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ANALYSIS OF AN ELECTROHYDRAULIC AIRCRAFT CONTROL-SURFACE
SERVO AND COMPARISON WITH TEST RESULTS

John W. Edwards
Flight Research Center

INTRODUC TION

During the past decade, the use of electrohydraulic servomechanisms in aircraft
flight-control systems has become commonplace. They are used to provide power boost,
stability augmentation control inputs, or primary control of the vehicle. Because of
weight and space limitations, there is always a design trade-off in the installation of
such a system concerning the structural stiffness of its components. In a well-designed
electrohydraulic control-surface system, a well-behaved system with a first-order-
lag dynamic response may be achieved. The system time constant is determined by
the position feedback gain.

In some instances this desirable response is not achieved because excessive struc-
tural compliance causes the system to be highly resonant. This was true of a rudder
control servo installed in the NASA general purpose airborne simulator (GPAS).
Attempts to damp such systems have led to the use of dynamic pressure feedback (DPF),
in which high-passed pressure feedback provides the necessary damping.

The literature on electrohydraulic systems is extensive (refs. 1 to 8, for example);
however, there does not seem to be any readily available analysis of this type of sys-
tem, which is often encountered in aircraft control-surface systems. The purpose of
this report is to analyze a lumped, two-mass model of an aircraft control-surface
servo and to illustrate the use of DPF. The effect of hinge-moment loading of the con-
trol surface is included. The model is linearized, transfer functions of the pertinent
variables are derived, and the effectiveness of DPF in damping the load resonance is
investigated. The nonlinear and linear responses of the model are compared with
experimental measurements of the highly resonant rudder control servo installed in
the GPAS.

SYMBOLS
A piston area, in?
B general coefficient matrix
B, coulomb friction coefficient, 1b
B viscous friction coefficient, 1b/ft-sec~1



Ch control-surface hinge-moment coefficient

Ch@»che coefficients in hinge -moment equation

c control-surface reference chord, ft

e servovalve command voltage, V

F general coefficient matrix

f frequency, Hz

G,G{,Gy feedback gain matrices

Hg control-surface hinge moment, ft-1b

I control -surface moment of inertia, slug-ft2

K spring constant, ft-1b/rad

K, servovalve flow-pressure gain, in3-sec~1/psi
Kp pressure feedback gain, V/psi

Kq servovalve flow gain, in3-sec™1/in.

Kg servovalve first-stage gain, in/V

Ky servovalve proportionality constant, in3 —sec'l/in psi
Ky position feedback gain, V/ft

Kj,Ko coefficients in hinge-moment equation, ft-1b/rad
KB gain constant of %(s) transfer function

L servovalve coil inductance, H

Lg scale length of turbulence, ft

l moment arm, ft

my, piston mass, slugs

Pg output of high-pass filter, psi

Py, differential load pressure, psid



Py hydraulic source pressure, psi
Py P2 actuator chamber pressures, psi
PysPgs P, real poles of transfer functions
Qq, hydraulic fluid flow rate, in3/sec
Ql,Qz,Q3,Q4 hydraulic fluid flows in servovalve, in3/sec
R servovalve coil resistance, ohms
S control-surface reference area, £t2
s Laplace transform variable
u control input vector
A" volume of fluid between servovalve and actuator, in3
\'A aircraft velocity, ft/sec
Vg lateral gust velocity, ft/sec
X state vector
piston displacement, ft
Xg servovalve spool displacement, in.
Xy auxiliary variable introduced in model
z1 real zero of transfer function
B aircraft angle of sideslip, rad or deg
Beo bulk modulus of elasticity of hydraulic fluid, psi
A(s),Aq denominator of transfer function
o control-surface deflection, rad
.. rudder deflection, rad or deg
Ec’Ct’tz’Cp damping ratios
6 angle of incidence at control surface, rad

p atmospheric density, slugs/ft3



wsg wc, wh, wp’ wt, wz
Subscripts:

C

g
h
max

Ss

real part of complex number
root-mean-square value of Vg ft/sec

time constant of high-pass filter, sec

time constant of first stage of servovalve, sec
power spectrum of lateral gust

frequency, rad/sec

open-loop natural frequencies, rad/sec

command signal

gust

mode caused by hinge-moment loading
maximum operating value

steady state

A single dot over a quantity indicates the first derivative with respect to time;
double dots indicate the second derivative with respect to time.

DEVELOPMENT OF MODEL

The system analyzed in this report is an aircraft control-surface control system
powered by an electrohydraulic servovalve (figs. 1(a) to 1(c)). The system is similar
to the stability augmenters or power boost units in many existing systems. The mech-
anical linkages to a pilot's controller are not shown in figure 1(a) because only the
electrohydraulic control system is analyzed.

The command voltage to the servo system may be derived from the measurement
of rate or attitude gyros or from the pilot's controller position. The electrical input
to the servovalve results in hydraulic fluid flow to one side of the actuator or the other
and causes piston and control-surface motion. To make the system stable, a meas-
urement of the piston position is fed back and summed with the command voltage. In
some systems, this position loop closure results in lightly damped oscillations. If
this occurs, it has been found to be advantageous to provide an additional feedback
signal, that of the hydraulic differential pressure, across the piston. When this second
feedback signal is properly conditioned, a well-damped system usually results.

Both the position and pressure measurements are shown as if they were made with

electrical transducers.

This is only for ease of illustration. Systems are in use



which provide these feedbacks mechanically. Both methods of feedback, however,
result in similar system responses.

Figure 1(b) shows the mechanical components of the control-surface control system,
a two-mass, spring-coupled system, The load moment of inertia is I and the mass of
the actuator piston is mp, The piston is driven by hydraulic pressure, Py,, which acts

on the piston head area, A, and applies torque to the load through a moment arm, Z, The
linear piston position is shown as xp, and the angular surface position is indicated by

0. There is viscous friction, By, and coulomb friction, B;, between the piston and

the cylinder. The surface hinge moment is shown as Hg. It is agsumed that the com-

pliance in the system is in the torque tube where the piston is attached, giving the
rotary spring constant, K. For convenience, structural damping of the load is not
considered, because structural damping ratios are characteristically small.

Systems of the type shown in figure 1 are discussed in references 1 to 5. Ref-
erence 1 derives pertinent transfer functions for a simplified model (mp is assumed

to be zero and no actuator friction is included). References 2 and 3 describe a similar
system in a spacecraft engine servo and illustrate nonlinear techniques for studying
possible limit cycles. Reference 4 describes the aileron actuation system used on a
B-52 airplane and mentions high-frequency control-valve-generated noise (audible noise
termed "honk"), an effect which will be discussed later. This report is a summary

of many of the practical problems which may be encountered in a hydraulic system.
Reference 5 analyzes the various configurations of aircraft hydraulic systems in detail.

Electrohydraulic Servovalve

A critically centered threeland, four-way, two-stage servovalve is assumed to be
the power control device for the hydraulic system analyzed. The servovalve consists
of a first-stage electrical torque motor, which controls pressure on the ends of the
spool (the second stage, fig. 1(c)). The actuator used in this analysis is assumed to be
double-ended; that is, both sides of the piston head have equal areas. Movement of
the spool opens orifices connected to a pressure supply and sink and to both sides of
the main actuator piston. The input to the servovalve is an electrical current, or
voltage, and the output is the differential load pressure developed across the piston.
An intermediate variable is the spool position, Xg. Servovalve dynamics are analyzed

in references 1, 6, 7, and 8. The succeeding development follows that in reference 6.

To develop a model of the servovalve, the relationship of the spool position, Xgs to
the load pressure, Py, must be known. It may be obtained by applying the orifice flow

equation (ref. 6, p. 41) to each of the four orifices shown in figure 1(c). The hydraulic
fluid flows through these orifices are labeled Q1 through Q4. The load flow, Qs

satisfies the relations



QL=Q; - Q

Qp =Q3 -Qy

The orifice flow equation shows the relationship between the fluid flow through an orifice,
the orifice opening, and the pressure drop across the orifice. In the development of
the orifice equation, it was assumed that the flow through the orifice was incompressible.
Applying the orifice equation to each of the four orifices and using the relations given

for Q¢, and Py,
/ Xs
Qq, = KyXg  [Ps - |xs|PL (1)

where K, is a proportionality constant. Later in this report the effect of fluid com-

pressibility in the actuator chamber is added to the model. This does not invalidate the
use of the orifice flow equation here, however, because it is applied only to flows in the
immediate vicinity of the orifice (within 1 orifice diameter of the orifice) where the
assumption of incompressibility is valid.

