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ABSTRACT

This report is concerned‘with analytical investigation of si-
nusoidally forced vibration of laminatéd, anisotropic plates including
bending-stretching coupling, thickness-shear flexibility, all three
types of inertia effects, and material damping.

In the analysis the effects of thickness-shear deformation are
considered by the use of a éhear correction factor K, analogous to that
used by Mindlin for homogeneous plates., Two entirely different approgches
for calculating the thickness-shear factor for a laminate are preseﬁted.
Numerical examples indicate that the value of K depends on the layer
properties and the stééking Qequence of the laminate.

The general analysis is applica51e to plates with any~combination
of natural boundary conditions at their edges. The analysis begins with
the anisotropic stiffness and damping constitutive relations for a single
layer and proceeds through the analogous relations for a laminate. Then
the various types of energy and work termsAare derived and the problem is
formulated as an eigenvalue problem by applicafion of the extended
Rayleigh-Ritz method.

The first five resonant frequencies of boron/epoxy plates with all
edges free are calculated on the basis of two different resonance criteria:
the peak-amplitude and modified Kennedy-Pancu techniques. The results show
that the resonant frequencies obtained by the two techniques differ by only
a very small amount, and are in good agreement with the results obtained

iv



both experimentally and analytically by Clary. Furthermore, the nodal
patterns obtained agree satisfactorily with those of Clary. Finally,
the damping values in this investigation are in good agreement with the

experimental ones obtained by Clary.



SYMBOLS

A cross-sectional area

Ao area involved in shear-stress integration (fig. 8)

Ai’Bi constants depending upon the boundary conditions (Appendix E)
Ai hereditary constants, eq. (B-21)

Aij stretching stiffness of the piate

a length of plate

a(xl),a(xz) wave amplitudes at positions Xq and X,

free-vibration amplitudes corresponding to the i-th,
(i+1)th, and (i+n)th cycles

852854134

a, initial amplitude

Bij bending-~stretching coupling stiffness of the plate

ﬁij complexAstiffness éoefficient

b A width of plate

b material damping coefficient defined in eq. (B-10)

bc critical material damping coefficient

Cd damping coefficient defined in eq. (B-22)

Cé -damping coefficient defined in.eq. (B-8)

Ci constants depending upon the initial conditions

Cij Cauchy elastic coefficient

éij complex version of Cij

Ei3 \ effective stiffness coefficients defined following
eq. (F-7)

Cm,Cn characteristic parameters tabulated in ref. 44

c viscous damping coefficient
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c Kelvin-Voigt complex damping coefficient

e critical value of ¢

s shear wave-propagation velocity

D total dissipative energy

IDA energy dissipated per unit of plate area

Dij bending and twisting stiffnesses of the plate

ﬁij complex version of Dij

E Young's modulus

Ell’EZZ Young's moduli in the x,y directions -

Ei(u) the exponential integral defined in eq. (B-18)

e base of the natural logarithms, e = 2,7183

Fd damping force

Fs ‘ spring force

F exciting force amplitude

AF horizontal shear force per unit width

Fij thickness-shear stiffnesses of the plate

ﬁij complex stiffness coefficients associated with Fij

{é} generalized-force column matrix

g loss tangent

8 parameter of the Biot model

8y dimensionless geometric parameter defined in ref. 35

gAll,etc. subscripted loss tangents ?here the suBscripts (i.e. All)
refer to the associated stiffness; for example, 8A1)
signifies the loss tangent associated with the
longitudinal stretching stiffness

H factor = (h/m)%

HPMF half-power magnification factor

H factor = H/mn '
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kl

kll
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in

log

(M)

i}
MF ,MF'

thickness fractions of layers a and b, respectively
total thickness of the plate; parameter in eq. (H-2) -
integral form defined in Appendix é

unit imaginary number = /-1

thickness shear factor

factor defined in eq. (H-10)

complex-flexibility factor defined in eq. (F-15)
composite shear coefficient

spring rate

complex spring constant

stiffness coefficient associated with the total in-
plane force

C1 eim (C1 and m are constants)

Kelvin-Voigt complex stiffness defined in eq. (B-3)

effective length of spring

amplitude of Lagrangian energy difference

- complex-stiffness factor defined in eq. (F-16)

natural logarithm

logarithm with base 10

mass matrix

stress couples, moment per unit width

magnification factors defined in eqs. (B-38) and (B-16)
damping exponent defined in eq. (B-22) |

mass

cos 8, sin @

mass per unit of plate area, first moment of mass per
unit area, second moment of mass per unit area
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i

-y

membrane stress resultants, force per unit width

degree of heredity

quality factor = reciprocal of the dimensionless bandwidth
thickness-shear stress resultant

reduced stiffness coefficients transformed to plate
coordinates (x,y); see eq. (A-16)

reduced (plane-stress) stiffness coefficients with re-
spect to material symmetry axes (X,Y); defined in eq. (A-6)

normal pressure actinngn plate
density ratio (= p(l)/p(z))

resonant magnification factor

complex flexibility defined in eq. (F-22)

complex stiffness matrix

kinetic energy; period of damped oscillation (Appendix B
only) '

kinetic energy per unit of plafe aréaA
transformation matrix defined in'eq. (A-12)
time

two different specific values of time

strain energy

strain energy per unit of plate area

energy dissipated per cycle

damping energy per cycle and per unit of volume

undetermined longitudinal-displacement parameters

shear strain enérgy

shear strain energy associated with equivalent uniform,
longitudinal thickness-shear strain

strain energy per unit of plate volume

ix



U,v,w

ey

- X,Y,Z

X,¥,2

u_L,v ,w
>o’ 0

displacements in the x,y,z directions
displacements of middle surface in x,y,z directions
displacement amplitude.of vibration

trasient solution in eq. (B-70)

static displacement; see Appendix B

volume

undetermined transverse-displacement parameter
spatial attenuation constant defined in eq. (B-33)
temporal decay constant defined in eq. (B-30)
total work done

undetermined normal-displacement parameter
coordinates of the material-symmetry axes

rectangular coordinates in the longltudxnal, transverse,
and thickness directions

two different specific values of position
characteristic parameters tabulated in ref. 44

thickness-direction coordinates of outer and inner faces
of the k-th layer

column matrix
square matrix
normalized arguments in the x,y directions

”1/"‘n

_heredity constants in eq. (B-21)

g;)/C(z) in Appendix E only

loss angle defined in eq. (B-27)
spatial attenuation rate defined in eq. (B-34)

decay rate defined in eq. (B-31)



o

¢(t)

comples factor defined in eq. (F-22)
logarithmic decrement defined in eq. (B-28)
logarithmic atéenuation defined in éq. (B-32)
Biot parameter in eq. (B-17)

strain components with respect to x,y axes
strain components with respect to X,Y axes

strain corresponding to longitudinal thickness-shear
action (Section III and Appendix E)

longitudinal thickness-shear strain weighted according
to eq. (55)

damping ratio

zz/z1 (Appendix E)

angle of orientation of an individual layer
curvature changes

parameter (= ¢/+ )

Poisson's ratio

major and minor in-plane Poisson's ratios
generalized coordinate

column matrix representing generalized displacements
pi = 3.1415962

density

summation symbol

stress amplitude

stress components with respect to x,y axes
stress components with respect to X,Y axes
dummy time variable in eq. (B-19) |
assumed modal function

hereditary kernel defined in eq. (R-21)
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Superscripts:

(k)

I,R

Subscripts:

phase angle between response and exciting force

undetermined rotation parameters

angles of rotation in the xz and yz planes

dimensionless frequency (= w/wn)

0 at half-power points

H [od
w/ .

circular frequency of vibration

natural frequency

angular frequencies defining the half-power points
of the frequency spectrum

denotes a typical kth layer

denotes a damping quantity

denotes differentiation with respect to time

denotes that the quantity is an amplitude

refers to the middle surface of the plate

denote the respective imaginary and real parts of
a complex quantity

denotes partial differentiation with respect to the
variable following the comma, i.e. ug x = duy/3x

integers
integers
integers

integers
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SECTION I

INTRODUCTION
1.1 Introductory Remarks

The continuing demandffor increased structural efficiency in many
advanced aerospace vehicles has resulted in development of laminated
structures made of advanced fiber-reinforced composite materials, such as
boron-epoxy, graphite-epoxy and boron-aluminum (reference 1). One of tﬁe
most common structural elements for such vehicles is the rectangular plate
or'panel, for which numerous stable static, buckling, and free-vibrational
analyses have been performed (reference 2)., These advanced vehicles must
maintain their structural integrity not only during high staticly applied
mechanical and thermal loadings, but also in a variety of dynamic environ-
ments. In order to predict the dynamic stresses to which a structure will
be subjected, it is necessary'to perform a dynamic response analysis in-
cluding the effects of damping properties as well as the various stiffnesses.
An example of this type of requirement is found in the Space Shuttle now
under NASA preliminary development (reference 3).

A composite material is defined as two or more materials joined to-

gether to form a nonhomogeneous material, which is used in constructing
structures. Although such a material is nonhomogeneous on a micro scale, it
behaves macroscopically as if it were a homogeneous, anisotropic material.

An anisotropic material is one which exhibits different properties when



tested at different directional orientations within the body. For example,
a single layer of composite material containing unidirectionally oriented |
fibers (hereafter referred to as a unidirectional composite) has consider-
ably greater stiffness and strength in the direction of the fibers than it
does in a direction transverse to the fibers (see figure 1), This aniso-
tropic aspect is one of several which makes structural analyses for composite-
material structures more complicated (reference 4) than those for ordinary
iéotropic materials, such as aluminum alloys or many unfilled plaétics.

A single layer of unidirectional composite has certain orthogonal
axes of material symmetry and thus is said to be orthotropic, and beh&Qes

in considerably simpler fashion than a-general‘anisotropic material, TIf

the material is thin it is called plane ortho;ropic. However, for purposes of
obtaining a more efficient design, it is often advantageous to place dif-
ferent layers or plies at different orientations. For the case of a thin
plate, this means that we must consider it as a plane anisotropic material.
This treatment is intermediate between the complicated general anisotropic
case and the much simpler plane orthotropic case,

A laminate consists of two or more layers integrally joined together.

It is said to he laminated symmetrically if all of the layers above and be-

low the midplane of the laminate have the same dimensions, properties, aﬁd
brientationl(if the layers are orthotropic); see figure 2., A laminate is
said to be balanced if all of the layers oriented at +0 are baianced by an
equal number of identical layeré at an orientation of -P; see figure 3.

If a laminate is not symmetrically laminated, coupling occurs between in-
plane (either normal or shear) stress on one hand and either bending or

twisting deformation on the other hand. In such a case as a laminate



consisting of a metallic substrate and a few layers of overlaying filamentary
;composite material, considerable bending-stretching coupling can occur and
“thus, it is necessary to consider not only the in-élane and bending stiff-
‘nesses but also the coupling stiffnesses which couple together the other

two éffects‘(reference 4) ., Obviously, this is considerably more complicated
to analyze than a simple single layer.

Unfortunately, it appears that no one has yet succeeded in devising

‘a lamination scheme that is both symmetrical and balanced. However, in the
‘special, yet practical, case of multiple identical layers oriented alter-
"nately at +0 and -8, as the number of layers is increased, the bending-
coupling effect diminishes (reference 5). For more than ten such layers,
the bending-stretching coupling may be neglected for most engineering pur-
poses and, thus, the laminate may be treated macroscopically as if it were
‘ a single-layer plate.

It has loné been recognized that, due to the relatively low shear
stiffnesses of composite materials in planes normal to the laminating plane,
the thickness-shear® deformations must be included in the analysis, even
when the plate is relatively thin (references 6-8), in order to achieve
reasonably good predictions of laminate flexural behavior. Although
several existing laminated plate theories include thickness-shear flexibility,
all of them require an ad _hoc assumption of the required shear correction

factor. In this report, two different, relatively simple procedures are

*
Sometimes referred to as 'transverse shear”, especially in the case

of beams. The terminology used here follows that established by Yu for sand-

wich plates (reference 9). Here the term, transverse, is reserved for the

in-plane direction which is normal to the longitudinal direction,



presented to enable rational prediction of the appropriate composite shear
correction factor (K). The frequencies calculated using these values for
K in shear~flexible l;minated plgte vibrational analysis give good agree-
ment with the exact three-dimensiqnal elasticity solution, which is com-
putationally much more complicated.

The use of high-damping bolymeric materials in the form of a thin
layer or tape has come into widespread use as a étructural damper to reduce
the vibrational response of aircraft panels, especially in high-noise regions

such as in the vicinity of jet engines. When the polymeric material is

added on either one side or both sides, it is known as an unconstrained
damping layer; when the polymeric material is placed between two or more

| . layers, it is called a constrained damping layer (or layers). Appropriate
analyses and design procedﬁres have been developed for including either type
| of damping layer, assuming all layers (metal and polymer) are isotropic
(references 10-12). However, so far as known, no -detailed solutions have

been published on vibration of laminated composite-material plates which in-

cluded material damping. Such an analysis is presented in this report and

" the results are compared with experimental data reported recently by Clary

(reference 13).

1.2 A Brief Survey of Selected Vibrational

Analyses of Laminated Plates

Apparently the first vibrational analysis was carried out by Pister
(reference 14) for a thin plate arbitrarily laminated of isotropic layers.

In this case, the net effect of the bending-stretching coupling resulted in

a reduced flexural stiffness,



Stavsky (reference 15) formulated a coupled bending-stretching
dynamic theory for thin plates laminated of composite-material layers,
but he did not present any numerical results. Apparently the first pub-
lished results of the vibrational analysis of such plates is due to Ashton
and Waddoups (reference 16), who used the Rayleigh-Ritz method to analyze
rectangular plates. These results compared reasonably well with experi-
mental results for the completely free and cantilever cases. A similar
analytical and experimental study, but involving simply supported and free
boundary conditions, was carried out by Hikami (reference 17). Additional
analysis of the free-edge case was carried out by Ashton (reference 18).

For simply supported plates, Whitney and Leissa (references 19,20)
presented closed-form solutions for the natural frequencies in the case
of cross-ply and angle-ply lamination schemes. As would be expected, their
results showed a strong effect of bending-stretching coupling in lowering
the natural frequencies.

The case of clamped boundary conditions is more complicated analyti-
cally, but more representative of practical aerospace structures. Rayleigh~
Ritz and experimental investigations of such structures were carried out
independently by Ashton and Anderson (reference 21) and by Bert and May-
berry (reference 22),.

The first more accurate vibra;ional analysis of laminated plates in-
cluding thickness-shear flexibility was made by Ambartsumyan; see reference
23. He assumed an arbitrary distribution of thickness-shear stresses through
the thickness. However, in carrying out his actual calculations, Ambart-
sumyan assumed a simple éarébolic distribution, It éan be shown by a

simple mechanics-of-materials analysis (Jourawski shear theory; see Section



I111) that the thickness-shear stress distribution must be discountinuous
from layer to layer; thus, the simple parabolic distribution does not hold.
Ambartsumyan did not give any numerical results fo? vibration of laminated
plates; however, Whitney (reference 24) did so, using Ambartsumyan's basic
theory.

Using another approach, Yang et al (reference 25) entended the Mindlin
homogeneous, isotropic, dynamic plate analysis (reference 26) to the laminated
anigotropic case., They assumed a thickness-shear angle which is independent
of the thickness coordinate (z) and thea integrated the stress equations of
motion to obtain the governing partial differential equations. After
integration, they introduced a thickness-shear coefficient in an ad hoc
fashion to correlate the predicted frequencies with known results.

Also Yang et al introduced the coupling inertial effect (present
‘ only in the case of plates laminated unsymmetrically with respect to mass
distribution), as well as fhe familiar translational and rotatory inertia
effects present in homogeneous (or mass-symmetrically laminated) plates.

The inclusion of these higher-order inertial effects is consistent with the
inclusion of thickness-shear flexibility.

The analysis presented in this report is an improvement over both
the Ambartsumyan and Yang et al analyses, in that it presents simple rational
means for calculating the shear coefficient, rather than assuming it a priori.

An alternative to considering shear deformation per se is to make a
microlaminar analysis, such as considered by Biot (reference 27) and
Bolotin (reference 28). However, this approach has not been used very ex-

tensively so far.

Another approximate approach is to use the Voigt and Reuss models to



determine the btoperties of an equivalent homogeneous, anisotropic, shear-
flexible plate, This method was originated indepenQently by Postma (refer-
ence 29), White and Angona (reference 30), and Rytov (reference 31) to
investigate wave propagation in a continuum consisting of alternating layers
of stiff and flexible isotropic materials. This concept was applied re-~
cently to plates with experiﬁental verification for the special case of a
beam, by Achenbach and Zerbe (reference 32). A new analysis, extending the
Postma>approach to the more general case of a laminate consisting of alter-
nating orthotropic layers, is presented in Appendix F.

All of the analyses mentioned above are approximate formulafions in
this sense: interlaminar compatibility is impossible unless both of the
in-plane Poisson's ratios are identical in all of the layers. The reason
for this is that, in a plate, one can have discontinuities in the strain
component in a given direction in the plane, due to the Poisson contraction
caused by a stress resultant or a stress couple acting in the perpendicular
direction in the plane. This deficiency can be removed by'using the ap-
proach introduced recently by Hsu and Wang (reference 33) and Wang (refer-
ence 34) for laminated shells. Another technique is to apply the nonhomo-
geneous three-dimensional elasticity approach, such as.used'recently by
Srinivas et al (references 35-37) for a special case of simply supported
edges. Still another method is to use finite elements in the thickness
direction, as introduced recently by Tso et al (reference 38). Unfortunately,
all of the more accurate anal}ses mentioned in this paragraph are quite
complicated computationally and thus are not amendable to engineering
analyses of practical structural elements. Furthermore, the work of refer-
ence 37 showed that for structurally reasonable values of the following

modal parameter, the Mindlin-type theory (such as extended here) is



sufficiently accurate for determination of natural frequencies, but not for
determination of the associated stress distribution.

There are numerous analyses in the literature on vibration of damped
plates with isotropic layers; also there are a few vibrational analyses
of single-layer, anisotropic plates and a few quasi-static (creep) analyses.
of laminated, anisotropic plates. However, vibrational analyses of lamiﬁated,
anisotropic plates are quite limited. Dong (reference 39) indicated the
solution'for the dynamic response of a simply-supported rectangular plate
arbifrarily laminated of orthotropic, viscoelastic plies modeled as a

standard linear solid.



SECTION 1I

“ FORMULATION OF THE THEORY OF LAMINATED, SHEAR-FLEXIBLE PLATES

In this section is presented a theoretical.analysié of sinusoiaally
forced vib;ation of laminated, aﬁisotropic plates including bending-
stretching coupling, thickness-shear, all three types of inertia effects,
and material damping. First the assumptions, on which the analysis 1is
based, are stated explicitly. The general analysis is applicable tc¢ plates
with any combination of natural boundary conditions at their gdges. The
analysis begins with the anisotropic stress-strain relations for a single
layer and préceeds through the stiffness and dampiﬁg constitutive relations,
formula tion of the various types of energy and work terms, ana éhlminates
iﬂ the formulation of an eigenvalue problem by application of the extended

Rayleigh-Ritz method.

