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ANALYSIS OF AN ELECTROHYDRAULIC AIRCRAFT CONTROL-SURFACE

SERVO AND COMPARISON WITH TEST RESULTS

John W. Edwards

Flight Research Center

INTRODUC TION

During the past decade, the use of electrohydraulic servomechanisms in aircraft
flight-control systems has become commonplace. They are used to provide power boost,
stability augmentation control inputs, or primary control of the vehicle. Because of
weight and space limitations, there is always a design trade-off in the installation of

such a system concerning the structural stiffness of its components. In a well-designed
electrohydraulic control-surface system, a well-behaved system with a first-order-
lag dynamic response may be achieved. The system time constant is determined by
the position feedback gain.

In some instances this desirable response is not achieved because excessive struc-
tural compliance causes the system to be highly resonant. This was true of a rudder

control servo installed in the NASA general purpose airborne simulator (GPAS).
Attempts to damp such systems have led to the use of dynamic pressure feedback (DPF),
in which high-passed pressure feedback provides the necessary damping.

The literature on electrohydraulic systems is extensive (refs. 1 to 8, for example);
however, there does not seem to be any readily available analysis of this type of sys-
tem, which is often encountered in aircraft control-surface systems. The purpose of
this report is to analyze a lumped, two-mass model of an aircraft control-surface

servo and to illustrate the use of DPF. The effect of hinge-moment loading of the con-
trol surface is included. The model is linearized, transfer functions of the pertinent
variables are derived, and the effectiveness of DPF in damping the load resonance is
investigated. The nonlinear and linear responses of the model are compared with
experimental measurements of the highly resonant rudder control servo installed in
the GPAS.

SYMBOLS

A

B

B c

B v

piston area, in 2

general coefficient matrix

coulomb friction coefficient, lb

viscous friction coefficient, lb/ft-sec-1



Ch

Ch6' Ch0

5

e

F

f

G,G1,G 2

H s

I

j:q:Y

K

Kc

Kp

Kq

K s

Kv

Kx

K 1 , K 2

L

Lg

l

mp

PF

PL

control- surface hinge-moment coefficient

coefficients in hinge-moment equation

control-surface reference chord, ft

servovalve command voltage, V

general coefficient matrix

frequency, Hz

feedback gain matrices

control-surface hinge moment, ft-lb

control-surface moment of inertia, slug-ft2

spring constant, ft-lb/rad

servovalve flow-pressure gain, in3-sec-1/psi

pressure feedback gain, V/psi

servovalve flow gain, in3-sec-1/in.

servovalve first-stage gain, in/V

servovalve proportionality constant, in 3-sec- 1/in_-_

position feedback gain, V/ft

coefficients in hinge-moment equation, ft-lb/rad

5r

gain constant of -y(s) transfer function

servovalve coil inductance, H

scale length of turbulence, ft

moment arm, ft

piston mass, slugs

output of high-pass filter, psi

differential load pressure, psid
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Ps

PI' P2

Pl ' P2 ' P3

QL

QI' Q2' Q3' Q4

R

S

S

U
m

V

Va

Vg

X

xp

X s

x 1

Zl

fie

A(s),A1

5

5r

_c'_t,_2,_ p

0

P

hydraulic source pressure, psi

actuator chamber pressures, psi

real poles of transfer functions

hydraulic fluid flow rate, in3/sec

hydraulic fluid flows in servovalve, in3/sec

servovalve coil resistance, ohms

control-surface reference area, ft 2

Laplace transform variable

control input vector

volume of fluid between servovalve and actuator, in 3

aircraft velocity, ft/sec

lateral gust velocity, ft/sec

state vector

piston displacement, ft

servovalve spool displacement, in.

auxiliary variable introduced in model

real zero of transfer function

aircraft angle of sideslip, rad or deg

bulk modulus of elasticity of hydraulic fluid, psi

denominator of transfer function

control-surface deflection, rad

rudder deflection, tad or deg

damping ratios

angle of incidence at control surface, rad

atmospheric density, slugs/ft 3
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(y

%

T s

_Vg (co)

09

Ws' We' Wh' COp,w t,w 2

Sub script s:

C

g

h

max

ss

real part of complex number

root-mean-square value of Vg, ft/sec

time constant of high-pass filter, sec

time constant of first stage of servovalve, sec

power spectrum of lateral gust

frequency, rad/sec

open-loop natural frequencies, rad/sec

command signal

gust

mode caused by hinge-moment loading

maximum operating value

steady state

A single dot over a quantity indicates the first derivative with respect to time;
double dots indicate the second derivative with respect to time.

DEVELOPMENT OF MODEL

The system analyzed in this report is an aircraft control-surface control system

powered by an electrohydraulic servovalve {figs. l(a) to l(c)). The system is similar
to the stability augmenters or power boost units in many existing systems. The mech-
anical linkages to a pilot' s controller are not shown in figure l(a) because only the
electrohydraulic control sy stem is analyzed.

The command voltage to the servo system may be derived from the measurement
of rate or attitude gyros or from the pilot' s controller position. The electrical input
to the servovalve results in hydraulic fluid flow to one side of the actuator or the other

and causes piston and control-surface motion. To make the system stable, a meas-
urement of the piston position is fed back and summed with the command voltage. In
some systems, this position loop closure results in lightly damped oscillations. If
this occurs, it has been found to be advantageous to provide an additional feedback
signal, that of the hydraulic differential pressure, across the piston. When this second
feedback signal is properly conditioned, a well-damped system usually results.

Both the position and pressure measurements are shown as if they were made with
electrical transducers. This is only for ease of illustration. Systems are in use



which provide these feedbacksmechanically. Both methods of feedback, however,
result in similar system responses.

Figure l(b) shows the mechanical components of the control-surface control system,
a two-mass, spring-coupled system. The load moment of inertia is I and the mass of

the actuator piston is mp. The piston is driven by hydraulic pressure, PL, which acts

on the piston head area, A, and applies torque to the load through a moment arm, 1. The
linear piston position is shown as Xp, and the angular surface position is indicated by

5. There is viscous friction, Bv, and coulomb friction, Bc, between the piston and

the cylinder. The surface hinge moment is shown as H s. It is assumed that the com-

pliance in the system is in the torque tube where the piston is attached, giving the
rotary spring constant, K. For convenience, structural damping of the load is not
considered, because structural damping ratios are characteristically small.

Systems of the type shown in figure 1 are discussed in references 1 to 5. Ref-

erence 1 derives pertinent transfer functions for a simplified model (mp is assumed

to be zero and no actuator friction is included). References 2 and 3 describe a similar

system in a spacecraft engine servo and illustrate nonlinear techniques for studying
possible limit cycles. Reference 4 describes the aileron actuation system used on a
B-52 airplane and mentions high-frequency control-valve-generated noise (audible noise
termed "honk"), an effect which will be discussed later. This report is a summary
of many of the practical problems which may be encountered in a hydraulic system.
Reference 5 analyzes the various configurations of aircraft hydraulic systems in detail.

Electrohydraulic Servovalve

A critically centered threeland, four-way, two-stage servovalve is assumed to be
the power control device for the hydraulic system analyzed. The servovalve consists
of a first-stage electrical torque motor, which controls pressure on the ends of the
spool (the second stage, fig. l(c)). The actuator used in this analysis is assumed to be
double-ended; that is, both sides of the piston head have equal areas. Movement of
the spool opens orifices connected to a pressure supply and sink and to both sides of

the main actuator piston. The input to the servovalve is an electrical current, or
voltage, and the output is the differential load pressure developed across the piston.

An intermediate variable is the spool position, x s. Servovalve dynamics are analyzed

in references 1, 6, 7, and 8. The succeeding development follows that in reference 6.