Equation (1) may be expanded in a Taylor's series about a nominal operating con-
dition, giving to first order the equation

AQq, = KyAxg - K, AP, @)

where A indicates a deviation from the nominal and

QL { Xs
g =Ky Ps—'l;s—‘PL (3a)

Kq =

5Q Ky | %g|
. T § _ %
Ke = =3By "2y Ps ~TrjFL (3b)

Common nominal operating conditions are Py = 0 and xg =

Kq= K\ Py o

Kyx
V™ Smax

Ko=5y Ps (4b)

1
2
The quantity Kq is the valve flow gain and is important in determining the servo posi-

tion loop gain. The quantity K, is the valve flow-pressure gain. Equations (3a) and

6



(3b) are nonlinear equations for the coefficients of equation (2), whereas equations
(4a) and (4b) provide linear approximations to the coefficients. An expression of inter-
mediate accuracy can be obtained by expanding the square root in equation (1) as

1 P
Qq, = Kyx Pg? /1 = ¥K.x
L vVagt's |xS| PS vXs IXSI

If Kq and K, are determined from this expression and the same nominal operating

condition is used,

= Ky \/ Pg (52)

X
| Kk

Ke=5+ Ps (5b)

Equations (5a) and (5b) are used later in an analog simulation of the model, and
equations (4a) and (¢b) are used for linear analytical calculations. Henceforth, the A
terms will be omitted from equation (2), giving

QL = KgXg - KcPp, (6)

Aircraft hydraulic systems commonly utilize a 3000-psi source pressure. The load
pressures encountered are usually much lower than this source pressure. In this
instance the differences of equations (3a) and (3b), (4a) and (4b), and (5a) and (5b) are
small, and the use of the linear equations is justified.

The continuity equation is used to relate the flow through the servovalve to the
mechanical motion of the system. Mass flow through the servovalve, given by equation
(6), is equated to flow to the actuator. The flow to the actuator is the sum of piston
displacement and flow due to fluid compressibility (ref. 6):

- P, + 12A%, (7)

QL = 18,

where Xp is piston displacement, V is the total volume between the servovalve and
piston, and g, is the bulk modulus of elasticity of the hydraulic fluid. The numeral

12 occurs because valve coefficients are expressed in terms of cubic inches per unit.
Equating equation (6) to equation (7),

4:3e PL + 12Axp KgXs - KePL

. 4 .
Pr, = —gg(-KcPL - 12Axp + Kgxg) (8)



It is common to include the effects of leakage across the piston head and leakage
to drain in equation (7), giving rise to leakage coefficients in equation (8). These terms
are proportional to Pp, so Ke may be interpreted as a composite coefficient. Leakage

is not considered explicitly in this report.

In equation (8), care must be taken to insure that all units are correct. It is
assumed that the valve coefficients are given in cubic inches per unit, Py and Be

in pounds per square inch, V in cubic inches, and Xp in feet.

The first-stage valve dynamics relating input voltage to spool displacement are
also required for the model. The torque motor coils form a resistance-inductance
(RL) electrical circuit which, when driven by a voltage source, exhibits a first-order-
lag characteristic with time constant L/R and gain 1/R. The torque motor is loaded
by the first-stage hydraulic flow and the spool. Analysis of this system is complicated
(ref. 6). Fortunately, the response of the servovalve is extremely fast and can be
modeled adequately for low-frequency approximation as a first-order lag (ref. 8). The
time constant, 7g, is approximated from manufacturer's test data as the 45° phase

shift frequency of the valve frequency response.

The response of the valve is then given by

K
Xg(s) = T3 7g8 e(s) )

where e(s) is the Laplace transformed voltage input.

The first stage of the servovalve exhibits several nonlinearities which may be
important to the system response. The magnetic circuit of the torque motor coils will
have some hysteresis. The magnitude of the hysteresis is given by manufacturer's
test data as a percentage of maximum input current. Because the size of the hysteresis
loop shrinks as the input signal amplitude decreases, this effect is usually not critical
and will not be considered. Another nonlinearity is the friction between the spool and
its housing, which gives rise to backlash in the output of the first stage of the servo-
valve. Thus there will be a threshold value of input current below which no change in
valve output is noted. In well-designed valves, backlash can also be ignored.

Piston and Load Dynamics

The equations of the piston and load dynamics are also necessary for the model.
From figure 1(b), the equation of motion of the piston mass is

.. K (¥ .
Ppp 'l—<_lE ) ) - ByXp + Fe + APL (19

where A is the piston area. The equation of motion of the control surface is

. Xp
1 = -K{6 - 7] + Hs (11)



The coulomb friction is given by F, = -B, I—xx-gl- The aerodynamic hinge moment, Hg,

may be approximated as

1 o 2
Hg = 5pVa  SCCp  (ref. 9)

where
Ch = Cheo + Ch56

and @ indicates the angle of incidence of the control surface. Thus
Hg = K16 - Ko (12)

where

1 2q-
K1=§pVa ScCh‘9
-1 o 2qa
Ko = 2pVa ScC}16

Control Law

To complete the model the control law must be specified. It is assumed that there
will be position feedback and high-passed pressure feedback plus a command input to
form the voltage signal, e. The pressure feedback is modeled as

TnS

Pr(s) = Py,(s) (13)

1+1-ps

where Pp indicates a filtered pressure signal. It is assumed that the position feedback
is derived from a measurement of the piston position, X Thus the servovalve command

voltage is

e = Kx(%p, - Xp) - KpPF (14)
where Ky is the position feedback gain, Xp, 1s the command signal, and Kp is the
pressure feedback gain.

The complete model given by equations (8) to (14) is summarized in equations
(15a) to (15g). An auxiliary state variable, x;, has been introduced to form the high-

passed pressure feedback signal to facilitate later analysis.



. _ K N . %
mp¥, = -7 <l 5> ByXp - Be lxpl + APy, (15a)
. Xp
I0 = -K (0 - 7-) + K10 - K20 (15b)
. 4Be ]
PL= <7 (- KcPr, - 12A%, + qus) (15c)
K
%q = - %-S-xs e (15d)
1
X1 = - T—pxl + Py, (15e)
1
Pp="Pyg, - =% (151)
p
e =Ky (xpc - xp) - KyPp (15g)

DERIVATION OF TRANSFER FUNCTIONS AND

APPROXIMATE LITERAL FACTORS

The model equations (eqs. (15a) to (15g)) can be manipulated to form the system
open-loop transfer functions. Approximate literal factors of these functions are given
in this section. To derive the open-loop transfer functions, linear equations are
necessary. The nonlinear terms in the model are the coulomb friction, B,, and the

valve coefficients. Linear approximations for the valve coefficients were given in
equations (4a) and (4b) and are assumed in the following analysis. To eliminate B

it is assumed that a valid model may be retained by setting B, equal to zero and

increasing B, to provide the required damping at a specific frequency. It is demon-

strated later that this is a valid technique,

Equations (152a) to (15d) describe the open-loop system. Incorporating the above
assumptions, these equations are Laplace transformed and written in matrix form as

r
mps2 + Bvs +

10

LS
2

s2 4+

K
{

K + K2

=3

-A

PL

Xs




The determinant of the matrix of coefficients is expanded to give the characteristic
equation, and Cramer’'s rule is used to determine the numerators of the transfer
functions. Only transfer functions of response due to command voltage input are given
at this time. Open-loop ¢ transfer functions are of little interest because #§ inputs
(hinge moments) represent disturbances. Closed-loop transfer functions of response
due to 6 inputs are considered later.