2.1 Hypotheses

The following assumptions are made in the analysis presented here:

Hl. A1l displacements are assumed to be sufficiently small so'that
the linear strain-displacement relations are sufficiently accurate.

H2. The layers which make up the plate are linearly elastic and
may be isotropic or orthotropic with any arbitrary orientation in the

plane of the plate.

H3. The layers are sufficieﬁtly thin that thickness-normal-stress



effects may be neglected, i.e. the layers are assumed to have finite
stiffnesses which resist membrane, bending, and thickness shearing
stresses,

H4. The layers are assumed to be bonded together perfectly.

H5. The plate is assumed to have all components of translational,
translational-rotatory coupling, and rotatory inertia.

H6. All material damping effects are assumed to be small. They
are incorporated by using stiffnesses which are complex rather than real
(see Appendix B); the complex-stiffness array is assumed to be symmetric
(see Appendix I). All other thermal effects are neglected.

H7. All initial-stress effects are neglected.

H8. All interactions with a surrounding fluid can be either
neglected or considered to be included in the values used for the material-
damping coefficients.

H9. The excitation consists of a uniformly distributed normal

pressure loading, sinusoidal with respect to time.

2.2 Kinematics

The displacement field is assumed to be (hypothesis H3):

u (x,y,z,t) u, (x,y,t) + zwx(x,y,t)

v (x,y,z,t) = v, (x,y,t) + zmy(x,y,t) (1)

L]

w (x,y,z,t) LR (x,y,t)

where u,v,w are the displacement components in the x,y,z directions (see

figure 4); u_,v W, are the displacement components at the middle surface

10



of the multi-layer plate; y, and wy are the weighted middle-surface rotations
in the respective xz and yz planes; and t is time.

Within the framework of hypothesis Hl, the total engineering strains

[N are given by the following in-plane strain-displacement relations:
o (no sum)
€53 = eij + znij (ij = xx,yy,xy) (2)
where
o o _ o _

x = Yo.x ; €gy = Yoy ¢ Sxy = Vo,x + Yo,y (3)
o= X = HE + 4
xx  Vx,x ’ yy Wy.y Xy wy,x q’X.y *)

Also the following thickness-shear strain-displacement relations

hold:
- €. =w_ + Uy, 5 e _=w +j (5)

where a subscript comma denotes partial differentiation with respect to

the variable following the comma, i.e. u_ * Buo/ax.
’

2,3 Stiffness Constitutive Relations

In line with hypothesis H2, the following stress-strain relations
are assumed to hold for each individual layer of which the plate is com-

prised:



4 B —
(k) (1) (k) W | W
c’xx w Q11 QIZ 0 0 Q16 €xx }
(k) (k) (k) - ‘ (k) (k)
Opy Q2 2 0 0 %6 €yy
k
e O T A R e
(k) ) (k) (k)
%z 0 0 s Q5 0 €xz
(k) (k) (k) ' (k) (k)
%y ) | e ) 0 0 e | | Exy
where o(k), O(R) are the in-plane normal stresses; o(k), o(k) are the
XX yy : Xz yz
thickness-shear stresses; Gik) is the in-plane shear stress; the Qij

are the reduced stiffness coefficients which are applicable to a thin
layer (see Appendix A); superscript (k) denotes a typical layer k, where
k =1,2,3...,n ; and n is the total number of layers of which the plate
is comprised.

It is noted that it is more consistent mathematically to write

the stress-strain relations in either matrix form as

1

{ o0} = @M1 (e} am2056. O
or in tensor notation as

©_ & (K

%5 % et e

(i,3=x,y,2). (8)

However, here a mixed notation is used for engineering convenience:
double lettered sqbsctipts (xx,yy,yz,xz,xy) following classical
-elasticity theory notation for stresses énd strains, and double numbered
subscripts (i,j=1,2,4,5,6) to reduce the numSer of subscripts used on

the stiffness coeffipients.
12



As is conventional in plate and shell theory, it is convenient to
introduce generalized fqrces which are applicable to the whole .laminate,
rather than only a specific distance from the plate middle surface.

(k)

The stress components, oij , are functions of x,y,z; therefore, integrat-

ing them through the thickness yields the following generalized forces,

which are functions of x,y only:

h/2

{ - (k) (k) (k) (k) (k)

lex’ yy’ xy’Qx’Q } = J-h/Z {cix ’oyy ’oxy 20xz 0 } dz
n 2y

-5 o ,000 50000 0y,
- d, Uxx Yyy ? xy’ xz yz}
k=1 “k-l
h/2
| [ (k) (k) (k)]
{ Mxx,M ’Mx ] = [ loxx’ o ,Ox } z dz
yy y -h/2 yy y

L xx ’oyy ’oxy | dz . (10)

& w0
WAL
=1 Zk-1

where h = total plate thickness, the quantity (zk—zk 1) is the thickness
of an individual layer (see figure 5), Nij = membrane stress resultants
(force per unit length), Qi = thickness-shear stress resultants (force
per unit length), and Mij are the stress couples (moment per unit length).

Inserting the stress-strain relations, given by equations (6) in-

to equations (9) and (10), one obtains the following constitutive re-

lations for the composite:

13



/ : [ 11 o
Nex | 1 M2 Re o B Pz B ' 0 0 exxw
) : } o]
Noy M2 P2 P26 P2 By B 0 O €y
A i ! °
Ny 16 %26 %6 + P P2 B, O O €xy
- e o e e -
]
M Bl1 B2 By ; Djpv P2 Py 0 O M x
3 = | ‘ ) y (11)
Moy ? Bia By Byg 1 Dy Dy Dy, 0 O oy
[
My Bie Bag  Bes _J D16 D Dge i © 0 My y
_ o i it
Qy 0 0 o | 0 0 0 |F, F, €y
; |
F F
\Qx / i 0 0 0 ! 0 0 o‘ VFys ss | | €xz
‘where the respective stretching, bending-stretching coupling, and
bending stiffnesses of the plate are defined as follows:
/2
(o ,B..,D..! = Ih QM 112,22 4z (1,5=1,2,6) (12)
|| ij’oiy’ i) ij J
Yen/2 '
and the thickness-shear stiffnesses of the plate are as follows:
h/2 10
F,.: K [ Q.. dz (i,j=4,5) (13)
SRR R RYPES

where Ki = composite shear coefficient, introduced to account for the

3

thickness-shear strain variation through the thickness. Section 111
presents several approximate analyses to predict Kij analytically.,
The Aij’ Bij’

present in the classical Kirchhoff-type theory of laminated plates (see

and Dij submatrices appearing in equation (11l) are

refs. 4,5,15-22) ., 1In the case of an orthotropic plate all of the terms
with subscripts 16 and 26, called the cross-elasticity or shear-coupling

terms, vanish. Furthermore, when the layers are all isotropic materials,

14



only two of each set of the terms with subscripts 11,12,22, and 66 are
independent.

1f the plate is either homogeneous (i.e. singie layer) or laminated
symmetrically about the plate middle surface, the bending-stretching cou-

pling stiffness submatrix B,, vanishes. Then the only remaining terms are

ij

the Aij and Di submatrices, which are present in classical, homogeneous

A
thin-plate theory.

The thickness-shear stiffness coefficients Fij account for the pre-
sence of ;hickneSs-shearvstrains, in a manner which can be considered to
be a geheralization of that used by Mindlin (ref. 26) for homogeneous,
isotropic_plates. To reduce the present theory to the classical Kirchhoff-

type plate theory, the thickness-shear strains would be omitted; thus,

from equations (5), one would obtain:
b= - w iV, = - w (14)

Furthermore, one would delete the thickness-shear strains, €z and eyz’

from equations (11) and the thickness-shear stress resultants, Qx and Qy’

would be computed from equilibrium considerations only.

2.4 Strain Energy

The differential of the strain-energy density (strain energy per

unit volume) is given by:

dUao= 0(k) de(k) + o(k) de(k) + o(k) de(k)
v XX XX yy yy Xy Xy

15



() , k) (k) | (k)
t0ep 9xz t Oyp dey, (15)

Integration of equation (15) yields:

v XX XX yy yy Xy °xy
(k) (k) (k) (k)
+ 0yz €z * Oy, Exz ] (16)

The strain energy per unit of plate area (UA) is the integral of

Ugoover the total thickness of the plate:

h/2 n
U = ‘[-hlz ”ik)""z I

U\(,k)dz (17)
k=1 1

"
2, _
Substituting equations (16), (6), and (2) into equation (17), per-

forming the integration, and using equations (12) and'(13), one obtains

the following expression for the strain energy per unit area:

2 o o

0o o .2 '
= + &
UA (1/2) [All(exx) + ZA12-€xx eyy A22(eyy) + ZA16 €xx €

o o o .2 o
+ 2A26 €yy Exy +-A66 (exy) + 2B11 €xx xx
o o o
+ + 2
2 BIZ(GXXKYY ®yy ") %22 vy “yy
o o o o
+ 2 B16(bxx ny + exy_nxx) + 2826( gyy ny + €xy Kyy)
+28,¢° n 4D x> +20D,. x +0,. %
66 “xy “xy 11 'xx 12 xxKyy 22 xyy
4+ 20D W W +2D,, n n _ +D uz +'F e2
16 "xx xy 26 yy xy 66 "yy 44 “yz
+2F.¢._¢e. +F 62 ] (18)
45 Syz “xz 55 “xz



2.5 Damping Coefficients and Dissipative Energy

For a material with Kimball-Lovell structural damping (see Appendix
B) , the stress-strain raﬁe relation for sinusoidal motion at a circular

frequency w can be expressed as follows:

5= (blw) & (19)

where b is a material constant and é is the strain rate.

The strain is given by

e = |le| e (20)

.where i =/-1.

Thus,
€ = iwe : (21)
Substituting equation (21) into equation (19), one obtains:
8= Qe . (22)

where

Q = ib (23)

Generalizing equation (23) to the entire array of stresses and

strains in layer "k", in contracted notation analogous to equation (7), we
y q

obtain the following expression, where Qig) is symmetric (hypothesis H6):
I (N
1 % } [Qs;7] { €5 : (24)

17



Equation (24) is the same as equation (7), except that here the
presence of the hat symbols (") denotes damping quaptities rather
than elastic qﬁantities.

The energy dissipated per unit of plate area, due to damping,
is denoted by the symbol DA' The expression for it in terms of the

midplane strains (e:j) and the curvatures (1,,) is the same as

1]
equation (18), except for the presence of the hat symbols over all

of the Aij’ Bij’ Dij’ and Fij quantities, where
T L . (A) N ¢ )} S _ (D)
Ay ® 18y Ay 0 Byy BBy Dy T ABDyy
- ) 23)
Fiy = 184y Fyy

()

where gij are loss tangents (see Appendix B).

2.6 Kinetic Energy

The differential kinetic energy of an elemental volume (dx by dy

by dz) is given by:

™2y (@2 + ® + &P dx dy de

(k)

where p

components in the x,y,z directions respectively.

is the deneity at the point (x,y,z) and 4,¥,w are the velocity

Now the kinetic energy per unit of plate area is obtained from the

differential quantity given above by dividing by dx dy and integrating

over the entire thickness of the plate, as follows:

18



/2
T, = B 0"r2xa? + % + % dz (26)
J
-h/2
Substituting the kinematic relations, equations (1), into equation
(26) and performing the integration, assuming that the density is uni-
form through the thickness of each individual layer, one arrives at the

following expression:

T, = (/2 (i + 62+ D) +mp @+ D)
+ my/2) (L + ) @n

where LISL and m, are respectively the mass per unit of plate area,
first moment of mass per unit area (coupling inertia), and second
moment of mass per unit area (mass moment of inertia), defined as

follows:

( & kg g 2)
lmo’ml’mz} =/ r p {l,z,z I dz (28)
k=1 '

Ze-1

Only the coefficient m_ appears in classical Kirchhbff theory for

" the dynamics of thin, homogeneous plates. The Mindlin dynamic plate
theo;y of homogeneous plates (ref. 26) contains both m and m,, while the
" dynamic theory originated by Yang et al (ref. 25) for laminated plates
contains m o, W, and m

1 2°

2,7 Work Done by External Forces

19



The only external force considered here is a uniformly distributed
normal pressure which has a sinusoidal wave form in time. Thus, it can
be written in complex variable notation as follows:

iwt

q(x,y,t) =q e (29)

where E'E amplitude of the normal pressure,
The following expression for the total work done may be derived

easily from the principle of virtual work:

b
W = Ja J q (x,y,t) vy (x,y) dx dy (30)
o o

2.8 Application of the Extended Rayleigh-Ritz Method

Since the present problem is one of steadyfstate harmonic ex-
citation deroted in complex-variable exponential forms, the displacements
and rotations are proportional to eth also, It is noted that the phase
angle between the response and thg excitation is taken care of by.the
imaginary components of these quantities. Thus, the time dependence
cancels out in all of the energy terms which appear in Lagrange's equation.
Therefore, it is necessary to consider only the amplitudes of the re-
spective energy and work terms. Then, as shown in detail in Appendix

C, the amplitude of the Lagrangian energy difference can be expressed

as follows:

L=(+W - T+D (31)

20



o o, v

where D,T,U w are the amplitudes of the d1ssipative, kinetic, and strain
energies and of the work done by the external forces, respectively.

The strain and damping energy terms can be combined by introducing
complex stiffnessses, as discussed in Appendix B. Making this sub-

stitution and integrating over the plate area, we obtain the following:

a b
R T I TR LIPS I T ST s R 17 SPC s WS YA
Yo Vg 1711 Yo,x 12%,x o,y 2270,y 1676,x 26 o,y) 0,X
- ~ ~ 2 - - ~ ~ o~ - e
+A66(vo,x+uo,y) + 2B11 o, xwx x + 2B12(uo,x$y,y+vo,ywx,x)+2822vo,y¢y,y
-*-2316[uo,x(‘py,x-*.wx,y)-‘.(vo,x*’uo,y)q’x,x-‘l + 2826[vo,y(wy,x+¢x,y)

e ~ ~ ~ - . 2
+
* (Vo,x+u .y)wy y] * 2866( +uo.y)wy.x W;,y) * Dll‘yx,x

- o~ M = 2 - o~ e - . N
+2D12Wx :X¢YJY+D22¢}':Y+ 2D16wx ,X(WYnx‘{.Gx:y) +2DZ6¢Y!Y(V)’ )x+wx’y)

- . ~ y) ~ e~ e
+D66(Wy,x+wx,y) 44(w +w ) + 2F (w,y+¢y)(3%x+yx)

N

~ 2
+F55(%,x+wx) i dx dy (32)

where the superscript (-) denotes that the quantity is an amplitude, and

A ., B,.,D..= (A +A,.) , (B,

Ays Bij, B, ; Y 1j+B1j), (0, 4D, ); 1,j=1,2,6

i) i3
(33)

= Fij+Fij ; i,3=4,5

L1
oo

The sum of the amplitudes of the kinetic energy and the work done

by external forces can be expressed as follows:
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= (w2/2) [ j [m U + v + W ) + 2m (u w +Vv wy)
+my (b + Y )] dx dy + I J q w_dx dy (34)
X y o
' o o
To apply the extended Rayleigh-Ritz method, the assumed functions

for the amplitudes of the displacements and rotations are given the

following general form:

%‘ N
uO = /..‘ Z Umnq)um(a) Ql‘ll'l(a)
m=1 n=1
vo = L L an@vm(a)@vn(s)
m=1 n=1
M. gl
Soo= )y e @ (8 (35
m=1 n=1
M N
Vo= VY s (@, (B
y Lo L7 ymn®yym ¥ yym
m=1 n=1 '
- % g
\llx =/ wamnéwxm(a)éwxn(m
m=1 n=1
The modal coefficients U ,v W ¥ Y are the undetermined
mn’ mn’ mn’ ymn’ xmn

parameters, the ¢'s are assumed modal functions, o = x/a, 8 = y/b.
Substituting equations (32), (34), and (35) into equation (31)
for the Lagrangian energy-difference amplitude (i), one obtains the

result presented in Appendix D1,

Hamilton's principle can be stated mathematically as follows:
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sl Ldt=0 . (36)

To achieve as close of an approximation as possible to equation
(36) , the Lagrangian function f'is minimized by setting its partial
derivatives with ¥espect to the modal coefficients respectively equal
to zero, i.e.

8L/aU,, =0 ; 3L/3V, , =0 ; 3L/3W , =0 ; 3L/3Y  , =0

L
37

BZ/BWykL =0 ; k=1,2,...,M ;4 =1,2,..., N

Equations (37) represent a set of M x N nonhomogeneous, linear algebraic

equations,
2.9 Reduction to Matrix Form

For computational convenience, it is desirable to express the set

of equations (37) in matrix form as follows:

9 (5] - 70 e = {9

f
where [S] = complex stiffness matrix, [M] * mass matrix, and 1€mn} and
[
tf} are column matrices representing the generalized.displacements and

generalized forces, respectively, i.e.
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4 U \ 4 0 3
mn
Y 0
mn
= ‘ > M { } = < 4 LP
{gmn} wmn ’ £ q (39
v 0
ymn

0

Xxmn \ J

Equation (38) can be written in explicit complex form as follows:

(R, .. (1) { R), ..(D 2 (R) {(R) . (I)} [ (R)}
- F =
[+ is*7] B T 180y s -V M+ ] N L L (40)
where superscripts (R) and (I) denote the real and imaginary parts of
the complex quantities appearing in equation (38).
Equation (40) can be solved for the response matrix, partitioned

into real and imaginary parts, as follows:

-

: i \
(. ® s(®_ 2, (®) D J ()
{.m" S

|
{

; - (41)
(1) (D ; s _ 2, (R)

The modal coefficients are placed in the inverse matrix in equation
(41) . For the specific numerical case treated M=N=2, i.e, m,n=1,2. Thus,
the complete matrix is of order 40 x 40 with each submatrix being of
order 2 x 2. Thus, the problem has been reduced to a standard algebraic
eigenvalue problem which can be solved by an available computer suboutline
for the IBM 360 Series 50 digital computer., Complete computer program
documentation is presented in Appendix J. |
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SECTION IIIX

DERIVATION OF THICKNESS-SHEAR FACTORS FOR LAMINATES

In this section are presented two entirely different approaches
for calculating the thickness-shear factors for a laminate. The first
approach is to extend the Jourawski static theory of shear-flexible
beams (reference 40), as presented in elementary mechanics-of-materials
textbooks, to a laminated beam. The other approach is to ex;end, to
the laminate case, Mindlin's method (ref. 26) of matching the pure
thickness-shear-mode frequencies predicted by two-dimensional dynamic
elasticity and by Timoshenko one-dimensional, shgar-flexible beam theory
(references 41, 42),

In the case of.isotropic plates, there is only one independent
. thickness-shear factor (K), since K45=O and KSS'K44=K' The static
approach mentioned above yields a value of K = 0.833 (reference 43),
while Mindlin's dynamic approach results in a value of 0.822 for K.
Srinivas et al. (ref. 35) showed that use of either of these values for
K in Mindlin's plate theory results in a very close approximation to
the lower natural frequencies computed by exact, dynamic, three-dimensional
fheory of elasticity for rather thick, homogeneous isotropic rectangular
plates simply supported on all edges.

