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EXPERIMENTAL  VERIFICATION OF LOW SONIC BOOM CONFIGURATION 

Antonio  Ferri t  and Huai-Chu Wang tt  

New York Universi ty  

Bronx, New York  10453 

and 

Hans S orens  en 

A e r o n a u t i c a l   I n s t i t u t e   o f  Sweden 

ttt  

I. Tntroduction 

Airplanes  f lying a t  supersonic  speed  produce  "sonic booms" on the  

ground.  Sonic boom r e f l e c t e d  on the ground i s  f e l t  by  people as a "s tar t -  

l ing   no ise ,"  and the  present   levels   and  shapes  of   the   overpressures  are 

highly  object ionable .  The sonic  boom is unavoidable   for   vehicles   having 

l i f t  and c ru i s ing   i n   ho r i zon ta l   f l i gh t .   The re fo re ,   t he   d i r ec t ion   t o   fo l low 

i n   o r d e r   t o  a t t e m p t  t o  minimize  the  unacceptabili ty on the  p a r t  of   the  

people is  to  decrease  the  main  source  of  annoyance  which is  largely  con- 

nected  with  the  presence of  shock  waves. 

The r e s u l t s  o f  an   ana ly t i ca l  and  experimental   invest igat ion  are  p r e -  

sented  and  discussed  herein,  and  have  been  performed in   o rder   to   de te rmine  

conf igura t ions   tha t   p resent  a reduct ion of shock wave s t rengths   wi th   respec t  

t o   va lues  produced in   p resent   conf igura t ions ,  and t o   v a l i d a t e   r e s u l t s   o f  

t Director,  Aerospace  Laboratory,  and  Astor  Professor  of  Aerospace  Sciences 
tf Research S c i e n t i s t  
ttt Head of   the   Tr i sonic   Tunnel ,   Aeronaut ica l   Ins t i tu te  o f  Sweden 



approximate  analysis   by means of   experimental   resul ts .  The i n v e s t i g a t i o n   a l s o  

is  usefu l   for   deve loping   sa t i s fac tory   p red ic t ion   methods .  

The inves t iga t ion   ind ica ted   tha t   the   ana lys i s   and   exper iments  are i n  

good agreement,   and  that   sonic booms having  the f i rs t  shock   s t rength   o f   the  

order  of 1 l b / f t  as predicted by the   ana lys i s   a r e   measu red   i n   t he   expe r i -  

ments. The i n v e s t i g a t i o n   i n d i c a t e s  some o f   t h e   d i f f i c u l t i e s   e n c o u n t e r e d   i n  

ex t r apo la t ing   nea r   f i e ld   da t a   a t   l a rge   d i s t ances .  The experiments  have  been 

performed a t   t he   Aeronau t i ca l   Resea rch   In s t i t u t e   o f  Sweden, by the   research  

2 

group  directed by Professor  M. Landahl  and D r .  G .  Drougge,  and  have  been 

performed  by  using a new experimental  technique  developed  by  the  group 

based on the  higher  order  analysis  developed by M. Landahl, I . L .  Ryhming, 

and o the r s  . The model has  been  designed  by a research  group a t   t h e  Aero- 

space  Laboratory  of New York Universi ty ,  as a pa r t   o f  ar, inves t iga t ion  on 

low  boom configurat ions.  3 y 4  The la t te r  group  a lso  performed  the  analysis   of  

1 

2 

the   expe r imen ta l   r e su l t s   desc r ibed   i n   t h i s   r epor t .  The work has  been  carried 

out  under two NASA Grants:  (1) NGR 52-120-001, assigned t o  the  Aeronaut ical  

Research   Ins t i tu te   o f  Sweden; and  (2)  Grant NGL 33-016-119,  assigned t o  New 

York Universi ty .  The experiments  have  been  performed  by H.  Sorensen  of  the 

Aeronau t i ca l   In s t i t u t e   o f  Sweden. The analyses  have  been  performed  by a 

team under   the  direct ion  of   Professors  Fe r r i  and  Ting,  which  includes  besides 

the  authors ,  Mrs. F. Kung, Messrs. M. S i c l a r i  and A .  Agnone. This repor t  

d i scussee   the   resu l t s   cor responding   to   an   angle   o f   a t tack   c lose   to   the  

se l ec t ed   f l i gh t   cond i t ions   fo r   t he  SST, and a t  ano the r   s l i gh t ly   h ighe r   ang le  

of   a t tack .  

2 



11. Def in i t ion   o f   the  Problem_ 

Predic t ion  of  sonic  boom s igna tu res  a t  la rge   d i s tances  from t h e   a i r p l a n e  

is based  mainly on the  Whitham.second  order The a i r c r a f t  is 

represented  by a d is t r ibu t ion   of   mul t ipo les   and   l i f t ing   e lements   der ived  from 

the   a i rp lane ' s   geometry  on the  basis   of   l inear ized  supersonic   theory.  The 

asymptot ic   solut ion i s  expressed  in  terms of the c r o s s - s e c t i o n a l   a r e a   d i s t r i -  

bution.  S(xg) is  a funct ion  of   the  dis tance x and azimuthal  angle F) of an 

equivalent  body of   revolut ion,  and an   equiva len t   c ross -sec t iona l  area t h a t  

r e p r e s e n t s   a n   e q u i v a l e n t   l i n e a r   l i f t   d i s t r i b u t i o n .  The pres su re   va r i a t ions  

produced by a veh ic l e   a r e   s t rong ly   non l inea r   nea r   t he   veh ic l e ;  however, t he  

nonl inear   effects   decrease  rapidly moving away from the  a i rplane.   Therefore ,  

a t  some f i n i t e   d i s t a n c e  from the   a i rp lane   sur face ,   l inear   theory  i s  general ly  

v a l i d   l o c a l l y .  Then the  only  nonl inear   effects   to   be  considered  are   the 

e f f e c t s   r e l a t e d   t o   t h e   v a r i a t i o n  of the  speed  of sound t h a t  when combined 

wi th   the   loca l   var ia t ion   o f   ve loc i ty   o f   f lu id   p roduces   d i s tor t ions   o f   the  

s igna l   w i th   r e spec t   t o   l i nea r  Mach waves.  This  second  order  effect is  

cumulative  and  therefore  must  be  considered when propagat ion  of   dis tur-  

bances a t  a la rge   d i s tance  is  inves t iga t ed .  The whitham theory  takes   into 

account   these  effects  and p e r m i t s  us  to  determine  the  propagation of waves 

from a region  where  the  disturbances produced  by the   veh ic l e   a r e   a l r eady  

s u f f i c i e n t l y   s m a l l ,  s o  tha t   l i nea r   t heo ry   app l i e s .  

