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FOREWORD

This contract resulted from a desire to provide experimental
data for comparison with analytical results on wave propagation in
shells. Valuable advice and discussions on this problem were held
with several colleagues at NASA/Langley, Lockheed (Palo Alto), and

at TRW Systems.
A special note of thanks is due R. N. Schreiner, who helped

reduce the fringe data, and J. E. Wright, who solved many of the
design problems which arose during this study.
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HOLOGRAPHIC MEASUREMENT OF WAVE
PROPAGATION IN AXT-SYMMETRIC SHELLS

David A. Evensen
Robert Aprahamian
Jerold L. Jacoby

TRW Systems Group

SUMMARY

Holography is a lensless imaging technique which allows the
reconstruction of three dimensional images. A related technique,
called holographic interferometry, allows one to measure static or
dynamic displacement on the order of a wavelength of light. The
present report deals with the use of pulsed, double-exposure holographic
interferometry to record the propagation of transverse waves in thin-

walled axi-symmetric shells.
The report is subdivided into sections dealing with

(1) Wave propagation in circular cylindrical shells

(ii) Wave propagation past cut-outs and stiffeners

and
(iii) Wave propagation in conical shells

Several interferograms are presented herein which show the waves
reflecting from the shell boundaries, from cut-outs, and from stiffening
rings. The initial response of the shell was nearly axi-symmetric
in all cases, but non—-symmetric modes soon appeared in the radial response
(i.e., w~ v + w ocosn 8). This result suggests that the axi-symmetric

response of the shell may be dynamically unstable, and thus may
preferentially excite certain circumferential harmonics through

parametric excitation.

Attempts were made throughout this study to correlate the
experimental data with analysis. For the most part, good agreement
between theory and experiment was obtained. Occasional differences
were attributed primarily to simplifying assumptions used in the analysis.
As faster and more economical computer analyses of wave propagation
become available, it is hoped that the experimental data given herein
will serve to verify computer solutions.

From the standpoint of engineering applications, it is clear that
pulsed laser holography can be used to obtain quantitative engineering
data. Areas of dynamic stress concentration, stress concentration
factors, local anomalies, etc., can be readily determined by holography.



1.0 INTRODUCTION

Wave-propagation in thin walled shells is of interest in many
areas of applied mechanics. For example, pyrotechmic shock loading
in launch vehicles causes waves to propagate along the length of the
structure. Other practical areas of application include waves interacting

with cut-outs and stiffeners in re-entry vehicles, spacecraft, etc.

From an analytical standpoint, the problem of calculating the
shell response is very difficult (unless simplifying assumptions are
made). For example, one common approximation is to assume the response
is axi-symmetric. This assumption can then be verified by experiment,
if necessary. Another common assumption is to neglect rotary inertia
and transverse shear effects in the analysis. Again, this approximation
can be checked (by using an improved theory) or by experiments.

The primary objective of the present study is to provide
experimental data for comparison with analysis. Since the experiments
involve the use of holography (Refs. 1 -8), the reader who is unfamiliar
with the method may wish to look up either the texts or reports
referenced herein. It is safe to say that by now holography is a
widely—accepted measuring technique. Pulsed laser holography has been
used in previous studies of wave propagation (Refs. 7, 8) in
structures, as well as measuring shock waves in gases and solids.

Regarding wave propagation in shells, it is worth noting that
most of the analyses are (1) linear and (2) restricted to shells of
revolution. A further simplification that is ordinarily introduced
in the calculations is to ignore all variations in 6, the circumferential
co—-ordinate. Only recently have non-axisymmetric computer analyses
become available. Thus, one objective of this study was to provide
non-symmetric data (showing waves passing a cut-out, etc.) to compare
with computer simulations.

The tests were done on two aluminum cylinders, with a nominal
radius a = 5", and the thickness of h = .106, and h = .25 inches,
respectively., The experimental results suggest, that the axi-symmetric
response may not be stable. That is, if you have an axi-symmetric
wave propagating longitudinally along the shell, will it then cause
the non~symmetric modes (cos n 6) to become unstable. The experimental
results suggest that the axi-symmetric response is indeed unstable,
since certain harmonics (cos 126, for example) are predominant in the
non-symmetric response.

Another point of interest involves the response of the thick-walled
shell (h = .25 inches). In this case, the loading of T = 10 usec
duration excited an elasticity type response which could not be
predicted using shell theory.



Results given herein include the holograms (photos) and in many
cases the corresponding radial displacement, w. For the most part,
the theory and experiment are in agreement, with the lack of agreement
thought to be attributed to simplifying assumptions of the analysis.

Tests were also conducted on two conical shell specimens as well,
and these results are included herein.

From the standpoint of practical engineering applications, it is
clear that pulsed laser holography can be used to obtain quantitative
engineering data. Areas of dynamic stress concentration, stress
concentration factors, local anomalies, etc.. can be readily determined

and evaluated by holography.



2.0 DOUBLE-EXPOSURE HOLOGRAPHIC INTERFEROMETRY

Holographic interferometry is an optical technique which allows measure-—
ment of displacements on the order of a wavelength of light. Textbooks are
available which discuss holography and its applications (Refs. 1, 2, and 3).

A brief summary of holography which is oriented toward structures and dynamics
applications is given in Ref. 4. Detailed descriptions of holographic inter-
ferometry are thus readily available to the uninitiated reader.

The present study deals exclusively with the application of double-
exposure holography, using a pulsed ruby laser. First a hologram is made of
the undeformed, stationary object (in this case a shell). Then the object
is deformed (by an applied load) and the hologram is exposed for a second
time. When this "double~exposed hologram" is developed and then illuminated,
two images are produced: one is from the undeformed object and the other
from the deformed object. The light waves (which form the two images)
interact with one another and create visible interference fringe patterns.

By analyzing these fringe patterns, one can determine the surface deforma-
tions of the object (see Ref. 5).

Each exposure of the hologram by the pulsed ruby laser involyves a
light pulse which has a duration of about 50 nanoseconds (50 x 10 ° sec.).
This exposure time is sufficiently short to effectively "freeze" the deforma—
tion of the structure at a particular instant in time. Thus the double-
exposure hologram gives a record of the deformation on the surface of the
object, at a particular time, say tj. This spatial recording can be used to
complement conventional strain gages or accelerometers which yield time-
histories of the deformation, at a fixed locatiomn, say Eﬁ.

Double-exposure holographic interferometry has been used to measure
wave propagation in rods (Ref. 6), beams (Ref. 7), plates (Ref. 8), as
well as surface waves, and shock waves in solids. Aerodynamic waves have
also been studied using holography (Refs. 9, 10). Thus it is clear that
holographic interferometry is now a well-established experimental technique
which has been successfully applied to many problems in englneering
mechanics,

Typical double-exposure holographic results are given in Figure 1,
which shows wave propagation in a flat plate.



(a) A = 80 psec (b) o = 100 usec

(c) A = 130 psec (d) a = 150 usec

Figure 1(a): Flexural waves in an elastic plate, recorded holographically
(see Ref. 8).
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Deflection data obtained from the interferogram (see Ref. 8).

Figure 1(b)



3.0 TRANSVERSE WAVES IN CIRCULAR CYLINDRICAL SHELLS
Introductlon and Description of the Problem

Consider a thin-walled circular cylindrical shell, which is subjected
to an axi-symmetric impulse loading in the radial direction (see Fig. 2).

OUTWARD PULSE
g @ /0
A A4 ;

SHELL

Figure 2: Radial pulse loading on shell
(r, 6, x, cylindrical polar co-ordinate)

The shell is described in terms of cylindrical co-ordinates (r, 6, x) in
the radial, circumferential and longitudinal directions, respectively.
The corresponding elastic displacements of the shell are w (radial),

v (circumferential), and u (longitudinal). The axi-symmetric impulsive
load causes waves to propagate longitudinally, and the experiments
described herein give results for the radial displacement (w) as a
function of position (x) along the shell.

The following sections discuss some analytical considerations
relating to this problem, and experimental holographic results involving
both symmetric and non-symmetric responses, reflections from the ends
of the shell, and comparisons between theory and experiment.



Some Analytical Considerations

For dynamic problems (such as wave propagation) in thin-walled shells,
the mathematical modeling of the structure usually involves one of the
following levels of sophistication:

(I) - Love's First Approximation (Ref. 11) which is a shell theory
analogous to Bernoulli-Euler Beam Theory.

(II) - "Timoshenko'" Theory, which is a shell theory that includes
rotary inertia and transverse shear effects (See Ref. 12)

(II1) - Three-Dimensional Elasticity Theory (Ref. 13), which the
shell theories approximate.

The main differences between these three mathematical approaches to
shell dynamics can be described in terms of the vibration frequencies and
structural wavelengths which are excited by the applied loading.

For example, reference 14 indicates that conventional, thin shell
theory (I) applies when

0 < we < .1 W (3-1)
where we designates the flexural vibration frequencies and
s h h [2(1+v)

is the frequency of the first "thickness-shear" mode in an infinite flat
plate (Ref. 15).

When rotary inertia and shear are included in the analysis, the corre-
sponding inequality is (Ref. 14)

0 < wpr <0 (3-3)

I1 s

where Wyp denotes the vibration frequencies computed using this "improved"

shell theory.

Elasticity theory (III) is wvalid for

0<w<suwg (3-4)




where w_ is a cut—-off frequency significantly greater than w_e For example,
w, may be associated with lattice vibrations or other effects in which the
equations of continuum mechanics no longer apply.

In the experiments reported herein, the forcing function applied to the
shell has a time-history given approximately by

2 mt

f(t) = sin T

0<t=<T

which is shown in Figure 3. The corresponding Fourier transform,

F(w) =fe—1wt sin?'wfrti dt

-0

(tabulated in Ref. 16) is readily evaluated and has a spectrum |F(w)|as
indicated in Figure 4. This spectrum (of the input forcing function) has
a well-defined cutoff frequency given by

w, =T (3-5)

where T is the duration of the input pulse.

The experimental loading device (described in Appendix A) gave a pulse
duration on the order of 10 usec. From Equation (3-5), the corresponding
cutoff frequency is

w, = dox lO5 = 1.256 x 106 rad/sec (3~-6)

That is, the input forcing function contains frequencies primarily within
the range

0 <w< 1.256 x 10° rad/sec

For comparison purposes, the thickness—shear frequency of the thin-
walled cylinder used in our experiments is given by

me 6
wg =TT 3.83 x 10 rad/sec (3-7)
(i.e., an aluminum shell with a thickness h = .1l inch). Equations (3-6) and

(3-7) show that in our thin-shell experiments, we have frequencies in the
range

0<w<.3uw (3-8)

]

9
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which suggests that conventional shell theory (I) may not apply, in view of
the inequality (3-1).

A similar calculation for the thick-walled aluminum test cylinder
(h = .25 inches) gives

w = 1,53 x 106 rad/sec

and

0<wsx.8a (3-9)

which clearly exceeds the bounds of the inequality (3-1) given by Ref. 14
for conventional shell theory (I).

However, it appears that the frequency bounds (3-1) and (3-3) given by
Reference 14 are somewhat conservative. For example, it is possible to
exceed these bounds (for transient loadings) and still obtain adequate
solutions for the radial displacement, w(x,t). In such cases, conventional
theory (I) may correctly predict the displacements but not the accelerations
(and/or strains), which involve derivatives of the displacement. A thorough
discussion of this point and the limitations of shell theory (I and II) is
given in Ref. 17.