To develop a model of the servovalve, the relationship of the spool position, x s, to

the load pressure, PL' must be known. It may be obtained by applying the orifice flow

equation (ref. 6, p. 41) to each of the four orifices shown in figure l(c). The hydraulic

fluid flows through these orifices are labeled Q1 through Q4" The load flow, QL,

satisfies the relations
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QL = Q1 - Q4

QL = Q3 - Q2

The orifice flow equation shows the relationship between the fluid flow through an orifice,
the orifice opening, and the pressure drop across the orifice. In the development of
the orifice equation, it was assumed that the flow through the orifice was incompressible.
Applying the orifice equation to each of the four orifices and using the relations given

for QL and PL,

QL = KvXs _Ps - xs (1)

where K v is a proportionality constant. Later in this report the effect of fluid com-

pressibility in the actuator chamber is added to the model. This does not invalidate the
use of the orifice flow equation here, however, because it is applied only to flows in the
immediate vicinity of the orifice (within 1 orifice diameter of the orifice} where the
assumption of incompressibility is valid.

Equation (1) may be expanded in a Taylor' s series about a nominal operating con-
dition, giving to first order the equation

wh e re

AQL = KqAx s - KcAP L

A indicates a deviation from the nominal and

(2)

_)QL _p XsKq = 0x s = Kv s iXsl PL (3a)

Kv IXsl

0QL = 1 Ps - _PL (3b)
0P L 2

Common nominal operating conditions are PL = 0 and x s = Xsmax , giving

Kq=  /Ps (4a)

KvXsma x
1

Kc = 2V Ps (4b)

The quantity Kq is the valve flow gain and is important in determining the servo posi-

tion loop gain. The quantity K c is the valve flow-pressure gain. Equations (3a) and



(3b) are nonlinear equations for the coefficients of equation (2), whereas equations
(4a) and (4b) provide linear approximations to the coefficients. An expression of inter-
mediate accuracy can be obtained by expanding the square root in equation (1) as

- Xs PL 1 Xs

QL = KvxsPs 2 1 ]Xsl Ps T Kvxs 2 l'_sl

If Kq and Kc are determined from this expression and the same nominal operating

condition is used,

 lxsi
1

Kc = 5%/ Ps (5b)

Equations (5a) and (5b) are used later in an analog simulation of the model, and
equations (4a) and (4b) are used for linear analytical calculations. Henceforth, the
terms will be omitted from equation (2), giving

A

QL = Kqxs - KcPL (6)

Aircraft hydraulic systems commonly utilize a 3000-psi source pressure. The load
pressures encountered are usually much lower than this source pressure. In this
instance the differences of equations (3a) and (3b), (4a) and (4b), and (5a) and (5b) are
small, and the use of the linear equations is justified.

The continuity equation is used to relate the flow through the servovalve to the
mechanical motion of the system. Mass flow through the servovalve, given by equation

(6), is equated to flow to the actuator. The flow to the actuator is the sum of piston
displacement and flow due to fluid compressibility (ref. 6):

V PL + 12A_p (7)QL = 4fl""_

where Xp is piston displacement, V is the total volume between the servovalve and

piston, and fie is the bulk modulus of elasticity of the hydraulic fluid. The numeral

12 occurs because valve coefficients are expressed in terms of cubic inches per unit.

Equating equation (6) to equation (7),

V PL + 12Akp = Kqx s - KcP L
4fie

PL = 4Vfl-_-e(-KcPL - 12A:xp + Kqxs) (8)



It is common to include the effects of leakage across the piston head and leakage
to drain in equation (7), giving rise to leakage coefficients in equation (8}. These terms

are proportional to PL, so K c may be interpreted as a composite coefficient. Leakage

is not considered explicitly in this report.

In equation (8}, care must be taken to insure that all units are correct. It is
assumed that the valve coefficients are given in cubic inches per unit, PL and fie

in pounds per square inch, V in cubic inches, and Xp in feet.

The first-stage valve dynamics relating input voltage to spool displacement are

also required for the model. The torque motor coils form a resistance-inductance

(RL) electrical circuit which, when driven by a voltage source, exhibits a first-order-
lag characteristic with time constant L/R and gain 1/R. The torque motor is loaded
by the first-stage hydraulic flow and the spool. Analysis of this system is complicated
(ref. 6). Fortunately, the response of the servovalve is extremely fast and can be
modeled adequately for low-frequency approximation as a first-order lag (ref. 8). The

time constant, _s, is approximated from manufacturer' s test data as the 45 ° phase

shift frequency of the valve frequency response.

The response of the valve is then given by

K
s e(s) (9)

Xs(S) = 1 + _-ss

where e(s) is the Laplace transformed voltage input.

The first stage of the servovalve exhibits several nonlinearities which may be

important to the system response. The magnetic circuit of the torque motor coils will
have some hysteresis. The magnitude of the hysteresis is given by manufacturer' s
test data as a percentage of maximum input current. Because the size of the hysteresis
loop shrinks as the input signal amplitude decreases, this effect is usually not critical
and will not be considered. Another nonlinearity is the friction between the spool and

its housing, which gives rise to backlash in the output of the first stage of the servo-
valve. Thus there will be a threshold value of input current below which no change in

valve output is noted. In well-designed valves, backlash can also be ignored.

Piston and Load Dynamics

The equations of the piston and load dynamics are also necessary for the model.

From figure l(b), the equation of motion of the piston mass is

mpXp = - _ -

where A is the piston area. The equation of motion of the control surface is



The coulomb friction is given by

may be approximated as

where

1 2
Hs = _pVa S_C h

The aerodynamic hinge moment, Hs,

(ref. 9)

Ch = Ch00 + Ch66

and 8 indicates the angle of incidence of the control surface. Thus

H s = K10 - K26

where

1
K1 = 2 PVa2S_Ch 0

(12)

1 2-
K 2 = _ 5PVa ScCh 6

Control Law

To complete the model the control law must be specified. It is assumed that there
will be position feedback and high-passed pressure feedback plus a command input to
form the voltage signal, e. The pressure feedback is modeled as

TpS

PF(S) = 1 + _pS PL(S) (13)

where PF indicates a filtered pressure signal. It is assumed that the position feedback

is derived from a measurement of the piston position, Xp. Thus the servovalve command

voltage is

e = Kx(Xpc - Xp) - KpP F (14)

where K x is the position feedback gain, Xpc is the command signal, and Kp is the

pressure feedback gain.

The complete model given by equations (8) to (14) is summarized in equations

(15a) to (15g). An auxiliary state variable, Xl, has been introduced to form the high-

passed pressure feedback signal to facilitate later analysis.



_p
(15a)

4fie -12a  + (15c)

1 Ks
Xs = TsX s + Tss e (15d)

1

Xl = - -_pXl + PL (15e)

1

PF = PL - _Xl (15f)

e = K x (Xpc- Xp) - KpP F (15g)

DERIVATION OF TRANSFER FUNCTIONS AND

APPROXIMATE LITERAL FACTORS

The model equations (eqs. (15a) to (15g)) can be manipulated to form the system
open-loop transfer functions. Approximate literal factors of these functions are given
in this section. To derive the open-loop transfer functions, linear equations are

necessary. The nonlinear terms in the model are the coulomb friction, B c, and the

valve coefficients. Linear approximations for the valve coefficients were given in

equations (4a) and (4b) and are assumed in the following analysis. To eliminate B c

it is assumed that a valid model may be retained by setting Bc equal to zero and

increasing Bv to provide the required damping at a specific frequency. It is demon-

strated later that this is a valid technique.

