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RELIABILITY ANALYSIS APPLIED TO STRUCTURAL TESTS
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SUMMARY

Although full-scale fatigue testing is now widely adopted in modern aircraft
design practice, the current fatigue-life assessment procedures do not utilise all of
the test data that is obtained, and they only partly take account of the probability of
failure of the structure during the period in which it is being progressively weakened
by the fatigue crack.

The present paper is concerned with the application of reliability theory to pre-
dict, from structural fatigue test data, the risk of failure of a structure under service
conditions because its load-carrying capability is progressively reduced by the exten-
sion of a fatigue crack.

The procedure is applicable to both safe-life and fail-safe structures and, for a
prescribed safety level, it will enable an inspection procedure to be planned or, if
inspection is not feasible, it will evaluate the life to replacement.

The theory has been further developed to cope with the case of structures with
initial cracks, such as can occur in modern high-strength materials which are suscep-
tible to the formation of small flaws during the production process.

The method has been applied to a structure of high-strength steel and the results
are compared with those obtained by the current life estimation procedures. This has
shown that the conventional methods can be unconservative in certain cases, depending
on the characteristics of the structure and the design operating conditions.

The suitability of the probabilistic approach to the interpretation of the results
from full-scale fatigue testing of aircraft structures is discussed and the assumptions
involved are examined.

INTRODUCTION

In recent years the development of high-performance aircraft using new high-
strength materials and more refined methods of stress analysis to satisfy the ultimate
strength requirement has led to the fatigue performance of aircraft structures becoming
a progressively more important factor.

275



Basic studies of the fatigue behaviour of complete structures, such as those
described in references 1 and 2, have shown that a full-scale fatigue test of the structure
under representative loading conditions is essential to identify the fatigue critical areas
and accurately represent the complex stress conditions under fatigue loading.

Although full-scale fatigue testing is now widely adopted in aircraft design practice,
this usually consists of applying to a single test specimen a loading sequence representing
the service load history.

Complete failure under the test load sequence or the appearance of a crack of a
particular length is defined as failure and the results are applied to determine a life under
the service loading conditions.

However, such an arbitrary criterion of failure does not consider the increasing
risk of static failure to which the structure is subjected as it is progressively weakened
by the growing fatigue crack. The actual risk of failure could therefore differ consider-
ably from that obtained by the currently used methods of life estimation.

Furthermore the difficulty of detecting very small cracks with current techniques,
together with the susceptibility of the modern high-strength materials to the formation of
flaws in production, may result in some probability of cracks existing in airframes prior
to entering service.

This paper is concerned with applying reliability analysis to calculate the probability
of survival as a function of life from the results of the full-scale fatigue test, including the
case of structures which may be initially cracked.

NOMENCLATURE

Footnotes for the nomenclature are found at the end of the list.

a crack length (this may refer to crack length at surface, crack depth, or
some other specified dimension of crack front)

ap crack length for complete collapse under mean load (or crack length at
which slope of crack propagation curve becomes infinite)

ag length of the largest crack that will not be detected during production
process

ap length of largest crack that will not be detected during in-service
inspections
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I’O}lD,lC
7N;zn
L(n)

L(n),Lg(n),
LI(n) ’ LI *(n) ’

LSL(n),Ls, “_(n)

Lg(h)

length of initial crack in any structure which is cracked at beginning of
its service life

probability of variate t exceeding some particular value tj

period of operation (or service life) to extend a crack to length ¢ in
structure which contained initial crack of length 2., hz =1 - n¢

relative crack length a/aF (¢ is dimensionless and has same value
whether ""a" refers to crack length at surface or to crack depth)

relative crack lengths corresponding to ap, ap, a respectively

e

median values of distributions of ! atlife N and relative life n

probability of survival to life n (also called the survivorship function)

survivorship functions at relative life n, corresponding to risk func-
tions, rp(n), rg(n), ryn), rI*(n), rgr,(n), and rs,“_(n),

respectively

survivorship function at relative service life h corresponding to risk
function rs(h) for structures with initial crack

life of structure expressed as number of load applications or hours of

operation
life to first formation of fatigue crack (also called life to inital failure)

service life of structure which was initially cracked expressed as num-
ber of load applications or hours of operation

relative service life of structure which was initially cracked, H/Nj
life to produce crack length ! in any structure

median of the distribution of Nj

relative life, N/Nj
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n; relative life to crack length ¢ for any structure

n g life of structure which has life z times median life at same crack
length

np relative life to complete collapse of structure under mean load

Ng,Np,n, relative lives to produce crack lengths of lgs lp, and [, respectively

ﬁl,ﬁF,ﬁo,ﬁD,ﬁc medians of distributions of n;, ng, n,, np, and ng, respectively
ng relative life corresponding to particular life Ng
Ny, estimated mean fatigue life obtained from structural fatigue test

nI(l)’nI(Z)’nI(m) relative lives to 1st, 2d, and mth inspections carried out to detect
fatigue cracks

PRIMR probability density function of residual strength R with mean
value MR
Tpx(xl) probability density function of variate x at particular value X1
TPx(xl) probability distribution of variate x at particular value X1,

Py(xq) = Pr{x = x1>

P(N) probability of failure up to life N
R{l) static strength of structure containing fatigue crack of relative length ¢
r(N) probability of failure in remaining fleet at Nth load application or risk

of failure at life N
r(n) risk of failure at relative life n for unit change in z

r(h) risk of failure after period of operation h in population of structures
which contain initial cracks for unit change in z
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r(hs | o)

r(hs | pc))

rg(ng)

rs,u(ns)

re(ng)

rpr(ns)
rgL(n)

*rl(ns;lD,nI)

Frpx (ng3lpymy)

Trl*(ns;lD,ns)

risk of failure after a period of operation hg in population of struc-
tures all of which contain initial crack of length I,

risk of failure after period of operation hg in population of structures
all of which contain initial cracks with probability distribution of
initial crack lengths given by p{l¢)

risk of static fracture due to fatigue at particular life ng, defined as
failure at life ng from fatigue crack in structure which is still able
to sustain applied service load exceeding mean load

risk of static fracture due to fatigue at life ng, assuming no variability
in residual static strength of structures all containing cracks of given
length

risk of fatigue fracture at life ng, defined as failure at life ng due to
fatigue crack reaching such extent that structure is unable to sustain
mean load

the total risk of fatigue failure at life ng, rpr(ng) = rg(ng) + r p(ng)

risk of failure at life n as calculated by conventional safe-life
procedure

risk of fatigue failure at life ng in population of structures which have
all been previously inspected at life ng with inspection procedure
which detects crack lengths greater than Ip

risk of fatigue failure at life ng when cracks of length exceeding (p
are detected by inspection at ny and are then repaired and structures
returned to service

risk of fatigue failure at life ng with continuous inspection procedure

by which cracks with length exceeding lp are detected and are then
repaired and structures returned to service
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1:I'I*(hs I p(lc)iipohg)

i rI*(ns;lD,rmaX)

Trl*(hs | P(lc)5lD’rmax)

f

D (AL(m)3LDoN1(m-1)

risk of fatigue failure after period of operation hg in
population of structures all initially cracked with dis-
tribution of initial crack lengths given by p(lc) and
continuously inspected to detect crack lengths
exceeding ([p; after cracks are detected they are
repaired and structures returned to service

risk of fatigue failure at life ng with inspection proce-
dure detecting crack lengths greater than ip at
inspection intervals designed to limit risk below some
specified value rpay; after cracks are detected they
are repaired and structures returned to service

risk of fatigue failure after period of operation hg in
population of structures all initially cracked with dis-
tribution of initial crack lengths given by p(c) and
inspected to detect crack lengths exceeding Ip at
inspection intervals designed to limit risk below some
specified value rp,,.; after cracks are detected they
are repaired and structures returned to service

probability of detecting cracks by inspection at life
N(m) in population of structures previously
inspected at N(m-1) with an inspection procedure
detecting crack lengths exceeding Ip; after cracks
are detected they are repaired and structures
returned to service

jf'—'D*(hI(m) | PCe)siDshr(m- 1)) probability of detecting cracks by inspection after period

of operation hi(m) in population of structures all
initially cracked with distribution of initial crack
lengths given by p(l¢) and previously inspected at
hI(m—l) to detect crack lengths exceeding ip; after
cracks are detected they are repaired and structures
returned to service

S applied service load

SUlt ultimate design load

280



mean load on structure
gust velocity
relative service load, S/Syit

general symbols for mean and variance of population; used with suffix
to denote variate

mean strength (failing load) of uncracked structures
mean strength of structures containing cracks of length

median crack propagation curve for population of structures, f’n = g(ﬁ)

mean residual strength expressed nondimensionally as function of crack

length 2, “B9_ 40
Ko

relative strength of any structure containing crack length {,

x(1) = BL)L

HR(Z)

comparative life or life factor of structure with life to crack length
Ni,z .z
of z times median life to same crack length, z = ﬁ, or —
l n

TWhere no confusion can arise subscript for variate may be omitted.
TActual dimension of detectable crack ap may be specified instead of relative

crack length Ip.
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INTERPRETATION OF FATIGUE TEST RESULTS

With the present practice of fatigue certification by full-scale testing, the data pro-
vided by the test specimen representing the median structure of the population includes

(1) Location of the fatigue critical areas

(2) The median crack propagation curve

(3) The life to final failure under the test load sequence

(4) Residual strength data from static failure of the cracked specimen under the test
load sequence, which include the failing load and the extent of fatigue cracking

CURRENT APPROACHES TO SAFETY IN FATIGUE

The current practice is to obtain from these results a mean fatigue life Ni,
corresponding to failure at some arbitrarily selected point on the crack propagation
curve.

For a safe-life structure, ﬁL may be the life at which the specimen broke in the
fatigue test or the life at which it would be estimated to fail under some specified load
such as limit load. For a fail-safe structure, Ny, is often taken to be the test life at
which the fatigue failure became readily detectable by the inspection procedures that
would be used in service.