It should be noted that the thickness-shear frequency (w_) given in
Equation (3-2) is directly related to the time required for a”shear wave to
propagate through the thickness of the shell. That is,

T = 2 = 2h (3~10)
= w [o]
S s

is the travel time for a wave (having speed cs) to propagate a distance 2h
(round trip). For the cylindrical shells which were tested, Equation (3-10)
gives

H
]

1.65 usec (for h

.1 inch)

4.1 usec (for h

and T .25 inch)

]

1

These travel times are significantly less than the duration of the input
force pulse (T = 10 usec) and indicate that wave propagation through the
thickness of the shell is much less important than wave propagation along
the length of the shell. This gives additional evidence to support the con-
clusion that shell theory will adequately describe the observed experimental
response, and that it is not necessary to use elasticity theory (III) in the
analysis.

12



With this preliminary discussion as a background, the next section
describes the tests on a thin-walled aluminum shell and the corresponding
holographic measurements.

13



Experimental Set-Up and Test Procedure

Test Specimens — The shell specimens used in these experiments
were sections of seamless aluminum tubing, which is available commercially.
The tubing was cut to the nominal leneth of 24 inches and was of approxi-
mately 10 inches in diameter. Two wall thicknesses were used, namely

h = .1 inch (referred to as the '"thin" shell)

and

h .25 inch (referred to as the '"thick" shell)

1

The wall thickness and the inside diameter of the thin shell were
carefully measured at several locations around the circumference. These
measurements are summarized in Table I.

TABLE 1

Geometry of Thin-Walled Cylinder

Average wall thickness, h = 0.1060 inches
Maximum deviation in wall Ah = 0.0053 inches
thickness,
Per cent deviation in wall %?-= 5%
thickness,
Average inside diameter, Di = 9.807 inches

Maximum variation in

diameter AD = 0.080 inches
Per.cent variation in AD _ 0.82%
diameter D
D
Average radius to the mid- R = —: 4 h _ 4.957 in
surface 2 2
Radius/thickness ratio R/h = 46.8

The shell specimen was supported by a heavy steel ring which was
pressed into the left end of the shell, (A photograph of the thin
shell specimen is given in Figure 5). The steel end rings were used

]
to simulate a clamped boundary condition (w = O, 5% =0, u=0) at

the ends of the shell, For some tests, the right-hand ring was

14
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removed to provide a stress—-free boundary. The impulsive load was
applied midway along the length of the shell (see Figure 2). A
discussion of the applied load is given in the section which follows.

The Applied Loading ~ The load applied to the shell was subject
to the following design constraints:

(1) The load had to be repeatable, so that the same forcing
function could be applied several times.

(2) The timing had to be precise (i.e., to within a micro-second)
so that the laser firing could be properly controlled.

(3) The load had to be concentrated in space and of short duration
in time.

(4) The load should excite axi-symmetric waves, for comparison with
available analyses.

The method selected to meet these criteria involved using a
repelling wire technique, which is described in detail in Appendix A.

The technique relies on the fact that two parallel wires which
carry current exert an electromagnetic force on each other. By sending
a large surge of current through two concentric loops of wire, the
outer wire was driven radially outward to exert a force pulse on the
inside of the cylindrical shell.

The force on the shell can be described (approximately) by a
band of pressure that is

1

o uniform in the axial direction (x) with a length of A

inch
o nearly uniform around the circumference (8),

o of short duration in time, on the order of 10 usec

Mathematically, the band of pressure p(x,0,t) is approximated by

p(x,0,t) = A sin2 %}

within the domain

1
I8
IA
"
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™

o
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@
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o
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and zero elsewhere. The value of the constant ¢ 1is 1/8 of an inch,
and the load duration T 1is approximately 10 ps. A more detailed
discussion of the applied loading is given in Appendix A.

Optical Arrangement for Recording Holograms -~ The optical arrange-
ment (shown schematically in Figure 6) was used to record the double-
exposure holograms. The actual equipment used in the experiments is
shown in Figure 7. The equipment and optical set-up are standard
for pulsed-laser holography (e.g., see Ref. 7).

Timing of the Laser Pulse(s) - The holograms were made by first
firing the laser to record the static, underformed position of the
shell and then firing the laser a second time to record the wave
propagation event- The initial, first pulse of the laser (first exposure)
presented no problems and was readily accomplished. The second laser
pulse (second exposure) had to be svnchronized with respect to the
loading of the shell. The timing was accomplished electronically, using
well-established techniques (Refs. 7, 8).

An inductive loop near the capacitor bank provided the timing
signal to mark the beginning of the repelling-wire loading pulse. This
timing signal was used as the input to the adjustable time-delay circuit
of an oscilloscope. The output signal from the oscilloscope was used to
control the laser pulse, by means of the Pockels cell within the laser
cavity. This arrangement allowed the experimenter to initiate the waves
in the shell (by firing the repelling-wire circuit) and then to record
the deformation at a desired time later (i.e., at time ¢t = 5 ps, 10 us,
50 us, etc.) by means of the laser pulse. The separation in time was
obtained by adjusting a potentiometer on the oscilloscope. Since the
pot settings provide only a nominal estimate of the time-delay, the
timing signal (from the repelling-wire circuit) and the light pulse
(which was sensed by a fast photodiode) were recorded simultaneously
on an oscilloscope trace. This trace provided an accurate measurement
of the timing.

Test Procedure - Once the experiment was arranged and the electronic
timing established, the test procedure was straightforward, as follows:

(1) The hologram was placed in position and the laser fired to
give the first exposure.

(2) The capacitors for the repelling-wire circuit were charged
to the desired voltage.

(3) The oscilloscope time-delay was set to the desired value
(e.g., 50 us)

(4) The repelling-wire circuit was fired, which initiated the
timing sequence and resulted in the second exposure of the
hologram.

17
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Figure 6: Schematic diagram of the holographic set-up



Figure 7:

Experimental Set-up and Optical Arrangement
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Typical holograms and results obtained in this fashion are
discussed in the pages which follow.

Typical Results for the Thin-Walled Cylinder

Demonstration of Repeatability — Holograms were recorded at several
different time~delays, which showed the waves at various distances along
the shell. To record the waves at times t = 5us, 10 us, etc. required a
separate experiment for each time. That is, the shell was loaded once and
a hologram recorded at t = 5 us; then the shell was loaded again and
another hologram made at t = 10 us, and so forth.

For purposes of understanding the wave propagation phenomena, it is
desirable to relate the results obtained from several experiments (at
individual times t., where i = 1,2,3,...N) to a single experiment (in which
data is obtained at various times ti)'

In particular, the assumption is made that the holograms obtained
from several separate experiments are equivalent to making several holo-
grams in rapid succession on a single experiment. This assumption is
akin to the "ergodic hypothesis" in random process theory (See Ref, 18,
for example) in which statistics obtained from a single record (in time)
are related to several similar records (the ensemble).

If the experiment is completely deterministic, and contains no
random behavior, then holograms obtained from separate tests but at the
same time-~delay (say t = 50 ps) will show identical fringe patterns. Such
behavior is indicated in Figure 8, which shows the results of three
tests, all run for the same loading input and the same time-delay. The
fact that these fringe patterns (Figure 8) are virtually identical
demonstrates the repeatability of the experiment and serves to justify the
equivalence assumption just discussed.

Determination of Radial Displacements from the Interferograms -
Figures 9 through 11 show interferograms obtained at the times t = 5 us,
10 ps, and 20 pys after initiation of the impulse. The corresponding
curves of radial displacement (w) versus x (the distance along the shell
length, measured from the plane of loading) are given in Figure 12. 1In
order to understand how the data points in Figure 12 were obtained from
the photographs, it is first necessary to discuss the equations relating
the shell displacements and the interference fringes.

The general relationship between a displacement field and the corre-
sponding holographic fringe pattern has been examined by several authors
(e.g., Refs. 5 and 19 ). 1Imn particular, Reference 19 shows that the
reconstructed image of a hologram exposed twice to a body which has
deformed between exposures will exhibit dark fringes on parts of the body
Wherever the condition
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Figure 8(a): Interferogram Showing Waves at 5 = 50.5 usec
(Shot Number 2)

Figure 8(b): Interrerogram Showing Waves at t = 50 usec
(Shot Number 3)

Figure 8(c): Interferogram Showing Waves at t = 50 usec
(Shot Number 8)
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Figure 9: Interferogram Showing Waves in Thin Shells at t = 5 usec

Figure 10: Interferogram Shtowing Waves in Thin Shell at t = 10 usec

Figure 11: TInterferogram Showing Waves in Thin Shell at t = 20 psec
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oyl = 2 (3-11)

is satisfied; where

3>
8 = the displacement vector

A = wavelength of the light from the laser used to
make and reconstruct the holographic images

3. = unit vector in the direction from the object
' to the illuminating source

B = unit vector in the direction of view, from the
v object through the hologram to the observer

n = integer, the fringe order, +1, +2, +3, etc.

The term g- (;i + gv) is illustrated by the vector diagram shown in

Figure 13. The term (gi + 3;) is a vector sum, and it is represented

by a vector which lies in the plane containing ;i and 3§ and bisects

the angle between them. The magnitude of this vector sum is 2 cos ;(K R nv),
where (n ’ 4 ) is the angle which is bisected. TFinally, the dot product

6 " (n + nv) is the projection of the displacement vector 6 in the
directlon of (n + n ), as shown in Figure 13.

A partlcular case of Equation (3-11) which often occurs in transverse
wave propagation problems is illustrated in Figure 14. Referring to
Figure 14, the structure of interest (in our case, the circular shell) 1dies
with its axis in the horizontal plane. The angle © is measured positive

clockwise from the horizontal plane as shown in Figure 14. A general
>
displacement, & , of the shell surface is represented by

> > >
ex +ve, +we

->
§ = 0 r

-> > >
where .5 & » and e. represent unit base vectors, and u, v, w are the

corresponding displacements, in the (x, 6, r) directions, respectively.
The illumination and viewing vectors are given (in Cartesian co-ordinates)
by

—>
n,=n, e +n, e
i ix x iy 7y

>
n_=n e +n
v
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where gx is the same unit vector (along the axis of the shell) and

Zy is a unit vector in the (horizontal) x-y plane. The relationship

-+ -

between Z and e_, e is
v r 0

- > >
e = er cos O - ee sin 6

>
Forming the dot product & - (ﬁi + ﬁv) gives

> - >
8 (ni + nv) = u(nix + nvx)

- v sin 6(n,_ + n_)
1y vy

+wecos 6(n, +n_ )
iy vy

At this point, it is convenient to introduce two engineering
approximations:

(i) For transverse wave propagation, involving primarily
flexural motions, calculations (as well as previous
experiments) show that the radial deformation is

predominant:

That is,
u<< w
V<< w

(ii) 1In setting up the holographic experiment, it is often
possible to locate the+illumigation and viewing points

such that the vectors n, and n_ are nearly perpendicular

to the x—axis: That is

n, n
ix iy

n_<<n
VX vy

-> > ->
the vectors ng and n, are nearly parallel to e_.

v

(3-12)
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Under these conditions, Equation (3-12) is well-approximated by

>

8 (n, + nv) = w cos e(niy + nvy)
or

> >

) (n., +n)=T2wcos b

Since the components niy and nvy are approximately unity. Thus, we

have (from Equations 3-11 and 3-12)

>
§ - (n., +n) (2n £ 1)) = 2 w cos 6
v 2
or
~ (@2n + 1) -
Y'= "% cos 6 (3-13)

The most direct approach to reducing the holographic fringe data is to
apply Equation (3-13) along the horizontal plane (i.e., centerline)
through the shell (where 6 = 0). Then Equation (3-13) gives

w (2n 4+ 1)

4 (3-14)

for the radial deflection, w.