43 . AK_K K + K
L_Pe s9’<s2+ 2> (16)

2 (s) = AV i

B g - 1 4HeKKsKgA
e® = Xe 1V

P 48K K + K2)m KK2
zli(s)= 1 2eBsKq mps4 + Bys3 +[52+(——Lp]s2+-]?;—v(K+K2)s STy
/A

A(s) \Y% I

where

A(s) = (1gs + 1) jmps® +<B—evinR + Bv> st 4 [( - I e , ﬁe?fVKc

48B8,A2 4BsKom B 4BeK
N l_Ié N Be ]s3+ [BeI—IéCE(K+K2) + T"(K+K2)+ &]32

vV vi2
KKz 4B¢KcBy 48B,A2 48.KKcKa
[Ilz + v K+Kg)+ —5— (K +Kp)|s + iz (19)

The above transfer functions are exact for the linear model. Thus, for a specific
design, the parameters could be assigned values, and equations (16) to (19) could be
used to determine the system response. This could be done easily on a digital comput-
er. However, much insight into the dynamics of the system may be gained if literal
expressions for various special cases can be derived. If the resulting literal expres-
sions can be shown to be valid under the assumptions of the derivations, they may be

useful in system design and analysis.

For the remainder of this report it is assumed that mp <<ZL2. In the following
sections approximate literal transfer functions are derived from equations (16) to (19).
The derivations begin with a basic system and become successively more complex.

The basic system is obtained by assuming that the piston mass and friction are negli-
gible and that there is no hinge moment. This is the system analyzed in reference 1.

Case I: Basic System

In Case I, the basic system, it is assumed that there is no hinge-moment loading,
that the mass of the piston is negligible compared to the load mass, and that friction

11



forces are negligible. Incorporating these assumptions in equation (19),

K 48BcA2 ,  4BKKc 488,A2K
£l8) = slrss + 1)[(1—5 * —T—>s YTy T

Dividing by the constant term gives

48B8,A2K I
A(s) = __BIeT__ s(1gs + 1) {<—L— + %)sz + 121%[2 s + 1] (20)

483,A272
Defining
,  488eA%2
Wy s TV (21)
K
wi=7T (22)
1 1 1
3 = T35 + — (23)
wc C.c)s Wh
Kecl
gives

48B.A2K 2  2rc
A(B) = ————— S(1eS +1)|— + — 8 + 1
(s) v (s )<wg o

Hence, there is a second-order resonance in the servo response. The factor wg may

be recognized as the natural frequency of the load coupled with the torque tube spring.
The factor wp arises because of the compressibility of the hydraulic fluid and is

referred to as the hydraulic natural frequency. The two modes couple to give the load
resonance, wg, and we < wg. The damping of the load resonance, ¢, is characteris-

tically small (< 0.1).

The transfer functions (eqs. (16) to (18)) become

X KK 2
P _ 1 s'q [ s
. (s) = A(5) 12A (wsz + 1) (25a)

12



o) 1 Kg
e®) = A (5 1247 (25b)
P, 1 IKgKg
e 9~ A1) 2a%y2 (25¢)
A1(s) = s(7g5 + 1) s2 Ze g 1 (25d)
1 = 8(7gs + 302- + “o +

Figure 2 shows this system with the position and pressure feedback loops described

P
by equation (14) incorporated. The -;(L(s) transfer function is the ratio of equation
p

(25¢) and equation (25a).

Figure 3 shows the system root locus for the position loop closure and the pressure
loop closure. Figure 3(a) shows only the position loop closure. The pole locations,
p; and pg, indicate the placement of the closed-loop poles at the desired value of

X
position feedback gain, Ky. If wg >>pq and T—l >>Pys the —eR(s) transfer function
s
may be approximated by

KeKq

12A

X
Py = 1
e(s)_ S

X
Then the closed-loop §£(S) transfer function becomes
c

KXKSKq
Xp 12A

2o
ch <+ KXKqu
12A

and the characteristic first-order hydraulic servo response is obtained with the time
constant determined by the position feedback gain, K,.

If the preceding assumptions are not warranted, the closed-loop pole locations, P

and py, may be obtained by applying the root-locus-magnitude criterion (ref. 10). If

we = wg, the quadratics in equation (25a) may be neglected and

gy - 59
e 12As(7gs + 1)

13



Applying the root-locus-magnitude criterion to determine the pole locations p; and po

gives
KxKeKq
12Ap(Tgp + 1)
or
9 KxKsKq 0
U+ Pt AT T
and
b 1,1 1 Kt
112 2’TS 2 TSZ 3ATS

R

Thus if the quadratic terms may be neglected (i.e., w, = wg) the closed-loop transfer

function following the position loop closure is

Xp (s) = KszKq
Xpe 12A74(s + py) (5 + Po)

If we® Pys figure 3(a) indicates that the position loop closure drives the load resonance

mode, we» unstable,

Figure 3(b) indicates the pressure loop closure (following the position loop closure)
for two different values of Tpe The position loop closure has driven the combined

resonance unstable and established the location of poles Py and py. Also, the zeros

at wg are exactly canceled by poles for the pressure loop closure. The usefulness of

DPF in providing damping is largely due to this fact. The smaller value of 'rl gives
p

the best damping performance but is susceptible to static loading errors. In the limit

TL = 0 a simple proportional pressure feedback would result and static load would yield

p

a static position error. As —7_1— is increased, however, the efficiency of pressure feed-
p

back as a damper decreases. Thus there is an optimum trade-off between the location

of the high-pass time constant and the static loading error. Reference 9 recommends

placing 71— at —;—wc. Figure 3(b) also shows that as the pressure feedback gain
p

14



increases, the pole at —Tl— moves toward the origin. This will cause a dipole in the

p
X
closed-loop ;P—(s) transfer function at TL The residue of this dipole may be large
Pc p

enough to cause a 5° to 10° phase shift in the system frequency response at low fre-
quencies. Such a phase shift is sometimes attributed to unknown nonlinearities when

it may be due to the lag-lead characteristic of the dipole. The three zeros at the origin
cause two branches of the root locus to approach the origin from the right-half plane

at an angle of £+60°, Thus DPF will cause instability of this model at high gains.

Figure 3 also indicates the difficulty of attempting to achieve damping of the load
resonance poles with conventional lag-lead compensation. The proximity of the zeros
at wg to the load resonance poles implies that it would be difficult, if not impossible,

to achieve an acceptable design with conventional techniques. By canceling these zeros,
DPF eliminates this problem. Also, the cancellation is inherent in DPF, so that exact
knowledge of the zero location is not necessary.

Equation (25b) illustrates the necessity of using the piston position as the feedback
signal rather than the load position, 8. The presence of the second-order zero in the

X
numerator of ?p(s) provides vital phase lead in the region of gain crossover which is

not provided by g(s). This point is illustrated in reference 2.

Case II: Piston Mass and Friction Included

In Case II the restrictions on the piston mass and friction are removed but the load-
free case is still considered. These are the conditions which exist during ground test-
ing of an aircraft surface servo. The analysis in the next section, in which hinge-
moment loading is included, would apply during actual flight operation.

Rewriting equation (19) with Ko = 0 gives

4B.K,m K
A(s) = s(1gs + 1) |:mps4 + <—%H + Bv> 83 + <_;_nE

48.B,Ke g 48BeA2> 0 <4BeKKcmp KB, 4BcKKc
Vv  tpEtTy s< + v tT Ot Ty /8
4BoKK, B, 48B.A%K
+ ( eIVC r — % )] (26)

The development of approximate literal factors of the system transfer functions for
Cases II and III is given in appendix A. It is shown that if K By << 12A2, equation (26)

15



may be factored to give

2 2¢ 2 2¢
A@s) = 5[ + s+ 1 —S§+—g8+1 (188 + 1) 27
wcz wc 0)2 wz

The load resonance, wg, is still defined by equation (23), and wg is a high-frequency

mode resulting from the inclusion of the piston mass.

The numerators of Eea(s) and g(s) are still given by equations (25a) and (25b).

In appendix A the numerator of —eé(s) is shown to have the form

s(s + z7) (sz + 2§pwps + wg)

The factors zq, Wps and ¢p are derived in appendix A on the assumption that

K K
l2mp I

2z pWpZ1<< wg and

In summary, the open-loop transfer functions are:

X, K 2
Pov_ _1 sKq [ s
= (8) = Ag(s) 12A <w§ + 1) (28a)
5,. 1 KgKq
e ® = X3(e) 12A1 (28b)
P = 1 IKgKq s2  2¢p
p (s) = Az(S)leZZz s(s + z7) wg + %p s+1 (28¢)
~ s2 2¢, g2 2¢9
AZ(S)—S(TSS+1)<w02 + wcs+1 -OE--F w—2s+1 (284d)
Byl2
zZ= 71— (29)
K
wp = ZT-— (30)

16



_Bv (1 43
tp = m;(a;' T) G1)

The inclusion of the piston mass introduces an additional high-frequency mode in
the response. This mode is the result of the interaction of the piston and the torque tube

spring. The damping of the mode, {9, is proportional to By.