In order to allow for variability in fatigue performance for either structure, the
estimated mean life ﬁL is divided by a scatter factor to obtain a safe operating period
for replacement or inspection of the structure. The scatter factor is obtained by using an
assumed probability distribution of fatigue life with an acceptable probability of failure.

DIFFICULTY WITH CURRENT METHODS

The difficulty with the previously discussed procedure is that although the safe life
to replacement or inspection is based on failure at a given point on the crack growth
curve, there is, in service, an increasing risk of failure as the fatigue crack extends and
the structure may fail at any stage of the crack propagation.

This difficulty is well illustrated by the measurement of the collapse load of Mustang
wings that were fatigue tested to destruction under a random load sequence (ref. 1). In
figure 29 of reference 1, the relative frequency distribution is presented for the load at
failure as determined by experiment. For the twelve structures tested the results indicate
a wide range in the failing load from 30 percent to 60 percent of the ultimate load of the
virgin structure. This means that for a given life the safety level in service may be sig-
nificantly different from that indicated by the fatigue test result.
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Clearly the effect will depend on the shape of the crack growth curve and on the
service load spectrum; however to investigate the question further an example of an
ultrahigh-strength steel welded structure has been taken. The crack propagation and
residual strength curves of this structure are shown in figure 1 and indicate a reasonably
typical safe-life construction in that once a fatigue crack has developed there is a very
marked reduction in strength which leads rapidly to failure.

The probability of survival has been calculated for this structure by the conventional
method, taking two rather extreme cases for the definition of failure as follows:

(1) Failure occurs at the limit load. This is a relatively high value of the load,
being near the upper limit of loads at which failure would be expected in service.
ﬁL = ﬁSL'

(2) Failure occurs at the mean load. This is the lowest load at which service
failure can occur and it will give a lower limit to the definition of failing load. Ny, = ﬁF.

The probabilities of survival corresponding to definitions (1) and (2), Lgy, and
Ly, have been evaluated for the two load spectra shown in figure 2 by a log normal dis-
tribution of fatigue life.

If N; is the fatigue life to any crack length [ and ﬁl is the median value, then

N;
N;

z
has a logarithmic normal distribution and
LpM = { b0 @ (1)
N/NF z
o0
L= p@ & &)
sL N/N A

sL

The results are plotted for the manoeuvre load spectrum and the gust load spectrum
in figures 3 and 4, respectively. For both spectra, Ly is considerably more than Lgj;
this indicates that the point on the crack growth curve at which failure is defined will
have a significant effect on the safety level.

RELIABILITY ANALYSIS OF FATIGUE FAILURE

Consider a more representative model of the fatigue process in which a structure
progressively weakened by the fatigue crack may be broken by a service load at any stage
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of the crack propagation. The structure may survive this risk and continue in service
until the fatigue crack has reached the stage where the crack propagation curve is rising
practically vertical. The residual strength of the structure then drops rapidly until it
reaches the mean load when failure must ensue. This is essentially a case where failure
occurs by the fatigue process alone and in this paper the failure is termed "fatigue
fracture."

The risk of failure in this mode has been considered in the section "Interpretation
of Fatigue Test Results' where the probability of survival Lp(N) at the life N has
been derived in equation (1) as

o0
LpM) = | p,0)
F N/Np 2
and the corresponding risk of failure is readily obtained as

p, N/ Ng)

p,(z) dz

rpN) = — (3)

S.N/ﬁp

In addition to the risk due to fatigue fracture, there is the risk of failure due to
chance occurrence of a service load on a structure weakened by fatigue cracking although
the structure is still able to maintain the steady load. Current methods fail to take full
account of this risk which is called herein the '"risk of static fracture due to fatigue' and
denoted as rg(N).

The total probability of fatigue failure at N is therefore given by
I'FT(N) = rS(N) + rF(N) (4)

If it is desired to indicate a specified value of the service life, Ng may be used rather
than N; therefore, an alternative form of equation (4) is

rpr(Ng) = rg(Ng) + rg(Ng)
RELIABILITY ANALYSIS WITH VARIABILITY IN FATIGUE STRENGTH

First consider the risk of static fracture due to fatigue in the simplified case where
there is no variability in static strength but a characteristic distribution of fatigue life at
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any given crack length. Next consider the probability of failure in the fleet at the Nth
load cycle (i.e., the risk of failure at life N) of structures all containing cracks of the
same crack length a which may be expressed nondimensionally in terms of the crack
length ap at which the structure would fail under the mean load; thatis, l=2a /aF-

Let Sy denote the Nth service load and R(l) the residual strength of structures
with crack length I. R(l) is a decreasing function of ¢ and may be expressed non-
dimensionally in terms of the ultimate strength p, of an uncracked structure as

o= 60 )

Hence

Pr {Failure at life N | crack length z} - PE(N/2)
- Pr{SN > R(@
- Pr {sN > uoq;(z%
= Fg(uoslt)) (©)

where Fg(s) is the probability of exceeding any service load s. The total probability
of failure in the fleet at life N (i.e., the risk of failure at N) is then obtained by
summing over all crack lengths from [ = 0 to 1=1

1
re,u® = | ROV B0

1
- So Fg (oo[t])p@) (7)

where rs,p.(N) denotes the risk of static fracture at the life N assuming that there is
no variability in the static strength at a given crack length.

The probability density function p(l) of the crack length I at any given life N
is not known but this difficulty is overcome by transposing the variate from crack length
at a given life to life at a given crack length. This is done by using the model of the
fatigue process shown in figure 5 in which it is assumed that for any structure the life N;
bears a constant ratio z to the median life N; at the same crack length I,

~

Nl = ZNZ
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or by expressing life nondimensionally in terms of the median life to initial failure ﬁi

N ~

~

Nj

where z is constant for any structure and is called the life factor. By considering the
shaded element in figure 5 it can be seen that structures with crack lengths between 1
and ! +d at N have initial lives between n; and nj +dn;. Hence

p) A = p(n{) dn;

= p(z) dz

N

since z = ~—1 This expression neglects the effect on the probability density function of
nj

nj of the very few structures that have failed between nj and ng.

If the equation of the median crack propagation curve

! =g(ly) = g(n/z) (9)

is used, equation (7) can now be transformed by changing the variable of crack length ¢
to one of fatigue life represented by the life factor z. Taking z=n at 1=0 and

z=2 at = 1, equation (7) can now be written as

rg ,(n) = 5: fi Fg {i&(g[-'z-‘])} p(z) dz (10)

ng
RELIABILITY ANALYSIS WITH VARIABILITY IN FATIGUE STRENGTH
AND STATIC STRENGTH

In the preceding section it was assumed that there was no variability in the residual
strength property, whereas, in general, at any crack length [, the residual strength R(Z)

will have a probability distribution about a mean value p.R(l). If the dimensionless
R@)
kR

all values of crack length, then

variate x(I) = is assumed to have a characteristic distribution which applies for

R() = pp(@) x(@)
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and ppn(l) can be expressed as a decreasing function of 1 from equation (5) as
R

RO) = oo x()

This is analogous to equation (6), and integrating over all crack lengths gives as before

re(n | x) = S: . Fs§<u0¢(g[r—zl]>} p(z) dz (11)

To obtain the total risk of static fracture at n, integrate over all values of x() from
0 to « to get

rg(m) = S: S: - Fs%uocp(g[‘z‘])}p(z) p(x) dz dx (12)

This equation is the general expression for the risk of static fracture by fatigue at
life n. As stated earlier an alternative expression using ng instead of n may be
adopted where the risk at a specified value ng of the service life is desired. This

expression is

rg(ng) = S'O“’ S:S o
s

/AF

Fs%ﬂ&@f‘;ﬂ)} p(z) p(x) dz dx

PROBABILITY DISTRIBUTION OF THE LOAD AT FAILURE

It is of interest to consider the probability distribution of the load at failure since
this indicates how the risk of failure is being affected by the changing residual strength of
aircraft in the fleet.

The condition for investigation is the probability that at a given life ng structures
will fail with a residual strength less than some specified value R,

Requiring
R =R,
or
X = _R'_ = Eg
KR HR

2817



then substituting

IJ'R = u'o¢(l)
X = L
Ho® ()
or
X
X = _.9_
o)
where
RO
Xo = E

and transposing the variate from crack length ¢ to the life factor =z give

From equation (11)

X =

Pr {Static fracture at ng with the collapse load = RO}
rs{ns ' R = “oxo}
Ng
Ng =Xo /9 {g "z_} n
[ = P {risoo(g22])} p60p(e) o az (19

ns/ﬁF x=0

where
R
=_9
Xg = ™
Since the total probability of static fracture due to fatigue at ng is given by
rg(ng), the required probability distribution for the load at failure at a specified life ng
is as follows:
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Pr {Failing load = X, at life ns}

_ S,TS/H F s o{o[33) Fofruos(df32])} pt o) ax 0o ”

rg(ng)

APPLICATION OF THE METHOD

To illustrate the method of reliability analysis and to compare the results according
to the various risk functions in equations (2), (1), (10), and (12), the risk of failure has
been calculated for a nonredundant high-strength steel structure. Sample test data for
the structure are shown in figure 1.

The crack propagation curve has been determined from the results of a representa-
tive full-scale fatigue test in which fractographic examination of the fracture surface of
the critical failures has been used to determine the crack dimensions at various stages
of the test life. Although the curve in figure 1 is based on the crack length at the surface

a

of the material, use of the nondimensional relative crack length 1 = ap enables it to

represent also the crack depth or any other leading dimension of the crack front.
v
The residual strength curve —“—R = ¢(l) has been estimated from the relationship
0

1=

based on fracture mechanics theory, where A is a constant depending pri-

i
Ho
marily on the fracture toughness of the material and the shape of the crack front.

The variability in residual strength about the mean value pr was assumed to
follow the three parameter Weibull distribution, and with representative data on small
steel specimens (ref. 3), the following expression was obtained for the probability distri-

bution of the relative residual strength x = E:

2.55
cpefB s L1 exp o[ %0824
Px(x) = Pr{uR ‘% 1 - exp {1.017 - 0.824}

The crack length at failure under limit load, according to the relevant fatigue test
data used, is approximately 0.08 in., giving a crack depth of 0.04 in. for a semicircular
crack.