In the case of orthotropic plates, there are two independent thick-

ness-shear factors (K44 an@ KSS)’ since K45=0 and KSS#K44° In the case

of a plane anisotropic plate, such as one consisting of a unidirectional
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composite material with its major material-symmetry axis oriented at an
acute angle (8) with its edges, there are three independent, non-zero

Kij' However, for this case, Appendix A presents transformations from

which the three Fij’ proportional to Kij and defined in equation (13),

can be calculated from.the following data: F44 and F55 for the orthotropic

case (9=O°) and the value of 8 in the anisotropic case. Thus, the general

is reduced to one of calculating K and K

problem of determining K 4l 55

ij
for the orthotropic case.

To calculate K., for an orthotropic laminate by either of the two

55
approaches mentioned above, one considers a beam oriented in the x
. . . (k)* c (i)
direction and laminated of layers having properties Ell and C 55 - To
g(K) | 5 (K) (), (k)

calculate K44, X =y, 11 22 , and C55 44 .

To provide a check for the results, the fundamental eigenvalues
for free vibration calculated by laminated, shear-flexible plate theory
(Section II), using these values of Kij’ are compared with the exact

laminated elasticity theory values given by Srinivas et al. (ref. 35).

3.1 Static Approach

‘To calculate the horizontal shear force per unit width, AF, acting
on a cross section, figures 6 and 7 are used. For consistency plate notation
is used, even though the theory is only one dimensional.

The bending stress in typical layer "k'", at a distance z from the
midplane of the laminate, is calculated as follows:

XX 11 xx z

( ) (k)

*
For thin plates as treated in this report, E . 7~ Qll’ where

k k (k (k)



(k)

where Mg = longitudinal bending curvature and E = longitudinal Young's

11

modulus of layer "k".
The longitudinal stress couple (bending moment per unit width) is

defined as follows:

n z
Tk
Mex = $[ 05((:)“2 (43)
k=1 zk_1

The longitudinal curvature can be expressed in terms of Mxx as

follows:

11 (44)

where D11 = longitudinal flexural rigidity.

From equations (42) and (44), the bending stresses acting on the

left (x=x1) and right (x = x1+AX) sides of the elements are:

(k) _ (e(k) .
oxx (xl) - (Ell Z/Dll) Mxx ?
(45)
oi:)(xl+ﬁx) = (Eit)Z/Dll)(Mxx+AMxx)

Since both of these bending stress distributions act on identical
cross-sectional areas, the horizontal shear force per unit width, which
acts on the element, is given by:

AF = [ [O(k)(x1+Ax)-0i§)(x1)] da (46)

. XX
A
o

where Ao # area shown in figure 3.
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Combining equations (45) and (46), one obtains:

OF = (M /D)) ¥(2) ‘ (47)

where

Y(z) = IA Eig)z dA .

The force per unit width, AF, must equilibrate the horizontal

shear stress, oiz), acting on the bottom face of the element shown in

figure 7. Thus, we have:

aF = o8 ax (48)

Xz

Hooke's law in shear for layer "k" is

S0 (0

Xz 58 "xz (49)

(%)

Xz

where ng) and ¢ are the modu}us and strain corresponding to longi-
tudinal thickness-shear action in layer "k".

Substituting equation (49) into equation (48), one obtains the
following result:

(k) (k)

AF = C55 €z

Ax (50)

The following expression for the longitudinal shear strain at
a distance z is obtained by equating'the right-hand sides of equation

(47) and (50):
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(k) (k)

(x,2) = [Y(z)/(c55

Dll)] Q, (%) (51)

where(%(is the thickness-shear stress resultant (force per unit width),

which is related to Mxxbystatic equilibrium as follows:

Q, = AMxx/Ax (52)

The shear strain energy for a laminated, rectangular-cross-section

=
-

beam, shown in figure 9, is:

"A

The shear strain energy associated with an equiyalent'uniform,
longitudinal thickness-shear strain in a’ laminated, rectangular-cross-

section beam of cross-sectional area A is:

y2 [ ¢ ga (54)

(K /2)(
A DO

where K55 is the longitudinal thickness-shear factor and e;z is weighted

according to:

n
et () ] 0% e wa z [0t o
k-1 k=l 2,

Equating the right-hand sides of equations (53) and (54) yields an
equation; then substituting equations (49) and (51) into that equation,

one arrives at the following explicit expression for the longitudinal
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v

thickness-shear factor

2

-
J Y(z) dz]2

s

z :
k-l
KSS z (56)

C z j (k) dz] z I C(l;))"l[Y(z)]2 dz}

Equation (56) is a general expression for the static, longitudinal
thickness-shear factor for an arbitrarily laminated beam. It is a
relatively simple algebraic expression which depends upon only the

longitudinal Young's and thickness-shear moduli of the individual layers

(k) (k)
(Eyy and Cgy

presented in later examples.

) and the lamination geometry. ~Numerical results are

3.2 Dynamic Approach

Due to the inherent mathematical form of the equations of dynamic
elasticity theory for a multi-material (multi-layer) medium, it is not
feasible to present a general solution for ;he thickness-shear factor
obtained by using the dynamic approach. Even in the case of a specific
class of laminate, such as the three-layer, symmetrically laminated one,
it is not possible to obtain an explicit expression for the thickness-
shear factor. In fact, the complexity of the dynamic case, which in-
volves the dynamic elasticity-theory analysis of a shear-flexible
Iaminated beam, approaches that of the shear-flexible laminated plate and

thus negates much of the advantage of using the thickness-shear factor
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approach to laminated, shear-flexible plate dynamics. However, in order
to illustrate the dynamic approach and to provide a numerical comparison
with the static approach and with the exact results of Srinivas et al

_(ref. 35), an analysis for the symmetrical three-layer case is presented

in Appendix E.

31



SECTION IV
MODAL FUNCTIONS USED FOR VARIOUS

PLATE BOUNDARY CONDITIONS

In applying the extended Rayleigh-Ritz method, the approximate
modal shapes assumed must satisfy the kinematic boundary conditions.
However, to improve convergence, it is desirable to satisfy the force-
type boundary conditions also. For a rectangular plate, the three cases
of boundary conditions most commonly encountered in practice are discussed
in Sections 4.1-4.3,

It should be noted tha Cm’ Cn’ Zm, Zn are characteristic parameters
tabulated in reference 44, Also, five boundary conditions per edge need

to be prescribed rather than four as in classical theory.
4.1 Simply Supported on All Edges

The boundary conditions considered here are simply-supported edges

in the sense that

N =M =V =w = W =0 at x = 0,a («=0,1)
XX XX o o y
~ i~ . . ( 57)
N =M =u =w =y =0 at y = 0,b (B=0,1)

yy yy o o

As was pointed out by Wang (reference 45), it is impossible for a
separable-form deflection function to satisfy the above boundary conditions
for the case of a plate of anisotropic material (Q16 and Q26 # 0). However,
the following modal functions permit eqs. (35) to satisfy eq. (57) exactly

32



in the orthotropic case, but only approximately in the anisotropic case:

¢ =3

um yxm cos MMy ; va = me = @wym = gin mmo
(58)
Qvn = QWyn = cos anP ; Qun = an = wan = sin nmP

For the simply supported case, we substitute equations (58) into
equations (D-1 through D-6). The evaluations of the integral forms are

presented intAppendix G.

4.2 Fully Clamped on All Edges

The boundary conditions for a fully clamped laminated plate are as

- follows:

o o

v, = wo,x = Wy =0 at x =0,a (59)
v =W =3 = =0

vy wo,y ¢x 0 aty ,b

The assumed modal functions selected to permit equations (35) to

. satisfy equations (59) are as follows:

¢ =4 =1 = ¢ = sin 2mmy
um vm yxm Yym
Qun = Qvn = éwxn = ¢¢yn = sin 2nnf
(60)
¢wm = cosh Z @ - cos Zma - Cm (sinh Zma - sin Zma)
an = cosh ZnB - cos ZnB - Cn (sinh ZnB - sin ZnB)
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For the fully clamped case, we substitute equations (60) into

equations (D1 through D6). The evaluations of the integral forms are

presented ‘in Appendix G.

The boundary

4,3 Free on All Edges

conditions appropriate for a laminated plate free on

all edges can be expressed mathematically as follows:

N
Xy

N
XX

N
yy

=M =0 at x = 0,a and y = 0,b

Xy
= Qx = Mxx =0 at x =0,a (61)
= = M =0 at = 0,b

Q = Myy y

The assumed modal functions selected to permit equations (35) to

satisfy equations

um

un

wm

For the free

(D1 through D6).

(6l) are as follows:

1 - cos 2mny

1l
[=g]
1]
o
L]
O
n

vm yxm Yym
=4, = ¢wxn = men =1 - cos 2nmy (62)
= cos mmy ; an = cos nmnB

edge case, we substitute equations (62) into equations

The evaluation of the resulting integral forms are

presented in Appendix G.
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SECTION V

NUMERICAL RESULTS AND COMPARISON WITH

RESULTS OF OTHER INVESTIGATORS

In this section a comparison is made between the numerical results ob-

tained in this investigation and those obtained by other investigators.

5.1 Thickness-Shear Factors for Laminates

Two example problems are analyzed and, where possible, results of
Example 1 are compared with solutions obtained from other sources. The

results of Example 2 are presented for use in design,

Example 1: Three-layer, symmetric, isotropic laminate. - Thé coordinate

system is shown in figure 10. All geometrical and material property ratios

correspond to the data of ref. 35 given as follows:

= (2) ,r (2) ()4 _ (1) ,.(2) _
22/21 =h""/[h"42h"""]) = 0.8 , El; /E11 = 15,

ROpRES n _ @

(1) ,.(2)_ = = =
C55 /C55 15, =1 , and v v = 0.3

Assuming only the x-direction is considered in the static and dynamic
approaches which were developed in Section1Il,then the following results
are obtained: (I) static case - the result obtained from equation (56)

can be expressed as K..=0.651, (II) dynamic case - the result obtained by

55

equating eqs. (E-13) and (E-27) is K 5=0.350.
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When the three-layer, laminate thickness parameter is chosen to be
22/21 =1, the analysis given in Section III can be reduced to a single-

layer homogeneous, isdtropic material. Thus, using the data E{i)/Eii)=

1), .(2 2
C§5}0§5) = p(l)/p( )=1 and v(l) = v(z) = 0.3, the static case gives
Kee = 0.833 and dynamic case results in K., = 0.822. These results are

55 55

identical with the values of the static and the dynamic shear factors

obtained for single-layer plates by previous investigators (refs. 43 and

16) .

Example 2: Multiple alternating layers of two materials. - The

geometrical and material property ratios are given as
(2) ,, () _ (1), (2) _ (1) ,.(2)_
h* "’ /h =1, E;; /E11 = Cqo5 /c55 = from 0.01 to 100

The laminmates vary from two layers to nine layers. Since the static
case is a relatively simple algebraic expression which considers only

longitudinal Young's and thickness-shear moduli of the individual layers

(Eit) and ng)

will be used. The results are shown in table 1 and figure 11.

Yand the laminate geometry, for design purposes, eq. (56)

5.2 Plate. Simply Supported on All Edges

Here we consider only free vibration of plates made of composite
material having material-symmetry axes coinciding with the geometric
coordinates (plate edges) as shown in figure 12. Neglecting energy
dissipation, the time integral of the difference between the potential and

kinetic energies attains a stationary value. The displacement and rotations
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. iwt . . .
are proportional to e . The time dependence in the strain and kinetic
energies cancel each other, i.e. only the amplitudes of the strain energy
and kinetic energy need be considered. Thus, we use only the real part

of homogeneous eqs. (D1-D6) with proper boundary conditions, see eq.

(57), to apply Example 3.

Example 3: Three-layer, symmetric, isotropic plate. ~ The elastic

coefficients are those of isotropic material:

k k 2 k k) . (k k) 2
Q0 = o9 - EW A (W2}l L W01 [ W72 )

(k) (k) (k)

- - (S W11 oK)y (e
Q = Qg = Qe =E /2l ] o, Q=0 (k=1,2)

Geometrical and material property ratios correspond to the data
of ref., 35, given as follows

ZZ/ZI = h(z)/[h(2)+2h(1)]= 0.8, Eii)/E§§)= Cé;)/C§§)=15,

p(1)/0(2) -1, v(l) - v(2) - 0.3

and the following dimensionless geometric parameter defined in ref. 35:

0.0002n% for k=1

gi = {[mnh(k)/a]2 + [nnh(k)/b]2 }% = {

0.0128n2 for k=2

When the thickness of three-ply laminates is chosen to be 22/21 =1,
it can be reduced to a single-layer material as a special case. Then the

material properties are as follows:
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E;, /By = Cos /Css” =p '/p =1; v v

8, = 0, 8y = 12,

A FORTRAN IV program is employed to compute the lowest eigenvalues
of plates with simply supported edges. The two cases considered are:
(1) single-layer homogeneous, isotropic, and (2) three-ply symmetrical
construction. The results are shown as a solid line in figures 13 and
14. The static and dynamic shear factors calculated in examples 1 and
2 are also shown for comparison.

The static Jourawski shear theory and dynamic Timoskenko type
theory appear to give good results for K as evaluated by inserting in
laminated, shear flexible plate theory and comparing the lowest eigen-

values with those given in refs. 35 and 14.
5.3 Plate Free on All Edges

The problem considered here is forced vibration of a rectangular
plate made of an arbitrary number of composite-material layers each
having its major material-symmetry axis oriented at an arbitrary angle
with geometrical coordinates as shown in figure A-2,

Since the present problem is one of steady-state harmonic excitation
including material dampiﬁg effects, the complete set of eqs. (D1-D6) with

proper boundary conditions, eqs. (61), must be used.
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Example 4: Boron/epoxy plate with twenty-four parallel plies

oriented at an arbitrary angle. - The input-data material properties are

Young's and shear moduli (Ell’ Ezé, 044, CSS’ C66)’ major Poisson's ratio
(VLZ)’ bending and twisting stiffnesses (Dll’ 022, D12, D66)’ and their
corresponding loss tangents, as generated in ref. 46 from constituent-
material experimental properties. It is noticed that all of the above input
data are functions of frequency. Geometrical and material properties

correspond to the data of ref, 13, as follows:

length, a = 18,19 in ; width, b =2.75 in.
thickness, h = 0.034 in. ; density, p = 0.000194 1b-sec2/in4

(o}

angle of orientation, @ = 0°, 100, 300, 45°, 60°, 90°

A FORTRAN IV program is employed to compute the eigenvectors of
a plate with all edges free. To obtain the resonant frequencies of the
first five modes, two different resonance critefia are applied. In the
peak-amplitude method, the syétem is excited harmonically and the amplitude
at a particular point (o =0, B = 1) is measured over a range of fre-
quericy. The amplitude of the response depends not only on the dynamic
characteristics of the system, but also on the amplitude of the force
applied to it. For a linear system the peak amplitude is taken as
maximum displacement per unit amplitude of force. Throughout this re-
port, this ratio is referred to as the response. A typical result of
response with varying frequency is shown in figure 15 for an angle of
orientation, @ = 10°. The complete results are as tabulated in Table II.

In the modified Kennedy~Pancu method, the modal shapes, phase

relations between motions at various points, and coupling between the
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various degrees of freedom are assumed to be unaffected by the presence
of a small amount of damping. Vectors are used for the analysis of the
results of forced vibration by making a polar plot (called the Argand
plane) of the displacement vector (amplitude and phase angle). In the
vicinity of resonance, the resulting curve would be an approximately
circular arc. Each point on the circle locus corresponds to a value of
frequency.

In the modified Kennedy-Pancu method, the resonant frequency is de-
fined to correspond to the point of the Argand-plot curve having maximum
change in arc length (As) per fixed change in frequency (Aw). The
change in arc length As can be determined.approximately in analytical
fashinon as the response amplitude (W/a§ multiplied by the difference in
the phase angles corresponding to the two distinct frequencies (separated

by Aw), i.e.

As = (W/Q) Aw

The parameter As/Auw is plotted versus excitation frequency in figure
16 for a specific angle of orientation, @ = 100.
As can be seen in the figure, the curves exhibits sharp spikes and
‘thus the Kennedy-Pancu resonant frequencies, i.e., the frequencies cor-
responding to the maximum points, can readily be found. The results obtained
in this fashion for all of the plates used by Clary are tabulated in Table II,
A discussion of experimental methods used to determine material
damping in composite materials is presented in Appendix H. Here the damping
rétios are calculated by using the modified Kennedy-Pancu method as expressed

in equation (B-69), Appendix B. It is noted that the damping ratio is the
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ratio of material damping coefficient to critical material damping coef-
ficient., The results associated with each mode are tabulated completely
in Table II.

The nodal patterns of the first five modes are calculated from the
response at selected points on the surface of the plate. Twenty-five
points in the x direction and five points in the y direction are used.
The nodal patterns are shown in figures 17-22., The results appear to

be in good agreement with the data of ref., 13.
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VI. CONCLUSIONS

The analyses in Sections II and IV were developed for the vibra-
tional problem of composite-material plates with thickness-shear flexibility
and material damping. The theory used in the analyses is that of Yang,
Norris, and Stavsky (ref. 25), which can be considered to be‘thevlaminated,
anisotropic version of Mindlin's dynamic plate theory.

To account for the effects of thickness-shear deformation, a shear
gorréction factor K was introduced. A variety of methods to arrive at
an appropriate shear factor have been proposed for homogeneous plates;
the most popular ones resulted in K = 0.833 for a static distribution
(ref. 44) and 0.822 for the dynamic case (ref. 26). Srinivas et al.

(ref. 35) showed that use of either of these values for K in Mindlin's
plate theory gives a very close approximation to the lower natural fre-
éuencies computed by exact, dynamic, three-dimensional elasticity theory
for rather thick, homogeneous, isotropic rectangular plates simply sup;
ported on all edges.

Unfortunately to date no one has proposed a means of rational
calculation of the shear factor for a laminated plate. Srinivas et al.
made an exact, dynamic three-dimensional elasticity analysis of simply
supported laminated plates. However, their analysis is quite tedious
compgtationally and thus they have presented numerical results for only a

very limited number of cases.
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In the present-investigation, both static (Jourauski shear theory)
and dynamic (Mindlin type analysis for pure thickness-shear motion)
approaches were used to derive a shear factor K for laminates.

An assessment of the accuracy of these theories was made by com-
paring the lowest eigenvalues calculated by the laminated, shear-flexible
plate theory with the laminated, three-dimensional exact values given
by Srivinvas et al. (ref. 35).