The effect of the dynamic pressure feedback will be modified because of the inclu-
sion of friction. The location of the zero at z; has a marked effect on the pressure

loop closure, as illustrated in figure 4. The position loop has already been closed,
and the high-frequency complex poles and zeros at wo and wp are neglected. The

movement of the poles at wo is negligible for the values of Ky and Kp used to

stabilize the load resonance poles. For instance, in the example given later,
we ~ 50 rad/sec, wy ~2000 rad/sec, and wp ~ 1500 rad/sec. Figure 4(a) indicates

the closure when p; >z, and figure 4 (b) indicates the closure when p; <z;. (Both

p; and z; may be near ?1- , so this pole location must be considered also.)
p

Figure 4(a) indicates a damping action similar to that shown in figure 3(b). Figure
4(b), however, shows the load resonance to be much better damped for the same value
of K., and at larger values of pressure feedback gain, Kp, a low-frequency oscillatory

mode emerges. It is suspected that this is the type of response mentioned in reference
8. Furthermore, the high-frequency piston mode, Wos is probably the cause of the

high-frequency noise also observed in reference 8. There it was stated that the only
effective means of eliminating the noise was to introduce friction on the piston. This
observation agrees with equation (31), in which the damping of the mode is shown to be
proportional to the friction.

X
Figure 4 indicates that there will again be a dipole in the x_p (s) transfer function
Pc

at Tl, which may cause low-frequency phase lag. Also, the two zeros at the origin
p

cause two branches of the root locus to approach the origin at +90°. Thus DPF will
not cause system instability at high gain as for Case I.

Case III: Hinge Moment Included

Open-loop transfer functions.—In Case II hinge moment is included in the model,
resulting in equation (19), the characteristic equation. In appendix A it is shown that if

4B.KBy KK,  48B8,A2
v K+K)+ o << Ty K+ Kp)
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and pg << we, equation (19) may be factored to give

2 2¢ 2 2
A(s)=(-rss+1)(s+p3)< S 5 + w—hs+1>(—i—2- + ~t:2hs+1>

Weh ch

where the subscript h indicates the effect of hinge moment. It is noted in appendix A
that

K + K2

hence the stability and damping of the load resonance poles of the loaded system will be
slightly improved. It is also noted that ws}, = wg and Loy =t2, indicating the inde-

pendence of the piston mode from hinge-moment effects.
Xp o : Pr,
The numerators of E—(S) and E(S) remain unchanged, but -?(s) must be

P
reconsidered. Appendix A indicates that the numerator of ?L(s) may be approximated

by

(s2 + 2¢phwphs + 1)(s? + 2¢qws + of)

. K+Kp K d
if I <75 and wy << wph.

In the preceding expression
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The factored transfer functions for Case Il are given in table 1. The simplified
models of Cases I and II (eqs. (25a) to (25d) and (28a) to (28d)) may be obtained by
setting mp, By, or Ko equal to zero. The subscript h has been eliminated from the

parameters in table 1.
Figure 5 shows the pressure loop closure (following the position loop closure) for
Case III. The load resonance poles at w, Will close on the zeros at wi. Thus the

location of these zeros is critical to the stability of the system. If they lie in the region
of wy, DPF will be ineffective as a damper. Table 1 shows that wt is proportional

to the square root of the hinge moment, Ko, and that &t is proportional to By. Thus

some amount of friction on the piston is desirable, because it causes the zeros at wi

to move toward a region of higher damping. Of course, piston friction is also needed
to supply damping for the high-frequency mode at wg. Also, the low-frequency oscil-

latory mode which occurs at high DPF gains and low values of position loop gains
(fig. 4(b)) does not occur with hinge-moment loading.

Hinge-moment loading errors.—Only open-loop transfer functions of system response
due to a command voltage input have been considered. These transfer functions and
their approximate literal factors, which have been developed, should make it possible
to design a system with a suitable closed-loop response. Once this has been accom-
plished, the sensitivity of the closed-loop system to hinge-moment loading is of interest.

To study this effect, the g(s) transfer function of the closed-loop system will be

determined. Thus the open-loop matrix used to derive the open-loop transfer functions
must be augmented by the control law (egs. (15€) to (15g)). The voltage signal is now

© = Kx(¥p, ~ Xp) - KpPr

- 1
= KX(XPC - xp) - KpPL + ™ prl
and the xg equation becomes
. 1
TgXg = - Xg + Kg (Kxxpc - Kxxp - KpPy, + T_p pr1>

where

}.(1=—TLX1+PL
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Using the last two equations, the closed-loop system matrix is

[mps? + Bys + l% -5 -A 0 0 _1 [ o o |
K K+Ky 5
- ﬁ g‘) " : 0 0 0 o) 0 i
*pe
ﬁ,ﬁ s 0 s+ ﬁ%i\i - {‘16\)}\-" 0 Pl = 1| o 0 (32)
]
KgKy 0 KgKp TgS + 1 - KSK[);]I‘) Xg KoKy 0
0 0 -1 0 S + Tl_p Xy 0 0
L J L L _
The numerator of the 2—(s) transfer function is
Ky s 2 K 4BeKc\ 1 4BeKgKsKp
T t(mps + Bys + l_2> S + vV (TSS + 1)<s + T_p> + V s (33)

A
+ A(s + ;15>[48€e s (TSS + 1) + %—@i{%iiili){n

Unfortunately, there are no simple literal factors of equation (33). Itisa complex
function of the feedback quantities Ky, Kp, and Tpe It is possible to calculate the

static closed-loop load position, 8, due to hinge-moment loading by computing only the
constant term of the %(s) transfer function. Equation (33) provides the numerator

constant, and the system matrix furnishes the denominator constant:

KK1Kg + 12K K KKyA

[g (S)] ) 2
ss KKgK. + I“(K + Kg) KqKSKXA

This expression gives the exact steady-state hinge-moment loading error. If the terms
involving K. are neglected,

[9 ] .
GRS Py os

This result could have been anticipated, because the high-pass filter in the pressure
feedback loop isolates the load from closed-loop dynamics in the steady state. For a
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specific problem, the system constants may be inserted into equation (33), and the re-
sulting polynomial may be factored to give the frequency dependence of the hinge-
moment loading error.

COMPARISON OF GPAS RUDDER AND MODEL RESPONSE

GPAS Rudder Electrohydraulic Servo

The GPAS is a variable-stability JetStar airplane operated by the NASA Flight
Research Center. The basic control surfaces were disconnected from the left-hand
pilot' s controllers, and irreversible electrohydraulic servos were installed. Thus
the control-surface positions may be electrically controlled for airborne simulation
purposes. Details of the GPAS system are given in reference 11. The GPAS rudder
is used in the following discussions to illustrate the analysis presented in the previous
sections. Thus the surface deflection, &, of the previous sections becomes the rudder
deflection, 0., and the angle 6 is interpreted as the aircraft sideslip angle, B.

Figure 6 shows the location of the rudder hydraulic actuator and its relationship to
the rudder surface. The electrohydraulic system consists of a servovalve, which con-
trols fluid flow to the double-ended hydraulic actuator. The system operating pressure
is 3000 psi. The rudder surface is mass-balanced. The constants required in equations
(15a) to (15g) for the rudder model are given in table 2. Appendix B discusses the
problems encountered in determining these constants. In order to install the servo, the
rudder torque tube had to be cut and the moment arm linkage had to be inserted. In
the basic JetStar there was no power boost to the rudder, and in the GPAS modification
the rudder is permanently connected by cables to the right-hand pilot' s rudder pedals.
It was not necessary to include these rudder pedals (an extra mass-spring system) in
the analysis.

An electrical pressure transducer is used to provide the pressure feedback signal.
Figure 6 shows that several feet of hydraulic tubing are required to connect the servo
valve, the pressure transducer, and the actuator. In recent years it has become
common to use an integral servo valve/actuator system with built-in mechanical position
and pressure feedbacks. Such units are useful for large installations and for specific
applications, because major mechanical modifications are necessary to alter the sys-
tem characteristics. For small installations, the versatility of electrical feedback
signals may be important. Either method will provide the same system characteristics.
The rudder position transducer is a rotary potentiometer located beneath the actuator
and strapped around the torque tube (fig. 7).

