
NASA C.R-112117

DEVELOPMENT AND EVALUATION OF A

DEVICE TO SIMULATE A SONIC BOOM

by

L. C. Rash, R. F. Barrett, and F. D. Hart

Center for Acoustical Studies
Box 5801
North Carolina State University
Raleigh, North Carolina 27607

REPORT PREPARED UNDER

NASA RESEARCH GRANT NGL 34-002-095

May 1972



SUMMARY .

A device to simulate the vibrational and acoustical properties of

a sonic boom was developed and evaluated. The design employed a

moving circular diaphragm which produced pressure variations by

altering the volume of an air-tight enclosure that was located adjacent

to an acoustical test chamber. A review of construction oriented pro-

blems, along with their solutions, is presented. The simulator is

shown to produce the effects of sonic booms having pressure signatures

with rise times as low as 5 milliseconds, durations as short as 80 milli-

seconds, and overpressures as high as 2.5 pounds per square foot.

Variations in the signatures are possible by independent adjustments of

the simulator. The energy spectral density is also shown to be in agree-

a

ment with theory and with actual measurements for aircraft.
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INTRODUCTION

Whenever an object travels through the atmosphere at ve-

locities greater than the speed of sound, a pressure wave is

generated that emanates from the object and produces an ex-

plosive sensation in the auditory system of humans and ani-

mals. When the above phenomena is associated with aircraft,

it is generally referred to as a sonic boom. This occurrence

can have an annoying or even startling effect on the popu-

lace, but restricting it to a particular location and a con-

venient time would be difficult. An alternative is to deter-

mine the physiological effect of the noise and vibration

caused by the sonic booms on man. To perform such a study

requires a device that can adequately simulate both the

acoustical and the vibrational properties of a sonic boom.

The purpose of this research was to produce such a sonic boom

simulator, which would later be applied to a study of the.ef-

fects of sonic booms on peoples' sleep patterns.



REVIEW OF LITERATURE

. There are generally three basic approaches used for con-

trollable sonic boom simulators within a laboratory. They

are the headset method, the progressive wave method, and the

chamber vibration method. The headset method used electronic

speakers mounted inside an acoustical chamber to produce re-

alistic indoor acoustic simulation but lacked vibration stim-

ulus. The progressive wave method produces ground shock

waves by an explosive source and a magnifying expansion tube

but also does not create the vibrations associated with sonic

booms. The chamber vibration method gives the best indoor

acoustical and vibrational simulation by changing the volume

of an airtight chamber with a machine that moves a portion of

the chamber wall. The final method was used in a design that

was proposed by Redman (8) and supported by the National

Aeronautics and Space Administration. This design included

the following general steps of a design process:

a. problem definition

b. feasibility study

c. preliminary design

d. detail design.

The remaining steps that would complete the design proc-

ess are listed below:

e. construction

f. development

g. testing

h. evaluation.
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Items e, f, g, and h provide a physical application and

analysis of the principles developed earlier in the design

process.



DEVELOPMENT AND CONSTRUCTION

Test Chamber -

After the initial design, it became apparent that addi-

tional testing facilities would be required. The laboratory

that was originally intended to be used presented a space

limitation. Also, additional studies with acoustic stimuli

had been initiated, so inevitably, a new test chamber was de-

signed and built for use on the sleep study project.