The a n a l y s i s  p e r m i t s  u s   t o   ex t end   t he   s igna l  produced  by t h e   a i r p l a n e   t o  

reg ions   fa r  from the   a i rp lane ,   p rovided   tha t   the   d i s turbance  produced  by the  

a i r p l a n e  i s  known i n  a region  where  such  disturbances are a l ready  small. 

The analyt ical   determinat ion  of   such  dis turbances is  ex t r eme ly   d i f f i cu l t ,  

3 



espec ia l ly  a t  high Mach numbers. The l inear   theory  that is the  most adapt- 

able   type  of   analysis   avai lable   for   three-dimensional   f low,   cannot   be  used 

for   the  purpose  of   re la t ing  the  shape of the   a i rp lane   to   the   s igna ture   p ro-  

duced in   the   near   f ie ld ,   because  i t  neglec ts   h igher   o rder   e f fec ts   bo th   in  

the   def in i t ion   o f   the   loca l   in tens i ty   o f   the   s igna l ,  and i n   t h e  decay  and 

shape  of  the wave propagation. 

Experimental  methods,  where  the wind tunnels are used as analog  machines 

to   de f ine   t he   s igna l s  a t  some dis tance  from the   veh ic l e ,  open a promising 

way to   so lve   t h i s  problem  because  they do not  have  the  l imitations  of  the 

l inear ized  theory.  ” lo’ l1 Such approaches,  however,  have  other  limitations 

that  only  recently  have  been  recognized.12 The most direct   approach  for  

e l iminat ing many of   the  uncertaint ies   due  to   the  s implif icat ions  introduced 

in   the   ana lys i s   to   de te rmine   the   ac tua l   s igna ture   o f   an   a i rp lane  a t  some 

dis tance  from the   a i rp l ane ,  i s  t o  measure  the  complete  signature  experi- 

mentally. A t  Mach numbers  on the  order of 2 t o  3 ,  the   dis turbances produced 

by  good L/D configurat ions a t  dis tances   of   the   order  of  a few body lengths 

from the model are extremely small; therefore ,   l inear   theory  appl ies   here .  

The experimental  approach  proposed by NASA’, and used  extensively  for  sonic 

boom determination,  has  been  to  build a  model  and to  determine  experimentally 

the  dis turbances produced a t  some dis tance  from the   a i rp l ane  and then  extra- 

po la te   the  measured s igna l   t o   t he   r equ i r ed   he igh t  of f l i g h t  by means o f  the 

Whitham theory. The concept is  s u r e l y   v a l i d ,  and therefore   p resents  one of 

the most d i r e c t  ways of  obtaining  accurate  information. However, it has  been 

shown12 that   in   applying  the  concept   that  more attention  should  be  given  to 

the  type  of  measurements  performed, and to   t he   i n t e rp re t a t ion   o f   t he   expe r i -  



mental  data,   before  such methods  can give comple t e ly   s a t i s f ac to ry   r e su l t s   fo r  

configurations  producing weak sonic  boom s igna tures  as requi red   for  future 

a i rp lanes .  One of the   bas i c   s imp l i f i ca t ions  of the  Whitham theory is  that 

a t  la rge   d i s tances  from the  body, t h e   d e t a i l s  of the  spanwise  dis t r ibut ion  of  

the  sources  of  disturbances are not  important  provided  that   the  span  of  the 

veh ic l e  is very sma 11 wi th   respec t   to   the   d i s tance   cons idered .  Then, t h e  

airplane  can  be  subst i tuted by an   equiva len t   ax ia l ly  synunetric body i n  any 

of  the  meridional  planes  around  the  axis of the body considered. This 

approximation  has  been  introduced  in  the p a s t ,  and used in   t he   ex t r apo la t ion  

of  experimental  measurements t o   l a rge   d i s t ances .  Because  of t hese   s imp l i f i -  

ca t ions ,   the  measurements  have  been  performed  only in   the  meridian  plane 

normal to   the   p lane  of t he   a i rp l ane  wing.  These  measurements  have  been  used 

to  determine by  means of the whitham theory,  an  axially  symmetric body 

equiva len t   to   the   a i rp lane   conf igura t ion  which is  used to  determine  the  sonic 

boom a t   l a rge   d i s tances .   This   approach   in t roduces  two approximations:  the 

f i r s t  is  tha t   t he   r eg ion  where the measurements are made i s  s u f f i c i e n t l y   f a r  

from the  model, so tha t   the   d i s turbances   a re   smal l ;   the  second is  t h a t   a l l  

dimensions  normal to   the  axis   of   the   a i rplane,   including  a lso  the  spanwise 

dimensions,   are   negl igible   with  respect   to   such a d is tance  so tha t   the   th ree-  

dimensional   effects   are   neglected.  Both assumptions  are   acceptable   i f   the  

regions  of  the  measurements are s u f f i c i e n t l y   f a r  away from the  model;  however, 

t he   d i s t ance   r equ i r ed   fo r   t he   va l id i ty   o f   t he  f i rs t  approximation is  not   the 

same d i s t ance   r equ i r ed   fo r   t he   va l id i ty  of the  second. For a i rplanes  having 

good performances,  and  wings  of pract ical   span,   the   f i rs t   requirement   can  be 

s a t i s f i e d  a t  m c h  smaller distances  than  the  second. 

5 



In   p rac t i ce ,   d i s t ances  from the model of the station where  measurements 

are performed  cannot be too  large  because of p r a c t i c a l   e x p e r i m e n t a l   d i f f i -  

c u l t i e s .  The prec is ion   of  the measurements decreases  sharply w i t h  an in- 

crease of   d i s tance   because   o f   the   f in i te   sens i t iv i ty   o f  the instruments. 

Fur thermore ,   the   s ize   o f   ava i lab le  wind tunnels and t h e   s i z e   o f   t h e  model 

requi red   for   the  tests limits t h e   r a t i o  between  distance  of  measurements and 

length  of  the model.   Another  important  difficulty is  due t o   t h e   f a c t   t h a t  

the  f low  f ie ld   produced by a wind tunnel i s  not  absolutely  uniform.  In  any 

wind tunnel,  a nonuniformity  of a  few pe rcen t   i n  Mach number exists. Such 

nonuniformities  correspond  to waves t h a t   i n t e r a c t   w i t h   t h e  wave pa t t e rn  

produced  by the  model. When these   d i s turbances   in te rac t   wi th   the   f low  f ie ld ,  

a n   e r r o r  i s  introduced  that  is cumulative  along  the waves ca r ry ing   d i s tu r -  

bances from t h e  model to   the   p lane   o f  measurement. The s t r eng th   o f   t he  

waves that i s  produced  by t h e  model a t  a very   l a rge   d i s tance  from the model is  only 

s l i g h t l y   l a r g e r   t h a n   t h e  waves due t o  nonuniformit ies   exis t ing  even  in   the 

most  uniform wind tunnel.   Therefore,   the  error  introduced is proport ional ly  

l a rge r  a t  la rger   d i s tances .   This   e r ror   t ends   to   increase   wi th  Mach number. 