Early testing of the rudder servo revealed a stair -stepping response to a step input
command. It was recognized that the response was caused by the static friction on the
piston. The problem was solved by superimposing a constant-amplitude, 60-hertz
dither signal on the command signal. The amplitude of the dither signal was adjusted
to effectively "break' the static friction while leaving the overall response unchanged.
Hence, only coulomb friction, B;, is included in this analysis.
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Rudder and Model Response

To compare the rudder response with the model response, the model equations of
motion (egs. (15a) to (15g)) with the constants given in table 2 were mechanized on an
analog computer, and step and frequency responses were obtained. Two nonlinearities
were programed: the valve flow-pressure coefficient, K¢, and the coulomb friction,

Bc.. Equations (4a) and (4b) or (5a) and (5b) were used for the valve coefficients, K;

and Kq. Thus a function switch selected either equation (4b) or equation (5b) as the

term included in the pressure equation. The coulomb friction, B,, could be eliminated

by setting a potentiometer to zero. As indicated in the section on DERIVATION OF
TRANSFER FUNCTIONS AND APPROXIMATE LITERAIL FACTORS, the viscous friction
coefficient, By, may then be increased to yield the desired damping at a prescribed fre-

quency. For the linear model, B, was increased from 500 lb/ft—sec'1 to

2000 lb/ft—sec“l. A linear model is desirable because root loci and frequency response
analysis techniques may then be used. Thus it is important to verify the suitability of
the linear model. A digital program, CONTROL, which is described in appendix C, was
used to calculate the root loci and frequency responses of the linear model.

The step and frequency responses of the rudder and the nonlinear model are given
in figures 8 to 10. The rudder tests were made on the ground, so there was no hinge-
moment loading. The test input was always a 1° command. All responses were obtained
with Ky = 1090 V/ft. The pressure feedback gain, Kp, and the time constant of the

high-pass circuit, r,, were varied. Figure 8 shows the step response of the rudder
p

and the model for —%— = 8.3, 16.6, and 33.2 rad/sec. Values of Kp range from
p

0.0048 V/psi to 0.0131 V/psi. At values of K, less than approximately 0.004 V/psi

the response becomes unstable. The 60-hertz oscillation in the rudder response in
figure 8(a) may be caused by the dither signal. The agreement between the rudder and
nonlinear model step responses shown in figures 8(a) to 8(c) is considered good.

Frequency responses of the rudder, the nonlinear model, and the linear model for
two different values of Kp and Tp are shown in figures 9 and 10. In figures 9(a) and

9(b) the load resonance at approximately 7.5 hertz is evident. Note also the charac-
teristic first-order lag low-frequency attenuation, and the notch characteristic at

f~ 12 hertz. The first-order lag characteristic can be explained as follows: The peak
at 7.5 hertz and the notch characteristic at 12 hertz are caused by a pair of complex
poles and zeros with very low damping ratios. These poles and zeros cannot yield the
lower frequency phase attenuation shown in the figures. This phase shift is caused by
the real pole, p; (fig. 3(a)).

In figures 10(a) and 10(b) the load resonance was damped by the larger pressure
feedback, Kp- The agreement between the rudder and model frequency responses in

figures 9 and 10 reflects the agreement in the step responses.
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Figures 9 and 10 also indicate that only slight differences exist between the linear
and nonlinear models. The main difference is in the low-frequency phase shift, where
the nonlinear model has more phase shift than the linear model. The rudder phase
shift curve is considerably below those of both models at low frequencies. This is
especially true with the high damping shown in figures 10(a) and 10(b). This may be
caused by nonlinear effects not included in the model. Possible sources of the phase
shift are torque motor hysteresis, first-stage servovalve backlash, or actuator static
coulomb friction.

Figures 8 to 10 indicate that the rudder servosystem is approximated well by the
nonlinear model and that the linear model is a valid approximation of the nonlinear
model. Thus a study of the utility of DPF with the linear model would allow more
general conclusions to be drawn with regard to the damping action of DPF.

The effect of hinge-moment loading of the rudder surface is shown as a final check
of the model in figure 11. Figure 11(a) shows the rudder ground test step response,
and figure 11(b) shows a step response recorded during flight. The loading causes the
servo to be better damped, and the resonant frequency (in the step response) increases.
Figures 12(a) and 12(b) show the step response of the nonlinear model with and without
hinge-moment loading. Inspection of these responses leads to the same conclusions
as were drawn from figure 11.

Table 3 compares the approximate literal factors developed in the analysis section
for Cases I, II, and III to the exact values obtained with the CONTROL program. In
Case I the literal factors are exact. In Cases II and III the approximate factors are
close enough to the exact values to make a first analysis possible. For the rudder

I _ _ - I . .
model l—2 = 72 slugs and mp = 0.166 slug. Thus the condition mp, << Z—Z is satisfied.
Table 3 also shows that the high-frequency poles at wg are overdamped. Thus

there should be no high-frequency control-valve-generated noise ('honk') in the system.
The damping is attributed to the large value of By,. Of course, By was adjusted to

match the system's response at the load resonance frequency (approximately 50 rad/sec).
Thus a separate calculation with a lower value of By (corresponding to the higher

frequency w,) may be in order to estimate the damping of this high-frequency mode

more accurately.
ANALYSIS OF DYNAMIC PRESSURE FEEDBACK

The effect of dynamic pressure feedback on system stability was analyzed, using
the GPAS rudder servo for illustration. In addition, the effects of Kx, Kp, and

1
- oncases I, II, and III were studied.
P

The CONTROL program was used to obtain the root loci of the linear rudder model]
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for the three cases with Ky, Kp, and Ti as parameters. The loci are plotted in
P

figure 13. Loci of the load resonance poles are plotted for three values of ;rl— and
p

four values of Kx. Only the third quadrant of the s plane is shown. Dots along the

loci indicate gain increments of AKp = 0.00348 V/psi.

Figure 13(a) gives the loci for Case I. The GPAS system design called for a closed-
loop rudder servo bandwidth of 50 rad/sec. This goal is most closely achieved by the
position feedback gain, Ky, of 1090 V/ft and is the value used in the system. This

value of Ky places p; at 42 rad/sec; however, this system would be objectionable
because of the limited damping action of the DPF gain, Kp. Figure 13(a) also illustrates

a point made in connection with figure 3(b)--that high Kp gains may drive the system

unstable. Figure 13(a) shows that better damping performance can be achieved by re-
ducing the position feedback gain, Ky, with the attendant loss in system bandwidth. This

model of the system (Case I) is unrealistic because friction on the piston was neglected.

Figure 13(b) gives the loci for Case II. The damping for Kx = 1090 V/ft is reason-
able, and, again, as Kx decreases, the damping performance of the DPF improves.
When Ky =436 V/ft and 654 V/ft, the effect is the same as that noted in figure 4(b),

where pj <z; and a low-frequency oscillatory mode emerges at low values of 'rl as
p
Kp increases, If Kp were increased from zero, the load resonance oscillations

would become well damped (they would, in fact, disappear), leaving a desirable step
response, If K, were increased still further, the low-frequency mode would appear

in the response,

Figures 13(a) and 13 (b) indicate that for many designs there will be a value of Kp

beyond which DPF does not increase damping; in fact, damping may decrease. More
importantly, DPF will then also reduce the system bandwidth (through the frequency
of the load resonance poles).

Figure 13(c) gives the loci for Case III. The load resonance poles at w, close on

the zeros at wi. Differences between figures 13(b) and 13(c) illustrate the difference
that may be expected between ground tests and flight operation of aircraft hydraulic
servos. The frequency of the load resonance poles is lower in figure 13(b) (56 rad/sec

to 58 rad/sec) than in figure 13(c) (62 rad/sec to 64 rad/sec). This could have been
anticipated by noting from table 1 that w, increases as Ko increases. In figure 13(c)

there is a maximum damping that is practical. The loci for the different values of Ky

are similar, and all yield acceptable damping. In addition, the change in the loci of

figure 13(c) for changes in o is small relative to the larger changes of figure 13(b).
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Also, increments of Kp in figure 13(c) cause smaller load resonance pole motion than
in figure 13 ().

