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Abstract

To examine spatial electron cyclotron damping in a uniform

Vlasov plasma, we note that the plasma response to a steady-state

transverse excitation consists of several terms (dielectric-pole,

free-streaming, and branch-cut), but that the cyclotron-damped

pole term is the dominant term for z > i = c/u> provided

(w /uj ) (c/a) » 1. If the latter inequality does not hold,

then the free-streaming and branch-cut terms persist well past

z = c/u) as u>, approaches 01 , making experimental measurement

of cyclotron damping essentially impossible. Considering only

(u /u ) (c/a) » 1 , we show how collisional effects should be

estimated and how a finite-width excitation usually has little

effect on the cyclotron-damped part of the response. We establish

criteria concerning collisional damping, measurable damping length

sizes, and allowed uncertainty in the magnetic field B . Results

of numerical calculations, showing the regions in the appropriate

parameter spaces that meet these criteria, are presented. From

these results, one can determine the feasibility of, or propose

parameter values for, an experiment designed to measure spatial

cyclotron damping. It is concluded that the electron temperature

T should be at least 1 ev., and preferably 10 ev. or higher, for

a successful experiment.



SPATIAL CYCLOTRON DAMPING

Although it is an important fundamental process , spatial cyclotron

damping in a uniform, hot, collisionless plasma has not yet been measured

experimentally. A recent attempt by Lee, Fessenden, and Crawford proved

unsuccessful because of dominant collisional damping. In this paper we

consider the theoretical response of a Vlasov plasma to a steady-state

(spatial) transverse excitation. Without loss of generality we neglect

the ions and consider only electron cyclotron damping. We note that the

plasma response consists of several terms but that the expected cyclotron-

damped term is the dominant term at distances sufficiently far away from

the excitation. We examine effects of collisions and effects of a finite-

width excitation on this cyclotron- damped term. Then, from experimental

considerations, we determine ranges of the appropriate parameter values

(density n , temperature T , ratio of plasma frequency to cyclotron

frequency tt) ICA , uniformity and precision of the zero-order magnetic
u6 CG

field B0, and length of experimental apparatus) for which experimental

measurements of electron cyclotron damping rates, and their comparison

with theory, would be feasible.

Theoretical Considerations

We consider a steady-state external electric field excitation of the

form

through which particles are allowed to pass freely. If this excitation
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is applied to an infinite, hot, collisionless plasma, which is described

by the Vlasov equation

(3)

then the first-order (linear) current response is found to be

- 3 2<z.
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for z > 0, where we have assumed an isotropic zero-order Maxwellian velocity

distribution

o

The transverse dielectric function is defined by

where

the plasma dispersion function , is defined for Im? < 0, and as the

analytic continuation thereof for Im£ *•' 0. The saddle points used in

W are / f ir TT v
>2^ 1(^-^-3)

e

— ^i
3 -i*- 6

e

where

Also

S (^ - / for

0 for

< O } Cuf > CU^

and the root(s) k. are defined by

= O
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Note that the response (4) consists of three types of terms, whose

characteristics we briefly discuss:

(i) The branch-cut term, which is not readily explainable physically,

has a significant amplitude only for z =0 and u. - u .

(ii) The free- streaming term represents phase mixing of the free-

streaming waves created by those particles that free stream through the

excitation region at z = 0. Free-streaming waves have many unique

2characteristics (negative phase velocities for 0 < <D. < u and z > 0 ,

absence of cyclotron damping, etc.) but these features will not concern

us. The free-streaming term is always significant, has a characteristic

length a/(<D, - u> ) for u. - ta , and is divergent at z = 0 due to thei ce i. ce

delta- function excitation (2) .

(iii) The dielectric-pole term(s) represent the collective plasma

oscillations. Actually there are an infinite number of pole terms because

the transverse dispersion relation

= O

has an infinite number of roots (for real ID and complex k, the case we

are considering). The free-streaming pole-enhanced term is due to the

excitation of a collective mode by a particular free -streaming wave (i.e.,

a wave formed from particles which all have velocity v where v = v and

v, a complex number, solves eT(Cu), - <D fiJ/v, u,) = 0). Typically this

term is negligible because the exponential factor in (4) ,

exp -([ID. - to ]/[k.a]) , is usually very small.