Thus, a compromise must be reached  between  accuracy  required and d is tance  of 

t he  measurement  where a s i n g l e  measurement is acceptable .  12 

The problem  can  be  reduced  substantially by the   in t roduct ion   of  more 

complex techniques  for  obtaining  experimental   data,  and ex t rapola t ing   the  

r e s u l t s .  Two different  approaches  have  been  proposed;  one  by  the  f irst  

author of this  report12  where  the measurements are performed i n  a plane 

located a t  some dis tance  from the  model p a r a l l e l   t o   t h e   p l a n e  where the  

sonic  boom signal  must  be  determined. The deviat ions  of   the   s t ream  surface 



normal to   the   p lane  are measured i n  a region  inside  the  shack  generated by 

t he   f ron t   t i p   o f   t he   a i rp l ane .  Such devia t ions  are detennined  along  several  

s t r a igh t   l i nes   pa ra l l e l   t o   t he   f l ow  d i r ec t ion   t o   cove r  a l l  of   the  f low  in-  

s i d e   t h e  shock. A stream surface  is defined by the measurements that   can  be 

subs t i tu ted   for   the   a i rp lane .  Such a stream surface  where the  f low  dis tur-  

bances are small is  equivalent   to   the  vehicle   placed  above.  Then, the  

Whitham analys is  as appl ied by Wa1kden,l3 is used   d i rec t ly   to   de te rmine   sonic  

boom a t  the  required  dis tance from th i s   su r f ace .  The Whitham theory a p p l i e s  

for   th i s   ex t rapola t ion   provided   tha t   the   d i s turbances  are small, s o  t h a t  

local ly   the  l inear   theory is suf f ic ien t ly   accura te .   In   th i s   type  of an 

approach,  the  deviation  of  the  stream  surface is measured experimentally by 

measuring  the stream devia t ion   in  a plane parallel  t o   t he  ground i n   t h e  

en t i r e   r eg ion   i n s ide   t he   f ron t  Mach cone.  Therefore,   the  precision of t h i s  

method depends on the  compromise of two opposite  requirements:  (1)  the 

accuracy  of  the  l inearized  theory which increases   with  the  dis tance from the  

body;  and ( 2 )  the  precis ion  of  measurements  which decreases when the   d i s -  

tance  increases.  However, three-dimensional   effects  are accounted  for 

accura te ly .  The experiments  presented  here  tend  to  indicate  that  a satis-  

fac tory  compromise can  be  obtained  for  these two opposite  requirements  even 

i f   t h e  measurements are performed a t  very small d is tances  from the  body. 

The present  experiments  have  been  performed by using  the  second method 

proposed  by  Landahl, Ryhming, Sorensen, and  Drougge.' Here, the  s t reamline 

devia t ion  is measured fo r   s eve ra l   s t r eaml ines   s t a r t i ng  on a cy l ind r i ca l   t ube  

placed  around  the model having  the axis p a r a l l e l   t o   t h e  wind,  and a t  small 

d is tances  from the  axis.   In  the  experiments  performed,  the  distance is 
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smaller than   the   l ength   o f   the  model. The deviat ion  of   each  s t reamline of 

t h i s   t u b e  i s  measured   loca l ly   in  several meridian  planes.  Two angles  are 

measured:  one  gives  the  deviation  in  the  meridian  plane;  and  the  second 

g ives   the   devia t ion  on the  cyl inder   normal   to   the  meridian  plane.   These 

da t a  are used  to  determine a t  t h e  axis of   the   cy l inder   the  F func t ion   tha t  

is  used i n   t h e  Whitham theory, by means of  higher  order  approximation  that  

takes   into  account   second  order .  terms in   t he   d i s tu rbance  components  and 

higher   order   terms  in   the  curvature   according  to  a theory  developed  by the 

proposers  of  the method. 

This method p e r m i t s  u s   t o   u se   sma l l e r   d i s t ances  from the models  than 

the  other;   however,  i t  r e q u i r e s   d i f f e r e n t i a t i o n  of  the  measured  deviation 

which i s  d i f f i c u l t   t o   d o .   I n   a d d i t i o n ,   t h e   a n a l y s i s  assumes t h a t   t h e   t h r e e -  

dimensional   and  thickness   effects   are  small s o  tha t   the   d i s turbances   can   be  

extrapolated a t  t h e   a x i s   o f   t h e  body. This last  condition  can  produce F 

func t ions   t ha t  are not   s ingly  valued.  Both approaches are improvements with 

respec t   to   the   s tandard   method,   espec ia l ly  a t  Mach numbers of 2 or 3 .  

111. - Experimental  TEchniques 

The experiments were conducted  in  the  Trisonic  Tunnel  of  the  Aeronau- 

t i c a l   I n s t i t u t e   o f  Sweden, FFATLJM 500, a t  Mach number 2.718.l  The tunnel 

has a square t e s t  s ec t ion   o f  50 x 50 cm2 with  perforated walls fo r   t he  

transonic  speed  range  and a f lex ib le   wal l   nozz le   which   a l lows   the  Mach 

number to   be  var ied  cont inuously  between 1 and 4 .  It  is a  blowdown tunnel ,  

which may be  operated  with a stagnation  pressure  up  to  12  atmospheres,  and 

a stagnation  temperature  range  of 300 K - 400°K. A schematic  design  of  the 0 

tunnel is  shown in   F ig .  1. 



Pressure  measurements were performed on t h e  model a t  2.6O and 3.2O 

incidence a t  two pos i t ions   a long   the   tunnel   ax is .  The f low  f ie ld   measure-  

ments were conducted a t  two r a d i a l   d i s t a n c e s  from t he  model axis correspond- 

ing  to   0 .271 and 0.558 times the  length  of   the model i n   mer id i an   p l anes  

spaced a t  5' i n t e r v a l s  from the  plane of symmetry i n   t h e   r a n g e  between 0 

and 90'. The meridian  planes are defined  by the angle  8 with r e s p e c t   t o   t h e  

plane  of symmetry. The pressures  were recorded  almost  simultaneously,   since 

the  time between  the  individual  measurements were 1 - 10 sec. Schl ie ren  

photographs were taken  of  the flOV7 f i e ld   gene ra t ed  by the  model  and the 

pressure  probe. 