In order to apply the preceding equations and obtain quantitative
data, it is necessary to determine the fringe order, n, corresponding to
each fringe seen in the reconstructed interferograms (Figures 8 through
11). The assignment of fringe order requires some engineering judgment
and was influenced by the following considerations:

(a) In response to the applied loading (which acts radially outward) the
portion of the shell directly over the load will initially move outward,
in the radial direction. It is expected that the maximum radial deflec-
tion will occur at the plane of loading at least for the first few
holograms (which record the initial response).

(b) Ahead of the wavefront, where no fringes appear, the deflection of
the shell is known to be "zero'", which provides a reference level. (More
precisely, the absence of a fringe in the "undisturbed" region ahead of
the wave indicates that the deflection there is less than one-quarter of
a wavelength of the laser light.)
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(c) From previous experience with wave propagation phenumena (e.g., waves
in beams, plates, etc.), it is expected that the deflections will describe
a series of ripples or undulations which are alternately up and down. That
is, the shell surface will be a series of hills and valleys (as a function
of the longitudinal coordinate, x) much like a damped sine wave.

As an example of the data reduction process, consider Figure 10,
(t = 10 ps). Starting at the center of the fringe pattern (i.e., at x = 0)
and proceeding toward the right half of the photo, the interference
fringes indicate a central "hill" and then a slope downward to the right.
(The interference fringes may be regarded as contour lines on a topographic
map. The closely-spaced fringes for x > 0 indicate that the deflection
surface slopes downward to the right in that region.) Continuing to the
right, the photograph shows a wide white area followed by a heavy, dark
fringe. Close examination of the dark fringe (on the right) shows that
it merges with the adjacent fringe (on the left) near the top and bottom
of the shell (i.e., near 6 = + 90°). The merging of adjacent fringes at
the extremes of the shell is due to the '"cos® effect" described mathe-
matically in equation (3-13).

The fact that the two fringes coincide mear 6 = 90° indicates that
these fringes have the same fringe order, n. The wide spacing between
the two fringes at 6 = 0 suggests that they represent opposite sides of
a "valley" in the deflection curve. To the right of this valley, no
additional fringes are evident, which indicates a lack of deformation in
this region. If we now retrace our steps and move from right to left
across the fringe pattern, we conclude that the heavy dark fringe (on
the right) has a fringe order n = -1, which corresponds to a radial dis-
placement w = - A/4 (inward) at that point on the shell. Proceeding to
the left (across the valley) we come to the "companion'" fringe, which
also has order n = -1 and deflection w = -A/4 (inward). Continuing to
the left, the fringe order increases monotonically (n = 1,2,3,...etc.)
as we climb the hill in the deflection surface up to the crest.

Having thus identified the fringe order, the radial displacement
can be computed at each fringe location using equation (3-14). In order
to plot the displacement (as a function of x) the location of each fringe
was determined by mechanical measurement on the photograph using a
traveling microscope. The curves of radial displacement vs position
shown in Figure 12 were obtained in this fashion.

Non—-Symmetric Behavior

Initial Response — From a qualitative standpoint, the interferograms
shown in Figures 9 through 11 exhibit two major trends:

(i) At the front of the wave, the interference fringes show only slight
variation in the circumferential direction. Slight variations with 6 are
indicated by the "cosb® effect" in equation (3-13) and indicate that the
shell deformation is very nearly axisymmetric in the vicinity of the wave-
front.
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(ii) At the loading plane (i.e., x = 0) significant circumferential varia-
tion is indicated by the closed elliptical fringe contours. This non-
symmetric response is evident even at the very early times (e.g., t = 5 us),
including the times when the loading occurs (0 < t < 10 us).

Since the applied load (due to the repelling wire) did not extend fully
around the circumference, it was expected that non-symmetric behavior would
eventually occur. However, the "gap" in the loading would cause waves to
propagate circumferentially and they are required to travel half way around
the shell to reach the front side (at 6 = 0), The travel time of these
circumferential waves is given approximately by

_mR _ n{5 din )
Y ¢y .2 in/us 73 usec

The fact that non-symmetric behavior occurs much sooner than this (e.g.,
at t = 10 us) points out that the applied loading must contain slight local
non-uniformities (in addition to the "gap'" region just discussed).

Additional Results and a Computed Fringe Pattern - Additional results
which exhibit significant non-symmetric behavior are the interferograms
shown in Figures 15 and 16. Referring to Figure 15, (which was recorded at
time t = 75 us) the appearance of the closed, nearly-circular fringes and
their repeated nature (around the circumference) suggest a radial deflec-
tion on the form

w(x,6) = Aofo(x) + Akfk(x) cosk®d (3-15)

Equation (3-15) represents an axisymmetric response combined with a non-
symmetric mode. The value of the harmonic k and the relative amplitudes
Ak and Aoare of interest. As a rough estimate, the functional form

w(x,0) = [A_ +A_ coske] cos—z%}i (3-16)

was used to approximate the response near the loading plane (x = 0).

Using the approximations discussed previously, we have (see Equation
(3-13)

w = (2n-1) )

4 cos® (3-17)
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Figure 15: Interferogram Showing Waves in the Thin Shell at

t = 75 usec. (Note: Non-symmetric response,
which involves cos k 6)

where & is the circumferential coordinate. Combining equations (3-16) and
(3-17) gives

2mx _ (2n-1)A
L 4 cosb®

Ao[l + r coskf] cos (3-18)

where r = Ak/Ao is the ratio of amplitudes.

Equation (3-18) was solved numerically to give the fringe contours

x = x(6) for various values of n, the fringe order. The results are shown
in Figure 17, where x/L is plotted vertically (for the range 0 < x/L < 1/4)
and 6 is the abscissa (0 < 6 < w/2). The contour lines of Figure 17
vary from n = 1 (the outermost contour) to n = 10 (a single point at
x =0, 0 =0). Figure l7 was calculated for k = 12, A = 12()1/4), and
?ﬁ = 7(A/4) and was meant to correspond with the integferogram of Figure 15.

us, the closed, circular contours of this interferogram suggest the
presence of cos(126) in the shell response.

Displacement Curves — Figure 16 (recorded at t = 99 us) shows non-—
symmetric behavior, which is also thought to involve cos(128). The shell
response at these later times is clearly two-dimensional, involving varia-
tions in both the longitudinal (x) and circumferential (6) directioms. A
complete description of the experimental data would involve longitudinal
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Interferogram showing waves in the thin

Figure 16:

non-symmetric

(Note

99 usec.
response, which involves cos k 8.)

shell at t
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z(SHELL AXIS)

Figure 17:

Computer-Generated Fringe Pattern
(See Equation 3-18)

6 (CIRCUMFERENCE)
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traverses ("'cuts" at constant 9) as well as circumferential (cuts at

constant x). This detailed description of non-symmetric responses is a
formidable task in data reduction and was not attempted. Representative

plots of the radial displacement vs. x are shown in Figures 18 and 19,

which were obtained by interpreting the fringes along the centerline

(6 = 0). The experimental data shown in these figures is typical of

flexural waves propagating along the shell in the x-direction. (See Appendix B.)

The reader will note that the data points (see Figure 18) give a
good definition of the shell behavior near x = 0, where several fringes
occur within one structural wavelength of the deformation. Near the front
of the wave, however, the wave amplitude is reduced, and only one or two
fringes occur to characterize the deformation. Thus, for these later
times, the oscillations near the front of the wave are not well-defined
by the experimental data. This lack of definition at the wavefront can
be overcome by increasing the impulse to the shell, i.e., causing an
increase in the structural response. Increasing the shell response will
lead to other problems, however, such as very high fringe demsity and
possible lack of resolution near the plame of the loading (x = 0). The
repelling wire loading device was designed using preliminary estimates
for the shell behavior, and consequently it was not capable of producing
large~amplitude response near the wavefront.

Dynamic Stability of the Axi-symmetric Respomse — Despite attempts
to produce a nearly axisymmetric response of the shell, the experimental
results show that the initial axisymmetric behavior is follewed by waves
propagating in non-symmetric modes (i.e., cosk®). The fact that one of
these circumferential harmonics predominates suggests that the axisymmetric
response may be dynamically unstable, In other words, an axisymmetric
response may (through non-linear coupling terms) excite non-symmetric waves
in the shell. In this case, small non-symmetric perturbations will initially
increase with time, as they extract energy from the symmetric response.

Structural behavior of this type (where a symmetric response hecomes
unstable and exeites cos né modes) is well-documented in mamy problems
involving shells (see Ref. 20 , for example). A simple example of dynamic
instability of this type was studied by McIvor (Ref. 23 with reference
to circular rings. McIvor showed that a uniform radial impulse excites
the axisymmetric, "ring mode," response and that the symmetric respomse
in turn causes certain flexural modes (involving cos n8) to participate
in the motion. Stability studies such as Ref. 21 involve using nomlinear
equations for the shell, whereas virtually all amalyses to date for wave
propagation in shells use linear theory (e.g. Refs. 17, 22, and 23).

From a practical standpoint, the observation of significant non-
symnetric behavior indicates that

(a) Calculations of axisymmetric wave propagation behavior in shells are
rather idealized,

(b) Considerable care must be exercised in such wave propagation experi-
ments to eliminate circumferential variations in the structure and its

loading, and
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(c) Analytical studies concerning the dynamic stability of an axisymmetric
wvave might be a fruitful topic for further research.

Waves Reflecting from the Ends of the Shell

Background - This section deals with the propagation of transverse
waves toward the ends of the shell, and the subsequent reflection of
the wave(s) from the shell boundaries. The characteristics of the
reflected wave depend upon the boundary conditions at the ends of the
shell. Three different boundary conditions were used, which will be
referred to as (i) "clamped", (ii) "free" , and (iii) "simply-supported."
These generic terms correspond to three distinct, idealized boundary
conditions commonly applied in theoretical studies of shell dynamics.

The problem of an axi-symmetric wave reflecting from an axi-symmetric
boundary is more readily analyzed than wave reflections which have a
general, non-symmetric character. Thus, it was desired to generate an
axi-symmetric wave experimentally for comparisons with analysis. However,
the previous test results (c.f., Figure 15) had shown that axi-symmetric
behavior occurred primarily near the front of the wave, followed by
pronounced non-symmetric response. In order to keep the reflections
"as axi-symmetric as possible," the loading device was moved to a location
near the boundary being studied.

This re-adjustment of the plane of load application had another
beneficial effect, in that the propagating wave reached the boundary
in a shorter time. For purposes of analysis, it is more convenient
to have the loading plane near the shell boundary, thereby reducing
the time necessary to compute the wave reflection (i.e., shorter computer
"run times" are required). Despite this attempt to facilitate the
analysis, it was not practical to compute the wave reflections. The
reflection data presented in the next few paragraphs is typical of
the experimental results for the three boundary conditiomns. It is
anticipated that this data may eventually be compared with amalysis when
faster computer programs become available.

Reflection from a Clamped Boundary - The idealized, "clamped"
boundary (used in analysis) is specified by the conditions

u=20 (zero axial displacement)

W 0 (zero radial displacement)

and

Q
<l
Lo1

0 (zero slope)

@
]
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which are applied at the end of the shell that is ''clamped". These
conditions of zero slope and displacement were simulated experimentally
by inserting a large steel ring in the end of the aluminum shell

(c.f., Figure 5).

The steel ring had a rectangular cross—section 1 inch deep and
2 inches wide, whereas the aluminum shell wall was approximately .1
inches thick. The outer diameter of the steel ring was a few thousandths
of an inch greater than the inside diameter of the shell, and the ring
was pressed into the shell (e.g., a force fit) to provide a well-restrained
boundary.

The test procedure used was similar to that described previously, but
the loading device was located at a distance of nine (9) inches from
the left edge of the aluminum shell. The steel end ring was inserted
approximately one (1) inch into the end of the shell, which resulted in
a distance L = 8 inches from the plane of the loading to the "eclamped"
boundary.