The distribution of fatigue life about the median value was assumed to be log normal

with variance afogN of 0.02.
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Two service load spectra were assumed as shown in figure 2. Spectrum I is a
spectrum of manoeuvre load derived from data on U.S. jet fighter operations in refer-
ence 4. A median life to initial failure of 2000 hours was assumed to correspond to the
fatigue test result, and an ultimate load factor of 10 was assumed, which gives a mean
load of 10 percent of the design ultimate.

Spectrum II was based on thunderstorm gust load data from reference 5 giving the
probability of exceeding a gust load U as F(U) = e-0-197U Expressing load non-
dimensionally as

where S is the load due to a gust velocity U and Syj¢ is the load corresponding to
the ultimate design gust velocity of 99 fps with the mean load of the aircraft assumed to
be 20 percent of the design ultimate, gives the following equation for the gust load
spectrum:

F(Y) = e 24:4(Y-0.2)

A life to initial failure of 20 000 hours was assumed as typical of this type of spectrum.

The four different risk functions of equations (1), (2), (10), and (12) have been
evaluated by using numerical analysis techniques (ref. 6) for both spectra I and II. The
corresponding probabilities of survival to life n have been calculated from the relation-

- d
ship L{n) =e j({)lr(t) '

respectively.

and are plotted for spectrum I and spectrum II in figures 3 and 4,

These results show that conventional safe-life estimates as represented by Lgr,
(LgL, corresponds to static fracture of a fatigue cracked structure under limit load and
is in accordance with current life estimation procedures) can be inaccurate since they
fail to take proper account of the risk of static fracture of the structure weakened by the
growing fatigue crack.

Comparison of Lg and Ls, n indicates that the variability in residual strength
has a significant effect on the probability of survival (or failure). The probability of
survival Lp refers to failure due to the fatigue fracture extending to the stage where the
structure is not able to sustain the steady mean load. The risk from this type of failure is
often small but as mentioned previously it must be included in the total risk.
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RISK OF FAILURE IN STRUCTURES INITIALLY CRACKED

With the high-strength materials of low ductility now being introduced into aircraft
construction there is a difficulty of detecting very small cracks with current nondestruc-
tive inspection (NDI) techniques. This factor together with the susceptibility of these
high-strength materials to the formation of flaws in the production process may result in
a probability of cracks existing in a number of aircraft structures before they go into
service.

STRUCTURES WITH INITIAL CRACKS OF CONSTANT LENGTH

In the most adverse case, all structures are assumed to be cracked in the fatigue
critical areas to a relative crack length [, which corresponds to the maximum length of
crack that will escape detection. According to this assumption all structures start their
service life with a crack of length [, present.

In the model of the fatigue process illustrated in figure 5, all the crack propagation
curves can be regarded as radiating from a single point or pole P. If all structures are
initially cracked to the same length [, this corresponds to shifting the pole to the
point P' with coordinates (ﬁo,lo) as shown in figure 6. Each structure now starts its
service life h at the life n, which would have produced a fatigue crack of length I,
in this particular structure. This infers that the initial crack or defect induces the same
stress field as a fatigue crack of the same dimensions in the area being considered. It
may be regarded as a fair assumption since under repeated loading the defect will rapidly
initiate a fatigue crack which can be expected to give rise to a similar stress field as that
which would result if the crack had been produced by fatigue alone.

Referring to figure 6 shows that for any structure which has a life factor z = nl/ﬁ'l,
the service life h; to any crack length ! is given by

hy =n; - ng =zf - zfi; = z(ﬂ'l - ﬁo)
For the median values,

Hl =1i; - fi,
Hence

hl = Zﬁl (15)
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Therefore, the same model of the crack propagation process applies as for structures
without initial cracks except that the origin is shifted to (ﬁo,lo), the service life is given
by hg = (ng - ng) = z(ﬁs - ﬁo)= zﬁs, and the equation of the median crack propagation
curve is transformed to

- gty + 7o) = e (L + iy (16)

The risk of failure is therefore obtained in the same way as for structures initially
uncracked, and by integrating over crack lengths from 1 =1, to =1, the following
equation is obtained from equation (7):

1
re u(n | L) = Sz Fs{uocp@ () an

0

Hence if the variable is changed from one of crack length to one of fatigue life at a
given crack length as represented by the life factor z, the following equation is obtained
from equations (17) and (16):

rg ;u(hg ]lo) = S‘s/ frp- ﬁo Fs{uod)[g(h + no):]}p(z) dz (18)

where rg, “(hs | lo) denotes the risk of failure at a particular operating life hg of
structures having initial cracks of length !, and having no variability in residual
strength.

The corresponding expression when there is a probability distribution of residual
strength x given by p(x) can be derived from equation (18) as

ro(hs | Lo) = §: g: g, Fsétw[ (3 +no)]}p(z>p(x> dz o (19)
.

where rg(hg | lg) denotes the risk of failure at service life hg for structures which
are all cracked to a length ¢, at the start of their service life.

The risk of failure by fatigue fracture for this case follows from the expression
given in equation (3) and is
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h
pz(r_%_
rpths | o) = —m— b “°> (20)

pz(z) dz
hs/ nF n0> z

The corresponding probabilities of survival can then be calculated as before.
STRUCTURES WITH INITIAL CRACKS OF VARIOUS LENGTHS

In the general case the population of structures will contain cracks ranging from
zero length up to the detectable length I, and it can be assumed that there is a proba-
bility of a structure containing a crack of length I, between 0 and lp as given by
the probability density function p(lc)-

Consider the fraction of the population p(l¢) d/¢ which has initial crack lengths
between I, and I + dc. The probability of failure at hg for these structures is
given by r(hs| I¢) according to equation (19). Their contribution to the total risk of
failure in the population at service life hg 1is therefore,

= r(hg | Ic) P(c) dc (21)
Since hg is the same for all structures whatever their initial crack length I, th

total risk of failure for all structures at service life hg may be calculated by 1ntegrat1ng
equation (21) over all values of initial crack length from I =0 to lc =1, Then

=l
rs(hs | p(lC)) = SZC_OO r(hs | Zc) pc) dc (22)
o=

As was done in the derivation of rg(hg |p) in equation (19), the variable of initial
crack length I, is expressed as the corresponding life fic on the median crack propa-
gation curve, with ¢ = g(fi) and

p(lc) dc = P(ﬁc) dic

Then, since fic =fi; when I, =0 and fic = fi;, when I =[,, the following equa-
tion is obtained from equation (22) by substituting r(hg | Ic) from equation (19):

rg(hs | p( lc) S‘nc—no S‘ S‘Z_h /nF nc Fs%ﬂo‘b[ (h +nc>]} p(z) p(x) pfic) dx dz dfic (23)
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Similarly the risk of fatigue fracture can be derived from equation (20) as

S i o CLLC L
F\'s ¢ fig=1 f pz(z)p(ﬁc>dzdﬁc
fic hs/(ﬁF c)

(24)

PROBABILITY DISTRIBUTION OF THE FAILING LOAD

The probability distribution of the failing load can be determined for the case of
structures with initial cracks by a simple extension of the method developed in the sec-
tion ""Probability Distribution of the Load at Failure."

If one is interested in structures with residual strength R less than some speci-
fied value R, then as in the aforementioned section this corresponds to structures with

X R
oy foes) o

Consider structures with initial cracks of length I, corresponding to a life of fic
on the median crack propagation curve. Now from equation (16)

ﬁ—oR= ¢@) = ¢ g(]—} + ﬁcﬂ

Hence substituting this equality into equation (25) gives the following equation:

A

X

Xo (26)
¢[g (l% + Hc)]

Thus, for structures with initial cracks of length lc it follows from equation (19) that

the probability of failure with residual strength T?’— less than some given fraction X0
o]

A

X

of the virgin strength is given by

rs{ls i:;u Xo} Ss/ nF nc yXO/p[ mC:l i %#O(p[ <h ' ncﬂ}p(X)p(Z) o (27)

O
The total risk of static fracture due to fatigue at hg is givenby rg(hg|Ic) and
therefore it follows that
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Pr {Failing load = ugxo at life hs}

S«/é _+n s%uod{(h +nc>]}p(X)p(Z)dxdz

rg(hs | I¢)

2
hs/ fip-fic) 28)

Where the population of structures have initial cracks with a probability distribution of
crack length represented by p(lc) it follows from equation (23) that the probability of
failure with relative strength R/ uRr less than x, is given by an analogous expression
to equation (27) as follows

rs{hs p(lc) } Snl Shs/ nF nc XO/I’ "’“C] Fs&‘“od"ig(% N ﬁc)]} p(x) p(z) p(ﬁc) dx dz dii, (29)

REXgu
If equation (29) is divided by rs(hs | p(lc)), the total risk of static fracture due to
fatigue at hg, the probability that R =xyuy at hg is obtained as follows:

{ p(lc)} g::) S;: J(Ep-ic) S: o/b[g@zﬁmc)] F S{‘“o‘?ﬁ%(}% + ﬁc)jl} p(x) p(z) p(fic) dx dz dfi,
Py (hs =

rg(hs | P(lc)

(30)

Xo

APPLICATION

The foregoing theory has been applied to calculate the risk of failure for the
ultrahigh-strength steel structures considered previously for which the crack propagation
and residual strength curves are shown in figure 1. The load spectrum used in the calcu-
lations was the manoeuvre load spectrum shown in figure 2 as spectrum L

For the case of structures all ‘initia,lly cracked to the same extent, the relative
crack length I, has been taken as 0.075 from a consideration of the crack detection
capability of the NDI techniques used in production.

For the case where it is assumed that there is a continuous probability distribution
of initial crack size, an exponential distribution of initial crack length [, has been
adopted with the probability density function

-20.61¢

p(lc) = 26.2¢ (0 = 1¢ =0.075) (31)
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The exponential distribution has been adopted since it follows from the physically
realistic assumption that the occurrence of a defect in a small element of the material
follows a uniform probability law over the whole volume.

