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A NUMERICAL STUDY OF ELECTROMAGNETIC SCATTERING 
FROM OCEAN-LIKE SURFACES 

R. R. Lentz 

The Ohio State University ElectroScience Laboratory 

CHAPTER I 

INTRODUCTION 

The scattering of electromagnetic waves from the ocean surface 

has been of great interest for some time. In this work the scat- 

tering from one dimensional sea-like random surfaces is ex- 

amined by a variety of computational methods, with a view to 

establishing what practical limitations must be satisfied on such 

surface parameters as radius of curvature, mean squared height, etc., 

in order that the statistical properties of the scattered radiation 

may be calculated with reasonable accuracy. The results of the com- 

putations are then used to discuss the applicability of the several 

theoretical models for sea-surface scattering (geometrical optics, 

physical optics, perturbation theory and the composite model) and the 

prospect for direct calculation of the scattered fields from the 

actual sea surface. 

During the past few years, theoretical and experimental work here 

and abroad (Refs. Cl]-[7]) has led to an understanding of the mech- 

anisms responsible for scattering and emission of microwaves by the 

ocean. For off-normal backscatter, the "Bragg-scatter" from capil- 

lary and short wavelength components of the ocean surface, which 

can be calculated by perturbation theory, has explained the angular 
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and polarization dependence of the microwave radar return. When 

combined with the known height spectrum (Ref. [8]) of the ocean 

surface, it explains the weak dependence of backscatter on electro- 

magnetic wavelength and wind velocity. Near the specular direction, 

i.e., near normal incidence for backscatter, the scattering is con- 

trolled by the slope distribution of the large scale structure of 

the surface. This part of the scattering is calculated by geometrical 

optics, and explains the dependence of the emissivity of the surface 

on wind velocity. 

Nevertheless, the many assumptions required in finding the 

scattered fields by the perturbation or geometrical optics approxi- 

mations, particularly assumptions about the Gaussian character of the 

surface height statistics, and the applicability of the theoretical 

approximations to the actual sea surface, have led to considerable 

discussion about the validity of the various theoretical solutions 

(Ref. [9]). Since straightforward verification by measurement is 

not practical, partly because of difficulty in the measurement process 

itself and partly because of the difficulty in specifying exactly what 

the surface was when the measurement was being made, it is desirable to 

have a direct rrethod for calculating the scattering from a specific 

realization of the ocean surface. Direct calculations will allow a 

realistic assessment of the validity of the various theories, without 

any assumptions about the statistical properties of the surface. If 

a statistical average of the scattered fields over an ensemble of 

surface representations is required, it can be obtained (albeit at 
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some cost) by a direct summation of the scattered fields from the 

individual surface representations. 

The specific surfaces considered here are cylindrical perfectly 

conducting surfaces as shown in Fig. 1. The surface generators are 

X 

7 - 

. 

Z 

Fig. 1. --The scattering surface. 

parallel to the z axis, and the surface elevation is specified by 

y = H(X). The incident field is a plane wave whose direction of 

propagation lies in the x,y plane and makes an angle of THI with 

the positive x axis5 while the observation direction makes an angle 

of THS with the positive x axis. Time dependence is assumed to be 

,jwt and has been suppressed throughout. All distances are measured 

in centimeters. 

Three different methods for calculating the fields from such 

a surface are developed here. Although the details are discussed 

later it is desirable to outline each technique at this time. 

3 
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The first approximate mathod is the geometrical optics tech- 

nique (G.O.). For a given surface, and given scattering and in- 

cidence angles, the program locates the specular points on the 

surface (points where the local incidence angle equals the local 

scattering angle) and evaluates the radius of curvature at each 

specular point. The scattered far field is then found by summing 

the contribution from each of the specular points, including an 

extra 90" phase shift for the fields scattered from concave up 

portions of the surface. Shadowing of one section of the surface by 

another section may be taken into account. 

The next approximation is the physical optics (P.O.) technique. 

For a given surface the scattered field is computed by integrating 

over the approximate surface current 

. 
where n is the outward normal to the surface and i? is the incident 

magnetic field. Shadowing is always taken into account, as this is 

implicit in the physical optics formulation. 

The last method developed here is based on a point matching 

solution to the integral equation satisfied by the true surface 

current Zs. The scattered fields are then found by integrating 

over the surface currents. Test cases (e.g., the wedge 

problem) have shown this method to be by far the most accurate; 

hence it is used as a standard to which all others are compared. 

However, because of computer storage limitations, this program can 

not handle surfaces whose arclengths are greater than ~60 electrical 



wavelengths, whereas the G.O. and P.O. programs can, in principle, 

handle surfaces of any length provided sufficient computer time is 

available. 

In order to avoid edge effects, tapering of the incident field 

is necessary in the integral equation solutions. The same tapering 

has been applied in both the G.O. and P.O. solutions so that they 

can be directly compared to the exact fields. The tapering applied 

here is illustrated in Fig. 14 of Chapter IV. 

In the succeeding chapters each of these methods will be 

described in detail. By comparing the results for a series of 

test surfaces3 the limitations of each method are established. 
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CHAPTER II 

THE GEOMETRICAL OPTICS METHOD 

The first approach to examining the scattering from a one 

dimensional rough surface is the geometrical optics method. By 

this is a-eant that the scattered field is computed by finding 

the specular points on the surface, and associating with each such 

point a scattered field amplitude and phase which depend on the 

geometrical properties of the surface at the specular point. 

A. Geometrical Optics 

Conservation of energy flux along a ray path will provide us 

with the geometrical optics field strengths (Ref. [lo]). 

Consider the two dimensional ray tube shown in Fig. 2. If u. 

is tfie field strength at some reference point at a distance p from 

the caustic and u is the field strength at distance p + R from the 

caustic, then the conservation of energy in the ray tube requires 

CAUSTIC 

Fig. 2. --Ray tube geometry. 
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(2) u; p de = u2 (p + a) de 

so that one may write 

(3) IA(P,) = u. Jz e-jkao 

The factor e-jkas with X, the electrical wavelength and 

(4) k = 2r/h, 

accounts for the phase shift between p and p+%. Equation (3) fails 

at fi equal to -p. This location (at the confluence of the rays) is 

termed a caustic. Kay and Keller (Ref. [ll]) have demonstrated that 

at points beyond the caustic (R less than -p) Eq. (3) is still valid 

if a phase shift of +90" is introduced. 

To use geometrical optics it is necessary to find all points 

on the scattering body at which the law of reflection is satisfied 

locally for the particular set of THI and THS under consideration. 

Once these points are located Eq. (3) is used to calculate the scat- 

tered field. Figure 3 shows the geometry for the calculation of 

the scattered field from one such specular point. By the law of 

reflection, the local incidence and scattering angles are equal and 

are marked ANG in the figure. The distances marked r, and p are the 

radius of curvature and the distance from the specular point to the 

optical image of the source (i.e., the caustic distance) respectively. 

The distance p is given by a cylindrical mirror formula as 

7 



BSERVATION < 
POSITION SOURCE 

SPECULAR POINT 

OPTICAL 
\ 

t? IS THE NORMAL 
IMAGE OF TO THE SURFACE 
THE SOURCE 

L X 
0 

Fig. 3. --Specular point geometry. 

(5) $ = ]r 7 cos (ANG) %. 
+L, 

C 

In the cases considered here the distance to the line source, go, 

will be assumed to be infinite, hence 

(6) P= 
Ir,l cos (ANG) 

2 . 

If the specular point is taken as the reference position then Eq. (3) 

gives us9 the scattered field at the observation position 

(7) U = 
S 

R ui J$ e-jklL 

=Ruifie -jk'/JTfor R >> p (far field) 
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where Ui is the incident field evaluated at the specular point and 

R is a reflection coefficient. If the electric field is parallel 

to the surface generators (T.M. case) and Ui is taken as the inci- 

dent electric field, then us is taken as the scattered electric 

field with R = -1. If the magnetic field is parallel to the surface 

generators (T.E. case) and Ui is taken as the incident magnetic field, 

then us is the scattered magnetic field and R = 91. For dielectric 

scattewrs the corresponding Fresnel reflection coefficients are to 

be used for R. This makes the geometrical optics program the easiest 

to convert from perfectly conducting bodies to penetrable bodies. 

Up to this point the scattering surface has been assumed to 

be concave down at the specular point. If the body is concave up 

at the specular point then the caustic position is above the surface 

instead of below, the scattered rays pass through the caustic on 

the way to the observation point if the observer is in the far field, 

and thus a phase shift of +90 degrees must be introduced. The 

distant scattered fields may then finally be written 

(8) E39,) = -El 
I 

J 

jr,1 cos (ANG) ,-jka 

Specular 2 -E 
4c 

Point 

for the T.M. case and 

(9) H;(g) = H; 
I 

Ir,l cos (ANG) ,-jka 

Specular 2 rE 
Point 
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for the T.E. case, where E: is +l if the surface is concave down at 

the specular point and +j if the surface is concave up at the specular 

point. 

On an actual surface there may be several specular points con- 

tributing to the total scattered field, so it is important to pre- 

serve the phase relationships among them. Phase reference is taken 

at the origin , and an incident wave of unit amplitude is assumed, 

i.e., 

(10) (T.M. case) 

Hz =. ,-ji? - ?r (LE. case) 

where 

(12) E l E = +(-x cos (THI) - H(X) sin (THI)). 
e 

With the aid of the geometry shown in Fig. 4, the scattered far 

field is found from Eqs. (8) and (9), with R = k1 + g2, where 

(13) fi2 = -R - "Ds = - x cos (IHS) - H(X) sin (THs), 

and 

(14) is = cos(THS)i + sin (THs) j 

10 



Fig. 4.-- Far field scattering geometry. 

is the unit vector in the scattering direction. Since R1 >> Rz3 

Eq. (8) becomes2 for the T.M. case 

(15) 
Ez(Rl) = _ ]v f"' E ,jkQM 

1 

where 

(16) Q(x) = x (cos (THI) + cos (THS)) + H(x) (sin (THI) 

+ sin (THS)). 

Similarly, for the T.E. case 

(17) 
,,;(9,1) = i- x' E ,jkQ(x) 

11 
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The total scattered field in the THS direction is the sum of the 

fields scattered by each of the specular points. The numerical 

values of the scattered fields as calculated by the programs of 

Appendix A, and plotted in the various figures of Chapter V are 

denoted by Ez and Hz, and have been normalized with respect to 

the actual fields E!z(~l),Hz(el) by 

(18) =qe 
jky 

I 1 HS,b, ) 

It is clear that Eqs. (15) and (17) 

curvature is infinite at the specular po 

source was assumed at infinity, i.e., i. 

held finite then from Eq. (5) 

fail if the radius of 

int. This is because the 

-f a. If go were to be 

(19) lim P = R. 
rc +- 03 

and the singularity in Eqs. (15) and (17) would not occur. In ad- 

dition to the singularities caused by an infinitely distant source, 

there are a number of other shortcomings of the G.O. approximation. 