0 

-4 

The absolu te  level of  accuracy of t h e   r e s u l t s  is  v e r y   d i f f i c u l t   t o  

es tab l i sh ,   because  of the  combined e f f ec t s   o f   t he  many possible  sources  of 

e r r o r .  A number of  precautions were taken,  however, to  reduce  the  magnitude 

and p robab i l i t y  of s i g n i f i c a n t   e r r o r s .  The f a c i l i t y   i n s t r u m e n t a t i o n  con- 

sists p r imar i ly   o f   h ighe r   s ens i t i v i ty   p re s su re  measurement devices   for   de-  

termining  both  stagnation and reference  pressures.   These  pressures were 

ca l ibra ted   carefu l ly   p receding   the   inves t iga t ion .  The free-stream  pro- 

perties are considered  accurate   within  the  fol loning limits: 

M, 4- 0.01 - 

P t  ,a - + 0.1% 

The precis ion  with  which  local   f low  quant i t ies   can  be  determined i s  es- 

timated  by  the  Laboratory  to  be as follo.c7s: 
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M1 

E r r o r s   a t  M, = 3.0 

+ - 0.07 

- + 1.0 % 

= <  

= <  

+ - o.loo 

+ - o.loo 

The va lues   o f   the   e r rors   in   angles   quoted   here   do   no t   inc lude   the   in f luence  

of  the  nonuniform  flow on the probe. As it w i l l  be  discussed later,  the  

i n t e r a c t i o n   o f  the shock w i t h  the  subsonic  f low  in  front  of  the  probe, 

produces  local ly   large  errors ;   therefore ,   there   such a type  of measurement is not  

accura te .   In   addi t ion  some small inf luence  due  to  Mach number gradients  has 

been  found  experimentally. A r e p o r t  on such  an  influence w i l l  be  made 

ava i l ab le  later by  the FFA group. However such effects are small and  do not 

a f f ec t   t he   r e su l t s   p re sen ted   he re .   In   o rde r   t o   ana lyze   such   e f f ec t s ,  a 

comparison  between  measured  and  calculated  values was performed fo r   t he   f ron t  

p a r t  of t he  model t h a t  is  a x i a l l y  symmetric. The ca lcu la t ions  performed  by 

means of  a numerical  program  based on a three-dimensional   character is t ic  

ana lys i s  is  as accura te  as the numerical  approximation. The comparison 

t h a t  w i l l  be  presented later, ind ica tes   tha t   the   es t imated   va lue   o f   the  

e r r o r   f o r  and 0 is larger   than the maximum di f fe rences  found  between the 

measured  and ca lcu la ted   va lues .  

The def in i t ion   o f   the   angles  0 and 8 ,  the   support   of   the  model,  and the  

dimensions  and  point  for  rotation  of  the model are shown schemat ica l ly   in  

Fig. 2. The angles 0 and were measured  by means of a probe as shown i n  

Fig. 3. 

IV. Descript ion  of  the Model 

In references 3 and 4, configurat ions  have  been  invest igated  that  

10 
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according  to  approximate  analyses  should  produce  sonic booms  much lower than 

present   conf igura t ions   for   equiva len t   condi t ions   o f   f l igh t .   In   o rder   to  

determine  the  val idi ty   of   such  conclusions,  and i n   p a r a l l e l  to experiments 

with the more accurate   experimental   techniques,  one  of these configurat ions 

has   been  selected  for   the tests. The conf igura t ion   se lec ted  is shovm i n  

Fig.  4 ,  where the  dimensions  correspond  to  the model t e s t ed .  The wing i s  

swept  back a t  72'. The wing p ro f i l e   has  2% thickness  and is  a symmetrical 

c i r c u l a r  arc p r o f i l e .  The fuselage  shape  has  a c i r cu la r   c ros s   s ec t ion ;  

detai led  dimensions  of   the  fuselage area as a func t ion   of   the   d i s tance  are 

g iven   in   Table  I. 

I n   t h e   a n a l y s i s  it has been assumed that the fuselage is  sharp a t  t h e  

f ron t  and rear t ips ,and that the   w ing   p ro f i l e  i s  a l so   sha rp  a t  the t r a i l i n g  

and  leading  edges. The construction  of  the  model  had  required some modifi-  

ca t ion  on  the  wing  leading  edge  and  fuselage  front  t ip,   and on the  rear p a r t  

of   the   fuselage.  The modif icat ion  introduced a t  the leading  edge i s  requi red  

in   o rder   to   avoid   loca l   separa t ion .  The modif icat ion a t  the  rear p a r t  of the 

fuselage is  required  because of the  presence  of   the  support .  The support  

increases   the   equiva len t  area i n   t h e  rear p a r t  of   the   vehicle ,  and there-  

f o r e   a f f e c t s   t h e   s o n i c  boom because i t  changes  the  f inal   value  of  the  equi- 

v a l e n t  area d i s t r i b u t i o n .  

In   order   to   e l iminate   such  effects ,   the   equivalence  between lift and 

cross-sec t iona l  area has  been  ut i l ized,   and a co r rec t ion  on the  planform  of 

the  wing has  been  introduced. The area of   the  wing has  been  reduced i n   t h e  

region where the   fuse lage   c ross   sec t ion  is d i f f e r e n t  from the  design.  The 



reduct ion  of  wing area has   been   ca lcu la ted   to   ba lance   the   increase  of c ross -  

s ec t iona l  area from the  reduct ion  of  l i f t  and  volume f o r  a C of  the  wing 

of 0.060, a t  M = 2.70. 

L 

The des ign  of t h e  model i s  shown i n  Fig. 5, where the   impor t an t   d i f f e r -  

ences  between  the model used i n  t h e   a n a l y s i s  and i n   t h e  tests are shown. 

The configuration  does  not  have a v e r t i c a l  t a i l  because  of   the  advisabi l i ty  

of   construct ing a simple  model. The  volume due t o   t h e   v e r t i c a l   t a i l   h a s   b e e n  

included as an  equivalent   increase in  volume of   the  fuselage.   Actual ly ,   the  

v e r t i c a l  t a i l  increases   the   equiva len t   l ength  and is use fu l   i n   dec reas ing  

t h e   i n t e n s i t y  of t h e  rear shock.  This  effect  is  not   impor tan t   for   th i s   se t  

of tests because  the main i n t e r e s t  is d i r ec t ed   t o   t he   de t e rmina t ion  of the  

f ron t   shock ,   i n  v iew  of   the   d i f f icu l ty   o f   ob ta in ing   representa t ive  rneasure- 

ments  from the  rear shock. 