The detectable crack length Ip for in-service inspections has been taken as 0.15.

As stated in the section "Structures With Initial Cracks of Constant Length," the
theory assumes that the initial defect produces the same stress field as a fatigue crack
the same size as the defect. In applying fracture mechanics theory to deduce crack
propagation and residual strength characteristics, the depth of the crack is the important
parameter; whereas for crack detection, the length of the crack exposed at the surface is
the controlling factor. However, with the nondimensional relative crack length

a
1= (32)
ap
it is immaterial whether crack length or crack depth is taken since both yield the same
value of [, provided the shape of the crack front does not change markedly as the crack
propagates.

In establishing the detectable relative crack lengths I, and 1p, it has been
assumed that the crack length exposed at the surface which will be detected by the best
available methods is 0.02 inch for production-line conditions and 0.04 inch for in-service
inspections. Assuming a semicircular crack front, which is often characteristic of
cracks originating at a surface, gives corresponding crack depths of 0.01 and
0.02 inch.

Avalue of ap of 0.132 inch was obtained from typical crack propagation data by
determining the crack depth at which the crack propagation curve becomes vertical since
this is virtually equivalent to failure at mean load. The relative crack lengths 5 and
Ip given previously were thus obtained from equation (32).

With these input data, the risk functions rg*h 1 0.01") and rg *(h | p(lc)> for the
two cases of constant initial crack depth of 0.075 and an exponential distribution of initial
crack depths have been evaluated from equations (19) and (23) and are plotted in figures 7
and 9, respectively. The corresponding survivorship functions are plotted in figures 8
and 10. The probability distribution of the failing load at various service lives hg has
been calculated from equation (28) and the results are presented in figure 11.

It is apparent that the presence of initial cracks greatly increases the risk of failure
at a given life. Also the risk of failure at the beginning of the service life is finite in this
case as distinct from the case where all structures are without cracks initially. This
arises because with all structures cracked initially every member of the fleet is exposed
to the risk of static fracture from the outset.
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SAFETY BY INSPECTION

As inspection techniques become more highly developed, increasing applications
are likely to be found in monitoring structural safety. However, inspections of a complex
aircraft structure are both time consuming and costly, and the efficient planning of
inspection intervals is becoming an essential requirement. The reliability approach by
calculating the risk of failure as a function of life enables the effect of any inspection pro-
cedure to be investigated and suitable inspection intervals to be planned.

CONTINUOUS INSPECTION

The optimum effect of inspection is, of course, obtained when every structure is
inspected continuously. As soon as cracks reach the detectable length I, remedial
action is taken and therefore the risk of fatigue fracture is eliminated.

The risk of failure is then equal to the risk of static fracture by fatigue which is
determined by calculating the probability of failure for structures with crack lengths
between ¢ =0 and ! =Ip.

If structures are repaired and replaced when cracks are detected, there is no

reduction in size of the fleet and the risk of failure at any life ng is obtained by inte-
n
grating in equation (12) between the limits z = -ﬁi to z =ng since this corresponds to
D
integrating over crack lengths between 0 and Ilp. (See fig. 5.)

Hence the risk of failure for "continuous inspection with replacement' is given by

Il [+ o}
r*(ngilD,Ns) = gn: i § Fs§u0¢<g[1;§])} p() p(z) dx dz (33)

The corresponding result for structures which are initially cracked is found in a
similar manner from equation (20); that is,

ctetatatond- (500 [ g, s rlpommsg 08

When cracked structures are not repaired but are taken out of service after detec-
tion, there is a continual depletion of the population since at life ng all structures which
have a life less than ng at crack length Ip are eliminated by inspection; that is, the

distribution of fatigue life p(z) is truncatedat z = _g_s_ and hence the proportion of the

population remaining at life ng is given by fn: /ﬁD p(z) dz.
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Therefore, for "inspection without replacement" the risk of failure at ng (which
is the probability of failure in the fleet remaining at ng) is derived from equation (33) as

*
r; (ng;lp,ng)
ri(ng;Ip,ng) = — (35)

(" b e
ng/fip

In a similar way the risk of failure for inspection without replacement in a population of
structures which are initially cracked follows from equation (34) as

rr(hs | p(lc);lp,hs)

riths | Pc)slphg) = - (36)

=fig o
p(z) p{ii;) dz df
fip=f; ghs/( (%) ¢

ﬁD‘ﬁc)
INSPECTION FOR LIMITED RISK

In practice, it is usually not economic or even feasible to inspect structures con-
tinuously but inspection is carried out at predetermined intervals. A method is proposed
for the efficient planning of inspection intervals in which, when the risk of static fracture
by fatigue reaches a prescribed upper limit, an inspection is carried out. The risk of
failure is reduced at this stage to the same value as the risk of failure with continuous
inspection, but it rises as the life continues until it again reaches the prescribed risk
limit when a second inspection is carried out.

Repeated application of this process ensures that each inspection is equally effective
in maintaining the risk of failure below a prescribed upper limit. The application of the
procedure is shown in a subsequent section, and the expression for the risk function is
presented in the appendix.

CRACK DETECTION RATE

It is important to determine the probability of cracks being detected at each inspec-
tion since this gives the fraction of the fleet that can be expected to require repair and
modification before continuing in service.

Reference to the model of the fatigue process in figure 5 shows that in the first
inspection at life ny(1) all structures with crack lengths between 1 = lp and =1 are

n
eliminated. These correspond to structures which have values of z between z = —ém
D
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n

and z = —f—(-ll Hence the fraction of the population in which cracks are expected to be
ng

revealed at the first inspection is given by

ny(1)/fip
rp’ (ng(1)itD) = Snl(l) g p(z) dz (37)

Or in general for the mth inspection, the probability of cracks being detected in a struc-
ture is given by

* n ﬁD
rp (M(m)ilDsPI(m-1)) = gn;((;nz/l \ /i p(z) dz (38)

where rD*(nI(m);lD’nI(m-l)) denotes the probability of finding cracks at the mth
inspection at life myy,) following the previous inspection at life np(y-3). Itis
assumed that cracks with a length greater than Ip will be detected and that structures
in which cracks have been detected will be repaired and returned to service.

For structures with initial crack lengths 1 =1 it can be seen by reference to
figure 6 that the probability of detecting cracks is

I ﬁD-ﬁ'
rD*(hI(m) |lo;lD,hI(m_1)) = S‘:I((zz/l ()/(F,D(j)ﬁo) p(z) dz (39)

where, with a similar notation as for equation (38), rD*(hI(m) | lo§lD’hI(m-1)) denotes
the probability of detection at the mth inspection after a period of operation in service of
hI(m)’ following a previous inspection at hI(m—l)' It is again assumed that all cracks
with a length exceeding Ip will be detected and fip and fi; denote the lives on the
median crack propagation curve corresponding to crack lengths of Ip and [,.

If the population of structures has a continuous distribution p(l;) of initial crack
lengths between I, =0 and I, =1, the probability of detection can be derived from
equation (39) by integrating over the initial crack lengths from I, =0 to I, =1,

S‘hl(m)/ (ﬁD‘ﬁc)

. p(@)p(c) dz dI
hI(m-l)/ (nD'nc) e ¢

I‘D*(hl(m) |p(lc);lD7hI(m'1)) = S;o

or
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Shl(m)/ (fip-fic)

p(z) p(fi¢) dz df (40)
hy(m-1)/(fp-fic) (o) ¢

oy
rp*(hy(m) | Plc)ilpiby(m-1)) = S‘ﬁ'.
1

expressing [, interms of the corresponding life fi. according to the median crack
propagation curve, and integrating with fic =n; at 1. =0 and fic =f, at I, = Ly

APPLICATION

The foregoing theory has been applied to demonstrate the effect of planned inspec-
tion procedures for the case of a high-strength steel structure under a manoeuvre load
spectrum (spectrum I in fig. 2) which has been considered previously.

The risk function for fatigue failure with continuous inspection has been calculated
by using numerical analysis procedures (ref. 6) for the three cases of structures without
initial cracks, structures with initial cracks of constant length g, and structures with a
distribution of initial crack sizes given by the probability density function p(l¢). The
risk functions for periodic inspection with limited risk have been calculated for the same
three cases. The results have been plotted in figures 12, 7, and 9, respectively, and the
corresponding survivorship functions are shown in figures 13, 8, and 10. The inspection
intervals for inspection with limited risk for each of the three cases are shown in table I
together with the expected detection rate at each inspection which has been calculated
according to the procedure developed in the preceding section.

With periodic inspection, the risk function returns to the continuous inspection curve
at each inspection. The continuous inspection curve therefore has a basic significance
since it indicates the maximum extent to which the risk of failure can be reduced by
inspection.

DISCUSSION OF RESULTS

Consider the results of applying the foregoing theory to the case of the high-strength
steel structure described previously with particular reference to the suitability of the fail-
safe and safe-life procedures.

RISK OF FATIGUE FAILURE
Reference to the risk functions rgy, and rp infigure 14 illustrates the difficulty

with the conventional approach. As the life extends, the difference in these two risks
becomes considerable, although as was stated in the section "Interpretation of Fatigue
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Test Results' they merely represent two rather extreme conditions in the application of
the conventional safe-life approach.

In fact, the risks rgy, and rp differ only in the point on the crack growth curve
at which failure is taken to occur. This difference introduces a problem in the interpre-
tation of the fatigue test result since the structure under a representative test load
sequence may well fail at a rather different stage of the crack propagation curve as com-
pared with the structures that happen to fail at a relatively short fatigue life in service.

This can be seen by reference to the curves of the probability distribution of the
failing load in figure 15. These show that at lives typical of service operation (n=1.0
to 1.25), the expected value of the failing load, for the few structures that fail, is rela-
tively high, being above the limit load, whereas at longer lives the expected value of the
failing load is considerably reduced. Therefore the fatigue test specimen, representing
the average structure, is likely to fail at loads considerably below those at which service
failures will occur.