A typical interferogram (taken at time t = 90 usec) is shown in
Figure 20. The corresponding radial deflection curve (along the line
8 = 0) is shown in Figure 21. Aluminum has a shear wave speed c_a .l
inch/usec, and at a time t = 90 usec the transverse wavefront has
propagated from the loading plane, to the "clamped" boundary, and is
starting back toward the center of the shell. Several additional
interferograms, which show the wave at various other times (before and
after reflection) are given in Appendix C.

Reflections from a Free Edge - A series of interferograms were made
to determine the reflection of a transverse wave from a free edge. The
idealized boundary conditions that the edge be "stress—free" were well-
satisfied in the experiments. Thin shell theory requires that

Mx =0 (moment - free)
Nx =0 (zero axial stress)

and
{zero transverse shear)

%{J
1l

which can be related to the (more exact) boundary conditions of
elasticity theory, namely that the surface tractions vanish:

v
Ti = oij vj-= 0 i

1,2,3
j=1,2,3

(see Ref. 24). The shell was cantilevered from its left end, and the
right end was indeed "stress—free'" in the experiment.
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A typical interferogram (showing the wave reflecting from a free
edge) taken at time t = 105 usec is given in Figure 22. The corresponding
deflection data (w vs x) is plotted in Figure 23. The radial load
was applied at x = 2.5 inches, to the right of the center of the shell.
At time t = 105 usec, the transverse wavefront (which moves at

~

approximately cg = .1 inch/usec) has reached the edge of the shell and
1s reflecting back toward the center of the shell.

Additional interferograms (for this same free-edge boundary condition)
are presented in Appendix C and show the wavefront at various times,
ti.

Reflections from a Simply-Supported Boundary — Another edge condition
which is commonly used in analysis is the simply-supported boundary:

It
o

M& (moment - free)

w=0 (zero radial displacement)

The accompanying in-plane boundary condition is either

u=0 (zero displacement)
or
NX =0 (zero axial force)

An attempt was made to simulate the "simply-supported" boundary
experimentally by machining vee grooves around the circumference of
the shell. The grooves (i.e., "notches'") produce a significant (local)
reduction in the flexural stiffness, since

(i) the shell thickness is reduced by a factor of 5 or 10
at the groove

and (ii) the bending stiffness varies as the third power of the

wall thickness, i.e., Vv h3

Enough material is left (at the bottom of the vee) to approximate the
restraints

prescribed in the analysis. This is a common technique of approximating
simply-supported edges experimentally.
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The vee groove was situated at the left end of the shell, close
to the steel end ring. A typical interterogram (showing a wave reflecting
from the vee groove) at time t = 39 us is given in Figure 24. The
corresponding deflection data (w vs x) is plotted in Figure 25.
The impulsive load was applied at a location 4 inches to the right
of the vee groove, as illustrated in Figure 25. Additional interferograms
(for this boundary condition) are included in Appendix C.

Comparison with Computer Analysis

One objective of the experimental work was to provide data for
comparison with computer analyses. The tests on the "thin" shell (h = .106
inch wall thickness) were co-ordinated with NASA/Langley for comparison
with an axi-symmetric, finite-difference analysis (Reference 25).
Quantitative details of this comparison are presented herein.

Input Data for the Analysis - The computer program used the following
input data:

Radius, a = 5.0 inches

Thickness, h = ,106 inches

Length, L = 12.0 inches (total length between ends)
Radius/Thickness Ratio, a/h = 47.1

Length/Radius Ratio, L/a = 2.4

The applied Zoading was modeled as a pressure, p(x, t) as follows:

t 2 t 3 t 4
p(X, t) = ok [16(,1;) - 32(,1;) + lG('f) h (3-19)

for 0<t<T (the pulse duration)

in a region 1/4 -~ of an inch wide, centered at x = 6 inches., (That is,
the load was a uniform band of pressure, located mid-way between the
ends of the 12 inch long shell.) The factor, p, in Equation (3-19)
represents the mass density of the shell and the constant k was used
as a scaling factor to adjust the amplitude of the impulsive loading.

Equation (3-19) is a polynomial representation of the applied
pulse time-history, and it is quite similar to the expression

2 7t

p(x, 6, t) = A sin T

discussed previously (c.f. Figure 3).
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Figure 24:

Wave interacting with a simply-supported boundary (vee groove) at the left.
(Time t = 39 usec.)
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The pulse duration, T, used in the analysis was T = 10 usec, which
closely represents the experimental result; (see Appendix A). The
material properties used were nominal values for aluminum, namely

E=10x 106 1b/in2 (Young's Modulus)
v = 0.3 (Poisson's Ratio)
pg = 0.10 lb/in3 (Density by weight)

The applied impulsive load, p(x,0,t) is characterized by its "specific
impulse," Io which was calculated as follows:

T €
I0 = f fp(x,t) dx dt (3-20)
o g

When Equation (3-19) is substituted for p(x,t) in Equation (3-20) and the
integral is evaluated, the result is

= oh( S -5 -
I, = ph(k(E3) = 10 (3-21)

where the (1/4) comes from integrating on x from € = -1/8 to ¢ = +1/8
(i.e., the width of the applied load). The product (ph) represents the
shell (mass/unit area), and the factor 8/15 x 1072 results from integrating

the polyngmial from t = 0 to T = 10 sec. The constant k was chosen to be
3.65 x 106, which yields a value

I, =1.34 % 1074 ib-sec/in (3-22)

when used in Equation (3-21) along with the nominal values of h and p.
Thus, the scaling constant k was chosen such that the analysis used the

same "impulse" as given by the pendulum measurements. (See Equation A-12,
Appendix A.)
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Ratio Between Experimental/Theoretical Responses

With the scaling constant k adjusted in this fashion, the ratio
between experimental and computed deflections was expected to be 1:1.
However, the computer solutions were noticeably lower in magnitude than
the response measured experimentally. This result was disturbing,
expecially in view of the fact that previous holographic measurements
of wave propagation (in beams, Ref. 7, and plates, Ref. 8) had shown
excellent correlation with analysis.

At this point, it was suspected that the pendulum calibration of the
specific impulse might be in error (see Appendix a). The calculation of
the specific impulse (using electromagnetic theory and the measured
current, I(t), in the repelling-wire device) resulted in

4

-4 -
2.06 x 10 ~ < (Io)calc-i 2.39 x 10 (3-23)

where the units are lb-sec/inch and the inequality (3-23) depends on the
limits of an integration, discussed in Appendix A.

When the value

(]:o)c‘_alc =2.39 x 104 1b-sec/in

is used to "scale up" the computer results, (by the ratio K =-%;%% = 1.8)

fairly good agreement is achieved between theory and experiment, as
illustrated in Figure 26.

Figure 26 shows the computed results (Ref. 25) and the holographic
data, for times t = 5, 10, and 20 psec. As shown in Figure 26, qualita-
tive agreement between theory and experiment is quite good, and the data
agree gquantitatively as well, providing we scale the theory to correspond
with the impulse I = 2.39 x 104 1b-sec/in given in Appendix A.

Further comparison between theory and experiment (for the thin-walled
shell) was hampered by two considerations:

(i) The computer program was based on axial symmetry, whereas
non~-symmetric responses occurred (at the later times)
experimentally.

(ii) The computer program involved long running times (e.g. on
the order of 30 minutes to propagate the wave for t = 20 usec)
and it was not practical to compute the response at the later
times.

Additional comparisons between theory and experiment (but for -the
thick-walled shell) are given in Section 4.0 which follows.
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Figure 26: Radial deflection along the shell: comparison of theory
and experiment. (Thin aluminum shell, h = .106 inches.)

49




4.0 VWAVE PROPAGATION PAST CUT-OUTS
AND STIFFENERS

Background and Summary

The problem of axi-symmetric wave propagation in a thin-walled
shell of revolution represents a rather idealized situation from a
practical standpoint. This is to say, that many practical problems
(in actual engineering applications) involve shells with cut-outs,
stiffeners, eccentricities, etc. that depart from a mathematical model
which requires axial symmetry. Computer programs for non-symmetric
wave propagation in such shells are of fairly recent development
(e.g., Ref. 17). One of the objectives of the present experimental
study was to provide data for comparison with such analyses.

Experimental data are given in this section for transverse wave
propagation past square cut-outs, circular cut—outs, and an (axi-symmetric)
ring stiffener. Tests run on a thick-walled shell (h = .25 inches)
were compared with analytical results of Ref. 17. Qualitative argeement
between theory and experiment was obtained, and the quantitative dis-
crepancies are largely attributed to rotary inertia and transverse shear
effects not included in the analysis.

Other tests on the thin-walled shell (h = .106 inches) are also
presented herein, but analytical results for this geometry were not
available. The "thin'" wall thickness (h = .1 inch) requires a very
"fine" finite-difference mesh in the analysis, which results in 'long"
computer run times. As faster computer analyses become available,
efforts should be made to correlate them with the present experimental
data.
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Tests on a Thick-Walled Cylinder

Background — Concurrent with our experimental work, NASA/Langley
funded an analytical study (involving a two-dimensional, finite-difference
approach) for nonsymmetric wave propagatiom in shells (See Ref. 17). It
was understood that TRW and Lockheed personnel would coordinate these
programs and provide each other with their results. Discussions were held
with the NASA Technical Monitor (Pr. J. P. Raney) and with T. L. Geers
(Lockheed, Palo Alto) until we agreed upon a shell configuration which was
acceptable for both the holographic experiments and the computer calcula-
tions. The present section deals with the holographic results and their
comparison with analysis.

Shell Specimen and Test Procedure — The cylindrical shell used in
these tests was aluminum tubimg, and it had a nominal wall thickness
h = .25 inches. The shell was 24 inches long and had an average inside
diameter D. = 2.496 inches. Thus, the radius to the mid-surface of the
shell was a = 4.87 (inches) and the radius/thickness ratio was a/h = 19.5.
The shell was supported at the ends by flexible aluminum discs (1/16-in.
thick) which were designed to provide "freely-supported" boundary condi-
tions (see Ref. 4). (A photograph of the "thick-shell" specimen is given
in Figure 27).

Since the '"thick shell" specimen was two—and-one—half times as thick
as the "thin shell'™ (Section 3.0), the stiffness and mass were also 2-1/2
times larger. Elementary response calculations show that the radial dis—
placement for our problem is inversely proportional to the shell thickness.
Thus, in order to maintaim an adequate response (and produce sufficient
fringes on the interferogram) it was desirable to increase the impulse
applied to the shell and thereby compensate for its increase in thickness.
The repelling-wire loading technique (described in Section 3.0 and Appen-
dix A) was used, and the impulse was increased by using (i) a higher
charging voltage, V_ = 25 kilovolts, and (ii) a smaller wire spacing,
d = 0.27 inches. Uging these values in equations (A-6) and (A-7) of
Appendix A results in a specific impulse of (approximately)

I =6.0x 102

o Ib.sec.fin 4-1)

applied to the thick shell.

The optical arrangement, timing of the laser pulse, and test proce-
dure were identical to that described previously in Section 3.0. Experiments
were performed first on the virgin shell (without cutouts), and thenm
rectangular cut—outs were machined in the shell and the tests repeated.
Typical results are discussed in the following paragraphs.

Response Without Cut-Outs — Typical holographic interferograms of
the thick-walled cylinder are shown in Figures 28 through 30. TFigure 28
(recorded at t = 9 uys) illustrates the axisymmetric nature of the initial
response. Slight nonsymmetric behavior is evident in Figure 29 (t = 15 us)
and Figure 30 (t = 38 us). The corresponding curves of radial displacement
(w) vs axial position (x) are given in Figure 31. Additional interferograms
showing the response at other times are presented in Appendix D.
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Figure 27:

Thick-walled shell specimen (aluminum,
a = 4.87 inches, h = .25 inches).



