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SYMBOLS

a - two-dimensional" lift curve slope

A, C - induced flow parameters, Eq. (11)

b • number of blades

c » blade chord, m

c<j - profile drag coefficient

D - drag parameter, Eq. (13)

I - blade inertia, 4-mR3, kg-m2

Kg »K, - flap and lead-lag spring rates at hub, n-m /rad, Fig. 2

KQ »K_ - flap and lead-lag spring rates at blade root, n-m /rad, Fig. 2
PB ^B

Kg,Kc - total flap and lead-lag hinge spring rates at 0 - 0, n-m /rad,
Eq. (8)

m » blade mass distribution, kg/m

p,P,q - rotating flap and lead-lag frequency parameters, Eqs. (3), (13), (4).

R - blade radius, m; also, variable elastic coupling parameter, Eq. (10)

R = elastic coupling parameter, Eq. (6)
w

s = Laplace transform variable, sec

W = lead-lag frequency parameter, Eq. (13)

x,y,z - rotating coordinates

z - elastic coupling term, Eq. (5)

6 - flapping angular displacement of blade measured from plane of
rotation, rad

4
y • Lock number, pacR /I

A = elastic coupling parameter, Eq. (6)

£ = lead-lag or inplane angular displacement of blade, rad

n = structural damping parameter
m

6 ° blade pitch angle, rad

6 f°r neutral stability for given p



6* - absolute minimum 6 for neutral stability

65 - kinematic pitch-lag coupling parameter
3

P » air density, kg/m

a - rotor solidity, bc/irR

P£ » real part of lead-lag mode eigenvalue, sec

ft » coordinate system angular velocity, rad/sec

u = imaginary part of eigenvalue, rad/sec

a)l»(4)2 * nonrotating flap and lead-lag frequencies, Eq. (19), rad/sec

ojg,u)_ ° flap and lead-lag non-rotating frequencies at 6 = 0°, Eq. (7),
rad/sec

( )0,A( ) " steady state and perturbation variables

( ) = nondimensionallzed by R for lengths, Rft for velocities fi for
frequencies

ii
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SUMMARY

The stability of hingeless rotor blade oscillations in hover is examined

theoretically using a simplified centrally-hinged, spring-restrained, rigid

blade to approximate the deflections of actual elastic blades. The aerodynamic

and inertial coupling between the flap and lead-lag degrees of freedom is

primarily responsible for instability, however elastic coupling and kinematic

pitch-lag coupling both exert a powerful influence on hingeless rotor blade

stability. Experimental results obtained from a two-bladed 1.81m diameter

model rotor designed for minimum elastic coupling have confirmed the results

of linear theory. For this model configuration rotor blade stall at high pitch

angles was found to counteract the destabilizing flap-lag coupling and increase

the damping of lead-lag oscillations. It was possible to account for this

effect with the theory by using drag data for stalled airfoils.

INTRODUCTION

The hingeless rotor has become an attractive concept for conventional

and compound helicopters in recent years. The primary reasons are that

increased control power and angular damping of the hingeless rotor substantially

enhance flying qualities and maneuverability, and the simpler hub design



reduces maintenance and Improves reliability. Experience with hingeless

rotors, however, has revealed a number of unexpected and potentially

catastrophic rotor blade instabilities. These instabilities were not previously

encountered with conventional articulated rotor helicopters and are partly

attributable to the lack of adequate basic research on the dynamics of hingeless

rotors.

For clarity, these instabilities may be loosely divided into three classes.

The first and most fundamental of these is characterized by the exclusion

of translation or angular rotation of the fuselage, in other words, the rotor hub

is fixed. The individual blades are thus uncoupled and the relevant degrees of

freedom are the flap, lead-lag, and torsional deflections measured with respect

to a coordinate system rotating with the rotor shaft. The second class includes

the fuselage degrees of freedom and is characterized by coupled rotor-fuselage

dynamics. The motions of all the rotor blades are coupled to one another in

addition to fuselage motion because of the hub freedom. The the third class

covers problems which incorporate feedback control systems. Although usually

applied to the fuselage motion dynamics, these control systems may induce

serious instabilities of the rotor blade degrees of freedom, particularly the

weakly damped lead-lag motion. Although not so important for articulated

rotors, this classification has a unique significance for hingeless rotors.