The dimensions of the test chamber were determined" by

the size of the laboratory, the equipment arrangement, and an

allowance for access around the equipment. The arrangement

in the laboratory is shown in Figure 1. Standard house con-

struction procedures were used in the design of the test

chamber so that the vibrational characteristics would be sim-

ilar to those produced by an actual sonic boom. Figures 2

and 3 indicate the construction techniques employed and the

dimensions. Basically, plywood covered the floor joists and

the exterior side of the wall studs and sheet rock was used

for the interior walls and ceiling. The walls were fitted

with v/all receptacles, a ventilation fan, and an interior

type door with frame. A support for the ventilation fan was

mounted on the plywood wall surface but secured to the stud

wall. After the walls had been finished and painted, an

overhead light and carpeting were installed. A bed, dresser,

and chairs gave the test chamber the desired appearance of a

bedroom.
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Control Volume

An integral part of the sonic boom simulator is an air-

tight chamber, o.r control volume, that allows a particular

wall of the test chamber to be loaded uniformly during a son-

ic boom. This control volume consists of an outer concave

wall, shown in Figure 4, that affixes to one of the walls of

the test chamber, as indicated in Figure 1. The concave wall

is in the shape of a truncated pyramid and is rigidly con-

structed so that its deflection would be negligible compared

to the test chamber wal!8 The strength of the concave wall

comes from the cross bracing and the thicker plywood used on

its inner surface. A circular opening was cut in the verti-

cal center section large enough to provide a one inch clear-

ance around the diaphragm. The edges of the opening were

well rounded and smoothed to prevent puncturing the flexible

neoprene seal. All seams in the concave wall were caulked

and the joint between the outer wall and the test chamber was

sealed with an automotive type weather stripping. The con-

cave wall was secured to the test chamber with lag bolts and

additionally supported by a foundation. A more permanent

mounting would create difficulties if a situation warranted

access to the interior of the control volume.
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Sonic Boom Simulator

Neoprene Seal .

The initial design specified that a neoprene sheet was

to be secured to the surface of the diaphragm and to the out-

er wall of the control volume providing an airtight seal of

the chamber. Since the neoprene is attached to the dia-

phragm, it will follow the same motion as the diaphragm dur-

ing the simulation of a sonic boom, and it will contribute to

the overall weight of the diaphragm subsystem. The force re-

quired to provide motion to the subsystem would increase as

the overall weight increases, so the weight should be kept to

a minimum. The requirements of a neoprene sheet are investi-

gated in Appendix A, and it is determined that the thinnest

commercially available sheet would be adequate.

Alterations

During construction the components of the sonic boom

simulator, shown in Figure 5, were tested as they were in-

stalled to determine if there were any problems that would

warrant altering or modifying the original design. The sys-

tems that required alterations are as follows:

a. actuating mechanism

b. inertia wheel

c. cam follower pad

d. reservoir pressure reduction.
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The actuating mechanism consists of a single revolution

clutch that is allowed to rotate by energizing a solenoid.

If the solenoid remains energized, the single revolution

clutch continues to rotate; and since a revolution only takes

one quarter of a second, a mechanical tripping device was

first developed to prevent more than one revolution. After

the solenoid was received, it was found that excessive later-

al motion of the solenoid core occurred hampering the opera-

tion of the mechanical device. Rather than restrict the so-

lenoid core and decrease its pulling capacity, a more basic

approach was tried. If the time that the solenoid was ener-

gized could "be controlled, the solenoid could be attached di-

rectly to a clutch stop lever. Such a momentary contact

switch was not commercially available, but a simple electri-

cal switch that could perform the task was developed. A .

schematic diagram of the circuitry is shown in Figure 6.

When the momentary contact switch is in the normally closed

position, alternating current from a wall outlet passes

through a resistor, limiting the current in the circuit-

through a diode, rectifying the current; and into the capaci-

tor. The resistor is a lightbulb and will initially glow as

the capacitor is being charged. When it ceases to glow, the

capacitor has reached sufficient charge to energize the sole-

noid. Depressing the momentary contact switch allows the ca-

pacitor to discharge through the solenoid, thus permitting

the solenoid to only be energized instantaneously. All the

electrical components are enclosed in a unit that enable the
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sonic boom simulator to be operated from the monitoring con-

trol side of the test chamber„ In Figure 7, the resulting

attachment of the solenoid to the clutch stop lever is shown.

The alteration concerned with the inertia wheel, that

was mounted on the axle of the electric motor, was a conse-

quence of an unbalance. The motor speed was one of the vari-

ables in the simulation of a sonic boom and since one of the

desired motor speeds corresponded to a resonant frequency of

the inertia wheel, vibration and noise problems resulted.

The perimeter of the inertia wheel had been machined concen-

tric to the axle of the motor so the unbalance was contri-

buted to variations in thickness. Since two 1/2 inch steel

plates had been used for its fabrication, machining of all

four sides to correct the problem would have greatly reduced

the inertia. Therefore, a new inertia wheel was made from

one inch steel stock and all surfaces were machined smooth.

A savings of inertia was accomplished and the unbalance had

been corrected.