(h = .25 inches).

Wave propagation in the thick-walled shell.
= 9 usec.

Time t

Figure 28
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Figure

29:

Wave propagation in the thick-walled shell.
Time t = 15 usec.

.25 inches).
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Figure 30: Wave propagation in the thick-walled shell. (h = .25 inches).
Time t = 38 usec.
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The displacement curves just discussed (Figure 31) illustrate a
technical difficulty encountered previously: Each structural wavelength
of the deformation is defined by very few data points (i.e., fringes).
This problem could be overcome by increasing the impulse to the shell,
but this approach was complicated by the fact that the electrical cir-
cuitry would not permit higher voltages (as it was, we operated well
above the ratings of several components). An alternative means of
increasing the impulse was to decrease the wire spacing, d, still further
but such an approach magnifies the circumferential wvariations in the
loading, which is undesirable. Thus, the decision was made to keep the
experimental design fixed and proceed to tests using the shell with cut-
outs. The results of those experiments are reported in the following
paragraphs.

Response with Cut-Outs — The same thick-walled aluminum cylinder
was used for these tests, except that it was machined as shown in
Figure 32. (A photograph of the shell with cut-outs is given in Figure 33).
Eight symmetrically placed cut—-outs were used, since the mathematical
model (see Ref. 17) required several planes of symmetry to minimize the
number of degrees-of-freedom (i.e., to cut down on the extent of the
finite-difference mesh).

The holographic results are shown in Figures 34 through 38, which
graphically illustrate the waves approaching and propagating past the cut-
outs. Reflected waves leaving the cut-out and traveling back to the center
of the shell are also apparent in the interferograms. Since the shell
response is clearly two-dimensional (involving both x and 8), it was
necessary to reduce the experimental data for various "cuts' along the
shell. This was accomplished by determining the fringe order, n, and
calculating the corresponding displacement (as outlined previously in
Section 3.0. Cuts were taken parallel to the axis of the cylinder, and
primarily at two angular stations, 6 = 0, and 9 = n/12. These values of
6 correspond to the middle of the cut—out and the top edge of the cut-out,
respectively.

Plots of the radial deflection vs x are shown in Figures 39 through
47 . Until the wavefront reaches the cutouts, the response of the shell
is basically axisymmetric (cf. Figure 34). As the wave interacts with
the cutout, the transverse response tends to be large near the edge of
the cutout, as might be expected (cf. Figure 37). These experimental
results are in qualitative agreement with the computer analysis, as dis-
cussed in the next section.
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h = .25 inches

Section A-A

Sketch showing location of cut—outs in the thick shell.
(All dimensions are given in inches.)




Figure 33:

Photograph of thick-walled shell specimen
with symmetrical cut-outs (c.f. Figure 32).
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Figure 35:

Wave interacting with cut-outs. Thick-walled shell,
h = .25 inches. Time t = 29 psec,
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Wave propagation past cut-outs
Time t = 41 psec.
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Figure 37 :

Wave propagation past cut=-outs in the thick-walled shell.
Time t = 72 usec.
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propagation past cut-outs in the thick-walled shell.
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Comparison with the STAR Code

As indicated previously, one objective of the experimental work

was to provide data for comparison with computer analyses. In particular,

the tests on the 'thick shell" (h = .25 inches) were designed for comparison

with the STAR code (Ref. 17). Quantitative details of this comparison are

presented herein.

Input Data for the Analysis - The shell which was analyzed used
the following input data:

Radius/Thickness Ratio, a/h = 20

Length/Radius Ratio, L/a = 4.8 (total length between ends)
Conditions of symmetry were applied on the following planes:
e The plane x = 0, which contains the radial loading,

e The plane 6 = 0, which passes through the cut-out and contains
the cylinder axis,

e The plane & = 7n/4, which passes mid-way between the cut-outs
and also contains the cylinder axis.

The applied loading was modeled as a transverse shear, Q , as
follows: @

. 2wt

2 5 sin T
1-v _
Ea Qa(O,S,t) B

0 t>T

Boundary conditions of "free-support', i.e.,

w=20

N =0 at x = + L/2
x x
v=20

were applied at the ends of the shell.
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Ratio Between Experimental/Theoretical Responses - To compare
theory and experiment, the following factors were used:

a = 5 inches (radius)
¢ = .2 in/us (wave speed)
L/2 = 12 inches (half length of the shell)
E =10 x 106 1b/in2 (Young's Modulus)
v = .3 (Poisson's Ratio)

Thus, T = .4 g2 <10 us, the duration of the applied loading. The
c

pressure loading, p(x,t), (assumed axisymmetric) can be related to the
shear force Qa as follows:

[

f P(X,t)dX = ZQOL((J,e’t) (4-2)

=€

where ¢ is a small quantity representative of the width of the applied
load. Equation (4-2) is obtained by considering equilibrium of a
shell element in the radial direction.

If we now integrate both sides of this equation in time, we obtain

T €

T
/ /p(x,t)dxdt = Io = 2/ Qa(O,e,t)dt (4-3)

0 - 0

where Io is the "specific impulse', in lb-sec/inch. (See Section 3.0.

Equation 3-20 , for example.) Thus, Equations (4-2) and (4-3) can be
combined to give

T
I =__2£'=}_/ 5 ain? Tt gr
o 2 T
-y 0
{4=4)
10E T
I = —2 (5)

° a- vz)
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Using the nominal values of E, a, v, and T (given previously) we
have

6 -6
I = 10(10 x 10)(5) (10 x 10 ) = 2.75 x 103 lbfsec

o (.91) 2 in

which characterizes the (analytical) input.

The experimental value of the specific impulse was calculated using
Equation (A-6) and (A-7), following the procedures outlined in Appendix A.
Thus, from Equation (A-7) we have

“final 2 . 409
Y 2x10°7) 1
I0 = F(t)dt = 3 T (a) (4-5)

<475

where for the thick shell V_ = 25,000 volts and d = .691 x 1072 meters,
which gives
5.86

% 10—4 lbfsec

o in
6.80

when expressed in English units.

The ratio of experimental to theoretical values is

Y . 35'86§ x 1074 2.14
R, )" expr _ _expt 6.80 ~ - \ < 10-7
Ytheory theory 2.75 x 10 (2 48

The results of Ref. 17 are given in terms of deflection/radius, (i.e.,
w/a), and in order to compare theory with experiment we have

W
Wtheory = (5) (Rt/e) (a)
L 2014 _
Yiheory = & (1,125 x 1076 (4=7)

where the values of (w/a) are read from Ref. 17.
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Equation (4-7) states that the analytical results of Ref. 17

-6
should be scaled by (approximately) a factor of 10 to correspond
with the experimental input conditions.

Analytical Results and Comparison with Experiment - Typical
experimental data obtained holographically are shown in Figures 43 through
45, along with analytical values which have been scaled from Reference

17. (The scaling factor used was K = 1.125 x 10—6, which was used to
multiply the analytical values of w/a. (See Equation (4-7) and the
related discussion.) The analytical and experimental curves have many
features in common, but certain basic discrepancies are also apparent.
In order to understand these differences, it is worthwhile to review
some of the limitations of thin shell theory, which is used in the
computer analysis.

As discussed in Section 3.0, thin shell theory is an approximation
to the more exact linear elasticity theory. In terms of the structural
wavelengths (say A) involved, shell theory will apply when the ratio
(A /h) is sufficiently large. TFor example, Bernoulli-Euler type shell
theory (Ref. 11) neglects rotary inertia and shear effects, and is
expected to be accurate when the wavelength/thickness ratio (A /h) is
approximately 10 (or larger). Timoshenko type shell theory (Ref. 12)
which includes rotary inertia, etc., is valid for shorter wavelengths,
say A/h on the order of 2 (or perhaps 1). And finally, for yet shorter
wavelengths, more exact theories are required.

If we keep these limitations in mind and now refer to Figure 40,
we observe that the analytical curve possesses rather "high-frequency"
(i.e., short wavelength) ripples near the front of the wave. For
example, near x = 2 inches (Fig. 40) the analysis exhibits a local
structural wavelength A = 1 inch. Since the thickness h = .25 inches,
we have (locally) A/h = 4, which is outside the range of validity
(. /h 2 10) of the Bernoulli-Euler shell theory used in the analysis
(Ref. 17). 1In other words, the analytical curve (c.f. Fig. 40) is
not expected to be valid in the high-frequency, short-wavelength region
near the front of the wave. Accordingly, one would not expect the
present experimental data to agree with Ref. 17 near the wavefront.

When rotary inertia and transverse shear are included in the
analysis, the "high-frequency ripples" (predicted by Bernoulli-Euler
theory) are removed (Ref. 12). The short-wavelength ripples of the
less-accurate (Bernoulli-Euler) theory are replaced by longer-wavelength
deflections with smaller amplitudes. These effects (of shear and rotary
inertia) are well-documented in the literature of elastic wave propagation
(c.f., Ref. 26).

Thus, the disagreement between analysis and experiment (at the
wavefront) is attributed primarily to the shortcomings of Bernoulli-
Euler shell theory. Of greater concern was the lack of quantitative
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agreement between theory and experiment near the center of the shell
(i.e., x = 0) where the load was applied. In this '"center" region, the
structural wavelengths are fairly long (at least for the later times,
such as t 2 20 psec) and the analysis (Ref. 17) was originally expected
to apply. However, discussion of this problem with several colleagues¥*
has lead the authors to conclude that an analysis of the subject problem
(using Bernoulli-Euler shell theory) may in fact be inadequate even in
the "long-wavelength'" region near x = 0. Time would not permit an
adequate study of this problem, (from an analytical standpoint) but some
simple "demonstrative examples' are discussed in the following section
to support the authors' conclusions.

Some Simple Wave Propagation Problems
in Thick and Thin-Walled Shells

Consider the (idealized) problem of an infinitely long, circular
cylindrical shell with thickness h and radius, a, subjected to an
axisymmetric impulsive ring load applied at x = 0. (See, for example
Figure 2). The shell itself has just two characteristic lengths, namely
h, (thickness) and a, (radius).

If the impulsive load is idealized as
p(x, 8, £) = I_ 8(x) §(t) (4-8)

where 6(x) and 6(t) are Dirac-delta functions in space and time,

then there is no characteristic length (or characteristic time) associated
with the loading. Finally, suppose that we consider only a single wave
speed, c, associated with wave propagation.

When such an idealized problem is analyzed by Bernoulli-Euler shell
theory, wave propagation through the thickness, h, is ignored. Thus,
there exists only one characteristic length (namely a, the radius) in
the Bernoulli-Euler problem, and the corresponding characteristic time
is

T. = 2712 (4-9)

which is the time for a wave to travel once around the shell. In

fact, if we use
c=c = ~E—2— (4-10)
P p(l - v7)

;_including Drs. T. L. Geers (Lockheed, Palo Alto),G. A. Hegemier
(Univ. of Calif, San Diego) and J. P. Jones (Aerospace Corp., El Segundo).
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(see Ref. 17) for the wave speed in Equation (4-9), the result is

- (4-11a)

1 E
N (4-11b)
°© a v o(l - v9)

is the frequency of the axi-symmetric, plane strain, "ring mode"
(c.f., Ref. 21). (This simplified discussion is based on the tacit
assumption that the shell is very "thin", in the sense that the
thickness/radius ratio, h/a, is very small ~ i.e., h/a — 0.)

where

Now consider the same problem when analyzed by a Timoshenko-type
shell theory. Wave propagation through the thickness is not ignored,
and the problem contains two characteristic lengths (h and a) with the
associated times

=—="—= — (4-12)
ring c c w
P o
(around the circumference)
and
2h 2h 27
Tts == "% o (4-13a)
s s
where
me
wo = (4-13b)

is the lowest simple thickness~shear frequency (see Ref. 15) discussed
in Section 3.0. (Again it is assumed that the ratio h/a is small,
tending toward zero.)