Equations (15a) to (15d) describe the open-loop system. Incorporating the above
assumptions, these equations are Laplace transformed and written in matrix form as

K K

mpS 2 + BvS + l_ - -_- -A 0

_ K +K 2K_" s2 + -- 0 0
II I

48fleA 4_eK c 4_3eK q

s 0 s + -_---T-- V

0 0 0 TsS4 1

b 0

q

Xp 0 [

6 0 e

o
. KS K s

10



The determinant of the matrix of coefficients is expandedto give the characteristic
equation, and Cramer' s rule is used to determine the numerators of the transfer
functions. Only transfer functions of responsedue to commandvoltage input are given
at this time. Open-loop 0 transfer functions are of little interest because 0 inputs
(hinge moments) represent disturbances. Closed-loop transfer functions of response
due to 0 inputs are considered later.

1 4fleAKsKq ( K+K2)XPe(s) - A(s) V s2 + _I (16)

4fleKKsKqA(s) = A_s) I/V (17)

-_(s)= _s)4fleKsKq K (K+ K2) s2 + B v(K K2)s I---_-JV mps4 + Bvs3 + _ + I + +

(18)

t (4flevCmp v) [ (K + K2)mp 4fleBvKcA(S) = (rsS+ 1) mps 5+ +B s4 + I + V

+_ + -- s3+ +K2)+ +K2)+ _ j

where

KK2 4fleKcBv 48fleA2 _l 4fleKKcK2

+ [I--_ + I-V (K + K2) + IV (K + K 2,j s + iV/2
(19)

The above transfer functions are exact for the linear model. Thus, for a specific
design, the parameters could be assigned values, and equations (16) to (19) could be
used to determine the system response. This could be done easily on a digital comput-
er. However, much insight into the dynamics of the system may be gained if literal
expressions for various special cases can be derived. If the resulting literal expres-
sions can be shown to be valid under the assumptions of the derivations, they may be
useful in system design and analysis.

For the remainder of this report it is assumed that mp <<]_. In the following

sections approximate literal transfer functions are derived from equations (16) to (19).
The derivations begin with a basic system and become successively more complex.
The basic system is obtained by assuming that the piston mass and friction are negli-
gible and that there is no hinge moment. This is the system analyzed in reference 1.

Case I: Basic System

In Case I, the basic system, it is assumed that there is no hinge-moment loading,
that the mass of the piston is negligible compared to the load mass, and that friction

11



forces are negligible. Incorporating these assumptions in equation (19),

A(s) = S(rs s + 1) [/_ 48fleA2_ - 4fleKKc 48fleA2K-
K + jsZ+ s+Y / Vl 2 IV

Dividing by the constant term gives

48fleA2K
A(s) - IV s (TsS + 1) [(. Ifl_ I) IKe 11

--S+
48 2/2 + s2 + 12A2/2

(20)

Defining

48fleA2/2
c°2 - IV (21)

s2 KDw I (22)

1 1 1

Kc I

_c = 24A2/2 coc

(23)

(24)

gives

0A(S) - IV s (_'s s + 1) + co---_s +

Hence, there is a second-order resonance in the servo response. The factor cos may

be recognized as the natural frequency of the load coupled with the torque tube spring.
The factor coh arises because of the compressibility of the hydraulic fluid and is

referred to as the hydraulic natural frequency. The two modes couple to give the load
resonance, coc, and coc < COs. The damping of the load resonance, _c, is characteris-

tically small (< 0.1).

The transfer functions (eqs. (16) to (18)) become

1 KsKq ( s_s2 1)(s)= + (25a)

12



-_(s) - 1 KsKc1
AI(S) 12A/

(25b)

PL 1 IKsKq s2 (25c)
-_--(s) - Al(s ) 12A2/2

(_c 2 2_c 1/AI(S) = S(TsS + 1) + CO----_S + (25d)

Figure 2 shows this system with the position and pressure feedback loops described

PL
by equation (14) incorporated. The x_(S) transfer function is the ratio of equation

P

(25c) and equation (25a).

Figure 3 shows the system root locus for the position loop closure and the pressure
loop closure. Figure 3(a) shows only the position loop closure. The pole locations,
Pl and P2, indicate the placement of the closed-loop poles at the desired value of

position feedback gain, K x. If w c >>Pl and 1T--S >>Pl' the (s) transfer function

may be approximated by

exp(s)= KsKq 1s

Xp
Then the closed-loop _(s) transfer function becomes

Xp c

Xp (s) =
Xpc

KxKsK q

12A

KxKsKq
s + 12A

and the characteristic first-order hydraulic servo response is obtained with the time

constant determined by the position feedback gain, K x.

If the preceding assumptions are not warranted, the closed-loop pole locations, Pl

and P2, may be obtained by applying the root-locus-magnitude criterion (ref. 10). If

wc -_ w s, the quadratics in equation (25a) may be neglected and

_(s) = KsKq
12AS(Ts s + 1)

13



Applying the root-locus-magnitude criterion to determine the pole locations

gives

KxKsKq = - 1
12Ap(rsp + 1)

Pl and P2

or

KxKsKq
p2+ lp+

_s 12A Ts
=0

and

1 + 1/__ Kx KsKq

Pl,2- 2T s 2_T2 3A7 s

Thus if the quadratic terms may be neglected (i.e., wc _ COs) the closed-loop transfer

function following the position loop closure is

Xp--(s) =
Xpc

KxKsKq

12ATs(S + pl ) (s + p2 )

If Wc _ Pl' figure 3(a) indicates that the position loop closure drives the load resonance

mode, wc, unstable.

Figure 3 (b) indicate s the pre s sure loop closure (foll owing the position loop closure)

for two different values of Tp. The position loop closure has driven the combined

resonance unstable and established the location of poles Pl and p2 o Also, the zeros

at w s are exactly canceled by poles for the pressure loop closure. The usefulness of
1

DPF in providing damping is largely due to this fact. The smaller value of -- gives
rp

the best damping performance but is susceptible to static loading errors. In the limit

1__ = 0 a simple proportional pressure feedback would result and static load would yield

a static position error. As _ is increased, however, the efficiency of pressure feed-
rp

back as a damper decreases. Thus there is an optimum trade-off between the location
of the high-pass time constant and the static loading error. Reference 9 recommends

1
placing 1 at -_-C0c. Figure 3(b) also shows that as the pressure feedback gain

14



increases, the pole at 1 moves toward the origin. This will cause a dipole in the
rp

closed-loop Xp (s) transfer function at I The residue of this dipole may be large
Xpc rp

enough to cause a 5 ° to 10 ° phase shift in the system frequency response at low fre-
quencies. Such a phase shift is sometimes attributed to unknown nonlinearities when
it may be due to the lag-lead characteristic of the dipole. The three zeros at the origin
cause two branches of the root locus to approach the origin from the right-half plane
at an angle of ±60 °. Thus DPF will cause instability of this model at high gains.

Figure 3 also indicates the difficulty of attempting to achieve damping of the load
resonance poles with conventional lag-lead compensation. The proximity of the zeros

at Ws to the load resonance poles implies that it would be difficult, if not impossible,

to achieve an acceptable design with conventional techniques. By canceling these zeros,
DPF eliminates this problem. Also, the cancellation is inherent in DPF, so that exact
knowledge of the zero location is not necessary.

Equation (25b) illustrates the necessity of using the piston position as the feedback
signal rather than the load position, 5. The presence of the second-order zero in the

numerator of _--_P(s) provides vital phase lead in the region of gain crossover which is

5
not provided by e (s). This point is illustrated in reference 2.

Case II: Piston Mass and Friction Included

In Case II the restrictions on the piston mass and friction are removed but the load-
free case is still considered. These are the conditions which exist during ground test-

ing of an aircraft surface servo. The analysis in the next section, in which hinge-
moment loading is included, would apply during actual flight operation.

Rewriting equation (19) with

A(s) = s(rss + 1)

K2 = 0 gives

ImpS4+ (4fleKcmp +By)S3+ _KI-_

48fleA2_ 2
/

4fleKKc_4fleBvKc K {4fleKKcmp KBv
+ v + + V /s + \ zv + T- + V/ /s

(4fleKKcBv 48fleA2K/1
+ \ IV + ]-_ -/j (26)

The development of approximate literal factors of the system transfer functions for

Cases II and III is given in appendix A. It is shown that if KcB v << 12A 2, equation (26)

15



may be factored to give

=s-- + -j_s+ +-_2 s+ (_sS+1)

The load resonance, coc, is still defined by equation {23), and co2

mode resulting from the inclusion of the piston mass.