It has been found that the shear factor K for a laminate is not
the same value as that for a homogeneous, isotropic member. The numberical
examples indicated that the value of K depends on the layer properties
and the stacking sequence of the laminate,

Using peak-amplitude and modified Kennedy-Pancu methods, the first
five resonant frequencies were calculaﬁed for various laminated boron/
epoxy plates with all edges free.. The resonant frequencies obtained by
the two techniques differed by only a very small amount, and were in good
agreement with the results obtained both experimentally and analytically
by Clary (ref., 13). Furthermore, the nodal patterns have been found to be
satisfactory or as good as the data given by Clary. Finally, the damping-
ratio results were in good agreement with the experimental oﬁes obtained
by Clary. No comparison with analytical results for lmainated-plate

damping could be made, since they have not been available previously.
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APPENDIX A

NOTATION AND TRANSFORMATION FOR ELASTIC COEFFICIENTS

The generalized Hooke's law (Cauchy equations) for a general

anisotropic material in terms of rectangular coordinates x,y,z are as

follows:
4 \ = ( \
Oxx Cii %2 %3 G4 G5 G i €xx
Oy €1 %2 C3 G G5 Gy gy
Orz €21 C32 €33 G5 C35  Cye €22
< = J ?(A-l)
Oy Ca1 %2 S3 Cus G5 G €2
Oy 2 Cs1 Csp Cg3 G5y -Cgg Gy €yz
. c
%xy | %1 %2 Sz Ces 65  Ce6  Sxy )
where 0,, and ¢,., are stress and strain components, and C are the
i ij k4

Cauchy stiffness coefficients for a three-dimensional body. It can
be shown that the matrix of Cauchy coefficients is symmetric, provided

thaf the material is conservative (elastic), so that

c, =¢C (A-2)

Lk ki

Usually a single layer of fiber~reinforced composite material has

the fibers oriented more or less parallel to the top and bottom surfaces
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of the layer, i.e. material-symmetry plane XY coincides with surface

plane xy. Thus, it is orthotropic in the yz and xz planes, and the

shear-normal or cross-elasticity coefficients with subscripts i4 and

i5 (i=1,2,3,6) vanish:

XX

yy

zZ

yz

Xz

o
\ XY )

L

11

12

13

16

'

12

22

23

C26

13

23

33

Ci6

0 0
0 0
0 0

Cao C4s

C4s  Css
0 0

7 /7 )
C16 €xx
CZ6 eyy
C36 €.z
0 1
eyz
0 €x2
C
66 _ \exy‘

}(A-3)

The only exception to the above, i.e. the only case when the general

form (A-1), rather than (A-3), must be used is the case of a shingle-

laminated composite, as shown in figure A-1 (reference 47).

1f, in addition to being parallel to the top and bottom faces of

the layer, the fibers are also oriented in a direction parallel to one

of the coordinate directions in the plane of the layer, the material-

symmetry plates XY,YZ,ZX all coincide with the coordinate planes xy,

yz,zx and the material is said to be completely orthotropic.

case the Cauchy relations are:

\
rdxx

12
*
Ca2
*
23

13
.

€23
*

€33

N 7 W
(0]

€xx YZ

eYY> ‘J %z

o]

\ XY)

Cus vz

Css €xz

C e
\ 66 XYJ

In this

(a-4)
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where the asterisks denote the orthotropic case,

In the case of a thin layer of fiber-reinforced composite
material in which the thickness-normal stress (ozz)can be neglected
(see Hypothesis H3, Section 2,1), the third equation in set (A-4) can
be solved for €59 in terms of ¢ and ¢, . Then equations (A-4) can be

XX YY

simplified as follows:

‘ ; * * *
[ Oxx l Q1 f’exx Ovz Uy €yz
j *
= H =9 Q55 ¢ (A-5)
5 l < o . %z 55 xz
vy | 12 2 YY Ty Ue exy

v *
where the reduced orthotropic stiffness coefficients (Qk&) are related
to the Cauchy three-dimensional orthotropic stiffness coefficients

* ) )
(Ck& as follows:

£ 120k Kok X K
Qp = €11 - (C19) /G335 Qy = Cpy - (Cp3 Cy3/C59)
(A-6)
* * * 2 * *
Equation (A-5) can be written in the form of a-éingle matrix
equation as follows:
oy g = L1 {es)
S A B B W) {eIJ (4-7)

where
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( Oxx ) [ exx )
OYY G.YY
{OIJ} =9 O ) g {GIJ} =Y ey . (4-8)
%z Yeyz
L %Xy § %GXY)
™ % * 7
Q; @ O 0 0
* *
Q, Q, 0 0 0
* _ *
[QM] = 0 0 2Q44 0 0 (A-9)
0 2q"
0 0 Qs O
*
| o 0 0 0 2 ]

where the presence of the factor 1/2 in the €1 matrix is used to make
it a second-rank tensor and this necessitates the presence of the factor
2 appearing in.equation.(A-9).

In structural-panel applications of composite materials, usually there
are design requirements for multiple orientations of fiber-reinforced com-
posite-material layers. Therefore, it is essential that a set of trans-
formation relations be used to calcula.2 the stiffness coefficients for
any desired orientation from that associated with the major material-

" symmetry direction (fiber direction) as shown in figure A-2. Such

relations are developed in the ensuing paragraphs.
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Arbitrary orthogonal axes in the plane of the laminate and making
an angle O with the material-symmetry axes (X,Y) are designated as
the x,y axes.

Then the components of stress and strain can be trans-

formed from the x,y axes to the X,Y axes as follows:

{ OIJ}

{em}

[Tr] { oij } (A-10)

U

1 { s } (A-11)

?here {OIJ} and {GIJ} are as defined in equations (A-8); {oijj and
ieij} are similar except that the subscripts X,Y,Z are replaced by

the subscripts x,y,z; and [Tt1 is the transformation, defined as

follows:
— -
m2 n2 0 0 -2mn
n2 m2 0 0 2mn
[Tr] = 0 0 m -n Q (A-12)
0 0 n m 0
mn -mn 0 0 mz’-n2
where
m=cos ® , n=siné. (A-13)
For the case when 8 # 0, we have
P \
1y = () {"’ijj (a-14)

In view of equations (A-7,A-10,A-11,A-14),
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f,,J = (r.17'a;, 30T ] (A-15)
ke r ki r

By substituting equations (A-9) and (A-12) and then performing
the matrix operations indicated in equation (A-15) the elements of

. . *
the [QkL] matrix are related to those of the [QkL] matrix as follows:

x4 * . 22 % 4
Q= Q@ +2 (Qp +2Qg) mn +Qyyn
% 4 * * * 22 A
Qp = Q@ + Q) +Q, - 4Qg)mn +Qp,n
x4 * ¥ 22  * 4
Qp = Qo +2(Q), +2Q; Jm'n” + Qpn
x4 * * * * 22 * 4
Qge = Qg™ *+ (Qqy + Qy = 2Q), - 2Q  )mn + Q¢ (n
. (20" * * 3 * * * 3
Qe = Qe * Q2 = QPun - (2Qgq + Q- Qp)mn (A-16)
_ o~ * * 3 oo* . * 3
Qg = Qe * Qp - Qmn + (2Qge + Q) - Qpmn
* 2 * 2
Qs = Ug® + Qo0
Qs = stmn - Q,,mn

x 2 x 2
Qg5 = Qggm + Q0
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APPENDIX B

MODELS AND MEASURES OF MATERIAL DAMPING

Bl. Mathematical Models for Material Damping

Internal friction or damping in materials can be caused by a variety
of combinations of fundamental physical mechanisms, depending upon the
specific material. For metals, these mechanisms include thermoelasticity
on both the micro and macro scales, grain boundary viscosity, point-
defect relaxations, eddy-current effecté,'stress-induced ordering, inter-
stitial inpurities, and electronic effects (reference 48). According to
Lazan (ref.48), little is known about the physical micromechanisms
operative in most nonmetallic materials. However, for one important class

of these, namely polymers and elastomers, considerable phenomenological

data have been obtained. Due to the long-range molecular order associated
with their giant molecules, polymers exhibit rheological behavior inter-
mediate between that of a crystalline solid and a simple liquid. Of
particular importancé is the marked dependence of both stiffness and damp-
ing on frequency and temperature.

| The purpose of developing a mathematical model for the rheological
behavior of a solid is to permit realistic results to be obtained from
mathematical analyseé of complicated structures under various conditions,
such as sinusoidal, random, and transient loading. According to reference

48, as early as 1784 Coulomb recognized that the mechanisms of damping
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operative at low stresses may be different than those at high stresses.
Even today, aftef more than 2500 publications on damping have appeared,
major emphasis is placed on linear models of damping for several reasons:
they have sufficient accuracy for the low-stress regime and linear analyses
are computationally more economical than nonlinear ones.

The simplest mathematical models of rheological systems are single-
parameter models: (1) an idealized spring, which exhibits a restoring
force linearly proportional to displacement and thus displays no damp-
ing whatsoever, and (2) an idealized dashpot, which produces a force
linearly proportional to velocity. Obviously, neither of these models
are very appropriate to represent the behavior of most real materials.

The next most complicated models of rheological systems are the
A‘two—parameter models: (1) the Maxwell model, which consists of a spring
and dashpot in mechanical series, as shown schematically in figure B-i(a);
and (2) the Kelvin-Voigt model, which is compriéed of a spring in
parallel with a dashpot, as shown in figure B-1(b). The Maxwell model
is a fair approximation to the behavior of a viscoelastic liquid. How-
ever, as a model for a viscoelastic solid, it has several very serious
drawbacks (reference 48); there are no means to provide for intermal
stress and for afterworking. The Kelvin-Voigt model overcames'these
deficiencies and is a first approximation to the behavior éf a viscoelastic
solid. However, it has the following disadvantages (reference 48): there
is no elastic response during application or release of loading, the
creep rate approaches zero for long durations of loading, and there is

no permanent set irrespective of the loading history.
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It should be mentioned that the Kelvin-Voigt model is the simplest
one which permits representation as a complex quantity when subjected to
sinusoidal motion. To show this, one can write the following differential
equation governing the motion of a single-degree-of-freedom system con-

sisting of a sinusoidally excited mass attached to a Kelvin-Voigt element:

iwt

mi+ci+ku=Fe (B-1)

N~

where m = mass, ¢ = viscous damping coefficient, k = spring rate, F =
exciting force amplitude, w ® circular frequency of exciting force,
u = disblacement, is=s J:T-, t = timé, and a dot denotes a derivative
with respect to time; Assuming that sufficient time has passed for the
“transients to die out,* we can write the steady state solution of equation
(B-1) as follows:

=% ei(uut-cp) iwt

=F [(k-mw2)+ 1wc]—1 e (B-2)

where ¢ = phase angle between the response (u) and the exciting forée,

and @ = displacement amplitude.

It is noted that the terms containing Kelvin-Voigt coefficients k and

iwc can be grouped into a single Kelvin-Voigt complex stiffness (k) as

follows:

*It can be shown that they do die out for a mechanical system, for which

c, m, and k are all positive quantities.
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k = k + iwe - . (B-3)

Alternatively, the Kelvin-Voigt element coefficient could have

been grouped into a single complex damping‘coefficient (5) as follows:

c=c - (i k/u) (B-4)

The force (F4) in a dashpot is given by

Fy=c¢ 0= iwc:ei(wt-q» (B-5)

The energy dissipated per cycle (Ud) is a dashpot undergoing

sinusoidal motion can be calculated as follows:

2n/w ~2
Ud = } Fddu = Io Fd 0 dt = nicws v (B-6)

In 1927, Kimball and Lovell (reference 49) observed that many
engineering materials exhibited energy losses which were contradictory
to equation(B-6). Specifically, they found that Ud was proportional

~2 .
to u but independent of w, i.e.

= t -
U Cdu (B-7)

Later work by Wegel and Walther (reference 50)also showed that l% d:iz

but Cé was a weak function of w. Still later, for stresses below the

. ~2
fatigue limit of the material, Lazan (references 48,51) showed that UdOCu
and C; was practically independent of ..
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Equating the energy dissipated per cycle in the Kimball-Lovell

material, equation(B-7), to that in the dashpot, equation (B-6), one obtains

' o _
Cd mew (B-8)

To utilize the Kimball-Lovell observation in practical structural
dynamic analyses, it was desirable to have an expression for the as-
sociated damping force, i.e. an equation analogous to equation (B-5), which
governs a dashpot. According to Bishop (reference 52) this was first doﬁe
by Collar. Combining equations (B-5 , B-8), one obtains the following

"frequency-dependent damping" relation:

Fy = (b/w) u (B-9)

where b is a constant given by

b = C‘;/n (B-10)

The kind of damping rep¥esented by equation(B-9)has been called fre-
quency-dependent damping, since the usual dashpot coefficient ¢ is now
replaced by the quantity b/uw.

For the damper represented by Eq.(B-9),it is convenient to replace

k in the undamped system by the following Kimball-Lovell complex stiffness

(reference 53):
k' = k + ib (B-11)

where it is now noted that both k and b are assumed to be independent of

frequency. This representation has been used extensively in aircraft
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structural dynamic and flutter analyses (references 54,55).

An alternative to equation(B-11), is to use the councept of a complex

damping coefficient, originated by Myklestad (reference 56), in which the

spring constant is replaced by

where C1 and m are constants.

(B-12)

Although Kimball and Lovell's original work was based on data

obtained during steady-state sinusoidal motion, the models represented

by equations (B-9, B-11l, B-12) have been applied to free vibrations as

well (refs. 52,53,57). To alleviate the difficulty of the interpreting of

& in equation(B-9)for the case of free vibration or for multiple-fre-

quency forced vibration, Reid (reference 58) suggested the following form:

(B-13)

where the bars denote that the absolute value of the quantity between

them is to be used.

In summary, four different versions of material damping have been

discussed. In terms of the differential equation for free vibration,

they may be written as follows:
mi’ + (b/y) G+ ku =0
mu + (k +1ib) v =0
mi’ +C., e u=0

mié + b{u/ﬁ |G + ku =0

(B- 14a)
(B-14b)

(B- l4c)

(B-144d)
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THe models represented by equations (B-14) have been criticized
by many investigators for various reasons:

1. 1In equation (B-1l4a), the interpretation of & is dubious (refer-
ences 58,60). Milne (reference 59) suggested that it is associated with the
imaginary part of the pair of complex roots, but went on to state that
there is no clear justification for this interpretation.

2., Equations (B-14b) and (B-1l4c) are equations with complex coef-
ficients and the meaning of this is not clear (references 57,59), Further-
more, although they have complex exponential solutions, neither the real
nor imaginary partsvalone are solutions (réferences 59,60) .

3. Equation (B-14d) is a nonlinear differential equation, due to
the behavior of |u/G| (reference 59).

4, None of the models represented by equations (B-14) can be sim-
ulated, even on a conceptual basis, on an analog computer (references
58, 60).

5. The model represented by equation (B-l4a) does not meet the
Wiener-Paley condition (references 61, 62) of causality for physically
realizable systems, as was shown in references 60, 63-65.

6. Equation (B-14b) fails to give the proper relations of a
damping force that is proportional to displacement and in phase with
velocity. This can be alleviated by use of a more unwieldy expression
proposed in references 66,67.

Incidentally reference 68 claimed that none of the equation
(B-14) models result in energy dissipation that is independent of
4w (the reason for abandoning the Kelvin-Voigt model). However, an error
in this reasoning, which makes it invalid, was pointed gut in reference

69.
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It can be shown that the sinusoidally forced vibration version of
free vibration equations (B-l4a,b,c) are exactly equivalent. Probably

the most popular form for writing this is as follows:

iat

mi* + (k + ib)u=F e (B-15)

The major criticism of the use of equation (B-15) is that it results
in a conventionally defined magnification factor (see Section B2), correspond-
ing to zero frequency, which is not equal to unity for g # O (reference 52).
This difficulty can be eliminated by redefining the magnification factor as

follows:

' T gt -
MF' = u/ust ,_(B 16)

where

vee = F/K!

and k' is the stiffness coefficient associated with the total in-plane force

amplitude, 1i.e.

k' = (k2 + b))%

Thus,
MF' = (k2+b2)‘1’/[(k-mw2)2+ 2% = (1 + gz)*/[(l-wzlw§)2+32]%

The major advantages of using the equation (B-15) model for steady-

state vibrational and flutter analyses are as follows:

1. The analysis is considerably simplified in comparison with that
‘for viscous damping, as pointed out in reference 70,
2, The analysis is linear.
3. The complex-modulus concept has long been in common use, especially

57



in connecfionvwith measurement of the damping properties of elastomers,
polymers, etc. (reference 69),

4. The complex-stiffness approach has been used very successfully
in flutter analysis for approximately three decades refs. 54, 55, 69; 71).

In view of these considerations, the complex-stiffness approach is
used in the main poftioh of the present report. However, for completeﬁess
and comparison, a number of other more complicated approaches are also dis-
cussed in this section.

To overcome some of the deficiencies of the Kel?in-Voigt and Ma#-
well models, they were combined in various ways to obtain the three-para-

meter models shown in figure B-1(¢c) and (d). It can be shown (reference

72) that by properly selecting the values of the coefficients, the two
models can be used interchangably. In other words, the model repre-
sentation is not unique. In fact, both representations have beén called
the "standard linear solid", 'standard linear material,” '"simple an-
elastic model", or "standard model of a viscoelaétic body" (references
73-76). Unfortunately, few materials have been characterized by the use
of the standard linear solid. Perhaps the most extensive characterization
has been carried out for flexural vibration of 2024-T4 aluminum alloy:
by Granick and Stern (reference 77,78 ) in air and by Gustafson et al
(reference 79) in vacuo.

Obviously one can go on from a three-parameter model to a four-
parameter one, etc, Continuing this process, one obtains two well-
known models (reference 74): the Kelvin chain, shown in figure B-2(a),

and the generalized Maxwell model, shown in figure B-2(b). The be-~

havior of such systems can be written in either differential or integral

form, as discussed in detail in reference 74. However, the complexity of
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such a model has limited its use both experimentally (in characterizing
engineering materials) and analytically (in performing dynamic analyses).
Thus, for engineering applications, there is a continuing search for
models which are simple, yet represent the behavior of real materials
with sufficient accuracy.

A(relatively simple model, which is somewhat similar to the generalized

Maxwell one, is due to Biot (reference 80); see figure B-2(c) . The number of

simple Voigt elements in this model is allowed to increase without bound,

so that the damping force is represented by the following expression:

t
F, = glj Ei [~e(t-7)](du/dT) d7 (B-17)
ty

where T is a dummy variable; €,8)% parameters, eand Ei(u) is the exponential

integral

v
Ei (u) I (e glﬁ)dg ~ (B-18)

©

Caughey (ref. 60) made a detailed study of Biot's model for both
free and forced vibration. He showed that for u/e¢ > 10, the energy dis-
sipated in Biot's model is within 4% of being independent of frequency (w)
and thus essentially depends only upon the sﬁuare of the displacement
ampljtude. Milne (ref. 59) studied the Biot model by means of the con-
volution integral. -

Neubert (reference 81) introduced a variant of the Biot model, in
which a different distribution function for the local stiffness-damping
ratio is used. Milne (ref. 59) also studied this model via the convolution
integral. Milne introduced a new synthesized model of his own. However,
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the main conclusion of his investigation was that, for practical engineer-
ing purposes, the choice of a rheological model is not critical, provided
that the range of constant damping is kept the same and the damping is
small.