In writing Equations (4-12) and (4-13a) we have actually used two

wave speeds, . and c_, for the speed, "e". We could equally well

define two additonal characteristic times, namely

T = 2ma (4-14a)
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and

T = = (4-14b)
(which together with Equations (4-12) and (4-13) make a total of four).
However, the latter two (Equations 4~14a and b) are of minor significance

for the problem under discussion.

The preceding paragraphs suggest that Bernoulli-Euler shell will
have a time-dependence of the form

w(x, t) n Ao cos(w0 t + ¢) (4-15)

(since wo is the only characteristic frequency in this case) whereas

the Timoshenko theory will give

w(x, t) v Ao Cos(wotr+¢) + B cos(wS t+ ) (4-16)
since it possesses two characteristic frequencies, w, and W (The
phase angles, ¢ and ¢, depend upon the initial conditions for w
and ow )
3t ’

The idea that the Bernoulli-Euler theory (Equation 4-15) is included
within the more exact, Timoshenko theory (Equation 4-16) is conveyed
by the fact that the latter reduces to the former as the "amplitude' B
tends to zero in Equation (4-16). Of course, the appropriateness of one
theory or the other now depends upon the relative magnitudes of Ao and
B.

In fact, these "amplitudes' are actually functions of space, i.e.,

]
Il

AO(X)

o]
1l

B(x)
and it was pointed out previously that the ratio B/Ao is significant

near the wavefront, where shear and rotary inertia are important.
Furthermore, for "short'" times i.e., on the order of

< < -
Tts =t _'Tring (4=17)
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the wavefront is still relatively near the plane of loading (x = 0)
and short wavelength, high-frequency waves are still present near the
origin to give difficulty for Bermoulli-Euler theory. Thus, it is
clear that the deflection at the origin, namely w(0, t), cannot coincide
identically for the two theories, at least beginning from time t = 0
and until time t =T_ .
ts

At the later times, i.e., t >> Tts’ the thickness—-shear mode has

undergone many vibration cycles and indeed the ratio B/Ao may then

approach zero at the origin (x = 0). 1In this case, the more exact
Timoshenko theory may degenerate into Bernoulli-Euler theory and the
displacement time histories coincide at x = 0, (i.e., at least well
away from the wavefront).

This intuitive discussion can be put on a more rigorous basis by
using the Fourier Transform (k, x) and Laplace Transforms, (s, t) in
conjunction with the appropriate shell theories. Approximate results
(i.e., asymptotic expansions) can be obtained by expanding the transforms
as the Laplace parameter s —«, i.e., time t — 0, etc. Indeed, readers
thoroughly familiar with elastic wave propagation may be able to provide
references where such an approach has been carried out for the loading

p(x, 8, £) =1 &(x) &(t)

and geometry considered here. However, it was beyond the scope of the
present contract to generate or extemnsively search for such analytical
solutions.

Additional Experimental Results
for the Thick-Walled Shell

The lack of quantitative agreement between theory and experiment
for the thick-walled shell was somewhat disturbing, especially in view
aof the following items:

e Previous holographic measurement of wave propagation (in
beams and plates, Refs. 7, 8 ) had been successfully
correlated with computer solutions.

® The results presented herein (Section 3.0) for the thin-
walled shell, agree reasonably well with calculations

(e.g., see Figure 26).

o The computer program (Ref. 17 has been amply verified by
testing it against known, previous solutions, and finally

® Examples are available (e.g., Ref. 27 ) which show that (at

79



least for specific problems) the solutions using Timoshenko
shell theory approach those of Bernoulli-Euler theory
(at sufficiently long wavelengths).

In an effort to clarify and to better understand the thick shell
results, additional interferograms were analyzed to provide more
deflection data. The experimental results, showing the radial deflection,
w, vs. axial position, x, (for several discrete times) are shown in
Figure 46. This family of curves illustrates typical wave propagation
behavior, with the wavefront advancing (to the right) along the shell.
This high-frequency, short-wavelength region occurs at the front of the
wave, with the longer waves propagating more slowly and lagging behind.
A feature of some interest is the behavior at the origin (x = 0), as a
function of time, t. The central deflection(s) w(0, t,) from Figure 46
have been cross-plotted to give the time-history, w(0, t), shown in
Figure 47. The relatively smooth, continuous nature of the (albeit
limited) experimental data in Figure 49 give strong support to the
"consistency'" of the present tests.

Also shown in Figure 47 is the calculated half-period, To/2 = 75 usec,

of the axi-symmetric ring mode of the shell. From the discussion of

length scales and ''characteristic times" presented previously, one might
expect Bernoulli-Euler shell theory to predict a deflection time-history
w(0, t) involving a half period of To/2. On the other hand, Timoshenko

theory will involve half-periods of T0/2 and Tts/2, and combinations
thereof.

From an experimental standpoint, there are many more ''characteristic
times" in the physical problem than are indicated by Equations (4-12)
and (4-13). TFor example, the input pulse has a duration T = 10 usec,
which may have a significant effect on the shell behavior. In addition,
the finite width of the load, -£ < x € ¢, of about 1/4 of an inch,
introduces another characteristic length (for example, a flexural
wavelength) which has an associated frequency, etc. Thus, it is not
surprising to find an experimental "half-period" of approximately 50 usec
vs. an (idealized) result of To/2 = 75 psec.

A thorough (analytical) study of this problem, including the effects
of a finite width of the loading (in space) and a finite pulse duration
(in time) would be of considerable interest, but such an analysis was
beyond the scope of the present study.
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Results from Elasticity Theory

Consider the following argument. The pulse duration, T = 10 usec,

is a characteristic time, which can be used to calculate a structural
wavelength, A. In other words,

-
I

2cST = 2(.1 in/psec) (10 usec)

-
u

2 inches, based upon the shear wave speed, Cs

Having this value of A, and knowing the radius a = 5.0 inches,

the thickness h = .25 inches, we have
h 25
=5 = .05
h 25 _
K—-T—.lzs

With these values, we enter Ref. 28 and use the tabulated results for
the n =0 (axi-symmetric) mode. Page 20, of Ref. 28 then gives

Ql = .034

for the corresponding frequency. But

=Y _
Q = " .034
s
e
where w, = —EE = Fundamental thickness/shear frequency.
Thus w= .034 Wy

and the corresponding period of vibration is

T ~2m_ 2nm 1
elast w ws X 034
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But = =T = 4.1 usec, (see Section 3.0) and we then have

= 1
Telast = 4.1 usec x 03 ° 120 usec

which results in a half-period of

elas

5 = 60 psec

which is very close to the experimental result (T/2 = 50 pusec) shown
in Figure 47.

Of course, it is recognized that the duration of the input pulse,
namely T = 10 usec is actually 10 usec + (some fraction) which
influences the structural wavelength A. Furthermore, the theory of
Ref. 28 is calculated for the assumption of steady, traveling wave
trains with wavelength A. Thus, it is considered to be good agreement
when the experimental half period is 50 usec and the elasticity theory
gives T/2 = 60 usec.
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Test Results for the Thin-Walled Cylinder

Wave Propagation Past a Circular Cut—-QOut - Experiments were
conducted in which transverse waves were excited (and deflections
recorded holographically) to study waves interacting with a circular
cut-out. The thin-walled cylinder (h = .106 inches) was used in these
tests, and the diameter of the cut—out was d = 2.0 inches. The impulsive
load was applied at the longitudinal station x = 0, and the cut-out
was centered at x = 6.0 (inches) to the right of the loading plane.

Tests were conducted following the procedures outlined previously
in Section 3.0. A typical interferogram of the transverse wave inter-—
acting with the cut—out (at time t = 59 usec) is shown in Figure 48.
The corresponding deflection data (w vs x) are presented in Figure 49,
for the centerline, i.e., 6 = 0. Non-symmetric behavior, caused by
the interaction of an axi-symmetric wavefront with the cut-out, is
evident in the interferogram. The high-frequency, short-wavelength,
ripples (in the circumferential direction, 6, Figure 48) indicates
the presence of circumferential harmonics (i.e., w ~ cos n8) of high
wave-number, n.

Additional interferograms, showing the wave passing the cut-out and
the formation of a "shadow zone" to the right (beyond the cut-out) are
presented in Figures 50 through 52. (For the earlier times,
t €59 usec, see Appendix E.) The presence of short-wavelength,
circumferential harmonics near the cut-out are evident in the interferograms.

Wave Propagation Past a Square Cut—Qut - Similar tests were conducted
on wave propagation past a square cut—out in the thin-walled shell. The
square cut-out was 2.0 inches (on a side) and centered at x = -4 (inches).
That is, the cut—out was centered 4 inches to the left of the loading
plane, x = 0. Several interferograms (which show the wave approaching
and engulfing the cut—out) are presented in Figures 53 through 58.

A typical plot of the radial deflection for this problem is given
in Figure 59, t = 60 usec. Note the large gradients %Z- near the edge
of the cut~out; see Figures 54 and 55. Non-axisymmetric behavior
is apparent in the interferograms, as indicated by the circumferential
ripples in the dark interference fringes. The ''shadow zone" caused by
the cut-out is quite evident as well, c.f. Figure 58. Although it
would be desirable to reduce these highly "two-dimensional results
to give quantitative data (e.g., in both x and 6) such a reduction
was not possible during the present study.

Additional results (showing the behavior at other times, ti) are

given in Appendix E. When computer programs become available which can
(economically) handle such non-symmetric. two-dimensional behavior, it is
hoped that they will be compared with the holographic results given
herein.
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Figure 48:

Wave interacting with circular cut-out.

(Thin shell, h = .106 inches,

wall thickness. Cut-out diameter, d = 2.0 inches. Time t = 59 psec.)
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Transverse Wave Interaction with a Circular Cut-QOut.

Figure 50
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Figure 51: Transverse Wave Interaction with a Circular Cut-Qut.
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Figure 58: Wave propagation past a square cut-out. Time t = 92 usec. (Thin shell, h = .106
wall thickness.)
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Wave Interaction with a Stiffening Ring - The final test seriles
(using the thin-walled shell) was designed to record the interaction of
an axisymmetric wave with an axisymmetric ring stiffener. The ring
stiffener had a rectangular cross—sectlon with a width of .5 inches and
a depth of 1.0 inches. It was centered approximately 4.0 inches to the

left of the loading plane (x = 0).

Typical interferograms for this problem are shown in Figures 60 through
63. The appearance of non-symmetric modes (i.e. cosnf) when the wave hits
the stiffener are evident in Figure 62. Deflection data (w vs. x) for one
interferogram are shown in Figure 64. Additional interferograms are pre-

sented in Appendix E.
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5.0 WAVE PROPAGATION IN CONICAL SHELLS

Introduction and Background

In addition to the tests on cylindrical shells, it was desired
to obtain data for wave propagation in conical shells as well. Two
conical specimens were tested, and the results of the tests are given
in the following paragraphs.

Tests on the Cone-Cylinder Specimen

A thin-walled cone-cylinder specimen was obtained for use in
these tests. The dimensions of the specimen are given in Figure 65,
and a photograph of the actual model is given in Figure 66.

In order to apply the loading pulse (electromagnetically) the
loading wire was located in the larger end of the specimen. Initial
tests were conducted with the load applied at x = 1.0,i.e., approximately
1 inch from the large end of the cone.

A typical interferogram for this test arrangement is given in
Figure 67. The corresponding deflection data are given in Figure 68,
As the waves propagate longitudinally along the cone, the appearance
of non-symmetric modes (i.e., cos n 8) becomes evident. The development
of the non-symmetric response is evident in Figures 69 through 72.
Additional interferograms are given in Appendix F.