Among them are: a failure to account for wedge diffraction effects 

(radius of curvature goes to zero), a failure to account for dif- 

fraction from shadow boundaries into shadowed regions (Ref. [12]), 

a failure to properly predict the scattered fields if the surface 
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features subtend only a few Fresnel zones (Ref. [13]),and finally 

a failure to predict any scattered field if no specular point exists 

on the body. 

Implicit in the geometrical optics technique is the concept of 

shadowing, that is, a specular point cannot contribute to the scat- 

tered field unless it can be seen by both the source and the observer. 

The program developed here can account for shadowing of this type. 

B. Discussion of the Geometrical Optics Program 

For geometrical optics calculations the first order of business 

is the location of the specular points. Figure 5 shows the geometry. 

Y 

I 

Fig. 5. --Geometry for specular point location. 

The surface height profile is described by H(X) and the regions under 

investigation lies between XSTRT (X START) and XSTOP. THI and THS --- 

have already been defined; THN (THETA of the EORMAL) is the angle - 

between the normal (n") to the surface and the positive x axis. 

Clearly 
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(20) THN(x) = a/2 + Tan-' (dH(x)/dx). 

The law of reflection gives (x,H(X)) as a specular point when 

- (21) THS - THN(X ) = THN (X) - THI 

i.e., 

(22) (THS + THI)/2 = THN(X). 

The program calculates the function 

(23) E(X) = (THS + THI)/2 - (1r/2 + Tan-' (dH(X)/dx) 

for many points in the interval (XSTRT, XSTOP) and when this 

function changes sign a specular point has been located. The col- 

lection of points so located is stored in an array XN(J). To save 

running time two searches are made, first a coarse grain search and 

then, in the neighborhood of each specular point, a finer grain pass 

is made. 

The search must satisfy two requirements, First, it must be 

fine enough to locate all specular points; this requires that the 

surface must be sampled often enough to get an adequate description 

of its structure. For example if the surface were described by a 

Fourier series then one would expect that sampling every twentieth 

of the minimum mechanical wavelength would be sufficient. Secondly, 

the specular positions must be located to within a small fraction of 

an electrical wavelength so that the phase relationships among the 

various specular points are correctly maintained. In the light of 
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these considerations a first search might be made at a step size of 

(the minimum mechanical wavelength)/ZO. The fine grain search would 

then be made with a step size of say (h,/20.0) or (1st step size/2.0) 

whichever is the smallest. In the program, the coarse step size is 

called DLTAX (DELTA X) and the fine step size is called DLTAXOO. The --- 

local angle of incidence for each specular point is stored in an 

array ANG(J). This angle is used in the computation of the scat- 

tered field and is shown in Fig. 5. Once a complete pass is made 

over the surface, the scattered fields are computed. It should be 

noted that whenever any one of THI, THS, H(X) is changed, the 

complete pass must be made again. 

The actual program, given in Appendix A, makes the scattered 

field computation for two cases: 

1) all specular points contributing, 

2) scattering from concave up specular points neglected 

when calculating the scattered field. 

The second case, clearly incorrect, was an attempt to see how the 

computed fields would correspond to the results of certain statisti- 

cal theories which neglect the concave up specular points. In the 

program the electric field calculated from the first case is called 

ESCNS (ELECTRIC FIELDS SCATTERED WITH $ SHADOWING) and from the - 

second case ESCDNS (ELECTRIC FIELD SCATTERED FROM CONCAVE EOWN 

POINTS WITH NO SHADOWING). 

Geometrical optics allows shadowing to be taken into account 

without much extra effort. The three types which may occur 

(specular point not illuminated by source, specular point not visible 
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to observer, both) are shown'in Fig. 6. Each point in the array of 

specular points, XN , is examined for inbound shadowing in the 

following way. A line is passed through the specular point XNj, 

H(XNj) with slope tan(TH1). The equation of the line is 

(24) K(X) = Tan(THI)x + (H(XNj) - Tan(TH1) XNj) 

!NElOUND SHADOWING ONLY 

THS 

THI 

OUTBOUND SHADOWING ONLY 

INBOUND AND OUTBOUND SHADOWING 

Fig. 6. --Specular point shadowing. 
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Then x is incremented in the proper direction until one of the 

following occurs. The first possibility is that at some point 

x, YI(x) becomes greater than the maximum value that H(x) can 

attain for any value of x in the interval XSTRT, XSTOP. This 

value of H(x) is called HMAX and must be supplied for each surface 

being considered. If the surface is a sum of sinusoids then HMAX 

is equal to the sum of the individual magnitudes. The second 

possibility is that at some point the value of x is incremented out 

of the interval (XSTRT, XSTOP) being considered. The third and 

final possibility is that at some point x the line YI(x) intersects 

the surface profile H(x). When the first or second case occurs the 

specular point is not shadowed. In the third case the specular 

point is inbound shadowed and for that particular j, XN(j) is set 

equal to a number much larger than XSTOP. This allows XNj to be 

skipped when the contribution from each of the specular points is 

being computed. A very similar test is applied for outbound 

shadowing. 

When both the inbound and the outbound shadowing tests are 

completed the array of specular point positions contains values 

which are either in the range XSTRT < X < XSTOP or XNj >> XSTOP. 

The scattered field is calculated as in the case where shadowing 

is neglected except that when XNj > XSTOP the field from this 

specular point is not put into the sum. The scattered field with 

shadowing accounted for is called ESCWS (ELECTRIC FIELD SCATTERED 

WJTH SHADOWING) and the scattered field calculated with only con- 

cave down non-shadowed specular points contributing is called ESCD. 

17 



C. Using the Geometrical Optics Program 

While the storage requirement is minimal, the running time of 

this program depends largely on the step sizes which have to be 

used during the search for the specular points, and the number of 

scattering angles. This means that as the length of the surface 

increases, the time per pass required to find the specular points 

goes up and the number of passes over the surface also increases, 

since to see detail in the scattered field pattern the scattering 

angle must be examined at a larger number of points (finer grain). 

The hal'f-power beamidth of a uniformly illuminated aperture of 

width XSTOP-XSTRT, 

(25) 
0.88 A, 

beamidth ?' XSTOp _ XSTRT radians 

affords a crude estimate of the fineness of the grain which must 

be taken. The increment in THS should be less than a fifth of this. 

The program has been checked for several cases, two of which 

will now be mentioned. The simplest check was the comparison with 

hand calculations for a surface described by 

(26) H(x) = 50 cos(2ax/800) 

with x in the range (-200,200). This surface has only one specular 

point or none at all depending upon THI and THS. Another check was 

performed for a sinusoidal surface like the one shown in Fig. 7. 

18 



Y 

A.- 
THI 

.~x 
Fig. 7. --Specular points on a sinusoidal surface. 

In this case the specular return comes from a collection of regu- 

larly spaced points which look like a pair of linear arrays of 

point sources. The program found the specular points and cal- 

culated the total scattered field correctly. 
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CHAPTER III 

THE PHYSICAL OPTICS METHOD 

The next complexity of approximation to the scattered fields 

to be considered here is given by the physical optics mathod. 

A. The Physical Optics Approximation 

Physical optics (P.O.), (Ref. [14]), approximates the true 

surface currents on a perfectly conducting body by the currents 

(27) 

2; x i? on the portions of the surface which are 
illuminated 

Ts = 

b on the portions of the surface which are 
shadowed 

h 

where n is the outward normal to the surface and d is the incident 

magnetic field evaluated at the surface. These approximate currents 

are then used in the radiation integral to calculate the scattered 

fields. The P.O. surface current is exact if the scattering body 

is perfectly conducting half space and the incident field is a plane 

wave. As the surface curvature decreases the P.O. currents depart 

more and more from the true currents; as the curvature at some point 

on the surface goes to zero (a wedge), the method fails entirely. Nor 

do the scattered fields predicted by P.O. satisfy the reciprocity 

theorem except for backscattering. Nevertheless,' the P.O. method 

has a significant advantage over G.O. in that the fields remain 

20 



- 

bounded even if the radius of curvature of the surface becomes in- 

finite. Hence the flat facets of a surface can be approximately 

analyzed. 

Whether or not P.O. provides any more useful information than G.O. 

is a question of long standing,and the answer seems to depend upon the 

geometry of the scattering body (Ref. [15]). For the kind of surfaces 

considered here it will appear that P.O. gives a good approximation 

to the scattered fields over a significantly wider range of surface 

characteristics than G.O. It is important to note that in this work 

the far field radiation integral over the physical optics currents is 

evaluated numerically to give the scattered fields. Unlike a number 

of rough surface scattering theories (Ref. [16]), no stationary phase 

approximation to the far field radiation integral is used. It is 

well known (Ref. [17]) that when the stationary phase approximation 

must be made, one obtains the G.O. result and there is then no dif- 

ference between the two approaches. 

The far-zone scattered fields will now be calculated using the 

physical optics currents. In the T.M. case, (see Fig. 8) the 

incident electric field is a z polarized plane wave of unit magnitude 

and the incident magnetic field is 

(28) m-’ = e +jk(xcos (THI)+H(x)sin(THI)) 
[-si n(THI)i + cos (THI)“y]/q 

where I-, is the impedance of free space. Using Ref. [18] and the fact 

that the tangential electric field vanishes on the surface, the 

scattered electric field is given by 

21 



Fig. 8.-- Geometry for T.M. physical optics. 

(29) 
jw O3 

ES (r,)= - -$ i I (n"xti) e 

-jkIr-roI 

dz dc -- 

cill-m 
b-r01 

where r. is the position vector to the observation point, r is the 

position vector of a point on the surface and n" is the unit outward 

normal to the surface. The notation till indicates that the inte- 

gration is to be carried out only over those portions of the contour 

which are optically illuminated. 

Since d and n^ are independent of z one can show, by using an 

appropriate integral representation for the Hankel function (Ref. 

[78]), that the scattered field is 

22 



(30) F(po) = - !p J 
. 

(2) (2n^xp) Ho (kl;-;ol) dc 

'ill 

where all variables are confined to the x,y plane 

(31) p. = x0 ;t + y, ; 

(32) ;= xi+yi 

and HA2) (x) is the Hankel function of the second kind and zero order. 

Using the large argument approximation for Ho (2)(x), the far field 

scattered electric field becomes 

(33) 
-jklpol 

E:(Fo) = - ($-)li2 ie 
ji e 

n-i PO 
J sin(THI-tan-'(h)) 

'ill 

#Q(x) 
e \1 l+(k)2 dx 

where H(x) describes the surface height profile, 

(34) Ii = g , 

and Q(x) is given by Eq. (16). As before, the factor 

e 
-jk)~oI 
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has been suppressed in both the computed and reported values of the 

scattered electric field, so that the actual field Ez(Fo) is related 

to the print out value Ez by 

(35) Ez = Ez(Fo) im e 
+jk ITo I 

When the incident magnetic field is z directed (transverse 

electric case) it is convenient to work with the scattered magnetic 

field. The latter is found from Ref. [78] 

al 

(36) 47r P($) = 2 J J (tixl? > x 0 e 

-jklr-rol 

dz dc 

'ill -m 
IF-7 1 0 

where Ki is the incident magnetic field (see Fig. 9). The two 

dimensional far field scattering becomes from Eq. (36) 

Fig. 9. --Geometry for T.E. physical optics. 
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(37) I sin(t%(n) - THS)e 
jkQ (X> 

'ill 

Again, the factor 

e 
-jklFol 

is suppressed in the programs of Appendix A, so that the plotted 

or tabulated field strengths, Hz, are related to the true fields, 

H;(Po) by 

(38) Hz = H’,(p,) ./m e jk IF0 I . 