The least-damped pole term in (4) represents the cyclotron- damped

response we are interested in. But, of course, all of the terms in (4)
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would be seen in an experiment. Thus to examine only cyclotron damping,

we must verify that a distance S. exists, beyond which all of the terms in

(4), except the least-damped pole term, will have damped away. Then for

z > Jt the least-damped pole term will truly be the dominant term. Provided

the various terms in (4) , and upper- bound estimates of their maximum

2characteristic penetration lengths, are

Branch-cut term c/cu

Free-streaming term c/u) (7)

Infinite sequence of pole terms (All < c/u

pole terms except the least-damped one)

It follows that a useful estimate for i is i - c/u , provided (6)
Cc

holds. If (6) does not hold, the estimates in (7) do not hold and all of

the terms in (4) can extend well past z = c/u . Henceforth we restrict

our attention to those cases in which (6) holds.

Note that the least-damped pole term and the free-streaming pole-

enhanced term in (4) concern the same least-damped collective model being

excited by two different means: (I) directly by the excitation, and (ii)

indirectly by a free-streaming wave. However, all that is measured experi-

mentally is Im k for these least-damped terms, so it is not necessary to

know what fraction of the total least-damped response is caused by each of

these two methods. (In fact, for 0 < u, < u , the free- streaming waves

do not excite any collective modes as indicated by the S(uO factor in (4):

this is due to the fact that for 0 < u, < u , all free-streaming waves
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have negative phas.e velocities while all collective modes have positive

phase velocities. ) In any case for z > I = c/u , the cyclotron damping
ce

rate of the response is determined simply by Im k of the least-damped root

of the transverse dispersion relation (5).

In Figures la, b, c we present some numerical results concerning this

cyclotron-damped root for values of to slightly below u> . Note that Im k
Cc

is essentially zero until u is very near u) and that when u> = u> , Im kce ce

is typically large enough that it could not be measured easily. Thus for

cyclotron-damping measurements our interest is confined to a. small region

where <u = u> but cu < u . (For a complete analysis of all the roots of the
C6 CO

transverse dispersion relation (5), including the cyclotron-damped root for

(u > u , see reference 2.) We comment in passing that the cyclotron-damped

root can only be obtained numerically: an asymptotic expression analagous

to Landau damping for longitudinal waves does not exist.

Having determined that the cyclotron-damped response to the transverse

excitation U)-(2) shows simple exponential damping for z > £ = c/u> provided

(6) holds, and that the damping rate can be determined only by numerically

solving for Im k of the least-damped root of (5), we proceed to examine the

effects of collisions and the effects of a finite-width excitation mechanism

(in place of the delta-function excitation (2)) .

To determine when collisional damping is significant, it is sufficient

to use the Krook, Bhatnager, Gross model for the collision term in the

Landau-BoItzmann equation. Then in place of (3) we have

(8)
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4
where v is an effective self-collision frequency

-6 f / .i.,
V z? 2 . 9 - / 0 (^e /7^ ' ,

(9)
/o x 3

We neglect electron-neutral collisions because their effect can be negli-

gibly small (as may easily be verified for any particular experiment by

.consulting Brown's book ). When collisions are included as per (8) -(9),

the plasma response (4) is appropriately modified. Our chief concern is

how collisions affect the cyclotron- damped pole term, or more specifically,

how Im k of the least-damped root of (5) is modified. When collisions are

included, the collisionless transverse dispersion relation (5) is replaced

by

- *-

Clearly Im k of the least-damped root of (10) is due to cyclotron damping

plus collisional damping, whereas Im k of the least-damped root of (5)

is due only to cyclotron damping. We will use these facts shortly to

determine when collisional damping may be neglected.