Another alteration was involved with the mounting of a

nylon pad on the cam follower. When the forcing operation of

the diaphragm was first tested, the pad that was epoxy glued

to the cam follower came off. Examination of the joint indi-

cated that the failure was not a result of the shear force

but instead the impact loading. The epoxy had formed a fil-

let around the pad that was not damaged; so if a normal force

could be applied to the pad for the impact loading, the epoxy

would still be used for the shear force. A normal force was
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applied to the pad by increasing its length and using two

small cap head screws to attach it to the cam follower. .The

correction is shown in Figure 8.

Prior to the performance test of the sonic boom simula-

tor a calculation error was discovered that produced an over-

design of the requirements for the air. pressure reservoir.

The corrections are shown in Appendix B, and the alteration

that resulted was the replacement of the pressure gage. The

new gage had a lower pressure range so that the reservoir

pressure could be more accurately determined.

Modifications

The alterations produced a change in an existing system,

and the modifications introduce improvements through addi-

tional features. A list of the modifications with respect to

components is listed below:

a. transformer

b. diaphragm alignment slide

c. motor mounts

d. solenoid noise reduction.

A transformer in the power line of the electric motor

was a consequence of the new laboratory facilities. The 3/4

horsepower electric motor that provides the torque to the cam

was wired for use of a 220 volt supply as was available in

the originally intended laboratory. Since the only available

power supply in the new laboratory was 115 volts, the trans-

former was more economical than having the room wired for the
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higher voltage. The transformer was located out of the way

beneath the mounting table and secured to the support frame,

as is shown in Figure 5.

Addition of the diaphragm alignment slide was a precau-

tionary measure to prevent rupture of the neoprene sheet by

rotation of the diaphragm. Friction from the cam follower

sliding on the cam would produce a rotational force and the

only resultant force would have to come from the neoprene

sheet. The slide was a piece of 1-3/4 inch angle iron with

one arm bolted to the mounting table and the other arm fitted

into a slot cut in the lower extreme of the cam follower,

shown in Figure 8.

The next modification was the addition of a rubber motor

mount for the electric motor. Sixty-cycle noise was being

produced by the electric motor and transmitted to the mount-

ing table causing other components to produce noise. To re-

duce the overall noise level, the transmission path was bro-

ken by placing a special rubber pad between the motor and the

mounting table and by using rubber washers when bolting the

motor to the table. Although the motor still produced some

noise, the overall operational noise was lowered.

The fourth modification also dealt with noise reduction

but was concerned with the solenoid. Noise would result from

the metal to metal impact of the core striking the casement

when the solenoid was energized and from the return spring

oscillating when the solenoid was de-energized. The relevant

components are shown in Figure 7. The first problem was
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solved by placing rubber cushions between the contact points

to absorb part of the energy from the impact. Vibration of

the spring was eliminated by placing a small piece of the

neoprene, rolled up, within the spring. An additional reduc-

tion was made by mounting the solenoid on a rubber pad to

prevent it from transmitting vibrations to any other compo-

nent.

Reservoir Pressure Corrections

When the air pressure reservoir was initially pressur-

ized, an air leak was evident. The location of the leakage

was detected by the application of a soap and water solution

that resulted in the escaping air producing bubbles. The

only significant leak was due to scratches on the surface of

the diaphragm shaft that were corrected by refinishing the

surface. Other small leaks were correctable through adjust-

ment.

Acoustic Enclosure

To reduce the ambient noise level in the laboratory, the

initial design called for the sonic boom simulator to be cov-

ered by an acoustic enclosure. The overall dimensions were

specified, but the details had to be worked out. For low

frequency sound absorption a high density fiber board was

chosen, and to keep the sound pressure from increasing inside

the chamber due to reverberation, the interior was covered

with an acoustic tile, as shown in Figure 9. h construction
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seam was offset from the center so that one end of the enclo-

sure could be removed for maintenance of the simulator. Foam

rubber is used for a seal in the joint, and suitcase latches

secure the sections together. The opening around the dia-

phragm shaft was extended with wooden washers, cut from ply-

wood , to allow the clearance about the diaphragm shaft to be

filled with spun fiber glass. The enclosure rests on the

floor and has an acoustical isolation foundation between it

and the mounting table. The acoustical isolation foundation

was placed on the acoustic tile lining with the plywood dis-

tributing the load over a larger area and the rubber absorb-

ing the vibrational energy. An additional requirement of the

foundation that was considered was proper height for the

mounting table to provide vertical alignment of the diaphragm

to the clearance opening in the control volume.