There are two further considerations that may be discussed at 

this time. For bistatic scattering it may happen that not all of 

the currents set up on the surface by the incident field are optically 

visible to the observer (see Fig. 10). In the physical optics pro- 

grams developed here no account was taken of this possibility. 

Obviously such considerations do not arise for backscattering. 

So far, in this chapter a perfectly conducting surface has 

been assumed. Physical optics can be generalized to treat dielectric 

surfaces by using a pair of equivalent electric and magnetic surface 
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ILLUMINATED UT NOT VISIBLE 
TO OBSERVE 

Fig. 10. --Optically invisible surface currents. 

currents obtained from the fields of a plane wave incident on a 

dielectric half space (Ref. [19]). Since two integrations would 

be required to compute the scattered fields, it would seem that the 

running time should nearly double, but very little extra storage space 

would be required. 

B. Discussion of the Physical Optics Computer Programs 

For either polarization the physical optics program is divided 

into two parts. The first, and by far the most difficult, finds 

the shadow boundaries on the surface, since the integrations are to 

be perfomed only over the illuminated section of the contour. The 

second part performs the necessary integration to calculate the 

scattered far fields. 
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The program opens by considering the function H(-X) which des- 

cribes the surface between the defined endpoints ALEP (Left End Point) 

and REP @ight End Point). The search for shadow boundaries begins 

at REP by determining whether or not the right endpoint casts a 

shadow on the surface and proceeds from right to left (see Fig. 11). 

ALEP ALEP 

END PC’INT CASTS SHADOW ONTO 
THE SURFACE i.e. TAN-Its ) >THl 

I REP 

END POINT DOES NOT CAST A 
SHADOW ONTO THE SURFACE 

I.e. TAN-I(: ) < THI 
I REP 

Fig. 11. --Shadowing at the right end point. 

If THI (the incidence angle-required to be less than 90") is greater 

than 80" it is assumed that no shadowing occurs. The starting point 

of the illuminated zone (either REP or A of Fig. 11) is stored in the 

first position of an array called SX (Shadow boundaries & co- 

o.rdinate) . The value of x is decremented until either a point on 

the surface is reached where the tangent-slope condition 

(39) $ = tan(TH1) 

is satisfied, at which point a shadow zone begins, or x becomes less 

than ALEP, in which case the second entry in SX is ALEP. On the 

other hand if Eq.. (39) is satisfied for some x between SXl and ALEP 

then this value of x is stored in SX,, a line with slope tan(TH1) 
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is passed thru the point, and its intersection (if any) with H(x) is 

found. If there are no such intersections, then all of the surface 

to the left of the point is shadowed. If an intersection does exist 

then the search for a point where the tangent-slope condition is 

satisfied begins again. This process continues until x is decre- 

mented past ALEP. The array SX thus stores the positions of 

points with an illuminated zone on their left in oddly subscripted 

locations and the points with an illuminated zone on their right i,n 

evenly subscripted locations (see Fig. 12). The size of the decrement 

used to locate the boundaries should be small enough to catch the 

surface features, and to locate the ends of the shadow zones within 

a fraction of a wavelength. 

“8 

Fig. 12.-- 111 ustration of shadowed and illuminated zones. 

The integration over the illuminated sections of the surface 

to find the scattered fields is performed in a subroutine called 

BINT(XX,YY) @istati,c radiation Integral) the arguments of which are 

the initial and final coordinates of one of the illuminated zones in 
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sx(J). The integration is repeated for each zone until all illum- 

‘inated zones have been considered. The total scattered field (called 

S) for a particular THI and TNS is the sum of the zone fields. 

Except for normalization, the programs for the two polarizations 

differ only in the subroutine called FTBI(X) (Function 10 Be 

ntegrated); the factor sin(THI-tan-' (A)) for the T.M. polarization 

is replaced in the T.E. case by sin(THS-tan -' (fi)). The actual 

integration over the physical optics surface currents is performed by 

a five point Gaussian integration. In choosing the interval on the x 

axis over which the five point Gaussian integration is to be applied, 

two conditions must be met. The first is that the number of sample 

points along the contour must exceed five per wavelength. Presuming 

surface slopes of less than 60", this means that ten sample points 

should be taken per electrical wavelength on the x axis. The second 

condition is that, if the surface were to be represented by a Fourier 

series, there should be 8-10 sample points per minimum mechanical 

wavelength along the x axis. Presuming,for example,that the first of 

the above conditions is the most stringent, each section of illumin- 

ated surface (i.e., between x = SX. 
J+l 

and x = SX j, j odd) would 

be divided into half electrical wavelength intervals plus a fractional 

interval, and five point Gaussian integration would be applied to each 

of the half electrical wavelength intervals, and to the last, 

fractional,interval . 
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C. Comments on the Use of the Physical Optics Programs 

.As in the case of G.O., the storage requirements are minimal, 

while running time depends upon the length of the surface and number 

of incidence and scattering angles which are investigated. For each 

THI the search for illunination boundaries is performed only once, 

but the integration must be repeated for each scattering angle con- 

sidered. For many of the scattered field computations considered here 

the angle of incidence was held fixed and the scattering angle was 

varied between 0 and 180". For such cases the time required to find 

the illuminated zones on the surface is small compared to the time 

required to do the integrations for the scattered field. 

As the surface length is increased the time required goes up 

rapidly since the integration for each scattering angle takes longer 

and THS must be incremented with a finer grain to get an accurate 

reproduction of the structure in the scattered field pattern. The 

size of the increment for THS has already been discussed in connection 

with the geometrical optics program. For example, the time required 

to run a surface 16 electrical wavelengths long, with THS incre- 

mented by 0.5" from 0 to 180", was 1.8 min. By comparison, 21 min. 

were required for a surface 100 electrical wavelengths long with 

increments in THS of 0.25" from 30" to 170", i.e., 560 values of THS. 

The value of the increment in the last case appears to'have been 

just adequate to see the detail in the pattern. 

Among the checks of the P.O. program is a.computation for a flat 

strip with no tapering of the illumination, for which a closed form 
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physical optics result is easily obtained. The agreement was 

excellent for both polarizations. In Chapter V, P.O. will be compared 

with the other two methods of computing the scattered fields. Special 

attention will be given to the range of surface parameters over which 

the P.O. approximation is vaJ.id. 
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CHAPTER IV 

THE INTEGRAL EQUATION METHOD 

In this chpater the third and most accurate method for calcu- 

lating the scattering will be examined. Here the scattered field 

is obtained from the exact surface current, which is found from a 

moment method solution of an integral equation (see, e.g., Refs. [20], 

[21]). There are no restrictions on the curvature or form of the 

surface, but because of machine storage limitations only surfaces of 

rather short length (30 x, to 60 x~) can be handled. 

A. Moment Methods 

This section contains a brief introduction to the method of 

moments. For more information and other applications of this method 

refer to Ref. [22], on which the following is based. 

The objective of the moment method is to determine, numerically, 

the function F which is a solution of the inhomogeneous operator 

equation 

(40) C(F) = G 

where C( ) is a given linear operator and G is a given function. 

Suppose that F can be expanded in a set of basis functions bn 

(41) F = F Fn bn 
n=l 
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where Fn is the n-th unknown coefficient of the expansion of F in 

that basis. Note that if a computer is to be used, N will have to 

be finite. Using the linearity property of C 

(42) C(F) = C F, C(b,) = G. 

To convert the operator equation to a set of simultaneous equations 

an inner product, a scalar, <h,g> is defined for functions h,g and s 

and scalars II, B such that 

(43) <h,g> = <g,h> 

(44) <ah + Bg,s> = a<h,s> + B<g,s> 

(45) <h,h*> = 0,if h - 0. 

Let iIWiI be a set of weighting functions and take the inner 

product of both sides of Eq. (42) with Wm. Using the properties of 

the inner product, the original operator equation is converted to 

(46) C(b,)> Fn = <Wm, G> 

which is exactly the familiar matrix equation 

(47) ! n , C, f, = Gm 
= 

where 
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(48) 

and 

(49) 

%l 
= <w m, CO+,)> 

Gm m,G>- = <w 

The solution, Fi , to this system of equations can be found by any 

one of several methods, two of which are discussed in Appendix B. 

The solution may be exact or approximate depending upon N, bn, and 

'n' 

For the integral equations to be solved here, the current is 

expanded in a basis of non-overlapping pulses of unit amplitude, 

while the weighting functions are chosen to be delta functions whose 

singularities occur at the centers of the pulses. The inner product 

is chosen to be 

(50) <g,h> = g h dc 

C 

where c is the contour of the scattering surface. This choice of 

basis and weight functions amounts to enforcing the integral equation 

at the centerpoints of the pulses, and is usually called "point- 

matching." For the operator equations considered in this work the 

system of simultaneous equations which result from point matching are 

well conditioned, i.e., suitable for computer solution (see Ref. [23]). 
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B. Integral Equat 

In order to apply the point matching technique to the rough 

surface scattering problem, it is first necessary to find an 

appropriate linear operator. For this purpose the integral equation 

relating the unknown surface current to the known incident field 

has been chosen. 

The incident electric field is ; directed, the incident magnetic 

field is transverse (T.M. polarization) to the generators of the 

surface with contour c as shown in Fig. 13. If the total electric 

Y 

Fig. 13. --Geometry for T.M. scattering. 

field is written as the sum of the incident field $ and the scattered 

field Es, the boundary condition 

(51) 9 + p =0 

must be satisfied on c. The scattered field is given in terms of 

the ; directed surface currents, Jz(p'), by (see Ref. [24]) 
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(52) E;(;;)=- p ;,(;l) H;2)(kl,+() da' 
i 

-- 

C 

(2) for the two dimensional case, where Ho is the Hankel function of 

the second kind and order zero, n is the impedance of free space 

and k is the wave number, 2x/~,. Combining this with the boundary 

condition (Eq. (51)) gives the integral equation for the unknown 

surface current 

(53) * E;(F) = 3 Jz(;‘) HA2) --I (k/p-p 1) da' 
C 

where p, p' are now both confined to the contour c. Equation (53) 

can now be identified with Eq. (42) as follows: 

E:(p) corresponds to G, 

Jz(pl) corresponds to F, 

and the operator 

( ) HA2)(kI--' p-p I) da' corresponds to C( ). 