This is directly attributable to the strong elastic coupling between the rotor

and fuselage degrees of freedom in addition to coupling between the flap,

lead-lag, and torsion degrees of freedom of each individual blade. Ultimately,

therefore, these couplings are a potential source of various instabilities

for hingeless rotor helicopters. Equally possible, however, they offer

considerable potential for improving rotor stability once the dynamics



of hingeless rotors are better understood.

Within this classification, the individual blade degrees of freedom are

the heart of the fully coupled rotor/fuselage/control system dynamics problem.

Therefore, a complete understanding of hingeless rotor helicopter dynamics can

only be obtained by first thoroughly investigating the stability characteristics

of the fundamental blade degrees of freedom. A special subclass of this problem

known as flap-lag stability is treated in the present study. In this case, the

torsional degree of freedom is excluded to afford a clearer understanding of

the aerodynamic, inertial, and elastic coupling between the flap and lead-lag

degrees of freedom. Although this problem has been examined in previous

research, not all of the Important rotor parameters have been Identified or

sys tematically inves tigated.

In the absence of available experimental data a model rotor was designed

and tested to complement thetheoretical analysis. As a result of these investi-

gations several practical approaches can now be suggested for Improving the

inherent stability of hingeless rotor blades.

THEORETICAL ANALYSIS

Equation of Motion

The basic flap and lead-lag deflections of a hingeless rotor blade are

measured with respect to an x, y, z, coordinate system positioned in the

undeformed blade and rotating with angular velocity ft, Fig. 1. The axis of

rotation is fixed in space and the blades are considered rigid in torsion. In

order to eliminate periodic coefficients in the aerodynamic and elastic terms

of the equations of motion, the problem is restricted to hover and excludes



cyclic pitch inputs. Although the motion of an actual elastically deflected

rotor blade shown in Fig. 1 must be described by partial differential equations,

considerable simplification can be obtained by replacing the elastic blade with

an appropriately hinged rigid blade shown in Fig. 2 where spring elements are

used to simulate the elastic properties of the actual rotor blade. The problem

is then reduced to one involving only ordinary differential equations* which are

both easier to solve and considerably easier to interpret in physical terms.

An Important feature of hingeless rotor blades is that when the collective

pitch angle changes, the elastic principle axes of the portion of the blade

outboard of the pitch bearing also rotate, thus altering the relative stiffnesses

in the flapping and lead-lag directions. Furthermore, this rotation couples

these degrees of freedom elastically, that is, flap deflections produce lead-lag

bending moments and vice-versa. The degree of this elastic coupling is strongly

dependent on the radial position of the pitch change bearing, Fig. 1, or in

other words the relative blade flexibility occurring inboard and outboard of

the pitch bearing.

The importance of this coupling requires that the flap and lead-lag hinge

springs of the rigid blade representation be divided into two distinct orthogonal

systems — one located inboard and one outboard of the pitch bearing, as shown in

Fig. 2. The degree of elastic coupling is determined by the relative flexibilities

of these two spring systems. Although the pitch bearing location is an important

design parameter for hingeless rotor helicopters the associated elastic coupling

effects have not been previously recognized as a significant factor in flap-lag

stability.

*The exact partial differential equations for the flap-lag problem are presented
and compared with the present approximate* equations in Ref. 1. The results
indicate good accuracy for the approximate equations.



The differential equations of motion for the flap and lead-lag angular

deflections (3,?) for the rigid blade representation of the hingeless rotor

are obtained by summing the flap and lead-lag moments due to aerodynamic,

inertial, and elastic forces. A complete derivation is given in Ref. 1.

Since the equations are nonlinear, it is advantageous to consider the stability

of small deflections from the equilibrium condition. The equations for the

flap and lead-lag perturbation deflections (A3, A?) are thereby linearized

about the equilibrium delfections (3O» ?o)

The equilibrium equations are given by
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where

p2 - 1 + ̂  [w2 + R(w2 - u2) Bin2e]
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The terms associated with aerodynamic forces are the Lock number y» profile

drag coefficient cd , lift curve slope a, and the induced inflow parameters A and

C which are approximated using momentum theory, Ref. 2.

A
A"l2 - 1 A2 (ID

The collective pitch angle is given by 6 . The Coriolis and centrifugal

inertial forces arise from the equilibrium flap deflection or coning, g



The remaining terms involve elastic forces which are unique to the hingeless

rotor. The non-rotating flap and lead-lag frequencies ^g and u>> broadly define

various classes of hingeless rotor blade configurations. For instance soft

inplane rotors are characterized by w^ < 1.0 and stiff inplane rotors by

uL > 1.0. The parameter R is used to define the degree of elastic coupling.