Completion of Construction

The finalization of the construction of the sonic boom

simulator was sealing the connection of the diaphragm to the

control volume outer wall. The neoprene sheet was epoxied to

the diaphragm and secured to the control volume outer wall

with a holding ring shown in Figure 4. The control volume

was then airtight and with all systems properly operating,

the sonic boom simulator was ready to be tested.
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TESTING AND EVALUATION

Performance Test and Corrections

Prior to the presentation of the testing of the sonic

boom simulator, a more detailed examination of the sonic boom

phenomena may be helpful to the reader. As mentioned in the

introduction, a sonic boom is a pressure disturbance that is

produced by a supersonic aircraft. The pressure signature is

rather complex near the aircraft, as shown in Figure 10, but

evolves into a simpler wave as the distance from the aircraft

increases. The rough peaks near the aircraft are produced by

any abrupt change in the contour of the aircraft, and the

smoothness occurs as an effect of the atmosphere during prop-

agation to the ground. The pattern in the far field resem-

bles an N-shaped time history and is of greatest interest

since it is for an aircraft in a normal high altitude flight

configuration. This wave is characterized by a sudden pres-

sure rise, AP, followed by a linear decay to a pressure below

atmospheric, -AP, and another sudden rise in pressure back to

normal. The time required for the first pressure rise is

generally referred to as the rise time, t, and the period for

the N-impulse is the duration, D. An actual sonic boom only

approaches this idealized N-wave, but the differences, de-

pending on the temperature, pressure, and wind currents of

the atmosphere, are usually small.

The instrumentation for the test had to be capable of

measuring low frequencies since sonic Ixioms range from
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Figure 10. Sonic toom pressure signature propagation
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2.5 hertz up to 25 hertz, that is, durations of 0.04 to 0.4

seconds. The components utilized in the instrumentation are

listed below:

a. one inch microphone

Briiel and KJaer type 4146

b. microphone carrier system

Brviel and Kjaer type 2631

c. storage oscilloscope

Tektronix type 549

d. camera with oscilloscope mount

Tektronix type C30A.

The microphone carrier system with the one inch micro-

phone has a frequency range from 0.1 hertz to 18 kilohertz,

which was more than adequate for the test. The oscilloscope

gave an immediate visual display of the pressure signature

and the camera provided a permanent record of the data.

The test was performed by sealing the microphone in a

one inch diameter hole that was drilled in the outer wall of

the control volume as shown in Figure 4, and observing the

trace of the pressure change on the oscilloscope screen dur-

ing the simulation of a sonic boom. To determine the per-

formance, the overpressure, rise time, and duration were in-

creased by increasing the cam offset, decreasing the

reservoir pressure, and decreasing the motor speed, respec-

tively. The effect of decreasing the motor speed and reser-

voir pressure are shown in Figures 11 and 12.
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Figure 11. Oscilloscope trace of correctable pressure
signature A. One division vertically =0.5 psf.
One division horizontally = 0.05 second

Figure 12. Oscilloscope trace of correctable pressure
signature 3. One division vertically =0.5 psf.
One division horizontally = 0.05 second
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As a result of the test, two problems were exposed that

required corrective measures, one was oscillations that were

superimposed on the N-wave, and the other was a nonlinear

pressure decay. The oscillations are apparent in both Fig-

ures 11 and 12 and were assumed to be the product of vibra-

tions that either entered the diaphragm or were produced by

it. To decrease the vibration that was emanating ^rom the

diaphragm face plate, a sound dampening material was added

between the reinforcement ribs. To decrease the separation

of the cam follower from the cam, which would have produced

oscillations of the entire diaphragm system, a shock absorber

was attached to the cam follower and bolted to the mounting

table, as shown in Figure 13. To reduce any transmission

from the metal to metal contact of the clutch stop lever with

the single revolution clutch, a nylon pad was mounted on the

clutch stop lever. This nylon pad later had to be replaced

with one made from polycarbonate due to the nylon not being

capable of withstanding the impact loading of stopping the

single revolution clutch.