The linear hereditary theory of material damping was originated in
1876 by Boltzmann (reference 82). In this theory, the energy loss is
attributed to the elastic delay by which the‘deférmation lags behind
the applied force. It is called a hereditary theory because the in-
stantaneous deformation depends upon all of the stresses applied to the
body previously as well as upon the stress at that instant. The damping

force is given by

t
Fo=] 8e,m u(m ar (B-19)
-0
where t = actual time, T = an instant of time (dummy variable), u =
displacement, and & = hereditary kernel or memory function. Often the

hereditary kernel depends upon the difference (t-T) only; then equation

‘ B-19) becomes:

t
Fd = J 8(t - 1) u (1) d7 (B-20)

-0

It is most advantageous to determine the hereditary kernel from
experimental data. It has been found to be a monotonically decreasing

function which can be represented mathematically as follows:

n .
@ (t) = E:Aie-aic (B-21)
i=1

Such a system is said to have a heredity of degree n and Ai and ai
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are called heredity constants. Hobbs (ref. 75) has shown that a first-
degree hereditary model is equivalent to a simple anelastic model
(standard linear solid).

Volterra (reference 83) has presented a method of determining the
hereditary kernel from material response to either suddenly applied
loading or to sinusoidal excitation. He also presented plots of mag-
nification factor and phase shift verus frequency for a wide range of
parameters of a single-degree-of-treedom system with first-degree
hereditary damping. For‘certain combinations of the parameters, the
magnification and phase characteristics are quite different from that
of a viscously damped system; yet for certain other combinations, the
characteristics are quite similar.

Numerous nonlinear mathematical models have been proposed to per-
mit better correspondence between theory and experiment. However, all
of them, by their very nonlinear nature, are more complicated to apply
in structural dynamic analyses of practical engineering systems. Perhaps
the simplest one is damping energy per unit volume and per cycle pro-

portional to stress to a power (ref. 48):

~m

where C; and m are material constants and O is the cyclic stress

amplitude, It is noted that m=2 corresponds to the Kimball-Lovell re-

lation (linear theory) discussed previously. It has been found that m

varies from 1.8 to 6.0, generally being near 2.0 at low stress amplitudes.
The hysteresis loop associated with the complex-modulus model,

equation (B-11), is elliptic in shape; see figure B-3(a). However,
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the hysteresis loops determined experimehtally_have sharp corners at both
-ends and are nearly linear in the low-stress, 1ow~s;rain region, as shown
in figure B-3(b). According to ref. 48 (page 97), in 1938 Davidenkov
proposed a nonlinear mathematical model which results in a similar shape
of hysteresis loop. Further work on this class of model has been carried
out by Pisarenko (reference 84).

Rosenblueth and Herrera (reference 85) proposed a nonlinear model
which eliminates the causality difficulties of the complex-modulus model.
Chang and Bieber (reference 86) introduced a nonlinear hysteresis model
in which there is no hysteresis damping unless thé displacement amplitude

exceeds a certain threshold value.

B2. Measures of Material Damping

In this section, various definitions of damping are discussed in

the context of a complex-modulus material.

Energy Dissipation Under Steady-State Sinusoidal Vibration. - Energy

dissipated per cycle (Ud) in the form of internal frictional heating is
one measure of damping. However, this quantity depends upon the size, shape,
and dynamic stress distribution (which in turn, depends upon the particular

mode of vibration). In view of the above difficulties, the specific damping

energy (Udv) is usually considered to be a more basic property of the
material, rather than the structure., The Udv is defined as the damping energy
per cycle and per unit volume, assuming a uniform dynamic stress distribution

throughout the volume considered. Thus, the total damping energy is

U, = § u, dv (B-23)
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where V = volume. The usual units of Ud are in-lb/cycle and of Udv’

in-lb/in3-cyc1e.

Resonant Magnification Factor Under Steady-State Sinuscidal Ex-

citation. - The resonant magnification factor (RMF) is defined as the
dimensionless ratio of the response at resonance to the excitation,
where both the response and the excitation must be specified in the
same units (see figure B-4). These quantities may be in units of dis-
placement, velocity, acceleration, or strain. Unfortunately, the re-
sonant magnification factor is dependent upon the structural system con-
.figuration as well as upon the damping property of the méterial, so that
it is considered to be a system characteristic, rather than a basic material
property.

Incidentally RMF is not applicable to nonlinear systems, since then
it depends upén the excitation level. (In a linear system, RMF is independ-

ent of the level of excitation.)

Bandwidth of Half-Power Points Under Steady-State Sinusoidal Excitation.-

The separation (ub-wl) between the freqqencies associated with the half-
power points increases with an increase in damping (see figure B-5) and thus
can be used as a measure.of damping. A more meaﬁingful definition is to
normalize by the associated resonant frequency (uh), i.e. use the dimension-

less bandwidth given by:

(wz - wl)/dh .

This measure is the basis for determination of damping by the original
Kennedy-Pancu method (reference 87).

The quality factor Q is defined as the reciprocal of the dimensionless
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bandwidth.

Derivative of Phase Angle with Respect to Frequency, at Resonance. -

This measure is the basis for determination of damping by an improvement

(reference 88) of the Kennedy-Pancu method.

Loss Tangent Under Steady-State Sinusoidal Excitation. - Applying
the complex-stiffness (see Section Bl) to the material property represent-

ing stiffness, namely the Young's modulus (E) , we obtain

E - EN(1 + ig) (B-24)

%*
Thus, the loss tangent is defined as follows:

g = El/E (B-25)

I *k R , *kk
where E° = loss modulus and E is called the storage modulus.

Referring to figure B-6, we obtezin the following relation:

R

tan y = EL/E (B-26)

0
n

or

arctan EL/ER (B-27)

<
]

*Also known as the '"loss coefficient", '"loss factor'", or 'damping
factor".
*%Also sometimes called the "dissipation modulus,"

***Also sometimes called " elastic modulus'" or '"real modulus."
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The quantity vy is called the loss angle and equation (B-26) explains

the origin of the term loss tangent for g.

Cyclic Decay of Free Vibrations. - In a linear system, free vibrations

decay exponentially (see figure B-7). The larger the damping, the faster

is the decéy. Thus, the logarithmic decrement § is defined as follows:

§ = in (ai/ai (B-28)

1

where Zn = natural logarithm,

For a power-law material, eq. (B-22), to have § independent of
amplitude, m must be 2 (see Section B3 for proof). When m=2, the follow-
ing means 6f calculating § is more practical, especially when damping

is small:

5= (1/m) tn (s fa, ) (B-29)

where n is any arbitrary integer.

Temporal Decay of Free Vibrations. - Another measure associated with

the decay of free vibrations is the temporal decay constant Vt’ defined as‘

follows (reference48, foldout opposite p. 35):
A -1
Ve © (tz-tl) In [u(tl)/u(tz)] (B-30)

where tl and tz are two different values of time, arbitrary except that .

ty, > tl and (t2 - tl) must be an integer number of periods of damped

vibration. The quantities u(tl) and u(tz) are the respective displacements

at times t1 and t2. It is seen that the usual units for v, are sec ,
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An alternate way of specifying the temporal decay is the decay
rate Yt’ which has units of decibals per second (db/sec) and is defined

_as foflows;
-1 ,
Ye = 20 (tz-tl) log [u(tl)/u(tz)] (B-31)

or

vt(tz-tl)

-1
Ye = 20(t2-t1) log e = (20 log e)vt ~ 8.68 L

where log = logarithm to the base 10.

Spatial Attenuation of a Plane Wave in a Slender Bar. - If

one propagates a plane, harmonic wave in a slender bar made of a homo-
geneous, linear material, the wave exhibits exponential decay with axial
position (x), analogous to the temporal decay of free vibration (which
may be consiered as a standing wave). Analogous to the logarithmic de-

crement (see above), we have the logarithmic attenuation 68, defined. as

follows in terms of amplitudes a(xl) and a(xz) at stations Xy and X,
8, = in [a(x))/a(x))] . (B-32)

Analogous to the temporal decay constant, we define the spatial

attenuation constant A as follows:

v, = (xz-xl)-1 In [a(xl)/a(xz)] (B-33)

The unit of Ve is in-l.
Finally, analogous to the decay rate, we define the spatial

attenuation rate"ys as follows:
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Y < 20()(2-x1)"1 log [a(xl)/a(xz)] ~ 8.68 V- (B-34)

The unit of Vg is db per unit length.

If should be cautioned that the determination of damping by wave
attenuation requires that the cross section of the bar be compact (pre-
ferably round or square) and that the largest cross-sectional dimension
be very small coméared to the wave length of the traveling wave. Further-
more, the two stationé along the bar, at which the wave measurements are
made, must be: (1) sufficiently far from the point of impact that initial
transients have died out and (2) sufficiently far from each other so that

' a measurable change in amplitude occurs. Kolsky discussed these points

in detail in reference 89.

B3. Inter-Relationships Among Various Measures of Damping

for Homogeneous Materials

Here we consider a single degree-of-freedom system consisting of a
mass supported on a méssless spring made of a homogeneous Kimball-Lovell
or complex-modulus ﬁaterial. Then the governing differential equation
for simple harmonic excitation is equation (B-15), which has the following'

steady-state solution:

us=7y e (B-35)

where .
T = F [ (eemed)? 4p27712 (B-36)
¢ = arctan [b/(k-mwz)] (B-37)

The magnification factor (MF) is defined as follows:



(B-38)

I}

MF u/u
8

t

where Uge is the so-called static displacement, defined as follows:

Uge F/k (B-39)

Combining equations (B-36, B-38, and B-39), one obtains the

following relation:

MF = {[L - (m/wn)2]2+ (b/mwi)2 }-1/2 (B-40)

where Wy is the natural frequency (i.e. the resonant frequency of the
undamped system), given by:

u, = Gefmy /2 (B-41)

The critical material damping coefficient (bc) is the minimum value

of b for which the free vibratory motion is non-oscillatory. It
is obtained from the following relationship:
2 2
(b /2ma )" = k/m = W
or
bC = men (B-42)
The damping ratio { is defined as follows:
(B-43)

= b/bC

Combining equations (B-40, B-42, and B-43), one arrives at the

following general, dimensionless relationshibE 68



2}-1/2

MF = {[1-(w/wn)2]2 + 4C (B-44)

It is seen easily that MF is a function of only two parameters: the fre-
quency ratio (m/wn) and the damping ratio ({). It should be mentioned
that equation (B-44) is somewhat different than the known relationship
for a single-degree-of-freedom Kelvin-Voigt viscously damped system,
even though the damping ratio ( is defined analogously ( = c/cc,

-where c, = 2mwn).

The resonant magnification factor (RMF) is defined as the value

. . o .
of MF at resonance, which is taken here to occur when ©® = 90", 1In view

of equation (B-37), this implies that the resonant frequency is w .
- Thus, at resonance, equation (B-44) reduces to the following simple

expression:

RMF = (2¢) 1 (B-45)

Thus, it is seen that the same simple relationship between the damping
ratio and the resonant magnification factor holds as does for a Kelvin-
Voig£ system. Although the resonant amplitude can be measured accurately,
there are problems in measuring the static deflection in complicated
structures (due to signal-to-noise ratio limitations pf instrumentation).
For this reason, in structural dynamics, RMF is seldom used as a measure
of damping.

The damping energy, i.e. the energy dissipated per cycle, can be

computed as follows:

2n/

Ud.= § Fd du = Jo qu dt (B-46)

where Fd is the damping force, given by
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Fy = (b/uw) i (B-47)

Substituting equations (B-35) and (B-47) into equation (B-46) and

integrating, we obtain the following result:

ud = b W (B-48)

To convert equation (B-48) to the form of equation (B-22), with
m=2, it is necessary to divide by the volume and to relate u to. 3.

Now the force amplitude is
F=4a0=1xku (B-49)

where A = cross-sectional area.

Assuming the spring is a massless and uniform bar, we have

-~
]

AE/L ' (B-50)
where L = effective length of spring and E = Young's modulus of the bar.
Combining equations (B-48, B-49, B-50), one obtains the following result;

U, = U/ (mbL/A) (5/E) 2 (B-51)

Comparing the form of equations (B-22) and (B-51), we see that
for a Kimball-Lovell material, m = 2 and

Cd = nbL/AE2 (B-52)

It should be noted that Lazan (reference 48, chap. I1) has shown
that these results are independent of the stress distribution and the

specimen geometry, provided that m = 2,
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In view of equations (B-42, B-43, and B-44), equation (B-52) can

be expressed in the following more useful form:

Cq = 2n C/E (B-53) -

According to equation (B-48), the damping energy (and thus,
excitation power) is proportional to the square of the displacement
amplitude u (and thus, the MF). Then the power is one half of wha; it
is at resonance when MF = RMF//2. In view of equation (B-45), the half-
power magnification factor (HPMF) is related to the damping ratio as

follows:

HPMF = RMF//2 = (/2 g)'1 | (B-54)

To determine the two sideband ftequenciés (w = &, and mz) cor-

1
responding to half power, we combine equations (B-44) and (B-54) to

obtain the following quadratic expression in m2:
2 2.2
2/2 9o =1[1 - (m/uh) 1™+ 4g2
which has the following positive roots:

ay = (142 1) (B-55)

It is interesting to note that equation (B-55) is identical to the analogous
expression for the lightly damped Kelvin-Voigt system, i.e. (c/cc)2 <«< 1,

For small damping (f << %),

W o o~ (1+0 w

1,
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Thus, we get the following relation between the dimensionless bandwidth

and the damping ratio (:

(wz-wl) /wn ~ 2C | (B-56)

In the original Kennedy-Pancu method (reference 87), this relationship is
used to determine the damping ratio from the geometry of an experimentally
determined Argand plot (a polar-coordinate plot of response amplitude
versus phase angle).

In terms of the quality factor Q, equation (B-56) may be rewritten

as follows:

1

Q~ (20" (B-57)

QIt is interesting to note that in order for the half-power frequencies
to be real, the damping ratio { must be no greater than /2/2 ~ 0.707. How-
ever, this is not .a severe limitation for actual 'structural materials,

The potential energy (strain energy) stored in our single-degree-of-

freedom mathematical model is given by:
U= § Fs du (B-58)
where FS is the spring force, given by

F_ = ku (B-59)

Thus,
-
U=k I u du = kuZ/2 (B-60)
o
Combining equations (B-48) and (B-60), we obtain

ud/u = 2mb/k (B-61)
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Using equations (B~41, B-42, B-43), we can rewrite equation (B-61)

in the following more useful form:

Ud/U = 4ng (B-62)
or
¢ = a/em/m | (B-63)
The loss tangent is defined as follows for the system considered
here:

g = b/k . (B-64)

Inserting equations (B-41, B-42, B-43) into equation (B-64) we

obtain the following useful relationship:

g = 2¢ ' (B~65)

The following useful relationship, which is sometimes taken as a
fundamental definition of damping (reference 66), is obtained here by

combining equations (B-63) and (B-65):

g = (1/2n)(Ud/U) (B-66)

Taking the derivative of phase angle ¢ with respect to frequency

 ¢, one obtains the following result from equation (B-37):
2
de¢/dw = 2bmin/{ (k-my; )2+b2] (B-67)

At resonance (subscript R), defined by uFu% = /k/m, equation (B-67)

" becomes:
(dqﬂdubR = Zmun/b (8-68)

Combining equations (B-42, B-43, and B-68), we obtain the following
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very useful result:

¢ =‘[wn (dp/dw) 7! | (B-69)

It is interesting to note that although the MF vs., w relation,
equation (B-44), is different than the corresponding felation for a Kelvin-
Voigt viscously damped system, equation (B-69) is identical to its cor-
responding relationship for a Kelvin-Voigt system. Equation (B-69) is used
to determine the damping ratio froﬁ an experimentally determined Argand
diagram in the improved Kennedy-Pancu method (reference 88).

The transient solution of the system represented by equation (B-14a)

can be written as follows:

u' = ﬁ'e'awnt sin ‘/I-QZ wnt - ) (B-70)

;

From its definition in equation (B-28), the logarithmic decrement §
can be determined as follows:

e~ant1 w T
W'= £n e = ;mnT (B-71)

e

5§ = In
where T is the period of damped oscillation, given by

T = (Zﬂ/wn)(l-gz)-llz (B-72)

Thus, we now have

§ = 2nC (l-gz)'l/2 (B-73)

For small damping (g%é<1), equation (B-73) can be replaced by the

following approximate expression:

6 = 2ng (B-74)
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Combining equations (B-65) and (B-74), one obtains the following:

§ = ng (B-75)

In view of equation (B-63) and since the specific energies are

given by:

Uds = Ud /v, us = U/v, (B-76)

we have

¢=U s/lmus (B-77)

d

However, the specific strain energy is
~2
u =0 /2E (B-78)
A power-law-damping material is defined by equation (B-22).
Compining this relation with equation (B-78), one obtains:

¢ = (E cd/sn)"é‘“'2 4 (B-79)
Thus, it is clear that ( is independent of stress amplitude only for a

KL (Kimball-Lovell) material (m=2). Then

' g”='E C;/én ] (B-80)

or, in view of equation (B-65),

g = E Cd/hn (B-81)

Furthermore, since the logarithmic decrement of a KL material with
small damping is approximately proportional to the damping ratio as shown

by Equation (B-74) , the following approximate relation holds:

l 6 ~ E Cd/4 (B-82)
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APPENDIX C

DERIVATION OF ENERGY DIFFERENCE

It is assumed that the generalized coordinate £ and generalized

force f have the following forms:

~ iwt

€E=Ee
(Cc-1)
£ = a* elu)t

where E is a complex form representing U,V v ,Wx and Wy'

The strain energy can be expressed as

n n
U=/ ) Qg 8%

i=1 j=1

eZiwt (C-2)

Q

where Qij are stiffness coefficients and U is the amplitude of the strain

energy given by:
\tl n
U=/2) ) z Qy g Ej (C-3)

i=1 j=1

For the damping energy, a dissipation function suitable for material

damping (reference 90) is developed. Hence, we introduce a dissipation

energy function for material damping as follows

n n n
z z (bgy/0) € &) =Gu/2) 2 z i §E, 2L (B 2
.—1 j 1:1 ng _
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where bij are structural damping coefficients, aij = ibij and D is the

amplitude of dissipation energy given by:

(C-5)

| N~

M =
um
(mz

1 J

The kinetic energy of the system is

n n ) n n
2 - >~  2iwt_ ~ 2iwt
= F = ={i -
¥ ) ) m g @iy ) Y BRI T
1 j=1
(C-6)

where mij are inertia coefficients and T is the amplitude of kinetic

. energy given by

n n
= @2/2) \: Zmij g E, (C-7)
i=1 j=1 :

The work done by the uniformly distributed normal force is

a2

n
=f§-€
i=1

n
E gi =0 e21wt (C-8)

where E is the amplitude of the normal pressure and W is the amplitude of

the work done

13 .

=

1
2

n o~
LI

[

(C-9)

i

The Lagrangian equation takes the following form (reference 91)
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st GO ¥ty -t (C-10)

Each term of equation (C-10) can be expressed in terms of its

amplitude as follows:

d_ 3T _ _oT jiwe 3 _ b dwe
~ ’ F ~
(c-11)
ﬂ:—.a—’ﬁeiwt f=-§ﬂ=iﬁc eiwt
F ~ ’ £ £
QF 3E ok of,
With equations (C-11) introduced, one can rewrite equation
(C-10) as follows:
'gé’ GF+W-T-5 =0 (C-12)
or
% (F+W-T-D)=0 (C-13)
o3

Equation (C-13) is analogous to one presented by Volterra (reference 83 ).