For R = 0.0, the blade flexibility is located inboard of the pitch bearing and

no elastic coupling is introduced as pitch angle is increased from zero. The

converse is true for R = 1.0 while intermediate values of R define varying degrees

of elastic coupling.

The stability of flap and lead-lag motions defined by these equations will

be examined for three distinct cases: 1) basic flap-lag coupling (R = 0.0),

2) the effects of variable elastic coupling (R j* 0.0), and 3) the influence of

kinematic pitch-lag coupling.

Basic Flap-Lag Stability

The homogeneous portion of Eq. (2) governs the basic flap-lag stability of

hingeless rotors. For R = 0.0, coupling between the flap and lead-lag degrees

of freedom is due only to aerodynamic and inertial forces, the single under-

lined terms in Eq. (2). The damping in the lead lag equation is inherently

very small since it consists of only profile drag damping, induced inflow

damping, and structural damping. Under certain conditions, the product of

the basic aerodynamic and inertial flap-lag coupling terms is destabilizing

and may provoke an instability of the weakly damped lead-lag mode. This is

shown in Fig. 3 which is a locus of roots of the flap-lag characteristic

equation plotted in the complex plane. The loci trace the roots of the flap



and lead-lag modes as collective pitch is increased from 0.0 to 0.5 rad for

several configurations having various lead-lag frequencies. When OL

is close to the rotating flap frequency (p = A/3 = 1.1547), the lead-lag mode

becomes unstable. In Fig. 3 as well as the next four figures, the rotor parameters

are as follows: Y = 5.0, a = 0.05, cd = 0.01, nm = 0.0.

Although the unstable configurations do not represent typical designs

(other constraints preclude the u- - p configuration) these results do afford

insight into the physical mechanisms which govern the stability of hingeless

rotor blades. For instance, Routh's criterion for the neutral stability

condition can be used to derive a formula for the smallest collective pitch

angle at which the rotor blade will become unstable. Thus we have

-W)2 I
-1)(2-P) \J (Y/8)2[W+P(IM-A8)](l+EH-Ae) J

where

fi
a

W

Since D^l 0 and A6 _>_ 0 , it follows that a necessary (but not sufficient)
2

condition for instability is that 1 < p <2 . This indicates that simple,

centrally-hinged articulated rotors cannot be unstable since p = 1. In addition,

for a given flapping frequency, p, the minimum collective pitch for neutral

stability, 6min, occurs whento^ = p.

- 2CP-1X2-P)

For p = /4/3 an absolute minimum occurs in the collective pitch for neutral



stability. This value, referred to as 6* ±a

- 8 —- ̂
L* •» T J (is)

These simple and concise relations clearly show the dependence of flap-lag

stability on the basic system parameters and design variables.

Both profile drag and structural damping are stabilizing, as is the Induced

inflow represented by the parameter A. Since induced inflow increases with

rotor solidity, a, increased blade chord or number of blades is stabilizing.

When p / o>c the stability depends on the combination of p and to , together

with the Lock number. This dependency is shown in Fig. 4, which maps the

neutral stability boundaries as a function of flap and lead-lag frequencies.

For a particular collective pitch the region of instability lies within the

respective contour. These results illustrate the occurrence of 6 . for a
min

given value of p when u^ = p, and 6* when p = /4/3 as indicated by Eqs. (14)

and (15).

Effect of Variable Elastic Coupling

The elastic flap-lag coupling terms are doubly underlined in Eq. (2).

They are roughly proportional to the collective pitch angle, the elastic coupling

parameter R, and the difference between the flap and lead-lag nonrotating

frequencies (10̂  - uj£). The importance of these terms for hingeless rotor blades
£ P

is immediately apparent by comparing the locus of roots with elastic coupling in

Fig. 5 with the previous case, Fig. 3. Only three lead-lag frequencies are shown,

which typify practical soft-inplane co_ = .7 and stiff-inplane JJ =1.4 rotor

blade configurations. The third case,^ = 1.1, is included for comparison. The



stiff inplane rotor blade is highly unstable for small values of R, while the

lead-lag damping of the soft inplane rotor blade is increased. Values of R

near 1.0 are highly stabilizing in both cases, but more so for the stiff

inplane configuration. Stability boundaries as a function of lead-lag frequency

and elastic coupling are shown in Fig. 6. This plot Illustrates that the minimum

pitch angle for instability is determined by a specific relationship between the

lead-lag frequency and R.