The basic difficulty is that neither rgy mnor rp represents the true situation in
that they do not take account of the fact that there is some probability of failure at all
points along the crack propagation curve as the fatigue crack extends. This effect (the
risk of static fracture) is taken account of by Ls,u.(n) which, as can be seen in figures 3
and 4, gives an increased probability of failure for the example taken.

Another effect of considerable importance in considering static fracture due to
fatigue is the variability in residual static strength of cracked structures since this may
have a significant effect on the probability of failure (or survival) depending on the sever-
ity of the loading spectrum. This is shown by the comparison between Ls, and Lg
for the two load spectra as shown in figures 3 and 4. The probability of survival Lg
calculates the increasing risk of failure as the fatigue crack extends in the same way as
Ls,u. but it also includes the effect of the variability in residual static strength.

The probability of survival Lg can be applied with equal validity to calculate the
probability of survival for structures with initial cracks as outlined in the section "Risk
of Failure in Structures Initially Cracked."” This has been done for example of the high-
strength steel structure taken previously and the results for two cases of initial cracking
are shown in figures 8 and 10 where it will be noted that, for an equivalent probability of
survival, the fatigue life is greatly reduced by the presence of initial cracks. The short-
comings of the conventional methods of life calculation are more marked in this case,
since for all structures the whole of the service life involves the propagation of a fatigue
crack with continual exposure to the progressively increasing risk of static fracture due
to fatigue.
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PROBABILITY DISTRIBUTION OF THE FAILIN G LOAD

Curves showing the probability distribution of the collapse load for static fracture
by fatigue for the high-tensile steel structure are shown at a series of lives in figure 15,
In the early stages of the life when only small cracks are present the majority of the
structures that fail do so from occurrence of a high load in excess of the design limit
load. At longer lives, however, when a large percentage of the fleet has developed more
extensive fatigue cracks, failure tends to take place by the occurrence of the much more
frequent lower loads. The curves for the probability distribution of the failing load have
a well defined "knee" which marks the transition from failures of structures with low
static strength properties (according to the Weibull distribution of relative strength which
has a lower limit at x = 0.82) to structures with low fatigue strength and hence larger
crack lengths at any given life.

With the corresponding curves in figure 11, for all structures with initial cracks of
a 0.010-inch depth, this knee does not occur. In this case, at any particular life, all
structures have substantial cracks and the extent of these is largely independent of the
fatigue strength so that the probability distribution of static strength is the controlling
factor for all values of failing load.

THE EFFECT OF INSPECTION

The effect of inspection on the risk of failure and probability of survival for initially
uncracked structures is shown in figures 12 and 13. Although it is not usually a feasible
procedure in practice, continuous inspection bas an important basic significance which
warrants some consideration here.

The risk function for continuous inspection slowly approaches an upper limiting
value when there is no repair and replacement of structures in which cracks are detected
("inspection without replacement"). This situation arises because as the initial cracks
are propagated by fatigue to the detectable length these structures are eliminated by
inspection and a stage is therefore reached where the increase in risk due to the extension
of fatigue cracks is offset by the continual removal from service of structures with
detectable cracks and high risk of failure.

In the more practical case where structures are repaired and returned to service
after detection of cracks ("inspection with replacement") the risk function goes through a
maximum value and then eventually approaches zero. The explanation of this behaviour
appears to be that, as fatigue cracks extend, the number of cracked structures replaced by
sound structures increases until a stage is reached where this counteracts and then
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outweighs the increasing risk of static fracture by fatigue in the dwindling members of
the original fleet.

With this model therefore the original fleet is eventually replaced by new struc-
tures which are taken to be free of any fatigue weakness and the risk of fatigue failure
decreases to zero. If the service life were to be prolonged to this stage, however, other
areas of the structure would become fatigue critical and their risk of failure would have
to be considered.

In practice, cracked structures or components are often replaced by new members
from the same population as the structures or components in the original fleet. This
model of the fatigue process ("inspection with renewal'’) would show a behaviour inter-
mediate between the two procedures considered above.

The risk functions for continuous inspection of structures with initial cracks are
presented in figures 7 and 9 and these show a similar behaviour to that found with initially
uncracked structures although for the case of a continuous distribution of initial crack
size in figure 9 the peak of the "inspection with replacement" curve is much flatter
because of the wider range of crack sizes that results.

Turning now to the practical case of periodic inspections designed to limit the risk
of failure below a specified value rpmax, it can be seen from figures 12, 7, and 9 that in
all cases the risk of failure fluctuates between the risk for continuous inspection and the
specified maximum value Ipyax-

For inspection with replacement it can be seen that because of the peak in the curve
for the risk function with continuous inspection, the inspection intervals for limited risk
at first decrease with each inspection and then increase.

This effect is clearly shown for the three cases considered by the inspection inter-
vals given in table I which also lists the expected fraction of the fleet in which cracks will
be detected at each inspection.

The curves showing the corresponding survivorship functions for inspection with
limited risk are shown in figures 13, 8, and 10, and it is apparent that inspection for
limited risk can give a comparable performance to the ideal case of continuous inspection.
At the cost of decreasing the inspection intervals, the probability of survival can be
increased by reducing the maximum allowable risk rpmax, although this must always
exceed the maximum risk for continuous inspection for the inspection procedure with
limited risk to be possible.
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APPLICATION

The reliability approach to structural design has received increasing attention in
recent years and it is proposed here that the safety against fatigue of aircraft structures
is one of the most important and promising fields of application.

DEVELOPMENT OF THE RELIABILITY APPROACH TO FATIGUE

Early work on the probabilistic approach to fatigue of aircraft structures was
mainly concerned with efforts to establish the fail-safe philosophy on a more quantitative
basis by considering the probability of failure of the structure during the crack propaga-
tion stage.

One of the first papers on this subject was concerned with the fail-safe operation of
transport aircraft (ref. 7), and a similar approach was used subsequently (refs. 8 and 9)
in efforts to develop a proposal for ensuring the airworthiness of fail-safe structures.

In references 10 and 11 reliability analysis was applied to derive the probability of
failure for a fail-safe structure by using a sophisticated model to represent the effect of
multiple redundancies in the structure.

Probably influenced by the successful application of reliability techniques to
electronic systems, the reliability approach to structural safety in general received
increasing attention and several papers dealing with the basic development of the phi-
losophy (refs. 12 to 15) also dealt at some length with its application to the fatigue of
structures.

The reliability approach to structural design has received increasing attention more
recently and papers (some relating to the aspect of fatigue) have been represented at a
number of International Conferences (refs. 16 to 24),

However, a major difficulty in applying reliability theory to the fatigue of struc-
tures is the extensive amount of data required since this is not normally available., The
present paper seeks to overcome this difficulty by presenting an approach which allows
representative data to be used in conjunction with the full utilisation of the information
which can be obtained from the full-scale tests now widely adopted in aircraft design
practice.

RELIABILITY ANALYSIS WITH FULL-SCALE TESTING

The method proposed in this paper calculates the probability of failure of a structure
at each stage of the life with data obtained from full-scale tests on the actual structure in
conjunction with other representative data. It therefore estimates the risk of failure in
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the fleet, and hence the probability of failure (or survival) up to any required life, taking
account of the flight loads to be encountered, the progressive reduction in strength due to
the growing fatigue crack, and the variability in static and fatigue strength.

The inspection or replacement of structures in service can then be planned to
achieve a prescribed safety level using basic data from the fatigue test without requiring
any arbitrary decision as to the crack length that constitutes failure or as to whether a
structure is ''fail safe' or not.

Application of the Method

With the risk function having been calculated, the life ny to reach the allowable
risk rpax(np is determined as the life for inspection or replacement.

From the physical nature of the fajlure as revealed by the fatigue test and the risk
function for continuous inspection with the detectable crack length, a judgement can be
made whether to rely on inspection or on replacement.

If replacement is decided on all structures are replaced at ny and the process can
be repeated with the constant inspection interval ny until the probability of survival has
been reduced to the minimum allowable value.

If inspection is adopted the inspection intervals are calculated as described in the
section "Inspection for Limited Risk'' and the process is continued up to the life ng at
which the probability of survival has been reduced to the minimum allowable value. The
fraction of defective structures that can be expected to be revealed at each inspection
can be calculated from equation (39). Also the probability distribution of the failing load
can be calculated and used to estimate the average value of the failing load at the life for
any inspection, from which an indication of the average crack length can be obtained.

It is clear from figures 13 and 10 that the safe operating life can be greatly extended
by this type of inspection procedure and therefore as the service life continues other
fatigue-prone areas of the structure revealed in the fatigue test may need to be included
in the analysis in the same way.

Basic Assumptions
The following basic assumptions are involved:

(a) The service load S is independent of the failing load of the structure R. This
assumption infers that any increase in flexibility of the structure as a fatigue crack
extends does not affect its response to the applied loads.

(b) There is no correlation between the residual strength of a cracked structure and
its fatigue strength. This is supported by the fact that in a complex structure static
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ultimate load failure usually occurs in a different area and by a different mechanism to
fatigue failure.

R(@)
length ¢ has a characteristic probability distribution which applies for any value of 1.
For the monolithic structure considered in the section on page 289, the fracture mechan-

(c) The relative residual strength x = of structures cracked to some crack

ics relationship R(l) = K /1—% is assumed to apply. It can be shown from this that R(l)

has the same probability distribution as the fracture toughness K and it is therefore
the same for all crack lengths.

(d) The distribution of fatigue life Nl,z at a given crack length ! has a log
normal distribution. The log normal distribution is often used in making safe-life esti-
mates and it has been supported as a good approximation by comprehensive surveys of
fatigue test data (refs. 25 and 26).

(e) At all points on the crack propagation curve of any structure, the fatigue life

~ N
Nz ; bears a constant ratio to the median life N; at the same crack length Eli-z- = 2.
’ l
It can be shown that this follows from the properties of the log normal distribution of
fatigue life assumed in assumption (d).

(f) As structures fail by fatigue and are thus eliminated from the population there
is no change in shape of the probability density functions of fatigue life z, relative
strength x, or initial crack length lc- In practice some distortion of these functions
will occur but for the small probabilities of failure considered it is regarded as a reason-
able assumption.