C 

As it stands the integral equation requires the consideration of 

the current on the entire boundary c; if the entire contour of a 

two dimensional earth were to be included, the storage requirements 

for a mxnent method solution would be astronomical. It seems reason- 

able to assume that for standard radar wavelengths and with directive 

antennas, the surface current is appreciable over only a very small 
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portion of this contour. Thus it will be presumed that the surface 

current outside a certain illuminated region, which extends from -EP 

(Ed Point) to +EP, can be neglected (see Fig. 14). To simulate the 

Y t (XI- THE ILLUMINATION 
TAPERING 

---m- /’ 
--- 

-F 
A---- 

---- 

NEGLECTED PORTION OF THE CONTOUR 

Fig. 14.-- Modification of true contour to 
a shortened contour. 

illumination of the surface by a directive antenna, an amplitude 

taper t(x) is introduced* in the following way. The amplitude of 

the incident field is taken as unity to within two electrical wave- 

lengths from each end point. Between one and two electrical wave- 

lengths from each end the field is sinusoidally tapered to zero. 

Over the last wavelength the incident field is taken to be zero. 

The incident field with tapering included, E:(F), is thus 

*The use of amplitude tapering on a plane wave amounts to independently 
specifying the amplitude and phase, which makes such a field differ 
from a Maxwellian field. Changing the specification of the incident 
field would require no fundamental change in the methods and programs 
employed. 

37 



(54) 

- +jF(cos(THI) x + sin(TH1) H(x)) 

E; i;> = t(x) ,-R-p = t(x) e e 

The neglect of the surface currents beyond the endpoints (+EP) 

has been checked by lengthening the dead zone at each end of the region 

under consideration and noting the change in the surface currents and 

scattered fields. The results of this test are presented in Section 

D of the chapter and do indeed justify the assumption of negligible 

currents beyond the illuminated region. 

Although tapering of the incident field is not needed in the 

P.O. or G.O. formulations, it has usually been included in the 

calculations so that the results of all the techniques can be fairly 

compared. The only cases in which tapering is not used are special 

tests of the individual methods. 

The integral equation becomes 

(55) 

EP 

E$-) = 9 Jz(2) HA') --I (klp-p 1) da' 

with p, p' both confined to the section of the contour for which 

-EP<x<EP. -- 

The method of moments can now be applied. The surface is 

divided into segments of equal arclength DC, and the current, Jz, is 

expanded in a basis of non-overlapping pulse functions as 
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- 

(56) J$‘) = ; F,., P% (P’-i$ 
n=l 

where F),., is the position vector of the midpoint of the n-th segment 

of the surface, Fn is a complex number representing the magnitude 

and phase of the current over the n-th segment of the contour, and 

the n-th basis function Pq (p'-Fn) is a pulse of unit amplitude and 

width DC along the contour c. Thus the actual surface current is 

to be approximated as shown in Fig. 15. For a reasonable represen- 

tation of the surface current, the pulse width, DC, must be a fraction 

0 S-THE ARCLENGTH 

Fig. 15. --Approximation of the surface current. 

of an electrical wavelength; x,/l0 has been found to be satisfactory. 

The shape of the surface must also be considered in choosing DC, 

since the surface must be accurately modeled by strips of width DC. 

Hence, if A, is the shortest mechanical wavelength in the Fourier 

spectrum of the surface, then DC should also satisfy DC 5 +/lo. 

Of course the more restrictive of the two conditions should be met. 

Applying the method of Section A of this chapter to Eq. (55) 
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(57) 

EP 
Ef(;;) = g ! 

n=l 
Fn PT" (,I-,,) H;2)(kl;-;'l) da' 

EP 
kn 

N 
=- 

4 1 n=l Fn P% (;I-; ) H(!)(kI;-p' j) da' 
n 0 

kn 
N 

=- 
4 1 n=l Fn HL2)(k/--' P-P I> da' 

DCn 

where f means 
DCn 

"integrate over the n-th segment of the contour". 

Taking the inner product of Eq. (57) with the weighting functions, 

so 

which is the same as the NXN matrix form 

(60) [Cl CFI = [El 

where 

(61) Cmn = 9 H;2)(kI;m-;' I) da', 

'n 
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(62) Em = E; (p,) 

and Fn is-the unknown amplitude and phase of the current in the 

n-th contour segment. Once Eq. (60) is solved, the surface current 

is known. 

The far field scattering from the surface is found from the 

surface currents and Eq. (52) to be 

(63) $1;;) = F& e 
k? ,-jklpl EP 

I 
Jz(;l) ejk(?.p) da' 

-EP 

.5Tr 
Jq ,-jk IpI 

a 6 

.5Tr 
G krl -jk IpI N 
=- 

4 
eJT e 

m 

DC 1 F, e jk(i&) . 

i- 
n=l 

The output of the computer programs is a normalized scattered field, 

E;, which is related to the true scattered field, Eq. (63), by 

(64) Ez = E:(p) fi ejkipl . 

C. Discussion of the Computer Program for Transverse _--- 
Magnetic Polarization_ 

Several different programs were written using the above formu- 

lation of the problem. In the first part of this section the common 
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features of the programs will be discussed and later their dif- 

ferences and relative merits. 

All of the T.M.I.E. (transverse magnetic integral eq'uation) 

programs require that the surface have its arclength subdivided into 

segments of width DC, and have the endpoints and midpoints of these 

segments stored. The surface breakdown is shown in Fig. 16. The 

Y 

Fig. 16. --Breakdown of surface into segments 
of length DC. 

j-th segment lies between Xi and x j+l, while the j-th midpoint 

(XMj) is such that Xj<XMj<Xj+,. The surface is segmented by using 

the arclength formula and rectangular rule integration. After the 

surface subdivision is completed the programs differ somewhat 

depending on how the matrix elements are calculated. 

Once the matrix elements have been calculated the first part 

of a two part solution of the system of equations begins. In all 

of the solution methods used the matrix is factored into an upper 
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and a lower triangular matrix, see Appendix B. The matrix elements 

depend only upon the surface profile H(x), and are independent 

of the incident field, THI or THS so that the factorization need be 

done only once for a given profile. In the second part of the 

solution the array [F] is loaded with the tapered incident electric 

field at each of the XMj; the back substitutions (described in 

Appendix B) are then carried out to find the current coefficients, 

Fn' The scattered fields are then calculated from Eqs. (63) and 

(64) - 

The differences in the several programs for the T.M.I.E. lie 

mainly in the calculation of the matrix elements (Eq. (61)). The 

simplest way to evaluate Eq. (61) for m#n is to presume that 

HA2)(kl- pm-;'I) is constant over the n-th interval; then 

(65) Cm 2 p ,..,(2) o kI;m-;nl) DC 

If m=n, a small argument approximation to Ho t2) (x) is made and 

integrated analytically, giving 

(66) Cm 'ii 9 DC H;2+g) 

where e is the base of the natural logarithm. In practice the 

matrix elements are simply the Hankel function and the 3 l DC is 

accounted for when the fields are printed out. This approximation 

results in a symnetric matrix which, if efficiently stored, requires .. 
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only N(N+l)/2 storage locations. The length of surface which can be 

treated is increased by a factor of flover that which can be treated 

by methods requiring the storage of the full matrix. Appendix B 

gives the details of the storage and solution methods. 

In another program, 5 point Gaussian integration, Ref. [25], is 

used to evaluate the Cmn for tin, and when m=n Eq. (66) is used. 

The matrix is no longer symmetric so all N2 terms must be stored. 

A third program was written which takes advantage of the fact 

that the currents are continuous on the surface except at sharp 

edges (Ref. [26]). Since the column vector [F] of Eq. (60) represents 

the current, continuity requires that adjacent entries be similar. 

Hence it is possible to interpolate. The currents at the even 

numbered stations may be approximated in terms of the adjacent 

currents by 

(67) F2n = (F2n-J + F2n+J )/2s 

For simplicity, the original matrix will be assumed to be of odd 

order 

(68) N = 2 kk + 1. 

If, for example, N=7 then, using Eq. (67) in Eq. (60), one obtains 

the reduced system 
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c12 c14 '16 E, = C,,F, + $F,+F3) + C,3F3 + -$F3+F5) + C,5F5 + T(F5+F7) + C17F7 

'32 (F +F ) C34 56 
E3=C31F1+7 1 3 + C33F3 + T(F3+F5) + C35F5 + ~(~5+F7) + c37F7 

(69) 
'52 c54 '56 E5 = C5,F, + T(F,+F3) + C53F3 + -$F3+F5) + C55F5 + +F5+F7) + c57F7 

E7=C71F1+ 2 $F,+F,) + i73F3 + +F3+F5) + C75F5 C74 '76 
+ -+F5+F7) + C77F7 

where only odd rows have been retained, i.e., F2, F4, F6 are considered 

known. Collecting terms, 

'K2 
(70) Ek = (ck, + 2 

'k2 'k4 'k4 'k6 -) F, + (7 + Ck.3 + +F3 + (7 + 'k5 + +F5 

+ ($ + ck7)F7 

for k = 1,3,5,7, 

and the number of unknowns has been reduced to kk. Since matrix 

manipulations are made using regular subscripts in the machine, it is 

very desirable to relabel the coefficients in the reduced system as 

follows 

(71) CAi = '(2m-l);(2i-2) + c '(2m-1),(2i) 
(2m-1),(2i-1) + 2 

for the "interior" columns where m=l,2,3;**,kk and i=2,3,..*,kk-1. 

The first and last columns of the reduced matrix are 

(72) ‘t!Q = ‘(2m-1) ,l + 
'(2m;l),2 m=1,2,3,*..,kk 
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(73) $,,kk = '(2m-1),(2kk-2) 
2 + '(2m-1),(2kk-1). 

The Cij are the elements of the original NXN matrix while C!. are ele- 
1J 

ments of the kkXkk reduced matrix. In the computer program the Cij are 

called C.. C 
1J 

while the original matrix elements ij are labeled COij. 

When using the interpolation technique the surface is subdivided 

as usual except that, if an even number of segments is produced, then 

the last segment is dropped to make N odd. The system of equations 

is now 

(74) C'XFPI = [El 

where [E] is filled with the incident electric field at the midpoints 

of the segments with odd subscripts and the matrix [C] is loaded 

according to Eqs. (71), (72) and (73). After the solution has been 

found the column vector FP(J) contains the currents on the segments 

with odd subscripts. The complete set of surface currents [F] is 

obtained by interpolation with 

(75) 
F2j-l = FPj for j = 1,2,.**,kk 

F2j = (FPj + FP j+l)/2 for j = l,Z,*.*,kk-1. 

Once the column vector [F] has been filled in, the calculation of the 

scattered field proceeds as in Eqs. (63) and (64). .The interpolation 

technique has been applied to the program which uses Gaussian 

integration to calculate the matrix elements. 
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The big advantage of interpolation is the dramatic increase in 

the size of the surface which can be handled for a given storage 

capacity. If the machine can handle an arclength of L using the 

non-symmetric, non-interpolation program then the symmetric matrix 

program can handle an arclength ofFL while the interpolation 

technique will do an arclength of 2 L with the same amount of storage. 

The interpolation program still requires that all of the original 

matrix elements be evaluated to fill in the reduced matrix (Eqs. (71), 

(72) and (73)). 