Routh's criterion may again be used to investigate this case. For small

pitch angles (92 « 1) the pitch angle for neutral stability is given by

f FD (e-A)2 1 |"(9+A)(w-p) , r11)10
2 P2 J L A J(W-P)2+[ 2 R9(WP+1)J I (16)

(9-A) = 2(P-1)(2-P)| D+ f
t n2w J

For simplicity consider the case R = R . Since 0 < R < 1, elastic coupling
p ?

can only be destabilizing when W > P or W < P -1. This explains why only stiff

inplane rotor blades become unstable in Figs. 5 and 6. When p = /4/3, the value

of R corresponding to the least stable value of lead-lag frequency may be

obtained from the following relation.

29*

It is of interest that the pitch angle for this condition is precisely that

given by Eq. (16) for basic flap-lag instability, i.e., 9*, which explains why

the minimum pitch angle for instability in Fig. 6 was independent of R andij. .

10



The practical Importance of elastic coupling is that while small values of

R are potentially dangerous for stiff inplane rotor blades, large values of R

provide a means of greatly increasing the inherently weak lead-lag damping of

both soft and stiff inplane rotor blades. In the present state of the art of

hingeless rotor design, no sound rationale exists regarding the influence of

pitch bearing location and elastic coupling on rotor blade stability character-

istics. Therefore, the present analysis could " provide a basis for a

rational approach toward improving the stability of hingeless rotors.

Pitch-Lag Coupling

Coupling between the blade pitch angle and the lead-lag deflection can be

caused by either control system kinematics or coupled bending-torsion of the

rotor blade. The former effect is a well known cause of articulated rotor in-

stability. However, both factors are significant for hingeless rotors and have

not been adequately studied. The present perturbation flap-lag equations including

the nonhomogeneous terms may be used to investigate this subject. The necessary

equation for pitch-lag coupling is given by A6 = 6 A£ where 6 is the magnitude

of the coupling. In particular the combined effects of elastic coupling and

pitch-lag coupling will be examined. The results are given in the form of

stability boundaries for a soft and a stiff inplane configuration in Fig. 7.

For the soft inplane case, the result is qualitatively similar to an articulated

rotor, positive 6 is destabilizing, and the effect of variable elastic coupling

is found to be slight. The stiff inplane configuration, however, exhibits

entirely different behavior. With no elastic coupling, negative 0 produces

instability. Elastic coupling, however, is strongly stabilizing for negative

0 , but becomes progressively destabilizing as R increases and 9 becomes

positive. Therefore, potential instabilities can occur for various

11



combinations of pitch-lag coupling and elastic coupling. These results further

emphasize the need for a rational approach to hingeless rotor design if in-

stabilities arising from several combined coupling effects are to be avoided.

EXPERIMENT

The theory discussed above shows that flap-lag coupling can destabilize

rotor blade lead-lag oscillations. As previous experimental work to support

this conclusion is absent, an experimental model was designed and tested to

determine if the reduction in damping predicted by the basic flap-lag theory did

indeed occur for a real system. For the initial experiments reported below, it

was decided to focus on the important but subtle aerodynamic and inertial coupling

terms. To do this, a model configuration was chosen which minimized elastic

coupling (R=0.0), and hinge stiffnesses were chosen to assure penetration of the

region of minimum stability shown in Fig. 4. Finally, the model configuration

was patterned as closely as possible after the idealized representation of

a hingeless rotor blade to insure maximum compatibility between the

experimental and theoretical results.

Experimental Design

A sketch of the model hub is shown in Fig. 8. Flapping and lead-lag

flexibility is contained in separate flexures, located as close to the hub center-

line as possible. Elastic coupling of the flap and lead-lag motions is minimized

by changing blade pitch angle outboard of the flexures and designing the blades

themselves for maximum stiffness. This design closely approximates the theoretical

representation of a centrally-hinged, spring-restrained, rigid blade. The

only damping in the model hub is the structural damping in the flexures.