Input Data
The following data are required:

(a) The service load spectrum Fg(s) which can usually be estimated from the
considerable body of flight load data available.

(b) The mean value of the ultimate failing load uy which can usually be obtained
from the results of static strength tests on the structure.

(c) The probability distribution of relative strength x = _“Eﬂ% which must be esti-
R
mated from representative data (as was done for the case of the high-strength steel

structure by using data from high-tensile steel specimens) and the results from compo-
nent testing during the design stage.
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(d) The median crack propagation curve for the structure in = g(ﬁ' ); it is proposed
to rely on the crack propagation curve obtained in the full-scale fatigue test of the
structure.

CONCLUDING REMARKS

From a reliability analysis of the fatigue failure in aircraft structures under ser-
vice loading conditions it is concluded that the current procedures for obtaining safety
are not entirely adequate. These methods do not take full account of the probability of
failure of the structure during the period in which it is being progressively weakened by
the growing fatigue crack and they are therefore subject to inaccuracies which may be
significant depending on the structural design parameters and the service conditions.

It is also concluded that a reliability approach to the safety in fatigue of aircraft
structures must be considered, using the results available from the structural tests and
design analysis in conjunction with other representative data.

Such an approach is quite feasible although an extensive body of data and a number
of assumptions are involved which warrant some development and testing of the procedure
in practice.

However, the reliability approach has major potential advantages by enabling the
safety of both safe-life and fail-safe structures to be determined on a quantitative basis,
including the planning of efficient inspection procedures and allowance for the possibility
of initial flaws in the material where appropriate.
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APPENDIX

TABULATION OF RISKS OF FAILURE AND
PROBABILITY OF CRACK DETECTION

For simplicity the risk functions in the body of the paper have been expressed in
terms of the dimensionless variate z and they have been compared on a common basis
in the various figures using the dimensionless variate Ns/ﬁi. However, in this appendix
they are expressed in a form more suitable for practical application, the risk of failure
per hour using the relation:

r(Ng) dNg = r(z) dz

r(Ng) = r(z) %z_

s

where Ng is the service life in hours.

If the risk of failure were to be required in units other than hours — such as load
applications, for example — the dimensional variable Ng (or for cracked structures Hg)
would have to be expressed in those units.

The footnotes for this appendix are included at the end of the appendix.
STRUCTURES WITH NO INITIAL CRACKS

No Inspection

Risk with safe-life analysis.- Risk of failure per hour at Ng hours, based on an
estimated mean life ﬁL determined from a fatigue test as the life to some crack
length L at which failure occurred, is given by
1 g
T
rL(NS) = 0 (Al)

dz
gns/ np, P=(2)

where ﬁL is the estimated mean life to the crack length L expressed in hours.

Risk of fatigue fracture .- Risk of failure per hour by fatigue fracture at a life of
Ng hours can be given by
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rg(Ng) = (A2)

where 'I:IF is the median of the life in hours to complete collapse under the mean load.

Risk of static fracture due to fatigue.- Risk of failure per hour by static fracture
due to fatigue at a life of Ng hours is given by

R e S%uw(g[%ﬁ])}p(z)p(x) a2 o (43

where Fs(s) denotes here the probability of exceeding a service load s per hour of
operationb.

Probability distribution of the failing load.-

p At life Ng hours that the loads causing
r . .
static fracture due to fatigue = X,

] Sz_ns X_XO ﬁ ns} %uw }p(x)p(z)dxdz »

x=ng[AF x-O rg(Ns)

where rg(Ns) is given by equation (A3), and Fg(s) is taken as the probability of
exceeding a service load s per hour of operatlonb

Periodic Inspection at NI(I),NI(z),- . - NI(m) Hours

Risk of fatigue fracture with replacement € d.- Risk of failure per hour by fatigue
fracture at a life of Ng hours with structures repaired and returned to service after

cracks have been detected is given by

1 Ng fip
rp*(Ns;ip,NI(m)) = =— pz< > (Ns > Ng T)
) Np ~\iF (m) g
=0 (Otherwise)
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where FIF is the median of the life in hours to complete collapse of structures under
the mean load.

Note: For continuous inspection the risk of fatigue fracture is zero in this case.

Risk of static fracture due to fatigue with replacement C.- Risk of failure per hour
by static fracture due to fatigue at a life of Ng hours with structures repaired and
returned to service after cracks have been detected is given by

rI*(Ns5lD:NI(m)) = §z::(sm) /i 5:000 Fs,%mocP(ngﬁD} p(x) p(z) dx dz (A5)

where Fg(s) denotes here the probability of exceeding a service load s per hour of
operationb.

Note: For continuous inspection substitute Ng for Ni(m) and ng for N[(m)-

Probability of detecting cracked structures with replacement C.- Probability of
detection at the mth inspection with structures repaired and returned to service after
cracks have been detected is given by

n fip
rD*(NI(m);lDyNI(m—l)) = S‘ I(m)/

_ p(z)dz - Pr é“atigue fracture between Np(p.1) and NI(m}
n(m-1)/fD

) gﬂl(m)/ fip

_ p(z) dz
nY(m-1)/fip

Since it follows that where an inspection procedure is feasible, the probability of fatigue
fracture is relatively insignificant compared to the probability of crack detection.

Note: For continuous inspection the probability of detection per hour at any life
Ng hours is given by

1 n
D" MsilDiNs) = 50y 5E)

where Np is the median of the life in hours to the detectable crack length Ip-
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Probability distribution of the failing load with replacement.-

Pr At life of Ng hours following mth inspection, the loads
causing static fracture due to fatigue = pugxq

= S‘z=ns g":"o ¢’{g[r;s} FSé‘“O‘P(g[%S-D} p(x) p(z) dx dz

z=nI(m)/ﬁD x=0 rI*(NS;leNI(m))

(A6)

where rI*(Ns;lD,NI(m)) is given by equation (A5), and Fg(s) is taken as the proba-
bility of exceeding a service load s per hour of operationb.

Note: For continuous inspection substitute Ng for Npy) and ng for ny(y).

STRUCTURES WITH INITIAL CRACKS (PROBABILITY DENSITY
OF CRACK LENGTHS p(lc))

No Inspection

Risk of fatigue fracturea.- Risk of failure per hour by fatigue fracture at a service
life of Hg hours is given by

fin= -n
rp{Hs | plo) = I;cc_ﬁ — r ¢ (A7)
=h, (2=
S\n = gz:hs/ﬁF-nc P(Z)p(nc) o e

where ﬁF is the median of the life in hours to complete collapse of initially uncracked
structures under the mean load, and Nc is the median of the life in hours to produce a
crack of length I, for initially uncracked structures.

Risk of static fracture due to fatigue.- Risk of failure per hour by static fracture
due to fatigue after a service life of Hg hours is given by

R ) _ )
ro(Hs | pte)) = §ﬁc°=1 f;o §z=hs o Fs{xuo¢<g[l§ + nc])} p(2) p(x) pli) dz dx diic  (A8)

wheré Fg(s) denotes here the probability of exceeding a service load s per hour of
operationP.
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Probability distribution of the failing load.-

pr/At service life Hg hours that the loads causing
r . .
static fracture due to fatigue = HoXo

o s
g obosd Fufunoo 5 + 3 o e () o0
: rs{Hs | p(tc) (A9)

where rS(Hs | p(lc)) is given by equation (A8), and Fg(s) is taken as the probability of
exceeding a service load s per hour of operationb,

Periodic Inspection at HI(l):HI(Z)’- . -’HI(m) Hours

Risk of fatigue fracture with replacement€d.- Risk of failure per hour by fatigue
fracture after a service life of Hg hours with structures repaired and returned to
service after cracks have been detected is given by

- figp -1
rp’({Hs | ptc)itp Hi(m)) = Sl fi) dfi, <Hs > Hy(m) ﬁg - 1>

fie=(hsfp-hy(m)RE) (hs-by(m) 4 NALTAWA
nc=1 ﬁF-Nc 2

=0 (Otherwise)

where NF is the median of the life in hours to complete collapse of uncracked structures
under the mean load, and I~\IC is the median of the life in hours to produce a crack of
length I, for initially uncracked structures.

Risk of static fracture due to fatigue with replacement €.- Risk of failure per hour
by static fracture due to fatigue after a service life of Hg hours with structures repaired
and returned to service after cracks have been detected is given by

. i =fl X =00 Z =00 h - - -
1 (HS [ p(lC);lD’HI(m)) ) S‘I;:;l ’ Sx:O gz:hl(m)/(ﬁD'HC) Fséuoq;(g[?s * n(J>} p(Z) p(X) p(HC) d o d“c (AIO)

where Fg(s) denotes here the probability of exceeding a service load s per hour of
operationb. '

Note: For continuous inspection substitute Hg for Hyuy) and hg for hy(m)-

Probability of detecting cracked structures with replacement €.- Probability of
detecting cracked structures at the mth inspection with structures repaired and returned
to service after cracks have been detected is given by
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f.=f, ~z=hy(m)/@p-f
rp*(Hi(m) lp(lc)ﬂD,HI(m-l)) _ S‘ ) (m)/( p-fic)

) p@ p(fc) dz df
nc=1 z=h1(m-l)/(nD‘nc ( C) c

_ prl Fatigue fracture between
HI(m-l) and HI(m)

) Sq"ic:ﬁo Sz:hl(m)/(ﬁD—ﬁcz

p(z) p{ne) dz dii
z=hy(m-1)/ (fD-c) () o

fig=1

Since it follows that when an inspection procedure is feasible the probability of fatigue
fracture is relatively insignificant compared to the probability of crack detection.

Note: For continuous inspection the probability of detection per hour at any ser-
vice life Hg is given by

I'.{C=IH10 1 hs ~ ~
*H 1c);lp,Hg) = S — — — dn
rp ( sl p(lc)iiD S) f.=1 Np - Ne pz<nD_ n() P(n) ¢

where Np and ﬁc are the median values of the lives in hours to produce crack lengths
of Ip and [, respectively, in initially uncracked structures.