The numerators of e_(s) and
5
e(s)

r}

In appendix A the numerator of _-_ (s)

The factors

(27)

is a high-frequency

are still given by equations (25a) and (25b).

is shown to have the form

s(s +Zl)(S2+ 2_pcopS+ w2)

z 1, Wp, and _p are derived in appendix A on the assumption that

2_pcopzl<<co2 and K >> K
/2mp _"

In summary, the open-loop transfer functions are:

-g-(s)= a27s) _ + (28a)

6 1 KsKq (28b)
e(S) = A2(s) 12Al

--_(s) 1 IKsKq S/_p2 2_p 11 (28c)
= s(s+ zl) + s +

A 2 (s) 12A2/2 Wp

A2(S) = S(rsS + 1)
l_( S2 2_2 )+ -#2s+:

Bv / 2

Zl= I

(28d)

(29)

K

COp= 12mp
(30)
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_P- 2"m-p I
(31)

The inclusion of the piston mass introduces anadditional high-frequency mode in
the response. This mode is the result of the interaction of the piston and the torque tube
spring. The damping of the mode, _2, is proportional to Bv.

The effect of the dynamic pressure feedbackwill be modified becauseof the inclu-
sion of friction. The location of the zero at z1 has a marked effect on the pressure
loop closure, as illustrated in figure 4. The position loop has already beenclosed,
andthe high-frequency complex poles and zeros at w 2 and C0p are neglected. The

movement of the poles at w2 is negligible for the values of K x and Kp used to

stabilize the load resonance poles. For instance, in the example given later,

_c _ 50 rad/sec, w2 _2000 rad/sec, and Wp _ 1500 rad/sec. Figure 4(a) indicates

the closure when Pl > Zl' and figure 4(b) indicates the closure when Pl < Zl" (Both

1
Pl and z 1 may be near --, so this pole location must be considered also.)

Figure 4(a) indicates a damping action similar to that shown in figure 3(b). Figure

4(b), however, shows the load resonance to be much better damped for the same value

of Kp, and at larger values of pressure feedback gain, Kp, a low-frequency oscillatory

mode emerges. It is suspected that this is the type of response mentioned in reference

8. Furthermore, the high-frequency piston mode, ¢02, is probably the cause of the

high-frequency noise also observed in reference 8. There it was stated that the only
effective means of eliminating the noise was to introduce friction on the piston. This
observation agrees with equation (31), in which the damping of the mode is shown to be
proportional to the friction.

Figure 4 indicates that there will again be a dipole in the Xp (s) transfer function
Xpc

at 1 which may cause low-frequency phase lag. Also, the two zeros at the origin
Tp'

cause two branches of the root locus to approach the origin at +90 °. Thus DPF will
not cause system instability at high gain as for Case I.

Case HI: Hinge Moment Included

Open-loop transfer functions.-In Case HI hinge moment is included in the model,
resulting in equation (19), the characteristic equation. In appendix A it is shown that if

4fleKcBv KK 2 48fleA2
<< (K + K2)IV (K+K2) + I/2 IV
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and P3 << Wc, equation (19) may be factored to give

A(S) = (TsS + 1) (S + P3) s(-_eh2 2 2h+ --s+ +_s+
Wch 2 W2h

where the subscript h
that

indicates the effect of hinge moment.

K + K2Wch = K Wc

K + K 2_ch = K _c

It is noted in appendix A

hence the stability and damping of the load resonance poles of the loaded system will be

slightly improved. It is also noted that co2h = co2 and _2h = _2, indicating the inde-

pendence of the piston mode from hinge-moment effects.

PL
The numerators of _ (s) and _ (s) remain unchanged, but T (s) must be

reconsidered. Appendix A indicates that the numerator of -_(s) may be approximated

by

(s 2 +2_phcoph s +l)(s 2 +2_tcot s + co2)

K+K2 K
if I << and w t << Wph"

12mp

In the preceding expression

coph _ COp

_ph = _p

cot =_i K_2

1 12Bv _ I_t= 2 _22
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The factored transfer functions for Case HI are given in table 1. The simplified
models of Cases I and II (eqs. (25a}to (25d)and (28a)to (28d)}may be obtainedby
setting mp, Bv, or K2 equal to zero. The subscript h has beeneliminated from the
parameters in table 1.

Figure 5 shows the pressure loop closure (following the position loop closure) for

Case Ill. The load resonance poles at w c will close on the zeros at cot. Thus the

location of these zeros is critical to the stability of the system. If they lie in the region
of w c, DPF will be ineffective as a damper. Table 1 shows that w t is proportional

to the square root of the hinge moment, K 2, and that _t is proportional to Bv. Thus

some amount of friction on the piston is desirable, because it causes the zeros at cot

to move toward a region of higher damping. Of course, piston friction is also needed
to supply damping for the high-frequency mode at co2- Also, the low-frequency oscil-

latory mode which occurs at high DPF gains and low values of position loop gains
(fig. 4(b)) does not occur with hinge-moment loading.

Hinge-moment loading errors. - Only open-loop transfer functions of system response
due to a command voltage input have been considered. These transfer functions and

their approximate literal factors, which have been developed, should make it possible
to design a system with a suitable closed-loop response. Once this has been accom-

plished, the sensitivity of the closed-loop system to hinge-moment loading is of interest.

5
To study this effect, the _- (s) transfer function of the closed-loop system will be

determined. Thus the open-loop matrix used to derive the open-loop transfer functions

must be augmented by the control law (eqs. (15e) to (15g)). The voltage signal is now

e = Kx(Xpc - Xp) - KpP F

and the :_s equation becomes

1
= Kx(Xpc - Xp) - KpP L + Tp KP xl

where

TsX s - Xs+Ks c - XpPL+ %x

:_1- 1
Tp Xl + PL
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Using the last two equations, the closed-loop system matrix is

- K K -A 0 0
mps 2 +Bvs + l-_ - T

K s2+ K+K2 0 0 0
Il I

4 8fleA 4fleK c 4_teKq

Ts 0 s+ _---_-- V

• 1

l KsK x 0 KsK p 7ss + 1 - KsKp Vp

1

0 0 -I 0 s + v_

Xp

5

PL

K S

x 1

0

x

0

K1
I

(32)

The numerator of the 05---(s) transfer function is

Kll(m _2)[( 4fl ) ( + 1) 4fleK s]T s+

+A(s+ _P_L1_r48fleAs(TsS_ + 1)+ 4fleKqKsKxlll

(33)

Unfortunately, there are no simple literal factors of equation (33). It is a complex
function of the feedback quantities K x, Kp, and Tp. It iS possible to calculate the

static closed-loop load position, 5, due to hinge-moment loading by computing only the

5
constant term of the _ (s) transfer function. Equation (33) provides the numerator

constant, and the system matrix furnishes the denominator constant:

KKIK c + /2K1KqKsKxA

KK2K c + /2(K + K2) KqKsKxA

This expression gives the exact steady-state hinge-moment loading error. If the terms

involving K c are neglected,

(s
ss K + K 2

This result could have been anticipated, because the high-pass filter in the pressure

feedback loop isolates the load from closed-loop dynamics in the steady state. For a
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specific problem, the system constants may be inserted into equation (33), and the re-
suiting polynomial may be factored to give the frequency dependenceof the hinge-
moment loading error.