The configurat ion  selected  does  not   represent  a r e a l i s t i c   a i r p l a n e  

configurat ion.  However, t h e   t o t a l   e q u i v a l e n t  area d i s t r i b u t i o n  produced by 

t h e  model t e s t e d   a t   t h e   s e l e c t e d  C has  been  selected from a  more r e a l i s t i c  

airplane  configuration  where  the  requirements of the  volume and l i f t   d i s t r i -  

L' 

bution  have  been  selected from prac t ica l   conf igura t ions .   This   conf igura t ion  

i s  shown i n  Fig.  5b.  There a r e  two reasons   for   the   se lec t ion   of   the   d i f fe ren t  

configurat ions shown i n   F i g .  5, cor-responding t o   t h e  same to ta l   equiva len t  

area. The f i r s t  i s  of an   ana ly t ica l   na ture .  The conf igura t ion  shown i n  

Fig.  5b is  more complex; therefore ,   an  approximate  analysis   that   takes   into 

account  three-dimensional and n o d i n e a r   e f f e c t s  is  not   poss ib le .  Then an 

i te ra t ion   p rocedure  would be  required,  where  the wind tunnel  i s  used a s  an 

analog  machine to   s e l ec t   accu ra t e ly   t he   de t a i l s   o f   t he   con f igu ra t ion   t ha t  
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correspond to   t he   equ iva len t   a r ea   s e l ec t ed .  The second i s  of  an  experimental 

nature;  a minimum fuselage  diameter was imposed by the  balance.   This  required 

a reduct ion  of t h e  wing thickness  and in   increase   o f   fuse lage  volume. 

Once a configurat ion  has   been  obtained  that   g ives  luw sonic boom, c r i t e r i a  

are ava i lab le   to   in t roduce   changes   tha t   permi t   se lec t ing   an   equiva len t   p rac t ica l  

conf igura t ion  similar t o   t h e   c o n f i g u r a t i o n  shown i n  Fig. 5b. 

V. Possibi l i ty   of   Obtaining  Information on t h e  Rear Shock from Wind Tunnel 

Tests 

The measurements i n  a  wind tunnel  of t h e   r e a r  shock  produced by a model 

of t h i s   t ype  are not   ind ica t ive  of t he   ac tua l  phenomena because  of  the  lack 

of   s imi la r i ty .  The p resence   o f   t he   s t i ng ,   t he   d i f f e rence   i n   t he   s i ze  of t h e  

wake,  and the   l ack  of representa t ion  of the  engine  je ts   in t roduce  severe 

e r ro r s   i n   t he   i n t ens i ty   o f   t he   r ea r   shock .  The engines   p roduce   je t s   tha t  mix 

wi th the   ou ts idef low  producing  a displacement  thickness  equivalent  to  sub- 

s tan t ia l   a rea   changes .   F igure  6 i nd ica t e s   t he   equ iva len t   a r ea   va r i a t ion  due 

t o   t h e   j e t  downstream of  one  of the  engines   for   an SST configuration  which  has 

four  General   Electric  engines  fully  expanded. The to t a l   equ iva len t   c ros s -  

s ec t iona l   a r ea   fo r  a complete   a i rplane  a t   cruise  i s  of the  order   of  800 f t  . 
The d i f f e rence  between f l i gh t   cond i t ions  and tunne l   cond i t ions   i n  wake d i s -  

2 

placement  thickness  produces  effects  of, the same order .   These  effects   can 

be inc luded   in   the   ana lys i s  and have  been  included i n   t h e   r e s u l t s   p r e s e n t e d  

i n   r e f e r e n c e  4 ;  however ,   t hey   a r e   d i f f i cu l t   t o   s imu la t e   i n   sma l l   s ca l e  ex- 

periments of the   type  descr ibed  here ,  and require a more  complex research  

program than i s  requi red   for   the  measurements of the  front  shock. 



V I .  Resul ts   of   the   Analysis  

The configurat ion  presented  has   been  analyzed  for   f l ight   condi t ions 

a t  c ru ise   for   an   a i rp lane   having  a length  of 300 f t   i n   f u l l   s c a l e .  An 

airplane  of  this  dimension  has  10,000 f t  of  wing area.  The volume of t h e  

fuselage i s  44,000 f t 3 ,   w h i l e   t h e  wing span i s  58.8 f t  and t h e  wing 

volume 10,000 f t  . 

2 

3 

The ana lys i s   o f   the   sonic  boom has  been  performed  for  the  conditions 

co r re spond ing   a t   c ru i se   a t  60,000 f t ,  M = 2.70 ,  and to ta l   weight   equa l   to  

460,000 l b s .  The analysis  has  been  performed  following  the method out l ined  

by Carlson , which  transforms  the l i f t   i n  an  equivalent  area.  The l i f t  has 

been  determined by means of l inear   theory   wi th  some approximate  second 

4 

order   cor rec t ions .  The ex t r apo la t ion  of s i g n a t u r e   t o  ground level  has  been 

performed by means of   the   var iab le   dens i ty  program  developed in   re fe rence   15 .  

Figure 7 i nd ica t e s   t he   con t r ibu t ion  of t he   equ iva len t   a r ea   d i s t r ibu t ion  of 

t h e   d i f f e r e n t  components.  Table 1 gives   the same information. The sonic 

boom signature   obtained from the   ana lys i s  i s  shown i n   F i g .  8 where four 

meridian  planes  are   considered.  The cut-off   angle  i s  around 60 . For 0 

comparison,  the  constant  pressure  analysis  for  average  pressure  equal  to:  

- - 
'average 7 /  'sea l e v e l  '60,000 f t '  

has  also  been  performed. The r e s u l t s   a r e  shown i n   F i g .  9 where t h e   r e f l e c -  

t i o n   c o e f f i c i e n t  K i s  equa l   t o   1 .8 .  The ana lys i s   i nd ica t ed   t ha t   t he   f ron t  
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shock  for  the  weight assumed i s  of  the  order  of 0.94. The ground r e f l e c t i o n  

c o e f f i c i e n t   u s e d   i n   t h e   a n a l y s i s  is  1.8. The area curve  corresponding  to 

the   sonic  boom in   F ig .   8 ,  i s  a smooth curve  corresponding  to  sharp  leading 

edges f o r   t h e  wing. The wing  of  the  actual model  produces a detached  shock 

because  the  leading  edge  has  been  rounded.  Therefore, some pe r tu rba t ions   i n  

the  equivalent  area d i s t r i b u t i o n  w i l l  be produced  by t h i s  change. It is 

d i f f i c u l t   t o   p r e d i c t   t h e   a c t u a l   i n t e n s i t y   o f   t h e s e   p e r t u r b a t i o n s ;  however, 

t he   qua l i t a t ive   t r end   o f   t he   e f f ec t s   o f   such   d i s tu rbances   can   be   p red ic t ed .  

The round leading  edge w i l l  produce i n i t i a l l y   s t r o n g e r   p r e s s u r e  rises than 

the  sharp  leading  edge  followed  by  an  overexpansion.  This i s  equiva len t   to  

a more rap id   increase  of the   var ia t ion   o f   the   c ross -sec t iona l   a rea   in   the  

region where the  wing s tar ts  followed  by a more gradual   var ia t ion .  The wing 

starts roughly a t  50% of the  length.  The var ia t ions  of   the   type  of   curves  

ind ica t ed   i n  a and  b  of Fig.  10 can  be  expected. The sonic  boom s igna tu re  

for   these  two dis t r ibu t ions   has   been   ca lcu la ted .  The r e s u l t s   i n d i c a t e   t h a t  

t hese   l oca l  small per turbat ions  tend  to   produce  s ignatures   that   have two 

shocks  of  about  the same in t ens i ty ,   F ig .  11. 