Probability distribution of the failing load with replacement.-

Pr At a service life Hg hours following the mth inspection
that the loads causing static fracture due to fatigue = [gXq

Sﬁc=ﬁo S\z=°° ) 3‘:”‘0/ ¢ [gC%J’ﬁc)] Fséuosb(g[%s- + ECD} p(x) p(z) p(ﬁc) dx dz dii,

A=l Yz=hy(m)/(Ap-fic) *x=0
rI*(Hs | p(lc);lD,HI(m))

where rI*(HS l p(lc);lD,HI(m)) is given by equation (A10), and Fg(s) 1is taken as the
probability of exceeding a service load s per hour of operationb.

aThe term in the denominator of this expression is a normalising factor resulting from the truncation
of the z distribution by the removal from the population of the structures that fail by fatigue fracture.
However, it is very close to unity for the probabilities of survival that are acceptable in practice.

bIn the body of the paper where rs(ns) has been compared with other risk functions using the dimen-
sionless variate Ng/Ni, Fg(s) has been taken as the probability of exceeding a service load s in a time
interval Nj.

CWhen there is no replacement of those structures in the fleet in which cracks have been detected,
the corresponding probabilities and risk functions are obtained by dividing by the normalising factor

) ny(m)/ i

dWhen an inspection procedure is applied, the effect on the risk function resulting from truncation of

the 2z distribution, by elimination of structures that fail by fatigue fracture, is so small that it has been
neglected here.

p(z) dz. For continuous inspection, N[(m) is replaced by ng.

€When there is no replacement of those structures in the fleet in which cracks have been detected
the corresponding probabilities and risk functions are obtained by dividing by the factor

ﬁc=ﬁo Z= a~
. .\ Db{z)p dz dif
fﬁ(::l fz=h1(m)/ (nD_nc) (nc) C
For continuous inspection hI(m) is replaced by hg.

313



10.

11,

314

REFERENCES

. Payne, A. O.: Determination of the Fatigue Resistance of Aircraft Wings by Full

Scale Testing. Proceedings of Symposium on Full-Scale Fatigue Testing of Air-
craft Structures, F. J. Plantema and J. Schijve, eds., Pergamon Press, 1961,
pp. 76-132.

. Raithby, K. D.: A Comparison of Predicted and Achieved Fatigue Lives of Aircraft

Structures. Proceedings of Symposium on Fatigue of Aircraft Structures,
W. Barrois and E. L. Ripley, eds., Pergamon Press, 1963, pp. 249-261.

- Lyman, Taylor, ed.: Metals Handbook. Vol. 1.- Properties and Selection of Metals.

8th ed., Amer. Soc. Metals, c.1961, pp. 87-94.

. Mayer, John P.; and Hamer, Harold A.: Applications of Power Spectral Analysis

Methods To Maneuver Loads Obtained on Jet Fighter Airplanes During Service
Operations. NASA TN D-902, 1961.

. Tolefson, H. B.: Summary of Derived Gust Velocities Obtained From Measurements

Within Thunderstorms. NACA Rep. 1285, 1956. (Supersedes NACA TN 3538.)

. Mallinson, G. D.; and Graham, A. D.: A Multiple Integration Technique for the

Numerical Evaluation of Probability Integrals. S.M. Rep., Aeronaut. Res. Lab.
(Melbourne). (To be published)

Shaw, R. R.: The Level of Safety Achieved by Periodic Inspection for Fatigue Cracks.
J. Roy. Aeronaut. Soc., vol. 58, no. 526, Oct. 1954, pp. 720-723.

. Ferrari, R. M.; Milligan, I. S.; Rice, M. R.; and Weston, N. R.: Some Considerations

Relating to the Safety of Fail-Safe Wing Structures. Proceedings of Symposium on
Full-Scale Fatigue Testing of Aircraft Structures, F. J. Plantema and J. Schijve,
eds., Pergamon Press, 1961, pp. 413-526.

. Lundberg, B. K. O.; and Eggwertz, S. (With appendix by L. vonSydow): A Statistical

Method for Fail-Safe Design with Respect to Aircraft Fatigue. Proceedings of the
Second Congress of the International Council of the Aeronautical Sciences,
Pergamon Press, 1960.

Eggwertz, S.; and Lindsjo, G.: Analysis of the Probability of Collapse of a Fail-Safe
Aircraft Structure Consisting of Parallel Elements. FFA Rep. HU-961, Aeronaut.
Res. Inst. of Sweden, 1963.

Heller, R. A.; and Heller, A. S.: A Probabilistic Approach to Cumulative Fatigue
Damage in Redundant Structures. Rep. No. 17 (Contract No. NONR 266-91), Inst.
for Study of Fatigue and Reliability, Columbia Univ., 1965.



12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Freudenthal, A. M.: Safety and Probability of Structural Failure. Proc. Amer. Soc.
Civil Eng., vol. 80, no. 468, Aug. 1954, pp. 468-1 — 468-46.

Freudenthal, A. M.; and Shinozuka, M.: Structural Safety Under Conditions of Ultimate
Load Failure and Fatigue. WADD Tech. Rep. No. 61-177, U.S. Air Force, 1961.

Freudenthal, A. M.; and Payne, A. O.: The Structural Reliability of Airframes.
AFML-TR-64-401, U.S. Air Force, 1964.

Pugsley, A.: The Safety of Structures. Edward Arnold Ltd. (London), 1966.

Freudenthal, A. M.: Reliability Analysis Based on Time to the First Failure.
Aircraft Fatigue — Design, Operational, and Economic Aspects, Programme of
5th ICAF Symposium (Melbourne), J. Y. Mann and I. McMillan, eds., May 1967.

Black, H. C.: Safety Reliability and Airworthiness. Proceedings of International
Conference on Structural Safety and Reliability, Smithsonian Institute, Apr. 1969.

Butler, J. P.: Reliability Analysis and Fatigue Performance Estimation of Transport
Type Aircraft. Proceedings of International Conference on Structural Safety and
Reliability, Smithsonian Institute, Apr. 1969.

Cornell, C. A.: Structural Safety Specifications Based on Second-Moment Reliability
Analysis. Proceedings of IABSE Symposium on ""Concepts of Safety and Methods of
Design' (London), 1969.

Ang, A. H. S.: Critical Analysis of Reliability Principles Relative to Design. Paper
presented at International Conference on Applications of Statistics and Probability
to Soil and Structural Engineering (Hong Kong), Sept. 1971.

Payne, A. O.; and Grandage, J. M.: A Probablistic Approach to Structural Design.
Paper presented at International Conference on Applications of Statistics and
Probability to Soil and Structural Engineering (Hong Kong), Sept. 1971.

Cornell, C. A.: The Future of Probabilistic Design. Paper presented at Australian
Institution of Engineers Symposium on Reliability and Risk in Structural Design
(Melbourne), 1971.

Payne, A. O.: Fully Probabilistic Design. Paper presented at Australian Institution
of Engineers Symposium on Reliability and Risk in Structural Design (Melbourne),
1971.

Itagaki, H.; and Shinozuka, M.: Application of Monte Carlo Technique to Fatigue
Failure Analysis under Random Loading. Technical Report No. 16 (NSF-GK3858
and 24925), Columbia Univ., July 1971. (Also presented at the Symposium on
Probabilistic Aspects of Fatigue, 74th Annual Meeting of ASTM (Atlantic City),
1971.)

315



25. Impellizeri, L. F.:

Development of a Scatter Factor Applicable to Aircraft Fatigue
Life.

Spec. Tech. Publ. No. 404, Amer. Soc. Testing Mater., 1966, pp. 136-156.

26. Ford, D. G.; Graff, D. G.; and Payne, A. O.: Some Statistical Aspects of Fatigue Life
Variation. Proceedings of Symposium on Fatigue of Aircraft Structures,
W. Barrois and E. L. Ripley, eds., Pergamon Press, 1963, pp. 179-208.

316



dg/e ‘(q3dep 10) YIBUS] HOBID IATIRISI

aJnjon}s Aue ul YdBID TEHUL JO yydap O
uotjonpod SurInp 31qe}IIRP HOBID jsaqrews Jo yydap O
uonyoadsul Yjw e SHIBID s1qeloasp Jo £yniqeqoad QEVEVQH
N \AEvHZ ‘uorpoadsut yyw 0} AJI[ SATIE[IT (W)Iy
” uorpoadsul yjur 0} SInoy ut I (w)Iy
X4 00Z ‘@INTIEJ TEIITUL 0} ST JO URTPIW N
£90° 0971 gL’ o1
681’ 0201 1¢° 6
yee” 08L 6¢" 8
0T’ 0v9 (49 L
(440 08¢ 62’ 9
97%0° 0091 08’ T 02S 92’ g
LSO’ ovet L9’ ce0’ 09% €2’ 14
es0’ 0801 120 9L0° (Va7 44 €
GGs0° 078 (44 2c0’ 08¢ 61" G600’ 02s¢€ 98'1 (4
810°0 009 0g°0 0€0°0 0%e L1°0 S000°0 088¢ 44N T
QEVEVPH . AMM N (W) Iy Qﬁﬁ&n—n ) Ahﬁz (W)Iy QEchvQ.H . E.“wmz (W) Iy
w
¢0'0= Xeul on = ch = ¢ Jaquunu
Jﬁ.wmww.mmm%wmwz “ur mom%.m HMMM d¢ mmm%o.unww ) woroodsuy
UOTINGTIISTD IR S5NJONTIS ‘SYOBID [ETTUT Y}IA SIINJONIIS ‘gaIn)oNI)s PINoRIdU()

SISTY AALINTT ¥04 NOILLDAASNI HLIM STLVY NOILLOILHA d

1 37dV.L

NV STVAMALNI NOLLOAJSNI

3117



‘NS 1e)s 3lisual-ubly jo sonstiaeleyd snbijey - ainbiy

€

4

3417 N

JAILVI3Y

—

o) £- o)

SEmemnea

¢ HIoNIu1

)

dais3y 3IAILv3y

HL1ON3N¥LIS IvNn

o

o)

m

>

420 3
<

m

i#0 |
>

0

x

*oo 1
m

Z

@

l

-T.O I
~

n

o4 QP

o

318



10'

-2
10

o,
()

-t
O,
E S

FREQUENCY F, (Y)=1-Ps(s)
o S,

SPECTRUMIT

(GUST _LOAD ]
SPECTRUM)

SPECTRUM I [—

(MANOEUVRE
LOAD SPECTRUM)

E()=e —244 (Y-02)

|

02 0-4 0-6

Figure 2.-

0-8 1:00 120

RELATIVE STRESS Y=%
Uit

Load spectra.