COMPARISONOF GPASRUDDERAND MODEL RESPONSE

GPASRudder Electrohydraulic Servo

The GPASis a variable-stability JetStar airplane operated by the NASA Flight
Research Center. The basic control surfaces were disconnected from the left-hand

pilot' s controllers, and irreversible electrohydraulic servos were installed. Thus
the control-surface positions may be electrically controlled for airborne simulation
purposes. Details of the GPAS system are given in reference 11. The GPAS rudder

is used in the following discussions to illustrate the analysis presented in the previous
sections. Thus the surface deflection, 5, of the previous sections becomes the rudder

deflection, 5 r, and the angle 0 is interpreted as the aircraft sideslip angle, ft.

Figure 6 shows the location of the rudder hydraulic actuator and its relationship to
the rudder surface. The electrohydraulic system consists of a servovalve, which con-

trols fluid flow to the double-ended hydrauiic actuator. The system operating pressure
is 3000 psi. The rudder surface is mass-balanced. The constants required in equations
(15a) to (15g) for the rudder model are given in table 2. Appendix B discusses the
problems encountered in determining these constants. In order to install the servo, the
rudder torque tube had to be cut and the moment arm linkage had to be inserted. In
the basic JetStar there was no power boost to the rudder, and in the GPAS modification

the rudder is permanently connected by cables to the right-hand pilot' s rudder pedals.
It was not necessary to include these rudder pedals (an extra mass-spring system) in
the analysis.

An electrical pressure transducer is used to provide the pressure feedback signal.
Figure 6 shows that several feet of hydraulic tubing are required to connect the servo
valve, the pressure transducer, and the actuator. In recent years it has become

common to use an integral servo valve/actuator system with built-in mechanical position
and pressure feedbacks. Such units are useful for large installations and for specific

applications, because major mechanical modifications are necessary to alter the sys-
tem characteristics. For small installations, the versatility of electrical feedback

signals may be important. Either method will provide the same system characteristics.
The rudder position transducer is a rotary potentiometer located beneath the actuator

and strapped around the torque tube (fig. 7).

Early testing of the rudder servo revealed a stair-stepping response to a step input
command. It was recognized that the response was caused by the static friction on the
piston. The problem was solved by superimposing a constant-amplitude, 60-hertz
dither signal on the command signal. The amplitude of the dither signal was adjusted
to effectively "break" the static friction while leaving the overall response unchanged.
Hence, only coulomb friction, Bc, is included in this analysis.
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Rudderand Model Response

To compare the rudder responsewith the model response, the model equations of
motion (eqs. (15a)to (15g))with the constantsgiven in table 2 were mechanizedon an
analog computer, and step and frequency responseswere obtained. Two nonlinearities
were programed: the valve flow-pressure coefficient, Kc, andthe coulomb friction,

Bc. Equations (4a)and (4b)or (5a)and (5b)were used for the valve coefficients, Kc

and Kq. Thus a function switch selected either equation (4b)or equation (5b)as the
term included in the pressure equation. The coulomb friction, Bc, could be eliminated

by setting a potentiometer to zero. As indicated in the section on DERIVATION OF
TRANSFER FUNCTIONS AND APPROXIMATE LITERAL FACTORS, the viscous friction

coefficient, Bv, may then be increased to yield the desired damping at a prescribed fre-

quency. For the linear model, B v was increased from 500 lb/ft-sec -1 to

2000 lb/ft-sec-1. A linear model is desirable because root loci and frequency response

analysis techniques may then be used. Thus it is important to verify the suitability of
the linear model. A digital program, CONTROL, which _s described in appendix C, was
used to calculate the root loci and frequency responses of the linear model.

The step and frequency responses of the rudder and the nonlinear model are given
in figures 8 to 10. The rudder tests were made on the ground, so there was no hinge-
moment loading. The test input was always a 1° command. All responses were obtained

with Kx = 1090 V/ft. The pressure feedback gain, Kp, and the time constant of the

high-pass circuit, Tp, were varied. Figure 8 shows the step response of the rudder

and the model for 1 = 8.3, 16.6, and 33.2 rad/sec. Values of Kp range from
Tp

0.0048 V/psi to 0.0131 V/psi. At values of Kp less than approximately 0.004 V/'psi

the response becomes unstable. The 60-hertz oscillation in the rudder response in
figure 8(a) may be caused by the dither signal. The agreement between the rudder and
nonlinear model step responses shown in figures 8(a) to 8(c) is considered good.

Frequency responses of the rudder, the nonlinear model, and the linear model for

two different values of Kp and Tp are shown in figures 9 and 10. In figures 9(a) and

9(b) the load resonance at approximately 7.5 hertz is evident. Note also the charac-
teristic first-order lag low-frequency attenuation, and the notch characteristic at
f _ 12 hertz. The first-order lag characteristic can be explained as follows: The peak
at 7.5 hertz and the notch characteristic at 12 hertz are caused by a pair of complex

poles and zeros with very low damping ratios. These poles and zeros cannot yield the
lower frequency phase attenuation shown in the figures. This phase shift is caused by

the real pole, Pl (fig" 3(a)).

In figures 10(a) and 10(b) the load resonance was damped by the larger pressure

feedback, Kp. The agreement between the rudder and model frequency responses in

figures 9 and 10 reflects the agreement in the step responses.
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Figures 9 and 10also indicate that only slight differences exist betweenthe linear
and nonlinear models. The main difference is in the low-frequency phase shift, where
the nonlinear model has more phase shift than the linear model. The rudder phase
shift curve is considerably below those of both models at low frequencies. This is
especially true with the high damping shownin figures 10(a) and 10(b). This may be
causedby nonlinear effects not included in the model. Possible sources of the phase
shift are torque motor hysteresis, first-stage servovalve backlash, or actuator static
coulomb friction.

Figures 8 to 10 indicate that the rudder servosystem is approximated well by the
nonlinear model and that the linear model is a valid approximation of the nonlinear
model. Thus a study of the utility of DPF with the linear model would allow more
general conclusions to be drawn with regard to the damping action of DPF.

The effect of hinge-moment loading of the rudder surface is shownas a final check
of the model in figure 11. Figure ll(a) showsthe rudder ground test step response,
and figure ll(b) shows a step response recorded during flight. The loading causes the
servo to be better damped, andthe resonant frequency (in the step response) increases.
Figures 12(a)and 12(b) showthe step response of the nonlinear model with and without
hinge-moment loading. Inspection of these responses leads to the same conclusions
as were drawn from figure 11.

Table 3 compares the approximate literal factors developedin the analysis section
for CasesI, II, and III to the exact values obtainedwith the CONTROLprogram. In
Case I the literal factors are exact. In Cases H and III the approximate factors are
close enoughto the exact values to make a first analysis possible. For the rudder

I I
model l--_ = 72 slugs and mp = 0.166 slug. Thus the condition mp << _ is satisfied.

Table 3 also shows that the high-frequency poles at w2 are overdamped. Thus

there should be no high-frequency control-valve-generated noise ("honk") in the system.
The damping is attributed to the large value of B v. Of course, B v was adjusted to

match the system t s response at the load resonance frequency (approximately 50 rad/sec).
Thus a separate calculation with a lower value of Bv (corresponding to the higher

frequency w2 ) may be in order to estimate the damping of this high-frequency mode

more accurately.

ANALYSIS OF DYNAMIC PRESSURE FEEDBACK

The effect of dynamic pressure feedback on system stability was analyzed, using

the GPAS rudder servo for illustration. In addition, the effects of Kx, Kp, and

1
m on cases I, II, and III were studied.

The CONTROL program was used to obtain the root loci of the linear rudder model
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for the three cases with Kx, Kp, and i as parameters. The loci are plotted in
Tp

figure 13. Loci of the load resonance poles are plotted for three values of 1 and
Tp

four values of Kx. Only the third quadrant of the s plane is shown. Dots along the

loci indicate gain increments of AKp = 0.00348 V/psi.