The root loci of figures 13(a) to 13(c) give insight into the behavior of the load reso-
nance poles. To augment this information, the closed-loop frequency response of
the system indicates the system bandwidth, phase margin, and low-frequency phase
shifts. Figures 14 and 15 give the frequency response of the linear rudder model for
variations in Ky and Kp with 7, held constant at TL = 16.6 rad/sec. The hinge-
p

moment coefficient, Ko, was set at zero, which corresponds to the ground test value.
In figures 14(a) and 14(b), in which Kp
the resonant peak at 7 hertz to 8 hertz. However, lowering K, also lowers the band-

width (fig. 14(b)). In figures 15(a) and 15(b), in which Ky = 1090 V/ft and Kp is varied,
K

1Y
draw the resonance to lower frequencies (fig. 13(b)).

= 0.00348 V/psi, Ky has strong control over

does not exercise strong control over the magnitude of the resonance, but it does

Figures 16(a) and 16(b) illustrate the change in closed-loop response when hinge-
moment loading is included. When hinge moment is included, the frequency of the
resonance peak increases, its magnitude decreases, and the phase margin increases.
These effects bear out the comments made in connection with figures 11 and 12.

The following conclusions about the damping action of DPF may be drawn from
figures 13 to 16. If w, 1is in the frequency region of the desired closed-loop bandwidth,
the position loop closure will drive the load resonance poles toward the unstable region.

With -Tl—- set at approximately % we, DPF will always have some damping effect and
p

will usually be quite effective. However, if Ky is large, the resulting DPF damping
action may not be satisfactory. Decreasing Kx always allows better damping action
by DPF, but this causes a loss of bandwidth. There will usually be a value of Kp

beyond which DPF does not increase damping (it may, in fact, decrease damping) and
directly lowers the closed-loop bandwidth. Inclusion of hinge-moment loading decreases
the sensitivity of the load resonance poles to variations in Ky, Kp, and Tp. In addi-

tion, it raises the frequency of the load resonance, lowers the magnitude of the reso-
nance peak, and increases the phase margin. Thus, the operation of the system will
be more stable during flight than during ground operation.

The use of DPF in an aircraft control-surface servosystem makes the system sensi-
tive to variations in hinge-moment loading. Hinge-moment loads arise out of the vari-
ations in the angle of incidence at the surface caused by aircraft maneuvers, control-
surface deflection, or atmospheric turbulence. Whether any of these effects unduly
compromise the servo response is considered in the following discussion.

For the aircraft rudder servo being analyzed, load variations are attributed to
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changes in sideslip angle, 8, rudder deflection, 6,., and turbulence, Bg- The response

of an aircraft to a rudder step is caused primarily by the excitation of the Dutch roll
mode. Ignoring the effect of the roll and spiral modes, the response of the GPAS to a
rudder step for a selected flight condition can be expressed as

;%(s)= LT

S +0.265s+ 2.4

This function was mechanized in the analog simulation, and the nonlinear rudder model
was used to obtain the time history shown in figure 17. The frequency of the load vari-
ation was small enough so that the rudder servo was able to maintain constant com-
manded Xp following the initial transient; however, the rudder surface position, Op»

varied as it was forced by B. Because the frequency of the Dutch roll oscillation was
much less than the bandwidth of the servo, the variation in 0, may be approximated by

20r = (5) 00

Load variations will also be caused by atmospheric turbulence. Lateral gust veloc-

v
ity, vg, induces an effective incremental sideslip of Bg = Vi and will be sensed by the
a

servosystem as a changing hinge moment. The response of the rudder to turbulence
was simulated using the gust power spectra:

~ ]’__,g 2
2 1+ 3( > w2
Ung i Va

évg(w)= Vo -1 <L_g>2 2]2
+ v w

a

where V, is the aircraft velocity, Lg is the turbulence scale factor, and Og is the

root-mean-square gust velocity. This power spectrum may be realized by passing
white noise through an appropriate shaping filter.

Figure 18 shows the GPAS rudder servo response to turbulence at a cruise flight

L
condition. A moderate turbulence level of Og = 5 ft/sec was used. The ratio Vg was
a

set at 10 seconds. The response of 06, indicates that the response of the servo to load
variations caused by atmospheric turbulence is acceptable.
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CONCLUSIONS

A lumped parameter, two-mass system driven by an electrohydraulic servo valve
was analyzed. The results of the analysis of a model of the system were compared
with test results from a highly resonant rudder electrohydraulic control system. The
comparison led to the following conclusions:

1. The model equations of motion accurately represented the test system. The
calculated model root loci, frequency responses, and step responses agreed well with
test results. A linear model agreed well with a nonlinear model that included the non-
linear flow equation of the servo valve and coulomb friction on the actuator.

2. Approximate literal transfer functions yielded accuracy acceptable for initial
analysis if the piston mass was much less than the effective load mass.

3. The system response was characterized by a load resonance and a piston-hydrau-
lic mode. If there was insufficient friction on the piston, the high-frequency piston-
hydraulic mode may have been underdamped and could have caused high-frequency
control-valve-generated noise referred to as "honk."

4. When the position loop was closed, the load resonance poles were driven toward
the unstable region. By locating the high-pass time constant of the pressure feedback
at approximately one-third of the load resonance frequency, dynamic pressure feedback
(DPF) always provided damping for the load resonance pole. However, if the position
feedback gain were too high, damping provided by DPF may have been insufficient.

5. A maximum practical DPF gain usually existed. Increasing the DPF gain
beyond this point directly lowered the system bandwidth and possibly decreased the
damping.

6. Operation with hinge-moment loads (corre sponding to flight operations) resulted
in a higher load resonance frequency, smaller frequency response peaking, and in-
creased phase margin than when hinge-moment loading was not included.

7. Hinge-moment loading reduced the sensitivity of the load resonance poles to
variations in position and pressure feedback gains and in the high-pass time constant.

8. The response of the rudder servo to load variations caused by atmospheric
turbulence was acceptable.

Flight Research Center,
National Aeronautics and Space Administration,

Edwards, Calif., March 3, 1972,
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APPENDIX A
DETERMINATION OF MODEL CONSTANTS

In the determination of the constants in table 2 some difficulties were encountered,
Although the load moment of inertia, I, and the piston mass, mp, should be relatively

accurately determined quantities, a problem may arise in deciding the location of
the spring, K, This location will obviously affect mp and I, If a distributed spring

is encountered, the lumped-parameter model of this report may be completely
inappropriate,
The spring constant, K, should be accurately determined, because it is directly

X
related to wg, the load resonance frequency. Equation (25a) indicates that —eE(s) has

a notch characteristic at wg. Thus K may be determined by calculation, measure-

ment, or (knowing I) determination of wg.

The friction, By and B;, may be experimentally determined with low-frequency
triangular wave inputs to the closed-loop system.

It was not necessary to include the rate limit in the servo analysis. Electronic
safety trip circuits cut off the GPAS hydraulic system before this rate limit is encoun-

tered, and rate limiting is rarely encountered in the operation of the system. This
reflects the fact that Py, <<Pg.

The valve quantities Kg, Kq, Kc, and 7g can be obtained from manufacturer's
data. The first-stage servo valve gain, Kg, is a temperature-dependent quantity be-

cause of its dependence on the coil resistance, R. The resistance of copper wire
increases by 22 percent in rising from 68° F to 167° F. Thus, the valve gain, Kg,

which is inversely proportional to R, will decrease by 18 percent during this tempera-
ture rise. Because Kg is a factor in the position loop gain, the servo response will

also deteriorate. This problem may be sidestepped by using current to drive the servo-
valve.

The bulk modulus of elasticity of the hydraulic fluid is difficult to estimate. Hand-
book values of B = 250,000 psi for typical petroleum-based fluids are usually too
high. In reference 6 the strong dependence of B, on entrapped air and container

compliance is illustrated. At the high pressures used in aircraft hydraulic systems,
entrapped air will be dissolved soon after the system begins to operate. However,
reference 7 indicates that entrapped air may still cause problems: Dissolved air may
come out of solution when the fluid passes through a valve orifice due to the pressure
drop. Reference 6 states that a fg of 100,000 psi yielded good results for many

studies. The value used in this report, g = 50,000 psi, was determined by attempting

28



APPENDIX A - CONCLUDED

to match the analog simulation response to the measured response. It is believed that
values of Be between these two values will give good results in analyses of hydraulic

systems. The value used in an analysis may be chosen according to the relative amount
of hydraulic tubing and connections contained in the system. The rudder control system
analyzed in this report contained a relatively large amount of tubing and connections,
and the smaller value of B, produced good results. On a close-coupled installation

(for instance, with the servovalve mounted on the actuator) the larger value recom-
mended in reference 6 would be appropriate.
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APPENDIX B

DEVELOPMENT OF APPROXIMATE LITERAL TRANSFER FUNCTIONS

The approximate literal transfer functions for Cases II and Il are developed in this
appendix.