The calculat ions  have  been  performed  ini t ia l ly   for  a weight of 460,000 

l b s ,  a t  M = 2.70 .  The experiments  have  been  performed a t  M = 2 . 7 2 ,  and a 

C = 0.055, and CL = 0.066 corresponding  to  the  angle 2.6' and 3.2'. These 

condi t ions would correspond  to a to ta l   a i rp lane   weight   o f  430,000 lbs  and 

520,000 lbs .  Then the  condi t ion of C = 0.055 i s  close  to   the  design  con-  L 

d i t i o n s .  The sonic  boom for   these  two condi t ions has been  calculated and 

is shown in   F ig .  12. The e f f e c t s  of small loca l   per turba t ions  as shown 
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i n   F i g .  13 are also indicated.  

VII. Review of  the  Experimental Data 

The experimental   data  made a v a i l a b l e   f o r   t h e   a n a l y s i s  are presented i n  

Figs .  14 to 19. Figure 14 presents  the measured  values OE E: a t  r / L  = 0.271 

f o r   d i f f e r e n t   v a l u e s  of 0 ,  while   Fig.  15 presents   the   va lues   o f  0 f o r   t h e  

condi t ions.   Figures  16  and 17 present   the  same q u a n t i t i e s   f o r   t h e   d i s t a n c e  

r / L  = 0.558.  For several values  of 0 ,  measurements are a v a i l a b l e   f o r  more 

than one pos i t i on   o f   t he  model a long   the   ax is   o f   the   tunnel .   F igures  18 and 

19   present   the   resu l t s   for  0 = 0 and r / L  = 0,272 and  0.558 f o r   t h e   d i f f e r e n t  

pos i t i ons .  The f igu re   i nd ica t e s   t ha t   t he   change   o f   pos i t i on   does   no t   a f f ec t  

the   exper imenta l   resu l t s ,   g iv ing   an   ind ica t ion   of   the   un i formi ty   o f   the   f low.  

S i m i l a r  configurat ions on 0 and a t  the  two d i s t ances   bu t   fo r  a = 3.2 are 

given  in   Figs .   20,   21,   22,  23. A s  shown in   t he   f i gu res ,   t he   d i s tu rbances  a t  

" r -  
L 

0.558  and a = 2.6O are extremely small; therefore ,   here   l inear   theory  

a p p l i e s   f o r   t h i s  case. 

In   add i t ion ,   Sch l i e ren   p i c tu re s  are a v a i l a b l e   f o r  a l l  of these  con- 

d i t i ons .   F igu res  24a and 24b give  the  Schlieren  photographs a t  ? = 0 and 

= 90,  for a = 2.6 , and  Figs. 25a  and 25b f o r  a = 3.2O. The photographs 0 

permit us t o   l oca t e   accu ra t e ly   t he   pos i t i on   o f   t he   shocks ,   and   t he re fo re  

h e l p   i n   t h e   i n t e r p r e t a t i o n   o f   t h e   e x p e r i m e n t a l   r e s u l t s .  

VIII. Corrections  Introduced on t h e  E and J u s t i f i c a t k o n   f o r   t h e o r r e c t i o n s  

The probe  that   measures  the  angles and 0 has a diameter  of 3 mm and 

has a spher ica l   nose .  The probe  produces a shock and the  f low  region down- 

s t ream  of   the  shock  near   the  or i f ices  is  subsonic.  The ca l ib ra t ion   o f   t he  

probe i s  based on the  assumption  that   the   f low  in   f ront   of   the   shock i s  

16 



fa i r ly   un i form  and  the ang le  is  determined on the b a s i s   o f  the assumption  that  

a small i n c l i n a t i o n  o f  the flow d i r e c t i o n  w i t h  the axis of  the probe  corres- 

ponds t o  the e q u a l   r o t a t i o n  of the pressure   d i s t r ibu t ion   a round the axis of 

the probe. This assumption is correct  everywhere i f  the f l o w  is continuous 

because the  probe is small .  However, the s i t u a t i o n  changes when an ex te rna l  

shock interferes w i t h  shock of the   probe i n  the  subsonic  region.  Consider 

Fig. 26 uhere the probe and the   shock   i n   t he   ex t e rna l   f l ow are represented 

schematkally. In t e r f e rence   w i th   t he   ca l ib ra t ion  starts when the  probe i s  

behind the external shock, i n   p o s i t i o n  a, and  cont inues   un t i l   the  Drobe has 

crossed the shock  and is a t  pos i t i on  b.. 

Experiments have been  performed  where t h i s  phenomenon has  been  in- 16 

vesfkgated a t  h igher  Mach number. In Fig.  27 taken from reference  16, the 

e€fects on the pres su re   d i s t r ibu t ion  d,ue t o   t h e   i n t e r a c t i o n  are shown. The 

wartation of pres , sure   d i s t r ib ,u t ion ,   due   to  the i n t e r a c t i o n  when the  sphere 

is in frmt o f  the ex te rna l  shock is very l a rge   (case  c of F ig .  27). In 

this case i f  the p r e s s u r e   d i s t r i b u t i o n  is used  to  determine  angles on t h e  

basis of a uniform fLar calibration, then   the  measurement  would i n d i c a t e  

i n c o r r e c t l y  that a Large flow devia t iou  exists i n   f r o n t  of the  probe. *en 

the sphere is behind the external shock, then the  interference  produces  an 

opposi te  effect, decreasing the va lue   o f  the actual devia t ion .  Because of 

t hese  effects, the po in t s  measured i n  the v i c i n i t y   o f  the shocks  have  been 

discounted  and  the  diagram shown in   F ig .  28 has been  used  for the analysis. 

In   th i s   d iagram  the   pos i t ion  of the  shocks  have  been  determined  very  accu- 

r a t e l y  from the   Schl ie ren   p ic tures .  The peak deviation  behind  the  shock 

has  been  obtained  from  the  measurements  of the shock  incl inat ion,   and the 
i 
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f low  p rope r t i e s   i n   f ron t   o f  the shock. 

In  Figs.  29  and 30, t he   va lue   o f  e calculated  by means of  three- 

d imens iona l   cha rac t e r i s t i c s  are shown, and  compared with  the  experimental  

da t a .  The d i f f e r e n c e s  are extremely small and can  be  due  e i ther   to  small 

differences  in   geometry  between  the model and the  shape  used  for   the cal-  

culat ion  or   to   measurements   or   calculat ion  accuracy.  Because the   da ta   o f  

the sets of tests agree  wel l ,  t he   f i r s t   a s sumpt ion  seems t o  be more probable 

In   order   to   determine  the  importance  of  some o f   t he   de t a i l s   o f   t he  

p re s su re   d i s t r ibu t ion ,  two a l t e rna te   cu rves ,  1 and 2 of  Fig. 28 have  been 

used i n   t h e   a n a l y s i s .  Curve 1 considers  only  one  shock,  while  curve 2 con- 

s iders   the   ex is tence   o f  two shocks. The second  shock is  produced by the 

discont inui ty   in   s lope  between  fuselage  and  support .  