Thus, the amplitude of the Lagrangian energy difference can be

expressed as follows

~

L=(T+W - (’ﬁ#ﬁ) (C-14)

.when used in conjunction with Hamilton's principle, expressed in equation

(36) .
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APPENDIX D

COMPLETE ENERGY EXPRESSIONS

D1. The Energy Difference

=
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aL/aukL
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xmn me Wxn
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ZZHq
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) }} ab do dp

ab do dB

= a@n/aa

Equations for Minimizing the Energy Difference
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(D-1)

80



16 La E‘ xmn j 6WXmQ kda j ¢ Q'

m=1 n=1
M N
< 1 5
]
+a/D)Bye ) ) ¥ e yméukdaj 5
m=1 n=1 °
) M N‘ [1 rl
] [ BN
+B66 E: 4 men o 'éwyméukda J q>\yynéu{,ds
o o
m=1 n=1
¢ L, g
R d , [ '
+(a/b)B66 L /vamn Ioéwxméuk « po n¢ 4. e
m=1 n=1
2 ot
~ab v Ej 5j moUmn \ méukda Joéun@ul.dB
m=1 n=1
2 pl
-ab E: E‘ 1 xXmn f WXm uk * QWXnQuLdB =0 (-2
m=1 n=1

There is another equation, for at/avkL=0’ which is analogous to eq. (D-2)

with the following substitutions:

ue» v , L2V, Xery, lem2, desd'  assb, (D-3)
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AL/Bwk’

AL/BY

(b/a)K55 55 ? iwm[o @ daf@ 5,198

m=1 n=1

+bK55 55 E i‘i’xmn §. <I>‘llxm wkda .[ wan wxn w! dp

m=] n=1
o M N 1 1
+K A Z ZW j¢'¢kdaj¢ Q'LdB
45 45m= ol mn owmw own A\
I G 1 1
3 ] 1)
+K45A45 [ Zwmn J‘ me@wkda J‘o%n(ﬁwf«ds
m=1 n=1

L 1
i 3 $ e [ttt [
+aK45A45 /. ‘men . \pxmq’ da | & ¢ d8

m=1 n=1

1
b K45A1+5 z Eyymnj wqu’wkda Joéwyn(ﬁw&de

+a/0)K, A, [_ W J Y dozj@
m=1 n=1

N 1

M 1

A Z z f@ § d &' d

RN ¥ yan o bym Wk J[fwyn w P
m=1 n=1

) g N 1 1
-ab u Z_ Z mn J meé kdCv Jo@wnédeB
-abq Z ZJ\‘P duj@ dg = 0

m=1 n=1

N 1
= (b/a) Bll z zumn .[ éum 1lek @ n(blbx! B

(D-4)
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+(a/b)D66 z zyxmn _[ %x \yxkda f <I’qun lbx&
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2 Yl f
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PReBos 2 2 Vmn ) BByl | und e d®
m=1 n=1

% 1

*ab KSSASS Er L Yxmn J wxm ka [oéwxnéwxéds

m=1 n=1
M 1
+a K, A v W jc’b f@ dB
4545 mn wm w k wn w x4{
o]
m=1 n=1
M N
tab K A ) ) J o«
b K, A 2 yym i éllJyn yx1 P
m=1 n=1

2 ¢ 3 !

-ab w L E:mlumn J Qumékada J QunQWdeB

o )
m=1 n=1 .

1
-ab uu2 z z My ° xmn u wxm djxk [o%xn%x’,ds =0 (B-35)

m=1 n=1

There is an analogous expression for B’I:/B‘!’yk{=0, using the trans-

formations (D-3), plus the following additional one:

45e» 55 (D-6)
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APPENDIX E

DERIVATION OF THICKNESS-SHEAR FACTOR FOR THE THREE-LAYER,

SYMMETRICALLY LAMINATED CASE USING THE DYNAMIC APPROACH

El. Dynamic Elasticity Analysis of an Individual Layer

Undergoing Pure Thickness-Shear Motion

For an individual layef undergoing pure thickness-shear motion
in the xz plane, the only non-zero stréin component is €yzt Now it
is assumed that the layer is orthotropic, so that the only non-zero
stress component is Oy p given by equation (49). Then the general
stress equations of motion for three-dimensional, dynamic elastic

theory reduce to the following two equations:

Oxz,z = Py ; oxz,x T PYaee (E-1)

The longitudinal thickness-shear strain can be calculated from

the displacements (u,w) in the x,z directions, respectively, as follows:
€ =u, + w,x (E-2)

The following displacement equations of motion are obtained by

substituting equations (49) and (B-2) into equations (E-1):

2 2 _
cs(u’zz + w’xz) T Y cs(u’xz * w’xx) T Yore (E-3)
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where o is the shear wave-propagation velocity defined by:

2 B
cS = CSS/p (E-Z;)

However, for pure longitudinal thickness-shear motion, the dis-
placements are independent of axial position x. Thus, all derivatives
of displacements with respect to x vanish and equations (E-3) reduce

to the following single expression:
(E-5)

Equation (E-S) is the familiar, one-dimensional wave equation,
which is solved easily by the separation-of-variables method, with the

following solution for simple harmonic motion:

u(z,t);= (A cos Qsz+B sin Qsz)(c1 cos aut + C, sin wt) (E-6)

2

where QSE w/cs, A and B are constants depending upon the boundary
conditions, and C1 and 02 are constants which depend upon the initial

conditions.

E2. Dynamic Elasticity Analysis for Three-Layer,

Symmetrically Laminated Case
Here we consider the special case of a three-layer, symmetrically
iaminated member, in which the two identical outer layers are designated

by superscript 1 and the middle layer is denoted by superscript 2, as
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shown in figure E-1. The proper boundary conditions for the anti-

symmetric modes in pure thickness-shear motion are

ol (z,,t) =@ (z,,t) 5 u,,

(E-7)

w, Pz, 0

0, P05 0P 0,0 =0

where z1 and z, are dimensions shown in figure E-1,

2
Substituting equation (E-6) into equations (B-7) yields the follow-

ing set of expressions:

A1 cos Qél)zz + B1 sing}il) z, = A1 cos Q:z) z,

+ 32 sin 08(2) 2, ;- Qél)Al sin Qél)zz + Qs(l) B1 cos Oil) z, =

- Qiz) A2 sin Qéz) z, + QEZ)BZ cos 022)22 5 -Qil)AI sin Qél) z1

+ Qél) B1 cos Qél) z, = 0 ; A2 =0 (E-8)

or
4 cos Qil)zz sin Qél)zz - sin Qiz)zz i (Alw rO‘
-Ogl) sin Oél)zz Qél)cos Qél)z2 -Oéz)cos 022)221 B1 ¥=1 0 ) (E-9)

.-le) sin Qil)zl Qél)cos ﬂél)zl 0 J tBZJ kOJ

The homogeneocus system of linear algebraic equations (E-9) has a

nontrivial solution if, and only if, the determinant of its coefficient
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matrix is equal to zero. The resulting determinantal equation has as

its solutions the roots of the following transcendental equation:

Q:l) tan Qéz) z, = - ng) cot (Qél) z, - le) z

2 ) (E-10)

2 1

(k)

and c, T, we have

(k)

From the definitions of QO

o a® = B e - @iy 10P)E - wip* @1

where
- (1), (2) ) . (1), (2)
B = 055./055 i R=p " /p (E-12)
Then equation (E-10) can be expressed as follows:

5 (1)

ean (5,002, (B/0) %)= cot [(1-¢a' D2,

(R/B) s 21 (E-13)
where

¢, = 22/21 (E-14)

E3. Dynamic Analysis of a Symmetrically Laminated Timoshenko

Beam Undergoing Pure Thickness-Shear Motion

*
Here we consider a symmetrically laminated Timoshenko beam . The

_ :
A beam exhibiting both thickness-shear flexibility and rotatory

inertia is generally referred to as a Timoshenko beam (refs. 41,42).
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axial and thickness (or depth) directions are designated as the x and z

axes, respectively. Such a beam could be analyzed as a special case of

the laminated plate theory presented in Section II.by merely deleting

all derivatives with respect to y. However, the beam éase is so much

simpler and pure thickness-shear motion is such a simple type of motion;

therefore, it was decided to make an exact analysis for the present case.
The following kinematic relations hold throughout the entire

thickness of the laminate:

;€ =w + 4 (E-15)

The following stress-strain relations are applicable to a typical

layer "k'":

olk) . g - gl Ho, 23 o{l) =g (E-16)

XX 11 Sxx 11 XX Xz 55 “xz

The bending moment and shear force, expressed on the basis of a unit

width as in plate theory (Section 2.3) are:

n zk.
Mo =z J‘ o5 4z i Q =i J o{k) 4, (E-17)
k=1 “k-1 k=1 k-1

Substituting equations (E-15) and (E-16) into equation (E-17) and
introducing the shear factor KSS as a correction factor to be determined

later, one obtains:

(w _+ wx) (E-18)
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where

. n zk . | |
{Du ’ Ass} = Z L 1E§lf) 2, Cgl;)} dz (E-19)
k=1 “k-1 . A

The equations of motion for a symmetrically laminated Timoshenko

beam are identical in form to those governing a homogeneous Timoshenko

beam (refs. 41,42), namely:

Qe TV . Mxx,x - Qx B m2¢x,tt (E-20)

where m and m, are defined in equations (28).
Inserting equations (E-18) into equation (E-20), one obtains the

following set of two coupled equations of motion in terms of the generalized

displacementsw and y_:
o X

_KSS ASS (wo,xx4-¢x,x) = mo wo’tt (E-21)

i1 Vyoxx ~ Kos Ass (Vg 0D =m) by oy (E-22)

For pure thickness-shear motijon,w and wx.are independent of axial
o]

position x, so that equations (E-21) and (E-22) uncouple and become:

Yo,tt T 0 (E-23)
mz‘ll

x,et T Ksg Agg ¥, = 0 (E-24)

Since equation (E-23) does not contain KS5 and since v is not
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in equation (E-24), we have no further need for equation (E-23).
For steady-state harmonic motion, the solution of ‘equation (E-24)

can be expressed as follows:

X

g =T et (E-25)

where i;is a constant.
Substituting equation (E-25) into equation (E-24), we are led to

the following relationship:

w =K / (E-26)

55 455/,

This equation is applicable to any symmetrical laminate. For the special
case of a three-layer one, using the notation depicted in figure 10 and

the definitions of A55 and @, from equations (E-19) and (28), one obtains:

) . ) .
4 = 3K55 212 (Cé;)/p(l))[(gz/B) + I-Cz]

(E-27)

CLgm +1- g1t

where B,R, and 52 are as. defined previously.

'E4. Determinations of the Thickness-Shear Factor
The longitudinal thickness-shear factor, K55, is determined implicitly

2
by equating @ associated with the lowest non-trivial solution of equation

(E-13) to that given by equation (E-27).
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APPENDIX F
COMPLEX STIFFNESS COEFFICIENTS FOR A LAMINATE HAVING

ALTERNATING PLIES OF TWO DIFFERENT COMPOSITE MATERIALS*
Fl. 1Introduction

The theory presented in Section II can be used to calculate the
stiffness and damping coefficients for an arbitrary laminate, i.e. one
consisting of any number of plies of any thickness, material, and orienta-
tion. However, in many cases of practical importance, laminates are de-
signed to have many plies of two alternating materials. In such cases,
the approximate apbroach used in refs. 29-31 is sufficiently accurate.
Although this approach was originated for application to wave propagation in
an infinite medium, it is applicable also to plates. In the latter con-
figuration, it has been verified experimentally in several instances. By
comparison with static experimental results, Rose and Tshirschnitz (refer-
ence 92) found that it gave good predictions of the in-plane elastic
modulus and‘in—plane shear modulus. Also Achenbach and Zerbe (ref. 32)
found that it gave a frequency versus wavelength relationship for longi-
tudinal vibration of a laminated beam which was in excellent agreement
with experimental results,

In all of the work mentioned above, all of the individual layers were
jsotropic. However, in many cases of increasing importance, at least one

of the sets of layers may be made of composite materials. Some examples

*After completion of this derivation, the work of Chou et al. (Reference 1L49)
came to the attention of the authors. In their work, Chou et al. derived
purely elastic equations which are analogous to the complex ones derived here.
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are as follows:

1. Alternating layers of an isotropic materigl and an orthotropic
material. Examples: armor plate consisting of alternating layers of a
hard ceramic material (iéotropic) and a lossy glass fiber-epoxy matrix
composite (orthotropic); a laminate consisting of alternate layers of high-
modulus orthotropic composite material (such as boron-epoxy or graphite-
epoxy) and low-modulus, high-damping polymer (to increase the damping cap-
acity of the laminate).

2, Alternating layérs of two different orthotropic composite materials.
Example: Boron-epoxy (for high stiffness) and glass-epoxy (for low cost).
The lamination scheme ﬁay be either parallel ply (unidirectional) or cross
ply.

3. Alternating layers of the same composite material and thickness,
but oriented alternately at +8 and -8, where 0 < 8 < §0°. This is the so-
called angle-ply lamination arrangement, which is very popular in a variety
of aerospace structures.

An original derivatién is presented here which is applicable to-
determination of both the stiffness and damping of the above three classes
of laminates. It may be considered to be a generalization of the work of
refs. 29-31; necessarily the resulting equations reduce to theirs in the

case when both materials are isotropic.

F2, Analysis

The bases for the present analysis, as well as that of refs. 29-
31, are the following hypotheses:

1, Strains in the plane of the laminations are equal.
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2, Stresses in the direction normal to lamination planes are equal.
Hypothesis 1 leads to the Voigt upper-bound estimate (reference 93)
of the equivélent macroscopic properties of a two-phase material having
arbitrary geometrical configuration of individual constituents. Except
for the presence of an additional Poisson's ratio effecté term, this is
known also as the "rule of mixtures'. Hypothesis 2 leads to the correspond-
Reuss lower-bound estimate (reference 94), which is almost identical with
the so-called "inverse rule of mixtures".
Here we consider a medium consiséing of répeating alternating
layers denoted by "a" and '"b', as shown in figure F-1. The plane of
the laminations is designated as the xy plane and z is the normal to this
plane. Then the two hypotheses mentioned above éan be stated mathematically

as follows in contracted notation:

-— 3 - -
€j = €j = Gj (J 1’ :6) (F 1)

0, =5, ® =0 (1=3,4,5) (F-2)

where the ej are strain components, the oi are stress components, and
superscripts (a) and (b) refer to layers "a'" and "b". Subscripts 1l and 2
refer to normal strain (or normal stress) in the plane of the layers, 3
refers to thickness-normal effects, 4 and 5 refer to thickness shear, and
6 refers to in-plane shear. This notation is consiétent with that most
widely used in the field of composite-material mechanics (ref. 4) but
differs from the mixed notation used in the body of this report.

As a consequence of the complex, orthotropic version of Hooke's law
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and static equilibrium, equations (F-1) and (F-2) imply the following re-

lations:

(a)

where H and H

respectively.

(b)

(a)

(a)
.

(a) (a)
€,

+ H

(b)

(b)
€

(b)

(b)

(j=1,2,6)

(i=3,4,5)

are the thickness fractions of layers

Thus,

H

(a)

+ H

(®) _

(F-3)

(F-4)

a'" and '"b",

(F-5)

The complex, orthotropic version of Hooke's law, alluded to above,

holds for each type of layer as follows:

( \
o0

(k)
Oy

o}

where the Egg)
1)

are

a (k)
‘11

= (k)
€12

= (k)
Ci3

= (k)
Ci6

= (k)
€2

= (k)
oY)

= (k)
Cy3

= (k)
Co6

é(k)

13

= (k)
Cy3

= (k)
C33

= (k)
36

= (k)
Cuty

é(k)

45

= (k)
Css

= (k)
Css

(k) |
C16

= (k)
Ca6

= (k)
C36

¢ (k)

66

-t

the complex stiffness coefficients,

% (k=a,b)

(F-6)
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( P-l o X ot oY (e
o) ) ‘11 12 €13 13 C16‘T 1 \
At At ] A ~ €2
% g €12 €22 €23 €23 Ca6 (o) g
\ 5 - a(a) -(a) -(a) 0 ' é(a) ﬁ €3 (F-7
3 13 23 €33 736
- (b)
= (b) -(b) -(b) (b)
04 €13 Cy3 0 €33 C3¢
\ y, L. - €
. ¢
where
€iy = gl @ | y®e®) i,j = 11, 12, 16, 22, 26
] lJ : lJ :
= _ 4@ -(a) e e
Cij = H 1j ; i,j =13, 23

&3 =02, iy 213, 23

Combining equations (F-4) and the last two of equations (F-7), we

get the following relations:

(a) [C(b) s - (b )(C(a) ] (b)) (b)(C(a) §§)>e
)(c(gz - égz))e6] [H(a)é§§)+ 1 (@) égg)]'l» (F-8)

(b) [C(a) (a)(c(b) ) C(a)) e, - yla )(C(b) (a))
(a)(C(b) ga) ] e (b) + q’®) égg)]-l (F-9)

Substituting equations (F-8) and (F-9) into the first of equations

(F-7), one is led to the following result:

1 ¥ Claey + Crgeq + Ceeq (F-10)



where

6y O Ok G- e
), = HOED +uPe® g @@ e®) @ ey e
G,y = (69 @ 6D 4 5O w® gDy § (-13)
B, = 1@ ED D g @@ Oy g ®)
&= DD ) 4G Py | (F-15)
i, =L@ i) + @®Edyy! (F-16)

Analogous equations to equations (F-10) - (F-14) can be obtained
readily by interchanging the roles of subscripts 1 and 2.

From the last two of equations (F-7), one gets:

(a) (b) (a) (b) (a) (a) | =(b) (b)
20 3 (C + ¢, e, + (C + )e 33 €, + C33 €3

(a) (b))

+ (C + C (F-17)

Then substituting equations (F-8) and (F-9) into equation (F-17), one

finds the following result:

03 = Cjqe) ¥ Cyg €) + C33 €3 F Cypeq (F-18)

where 613 and 623 are given by equation (F-13) and an analogous equation,

and

c = L (F-19)
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(a) (a) =(a)
[c /853" )

+ c(b)(u(b)/c(b)) 1L (F-20)

Still another set of equations analogous to equations (F-10)-(F-14)

can be obtained by interchanging the roles of subscripts 1 and 6.

As the first step toward determining expressions involving the com-

posite coefficients with subscripts 44, 45, and 55, it is expedient to in-

vert the pertinent equations in set (F-6), thus arriving at the following

expressions:
(k) 500 530 s
€4 Sas Sus 4
= (F-21)
(k) s 50 5
€s S45  Sss 5
where
-(k) _ a(k) - (k) -(k) - = (k) ;= (k)
Sae. = Css /AT S50 = - Cug /b
(F-22)
-(k) _ = k) -(k) _ =(k) (k) (k) 2
Sco = 044/A , A = Caa Cos (c )
Inserting equations (F-21) into equations (F-4), we arrive at the
following expressions:
. - -
€4 | Sas.  Sus %
= . _ (F-23)
€5 S45  Sss Os
where
s (a)g(a) | 4(® 5(b) )
S44 = H 44 + H 44 (F-24)
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There are three expressions, analogous to equation (F;24), which are
obtained by merely substituting subscripts 45 and 55, reépectively,
for subscript 44 in equation (F-24).