CASE II: PISTON MASS AND FRICTION INCLUDED

In Case II the restrictions on the piston mass and friction are removed, and the
hinge-moment loading is neglected.

Rewriting equation (19) with Ko equal to zero gives

4BcKcmy, Kmp 48eByKe K 4880 A2
A(s):s'rs+1)[ms4+<————-+Bv s3 + + + =5 + 52
(7s P \ I \ 12 \

4 K 4 4 4883, A2
N <5eKKcmp N BV+ BeKKc>S N <ﬁeKKch N 88e K)] (36)

v I V12 v v

In the constant term

48.KKcBy  4884A%K
v T Iv

or

KBy << 1242

will usually prevail. Hence, dropping the first term of the constant and dividing through
by the remaining term,

488, A2 v Im v
488, A“K 12A2K  488,A2K

/
vm,  IByK, v I mpK, ByV IK
+ + + =s% + + + = s+1
486,A2 ~ 12A2K = 48BeA%12 T K 1242 48B8.A2 124212

(37)
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APPENDIX B - CONTINUED

This expression has the form

2 2% . 2 2y . <4 2¢9 2¢e 3
—3 + s+ -9 + ——S+ = + + s
We w 28 wczwg wcwg

(38)

We w2

47 o 2. 2
+ <L+—1—+ 2C>s2+<—+—2s+1

The last two terms of the coefficient of s2 in equation (37) may be recognized as

the quantity already defined as —172— in equation (23). Then the coefficient of s* in
W
'
equation (37) is
486, A%K
Pe2 T Tivm,

which may be solved for w22 (using equation (23) for w.) as

VK + 4866A2Z2

(1)2 =

2
Vitmy,

To determine (o, K, << 1. (See table 2.) Hence, setting K. equal to zero in
equation (37) and observing the coefficients of s3 and s (where {5 occurs) results

in the expressions

28 2 IVB,
5 + 22 - —— (39)
weW2 WoWe 8Be A°K
and
2, 2 B,V

+ = 40)
We o w2 48p A2 (

(Although ¢, also occurs in the coefficient of s in equation (38), that coefficient is

dominated by the other terms in the coefficient.)
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APPENDIX B -~ CONTINUED

The load resonance, w,, remains in the vicinity of the jw axis near the zero at wg

as shown in figure 3(a). Thus ;,<<1, whereas ¢, ~ 1. Setting ¢, equal to zero and
solving equations (39) and (40) gives

I
E)wczwz (41)

2

~ B
Because wg ~ I

these expressions are nearly equivalent and equation (41) will be

used to compute {o-

X
The numerators of —éE (s) and g-(s) are still given by equations (252a) and (25b) and
P
do not require further analysis. The numerator of —eL(s) does require further analysis.
Pr,
Setting K, equal to zero in equation (18), the numerator of e—(s) contains the expres-
sion

By B,K
ss3+HS2‘+ 2K +§s+h‘r’1 (42)
p 1“my I P

This expression has the form

s(s + zl)(sz + 2§pwps + wpz) = 5[33 + (Zl + 2§pwp)sz
+ (2§pwpz1 + wé)s + zlwg] (43)

P
In Case I the ?L-(s) numerator contained s2, Assuming that the low-frequency

response will not be grossly affected by setting my, #0 and B, # 0, it is anticipated

that z; will be small and wp will be large. Therefore,
2r pwpzl << wg
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Comparing the coefficients of the first power of s in equations (42) and (43) results in
the expression

2_ _K X . _K
wp = l2 + 71 lzm 44)
. K K
since —lz >> T
Mp
Then the constant terms of equations (42) and (43) give
B,K
“Wp 21 = Imy
or
B,1°
2y = 1 (45)
To find {p the coefficients of s2 are equated:
By
21 +25p0p = -
p
2
§p=2_1_<?1_zl> =§BV_<_1__ZI_> 6)
wp \ Mp wp \mp
In summary, the open-loop transfer functions are:
X KgK 2
P _ 1 579 [ s
e &= e 2A (;Sz +1) (472)
5 1 Kg¥q
Y(s) = — 47b
e® = X0 oAz (*70)
—(8) = s(s+z —_ + s+1 47c
e &~ %) 124272 ( 1)<w§ @p ) @i
2 2¢ 2 2¢
- 5 C S 2
Az(s)—s(v'ss+1)<;-?+ Es+1)<w—2+ Zu?s+1> (47d)
c 2
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where
B, .2 ,  VK+488A%12
z1 = I_ wz = 5
Vi my
w2 - K w2= X
P ;2 s 1
l mp
By [ 12 486,212
tp Bwp \mp T WR = —Iy
VB,
_ 1 1 1
Ez*“(‘)“’«?wz = = S+
48p,A2K \ K w2  wl wf

CASE IlI: HINGE MOMENT INCLUDED

In Case III the restriction on the hinge moment is removed, giving equation (19), a
characteristic equation. In the coefficient of s it is noted that usually

4B8.KBy KK 488, A2
T (K+Ke) + Ilzz <« —qv— (K +Kg)

Thus, neglecting the first two terms of the coefficient of s in equation (19) and dividing
through by the remaining term gives

488, A% (K + Kg) IVmy, 5 IK,m IVB, .
v (T8 + 1) R 5 s
488,A2(K + Kg) 12A% (K + Ky)  48B0A% (K +Kp)

Vmp _ IBKe IVK S S
488,A2  12A%(K +Ky) 48BcA212(K +Kp) K +Kp

Kemp ~ VBy KK, 9 KKgKe 48)
| 1242 488,A2 124272 (K + Ky) 12A272(K + Kp)

This expression has the form
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g2 2L6h ) g2 2¢9h s
+ ——s + 5+ gy S (+p3)

where the subscript h indicates the effect of hinge moment.

It is obvious that
KKsK
2% ¢ 49)

P37 12A4212(K + Ky)

The factor pg is small compared to the other factors in the expression. Thus fac-

toring the root (s + pg) from equation (48) leaves an expression very similar to

equation (37):

IVmp & IKCmp IVBy, &3
: )

48B,A%(K + K2) .
488, A%(K + Ky) 2A2(K + Kg)  486¢A2(K + Ky

17 (18 +1)(s +P3)

vmy, IByKc VK 1 |
+ + + 2.2 rew ek
4880A2  12A2(K +Kp)  488.A%12(K +Kp) + K2

+ —Kcmp+ M + e s+1
1222 * 4ep a2 T 12A%12(K + Kp)

Because of the similarity between this expression and the expression in equation (37),
the procedure is exactly the same as that in Case II, that is, identify

2 K+ Ky
Wsh = 71
2;2
o  48BcA° (K + K2>
“hh = IVK
1 1 1

KK
fch = Wch
24A%1% (K +Kyp)

VK + 488,A272
w =
2h IVIZm,,
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&K = VBy ( I ) Wet2w
2h 96BeA2 K+ Kg ch @2h
Note that
K + Ko

Thus the stability and damping of the load resonance will be slightly improved. Also,
wop and g5y are the same as in Case II. The independence of wop and &) of the

hinge moment reflects the fact that this is a piston mode isolated by the load mass from
hinge-moment effects.

The numerators of -EE(S) and g(s) are still given by equations (25a) and (25b), but

P
the numerator of —éI—J-(s) has changed. The -e—L-(s) numerator (eq. (18)) now contains
the factor
344_&53+ K _, K+XK2 82+BV(K+K2)S+ KKg

and has the form

(Sz + 2§ph“’phs + (-L’ph2> (sz + 2 ws + wtz)

It is anticipated that wph ~ wp and wpp >> wi. Equating coefficients of s2 and again
K+ K2

neglecting i in comparison with 2K results in the expression
l mp,
K 2
W= o5 = w
pﬁ lzmp p
Then
KKy
2 _
wpRef = 3
Il mp
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Equating coefficients of s,

Using equation (46) for Eph’

2
__1_le

2VKy 1

The factored transfer functions for this case are summarized in table 1. The
simplified models of equations (31) and (25) may be obtained by setting mp, By, or

Ko equal to zero. Thus the subscript h was eliminated from the parameters in table 1.