The nonlinear pressure decay is more noticeable in Fig-

ure 12, and an analysis of the driving system for the cam, as

in Appendix C, was made to determine the cause. Power is

transmitted from the d.c. motor to the cam by means of V-

belts and sheaves, which were found to be operating below

their power conveying capacity, thus producing a power fade

during the simulation of a sonic boom. The power
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transmission ability was increased by changing to double V-

belts and larger sheaves.

The improvements of the pressure signature are shown in

Figures 14 and 15 in that the oscillations are significantly

reduced and that the pressure decay is approaching linearity.

The pressure decay would never be perfectly linear due to the

circular cam producing a sine wave pattern, but the proximity

is sufficient.
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Figure 14. Oscilloscope trace of pressure signature A.
One division vertically =0.5 psf. One division
horizontally = 0.05 second

Figure 15. Oscilloscope trace of pressure signature B.
One division vertically =0.5 psf. One division
horizontally = 0.05 second
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Calibration Test

The intention of the calibration test was to associate

simulator adjustments with pressure signatures and with air-

craft. This was accomplished by utilizing the same instru-

mentation as in the performance test to obtain photographs

that indicated the effect of the variable adjustments. The

pressure signatures thus obtained were idealized to an N-

waveform by defining the rise time as the time required for

the overpressure to reach a maximum? the overpressure as the

mean value of the oscillations, and the duration as the sum

of twice the rise time plus the time required for a complete

reversal of overpressure. The method of dimensionalizing the

pressure signatures is illustrated in Figure 16. The rise

w
w
u
IT
Q.
tr
UJ

£
Ii& TIME

= OVERPRESSURE

t = RISE TIME

D = DURATION

Figure 16. Idealized pressure signature
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time and the duration are readily determined since the divi-

sions of the horizontal scale are in milliseconds, but the

. overpressure required a conversion from volts to pounds per

square foot. The conversion was obtained by using a piston-

phone, Bruel and Kjaer type 4220, that produced a known in-

put, and by information from Beranek. (2) that gave a corre-

spondence of one pound per square foot for a two volt

indication on the vertical scale of the oscilloscope.

The simulator was designed such that each of the boom

parameters could be varied independently by measurable ad-

justments of the simulator. That is, the duration is related

to the motor speed, which depends on a scaled controller set-

ting; the rise time corresponds to the reservoir pressure,

which is goverened by a pressure gage; and the overpressure

is associated with the cam offset, that can be measured in

fractions of an inch. The effects of the adjustments are il-

lustrated as follows: durations of 0.16 and 0.31 seconds are

shown in Figures 14 and 15 for controller settings of 5 and

3.5; rise times of 0.05 and 0.025 seconds are shown in Fig-

ures 17 and 18 for reservoir pressures of 20 and 15 pounds

per square inch; and overpressures of 0.6 and 1.2 pounds per

square foot are shown in Figures 18 and 19 for cam offsets of

0.12 and 0.19 inches, all indicated respectively. The repro-

ducibility and variability of the simulations are apparent in

the above mentioned figures, and with similar photographs,

the curves in Figures 20 and 21 were developed to show dura-

tions and overpressures as functions of the adjustments. The
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Figure 17. Oscilloscope trace of pressure signature C.
One division vertically =0.5 psf. One division
horizontally = 0.05 second

Figure 18. Oscilloscope trace of pressure signature D.
One division vertically =0.5 psf. One division
horizontally = 0.05 second

Figure 19. Oscilloscope trace of pressure signature 3.
One division vertically =0.5 psf. One division
horizontally = 0.05 second
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rise time was too dependent on the cam offset and the shock

absorber for a correlation with the reservoir pressure, but

ranges from 0.005 to 0.030 seconds were established which are

in agreement with the design specifications. The curves in

Figures 20 and 21 enable the simulator to be set for simula-

tions of a predetermined duration and overpressure simply by

adjusting the motor controller and the cam offset to the des-

ignated settings.

To relate the simulated sonic boom with aircraft re-,

quired a generalization, in that the atmosphere affects the

parameters of booms, produced by aircraft, in varying degrees.