The effects of a finite-width excitation on (4) have been studied in
2

detail , but for our purposes it is sufficient to know the effect on the

cyclotron-damped pole term. Qualitatively, the main result is that if the

effective width of the excitation region is much smaller than the wave-

length of the cyclotron-damped pole term, then that pole term will be

essentially unaltered. More specifically, if in place of (2) we have

2
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(where A is the effective width of this Gaussian-shaped excitation), then

the pole term in (4) acquires an additional amplitude factor of

C12)

where k is as defined in (4). Since A may typically be of the order of a

2 1/2Debye length (\, = {T /[4im e ]} ' ), and since the cyclotron-damped root

• 2 2
k. is of order 2i:(uj /c), we have k. A /4 « 1 and the finite-width excita-

tion has little effect on the cyclotron-damped pole term.

Experimental Considerations

Experimental measurements of cyclotron damping rates are limited by

the following three important considerations.

(i) Collisional effects: Prompted by the above discussion on colli-

sions, we let

L = Im k of the least-damped root of (5)

M = Im k of the least-damped root of (10)

then L represents cyclotron damping whereas M represents cyclotron damping

plus collisional damping. To establish where collisional effects are

negligible, we numerically calculate the locus of points where L/M = .9 on

a T vs. w./u) diagram as shown in Figure 2a. Then along the locus there

is roughly 90% cyclotron damping and 10% collisional damping. Above the

locus cyclotron damping is even more dominant and collisional damping can

be ignored. [We note that Lee, Feesenden, and Crawford constructed a

similar locus, but that their's erroneously turns upward as cu approaches

at because it represents the locus where hot plasma cyclotron damping

equals cold plasma collisional damping. When ID. is near to we find



|c| £ 3 (where s is the argument of the Z function in (10)), which means

the cold plasma collisional dispersion relation, which may be derived

from (10) for |c| £ 3, is no longer valid. The correct procedure, as per-

formed above, is to compare hot plasma cyclotron damping without collisions

to hot plasma cyclotron damping with collisions.]

(ii) Damping length size: The size of Im k that can be measured

experimentally is restricted by two limits. First, the cyclotron-damping

length 6 = (Im k)~ must not be less than c/u because, as discussed above,

only for z > £ = c/w is the cyclotron- damped term the dominant term in the
CG

total response (4) . Second, the wave must show damping within the length

of the experimental apparatus. These requirements limit observable values

of Im k to a range of the form

c £ / (13)
ĉe

say, which corresponds to

/ * L̂ S. < /O (14)

(The limits in (13), (14) correspond to one e-folding length of the cyclo-

tron-damped term.) Using (13) we have numerically calculated the restricted

region shown in Figure 2b wherein cyclotron damping should be readily

observable.

(iii) Magnetic field uniformity: Since OK must be very close to

for a cyclotron damping measurement, it is imperative that Bn be extremely
C6 ••••U

uniform and that its value be known accurately. As evidenced by Figure 1,

even a 1% uncertainty in B., would render any experimental comparisons with

theoretical damping rates essentially impossible. Ideally we must meet a

criterion like

£ . /
(15)
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where

(16)

and AB /B~ represents the per cent uncertainty in B_. Assuming AB /B

equals .001 (i.e., a .1% uncertainty in B-) , and using (15) we have numeri-

cally obtained the restricted region shown in Figure 2c.

Only the region that includes all three of the above restricted regions

is suitable for cyclotron damping measurements. This is shown in Figure 2d.

It is apparent that experimental parameters will have to be chosen carefully

to insure a sizeable region over which experiment and theory can be compared.

Feasibility

The restrictions adopted in the previous sections,

(a)

(b)

(c)

ce

^_ c

Im kwithout
collisions

I m kwith
collisions

.9

(d) ./ <

(e)

(restricts penetration of undesired
terms in (4)).

(insures cyclotron-damped pole term
is domi-Rant, provided restriction
(a) holds)

(restricts collisional damping to a
negligible level)

(combines restriction (b) with require-
ment that damping occur within length
of machine)

(restricts error in Im k, given the
% uncertainty in B-
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serve as guidelines for determining whether an experiment designed to

measure cyclotron damping would be feasible or not.