37



APPENDIX C

CONTROL: A DIGITAL PROGRAM FOR THE DETERMINATION OF
TRANSFER FUNCTIONS, ROOT LOCI,
AND FREQUENCY RESPONSES
The CONTROL digital program was used to generate the transfer functions, root

loci, and frequency responses of the linear model. The program uses the state varia-
ble formulation of the linear equations of motion:

x=Fx + Bu (34)
where
X isthen X1 vector
F is the n X n matrix
B is the n X m matrix
u isthem X1 vector
n is the dimension of the system,
m is the number of inputs into the system.
From the closed-loop system matrix of equation (32), n = 7 and m =2,
An m X n feedback matrix, G, is defined as
u=1u

c+G§

where u, isa command input. Then equation (34) becomes
k= [F +BG]x + Buc (35)

The eigenvalues of the matrix F in equation (34) give the roots of the characteristic
equation of the open-loop system, and the eigenvalues of the matrix [F + BG] in equa-
tion (35) give the roots of the characteristic equation of the closed-loop system. The
CONTROL program uses the IBM Share program QREIG (i.e., the QR algorithm) to
find the eigenvalues. Setting

G= aG1+ bG2

where G1 and G2 are m X n matrices and a,b=10,1,2. . . .. , the eigenvalues
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of [F + BG] yield root loci for the two feedback quantities associated with the matrices
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TABLE 1.—APPROXIMATE OPEN-LOOP LITERAL TRANSFER FUNCTIONS

g Lo
e A(s) 12A \ ,2 +
s

Q(s) B 1 KKSKq
e~ A(s) 12AI(K +Kp)

PLig- L KKKg 2 %
e A(S) 12A2l2 (K+K2)

A(s) y( £, 2e 1> 2 2 1
8) = (s+pg)(7gs+ )| =5 + — s+ ~— + —s ¢
( 3)(7s ) wcz W 2 wo

where

D, = KKzKC lzBV I

3 128%12(K 4 Ky) &7 2T YK,

K+ K.
2 _ 2 2__K
Ys T T “p T 72
l my,
,  488A%1P (K 4 Ky)
Wy = VK . (L_ﬁ
p 2wp myp, I
1 1 1 2,2
We Ws wg w2 = + e
2 IVlzmp
K
2 2
Wy = —
=2 2 K+K2> c 2
K, 968, A
= )
C  24p2;2 °C
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TABLE 2.—RUDDER MODEL CONSTANTS

I 1.8 slug—ft2
m, 0.166 slug
K 10,800 ft-1b/rad
l 0.158 ft
\% 5 in3
A 1.0 in2
Be 50,000 psi
.3 -1, iy
Ky 3.05 in"-sec ~/in./psi
Kq 167 in>-sec”L/in.
K, 940 ft-1b/rad
K2 1340 ft-1b/rad
K 0.003 in/V
g 0. 0025 sec
|5 | < 30°
T
|6i‘l < 109 deg/sec

Nonlinear model

B, 500 1b/ft-sec ™
B, 40 1b

.3 -1 .
K, 0.0278 in" -sec ~/psi

Linear model
By 2000 1b/ft-sec™!
B, 0
.3 -1 .
K 0.000084 in"-sec ~/psi
Xg 0.003 in.
max



TABLE 3.—COMPARISON OF APPROXIMATE LITERAL FACTORS AND EXACT FACTORS

Case I Case II Case HI
Approximate literal factors
Exact | Approximate Exact Approximate Exact | Approximate
+K
wg ,f : 2 77.46 77,46 77.46 77.46 82,12 82.12
4864212 (K + Ky)
wp e < | -] e e 81.59 | —-—- 86.5
1 1 1
we | = == +—3 56,18 56, 18 56.7 56.18 63.0 59,57
wé wg wi
K.l
te -—3— we . 0139 . 0139 . 068 .0139 . 059 . 0148
244272
KK2K,
P e | | o .297 .331
3 | 12422 (K +Kg)
VK + 488,A%]
wg P AT | 2330 1747 2330 1747
IVi2m
p
VBy I
2
¢ ( )w wg | emem | 2.58 1.91 2,58 1.91
2 963eA2 K+Kg/ €
K
wp - e 1490 1614 1490 1614
%m
p
Bvii 22
tp op\mp " T/ | | - 4,02 3.12 4,02 3.12
’K.z
wg - | e e ——— 29.4 27.28
l i
£t 3T @ ---------- 1l ---- .4 .508
2
z; i T 32,62 21,14 | - | aeee
I
Ky
Kel &3¢0 | —| = | -1 - . 0825 . 0775
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(b) Mechanical diagram.

Figure 1. Continued.
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Piston \ |—Xl->
4 Y

PL = Pl'PZ

Q Q |-§->

Spool —_|

{12 Q g\/w/\f Q 03\'

Ps
Supply Return

(c) Hydraulic diagram showing second stage of the servo valve (spool valve)
and the actuator piston.

Figure 1. Concluded.



3oeqpoeay uoliisod Y WaISAS [0IJU0D 9OBJINS-[0IIU0D JPeIOATe U Jo wealelp yoorq doo[-pasod

0 =g = 8y = dw ¢] ose)  *yovqposy sanssoad orweup pur

*Z 2andig

7

I+

2’0
Nm
1

1

SolweUAp aqny anbuo]

I uteb
ssed- UbIH idd
20
T+ 5 v 1+s%h d
> s /¢ > 4 ™
sty
s
A 1y iy
om N.UQ $1)
H+mﬂm 7S (1 +s°1)svel
S
d M
X L+ INNA cv_mv_ 3

S21WeUAp peo| pue 0AJaS

Xy

uieb uoinisod

uax

47



‘0 =2 =2y=du °]ese) 10] saansoo doo] axnssaid pue uorisod 10J 1007 jJ00y °g 8anSiyd

¢d, 14, ,
. - > -5 aanso(d doof1 uorjisod
Sumoiroy aansoyd dooj aanssaad (q) *Kuo aansolo doof uonyisod (e)
lg, <
1 1
T 1 U 4 0 Ty A 0
e - € X—-s O-—m—)¢
¢
/
/
/
w.alp Iq
1) 2
1
om
S
m3 m
of of

48



‘0 = &3 °II ese) J0j aansojo doof uonisod Summojoy aansoo doo[ aunssaad Jo 100] 100y *§ oIn3Lg

Iz5 1g (q) Ta<ld ()
Q d
=R 4 o - o
3¢ Ny o - V\/
*.

49



jw

Figure 5. Root loci for pressure loop closure following position loop closure

for Case 1. K,_= 1090 V/ft; —Tl— - 16.6 rad/sec.
D
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Kp =0. 0048
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Rudder Model

(a) 1 _g.3 rad/sec.
P

Gr = 10.

Figure 8. Rudder and model step response as a function of Kp and ¢

Tp.
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Continued.
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Xp 0. 00276 ft

] L

—

R
" N\/\' \ 100 psi

() Simulated ground test. (b) Simulated flight test.

Figure 12. Nonlinear model step response in simulated ground and flight tests.

Ky = 1090 V/ft; Kp = 0.0048 V/psi; — = 16.6 rad/sec.
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Figure 17. Hinge-moment loading of rudder surface due to 8 response.

Ky = 1090 V/ft; Kp = 0.0048 V/psi;

1

3

= 16.6 rad/sec.
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Figure 18. Response of nonlinear model to simulated atmospheric turbulence.

L
Ky = 1090 V/ft; K, = 0.0048 V/psi; 1 _ 16.6 rad/sec; gy = 5 ft/sec; —£B - 10 sec.
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Figure 17. Hinge-moment loading of rudder surface due to 8 response.

Ky = 1090 V/ft; Kp = 0, 0048 V/psi; Ti - 16.6 rad/sec.
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Figure 18. Response of nonlinear model to simulated atmospheric turbulence.

L
K, = 1090 V/ft; K,, = 0.0048 V/psi; - = 16.6 rad/sec; oy = 5 ft/sec; —& = 10 sec.
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