Figure 13(a) gives the loci for Case I. The GPAS system design called for a closed-
loop rudder servo bandwidth of 50 rad/sec. This goal is most closely achieved by the
position feedback gain, Kx, of 1090 V/ft and is the value used in the system. This

value of Kx places Pl at 42 rad/sec; however, this system would be objectionable

because of the limited damping action of the DPF gain, Kp. Figure 13(a) also illustrates

a point made in connection with figure 3 (b)--that high Kp gains may drive the system

unstable. Figure 13 (a) shows that better damping performance can be achieved by re-

ducing the position feedback gain, K x, with the attendant loss in system bandwidth. This

model of the system (Case I) is unrealistic because friction on the piston was neglected.

Figure 13(b) gives the loci for Case II. The damping for Kx = 1090 V/ft is reason-

able, and, again, as Kx decreases, the damping performance of the DPF improves.

When K x = 436 V/ft and 654 V/ft, the effect is the same as that noted in figure 4(b),

1 as
where Pl < Zl and a low-frequency oscillatory mode emerges at low values of Tp

Kp increases. If Kp were increased from zero, the load resonance oscillations

would become well damped (they would, in fact, disappear), leaving a desirable step

response. If Kp were increased still further, the low-frequency mode would appear

in the response.

Figures 13 (a) and 13 (b) indicate that for many designs there will be a value of Kp

beyond which DPF does not increase damping; in fact, damping may decrease. More
importantly, DPF will then also reduce the system bandwidth (through the frequency
of the load resonance poles}.

Figure 13(c) gives the loci for Case HI. The load resonance poles at wc close on

the zeros at c0t. Differences between figures 13(b) and 13(c) illustrate the difference

that may be expected between ground tests and flight operation of aircraft hydraulic
servos. The frequency of the load resonance poles is lower in figure 13(b) (56 rad/sec

to 58 rad/sec) than in figure 13(c) (62 rad/sec to 64 rad/sec). This could have been

anticipated by noting from table 1 that _c increases as K 2 increases. In figure 13(c)

there is a maximum damping that is practical. The loci for the different values of Kx

are similar, and all yield acceptable damping. In addition, the change in the loci of

figure 13(c) for changes in Tp is small relative to the larger changes of figure 13(b).
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Also, increments of Kp in figure 13(c) cause smaller load resonance pole motion than

in figure 13 (b).

The root loci of figures 13(a) to 13(c) give insight into the behavior of the load reso-

nance poles. To augment this information, the closed-loop frequency response of
the system indicates the system bandwidth, phase margin, and low-frequency phase
shifts. Figures 14 and 15 give the frequency response of the linear rudder model for

variations in K x and Kp with Tp held constant at 1__ = 16.6 rad/sec. The hinge-
rp

moment coefficient, K2, was set at zero, which corresponds to the ground test value.

In figures 14(a) and 14(b), in which Kp = 0. 00348 V/psi, Kx has strong control over

the resonant peak at 7 hertz to 8 hertz. However, lowering K x also lowers the band-

width (fig. 14(b)). In figures 15(a) and 15(b), in which K x = 1090 V/ft and Kp is varied,

Kp does not exercise strong control over the magnitude of the resonance, but it does

draw the resonance to lower frequencies (fig. 13(b)).

Figures 16(a) and 16(b) illustrate the change in closed-loop response when hinge-
moment loading is included. When hinge moment is included, the frequency of the
resonance peak increases, its magnitude decreases, and the phase margin increases.
These effects bear out the comments made in connection with figures 11 and 12.

The following conclusions about the damping action of DPF may be drawn from

figures 13 to 16. If wc is in the frequency region of the desired closed-loop bandwidth,

the position loop closure will drive the load resonance poles toward the unstable region.

__ 1
With 1 set at approximately _ wc, DPF will always have some damping effect and

rp

will usually be quite effective. However, if K x is large, the resulting DPF damping

action may not be satisfactory. Decreasing Kx always allows better damping action

by DPF, but this causes a loss of bandwidth. There will usually be a value of Kp

beyond which DPF does not increase damping (it may, in fact, decrease dampIng) and
directly lowers the closed-loop bandwidth. Inclusion of hinge-moment loading decreases

the sensitivity of the load resonance poles to variations in K x, Kp, and Tp. In addi-

tion, it raises the frequency of the load resonance, lowers the magnitude of the reso-
nance peak, and increases the phase margin. Thus, the operation of the system will
be more stable during flight than during ground operation.

The use of DPF in an aircraft control-surface servosystem makes the system sensi-
tive to variations in hinge-moment loading. Hinge-moment loads arise out of the vari-

ations in the angle of incidence at the surface caused by aircraft maneuvers, control-
surface deflection, or atmospheric turbulence. Whether any of these effects unduly

compromise the servo response is considered in the following discussion.

For the aircraft rudder servo being analyzed, load variations are attributed to
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changesin sideslip angle, fl, rudder deflection, 5 r, and turbulence, fig. The response

of an aircraft to a rudder step is caused primarily by the excitation of the Dutch roll
mode. Ignoring the effect of the roll and spiral modes, the response of the GPAS to a
rudder step for a selected flight condition can be expressed as

_r 1.76(s) = s2 +0.265s+ 2.4

This function was mechanized in the analog simulation, and the nonlinear rudder model
was used to obtain the time history shown in figure 17. The frequency of the load vari-
ation was small enough so that the rudder servo was able to maintain constant com-

manded Xp following the initial transient; however, the rudder surface position, 5 r,

varied as it was forced by ft. Because the frequency of the Dutch roll oscillation was

much less than the bandwidth of the servo, the variation in 5 r may be approximated by

5

Load variations will also be caused by atmospheric turbulence. Lateral gust veloc-

Vg
ity, Vg, induces an effective incremental sideslip of fig = _ and will be sensed by the

servosystem as a changing hinge moment. The response of the rudder to turbulence
was simulated using the gust power spectra:

_Vg(°_)= 7rVa [1 (v---ga)2212+ w

where V a is the aircraft velocity, Lg is the turbulence scale factor, and ag is the

root-mean-square gust velocity. This power spectrum may be realized by passing
white noise through an appropriate shaping filter.

Figure 18 shows the GPAS rudder servo response to turbulence at a cruise flight

condition. A moderate turbulence level of ag = 5 ft/sec was used. The ratio Lg was
Va

set at 10 seconds. The response of 5 r indicates that the response of the servo to load

variations caused by atmospheric turbulence is acceptable.
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C ONC LUSIONS

A lumped parameter, two-mass system driven by an electrohydraulic servo valve
was analyzed. The results of the analysis of a model of the system were compared
with test results from a highly resonant rudder electrohydraulic control system. The
comparison led to the following conclusions;

1. The model equations of motion accurately represented the test system. The
calculated model root loci, frequency responses, and step responses agreed well with
test results. A linear model agreed well with a nonlinear model that included the non-
linear flow equation of the servo valve and coulomb friction on the actuator.

2. Approximate literal transfer functions yielded accuracy acceptable for initial
analysis if the piston mass was much less than the effective load mass.

3. The system response was characterized by a load resonance and a piston-hydrau-
lic mode. If there was insufficient friction on the piston, the high-frequency piston-
hydraulic mode may have been underdamped and could have caused high-frequency
control-valve-generated noise referred to as "honk."

4. When the position loop was closed, the load resonance poles were driven toward
the unstable region. By locating the high-pass time constant of the pressure feedback
at approximately one-third of the load resonance frequency, dynamic pressure feedback
(DPF) always provided damping for the load resonance pole. However, if the position
feedback gain were too high, damping provided by DPF may have been insufficient.

5. A maximum practical DPF gain usually existed. Increasing the DPF gain
beyond this point directly lowered the system bandwidth and possibly decreased the
damping.

6. Operation with hinge-moment loads (corresponding to flight operations) resulted
in a higher load resonance frequency, smaller frequency response peaking, and in-
creased phase margin than when hinge-moment loading was not included.