The duration is least affected and can more readily be re-

lated. Information from Young (11) gave typical durations

for aircraft and are indicated in Figure 20 so that the simu-

lator can be set for a duration that corresponds to a partic-

ular aircraft. The overpressure is apparently affected by

altitude as much as it is by aircraft configuration. Average

values of the overpressure were determined by information

from previous research (7) as functions of altitude for three

types of aircraft. The results are related to the cam offset

of the simulator by the curve in Figure 21. The rise time is

so dependent on atmospheric conditions that no parallel could

be drawn between the simulator and aircraft. According to

(10), identical rise times are available from different types

of aircraft, and they range from 0.001 to 0.030 seconds. The

only comparison that can be made is that the 0.005 to 0.030
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second rise times obtainable from the simulator are in agree-

ment with those of aircraft.

It is apparent from Figures 20 and 21 that the simulator

meets the design specifications of the initial design, and

that it is producing simulations that are comparable to those

associated with aircraft.
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Evaluation

It has been suggested by Young (11) that a better com-

parison of sonic booms is made by analyzing the energy dis-

tribution in frequency bands rather than by associating the

characteristic parameters of the N-waves. Although the pre-

vious correlations can still be used to relate the simula-

tions with particular aircraft, an analysis was made to show

that the simulator does in fact oroduce a simulation which

agrees with theoretical and aircraft produced N-waves.

To determine the energy distribution in frequency bands,

or generally referred to as the energy spectral density, a

simulated sonic boom was recorded and then played back

through a filter. The advantage of the recording was that

the playback speed could be changed enabling the energy in

lower frequencies to be determined. To complete the formal

list of instrumentation, the following components were used

in addition to those in the performance test:

a. frequency modulation tape recorder

Bruel and Kjaer type 7001

b. audio frequency spectrometer

Bruel and Kjaer type 2112

c. extension filter set

Bruel and Kjaer type 1620.

The simulated sonic boom was recorded on magnetic tape

at 6 inches per second and then played back at 60 inches per

second for the lower frequency analysis. Thus when the play-

back speed was returned to the normal 6 inches per second, a
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full spectrum was obtained for the center frequencies from

1.25 to 1250 hertz. The center frequencies are with respect

to the one-third octave bandwidth that was the mode of opera-

tion of the filter for the analysis. For a pressure level

indication in the bandwidths, an attempt was first made to

use a graphic level recorder to provide a permanent record of

the readings, but its operation was unsatisfactory. A rapid

response was required for the impulsive indications, and the

inertia of the writing pens suppressed this movement. The

oscilloscope appeared to be the only available means of col-

lecting the data and so by double checking each reading, re-

liability in the data was assured.

The data obtained was pressure levels associated with '

bandwidths and required a conversion to energy spectral den-

sity. Information by von Gierke (7) gives the following de-

scription:

U)

which in terms of decibels would be

o

10 log |p(w)|2 = 10 log(^-)dB. (2)
I I I A f J

Plotting the energy spectral density against the center fre-

quencies yields the curve shown in Figure 22. The spike at

63 hertz and the surrounding increase is attributed to the

motor noise that is developed by the simulator and would tend

to make the simulation seem louder than a comparable actual

boom. For comparison, the theoretical energy spectral den-

sity based on Fourier integral techniques is shown in
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Figure 23, as indicated by von Glerke (7), and the actual en-

ergy spectral density as measured for a supersonic aircraft

(10) is shown in Figure 24. It should be noted that for all

three figures the energy reaches a maximum below 10 hertz/
/

and that the energy decreases by 6 decibels per octave for

the upper frequencies. This means that the major portion of

the energy is contained in the subaudible frequencies, and

that the simulation is in agreement with both theory and

fact.

Since the simulator is to be used later in sleep study

experiments, a measure of the operating noise may prove to be

a useful part of the evaluation. A sound level survey kit,

Brxiel and Kjaer type 2204, was used to obtain the sound lev-

els within the test chamber both with and without the simula-

tor operating. The results are indicated in Figure 25 and

show that the levels are higher in the lower frequencies.

Although there is a noticeable increase, the concentration in

the lower frequencies is an advantage. The human auditory

system attenuates the lower frequencies making such noises

less distracting and acceptable for sleeping conditions.
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SUMMARY

The sonic boom simulator, along with the acoustical test

chamber, provides the best means of conducting accurate ex-

perimentation on the physiological effects of sonic booms.