319



320

PROBABILITY OF SURVIVAL L(n)

1-000

-999

‘998

997

‘996

‘995

‘894

-993

992

-9

RELATIVE LIFE %

Figure 3.- Probability of survival for spectrum |.

— LEGEND TO SUFFIX:
F — FAILURE AT MEAN LOAD
s L — FAILURE AT LIMIT LOAD
s~ FAILURE BY STATIC FRACTURE |—|——+
— NO VARIABILITY IN
RESIDUAL STRENGTH
s — TOTAL FATIGUE FAILURE
BY STATIC FRACTURE
0 5 -0 I5

=N

2:0



PROBABILITY OF SURVIVAL L(TM)

1-000

-999

-998

-997

-996

-995

-994

-993

-992

991

|
|
N\
Ls I Ls}L
LsL
— LEGEND TO SUFFIX: -
F — FAILURE AT MEAN LOAD \
s L — FAILURE AT LIMIT LOAD
—su — FAILURE BY STATIC FRACTURE 17|~
—NO VARIABILITY IN
RESIDUAL STRENGTH
| s — TOTAL FATIGUE FAILURE I R DO
BY STATIC FRACTURE
0 5 -0 I'5

RELATIVE LIFE %fn'
NL

Figure 4.- Probability of survival for spectrum 11.

2:0

321



-

-anbijey 0} anp a4n|ie) 40 ¥S1d Jo UONRINIR) -G ainbi4

0103} 0=2 NOYA

Iyz="%, NOILYY9IINI SV NV
Su 0} MW_SE NOLLYY¥93LN
u P
U 3410 AUV dy G su ey 24
~ ~ L o
/

ALY
JAHND NVIA3N

NP N =
(ag™7)d

/| Ve

avon LINITT 1V 34NTivd

avOol NV3IN 1V 34N7ivd =2

<

7 HLON3IT MOVHD 3AILVI3Y

322



"$81MPONIYS payaedd Ajjeijiut ul aunjiey anbijej jo ¥s1y -9 aunbiy

323

w 341 \ e A
NN [Fw [ w Su oy =z ]
Y NIl — | 5 — -
oNllva3do | 44 | A iy - 7
oo 0} X—= WOY] NOILVYOIIINI 7
q _ 7
co=2 / . 0 2
HLIM 38N1INYIS 7T s M
>
-
. 2
o d 0L Q3ldHS d F10d | ™
qu..._ (@]
o S
2 Q
l
5 7y =7 -
T m
(fw)é=7 o E_m,:m%m..upamm &
3A8N0 NvIaaW & /] T
P
&> ol
~+ .J__
(o]
S >~
~—”
] d
oy .4
w-dy
5
HLIM 3¥N10NYLS
| =2

iy Iy Tyz=2ly Oy Oy z=0y

~




324

0-08

Py

0-07
R(hs[01;-02; hs)
0:06
2 I (hs|-015-02; Fyux=+05)
-
0-05- _
o
—
O
Z
0-04- 2
b4
12}
[0 4
003 —

r:(hs)
|

i

0l

0-2

03

04

05

0-6

¥ (hs|-015-02; hs)

0-7

08

OPERATING PERIOD & =h

Figure 7.- Risk function for structures with initial crack depth a, = 0.01 in. for various inspection procedures.



PROBABILITY OF SURVIVAL L (h)

L4
.

Lz (h|-0y;

4

02, h)

‘970 — LEGEND TO —l
PROBABILITY OF SURVIVAL OF FAILURE BY

STATIC FRACTURE Lth:—

* |
965 —t 00" ny | CONTINUOUS INSPECTION AT —
Lr(h|-05-02; h) ~— G.02" — WITH REPLACEMENT
Lr(h|01;02; h) —— CONTINUOUS INSPECTION AT 0-02"
080 » — WITH NO REPLACEMENT
L1 (h|-05-02; —— INSPECTION AT LIMITED RISK=0-05 i

Frupg=-05) l — WITH REPLACEMENT

w L T

0 0-l o2 03 04 08 06 o7 o8

OPERATING PERIOD% =h

A

Figure 8.- Probability of survival of structures with initial crack depth a4 = 0.01 in. for various inspection procedures.

325



0'09 '
t ]

- 0-08 —— s (h]p(2e)) 1—
007
- 0-06 =

[ Al * .

2 N (hlp(t'c);-OZ, rm.=-05)
0-05 — 2

O

<

>

W
0-04 — 5

@
003 — — _ _ 2
L 0-02
0-01 . 77 ” —

rr (h|p(eo); -02; n)
»*
‘ s (h)
0 0-1 0-2 0-3 0-4 05 06, 07 0-8
OPERATING PERIOD 3y, = h

Figure 9.- Risk function for structures with variable initial crack depth 1 for various inspection procedures.

326



|-00

. ] | 1 1 )
N\l ] - S
Ls (h)
995 » p
L1(h|pC€o); 02, h)
|
990 \
< .
985~ -
i » . 5\
< L1 (h|p(£c);-02, rMAX.='05)
2
-980-5
N
% *
Ls (h]|p(c)
1975~ & ( )
=
m
@
970~ O | LEGEND TO "
® | PROBABILITY OF SURVIVAL WITH REPLACEMENT: L th)
»*
Ls (h) — NO INSPECTION - NO INITIAL CRACKS
965 — * | —
Ls (n|p(£c)) —NO INSPECTION -INITIAL CRACK DISTRIBUTION p(éc)
»
L1(h|p(£0);-02; h) — CONTINUOUS INSPECTION AT -027
960—1 -INITIAL CRACK DISTRIBUTION p(£c)
L1 (h|p(£0); 02 Muax.=-05) —INSPECTION AT LIMITED RISK=-05
‘ -INITIAL CRACK DISTRIBUTION p(£¢)
955 | | | | |
Ol o2 03 04 05 06 07 08
OPERATING PERIOD = = h
A

Figure 10.- Prabability of survival of structures with variable initiat crack depth ¢ for various inspection procedures.

327



10 | |
CONSTANT INITIAL
CRACK DEPTHa.0=O-OI

0-9

L.ﬂ

=ﬂ.
%
o

Q
ﬂ

06
hs=0‘05

05

0-4

03—

PROBABILITY OF FAILING ATLOAD

02

Ol

R
RELATIVE STRENGTH 4
o 0-2 0-4 06 0-8 I-0 1-2 4

Figure 11.- Probability distribution of the failing load with spectrum 1. Cracked structures.

328



“sanpagoud LoNRAdsU| SNOLIBA 10§ SYORAD (RINUI JNOUYM SINJINIS JOJ SUOKOUNY XS1Y -l 31nbiy

0-¢ 8 9-

LAl

(uizo- ‘W)l
*

\ lm““““

_ _
N - ..IAH_:..NO.A.FVW_

(s20-=
XYW | iz0-w) 1)

/|

(w)s)

520-= 1INI1 ¥S1¥ ONV ,20-=% _  (§20-=
HLIM NOILO3JSNI ~XvK],z0-“u) )

IN3W3IVId3y ONV ,20-=0p
HLIM NOILI3dSNI SNONNILNOD

[

IN3W3DV1d34 ON ONV ,20=%p
HL1IM NOILIJ3dSNI SNONNILNGD

NOILJ3dSNI ON 3¥NLOVY¥d JIVIS = (w3

(uwizo-fw) ,..H‘_

1}

(u,Z0-*u) )

0
0
S00- A

2
wn
X
10-4 &
P4
O
=
(@]
2
s10-4 o
N\
e
NO.I
S20-4
€0-

329



'$24npad0Jd uoy3adsul SNOLieA J0) SXIBJD JeIIUL INOUNM SAINYINAS J0j suoauny diysIoAAINS —'¢] a4nbiy

02 8l 9 vl z'l 0l 8 9. v z 0
v 886--
O T =W 34N
Q.//.
¢®. 0661
* % SZ0-=1INIT ¥SIY ONV ,20-=9% _  (S20-=
_ %, &v IN3NIIVId3Y ON HLIM NOILI3ASNI = %vK J sz0-fu) I
O
L I N2\ L IN3W3DVId3Y ONV 20200 _ (o6 V1A L 7ep.
A\, HLIM NOIID3dSNI SnonNiiNgg = (Uee0- "W — 266
A (4 ‘20.=0
e () IN3W3DV1d3Y ON ONV ‘20-=0p _ P
9.@ % HLIM NOILD3JSNI SNOANIINGD = (We0 W1
* % \ |  NOILD3dSNI ON 3J¥NIIV¥H JILVIS = (w)S T ¥661
< 966
866+
T 0001

(W) AVAIANNS 40 AlNISvEoyd

330



RISK FUNCTION F(n)

02

-01

04

LEGEND: I
I — RISK OF FAILURE AT

MEAN LOAD

s L— RISK OF FAILURE AT

LIMIT LOAD

I, - RISK OF FAILURE DUE TO

PN

STATIC FRACTURE

—RISK OF FAILURE DUE TO STATIC
FRACTURE — NO VARIABILITY
IN RESIDUAL STRENGTH

‘5 1-0

Figure 14.- Risk of failure for spectrum I.

1-5

RELATIVE LIFE & =n
Ni

331



Q
©

R
AL
o

o
Go

<

07

0-6

0-4

PROBABILITY OF FAILURE AT LOAD

0-3

02

O-l

R
RELATIVE STRENGTH¢
0 02 0-4 0-6 0-8 -0 2 I-4-°

Figure 15.- Probability distribution of failing load with spectrum |. Uncracked structures.

332