The integral equation programs require large amounts of storage 

and fairly long running times compared to either the G.O. or P.O. 

programs. The IBM 360-75 used here can hold a 275 x 275 complex 

matrix in high speed storage so that surfaces of length 27 x,, or 54 x, 

if interpolation is used, can be handled with DC = xe/lO. As for the 

running time, consider the 16 X, long surface mentioned in Chapter III 

Section C, which took 1.8 minutes using the P.O. program. The scat- 

tering from the same surface was computed by the three T.M. integral 

equation methods. The symmetric formulation required 2.8 minutes and 

storage for 14,000 complex numbers. The program which uses Gaussian 

integration to evaluate the matrix coefficients required 5.0 minutes 

and twice as much storage,while the interpolation program required 

3.3 minutes and storage for 7,000 complex numbers. Where speed is 

important the use of the symmetric I.E. program is indicated, while 

long surfaces are best handled by the two point interpolation program. 



D. Tests of the Transverse Magnetic Integral 

Equation Programs 

The shortened contour assumption is one of the most crucial 

in the construction of the integral equation programs (Fig. 14). The 

obvious way to test it is to extend the non-i 17 uminated portion of the 

surface, which amounts to lengthening the contour without changing 

the non-zero portion of the illumination (see Fig. 17). If the 

approximation is indeed valid, then the current in the non-illuminated 

sections should fall off rapidly and the scattered fields should 'be 

the same in both cases. The assumption was tested on a sinusoidal 

surface, using the program with Gaussian integration. When regular 

tapering was used, the current at the outer ends of the dead zones 

was down by a factor of 30 from that in the central part of the 

contour. When the extended taper was used, the current at the new 

outer ends was down by a factor of 100. The scattered fields for the 

two cases are displayed in Fig. 18 and show clearly that the dif- 

ferences are insignificant. Thus it may be concluded that tapering 

of the incident field does permit the replacement of the true contour 

by the shortened contour. 

The wedge, Fig. 19, for which asymptotic solutions are available, 

provides a test case for the integral equation programs. The angle of 

incidence, THI, was chosen to be 90". In order to emphasize the 

corner contribution, a Gaussian tapering of the incident field was 

used, i.e., 

(76) t(X) = e 
-(x/2xe12 

. . 
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Fig. 19. --Geometry for wedge test. 

The surface current, Fig. 20, shows the expected singularity at the 

corner. The computed scattered field is plotted in Fig. 21 along with 

the scattered field calculated independently using the geometrical 

theory of diffraction, Ref. [27]. Again, the agreement is seen to 

be excellent. All three T.M. integral equation programs produced 

essentially identical scattered fields. In a test of the self 

consistency of the three programs the scattering from the surface 

H(X) = 5 sin s x was computed. The differences in the scattered 

fields are very minor and would not be perceptible on the scale of, 

e.g., Fig. 18. 

In the light of the above tests, there seems to be no reason 

to prefer one T.M. integral equation program over the other two if 

numerical accuracy is the only criterion. If the running time or 

storage requirements must be considered then the preferred formulation 

can be determined by the corrpnents at the end of Section C of this 

Chapter. 
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Fig. 20. --Computed IJ, 1 

I--- 

r 

on a wedge, T.M. case. 

i 

L 

INTEGRAL EQUATION 

& SIMPLE DIFFRACTION _ 

0.5 -- 

/ I 
Oo I5 

I I I I I I I I I I I 
30 45 60 75 90 IO5 120 I35 150~ 5180 

THS 

Fig. 2l.-- Wedge scattered fields, T.M. case 
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E. Integral Equation for Transverse 

Electric Polarization 
. 

For the T.E. polarization, the incident magnetic field ? is 

z directed and it will be convenient to work with.the integral 

equation for the magnetic field given (Ref. [28]) by 

(77) 

-jk IF-? 1 

Js (3 = 2 ti xi+(F) + &i(F) x s,(rl) XV' e 

S 

. 
where F, r' are both position vectors of points on the surface, p(r) 

is the incident magnetic field, 5,(F) is the surface current, G is the 

outward normal to the surface and 
I 

indicates that the region about 

-1 r = r is to be deleted from the i&egration. See Fig. 22. 

T,? BOTH ARE POSITION VECTORS T,? BOTH ARE POSITION VECTORS 
OF POINTS ON THE SURFACE s OF POINTS ON THE SURFACE s 

Fig. 22. --Three dirrensional geometry for 
T.E. integral equation. 

The two dimensional integral equation can be obtained by con- 

sidering an infinitely long cylinder as shown in Fig. 23. When the 

incidence direction lies in the x,y plane the fields and surface 

current have no z dependence so that Eq. (77) can be reduced to 
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(78) 

p, p’ BOTH LIE IN 

Fig. 23. --Two dimensional geometry for 
T.E. integral equation. 

X,Y PLANE 

-- 
H1(2)(klp-01i) dc' 

A -- -- 
where (p-p') is the unit vector in the p-p' direction and H, (2+x) 

is the Hankel function of the second kind and order 1. 

Just as in the T.M. case, tapering is introduced to account 

for the directional properties of radar antennas, and to limit the 

size of the system of linear equations which will result from 

Eq. (78). One may now assume that the surface currents are zero 

except near the illuminated region and the closed contour can then 
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be replaced by the open contour of Fig. 24. For this polarization 

the current flows transverse to ; along the surface so 

(79) 

Fig. 24. --Open contour. 

J;(;‘) = (; x i-i (p’)) Js(;‘) = i(,l> Js (p’) 

where ?(,I) and n^(p') are the unit tangent vector and the unit normal 

vector to the surface, as shown in Fig. 24. ?(,I) is given in terms 

of the profile, H(x), by 

(80) 

where i has the meaning assigned by Eq. (34). Using 

(81) dc' = (1 + (f~(x'))~)"~ dx' 
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and Eqs. (78) and (79) with the tapered incident field 

(82) H; 6) = t(x) e 
-jEi l ; 

the integral equation becomes 

(83) -t(x) e 
jiFi -p Js(P) jk 

=- +- 
EP J,(;')H1(')(kl;-p'I) 

2 4 4 J 

-EP (x-x')~+(H(x)-H(x'))~ 

*[(H(X)-H(x'))-fi(x)(x-x')],dx' 

where the integration over x' excludes a small region in the contour 

about the point described by p. 

The method of moments is applied to Eqs. (83) just as in the 

T.M. case. the current is expanded in a basis of non-overlapping 

pulse functions of width DC, delta functions are used as weighting 

functions and the scalar product is the same as in the T.M. case. 

The current is thus represented by 

(84) Js6’) = ! 

n=l 
Fn P% (;‘-i$ 

where, p', p n lie on the contour c and &, is the position vector of 

the midpoint of the n-th segment, the F,'s are the unknown expansion 

coefficients and the pulse functions PF (p'-pn) have been described 

in connection with the T.M. case. Placing this current in Eq. (83), 

taking the scalar product of both sides with the tieighting functions 

and using the non-overlapping property of the basis functions results 

in 
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(85) 4x,) e 
-jci.-Frn Fm 

=- + 
2 

jk "c F, 

EP 

4 n=l 
P2 (;'-pn)H(;) (k ]p,-;' 1) 

[(~(~,)-H(~‘))-k(x~)(x~-x’)l dxl 
. r n 

Since it is necessary to avoid ;;-' = pm in the integration of Eq. (85), 

the summation will be forced to skip n=m giving as a system of 

equations 

4x,) e 
- j$ -pm = 

F 'mn Fn n=l 

where 

: if m=n 

(87) C,,,, = 

i 

yn+l 
p 

i 
H1(2) (k Ip,-p' 1) 

[tHbm)-H(x' ) )-h,) bm-x' >I dx, 

5-r (x,-~1)~ + (H(X,)-H(x’))~ 

if mfn 

and )$l+” x, are the upper and lower x coordinates of the endpoints 

of the n-th surface segment respectively. 
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Once Eq. (86) is solved for the coefficients of the surface 

current, Fm, the scattered field may be found from Ref. [I81 

038) I 

-jklr-7' I 

P(F) = &- Js(F’) x ol e-- ds'. 

S 
1 r-r'1 

Specializing this to the far field scattering from an infinite 

cylinder and using the fact that J,(p) is independent of z and 

non zero only over a portion of the cylinder (see Fig. 25). 

/ 
/ 

Y / / 

/I 

Fig. 25. --Geometry for calculation of far 
field scattering, T.E. case. 

(89 > 
-jklPI . .37~ EP 

H;(p) = e J e Ja-- 

m 

2 
i- I 

J (pl) Jsin(THS)-h(x')cos(THS] 
S 

-P Jm 

,jk(x'cos(THS)+H(x')sin(THS)) dc' 
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Substituting Eq. (84) whose coefficients are now known into Eq. (89) 

and assuming that the integrand is nearly constant over a surface 

segment of length DC, 

.3lT 
,‘JT- -jk IJ 

H;(p) = - DC e 
2K Ir 

! F 
n=l 

n COS(THS-THN(xM~)) 

P 

. e 
jk(XMncos(T~~)+H(~Mn)sin(T~~)) 

where THN(x) (LHETA NORMAL) is given by 

(9’ 1 THN(x) = (~/2) + tan-' (H(x)) 

as shown in Fig. 25. The computed and plotted value of the scattered 

field, Hz, is given by 

(92) 

F. Discussion of the Computer Program for the 

Transverse Electric Polarization 

The programs for the T.E. polarization are very similar to those 

for the T.M. polarization. As in the T.M. case the contour is broken 

up into segments of equal length DC. The same notation is used for 

the endpoints (x) and midpoints (XM) of the segments. (Fig. 16). The 

T.E. and T.M. programs differ mainly in the values of the elements 

of the matrix [Cl, and in the driving side of the system of equations. 
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Also, for the integral equation used, the matrix is non-symmetric no 

matter how the coefficients are evaluated. Once again the system of 

equations, (Eq. (86)), is solved in such a way that different 

scattering and incidence angles do not require a completely new 

solution. Only the back substitution portion need be repeated (see 

Appendix B). 

Several different programs have been written for the T.E. case, 

the major difference between them being the method used to evaluate 

the coefficients (Eq. (87)). The simplest way is to assume that 

the integrand is constant over the strip width so that 

(93) 

[(H(xM,)-H(XM~))-NXM~) 

(xM~-XM,.,)] if m#n. 

In practice, only the five point Gaussian integration was used to 

evaluate the off diagonal elements of [Cl, since it did not require 

much more running time than the simpler method. However, the inter- 

polation technique retains all of its advantages and goes exactly as 

in the T.M. case with the C' ij given by Eqs. (71), (72), and (73). 

Thus surface lengths of 27~~ (or 54h, with interpolation) can be 

handled. As an example of the running times required, consider again 

the surface of length 16he mentioned in Chapter 3 Section C. The 

T.E. physical optics program required 1.8 minutes while an equivalent 

run using the T.E. integral equation program required 5.0 minutes. 
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The interpolation program for this polarization took 3.5 minutes. 

Thus the interpolation program is superior to the non-interpolation 

program both with respect to storage requirement and running time. 