7. Hinge-moment loading reduced the sensitivity of the load resonance poles to
variations in position and pressure feedback gains and in the high-pass time constant.

8. The response of the rudder servo to load variations caused by atmospheric
turbulence was acceptable.

Flight Research Center,

National Aeronautics and Space Administration,

Edwards, Calif., March 3, 1972.
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APPENDIX A

DE TERMINATION OF MODEL CONSTANTS

In the determination of the constants in table 2 some difficulties were encountered.

Although the load moment of inertia, I, and the piston mass, mp, should be relatively

accurately determined quantities, a problem may arise in deciding the location of
the spring, K. This location will obviously affect mp and I. If a distributed spring

is encountered, the lumped-parameter model of this report may be completely

inappropriate.

The spring constant, K, should be accurately determined, because it is directly

related to cos, the load resonance frequency. Equation (25a) indicates that _--_P(s) has

a notch characteristic at cos. Thus K may be determined by calculation, measure-

ment, or (knowing I) determination of cos.

The friction, Bv and Bc, may be experimentally determined with low-frequency

triangular wave inputs to the closed-loop system.

It was not necessary to include the rate limit in the servo analysis. Electronic
safety trip circuits cut off the GPAS hydraulic system before this rate limit is encoun-
tered, and rate limiting is rarely encountered in the operation of the system. This

reflects the fact that PL <<Ps-

The valve quantities K s, Kq, K c, and Ts can be obtained from manufacturer' s

data. The first-stage servo valve gain, K s, is a temperature-dependent quantity be-

cause of its dependence on the coil resistance, R. The resistance of copper wire
increases by 22 percent in rising from 68 ° F to 167 ° F. Thus, the valve gain, Ks,

which is inversely proportional to R, will decrease by 18 percent during this tempera-
ture rise. Because K s is a factor in the position loop gain, the servo response will

also deteriorate. This problem may be sidestepped by using current to drive the servo-
valve.

The bulk modulus of elasticity of the hydraulic fluid is difficult to estimate. Hand-

book values of fie ----250,000 psi for typical petroleum-based fluids are usually too

high. In reference 6 the strong dependence of fie on entrapped air and container

compliance is illustrated. At the high pressures used in aircraft hydraulic systems,

entrapped air will be dissolved soon after the system begins to operate. However,
reference 7 indicates that entrapped air may still cause problems: Dissolved air may
come out of solution when the fluid passes through a valve orifice due to the pressure

drop. Reference 6 states that a fie of 100,000 psi yielded good results for many

studies. The value used in this report, fie = 50,000 psi, was determined by attempting
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APPENDIX A - CONCLUDED

to match the analog simulation response to the measured response. It is believed that
values of fie between these two values will give good results in analyses of hydraulic

systems. The value used in an analysis may be chosen according to the relative amount

of hydraulic tubing and connections contained in the system. The rudder control system
analyzed in this report contained a relatively large amount of tubing and connections,
and the smaller value of fie produced good results. On a close-coupled installation

(for instance, with the servovalve mounted on the actuator) the larger value recom-
mended in reference 6 would be appropriate.
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APPENDIX B

DEVELOPMENT OF APPROXIMATE LITERAL TRANSFER FUNCTIONS

The approximate literal transfer functions for Cases H and HI are developed in this

appendix.

CASE Ih PISTON MASS AND FRICTION INCLUDED

In Case II the restrictions on the piston mass and friction are removed, and the

hinge-moment loading is neglected.

Rewriting equation (19) with K2 equal to zero gives

[m (4fleVcmp)s 3 (_ 4fleBvKc K 48fleA2h 2A(s)--S(_sS+ 1) pS4+ -- + Bv + + V + _ + V /s

+ <4 KvKC KBv 4fl_2Ke ) (4fleKKcBv 48fleA2K )] (36)fie mp + -T-- + s + \ IV + IV

In the constant term

4fleKKcBv 48fleA2K
<<

IV IV

or

KcB v << 12A 2

will usually prevail. Hence, dropping the first term of the constant and dividing through

by the remaining term,

48fleA2K s (_-ss + i)[ IVm_ s4 + (ImpKc + o--_A2IVBvh 3s
A(s)- IV [48fleA'+K \I2A2K 48fleA K)

+ v OvV+--+ +
\48fleA2 + 12A2K 48fleA2/2 12A2 48fie A2 12--_l 2/

s+t]

(37)
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APPENDIX B -CONTINUED

This expression has the form

--s+ +4- °_c 212Sw2 + 0 = s4 ( 2_2 2_c _+ +
s 3

( 1 1 4_2_c\ 2 (2_c 2_2/s+ _2c2 + _222+ w2co-==2")s +\W---c + co2 / +1

(38)

The last two terms of the coefficient of s 2 in equation (37) may be recognized as

1

the quantity already defined as _ in equation (23). Then the coefficient of s 4 in

equation (37) is

48fleA2K
2 2

C°c w2 - IVmp

which may be solved for w 2 (using equation (23) for eve) as

VK + 48fleA212

Vl2mp

To determine _2' Kc << 1. (See table 2.) Hence, setting K c equal to zero in

equation (37) and observing the coefficients of s 3 and s (where _2 occurs) results

in the expressions

2_c 2_ 2 IVB v

COcW2 + cO2Wc2 - 48fleA2 K
(39)

and

2_c 2_2 BvV

We w2 48fleA2
(40)

(Although _2 also occurs in the coefficient of s 2 in equation (38), that coefficient is

dominated by the other terms in the coefficient. )
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APPENDIX B - CONTINUED

The load resonance, 0)c, remains in the vicinity of the

as shownin figure 3(a). Thus _c<<1, whereas _2_ 1. Setting
solving equations (39) and (40) gives

_2 9

]0) axis near the zero at 0)s

_c equal to zero and

(41)

VBv

_2 = 96fleA2 °_2

Because 0)2 _ K these expressions are nearly equivalent and equation (41) will beI

used to compute _2"

Setting K 2

sion

Xp 6
The numerators of -_- (s) and _(s) are still given by equations (25a) and (25b) and

PL
do not require further analysis. The numerator of -_--(s) does require further analysis.

equal to zero in equation (18), the numerator of _---_L(s) contains the expres-

S 3+ m% + /_mp + -_- s +
(42)

This expression has the form

s(s + zl)(s2 + 2_p0)pS+ 0)p2)= sis3+ (z I + 2_p0)p)S 2

+(2_p0)pZl+W2)S+Zl 0)2] (43)

PT
In Case I the -_(s) numerator contained s 2. Assuming that the low-frequency

response will not be grossly affected by setting mp _= 0 and B v _= 0, it is anticipated

that z 1 will be small and Wp will be large. Therefore,

2_p0)pZ 1 << w2
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APPENDIX B - CONTINUED

Comparing the coefficients of the first power of s in equations (42) and (43) results in
the expression

K K
since >>T"

/2mp

K K K

w_ = /2mp /2mp
(44)

or

Then the constant terms of equations (42) and (43) give

BvK

W2 Zl = Imp

Bv/2
Zl = I (45)

To find _p the coefficients of s 2 are equated:

Bv

zl +2_p_p: m--_

1-
In summary, the open-loop transfer functions are:

(s) = A2(s ) 12A +

(46)

(47a)

5 1 KsKq

e(S) = A2(s) 12Al
(47b)

__ 1 IKsKq (s__ 2_Ps 1)
= -- s(s + zl) + +

(s) A 2 (s) 12A2/2 COp

s2 2_Cs + + _ s +
A2(S) = s('rss + 1) + WC w2

(47c)

(47d)
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APPENDIX B - CONTINUED

