these values of Bm,n, the Xj, X999, Wj,and Wgyy are

X, = -5.4075

W1 = 1.3310

Xgq = 0.2222

Woq = 1.7680

-1.4161E+02
-5.0926E+03
1.2088E+02
~1.3093E+04
7.5502E+03
6.0981E+05
-3.7724E+04
-1.8723E+06
1.0701E+04
-7.4600E+06
2.92T2E+05
3.4212E+07
-4.1131E+05
2.4399E+017
-6.6843E+05
-1.8508E+08
1.1113E+06
-1.6564E+07
2.5673E+05
3.2885E+08
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APPENDIX — Concluded

This polynomial for h/RT can only be used in the valid range as shown in figure 4,
-5.1112 =X £ -0.0741 and 1.3540 =W = 1,7450. If, for example, h/RT is desired at
the point X = -3.0 and W = 1.5, equation (A2) is used to find that x = -0.07236 and
w = -0.11327. These normalized variables and By, p are then substituted into equa-

tion (Al) to evaluate h/RT = Z(x,w) = 17.9,
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TABLE I.- DEFINITION OF ERROR CODES

Error code Percent error?

0.0 to 0.1
0.1to 1.0
1.0 to 2.0
2.0to 3.0
3.0to 4.0
4.0to 5.0
50to 7.0
7.0 to 10.0
10.0 to 15.0
15.0 to 20.0
20.0to

o

¥ O 00 I O U W N =

1, ]

1,

Z; s - Z(XI,W)

2 (Percent error); i= 100
K
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Figure 1.- Array of input values of a

thermodynamic property Z.
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