G. Tests of the Transverse Electric Integral 

Equation Programs 

The shortened contour assumption plays the same role and is 

tested in the same way in the T.E. integral equation programs as 

in the T.M. case. The contour is extended as shown in Fig. 17. 

When the regular tapering was used, the current at the outer ends of 

the dead zones was down by a factor of 70 from that in the central 

portion of the contour. When the extended surface was considered the 

current at the new outer ends was down by slightly more. The nearly 

identical scattered fields for the two cases are shown in Fig. 26. 

The wedge provides a test case for which an independent result 

is available. The test geometry is as shown in Fig. 19 except that 

here the incident magnetic field is parallel to the comer of the 

wedge. Gaussian tapering of the incident field, Eq. (76), is used. 

In contrast to the current singularity in the T.M. case, the surface 

2/3 current in the T.E. case, Fig. 27, shows the expected r behavior 

at the corner. The excellent agreement between the scattered fields 

calculated by the integral equation method and the fields obtained 

from the, geometrical theory of diffraction, Ref. [27], is illustrated 

in Fig. 28. Both the non-interpolation and the interpolation T.E. 

integral equation programs gave the same result in this test. 
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Fig. 27. --Computed lJsI near corner of wedge, T.E. case. 
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Fig. 28. --Wedge scattered fields, T.E. case. 
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The consistency of the two T.E. integral equation programs was 

checked on a surface with a height profile H(x) = 5 sin(2nx/200). The 

results were nearly identical. 

The above tests indicate that so far as numerical accuracy 

is concerned the non-interpolation and interpolation T.E. integral 

equation programs do not differ. The interpolation program is pre- 

ferred however because of the savings in storage. 
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CHAPTER V 

APPLICATIONS 

In this chapter the previously developed computer programs will 

be used to check the applicability of the geometrical optics, physical 

optics and perturbation approximations to the calculation of the 

scattering from non-uniform surfaces. The integral equation programs, 

which are believed to be exact, are used as standards. 

The first surface to be considered has been especially chosen 

so that it fulfills the requirements necessary in order that physical 

and geometrical optics both give a valid approximation to the true 

scattered fields. The surface, a single half-cycle of a sine wave, 

has a profile H(X) = 50 COS(~-ITX/~OO) with x between 200.0 cm and 

-200.0 cm, and clearly has but one specular point. The incident field 

is tapered, and has an electrical wavelength of 25 cm. Unless other- 

wise noted, these conventions have been used throughout. The criteria 

for the successful application of G.O. and P.O. are met by this profile 

since the minimum radius of curvature is 12.8 A, and, having a maximum 

height of two x,, there are several Fresnel zones on the surface. The 

scattered fields predicted by the G.O., P.O. and I.E. programs are shown 

in Figs. 29 and 30 for the T.M. and T.E. polarizations respectively. 
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It is apparent that all methods give nearly the same result for 

THS between 87" and 155". No scattered fields are predicted by G.O. 

for THS outside the range 78" and 163" since the normals to the surface 

have a limited range of directions as illustrated in Fig. 31. The 

Y 

NO GEOMETRICAL 
SCATTERED FIELD 

OUTSIDE THIS 

h 

-200 cm 0 200 cm 

Fig. 31 .--Limitation of scattering directions predicted 
by geometrical optics. 

rise in the value of scattered field predicted by G.O. near 78" and 

163" is due to the movement of the specular point into a region of 

the surface of increasing radius of curvature. However, as the 

specular point gets within two wavelengths of either endpoint the 

tapering of the incident field suppresses the expected singularity 

in the scattered field. 

It should also be noted that for the P.O. results, the T.M. 

fields differ slightly from the correct fields for THS near grazing. 
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For either polarization the ripple observed in the scattered field 

and correctly predicted by P.O. is probably a consequence of the 

finite length of the surface. G.O., being a purely local theory, 

will not predict effects of this nature. 

As a further check of the programs, the above profile was 

multiplied by minus one, i.e., instead of being concave down the 

surface was concave up. The amplitudes of the scattered fields re- 

mained unchanged but they all showed a phase shift of 90" due to what 

in G.O. theory is termed the caustic correction factor. 

In order to establish more quantitatively the limitations on 

the G.O. and P.O. approximations, the scattered fields have been 

computed for a set of surfaces with height profiTe 

(94) H(X) = A sin(2TX/200) -200 cm. 2 x 2 200 cm., 

i.e., the surfaces are two complete mechanical wavelengths long. 

With THI fixed at 60", the amplitude, A, was varied over a range of 

5.0 cm. to 50.0 cm. so that the minimum radius of curvature, rem, 

varied from 8.0 he to 0.8 xe. The important features of the scattered 

fields over this range of rem for each polarization are shown in 

Figs. 32-37 in order of decreasing r,,. Some general trends are 

worthy of mention. 

In the first place, as rem/ xe decreases from 8 to 0.8, the 

agreement between the P.O. results and the exact fields goes from 

excellent to poor. It would appear that as long as the surface al- 

ways has rcm/Ae greater than, say, 2.5, the P.O. approximation will 
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give reliable values for the scattered field. Even for values of 

rcm'xe = 1, P.O. may still be considered usable, that is, it will 

reproduce the general structure of the scattered fields although with 

significantly lower accuracy. This limitation on the radius of curva- 

ture necessary for the successful application of the P.O. approxi- 

mation is in agreement with the results of Ref. [2g] in which the 

current on a sinusoidal surface of infinite extent is found. Except 

for scattering and incidence angles for which no specular points occur 

or for which a specular point coincides with a point of infinite 

radius of curvature, the G.O. and P.O. approximations give scattered 

fields very similar to each other even when they are not correct, e.g., 

Fig. 38. It is interesting to note that where the I.E. and P.O. (and 

hence the G.O.) fields agree the T.E. and T.M. fields are nearly 

identical but as the radius of curvature decreases the exact fields, 

T.E. and T.M., not only differ from the respective P.O. fields but from 

each other. This behavior is not entirely unexpected since for bodies 

with large radius of curvature in terms of wavelength the polarization 

independent G.O. is known to be a good approximation. As the radius 

of curvature goes to zero, e.g. a wedge, G.O. and P.O. both fail and 

the scattering is polarization dependent (see the wedge tests in 

Chapter IV). 

The failure of G.O. when no specular point occurs on the surface 

or when a specular point coincides with a point of infinite radius of 

curvature makes it far less attractive than P.O., especially when 

numerical methods at-e involved. For example, when A=5, (see Fig. 32) 
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G.O. predicts no scattered field outside the range 102" -C THS < 138", 

and gives fields which are singular at either end of the range. On 

the other hand, the P.O. approximation correctly predicts the scattered 

fields for a far wider range of THS, including backscatter, and the 

fields are always bounded. 

It is also of interest to note that what might be called the 

"fine structure" of the scattering, particularly for THS c 80", 

(see Fig. 32) is not due entirely to the finite length of the 

illuminated region as in Figs. 29 and 30 but is strongly controlled 

by the height profile. 

Another approximate theory whose validity can be checked by 

the numerical methods developed here is the perturbation theory for 

the scattering from "slightly rough" surfaces as formulated in 

Refs. [.30] and C31 1. Perturbation theory predicts that if the ampli- 

tude of the surface profile is much less than the electrical wave-- 

length of the incident fields, then the amplitude of the scattered 

field due to the perturbation of the surface is proportional to the 

surface height amplitude. This was checked by calculating, using 

the T.M. integral equation program, the scattering from a surface 

profile described by 

(95) H(x) = c (sin(2rx/50) + l/2 sin(2rx/19.71)) 

for various values of c. The field scattered by slightly rough 

surfaces is dominated by the scattered field from the unperturbed 

surface (c=O) which is quite complex for the finite strips considered 

78 



here. Thus the behavior of the perturbed fields can best be 

illustrated by consi-dering the difference between the actual field 

and the flat plate field. The perturbation in the scattered field, 

E p, due to the perturbation in the height profile of the originally 

flat strip is then given by 

(96) Ep = E; - EzO 

where Ez is the total scattered field as predicted by the computer 

program, and Ego is the field scattered when c is zero (i.e., a flat 

strip). In order to test the prediction that lEpl ac, a low value 

of c (c=O.Ol cm.), was chosen as a reference surface amplitude with 

reference scattered field 1E 
Pl 

I, so that for a fixed scattering angle 

IE I 
(g7) = k l-7 EPl 

expresses the perturbation theory result. The exact fields are 

compared with perturbation theory in Fig. 39 for several values of c. 

The theory appears to fail at about c/cl = 200 which corresponds to 

a root mean square surface amplitude of approximately x,/10. 

In addition to permitting the examination of the applicability 

of various electromagnetic approximations to the ocean surface scat- 

tering problem, the programs permit direct calculation of the scattered 

fields from any appropriate surface. One such appl.ication is to the 

calculation of the expected value of the backscattered power from an 

ensemble of ocean-like surfaces. Such an ensemble may be constructed 

from the known height spectrum, Ref. [32]. For the sea surface, the 
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H (x1 = % ( C, sin (2rrx/50) + 4 sin (2rx/l9.71 1) 
TH I =60° 
THS = 90” 
TH I =60° 
THS = 90” 

---a- ---a- FIELD RATIO PREDICTED FIELD RATIO PREDICTED 
- - BY INTEGRAL EQUATION BY INTEGRAL EQUATION 

FIELD RATIO PREDICTED FIELD RATIO PREDICTED 
BY PERTURBATION THEORY BY PERTURBATION THEORY 

- - 

5oc 

400 

3oc 

EP 

I I EPI 

200 

- - 

- - 

Fig. 39.-- Perturbation theory test. 

80 



height spectrum, Fig. 40, decays approximately as ki4 over the signifi- 

cant range of wave numbers, where km is the mechanical wavenumber. 

W(k) 
(cm’) 

0 
,q,,.c y 

m 

(cm-‘) 

5, 
SHORTER 

MECHANICAL 
WAVELENGTH 

Fig. 40. --Sea surface height spectrum. 

Thus a particular member of the ensemble can be chosen to be a finite 

sum of sinusoids with random phases whose amplitudes vary roughly as 

k-2 m' If the km's are not harmonically related, the surface, like the 

ocean, will be aperiodic. One example of a surface of this type is 

given by the series 

(98) H(x) = 2.5(0.4 sin(2rx/200.0 + 0.78) 

+ 0.8(10.0/20.0)2 sin(2rx/10.954 + 1.6) 

+ 0.8(6.66/20.0)2 sin(2rx/6.28318 + 2.4) 

+ 0.8(5.0/20.0)2 sin(2rx/4.795 + 0.4)) 

illustrated in Fig. 41. An ensemble of surfaces of finite length can 

be generated by using successive non-overlapping sections of this 

surface. 
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_ ._.____._ --.--.. .-.-. - 

75 cm. END OF FIRST SURFACE 

Fig. 41. --Four component representation 
of the surface 

Physical optics was used to calculate the expected value of 

the backscattered power and field strength from a 75 member ensemble 

made from the surface described by Eq. (98). Each member of the 

ensemble was 75 electrical wavelengths long. On a CDC 6600 computer, 
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the time required for the run was about 40 minutes. The expected 

52 values cjE,j > are shown in Fig. 42; the expected value of Ez was 

found to be extremely small compared to the root mean square field. 
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2 -10 

- 15 t 
9c 

Fig. 42. --Expected value of backscattered 
/Es/2 from ensemble. 