We now have derived expressions for all twenty ofvthe laminate
coefficients which appeaf in equation (F-23), above, and in the follow-

ing expression:

(o) G : : c&. 1 (&)
9 Cii %2 G3 G €)
% 1 G2 G2 Gz Gy €
{ > = | . _ _ B RSN =D
Oy €13 C3  C33 Gy €,
g ’ C & é C €
| % | 16 26 36 66 | | %6

The effective density of the laminate is given by the following

expression:

NN O NOBRMONC (F-26)
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APPENDIX G

IDENTIFICATION OF INTEGRAL FORMS

Gl. Trigonometric Integrals

The integral forms for three boundary conditions are tabulated in

the following form, where m,k,n,£ = 1 to 2:

Integral Evaluation for Bohndary Condition Listed
Form Simply Supported Clamped Edges Free Edges
‘1 3 — - — . F—
11 =% s kda % ; m=k#0 ¥ ; m=k#0 3/2 ; m=k#0
mk J umou 0 ; m#k 0 ; m#k 1 ; m#k
! ¥ ; n=l#0 ¥ n=l#0 3/2 ; n=L#0
I1n£ - @unéu{ds .
‘o ’ 0 ; n#L 0 ; n#l 1 ; n#L
el Y ; m=k#0 ' I 1
I2mk = vaévkda ’ 1mk 1mk
Yo 0 : m#k
ot ¥ ; n=L#0 1 1
12 ’ = Qvné LdB ? Inl ind
< v 0 ; n#l
nl
I3mk = Loéumévkda 0 Ilmk Ilmk
r‘ .
I3n{, = oéunq)vl,dB 0 Ilnﬁ IInL
1 . m= . . e
1. = r Qum%kda kn/2: m=k#0 0 ; m=k#0 0 ; m=k#0
"o 0 ; m#k 0 ; m#k 0 ; m#k
ol . an/2 ; a=4L#0 0 ; n=L#0 0 ; n=L#0
I =] & dg
4nt Jo un vl 0 ; n#l 0 ; nil 0 ; it
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Smk

5ni

6mk

Tent,

7mk

7nd.

8mk

IBnL

I9nt

9mk

Integral
Form

1

= '

a J vaQdea
o

1

1
QvnQuLdB
o

i

n

L}

'd
Quméuk @

“

ol

i

$ @ LdB

D un u
[o]

o1

i

1]
J Q\7“\¢de o
(o]

il

$ Q’LdB

o vyn v

o

nl

= | ¢ & do
uo um uk

h].

Il

1)
¢ 8,98

o

i
—
©
=y
o
a
R

1
= [ ar o108
[s)

1

- ' '
IlOmk- J cl)quvde{

(o]
]
T10nt™ Jo°un°vxd3

1

[ $' & do

IllmkE Jo yxm wk

11nt” J wan
o

1
2 9P

Evaluation for Boundary Condition Listed

Simply Supported

kn/2 ; m=k#0
0 ; m#k

nn/2 ; n=L#0
0 ; n#l

0

mkn? /2 ; m=k#0

0 ; m#k

nLnZ/Z ; n=L£#0
0 ; nfl

man/Z‘; n=k#0
0 ; m#k
ndn2/2 ; n=L£0

0 ; n#
0

0

0

¥ ; n=1#0
0 ; n#l

Clamped Edges

Il;mk

Lant

4mk
4nd

4mk

IanL

2mkrr? ;m=k#0

0 ; m#k

ZnLnZ;n=L#O
0 ; n#l

I8mk

IBn&

Tgmk

IBnL

See G2 for
clamped case

See G2

Free Edges

Ihmk

Tant

4mk
4ud,

4mk

IAnL

2mkn2; m=k#0

0 ; m#k

2nl,n2 ; n=L#0
0 ; nfl

I8mk
I

8n’

8mk

8ni
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Evaluation for Boundary condition Listed
Clamped Edges Free Edges 3

Integral
Form Simply Supported
1 3 w=kf0
1 = S § & do 1 1
J2mk 4, W™ K 0 ; mHk 11mk 11mk .
1
Liont = Xo%yn@wzda 0 Ti1nt Tt
1 kr/2 3 m=k#0
1, = X 5. & do See G2 0
13mk o fxm wk o ; mfk
1
= '
Ty3nd S o%andeB 0 see G2 0
I /2 3 WA 113wk Ty 3mk
Ti4mk Q\\rxméwkdd
o 0 ; m#k
1 ,
= $ . :
Lignt, = XOwanédea 0 T13nt Ty3nt
= Slé §' d 0 1 1
Tysmk 4, Wyo vk ¢ 13mk 13wk
1 an/2 n=#0 ,
1 = x s 3,48 Tas 1
15nd, o yyn wh 0 3 nit 13nt 130l
1
- [
Tiemk X o%ym"wkd" 0 T4 3mk L} 3mk
1 an/2 n=1#0
1 = S ' & a8 1 1
16nl o yyn wi o 3 n#l 13nl. | 130k
‘ 1 x5 n=k#0 % s m=k#0
i = X » &  do 1
17mk o wm WK o 3 nhk ‘ 0 ; wik
1 Lo n=470 L n=L#0
oy = ] Bantet® | 1 N
17l own wh 0 ol 0 n#l
= ! do : 0
Ligmk Xo'wméwk o 0 0
0 0

A

Il%nL o W :
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Integral
Form
1
- [}
T omk © .o°wm¢wkd“
I19n£ = oéanWLdB
= ' '
Lomk = .oéwméwkda
= [ ' ]
I20nl, - .onanLdB
1
I21mk = .OQmeékada
1
Lotnt © .OwanéwadB
1
To2mk = Jogwmewykd“
1
Toont = fo°¢yn§¢ycd8
1
Lo3mk = Jo§¢xm°wykd“
1
Ly3ng = IOmen°¢yLdB
1
I24mk = J;¢¢xm§¢ykda
1
= ?
Lotnt = .OéwxnéwyLdB
[ ]
L) 5mk = o@wmekada
ol '
IZSnL = .oéwynéwadB

Evaluation for Boundary Condition Listed

Simply quported

0

0

mkr /2 ; m=k#0

0 ; m#k
ndn2/2 ;n=t40

0 ; n#t

% ; m=k#0

0 ; m#k

¥ . n=t#0

0 ; n#l

% 5 m=k#0

0 ; m#k

¥ ; n=L#0

0 ; n#t

0

0

kn/2 ; m=k#0
0 ; m#k

nan/2 ; n=L4£0
0 ; n#t

kn/2 ; m=k#0
0 ; m#k

nn/2 ; n=L#0
0 ; n#t

Clamped Edges

I 8mk

I18n{,
CmZm(CmZm-Z)

C,2 (C 2 -2)

lmk

1nd
lmk
Ind
lmk
1nd
4mk
4nl
4mk

4nd,

Free Edges

I18mk

Ti8nt
2
mkn” /2 ; m=k#0

0 ; mfk
ndnl /2 ; n=4#0
0 ; n#l

1mk

1nt

lmk

Ind
lmk
ind.
4mk
4nd
4mk

4nd
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Integral
Form

ol

1

L9 6mk

~

Lyent uo§$XDQWXLdB

it

1
1
12 7mk ~O¢Wyméwykda

1]

it

1
JOQWynQWy{dB

o1

I28mk - oéwmeWXkda

Iy7nt

€.

1
L 1)
Tognt .oéwxnéwx&ds

]

3

' &' d

T29mk = J Fyym” yyk™®
. rl
= o3 dp
Toont ~0°wyn'vy£ P
= B! 'od
-I3Omk uo‘meéwyk @
A1
= ' d
I30nL ,OQWxn Vyd 8
I31mk = OQmeéukdd
51
Daint = 0 Py tut?®
<1
= 3 ¢  do

'IBka (6 um - xk

I32nt foéunQWXLdB

t
.oéwxmékada'

o

Evaluation for Boundary Condition Listed

Simply Supported

0

mkﬁ2/2; m=k#0

0 ; m#k
nlr /2 ; n=l#0

0 ; n#
mkn?/2; m=k#0

0 ; m#k
ndn2/2; n=L#0

0 ; n#l

"% . m=k#0

0 ; m#k
L ; n=L#0

o

; n#L
; m=k#0

; m#k
; n=L40

e O

0 ; n#t

Clamped Edges

4nd,

4mk

4nd,

8mk

8al.

8mk

8nl

8mk

8nd.

1mk

ind

Imk

Ind

4mki

Free Edges

4mk

4nd,

4mk

4nd

8mk

8nt

8mk

8nd

I 8mk

8nl

1mk

Ind

1mk

Int
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Integral

Form
N
—_ '
T33mk ~ .o%xm‘pukd“
ol
= vt § d
133nL ~0men ud B
= \ ' 4
134mk uo%xm uk" &
= [ $' d
I34nt -Oéllrxn ul B
"1
= d
I3 5mk ..o%ym@uk ¥
I35nL = yoéwyn@uLdB
n].
= ' d
I36mk uOQWYmQUk @
= [ d
I36nt ,Lo%yn‘;u 8
= [ ' d
I37mk ~0¢wym uk o
~1
= td
I37nL( JééwynQuL B
'\1
I38mk = uoéwxm@vkd0
ol
= . % d
I38n£ n OQWXH vl 8
= ! d
I39mk Joéwxmévk o

Evaluation for Boundary Condition Listed

Simply Supported

0

kr/2; m=k#0

0 ; m#k
nn/2 ; n=L#0

0 ; n#¥l
kn/2 ; m=k#0

0 ; m#k
nn/2 ; n=l#0

0 ; n#l

kr/2 ; m=k#0

0 ; m#k

Clamped Edges

4mk

4nl.

4mk

4nd

1mk

lnd

4mk

4nd,

4mk

4nd,

lmk

Ind

4mk

Free Edges
“hmk
4nd,
4mk
4ni
1mk
lnL.
4mk
4nl
4mk
4nt
lmk
Ind

Lmk
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Integral
Form

1
— t
I3gne = Joéwxnév& B

L40mk
Thont
Lh1mk
ATY)

Lomk

Thont,
L 43mi
L43nt
I44mk
Litne,
I55mk

Tssns,

Is6mk

i

]

1]

11}

1]

I}

i

d

1
]
Joéwxmévkda

1
$ LdB

&
I ixn v

uoéwymévkda

1

loé\jjynévl,dB

1
f $' & da
o Yym vk
1
1
IOQWynQVLdB

]
Joémym@vkda

L]
I wanédeB
o)
A1
] )
J éwxméukda
o ©
1

~ , @.
J QWXn uLdB
o

1
~OQWYm@u do

[ &' %' dB
L

Yy Yyn uf

.1

] 1 d
uOQmeévk o

Evaluation for Boundary Condition Listed

Simply Supported

on/2 ; n=L#0
0 ; n#t

kn/2 ; m=k#0
0 ; m#k

nn/2 ; n=1#0
0 ; n#l

% ; m=k#0

0 ; m#k

L ; n=L#0

0 ; n#l

0

0

0

0

mkﬂ2/2; m=k#0

0

;. m#k

ndm2 /2 ; n=L#0

0

; n#d,

Clamped Edges

Lint

4mk
4nd
1mk

Inl

4mk

4nd,
4mk

4nd.-

8mk

8nf.

8mk

8n/.

8mk

Free Edges

I4n&

4mk
4nd,
1mk

1nf

4mk

4nd,
4mk

4nt

8mk

8ni

8mk

8nt

8mk
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Integral Evaluation for Boundary Condition Listed

Form .
Simply Supported Clamped Edges Free Edges
J‘l 1] 1
Tsent = oq)\bxn@v&ds 0 Tgnt Tgns,
[1 mkﬂ2/2 ; m=k#0
I = | & @' da ' 1 I
J - 8mk 8mk
57mk ’ o Yym vk 0 ; mik | m .
1 ntn2/2 ; n=L#0
1, =] 8 o dp g Ignt
57nt o Yyn vi 0 ; n#l nd nd.

G2. Combination Trigonometric-Beam Type Integrals

, and 1

These integrals are related to 1 130l for

llmk’IllnL’Il3mk
clamped and free edges of the plate mentioned in Appendix Gl. Therefore,

these integrals were evaluated and are listed below:

All Edges Clamped.

1
I 11mk = J‘oq’\yxmtbwkda

= 21 7 {Zk sinh Zk sin2mmn-2mmn cosh Zk cos 2mm + Zmﬁ}
(Zk) + (2mm)
+ {cos[Zmn + Zy ]-1 + cos[2mm - Zy]-1
2[2mm + 2, ] 2[2mm - 2]
k k
Ck \
- 5 2 {Zk cosh Zk sin 2mn - 2mm sinh Zk cos ijj
(Zk) +(2mn)
sin[Zmn-Zk] sinl 2mm + Zk]
+ Cy 2(2mm - Zk] B 2 2mn + Zk] J
Illn{ is analogous to Illmk with the following substitutions:
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mesn , kest , oe>B

i

1 Z ,
I = f ¢ &' doa = k {Z cosh Z sin 2mm
13 “
mk B yxm wk (Zk)Z + (2mn)2 k k

» , . sin[2mm + 2 ]
) . , {S1n[2mﬁ - 2l k
mn sinh Z, cos 2mrr [+, 2[2mm - 2z 2[2mm + Zk]

Zk Ck ( .
- )2 1zk sinh Zk sin 2mm - 2mm cosh 2

2
(Zk) + (Z?ﬂ

K cos 2mm + Zmﬁ}

cos[2mm + Z ]-1 cos{2mm - Z 7J-1
-z, ¢ { k— + k }
k "k 2 2mn + z;I 2[2mm - zk]

is analogous to I with the following substitutions:

L 3n2 13mk

mesn , k ! | o8
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APPENDIX H

EVALUATION OF EXPERIMENTAL METHODS USED TO DETERMINE MATERIAL

DAMPING IN COMPOSITE MATERIALS

Hl. Specimens and Experimental Techniques ,

The following experimental techniques and specimen types have been
used to determine material damping by experimental means (references

48, 79):

1. Decay of free vibration:
a, Torsional pendulum
, %*
b. Axially vibrating bar (reference 95)
¢. Beam
*
(1) Free-free (reference 96).
*
(2) Cantilever (references 97, 98)
2. Resonant response:
%
a. Torsional (reference 99)
b. Axial
-¢. Beam
*
(1) Free-free (references 99, 100)

*
(2) Cantilever (references 101-104)

* .
Apparently only these methods have been applied to measurement of damping

in composite materials; each is discussed briefly in succeeding paragraphs.
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d. Cubic block

e. Plate* (reference 13)

£. Shell* (reference 105)

3. Rotating-beam defléction* (reference 106)

4, Composite oscillator

5. Ultrasonic methods

6. Thermal methods

Pottinger (;eference 95) measured the temporal decay of axial vibrations
-of bars (Type lb, above) of glass fiber-epoxy and boron fiber-aluminum com-
posites in the’frequency range of 1 kHz to 100 kHz,

Among the earliest uses of free vibration to determine the logarithmic
decrement of a composite material were the free-free beam experiments re-
ported by Bert et al. (reference 96). The specimens were sandwichlbeamswith
glass-epoxy fécings and hexagonal-cell honeycomb cores éf gither aluminum or
glass-phenolic. Good correlation was obtained bepwéen the measured values
of 8§ and those predicted by an energy analysis of a Timoshenko beam, which
includes thickness-shear flexibility and rotatory inertia. However, the
complexity of the analysiépreventsexglicit determinatioﬁ of the 8's of the
facings and core.

Later Schultz and Tsai (references 97, 98) used free flexural vibration
of very thin cantilever beams to determine § for glass-epoxy in two con-
figurations: (1) unidirectional with the fibers at an arbitrary orientation
© with respect to the longitudinal axis of the beam, and (2) symmetrically
laminated quasi-isotropic layups (layer orientations of Oo, -600, 600,
-60°, 0° and of 0°, 90°, 45°, -45°, -45°, 45°, 90°, 0°). 1In the 0 # o°;
90° case, the coupling between bending and twisting significantly in-

validated the simple flexural theory used in the data reduction.
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Adams et al. (reference 99) used torsional and flexural resonant
response to determine the damping of glass fiber-epoxy and carbon
fiber-epoxy. The magnetic-coil driver was located at the one end
of the test bar to excite torsion, Type 2a, and at the center to
excite flexure,Type 2¢(1l). Similar tests were conducted by Wells
et al, (reference 100) on graphite-epoxy.

Cantilever beams, Type 2c(2), were used by Keer and Lazan (reference
101) , Gustafson et al. (referencé 102) , Mazza et al. (reference 103),
and Tauchert and Moon (reference 104). It is noted that Keer and Lazan
used sandwich-type beams with glass reinforced plastic facings and core,
and determined the resonant energy dissipated per cycle as the measure
of damping, and found it to be proportional apprqximately to the square
of the stress amplitude, i.e. Kimball-Lovell behavior (see Appendix B).

Clary (ref. 13) conducted resonant response tests on long free-edge
plates (Type 2e) made of unidirectional boron fiber-epoxy. He used
the modified Kennedy-Pancu method of data reduction, and studied the
effect of fiber orientation. The analyticél results of the preseng
study are compared with his experimental results in Section 5.3.

Bert and Ray (reference 105) carried out resonant response measure-
ments on a free-edge, circular, truncated conical shell (Type 2f) with
an aluminum honeycomb core and glass fiber-epoxy facings, They used
the original Kennedy-Pancu data reduction method.

Richter (reference 106) used the rotating-beam deflection technique
(Type 3) to determine the damping characteristics of glass fiber-epoxy
at low frequency (0.0l to 1.67 Hz).

It is apparent that the most popular techniques that have been used
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in connection with measurement of composite-material damping are the
free-vibration decay and resonant-response methods. Differencés in re-
sults obtained by these two methods have been studied analytically by Parke
(reference 73), using a standard linear solid, and by Heller and Nederveen

(reference 107), using a generalized Maxwell model.

H2, Excitation and Data-Reduction Techniques for Modal Resonant

Response of Complicated Structures

The experimental and data-reduction techniques for determining damping
from free-vibration decay are rather straight forward. 1In contrast, a
great variety of techniques are in use for modal response at resonance,
especially in regard to data reduction,

One‘approach is to use multiple shakers located at various locations
on the structure and having controlled force amplitudes and phase re-
lationships. This apprbach was origated by Lewis and Wrisley (reference
108) and has beén used and extended by Fraeijs de Veubeke (reference 109),
Asher (references 110,111),Traill-Nash et al (references 112,113), Hawkins
et al (references 114,1i5),and de Vries (reference 116), The major dis-
advantage of this approach is the compiexity and expense, in time and cost,
of installing multiple shakers.

Another approach is to use a single excitation, even when thé structure
is complicated. 1In conjunction with this method, there are a variety of
resonance-determination methods; these are discussed in the paragraphs which
"follow. Comparative critical evaluations of a number of these methods
have been presented by Bishop and Gladwell (reference 117), Pendered and

Bishop (reference 41), and Pendered (reference 118).
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Peak-Amplitude Method. - In this simple, classical method, resonance

is defined very simply to occur when the amplitude response reaches a
peak. The major disadvantage of this method is thét it is limited to
lightly damped systems without closely spaced frequencies. The reason for
this is that both of two closely-spaced-frequency modes may contribute to
the amplitude at an intermediate frequency resulting in an indication of
only one mode (a pseudo mode, of course), In an analytical study of a
typical system with two natural frequencies, closely spaced, Turner
(reference 119) showed that the peak-amplitude method results in a 130%
error in determination of the resonant amplitude.