12



Torsional stiffness for each blade is provided by the two flap flexures which

are displaced laterally from the blade centerline. The resulting torsional

natural frequency is approximately twenty times as large as either the flapping

or lead-lag natural frequencies, which, for practical purposes, eliminates

the torsional degree of freedom. The flapping stiffness, Kft, and lead-lag

stiffness, K_, were selected so that the region of minimum stability could be

penetrated. Fig. 4 shows this region as a function of nondimensional flapping

and lead-lag frequencies, where

(18)

By simply varying the rotor speed, ft, it is possible to change p and oj

simultaneously, and thereby traverse the region of minimum stability.

The rotor blades were constructed of balsa wood with an aluminum spar and

covered with fiberglass. The major rotor parameters are given in Table 1.

Table 1

Lock number, y

solidity, a

radius, R

blade chord, c

airfoil section

twist

Reynolds number

2.80

0.0600

0.905m

0.0856m

NACA 0012

-11.94 deg/m

1.0 - 2.5 X 10!

The hub and blades were mounted on a rigid test stand as shown in Fig. 9,

and driven by a pneumatic motor. To measure damping of the lead-lag motions, the

rotor was excited with an electrodynamic shaker in the nonrotating system, and

13



the transient decay of the blade lead-lag oscillations was recorded after the

shaker excitation was terminated.

Instrumentation

The blade root flexures were instrumented with strain gages to measure the

flapping and lead-lag bending moments of both blades. In addition, the flap

flexures on one blade were strain gaged to measure torsion moments. All gages

were calibrated with applied moments so that angular deflection could be related

directly to strain. The strain gage signals were removed from the rotating

system with a forty channel set of slip rings (Fig. 9). The rotor speed was

determined with an inductive pickup. Stand accelerations were monitored with

an accelerometer mounted below the hub. All output signals were recorded on an

oscillograph and magnetic tape (for subsequent data processing), and an oscillo-

scope was used to monitor significant parameters.

Nonrotating Tests

Nonrotating tests were run to determine rotor stiffness and inertia charac-

teristics. With the rotor hub locked to prevent rotation, flapping and lead-lag

motions were excited and the natural frequencies of the resulting blade oscillations

were measured. In repeating these tests over a range of pitch angles from -2

degrees to 90 degrees, a small variation in the flapping and lead-lag natural

frequencies was discovered. This variation occurred because the rotor blades

are not perfectly rigid outboard of the pitch change bearing, and therefore a

small amount of elastic coupling is present. The degree of this coupling was

determined by finding the elastic coupling factor R which gave the best agreement

between the experimental and theoretical nonrotating frequencies throughout the

full pitch angle range. The theoretical frequencies are obtained from Eq (2)

after eliminating the aerodynamic, centrifugal, and Coriolis terms from the

homogeneous equations.

14



A s!_i
1,2 ~^ 2A

(19)

The coupling factor giving best agreement was R = 0.11, and the associated

theoretical and experimental frequencies are shown in Fig. 10.

The measured structural damping of the lead-lag oscillations was 0.11%

critical, and was invariant for 0° <_ a <_ 18°.

Rotating Tests

Rotating tests examined both steady state and transient operation. Steady

values of blade coning and profile drag coefficient were measured to compare

with theoretical predictions, and to estimate the limits of linearized theory.

Fig. 11 shows the steady coning parameter as a function of collective pitch.

The coning angle significantly departs from linear theory as the blade enters

a stalled condition for collective pitch angles in the range of 12 to 14 degrees.

Blade stall was observed experimentally in this region using wool tufts under

stroboscopic illumination. This low stall angle is due to the low Reynolds

number and is in good agreement with two-dimensional airfoil data, Ref. 3. As

blade coning determines the extent of inertial flap-lag coupling, it is expected

that the theory will overpredict the coupling effects at collective pitch angles

above stall. The small increase in coning over the theoretical prediction for

pitch angles below stall is due to ground effect which reduced the rotor

downwash.

15



The mean profile drag coefficient calculated from the steady lead-lag

deflection is shown in Fig. 12. The two-dimensional drag coefficient data of

Ref. 3 is shown for comparison. The damping of the lead-lag motions is strongly

dependent upon the mean profile drag coefficient, which is assumed to have a

constant value in the linear theory. For higher collective pitch angles

the linear theory will underestimate the amount of drag damping

present.

The transient motion of the rotor blades during rotating tests was in-

vestigated by exciting the fixed hub in a direction parallel to the plane of

rotation with an electrodynamic shaker at a frequency of fl + <o . In the

rotating system, this excitation occurred at the lead-lag natural frequency.