Notice that no special form of the slope distribution or 

other statistical properties of the surface have to be assumed. It 

is also possible to use a point by point, i.e. discrete, representa- 

tion of the surface, such as might be generated by the prescribed 

statistical properties of the surface. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In this work the scattering properties of cylindrical 

rough surfaces have been investigated by several numerical techniques 

in order to test the validity of previous theoretical work. The 

results, using as checks the integral equation solutions, show that 

geometrical optics is not usable for surfaces with radius of 

curvature smaller than 2.5 A, and may give poor results even when 

this condition is satisfied should the scattering geometry be such 

that no specular point exists or a specular point coincides with a 

point of infinite radius of curvature. With the exception of these 

two cases,geometrical optics and physical optics give nearly the 

same scattered fields. 

It was found that the numerical evaluation of the scattered 

fields from the physical optics currents gives good results for 

almost any geometry (except perhaps deeply shadowed configurations) 

as long as the radius of curvature condition, r cm > 2.5 A,, is 

satisfied. Physical optics, although not always so accurate, has 

an advantage over the integral equation formulation in that the length 

of surface which can be treated is not limited by machine storage 

capacity. 



The integral equation program has been used to check the pert- 

urbation theory prediction that the amplitude of the scattered field 

increases in proportion to the increase in the amplitude of the 

surface height profile. The numerical results confirm in a quantita- 

tive way the fact that the theory fails when the root mean square 

height is about one tenth of an electrical wavelength. 

The physical optics program, because of its ability to handle 

long surfaces and its superiority to geometrical optics, has been 

applied to the direct calculation of the expected value of the 

scattered power from an ensemble of ocean-like surfaces which were 

constructed from a height spectrum similar to that of the sea. The 

computer time required, while lengthy, was not found to be prohibitive. 

The extension of the programs to very long surfaces, to non- 

cylindrical surfaces or to dielectric surfaces appears feasible only 

for the G.O. and P.O. methods; the storage requirements for an I.E. 

solution in either case would be prohibitive. P.O. would probably be 

the easiest to modify to non-cylindrical surfaces, especially if 

shadowing were neglected. Since location of the specular points becomes 

much more complicated in the non-cylindrical case, the G.O. method 

would be more difficult to implement. 
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APPENDIX A 

COMPUTER PROGRAMS 

A listing of all the programs discussed in the text is presented 

here. To facilitate understanding of the programs, the symbols used 

in the programs have been used in the text whenever possible. 

All programs require the plot subroutine listed at the end. 

The function subprograms AHAN20(x) and AHAN2l(x) are required in 

the T.M. and T.E. integral equation programs respectively. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
c 

C 

THIS PROGRAM IS FOR BISTATIC BACKSCATTERING 
ESCNS IS THE PETURNED E FIELD WITH ShADOWING NUT ACCOUNTED FOR 
ESCWS I S E SCATTEKED WI TH SHADOW1 NG ACCOUNT ED FUR 

GEOMETRICAL OPTICS FOR THE OCEAN SURFACE 

SPECULAR POINT SEARCH IS DOME IN TWO STEPS 
#1 IS MECHANICAL WAVELENGTH DEPENDENT,#Z ISREFINNED MECHANICAL OR 
ELECTRICAL WI-IICHEVER IS MORE STRINGENT. 
DLTAX IS THE SEARCH SIZEkl,DLTAXOO IS SEARCH SIZE#2 
DELSHA IS SHADUW TEST’STEP SIZE 
THIS PROGKAM CAN HANULE 200 SPECULAR POINTS /PASS IE. ONE THItlTHS 
DInENSICN XN(2OOt ,ANGLEt2601 
DIMENSION ACDNS~720t,AWS(720l,AhCS~72Ol,ASNS(7201(AOS~72D~ 
DIMENSION ECDNS(72Ot,EwS(720t,EWCS(720)rY( lOtvESNS(7201 
REAL PI ,PI2 
REAL MTWO 
CUMPLEX ESCNS, ESCWS, ENS 
COMMON CA,CB,CKA,CKB,PHA,PHB,CC.CKC,PHC 
COHPL EX ESCUNS,ESCD 
NAMELIST/CAT/CA,CR,CKA,CKB,~HA,PHB,CC,CKC,PHC~WAVE~THID 
NAMELIST/C~T/ESNS,ASNS,ECDNS,ACDNS,EwS,AWS,EWCS~AWCS~AOS 

THE FUNCTION WHICH DESCRIBES THE SURFACE IS 
H(Xl=CA*SIN(ICKA~X)+PHA~+CB~SIN((CKB~X~+P~6)+CC~SIN((CKC~X)+PHCj 
CA=lO.O 
CKA=6.28318/200.0 
PHA=O .O 
CB=O. 0 
CKB=O.O 
PHR=Q .O 
cc=0 .o 
CKC=O.O 
PHC=O .O 
HMAX=ABS(CAt+ABS(CRt+ABSO 
P1=3.14159 
?12=1 .5707963 
TPI=6.283185 
WMMIN IS THE MINIMUM MECHANICAL WAVELENGTH 
wMMIN=TPI/AHAXl (CKA,CKR,CKC 1 
DLX=O. 01000 
TwDLX=ZO.O*DLX 
NAN1 IS THE NUMBER OF ANGLES TO BE INVESTIGATED 
NAN1 =360 
XSTRT=-200.0 
XSTCP=-XSTRT 
THS IS THE ANGLE BETWEEN THE POS. X AXIS AND Tt-E SCATTERING DIKEC. 
THI IS THE ANGLt BETWEEN THE POS. X AXIS AND THEINC. DIRECTION 

THI=60.~+3.1415927/18C.O 
WAVE IS THE ELECTRICAL WAVELENGTH 
WAVE=25.0 
DLTAX=wMMIN/lO.O 

DLTXOO=AMINl((DLTAX/5.0) r(WAVE/2G.3)1 
DELSHA=wMMIN/lO.O 
XSKIP=XSTOP+( IO**91 
TANTtiI=TAN( THl t 
THID=THI*lR0.0/3.14159 
CSTHI =COS ( Tti I t 
SNThI=SIN( TtiI t 
NAMFLIST/TOM/DLTAX,DLTXUOsDELSHA 
wRITE(6,TOMt 
DO 93 IkE=l,NANI 
ASNS( IKE) =O.O 
ACDNS( IREt=O.@ 
AWS( IREt=O.O 
AhCS( IREt=O.C: 
ESNS(IREJ=0.3 
ECDNS ( TRE t=t>.O 
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EbIS(IRc)=o.O 
EMCSIIREt=O.O 

93 CONTIN’JE 

356 

C 
C 

102 

100 

101 

C 

DO 17 IJ=l,NANI 
THS=FLOAT( 1 J140.8726646 E-d2 
THSD=THS*57.29578 
AOS(IJb=THSD 
WRITE(69356) .THID,THSD 
F(lRMAT(llH INC ANGLE=,EL5.8,13H SCATT mGLE=rEl5.8) 
SUCOS=CSTHI+CO.$( THS 1 
SUSIh=SNTHI+SIN(THS) 
N=O 
F IKST FIND PUS1 TICNNS CF SPECULAR RETURN AND STORE THEM 

THE FIRST POSITION CAN NOT BE A SPECULAK POINT 
XP=X STRT 
SUpOZ=( THI+THSl/2.C’ 
E=SUflDZ-l TH(XP)+PIZJ 
:;,;P+DLTAX 

E=SUMDZ-(TH(XPI+PIZ) 
IF1 E.EQ.O.01 GO l-0 100 
IF(((~O.GT.~.~~.AND.~E.LT.~.O)).OR.~(EO.LT.~.~~.AND~~~~GT~D~~~~~ 

2 GO TO 100 
GO TO 101 
N=N+ 1 
XN(N)=XP 
ANGLEIN)=THS-(THIXP)+PIZ.) 

IF (XP.LE: XSTOP b d0 TO 102 ’ 
IF(N.EQ.0) GO TO 372 
THIS Is To REFINE THE POSITION OF THE SPECULAR POINT 
DO 25 K=l ,N 
XSO=XN( K) -DLTAX 
E=SUMDZ-ITH(XSOI+PIZ I 

222 XSO=XSO+DLTXGO 
EU=E 
E=SUMD2-(TH(XSOI+PI2) 
IF(E.EQ.O.0) GO TO 252 
IF(((EC.GT.O.~).AND.(E.LT.O.O)).OR.((EO.LT.’~.D).AND.(E.GT.o.o))) 

2 GOT0252 
GO TO 253 

252 XN(K)=XSO 
ANGLt(K)=THS-(TH(XSOb+PIZ) 

253 CONTINUE 
IF (XjO.LT.XN(K) 1 GO TO 222 

25 CONTIfIUC 
ESCNS-CMPLX(O.O,O.oI 
ESCDNS=CMPLX(~ .0,0.0 I 
DO 10 K=l,N 
PHASE=(TPI/WAVE)~((SUCOS~XNiK))~~SUSI~.~H(XNiK)))) 
KC=RS(XN(K) )+COS (AFdGLE(K) 1 
IF(RC.LT.O.0) PfiASE=PHASE+(PI/Z.O) 
ENS=-( (SQRT I &3S (RW2.C 1) )*CEXP(CMPLX(U.J,PHASE) 1) 

C TAPPERING INCLUDED 
XG=XYI K) 
IF(XG.GT.(XSTClP-WAVE) I ENS=CMPLX(C.u,L.OI 
IF(XG.LT.(XSTKT+hAVE)I ENS=Ct+fPLX(D.b,;.!-‘) 
IFl(Xj.GT.(XSTOP-(Z.~~WAV~J)J.AN~.(XG.LE.(XSTOP-hAVE~)) 

2ENs=E~S%(o.5-(0.5~SIN~~3.l4l59/wAVEl~~X~-~XSTOP-~l.5~WAVE~~~~~~ 
IF((X;.CE.~XSTKT+WAV~)l.Af~D.(X!TKTt(2.~~*WAV~J)~~ 

2EN~=tNS+~0.5+~0.5~S~N~~3.14159/WAVE~*~XG-~XSTRT+~1.5~WAVE~~~1~t 
ESCNS=ESChS+ENS 
IF(KS(XN(KlI.LE.O.0) GO TO 10 
ESCDNS=ESCCNS+ENS _. 