Tests on the Large Conical Shell

In order to investigate waves propagating in a larger shell,
another conical specimen was built. A-sketch showing the shell
geometry is given in Figure 73. A photograph of the shell itself
is given in Figure 74.

The test procedure and experimental set-up were similar to those
discussed previously. The shell has a thickness h = .094 inches,
and it was loaded with the repelling-wire device discussed previously.
A typical hologram for this test series is given in Figure 75. The
corresponding deflection w (as a function of the length, s, along
the cone) is given in Figure 76.

Additional interferograms are given in Figures 77 through 79,

which again demonstrate non-symmetric behavior (i.e., cos n 6 modes).
Finally, additional interferograms are presented in Appendix F.
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Figure 66: Photograph of the thin-walled cone-cylinder (diameter
of large end is 2.6 inches).
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Time t = 10 usec.

Wave propagation in the thin-walled cone-cylinder.

67

Figure
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Figure 69:

Figure 70:

Wave propagating in a thin-walled cone-cylinder.

Wave propagating in a thin-walled cone-cylinder.

Time t = 48 usec.

Time t = 51 usec.
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Figure 71: Wave propagating in a thin-walled cone-cylinder. Time t = 58 usec.

Figure 72: Wave propagating in a thin-walled come-cylinder. Time t = 70 psec.
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Figure 74: Conical shell specimen (14° half-angle,
conical frustrun).
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6.0 rONCLUDING REMARKS

In an attempt to extract the major conclusions found in this study,
the following points stand out:

o Transverse wave propagation in shells can be accurately
measured using pulsed laser holography. From an engi-
neering standpoint, this means that holography can provide
engineering data on the effects of cut-outs, discontinuities,
etc.

o The axi-symmetric response of a circular shell to an axi-
symmetric loading pulse may subsequently become unstable
and excite circumferential harmonics in the shell. This
is a problem in dynamic stability, and may be worth
investigating analytically. The presence of non-symmetric
modes might be of practical importance since they will
affect stress distributions, circumferential bending, etc.

o When the input pulse is of sufficiently short duration, it
is possible to excite responses that are beyond the scope
of conventional shell theories. 1In this case, it is
necessary to use ''elasticity-type' solutions, as discussed
in Section 4.0. The reader should note that elementary
shell theory (Bernoulli-Euler) overpredicted the thick-
shell deflections (as compared with the experimental data).
Thus it seems that the elementary theory is overconservative
(at least for this problem) and might result in a non-
optimum design.

o Holography can be used to measure waves propagating past
cut-outs and/or stiffening rings, which exhibit pronounced
non—-symmetric responses. Dynamic stress concentration
caused by cut-outs, discontinuities, bolt holes, etc.,
can be accurately evaluated using pulsed laser holography.
Such stress concentration factors often have a major impact
on the design of shell structures.

118



1.

10.

11.

7.0 REFERENCES

J. B. Develis and G. O. Reynolds, Theory and Applications of Holo-
graphy, Addison-Wesley Publ., Reading, Mass., 1967.

J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 1968
pp. 209-268.

H. Smith, Principles of Holography, John Wiley & Sons, 1969.

D. A. Evensen and R. Aprahamian, "Applications of Holography to
Vibrations, Transient Response, and Wave Propagation,' NASA CR-1671,
December, 1970.

K. A. Haines and B. P. Hildebrand, "Surface Deformation Measurement
Using the Wavefront Reconstruction Technique," Applied Optics,
Vol. 5, No. 4, April 1966, pp. 595-602.

W. G. Gottenberg, ''Some Applications of Holographic Interferometry,"
Experimental Mechanics, Proc. Soc. for Experimental Stress Analysis,
September, 1968. Also published as TRW Report No. EM 17-13, August
1967.

R. Aprahamian, D. A. Evensen, J. S. Mixson and J. E. Wright,
"Application of Pulsed Holographic Interferometry to the Measurement
of Propagating Transverse Waves in Beams," Experimental Mechanics,
J. Soc. for Experimental Stress Analaysis, July 1971, pp. 309-314.

R. Aprahamian, D. A. Evensen, J. S. Mixson and J. L. Jacoby,
"Holographic Study of Propagating Transverse Waves in Plates,"
Experimental Mechanics, J. Soc. for Experimental Stress Analysis,
August 1971, pp. 357-362.

A. B. Witte, J. Fox, and H. Rungaldier, ''Localized Measurements of

Wake Density Fluctuations Using Pulsed Laser Holographic Interferometry,
(AIAA Paper No. 70-727) to appear in AIAA Journal. Paper presented

at the AIAA Reacting Turbulent Flows Conference, San Diego, CA,

June 17-18, 1970.

A. B. Witte, J. Fox, and H. Rungaldier, "Holographic Interferometry
Measurements of Mean and Localized Fluctuating Wake Density Field

for Cones Fired at Mach 6 in a Ballistic Range," (AIAA Paper No. 71-564)
to appear in AIAA Journal. Paper presented at the ATAA 4th Fluid

and Plasma Dynamics Conference, Palo Alto, CA, June 12-23, 1971.

A. E. H. Love, "On the Small Free Vibrations and Deformations of

Thin Elastic Shells,'" Phil. Trams., Roy. Soc. (London), Vol. 17A,
1888, pp. 491-546.

119



12. A. Kalnins and H. Kraus, "Effect of Transverse Shear and Rotary
Inertia on Vibration of Spherical Shells," Proc. 5th U.S. Nat'l.
Cong. Appl. Mech., A.S.M.E., 1966.

13. D. C. Gazis, "Three-Dimensional Investigation of the Propagation
of Waves in Hollow Circular Cylinders - I. Analytical Foundation,
II. Numerical Results," J. Acous. Soc. Amer. Vol. 31, 1959,
pp. 568-578.

14. H. Kraus, Thin Elastic Shells, Wiley and Sons, New York, 1967.

15. R. D. Mindlin, "Waves and Vibrations in Isotropic, Elastic Plates,"
in Structural Mechanics, Proc. 1lst Symp. Naval Struct. Mech.,
(Ed. J. N. Goodier and N. J. Hoff) Pergamon Press, 1960, pp. 199-232.

16. Erdelyi, et. al., Tables of Integral Transforms, Bateman Manuscript
Project, McGraw~Hill, 1954,

17. T. L. Geers and L. H. Sobel, "Analysis of Transient, Linear Wave
Propagation in Shells by the Finite Difference Method," NASA CR-1885,
1971.

18. J. S. Bendat and A. G. Piersol, Measurement and Analysis of Random
Data, Wiley & Sons, 1966.

19. E. B. Aleksandrov and A. M. Bonch-Bruevich, "Investigation of
Surface Strains by the Holographic Techniques," Soviet Physics,
Technical Physics, Vol. 12, No. 2, August, 1967, p. 258.

20. E. G. Lovell and I. K. McIvor, '"Nonlinear Response of a Cylindrical
Shell to an Impulsive Pressure,' Jour. Appl. Mech., Vol. 36, Tranms.
A.S.M.E., Series E, No. 2, June 1969, pp. 277-284.

21. J. N. Goodier and I. K. McIvor, '"The Elastic Cylindrical Shell
Under Nearly Uniform Radial Impulse," Jour. Appl. Mech., Vol. 31,
No. 2, Trans. A.S.M.E., Series E, June 1964, pp. 259-266.

22. R. W. Mortimer and J. F. Hoburg, "MCDIT 21 - A Computer Code for
One-Dimensional Elastic Wave Problems,' NASA CR-1306, April 1969.

23. W. E. Baker, W. C. L. Hu, and T. R. Jackson, "Elastic Response of
Thin Spherical Shells to Axi-symmetric Blast Loading," J. Appl.
Mech., Vol. 33, No. 4, Trans. A.S.M.E., Series E, December 1966,
pp. 800-806.

24. Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, 1965.

25. J. P. Raney and J. T. Howlett, '"Modal Solutions for Wave Propagation
in Finite Shells of Revolution," J. Spacecraft and Rockets, Vol. 8,
No. 6, June 1970, pp. 650-656.

120



26.

27.

28.

29.

30.

31.

32.

H. N. Abramson, H. J. Plass, and E. A. Ripperger, "Stress Wave
Propagation in Rods and Beams,' Advances Applied Mechanics, Vol.
5, 1958, pp. 111-194.

M. J. Sagartz and M. J. Forrestal, "Transient Stresses at a Clamped
Support of a Circular Cylindrical Shell," Trans. A.S.M.E. Jour.
Appl. Mech., June 1969, pp. 367-369.

A. E. Armenakas, D. C. Gazis, and G. Herrmann, Free Vibrations of
Circular Cylindrical Shells, Pergamon Press, 1969.

F. O. Hoese, C. G. Langner, and W. E. Baker, 'Simultaneous Initiation
over Large Areas of a Spray - Deposited Explosive,' Experimental
Mechanics, Jour. Soc. Exptl. Stress Analysis, Vol. 8, No. 9,
September 1968, pp. 392-397.

D. V. Keller and J. R. Penning, "Exploding Foils - The Production
of Plane Shock Waves and the Acceleration of Thin Plates,"
Exploding Wires, Vol. 2, Plenum Press, 1962, pp. 263-277.

R. Resnick and D. Halliday, Physics for Students of Science and
Engineering, Part II, Wiley & Sons, 2nd Edition, 1962, pp. 761-764.

R. C. O'Rourke, et al, '"Progress Report Impulsive Load Tests on Cylin-
drical Assemblies,'" Technical Report B-3147, EGG-1183-235 Edgerton,
Germeshausen and Greer, 24 September 1965.

121



APPENDIX A
THE EXPERIMENTAL LOADING TECHNIQUE

Introduction

In loading the shell(s), the objective was to produce a radial pressure
that was uniform around the circumference, concentrated at a single axial
station (x = 0) and of short duration in time (i.e., on the order of a few
microseconds). The loading was to generate axisymmetric, transverse waves
in the shell(s), which involve the radial displacement, w, and the longi-
tudinal displacement, u. From the standpoint of analysis, the desired
loading might be idealized as

P(X,e,t) = P(t)s(x) (a-1)

where 6(x) is a Dirac delta function in space and P(t) represents the time-
history of the loading pulse. In practice, P(t) can be approximated by

A sin2 %%- 0 <t<T

p(t) = (A-2)
0 T<t<w®

where T is the time duration of the pulse.

In launch vehicle applications, the loading function p(x,6,t) usually
results from pyrotechnic shock loads (i.e., explosives). Thus, one of the
first loading techniques investigated was a sprayed-on, light-sensitive
explosive (Ref. 29). Such explosives have been used previously in structural
applications, but we experienced two main difficulties with this technique:

(1) To cause detonation, high-intensity light (i.e., 7 x 106 1umens/in2)
must be applied over all areas covered by the explosive.

(2) A long turn-around time is required between tests, which involves
spraying the explosive, drying it, etc.

As a means of detonating the explosive simultaneously (around the cir-
cumference of the shell) an exploding wire (Ref. 30) was comnsidered. The
possibility of loading the shell directly (by an exploding wire) led in turn
to the development of the final loading device, which involves an electro-
magnetic impulse,
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The Repelling-Wire Loading Device

Consider two parallel, current—-carrying conductors, a distance d apart
(see Fig. A,1). If one conductor carries a current Il(t) in one direction,

Il(t) L
—_—

d
: ?
I,(t)

Figure A.l: Parallel, current-carrying conductors,
spaced a distance d apart

and the other conductor carries Iz(t) in the other direction, then the force
(per unit length) between the conductors is given by (Ref. 31)

HoliTy

F(t) = 2nd

(A-3)

where p, = 4ﬂXlO—7 in the rationalized MKS system. F(t) is force of magnetic
repulsion, since the interacting electromagnetic fields of the conductors
cause them to fly apart (when I} and I, are in opposite directions). If one
conductor is held fixed in space and the other is nestled against the
structure to be loaded, it is possible to generate pressure—time histories

of the desired magnitude and duration.