The simulator produces the effects of sonic booms with rise

times between 0.005 and 08030 seconds, durations between 0.08

and 0.35 seconds and overpressures between 0.4 and 2.5 pounds

per square foot. Variation of each boom parameter can be ac-

complished by independent adjustments of the simulator and

with a minimum of effort.

Analysis of the simulations, with respect to the energy

spectral density, indicated that the sound energy distribu-

tion was comparable to plots for an ideal N-wave and for ac-

tual supersonic aircraft.
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Appendix A. Design Analysis of Flexible Neoprene Seal

The thickness of the neoprene sheet can be determined by

examining the stresses in.a segment on the surface of the

diaphragm, and then checked by finding the deflection at the

clearance space between the diaphragm and the control volume

outer wall. The segment on the surface is taken which covers

one of the one-eighth inch diameter holes that was drilled

for weight reduction. The external forces consist of an as-

sumed simple support about the boundary of the opening and of

a distributed load produced by acceleration and chamber pres-

sure. The loading due to acceleration can be determined by

Newton's Second Law,

F = ma (3)

The distributed load is found by dividing (3) by the area of

the diaphragm.

w - S§ (4)wa - -ft- \4)

The mass would be for the weight of the neoprene, which is

the product of the density and the volume, and the accelera-

tion would be for the displacement and rise time of the simu-

lator. Substituting in (4)

• _ 1 PAT 2d , 0
Wa - A V tZ (5)

P =0.034 pounds per cubic inch

d =0.11 inch

g = 386 inches per square second

t = 0.005 seconds.
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Therefore:

wa = 0.034 x T x 2 x 0.11 = 0-.705T psi (6)
386 x 0.005̂

The loading due to chamber pressure would simply be the over-

pressure

WQ = 3.0 psf = 0.021 psi (7)

The total distributed load, by superposition, would be the

sum of equations (6) and (7).

w = 0.705T + 0.021 psi . (8)

The thickness of the neoprene sheet can be determined from

the equation presented by Eaumeister and Marks (1)

S = ££± w (9)
T2

S = 500 psi

k = 1.24

r = 1/16 inch.

Solving for the thickness

500 = la24 t0.705T + 0.021)
162 T2

500 T2 - 0.0034T - 0.0001 = 0

T = 0.00045 inch

As indicated in equation (9), the stress is inversely propor-

tional to the thickness. Therefore, an increase in thickness

would result in less stress in the neoprene. Since 1/64 inch

is the minimum thickness that is commercially available, it

can be used and the stresses developed would be acceptable.
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To determine the deflection at the clearance space, the

inertial load was assumed to decrease linearly from the dia-

phragm to the control volume outer wall. Thus, the distri-

buted load as described by equation (8) would be

* 0.021
w = 0.027 psi

The deflection can be found from the equation presented

by Baumsister and Marks (1)

k, w r-,4 1
y = _J: - L. •_ (10)

E T3

k-L = 0.14

r-L = 1.166 inch

E = 5000 psi

which gives

= 0.14 x 0.027 x 1.1664 x 643
5000

y = 0.37 inch

Although this deflection would require additional displace-

ment of the diaphragm to balance the net effect of the volume

change, it is not so extreme that failure would occur.

Based on the above calculations, a thickness of 1/64

inch was chosen for the neoprene as being adequate for an ac-

ceptable stress level. The resultant increase in the weight

of the diaphragm system would be 0.43 pounds, which added to

8 pounds only gives a slight increase.
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Appendix B. Overdesign Corrections

In the preliminary design of the initial plan, a mathe-

matical error was found that exaggerated the requirements of

the cam offset and the reservoir pressure. The correction is

based on fundamental thermodynamics in that the cam offset

allows the diaphragm to move through a displacement, causing

a volume change, that is assumed to be an isentropic process

of an ideal gas described by

PVk = c (11)

where k and c are constants. Differentiating this equation

and dividing through by PVk leads to

which in terms of incremental changes would be

^+k^ = 0 (13)

Solving equation (13) for the change in volume, &V, and then

substituting for the dimensions of the diaphragm that pro-

duces the change in volume gives

d,R2=-I^ (14)

where the negative sign indicates that a decrease in volume

is required for the displacement to be positive. Solving

equation (14) for the displacement gives the following cor-

rected expression for the displacement:

a --- - <15>
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Theoretically the displacement for a 300 psf simulated sonic

boom would then be 0.11 inch instead of the anticipated 0.97

inch.