Bv12 VK + 48fleA2/2
Zl = I c°2 =

V/2mp

2 K K
+-'p- +-'-'_= T

12mp

+++':G m, ,v

_2- VBv [_I__c2_2 1 _ 1 1
48fleA2K_K/ o)2 c°2 +_-_

CASE III: HINGE MOMENT INCLUDED

In Case III the restriction on the hinge moment is removed, giving equation (19), a
characteristic equation. In the coefficient of s it is noted that usually

4fleKcBv " KK2 48fleA2 (K + K2)_- (K+K2) + _<< IV

Thus, neglecting the first two terms of the coefficient of s in equation (19) and dividing
through by the remaining term gives

48fleA2(K + K2)(TsS + 1)1 IVmp

IV (48fleA2( K + K2 )

s 5 +
IKcmp + IVBv 112A 2 (K+K2) 48fleA2 (K+K 2

s 4

. Vmp IBvK c IVK I 2] s3
+ +

+ L48fleA2 + 12A2(K + K2 ) 48fleA2/2(K + K2) K + K

VB v IKK c )]
+ [Kemp + + s2+ s +

L12A2 48fleA2 12A2/2 (K + K 2 K K2K c ]12A2/2(K + K2)

(48)

This expression has the form
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APPENDIX B - CONTINUED

)(_s+ + _s+l s
+ Wc h O_2h + P3)

where the subscript

It is obvious that

The factor P3

toring the root

equation (37):

h indicates the effect of hinge moment.

KK2K c

P3 : 12A212(K + K2 )
(49)

is small compared to the other factors in the expression. Thus fac-

(s + P3) from equation (48) leaves an expression very similar to

48fleA2(K + K2)(TsS
IV

÷ +

I IVmp+ 1)(s + P3) 48/3eA2( K s 4 + [ IKcmp IVBv )]
+ K2) L12A2( K + K2) +48fleA2(K + K2

IBvKc

12A2 (K +K2)
IVK I Is 2

+ 48/3eA2/2(K +K2 ) + K + K 2

VBv )] I48fleA2 + 12A2/2(K +K2 s + 1

s 3

Because of the similarity between this expression and the expression in equation (37),

the procedure is exactly the same as that in Case II, that is, identify

K +K 2

Wsh2 - I

2 _ 48fleA2/2( K + K2)
_°hh IVK

1 1 1

_c---h_ = aJsh 2 + Whh 2

_ch =

IKcK

24A2/2(K +K2) Wch

VK + 48fleA2/2

W2h2 = iV/2mp
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APPENDIX B - CONTINUED

Note that

_2h =
96fie A 2

K + K 2Wch = K Wc

K + K 2_ch = K _c

Thus the stability and damping of the load resonance will be slightly improved. Also,

W2h and [2h are the same as in Case II. The independence of W2h and _2h of the

hinge moment reflects the fact that this is a piston mode isolated by the load mass from
hinge-moment effects.

x_
The numerators of --_ (s) and _ (s) are still given by equations (25a) and (25b) bute e

D_

the numerator of _-_(s) has changed. The _--_(s) numerator (eq. (18)) now contains

the factor

Bv s3+( KS4 + m---p Z_p
K + K2) B v(K + K2) KK 2

+ I ] s2 + Imp s + I/2mp

and has the form

02+ 2_phWph s + Wph2)( s2 + 2[twts + o_2)

It is anticipated that Wph _ COp and Wph >> wt-

K+K2 K

neglecting I in comparison with /2mp

Equating coefficients of s 2

results in the expression

and again

Then

K _
/2mp

KK 2

I/2mp
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Equating coefficients of s,

Using equation (46} for

APPENDIX B - CONCLUDED

S V

2[phCOph + 2_tco t =

_ph,

Bv 1

1 _K_ /2By=2 1

The factored transfer functions for this case are summarized in table 1° The

simplified models of equations (31) and (25) may be obtained by setting mp, Bv, or

K 2 equal to zero. Thus the subscript h was eliminated from the parameters in table 1°
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APPEND_ C

CONTROL: A DIGITAL PROGRAMFORTHE DETERMINATIONOF

TRANSFER FUNCTIONS,ROOT LOCI,

AND FREQUENCYRESPONSES

The CONTROLdigital program was used to generate the transfer functions, root
loci, and frequency responsesof the linear model. The program uses the state varia-
ble formulation of the linear equations of motion:

k= Fx+Bu (34)

where

x is the n X 1 vector
m

F is the n x n matrix

B is the n X m matrix

u is the m x 1 vector
D

n is the dimension of the system,

m is the number of inputs into the system.

From the closed-loop system matrix of equation (32), n = 7 and m = 2.

An m X n feedback matrix, G, is defined as

u = u c + Gx

where u c is a command input. Then equation (34) becomes

k_= [F + BG]x + Bu_c (35)

The eigenvalues of the matrix F in equation (34) give the roots of the characteristic
equation of the open-loop system, and the eigenvalues of the matrix [F + BG] in equa-
tion (35) give the roots of the characteristic equation of the closed-loop system. The
CONTROL program uses the IBM Share program QREIG (i. e., the QR algorithm) to

find the eigenvalue s. Setting

G = aG 1 + bG 2

where G 1 and G 2 are m z n matrices and a,b = 0, 1,2 ..... , the eigenvalues
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of EF + BG] yield root loci for the two feedback quantities associated with the matrices

G 1 and G 2.
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TABLE 1.-APPROXIMATE OPEN-LOOP LITERAL TRANSFER FUNCTIONS

)(s)- A(s) 12A + 1

_(s) = 1 KKsK_

+ + s 2
-_--(s) = A(s) 12A212 (K+K2) COp +2_twts +_2)

A(s) =
s(s +p3)(',_s + 1) _-/

where

P3 =

KK2K c

12A2/2(K + K2)

:"°l_ = IVK

48fleA2/2(K + K2)

1 1 1

K 2

IK c

_c - 24A2/2 _c

K

o) 2 = /2mp

_p=

2
a) 2 =

Bv 1

2Wp(mp /2)

VK + 48fleA2/2

IV/2mp

VBv
= _K2)_ 9_(_ _
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TABLE2.-RUDDERMODELCONSTANTS

I 1.8 slug-ft2

mp 0.166slug

K 10,800ft-lb/rad

1 0. 158 ft

3
V 5 in

A 1.0 in 2

fie 50,000 psi

K v 3.05 in 3-sec-1/in. _psi

Kq 167 in3-sec-1/in.

K 1 940 ft-lb/rad

K2 1340 _-lb/rad

K 0. 003 in/V
S

_- 0. 0025 see
S

5 r < 30 °

5_ < 109 deg/sec

Nonlinear model

B 500 lb/ft-sec -1
v

B e 40 lb

K e 0. 0278 in3-see-1/psi

Linear model

B v 2000 lb/ft-sec -1

B c 0

K c 0. 000084 in3-sec-1/psi

Xsmax 0. 003 in.



TABLE 3.-COMPARISON OF APPROXIMATE LITERAL FACTORS AND EXACT FACTORS

Approximate literal factors

_/K IK2

//48fleA212 (K + K2)

_h _ IVK

1 1 1

KcI

_c 24A2/2 Wc

KK2K c

P3 12A212 (g + K2)

VK + 48fleA2/2

v_ _ 2
_2 96fleA2 (K + K2) Wc _)2

z2_' _2_t 21

12Bv
z 1 _

I

K 1

Kfl _-_+ K2

Exact

77.46

56.18

.0139

Case I Case II Case III

Approximate Exact Approximate Exact Approximate

77.46 77.46 77.46 82.12 82.12

81.59 ..... 86.5

56.18 56.7 56.18 63.0 59.57

.0139 .068 .0139 .059 .0148

• 297 .331

2330 1747 2330 1747

2.58 1.91 2.58 1.91

1490 1614 1490 1614

4.02 3.12 4.02 3.12

32.62 21.14

29.4 27.28

•54 .508

.0825 .0775
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