To initiate waves in our circular shell structures, a flat aluminum
conductor was formed in the shape of two concentric circles (see Fig. A.2).
The conductor did not form a complete circle, since it was necessary to
bring the current in at one point on the circle and take it out at another.
Thus, the circular conductor was made of one contilnuous piece of aluminum
(1/4—inch wide) looped back upon itself. A rubber tube was installed
between the conducting loops of aluminum; the tube and conductors were held
in place by a circular plexiglas disc (see Fig. A.3). The rubber tube was
pressurized to force the loading wire into close contact with the shell.

The generation of significant force pulses with a repelling wire device
requires very high electrical currents, e.g., on the order of 50,000 amps.
These currents are produced by charging a capacitor bank to several kilovolts,
and then discharging the capacitors through the repelling wire circuit. The
system can be adequately represented by a simple R-L-C circuit, as discussed
in Ref. 320 (A circuit diagram is given in Figure A.4).

123



Flat, Aluminum Strip
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1/16 in.

in Shell
Radius

out

Wire
Spacing

Figure A.2: Concentric current-carrying loop(s) used to load
the shell.
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Figure A.3: Schematic showing loading wire (aluminum strips)
design details
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R = Resistance, ohms

AVAVAVAV.

|_== Inductance, Henrys

-=—— Ignitron
Switch

-

c = Capacitance,
Farads Repelling-Wire
(Inside shell specimen)

Figure A.4: Schematic R-L-C circuit diagram representing
the loading device



Figure A.5(a): Current vs. time in repelling wire circuit
(charging voltage 12 kv, sweep speed 5 us/cm,
scale 50 mv/div).
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Figure A.5(b): Current vs. time in repelling wire circuit
(charging voltage 20 kv, sweep speed 5 us/cm,
scale 50 mv/div).

Current in the Repelling Wire Circuit

The response of the repelling-wire circuit is given by (Ref. 32)

A

I(t) = w—z e 3 singt (A-4)
where
2 i/2
1 R . .
w=\1c~ 2 is the circular frequency
41,
R . .
a= oL is the damping

and Vo is the initial charging voltage.

Equation (A-4) refers to an underdamped circuit, and a typical oscillo-
scope trace (current vs. time) for the experiment is given in Figure A.5.
The damping, R, was adjusted experimentally to yield the desired current-
time history. From the trace of Figure A.5, the circuit inductance L was
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calculated, using the values C = 7 x 10—6 farads (of the capacitor bank)
and R = .53 ohms (measured with a micro-ohmmeter), and w = 7/16x10~6 sec.
Then the current, I(t) is given by

1(t) = 5 e +0883t 4 (20) (A-5)

where t is in microseconds.

Calculation of the Force and Impulse
Using Equations (A-3) and (A-4), the force/length is given by

2x10” /12

F(t) = 3

~-10 /V \2
= 25%——— (—%) e 2at sinzwt (A-6)

The (impulse/unit length) that the wire exerts on the shell is obtained
by integration:

t..
final
Io = J; F(t)dt (A-7)

If is taken as 16 usec (the first half-period of the pulse), then

teinal
t = 16 usec

I = J.e‘zat sinwt dt = S[.409] (A-8)
o) o] w

If the upper limit is taken as infinity, (which>adds up all the ever-decreasing
pulses) then

t = o

_ 2at ., 2 1 _
I0 = J.e sin“wt dt = w[.475] (A-9)

Using the experimental values for the chargingvoltage,Vo, and the wire
spacing, d, we have
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<
|

= 19,000 volts

.45 in. = 1.14 x 10—2 meters
I = (1.9 x 104). 2(2 x 1077 ( 1 ) <.4o9)
° -6 2 x 10° ) 1.14 x 1073 \+473

I = {3.62 } -2 Newton-sec

[=7
1

o = .20 x 10 “meter (A-10)

where the two values given depend upon the upper limit taken for the integral
(see A-8 and A-9).

In English units, the specific impulse is

_ {2.06 -4 1b-sec _
1 - {2.39} x 107 HboSec (A-11)

using equation (A-10) and appropriate conversion factors.

Measurement of the Impulse Using A Ballistic Pendulum

An attempt was made to measure the specific impulse (I ) directly, using
a ballistic pendulum. For this purpose, the repelling wire was installed in
a calibration ring (see Figure A.6). The ring was of the same diameter,
material, and thickness as the shell to be tested. A small square hole was
cut through the wall of the calibration ring to accommodate a small ballistic
pendulum. The péendulum mass was a small square piece of aluminum, which was
suspended on long strings and then nestled against the repelling wire.

The capacitor bank was charged to a known voltage, V , and then the
switch was closed to "fire" the circuit. The deflection of the pendulum was
measured, and the impulse values (per unit length) were calculated. A plot
of I, (specific impulse) vs Vg (charging voltage) is given in Figure A.7,
for a wire spacing of d = .45 inches.

At 19KV, the measured impulse was

(1.) = 1.34 x 107 1bcsec

O meas in (A?lZ)

vs a calculated value of
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_ -4 1b-sec
(Io)calc =2.39 x 10 BT

from equation (A-11).

As things turned out, the experimental deflection data cpmpare more
favorably with the analysis when the larger value (2.39 x 10 ) dis used in
the computations. This led to the conclusion that the ballistic pendulum
technique does not correctly measure the specific impulse, I , imparted to
the shell. Apparently, the short pendulum mass does not resgond the same
as the continuous shell. This anomalous behavior is attributed to eddy
currents thought to be present in the continuous shell but largely
lacking in the pendulum mass.

Description of the Experimental Pulse in
a Form Convenient for Analysis

As presented in Section 3.0, it is convenient to represent the
applied loading, p(x, 6, t), as

. 2 Tt
p(x, 8, t) = A sin %T (A-13)
within the domain
e £ x< €
0 <6 <27 (A-14)
0<t ST

and zero everywhere else.

The x~domain (with ¢ = 1/8 of an inch)

-1/8 < x<1/8
in Equation (A-13) is based upon the fact that the repelling wire (which
loaded the shell) was a flat, aluminum strip, 1/4 of an inch wide. No
attempt was made to measure the variation of the applied pressure loading

in the x-direction. 1In fact, a more realistic approximation for the
x-dependence might be

p(x, 68, t) ~ cos? 4mx (A-15)

within -1/8 <x £1/8
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Similarly, the exact variation of the pressure in the circumferential
direction was not measured. The loading wire which applied the pressure
was not a complete circle around the circumference. It was necessary
to bend the wire (to accommodate electrical leads, etc.) in such a way
that a gap existed in the 6-direction. (For example, see Figure A.2.)

A more appropriate description of the loading (in the circumferential

direction) might thus be given by

p(x, 6, t) ~ Z An cos nd (A-16)

n=0

where the axi-symmetric term (Ao) is much larger than the circumferential
harmonics (An):

Ao >> An n=1,2,3, ....

Finally, the variation in time is more exactly given by Equation

(A-6)

F(t) = e—2at sin2 wt
where a = .0883 x lO6 sec_l
and w=.2x 106 sec_l

Thus it is apparent that the experimental loading approximates
(but by no means duplicates) the form given by Equation (A-13) and
used in the analysis.
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Figure A,6: Repelling Wire in Calibration Ring
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APPENDIX B

WAVES IN THE THIN-WALLED CYLINDER
(ADDITIONAL INTERFEROGRAMS)

This Appendix is meant to supplement Section 3.0 of the report, and
it contains results for several times, ti'
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150 usec.

Time t

Wave propagation in the thin-walled cylindrical shell.

Figure B.4
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Time t

Wave propagation in the thin-walled cylindrical shell.

Figure B.5:
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Figure B,6:

Wave propagation
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Time t

Wave propagation in the thin-walled cylindrical shell.

Figure B.7

142



APPENDIX C

WAVES REFLECTING FROM THE ENDS
OF THE SHELL

(ADDITIONAL INTERFEROGRAMS)

The interferograms presented in this appendix show transverse
waves reflecting from the ends of the thin cylindrical shell, and they
illustrate the structural behavior at various times, ti' These figures

are intended to supplement Figures 20, 22, and 24 in the main body of
the text, Section 3.0.
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Figure g.1:
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Figurec,2:
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Wave Propagating Toward the "Clamped" End (at the Left).

Figurec,3
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Wave Propagating toward the "Clamped" End (at the Left).
Time t = 75 usec.

FigureC,4
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Figurec,7:

Wave Propagating toward the Free End (at the Right).
Time t = 60 psec.
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Figure C.11: Wave Propagating Toward the Simply-Supported Boundary
(Vee-Groove) at the Left. Time t = 20 usec.
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Figure C.14: Wave Propagating Toward the Simply-Supported Boundary
(Vee-Groove) at the Left. Time t = 48 psec.
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Figure ¢,16: Wave Propagating Toward the Simply-Supported Boundary
(Vee-Groove) at the Left. Time t = 71 usec.
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APPENDIX D

WAVE PROPAGATION IN THE THICK-WALLED SHELL

(ADDITIONAL INTERFEROGRAMS)

This Appendix is meant to supplement the results given in
Section 4.0, "Tests on a Thick-Walled Cylinder."
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Figure D,3:

Wave propagation
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Figure D.4:

Wave propagation in the thick-walled

shell. Time t = 51 usec.




91

Figure p, 5:

Wave propagation in the thick-walled shell.

Time t = 53 usec.
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Time t = 110 usec.
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Figure D.11: Wave interacting with cut-outs. Thick-walled shell,
h = .25 inches. Time t = 40 usec.



APPENDIX E

WAVES PAST CUT-OUTS AND STIFFENERS

(ADDITIONAL INTERFEROGRAMS)

This Appendix is to supplement Section 4.0, in particular, 'Waves
in the Thin-Walled Cylinder."
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Figure E,.1:

Transverse Wave Interaction with a Circular Cut-QOut.
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Transverse Wave Interaction with a Circular Cut-Out.

Time t = 30 usec

Figure E.3
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Transverse Wave Interaction with a Circular Cut-Out.
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Figure E,9: Wave propagation past a square cut-out. Time t
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Figure E.10: Wave Interacting with the (Intermal) Stiffening Ring
(on the left, at x = -4 inches) and the Cut-Out (on
the right). Time t = 10 usec
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Figure

E.1l: Wave Interacting with the (Internal) Stiffening Ring (on
the left, at x = ~4 inches) and the Cut-Qut (on the right).
Time t = 21 usec
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Figure g,612: Wave Interacting with the (Internal) Stiffening Ring
(on the left, at x = -4 inches) and the Cut-Out (on
the right). Time t = 70 psec
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Figure E,13: Wave Interacting with the (Internal) Stiffening Ring (on

the left, at x =-4 inches) and the Cut-Out (on the right).
Time t = 80 psec
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APPENDIX F

WAVES IN CONICAL SHELLS

(ADDITIONAL INTERFEROGRAMS)

This Appendix is designed to supplement Section 5.0 of the main body
of the text.
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Figure F,3: Wave propagating in a thin-walled cone-cylinder. Time t = 12 usec.

Figure F.4: Wave propagating in a thin-walled cone-cylinder. Time t = 21 usec.



Figure F.5: Wave propagating in a thin-walled cone-cylinder. Time t = 25 usec.
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Figure p,6: Wave propagating in a thin-walled cone-cylinder. Time t = 28 usec,
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Figure F.8:

Wave propagating in thin-walled cone-cylinder.
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