I X .  Descr ip t ion   of   the  Method of  Analysis Used - 
The method used   €or   the   ana lys i s   has   been   descr ibed   in   re fe rence  1 and 

has  been  developed  by M. Landahl, I. Ryhming, H. Sorensen, and G .  Drougge of 

the   Aeronaut ica l   Research   Ins t i tu te   o f  Sweden. In   o rde r   t o   s imp l i fy   t he  

reading of th i s   paper ,   the   impor tan t   fea tures   o f   the  method are summarized 

here  by  reproducing a sec t ion   of   the   repor t   o f   re fe rence  1. 

According  to   reference  2 ,   the   per turbat ion  veloci ty  components a t   l a r g e  

d is tances  from a three-dimensional body in   supersonic   f low are g iven   to  

second  order  by 
n 



where u2, v2¶ w2 are the second-order components r e f e r r e d   t o  a c y l i n d r i c a l  

coordinate  system, 8 is  the meridian  plane  angle and r is t h e   r a d i a l  

d i s t ance  from the  wind axis I 

0 0 

x = x - Krov - M ep + K r  2 
0 0 ae (4 1 

and u, v ,  w are   the  corresponding  values   according  to   l inear ized  theory and 

the i r   p , s , t en t i a l  is q .  For large  distances  the  following  expansions  were 

shown to  hold : 

y = x - B r + k r  % F + ( " r ) p - I F p  2 K  

00 QO 



where k = k 28 

The q u a n t i t i e s  measured a re   the   f low  def lec t ion   angles  .e and 0, along  l inqs 

of cons tan t  r bu t   i n   d i f f e ren t   az imutha l   p l anes  8 = const .  The angle  e is 

r e l a t e d   t o  v2 as follows: 

-1 v2 = t a n  -- l+u2 

or   s ince   u  = - v2/p to   lowest   order  2 

v2 = (1 - !L + ... 
0 

From the   ax imutha l   def lec t ion   angle  0 w e  obta in  

o r  cpe =-cp = = r u  

Thus, cp can  be  determined  direct ly  from the  measurements,  and  by aid of 

numer ica l   d i f f e ren t i a t ion   o f  ate) one can   a l so   ca l cu la t e  cp . From the  

measurements  of E (x) , cp2 can  be  determined  by  numerical   integration,  since 

to   the  order   considered 

80 

eoeo 

r=cons t shock 

One can  next  obtain .v from (2) : 

v 3 ( 1  - M u) (1- Ku) v2 1 ( 1  + M2 E) (1 + K E) v2 (16) 
2 
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Furthermore, (5) g ives   t ha t  

ro - r ( l  - - K 
B e )  

We have now the   quant i  ties needed to   ca1.culate  F from (7 ) . The Mach l i n e  

parameter y and the   angle  parameter eo, f inal ly ,   can  then  be  determined from 

(11)  and  (12). 

For a n   a x i s p e t r i c a l  flow f i e l d  w is zero  as well as 0-der ivat ives .  

The measurements  and the  evaluat ion  of   the  F-funct ion is then  s implif ied,  

s i n c e  i t  is only  necessary  to   consider  a s ingle   azimuthal   plane.  

X .  Application  of  the Method to   the   Present  Experiments- 

The method presented i s  an improvement wi th   r e spec t   t o   t he  methods 

used  previously,  because i t  takes   in to   account   nonl inear   e f fec ts  which are 

impor t an t   i n   t he   nea r   f i e ld  and  because i t  in t roduces   cor rec t ions   for   the  

near   f ie ld   e f fec ts   due   to   th ree-d imens iona l  phenomena. In  applying  such a 

method to the  present  experiments,  two d i f f e ren t   d i f f i cu l t i e s   have   been  

encountered. 

The f i r s t   d i f f i c u l t y  is r e l a t ed   t o   t he   eva lua t ion   o f   i n   equa t ion  7 
88 

of   the  analysis ,  which r equ i r ed   d i f f e ren t i a t ion   w i th   r e spec t   t o  0 of  the 

measured quant i ty  0. Such an  operat ion is d i f f i c u l t   t o  perform  accurately,  

because small e r r o r s  on the  measured values   of  0 in t roduce   var ia t ion   o f   the  

va lue  of ep  An attempt  has  been made f i r s t   t o   p e r f o r m  a Four ie r   ana lys i s  

of a l l  the  measured values,  between 8 = 0 and 90°. However, fo r   t he   f ron t  

part   the  experimental   accuracy is insuf f ic ien t .   whi le   for   the   reg ion   of   the  

wing  where t h e   c o l t r i b u t i o n   o f   t o   t h e   f i n a l   r e s u l t s   h a s   s i g n i f i c a n c e ,  

t he  series does  not  converge.  Therefore, a different   approach  has   been  used 

88' 
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i n   t he   ana lys i s .   I n   t he   r eg ion   o f   t he  wing the  values   of  0 between 0 a n d '  

30° have  been  plotted as a funct ion  of  8, and a curve  has  been drawn connect- 

ing  the  experimental   points .  Then the  value  of  &/ae a t  y = 0 has  been 

obtained  from the curve.  For  the  region  where  the model has   ax i a l  symmetry, 

the  values   of  aJ/ae given  by  the  analysis  have  been  used. The cont r ibu t ion  

Of q e e  
t o   t h e  F func t ion   i n   t h i s   r eg ion  is negligible.   Therefore  such  an 

approach is  j u s t i f i e d .  However the  contr ibut ion  of   the term is important 

i n   t he   r eg ion   o f   t he  wing indicating  the  importance  of  the  three-dimensional 

e f f e c t s .  

The second  problem  encountered in   the  determinat ion  of   the F funct ion 

i s  r e l a t e d   t o   t h e   e x i s t e n c e  of  double  values  of  the P funct ion due e i t h e r  

to   the  three-dimensional   effects   or   to   rapid  expansions  (corners)  a t  the  

surface  of   the  body.7  This   effect  i s  due t o   t h e   f a c t   t h a t   t h e  F funct ion 

is  ca lcu la ted  a t  t h e   a x i s  and  can be   unders tood   c lear ly   i f  a s i m p l e  configura-  

t i o n  i s  analyzed.  Consider, as an  example, a cone  cylinder a t  zero  angle   of  

a t t ack .  A t  the  expansion  corner,  a family  of  expansion waves i s  produced. 