When the lead-lag oscillatory amplitude was sufficiently large, excitation was

terminated and the damped transient motion of the oscillations was recorded on

the oscillograph and magnetic tape. Measurements of lead-lag damping were made

over a range of collective pitch angles and blade natural frequencies. Figure

13 shows the experimental nondimensional lead-lag damping as a function of

nondimensional lead-lag natural frequency for a collective pitch angle of 11.95

degrees. The theory without flap-lag coupling simply shows the effects of

structural, profile, and induced drag damping which increase the lead-lag damping

as the pitch angle is increased. The effect of flap-lag coupling, however, is

to significantly reduce the damping for nondimensional lead-lag natural

frequencies near the flapping frequency. The experimental data confirm the

predicted reduction due to aerodynamic and inertial flap-lag coupling. The

effect of the small degree of elastic coupling is to shift the lead-lag frequency

for minimum damping away from the frequency where p = HT . The scatter in

damping values at each lead-lag frequency is indicative of the difficulty in

16



measuring very small values of damping (less than 0.4% critical damping). Valid

data could not be reliably obtained for 01 < 1.2 because flexibility of the rotor

test stand at a resonant frequency introduced extraneous damping into the rotor

blade oscillations.

Figure 14 compares the experimental and theoretical lead-lag damping as a

function of collective pitch angle for o)j- = 1.278. This is the approximate

frequency for minimum stability. The theory without flap-lag coupling shows a

steady increase in damping with collective pitch and does not correlate with

the measured data. The complete linear flap-lag theory, however, correctly

predicts the decrease in damping that occurs as collective pitch is increased

to the stall angle. Beyond stall the linear flap-lag theory continues to predict

a reduction in the lead-lag stability, however, if modified to include measured

airfoil drag data, the theory then correctly shows the strongly stabilizing

effect of the profile drag damping of the stalled rotor.

s

Concluding Remarks

Several general conclusions may be summarized from these results.

1. The theoretical analysis gives significant insight into the stability

characteristics of hingeless rotor blades primarily because it is simple enough

to easily comprehend while still retaining the essential rotor blade degrees of

freedom. Instabilities were shown to be the result of aerodynamic and inertial

coupling of the flap and lead-lag degrees of freedom.

2. With elastic coupling effects neglected, the least stable condition occurred

when the lead-lag frequency was equal to the flap frequency and the flap frequency

was /4/3. It was found that profile drag, structural damping, and aerodynamic

17



induced drag were stabilizing.

3. An experimental investigation confirmed that the theoretically destabilizing

effects of aerodynamic and intertial flap-lag coupling actually occurred in a

real system. Nonlinear!ties resulting from blade stall at high collective

pitch angles increased lead-lag damping. The theory was also able to account

for these nonlinearities.

4. The inclusion of flap-lag elastic coupling and kinematic pitch-lag coupling

were found to have an important influence on the rotor blade stability. The

elastic coupling is structurally inherent in all hingeless rotor blades but

has not previously been recognized as an important factor in determining rotor

blade flap-lag stability. The present theoretical analysis indicates that

the degree of elastic coupling, depending on the lead-lag frequency, determines

whether the rotor blade will be stable or unstable. The degree of elastic

coupling is also shown to be dependent on several rotor blade design parameters,

such as pitch bearing location and the blade flexibility distribution.

5. In practical terms the present results are encouraging because they permit

a much needed understanding of hingeless rotor blade stability and should provide

the basis for a rational approach to the design of hingeless helicopter rotors.

For instance, configurations providing a high degree of elastic coupling can

significantly improve lead-lag damping and a judicious choice of pitch-lag

coupling can also be very beneficial.

The present work has stimulated the continuation of this research and

several areas are currently under study. Experimental verification of the

18



high damping afforded by large elastic coupling is presently underway while

theoretical efforts are aimed at studying the important effects of the

torsional degree of freedom.
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Figure 1. - Schematic representation of a hingeless rotor blade in rotating
coordinate system, showing elastic bending deflections.

PITCH
BEARING K

Figure 2. - Centrally-hinged, spring-restrained, rigid blade representation with
spring stiffness arranged inboard and outboard of the pitch bearing.
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Figure 5. - Locus of lead-lag mode roots with increasing pitch angle for flap-lag
equations with variable elastic coupling, R ^ 0.0, p = /4/3.
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coupling and kinematic pitch-lag coupling, p = /4/3.
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Figure 8. - Experimental rotor hub.
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Figure 9. - Experimental rotor test set-up.
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