The reservoir pressure was shown in the initial design

to be dependent on the relationship in equation (15). Use of

equation (15) would lead to a theoretical reservoir pressure

of 10 psi for a 3.0 psf simulation rather than the 60 psi

pressure that was originally expected.
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Appendix C. Redesign of Drive System

In the process of locating the source of the nonlinear

decay in the pressure signature, an investigation was made of

the drive system to determine if belt slippage was occurring.

A variable speed 3/4 ,hp D-C motor was driving the adjustable

cam by two sets of V-belts and sheaves. The worse condition

existed when the simulator was set for an 0.35 second dura-

tion, which gave a cam speed of 86 revolutions per minute.

For sheave pitch diameters of 2.8 and 8.5 inches, the inter-

mediate shaft speed would be

D4 8 5N3 = •- ' NA = * x 86 ~ 261 rpm (16)
D3 2.8

By use of this speed and the diameter of 2.8 inches, the load

carrying capacity of the second belt from the motor is given

by the manufacturer (3) to be 0.46 horsepower. The problem

was that when the single revolution clutch was activated, the

impact loading on the belts required at least 1.25 horsepower.

This was correctible by either increasing the diameter of the

sheaves or by use of multiple belts. Both methods required

replacement of the sheaves, so a combination of both was

used. An increase in the diameter of the larger sheaves

would add to the inertia of the system, but a 9.0 inch pitch

diameter limit was imposed for clearance from the mounting

table. The smaller sheaves diameter could then be determined

by using the maximum motor speed of 1725 revolutions per min-

ute and by taking a cam speed of 375 revolutions per minute.
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The higher cam speed would give duration times as low as 0.08

second, which is more conformable to smaller aircraft. Using

a consecutive numbered subscript for reference to the respec-

tive position of the sheaves from the motor, allows the speed

and diameter relations to be given as

N! DI = N2 D2 (17)

N3 D3 = N4 D4 (18)

The second and third sheaves are attached to the intermediate

shaft so their speeds would be identical, .i.e. , N2 = N3.

Solving equations (17) and (18) for the speeds N2 and N3/- and

equating gives

£l_El=!!4_£4 , j
D2 D3

For equal speed reductions of the two sets of sheaves, the

same diameters must be used in each set, or

D! = D3 (20)

D2 = D4 (21)

substituting (20) and (21) into (19) and solving for the

first diameter gives

(22)

Therefore, using values previously given, the diameter of the

smaller sheave is

D . x 9.0*}* .

= 4.2 inches
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To determine the load carrying capacity of the system, the

intermediate shaft speed for the new diameter sheaves is

needed

N3 = -FT N4 = f*£ x 86 = 184 rpm (23)J D3 4»2

The rating of the system based on double belts would be 1.58

horsepower, as given by the manufacturer (3). Thus the sys-

tem would be capable of delivering power under the severe

loading conditions that exist. A brief description, followed

by the manufacturer's part number of the replacement parts,

are listed below:

a0 Browning gripnotch belt, AX46

b. Browning FHP sheave, 2AK46H

c. Browning FHP sheave, 2AK94H.
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Appendix D. List of Symbols

a = acceleration

A = area of diaphragm

c = constant

d = displacement of diaphragm, jL.jS. , cam offset

D = duration

dB s= decibels

D^ = diameter of sheave (i=l, 2, 3, 4)

E = modulus of elasticity

F = force

g = gravity constant

k = constant

k^ = constant

m = mass

msec = milliseconds

N^ = angular speed of sheave (i = 1, 2, 3, 4)

oct = octave

P = pressure

psf = pounds per square foot

psi = pounds per square inch
I O

P(w)M = energy spectral density

r = radius of lightening holes in diaphragm

r^ = distance between diaphragm and control volume outer

wall

R = radius of diaphragm

rpm = revolutions per minute
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S = stress

t = rise time

T = thickness of neoprene

V •= volume

w = total distributed load

wa = inertia1 distributed load

w0 = distributed load from overpressure

y = deflection of neoprene at clearance space

a = incremental difference

Af = bandwidth

AF = overpressure

p = density

TT = constant

d = partial derivative designation