Fig.  31. I f   these  expansion waves a re   ex t rapola ted   to   the   ax is ,   then  two 

s e t s  of  values  corresponding  to  the same y for   the  F func t ion   in   the   reg ion  

AB of the   f igure .  S i m i l a r  e f f e c t s   e x i s t  when the  model is three-dimensional.  

Then waves generated from di f fe ren t   po in ts   o f   the  model a t  d i f f e r e n t  r reach 

the same point   in   the  meridian  plane  analyzed.   In   order   to   obtain some 

c r i t e r i o n   f o r   t h e   s o l u t i o n   o f   t h i s   d i f f i c u l t y ,  a de ta i led   ana lys i s   has   been  

performed for   the  case  of   the   cone  cyl inder   of   Fig.   31  for   the  case,   the  

a c t u a l  stream dev ia t ion  E: a t  severa l   va lues   o f  r can  be  numerically  obtained 

by means of the method o f   cha rac t e r i s t i c s .  Then i t  is  poss ib l e   t o   de t e r -  
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mine the F function  that   corresponds  to  the e d i s t r ibu t ion   ob ta ined  a t  some 

dis tance  from t h e   a x i s ,  and  compare wi th   the  F d i s t r ibu t ion   ob ta ined  by in-  

t roducing  the  discont inui ty .  Such ana lys i s   ind ica tes   tha t   the   double   va lue  

should  be  eliminated  by  adding and subtract ing  equal  areas i n  F on the 

Mach wave from the  corner  as discussed  in   reference  7 ,  (see Fig .   31) ,   in  

the  region where mul t ip le   va lues  exist. The F function  obtained from the 

da ta  is  shown in   F ig .  32. Figure 33 shows the  F funct ion  used  in   the  analy-  

sis. The same method of  analysis  has  been  used  for  the  data a t  r / L  = 0.271, 

and fo r  a = 3.2 . The F funct ion  obtained from the  data  a t  0.558 has  been 

used t o  obtain  the  sonic  boom corresponding   to   an   a i rp lane  300 f t  long f ly ing  

a t  60,000 f t ,   f o r   t h e  C of 0.055 which  corresponds  to a total   weight   of  

430,000 lbs .   Figure 34 gives   the  sonic  boom shape  obtained from the F 

funct ion by u s h g   t h e   v a r i a b l e   p r e s s u r e  program,  and Fig.  35 the same re- 

su l t s   ob ta ined  by using  constant   pressure program corresponding  to  the 

square  root of the two values  a t  t h e   f l i g h t  and  ground l eve l .  The ampl i f i -  

cat ion  due  to   the  ref lect ion of the ground i s  assumed to   be   equal   to  1.8 

the incoming s i g n a l ,  and is  included  in   the  values   presented.   In   order   to  

determine  the  importance  of  the  three-dimensional and nonl inear   e f fec ts ,  

the  calculations  have  been  repeated, by apply ing   d i rec t ly   the  Whitham theory 

to  determine  the F funct ion,  and neglect ing a l l  the  higher   order  terms, 

curve a and  only  the  three-dimensional  effects (q ) curve  b.  Figure 36 

shows the  sonic  boom obtained, w!len these   quan t i t i e s  are neglected.  The 

0 

L 

80 

f igure   ind ica tes   tha t   the   th ree-d imens iona l   e f fec ts  are important a t  least 

when r / L  is  small. A similar calculation  has  been  performed  for  the  data a t  

a = 2.6  and r / L  = 0.271. me two d i s t r i b u t i o n s   f o r   t h e   a n a l y s i s  are as 0 



I1 I I  111 I 

shown i n   F i g .  37. The r e su l t s   ob ta ined  are shown i n  Fig. 38. They are very 

similar t o  t h e   r e s u l t s  of Fig. 35. The pos i t i on  of the  second  shock is 

d i f f e r e n t  . 
The same analysis   has   been  performed  for   the  data   corresponding  to  

a = 3.2'.  This   condi t ion  corresponds  to  a v e h i c l e  that  has a length of 

300 ft, weight of 530,000 lbs, f lying at  an altitude of f l i ght  of 60,000 ft. 

The r e s u l t s  are shown i n   F i g s .  39, 4 0 ,  and 41. Figure 39 gives   the   d i s t r ibu-  

t i o n  of E a t  r / L  = 0.558 used in   t he   ana lys i s .   F igu re  40 g ives   t he  F func t ion  

ca lcu la ted  and the  curve  used  af ter   being  corrected by el iminat ing  the  double  

value,  and Fig.  41 gives  the  shape of t he   son ic  boom derived from the  F funct ion.  

X I .  Conclusions 

The experimental   invest igat ion  performed pe rmi t s  us t o  reach  the  fol lowing 

conclusions : 

1. Sonic booms having  peak  values  of  the  order of 1 l b / f t 2  as 

p red ic t ed   ana ly t i ca l ly   i n   r e f e rence  3 have  been  measured. The son ic  

booms obta ined   have   near   f ie ld   s igna tures  as p red ic t ed   i n   r e f e rence  3 

f o r   c r u i s e   c o n d i t i o n s  and in   r e f e rence17   fo r   t he   acce le ra t ion   phase .  

The d i s t r i b u t i o n  of equivalent   cross-sect ional   area  tes ted  corresponds 

t o  an   a i rp lane   shape   tha t   has   the  volume, l eng th ,   and   l i f t   r equ i r emen t s  

of a p rac t i ca l   a i rp l ane   conf igu ra t ion ;  however, s u b s t a n t i a l   a d d i t i o n a l  

work is r e q u i r e d   t o   i n v e s t i g a t e   i f  a l l  other  aerodynamic  requirements 

r e l a t e d   t o  a p r a c t i c a l   c o n f i g u r a t i o n  can  be m e t .  

2.  The nonlinear  and  three-dimensional  effects are of  primary  importance 

for   the   de te rmina t ion  of the   cor rec t   va lues   o f   the   sonic  boom from 

measurements a t  small d is tances  from t h e  model. 

3. More complex experimental   techniques  where  such  effects are determined 
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are required when near field measurements are made as recummended in 

references 1 and 12. 

4 .  The experimental method proposed in reference 1 gives  satisfactory 

results. 

5. Improvements are still required in the experimental techniquzs 

and in the analysis in order to measure and  determine with better 

accuracy all of the  required  quantities. 
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Fig. 37 Measurements of deviation  angle of SST model a t  r h o =  0.271, %= 0.055, a = 2.6' a t  several  position8 
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Fig. 38 Sonic boom signature for a = 2.6', = 0,055 a t  r/Lo= 200 from data a t  r/Lo= 0.271, Kp = 1017 l b / f t  
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Fig. 40 F(y) curve for a = 3.2' from data at r h o =  0.558 
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Fig .  41  Sonic  boom s i g n a t u r e  fo r  a = 3 . 2  , = .066 r / L  = 200 Kp = 1017 l b / f t  0 2 
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