In general, there is no direct means of determining the modal damp-
ing, i.e. the magnitude of damping associated with varibus vibrational
modes, However, it can be determined from the response at the anti-
resonant frequencies, using the equations derived by Brann et al (refer-
ence 120).'Also, for the special case of a base-excited system, the ratio
of the tip-to-base amplitude to the base amplitude is related to the
damping, as was shown in references 121,122.

Peak-Quadrature-Component Method. - This method was originated by

Stahle and Forlifer (reference 123) in 1958. In this method, resonance is
defined to occur when the quadrature component (90° out of phase with the
excitation) of the response peaks in either a positive or negative dir-
ection. Damping is determined from the in—phase-compohent peaks which
occur at a frequency below resonance and another frequency above re-
sonance. Applications of the method are discussed in references 124-126.

Quadrature-Response Method. - In this method, resonance is defined to

occur when the in-phase component of the response vanishes. The errors

associated with this method have been discussed by Pendered (ref. 118).
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Kennedy-Pancu Method and Its Modifications. - This method was origin-

ated by Kennedy and Pancu (reference 87) in 1947. 1Its basis is the geo-
metry of the theoretical Argand diagram for a single-degree-of-freedom
damped system, which is a circle (see figure H-1). The data-reduction
procedure is to fair a circle through an Argand diagram obtained from
experimental data corresponding to a range of frequencies. The tacit
assumptions inherent in the method are:

1. The system is a lightly damped, linear system,

2. 1In the vicinity of a particular resonance, the extraneous con-
tributions from the off-resonant modes are either negligible or invariant
with respect to frequency.

3. There is no damping between the normal modes, i.e. the inertia,
damping and stiffness matrices are all diagonal.

Advantages of the method are:

1. It permits resonant frequencies, modal amplitudes, and modal
damping values all to be determined from the Argand plot.

2. It has been demonstrated on a comparative basis that the KP
(Kennedy-Pancu) has better capability in separating closely spaced re-
sonant frequencies.

In the KP method, two ways to determine the resonant frequencies are
possible. One way is to use the frequency associated with the point (on
the faired-in circle) which is most distant from the real axis. The other
way is to use the maximum frequency spacing technique, in which resonance
is defined to occur when the rate of change of the arc length (of the
Argand plot) with respect to frequency attains a local maximum.

In fhe original Kennedy-Pancu method, the damping ratio was determined

from the half-power points, which are two ends of the diameter (of the
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Argand circle) which is parallel to the real axis. See equation (B-56).
Pendered and Bishop (reference 88) introduced an improved method, based
upon the change in phase with respect to frequency,.evaluated at re-
sonance. See equation‘(B469).

Gladwell (reference 127) proposed a method of determining the true
response peaks and their associated damﬁing ratios, using three points
on the frequency-respogsg curve. However, Pendered and Bishop (ref. 88)
showed that variations of the two side-points caused changes of 135%
in the damping coefficient of the system that they investigated.

Keller (reference 128). Smart (reference 129), and Pallett (reference
130), discussed.improvements in instrumentation used in conjunction with
the KP method. 1In his analytical investigation §f a typical two-degree-
of freedom system with closely spaced»natural frequencies, Turner (ref.
119) indicated a 26% error in resonant amplitude determination, which is
a considerable iﬁprovement over the 130% error for the peak-amplitude
method. The modal-shape-determination aspects of the KP method were
discussed in reference 131.

The KP method has been applied successfully to a great variety of
vibrating systems, including:

i, Aircraft ground and flight testing (ref. 87)

2. Beam-type structures (ref. 88)

3. Two-degree-of-freedom system (ref. 120)

4. Liquid-propellant launch-vehicle axial vibration (refs. 132,133)

5. Unstiffened,stfinger-stiffened, and ring-stiffened sandwich cylin-

drical shells( refs. 103,130,134,135),

6. Sandwich conical shell with composite-material facings (refs. 102-104)

115



7. Composite-material piates (ref. 13).

The last three categories listed above are particularly useful ap-
plications of the mode-separating capability of the KP method, since they
often have numerous closely spaced natural frequencies. Pendered and Bishop
(reference 136) used the KP method in connection with determination of the
dynamic characteristics of a sub-system from resonance test results on
a complete system consisting of two sub-systems.

Woodcock (referencel37) extended the KP method by providing for any
arbitrary amount of damping of the classical viscous type and by
making no assumptions about the form of the damping, stiffness, and in-
ertia matrices. However, as pointed out by Nissim (reference 138), it
is necessary that the inertia matrix be known & _priori in order to deter-
mine experimentally the complete dynamic description of the system. (It
is noted here that the inertia matrix could be determined experimentally,
at the cost of additional tests, by the displAced-frequency method, refer-
ence 139). Nissim went on to present a set éf data-reduction equations
with which the disadvantéges of ref. 138 are eliminated. It should be
pointed out that apparently no actual applications of the methods of

refs. 137 and 138 have been documented so far.

H3. New Equations for Applying Two Different Versions of the Kennedy-

Pancu Method to Two More Realistic Classes of Solids

From linear vibration theory, it is well known that the largest value
of the damping ratio { for which free vibrations can occur is g=gcr=1;
at higher values of 7, the motion is nonperiodic. For a standard linear

solid, Zener (reference 140) showed that the critical loss tangent is 530,

which corresponds to approximately 1.183 for Bop* (This compares with a
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value of 2.00 fpr Ber of a Kelvin-Voigt or Kimball-Lovell solid, since
equation (B-65) is assumed to hold for such materials). Parks (ref.
73 showed the error resulting from the use of equation (B-75) for a
standard linear solid.

As mentioned previously in the preceding section, in applying
the Kennedy-Pancu method, it is tacitly assumed that the inertia, damping
and stiffness matrices are all diagonal. Although this assumption may be
satisfied in the case’of a simple structure méde of one material, it is
certainly not justified in the case of a laminated‘composite-material
structure. However, if the damping is sufficiently small that it does
not affect the modal shapes (although, of course, it affects the modal
amplitudes) and the intermodal damping coupling is negligible, then the
KP method should still be sufficiently accurate to justify its use
for engineering purposes.

It was mentioned in Section B3 that, in order for two half;power
points to exist for a Kimball-Lovell material, the damping ratio
must be less than /2/2. However, when the damping is greater than this
value, one half-power point (denoted as wz) still exists. Thus, the
method can be modified to accommodate this by using equation (B-55) re-

written as follows:

¢ = WD [w,/w)® - 1] JECEY

Just as the modification of the original KP method as described above,
equation (H-1), permits its use regardless of the amount of damping, other
appropriate equations can be derived to extend the use of the method to

linear systems composed of materials represented by other damping models.
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Here we present original equations for two cases: the standard linear
solid (or first-degree hereditary mode 1) and the Biot model. Since
these models contain two parameters rather than one as in the cases of
viscous and Kimball-Lovell damping, more experimental data will be

necessary, of course.

Standard Linear Solid (or First-Degree Hereditary Model). -

Volterra (ref. 83) presented an analysis of the sinusoidally forced
vibration of a éingle-dégree-of-freedom system exhibiting first-de-
gree hereditary damping, which is equivalent to a standard linear
solid. The equation of motion can be written in the present notation

as follows:

t :
mid + ku + h f e 148" [qu (1) /dt)dT = F sin wt (H-2)
’ o
or
dﬁ-ﬁylmﬁ +(k+h) U +a1ku = Fo(w cos wt + qlsin wt) (H-3)
The steady-state-response solution of equation (H-3) is of the
form:
u=u sin (wt - rp) (H-4)
where
_ [r.2 2 2 2 2 2 442 2 1211/2
u, = (Fo/no L[a W= (o) ~H -y -w ] +[alﬂ w) ]

: {ai_(wi - w2)2 + (w W H2)2 } -1 (H-5)

2 2 2, 2 4 -1 }
-H - ) w

2 2 2
¢ = arctan {qlﬂ @ [al w (al

(H-6)
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. H = h/m wi = k/m .

Equation (H-5) can be written in dimensionless form as follows:

A& a-d? i) @-7)

where

- = { ﬁ =
o CYl/nun ’ H/wn

At resonance defined by w = mn (0=1), the resonant magnification

factor is:

1 2
RMF = { 1+ (&) ] 25 (H-8)
At the half-power points
HPMF = RMF//2 (H-9)

{

Combining equations (H-7, H-8, H-9), we obtain the following

result:

- -2 2.2, .2 =22 z 2 w2 22 2
K {o (I-th) + nhp(n -1-85)" 1=y - (a"-H —I)th

2 2
a, (1-10)

4 42 ~=2
~th] + (o)

where

= [1+a 1)2) @ &%t
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Unfortunately, equation (H-10) is quartic in Qﬁp and thus is very
unwieldy for practical use.

To develop equations for the Pendered improvement of the KP method
for a standard linear solid, we diffrentiate équation (H-6) with re-
spect to time, obtaining the following result:

22

dep/dw = ¢ h” w {[azwz

IR e Mg PR T )

At resonance defined by W= and denoted by subscript R, we can

~ simplify equation (H-11) as follows:

(dco/dw)R = {[1 + (wn/a)z]wn }-1

or

o= w {[wn(dm/dw)R]-l -1 }-1/2 (H-12)

It is interesting to note that at resonance, the parameter h drops
out, so that o can be determined directly from equation (H-iZ). To
determine h, it is necessary to measure d®/dw at some other frequency
(say mi) and then use equation (H-11), with o known from equation (H-12).
The second frequency w' should not be too close to w to avoid inaccuracy.
However, it should not be toco far from W that the MF has dropped down to
such a low value that signal-to-noise-ratio difficulties develop.

Biot Solid. - Caughey (ref. 60) presented an analysis of the sin-
usoidally forced vibration of a single-degree-of-freedom system with

Biot damping. In the present notation, the equation of motion is:
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. t .
ma + ku -glk f Ei [-¢(t-1)] (du/d7) dT =TF sin wt (H-13)
o

where gland ¢ are parameters of the model.
The steady-state-response solution of equation (H-13) is of the

same form as equation (H-4), where here

o o= (l:/k) [1+g 4n J1+(Q/M)2 _02]24_[ arctan(.()/u)]zl'%
Bl g )

H-14)

¢ = arctan (n/2)g1[1+(g1/2)&n (1h) - Qz] -1 (H-15)

where

mn

n u)/wn y WOE e/u»'n .

EqUation (H-14) may be rewritten in terms of the magnification

factor as follows:

( —_— 2 -
MF = i[1+glln‘/1+(QAJ)2 - 92] + Lglarctan (QAJ)]Z} 1/2.(H-16)

At resonance defined by w = w (i.e. D = 1), the resonant magnifi-

cation factor is:

[RMF = ¢3! [V 127 + (arctan w™H?)71/2

(4-17)

It is noted that the RMF defined in this way is not the peak MF, but it
is very close to it in practical systems. Also, t 1is emphasized that
the RMF is a function of both parameters, g and 4. Thus, data from some

other frequency is required. At the half-power points (subscript hp)
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defined by HPMF = RMF//2 , the following relation must hold:

[1+g1Ln\/1+(thAJ)2 - QEP]Z + [glarctan (thAJ)JZ = 2/(RMF)2J

®-18)

Using the necessary experimental data, equations (H-17) and
(H-18) can be used to determine the Biot material parameters g and
M.

To derive Pendered type KP relations, we take the derivative of

equation (H-15) with respect to time, with the following result:

- 1
dop/dw = ~(mg;0/w ) {[1-0"4 (g, /2)4n 12 . (ﬂ/Z)Zgi} (H-19)

At resonance defined by Q@ = 1 and denoted by subscript R, we

can simplify equation (H-19) to the following result:

(do/dw) = ~(4/g,w) [+t aau™HATH] (a-20)

Since equation (H-20) contains both parameters (gland u), it is
necessary to measure d¢{/du at some other frequency (say Q') and then

use equations (H-19) and (H-20) to solve for the two parameters.
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APPENDIX I

DISCUSSiON ON SYMMETRY OF THE ARRAY

OF CONSTITUTIVE COEFFICIENTS

In the analyses made in the body of this report, we have assumed
that the arrays.of both the elastic coefficients and the damping coef-
ficients are symmetric, i.e.

U = U

Uk = Ut

In the present appendix, we discuss both classical and modern think-
ing,as well as experimental results which are pertinent to this topic -
of symmetry of the constitutive-coefficient arrays. In recent years, the
validity of the symmetry hypothesis has been questioned for a wide
variety of materials such as soil, geological formations, laminated wood,
fabrics subjected to membrane loads, and certain composite materials

(references 141-144) .,
I1, Elastic Coefficients

More than a century ago, there was considerable controversy regarding .
the symmetry of the stiffness matrix (or the compliance matrix) of a
perfectly elastic material, About a century ago, the argument was supposedly

resolved by the brilliant mathematical analysis due to George Green and
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the experimental work of Woldemar Voigt; see reference 145. Although
Green's analysis was purely mathematical, its importance to modern energy
methods of static and dynamic stress analysis was recognized by Love
(reference 146) , who stated that symmetry of the elastic coéfficient array
is a necessary condition for the existedce of the strain energy fuﬁction.
Voigt verified ;hat s?mmetry did hold, within experimental accuracy, for
the wide variety of single crystals which he investigated. Thus, this
hypothésis became well established in anisotropic elasticity theory and
it was tacitly assumed to hold for all materials.

Incidentally symmetry of the compliance matrix array requires that
‘the following so-called reciprocal relationship must hold among four of
the engineering elastic properties:

va/EL = \)H_/E:k (k,4=1,2,3; no sum) (I-1)
where the E's are Young's moduli and the v's are-Poisson's ratios.

Recently Alley and Faison (ref. 143) clearly deﬁonstrated.experimentally
that equation (I-1) does not hold for fabrics subjected to biaxial load-
ings. They attribﬁted this result to fiber friction, which is a noncon-
servative process. Table III lists some filamentary-composite-material
test values for which eq. (I-1) does not hold. The viscosity of the epoxy
matrix may have been the nonconservative process operative in the case
of the glass-epoxy and boron-epoxy composites; see Section I2 of this
Appendix. Also, the glass waé in fabric form, so fabric friction could
have played a part. Furthermore, in the case of the boron-epoxy composite,

the minor Poisson's ratio is so very small that it is difficult to measure
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with a high degree of confidence and experimental scatter effects become
highly magnified. However, none of these explanat;ons account for the
case of graphite-graphite‘composite. It does not creep at the test
temperature (room temperature); the fibers were filament wound, not

in fabric form; and the minor Poisson's ratio is large enough to be
measured accurately (especially since strain-gage transverse sensitivity
was provided for in the data reduction). Thus, so far, there has not

been a satisfaétory explanation for this anomaly.
12. Viscoelastic Material

For viscoelastic materials which are homogeneous and anisotropic
on a macroscopic basis, Rogers and Pipkin (ref. 141) claimed that there
are no thermodynamic bases which require symmetry of the array of con-
stitutive coefficients. Thus, they indicated that for such materials,
Symmetry can be‘established by experiment only. For composite materials
having a viscoelastic (epoxy resin) matrix, some experimental data
suggest that symmetry may not hold in the case of reinforcement by
glass fibers and boron fibers (see table III). However, other experi-
mental data on a viscoelastic composite (nylon-fiber-reinforced rubber)
suggest that symmetry does hold.

In view of the lack of a definite proof regarding symmetry of a
viscoelastic material, symmetry is assumed to hold in the present in-

vestigation (see hypothesis H6, Section 2.1).
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APPENDIX J
COMPUTER PROGRAM DOCUMENTATION

The program described in this appendix was programmed to ac-
complish the following three computations:

1. Calculate the shear factor K for laminates, using Jourawski

static shear theory.

2. Calculate the lowest eigenvalue for a simply supported laminated
plate without damping.

3. Calculate the amplitude frequency response and modified
Kennedy-Pancu frequency response and damping data for a free-
edgé anisotropic plate with material damping.

Computation 1 was accomplished by using an explicit algebraic expression.
Computation 2 was performed by using IBM System/360 Scientific Subroutine
Packages NROOT and EIGEN. Computation 3 was performed by Package SMIQ.

-A complete description of the variables, operations, etc, may be found in
IBM Manual 360A-CM-03X, version III, for the subroutines NROOT, EIGEN and
SMIQ. |

The program was wriften in FORTRAN IV language as prescribed in IBM
System Reference Libréry Form C-28-6274-3,

The input-data deck was set up a; follows:

Computation 1 -
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(a) Thickness of each layer (lower and upper limit)

(b) Elasfic and shear moduli

Computation 2 -

(a) Plate geometry

, '

(b) Lamination geometry (specially orthotropic)

(¢) Moduli and Poisson's ratio data for each ply

(d) Density for each ply

(e) Shear factor (as calculafed in Computation 1)

Computation 3 -

(a) Young's and shear moduli for each layer

(b) Poisson's ratios for each layer

(c) Bending and twisting stiffnesses for each layer

(d) Loss tangents corresponding to moduli, Poisson's ratios, and
stiffonesses for each layer

(e) Plate geometry

(f) Lamination geometry, including angle of orientation for each
layer

(g) Density of each layer

(h) Shear factor (as calculated in Computation 1)

(i) Mode numbers of the assumed modes.

A complete listing of the computer program is presented at the end

of this report.
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Figure 1,

Composite containing undirectional fibers.
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LINES REPRESENTING
- MAJOR MATERIAL- SYMMETRY
AXES (FIBER DIRECTIONS)

OF THE INDIVIDUAL PLIES

Figure 3. An example of a balanced laminate.
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Figure 4. Plate coordinate system,
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Figure 5. Lamination geometry, showing upper half of plate. '(Plane Xy
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Figure 8. Area of integration Ao.
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Figurel2. Rectangular plate with simply supported
edges.
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Figuré 13. Lowest Eigenvalue (aA) for homogeneous, isotropic
plate.
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Figure 14.
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Figure 1€. Nodal patterns of the first five modes of composite

material plates at angle of orientation 6 =10R
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material plates at angle of orientation v = 370
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Figure A-1. Shingle-laminated plate.
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MAJOR MATERIAL-
SYMMETRY AXIS

Figure A-2. Major Material-Symmetry Axis Direction.

172



(a) (b)
MAXWELL KELVIN-VOIGT

(¢) (d)
‘ THREE-PARAMETER MODELS
(STANDARD LINEAR SOLID)

Figure B-1. Two-and three-parameter viscoelastic models.
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Figure B-2, Many-element viscoelastic models.
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(b) POINTED-END,STRAIGHT-SIDED HYSTERESIS LOOP

Figure B-3., Hysteresis-loop shapes.
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SOME DAMPING

MORE DAMPING

MAGNIFICATION FACTOR —»

FREQUENCY ——=

Figure B-4. Effect of damping on magnification factor.
(Not drawn to scale).
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RESPONSE ———
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FREQUENCY,w ————=

Figure B-5. Effect of damping on half-power-point frequency
separation (wp-w]). (Not drawn to scale).
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Figure B-7. Exponential decay. (Not drawn to scale).
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