If restriction (a) holds, then the remaining restrictions are met only

in limited regions of parameter space, as was illustrated for a sample case

in Figure 2. In Figure 3 we have repeated the numerical calculations of

Figure 2 for a wide range of parameter values. From these results one

should be able to roughly estimate the feasibility of a cyclotron damping

experiment for parameter values in the ranges

Tg .1 •*• 100 ev.

oj /oj .1 -»• 10 .pe' ce

108 * 1014o».-3

c

Additional information concerning f = to /2ir, c/o> , and the range of

z that corresponds to the range Im kc/ui = 1 •* .1 are given in Table 1.ce

Discussion and Conclusions

It is apparent from Figure 3 that T should be of the order of 10 ev.

or higher to attain a useful measurement range. Values of T as low as

1 ev. might be used but only if w /« is large (£ 4) and the density is

low (n 4 10 cm. ). In no case could a successful cyclotron dampinge

experiment be performed at T = .1 ev. (as evidenced by Lee, Fessenden,

and Crawford ).

It should be noted that the dashed loci in Figure 3 are based on an

assumed .1% uncertainty in B_. If the uncertainty in E,. is greater than

.1%, then the dashed loci would be raised. This would further restrict the

lowest temperature at which an experiment could be performed, especially

for small values of 01 /u (see Figure 3a). For large values of u /u> ,pe ce pe ce

collisions determine the lower temperature limit (see Figure 3c).

Thus even under ideal conditions, a successful cyclotron damping
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experiment could be performed with T only as low as about 1 ev. In general,

it would be preferable to have T ** 10 ev. or higher. In any event, with

the aid of Figure 3 and Table 1, one can readily establish the frequency

range and distance over which cyclotron damping could be seen and measured,

for many typical experimental values of the plasma parameters (T , ui /u ,
G P CG

and n ).
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FIGURE CAPTIONS

Figure 1

The cyclotron-damped root [the least-damped root of (5)] is shown for

several values of c/a (200, 750, 1500, «) and w /" (.25, .67, 1.5).
T)G CC

Figure 2

Restrictions imposed on experimental measurement of cyclotron damping

Cu)pe/U1ce = '4)-

(a) Dotted line: locus where the total damping is 10% collisional

damping and 90% cyclotron damping (n = 10 cm." ). Above

the locus collisional effects may be neglected.

(b) Solid line: loci where Im kc/u = .1 and 1, between which

the cyclotron damping length 6 = (Im k) is neither too short

[in which case the cyclotron-damped response would be masked by

other terms in the total response (4)] nor too long [in which

case the damping could not be observed within the length of a

typical experimental apparatus].

(c) Dashed line: locus where the inherent error in measuring Im k

is 10% [as per (15), (16)] for an assumed uncertainty in By. of

.1%. Above the locus the error is less than 10%.

(d) A superposition of (a), (b), (c). The shaded region is where

the shaded regions of (a), (b), (c) all overlap. Only in this

region is experimental measurement of cyclotron damping feasible.

Figure 3

Regions wherein experimental measurement of cyclotron damping is feasible

are shown for a wide range of parameter values. The loci (dotted, solid,

and dashed lines) all have the same meaning as in Figure 2. In (c) the
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dashed locus does not appear because it occurs for T < .1 ev., and therefore

the collision (dotted) loci determine the lower boundary of the feasibility

region. Also in (c) note the change of scale along the abscissa axis.
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z(cm.)

.4

1

4

g
10°

io10

io12

io10

io12

io10

io12

io14

.225

2.25

22.5

.9

9

.225

2.25

22.5

20

2

.2

8

.8

20

2

.2

20 -•• 200

2 -» 20

.2*2

8 -*• 80

.8 -* 8

20 -»• 200

2 * 20

.2*2

Table 1.

Values of the cyclotron frequency f and length c/u> for the param-

eter values used in Figure 3. The "z" column refers to the range

z = c/u •*• l°c/w__ which corresponds to the range Im kc/u = 1 •+• .1.ce ce ce