10 CONTI hUE 
ACD=CABS( ESCDNS I 
IFIACC.LT.l.O E-05) GO TO 59 
ANACC=5?.29578~ATAN2(Alf4AG~~ScDNS~,REAL(ESCDNS~) 

59 CDNT INUE 
IF{ ACC.LT. 1.0 E-05) ANACD=O.O 
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ESMAG=CAttS(ESCNSJ 
ESANG=ATAN2LAIMAGIESCNSt rREAL(ESCNSt )*180.0/3.1415927 
WRITE(6.726) ESMAGvESANG 

726 FURMAT( ’ ’ ,‘HAG. CF SCATT. E FIELD=‘rE15.8,‘PHASOR ANGLE=‘,El5.8, 
23X,‘wIThGUT SHADUWING’ t 

WKITE (6,121 J ACD,ANACC 

121 FORMAT L’ ’ ,‘SCATT. FIELD NO SHADOW CONCAVE DOWN TIPS ONLY=‘,E15.8, 
Z’PHASOR ANGLE=’ ,E 15.81 

ESNSL IJ J=ESMAG 
ECDNS( I Jt =ACD 
ASNSL IJJ=ESANG 
ACDNSI IJ J=ANPCC 

C NOW FtNG THE SHADOWING EFFECT 
C INBOUND SHADOWING 

IF (ABSLTHI-PI2J.LT.O.C51 GO TO 50s . 
DO 327 K=l,N 
Et t=H( XNI K t I- ( TANTHI *XN( Kt J 
STEP I =DELSHA 

47L 
471 

499 
327 
500 

C 

IF ITANTHI.LT.O.OJ STEPI=-DELSHA 
XI=XNLK)+STEPt 
GO TO 471 
XI=XI+StEPI 
YI=I TANTHI*XI l+BI 
IF (YI.LE.HIXItt XN(Kt=XSKIP 
IFIAtISTXNlKl I.GT.XSTOPI GO TO 499 
IFLABS(XIt.GT.XSTOP J GO TO 499 
IFIYi.LE.HMAX) GO TO 470 . 
CONTINUE 
CUNT INUE 
CONTINUE 

C 
C 

OUT HOUNO SHAUCUING 
IFLABSLTHS-PI2 J.LT.0.05) GO TCI 639 
TAN TH S= TAN( THS I 
DO. 633 KK=l,N 
IF IXN(dKI.GT.XSTOPJ GO TO 633 
THE ABOVE CARD MAKES SURE THAT TIME IS NOT SPENT ON A PT,ALREADY 
KNOWN TO BE SHAOGWED 
BO=HIXNlKKI I-(TANTHS+XN(KKt J 
STEPO=DELSHA 

676 
671 

699 
633 
639 

C 

IF(TANTHS.LT.O.0 I STEPO=-DELSHA 
XO=XN(KKl+STEPO 
GO TO 671 
XO=XO+ST EPO 
YO=( TANTHS+XQt +I30 
IF(YCl.LE.H~XOt t XN(KKI=XSKIP 
IF(AHS(XN(KKJt.GT.XSTOPJ GO TO 699 
IF LAl3S(XOt.GE.XSTLlPI GO TO 699 
IF (YD.LE.HMAXI GO TO 670 
CONTINUE 
CJNTI NUE 
CDNTINUE 

END OF SHADOWING EFFECT 
INININ=O 
ESCWS=CMPLX( 0.0,O.O t 

89 



‘C 

ESCD=CMPLX( O.&O. 01 
DO 19 K=l,N 

NEXT CARD SKIPS THE SHADOWED SPECULAR PGINTS 
IF tXNtKl.GT.XSTflP 1 GO TO 19 

RC=RSIXN(Kt I*COSIANGLEtKll 
IF(RC.LT.O.Ol PHASE=PtlASE+tPI/2.0 1 
ENS=-I tSQRTtABS(RC/Z.GI 1 l*CEXPICMPLXIG.O,PHASElll 

C TAPPEKING INCLUDED 
XG=XN( Kl 
I F( XG. GT .I XSTOP-WAVE) 1 ENS=CMPLX(O.O ,s.@l 
IFIXG.LT. IXSTRT+WAVEI I ENS=CMPLX(C.c,O.Ol 
1FIIXG.GT.I XSTOP-(2.3*WAVEJ ll.AND.(XG.LE.(XSTOP-WAVE1 11 

ZENS=ENSQIG.5-IB.5*SIN((j.l4159/WAVE)~~XG-(XSTUP-Il.5~WAVE))~))) 
IFIIXG.GE.IXSTRT+wAVE)).AND.(XG.LE.(XSTRT+(2.~*wAVE~~)~ 

2ENS=tNS*IC.5+IQ.5~S1N~I3.14159/wAVE~e(XG-~XSTRT+~1.5~WAVE~~11~~ 
ESCWS=tSCwS+ENS 
IFIRS(XNtKll.LE.O.01. GC TO 19 
ESCU-ESCU+ENS 

19 CONT iNUE 
IFI rtiININ.EB.OI WRITEt6r31491 
1F~I:;ININ.EQ.Ol GO TO 23 
ABESCD=CABS (ESCbt 
IFIAHESCD.LT. 1.0 E-05) GO TO 58 
ANESCD=57.29578*ATAN2( AIMAG( ESCDl ,REhLL ESCDll 

58 CONTIhUE 
IFI ABESCD . LT. 1 .OE-05 1 ANESCD=O.O 
ESMAGS=CABSt ESCWS 1 
fSANGS=ATAN2(AIMAGIESCWSl,REAL IESCWS) 1*180.0/3.1415927 

3149 FOKMATt ’ ‘r’N0 SCATTERED E FIELD WITIt SHADOWING’1 
IFt IhININ.NE.01 WRITEt6,776J ESMAGS,<SANGS 

776 FORMATI ’ ’ ,‘MAG OF SCATT. E FIELD WITH SHADOWING=‘, E15.8, ‘PHASUR 
2ANGLE=‘,El5.8) 

IF(IhININ.NE.01 WRITEL6,21181 ABESCD,ANESCD . . 
2118 FORMATI ’ ‘,‘SCAT FIELD hITH SHAD. CCNCAVE DOWN DNLY=‘,E15.8, 

2’ PHASOR ANGLE=‘,El5.81 
EWSI I Jl=ESMAGS 
EwCSt I JI =ABESCD 
AWS( IJ l=ESANGS 
AwCSt 1 JJ=ANESCD 
GO TO 23 

372 WRITE (6.31521 THID,THSD 
3152 FORMAT{’ NO SPECULAR POINTS FOR THID=‘,E15.8,’ AND THSD=‘,E15.81 
23 WRlTE(6,7791 

hRITE(6.7791 
779 FORMATtlH 1 
17 CONTINUE 

C FUR. THE PLOTS 
DO 536 IKO=l,NANI 
IND=IKO-1 
THSO=AClS( IKO 1 
YIl l=ESNS(IKOt 

536 CALL PLOTtTHSD,Y,l,IND,50.~,O.GJ 
DO 537 IKO=l,NANI 
IND=IKO-1 
THSD=AOS( IKOI 
Ytll=EWS( IKOl 

537 CALL PLCT(THSDvY.1 ,IND,5O.o,O.O 1 
DO 533 IKO=lrNANi 
IND=IKO-1 
THSD=AUS ( IKO t 
YI ll=ECDNS( IKOI 

538 CALL PLOTITHSD,YtlrIND,5C.C,O.GI 
DO 539 IKO=l,NANI 
IND=IKO- 1 - 
THSD- AOS I IKO I 
Y(ll=ElrCSI IKOI 

90 



539 

937 
936 

737 
736 

C 

CALL PLCiT(THSD,Y,lrIND~5D.~~O.Dl 
DO 936 KKRL=l (NAN1 a 
ANGOS=FLOPT(KKRL1/2.@ 
IF~ESNS(KKRLI.LE.O.O001) GO TO 936 
DBNS-ZO.C*ALOGLO( ESNS(KKRL1 I 
WRITE{ 6,937) DBNS,ANGOS 
FOKMGT ( ’ UBNS=‘,E15.8,’ ANGOS=‘,ElS.8) 
CONTlNUE 
DO736 KKRL=l (NAN1 
ANGOS=FLOPT (KKRL )/2.C 
IF( l:HS(KKRLl.LE.C.0001) GO TO 736 
DBS=20.0*ALOGlD~EWS(KKRLl 1 
WRITEC6,7371 CBS,ANGOS 
FORClAT(’ DBS=‘,E15.8,’ ANGOS=‘,El5.81 
CONTINUE 
STOP 
END 

FUNCTION RS(XI 
COMEON CA,CB,CKA,CKB,PHA,PHBrCC,CC,CKC,PHC 
THIS GIVES THE RADIUS OF CURVATURE AT x 
HP=(CA~CKA~COS((CKA9Xl+PHA~l+(C6~CKB~CUS~~CK6~X~+PHB~~ 

2+(CC*CKC*COS(fCKC*X~+PHCl) 
HPP=-( (CA+CKA*CKA*SIN( (CKA*X)+PHA) )+(CB~CKB+CKB~SIN((CKB*Xl+PHB)) 

2+(CC*CKC*CKC*SIK( LCKC*X)+PHC) 1) . 
RS=((l.O+(HP*HPJ t**l.‘jl/(-HPPJ 
RETURN 
END 

FUNCT ION TH I X 1 
COf4MON CA,CB,CK&,CKB,PHA, PliB,CC,CKC,PhC 
TH=ATAN2((CA4CKA4COS((CKA~X)+(CB+CKB~COS((CK$~X)~PHB)~ 

2+(CC*CKC*COS((CKC+X)+PHC) I ,l.Ol 
C TttIS FUNCTION GIVES THE ANGLE BET. THE TANGENT TO H(X) AND THE 
C HDRIZONTAL 

RETUPN 
END 

FUNCTION HL Xl 
CDWt4Dtd CA,CB,CKR,CKB,PHA,PHB,CC,CKC,PHC 
H=~~A*SIN~~CKA~X~+PHAll+~CB*SIN(~CKB4Xl+~HBJ~+CC~SIN~~CKC.~~JiPHCJ 
RETURN 
END 



. c 
E 
C 
C 

: 
C 

: 
C 
C 

G 
C 
C 
C 

cc 

C 

C 

C 

C 

C 
C 

DIMENSION Y(lOlrESSS13601 
THIS IS THE TM CASE. 

THIS PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING 
FROM A SEA SURFACE BY DIVIDING SURFACE INTO LIT AND UNLIT REGIONS 
IN THE LIT REGIONS THE SURFACE CURRENT IN ZNXH 
GAUSSIAN INTEGRATION USED 
FOR THIS PROGRAM TO GIVE .USEFUL RESULTS THE SURFACE MUST HAVE 
RADII OF CURVATURE NO LESS THAN l*luE 
NsP is THE NUMBER OF SHADOW POINTS. 
SURFACE IS DESCRIBED BY AONE*SIN~CCNE*X+PONEl +ATWO*SIN(CTWO*X 
+PTWOl+ATRE*SIN(CTREcX+PTREI 
SURFACE UNDER CONSIDERATION LIES BETWEEN ALEP AND REP 
SN IS THE STEP SIZE TAKEN TO DETERMINE SHADOWING 
IT MUST BE Sf’ALLER THAN ANY SURFACE FEATURES AND MUST ALSO 
ALLCW THE LOCATIONOF THE END POIkiS OF INTEGRATION WITHIN 
A SMALL FRACTION OF A WAVELENGTH 
NANI IS THE NUMBER OF ANGLES (SCATTERING1 TO BE.EXAMINED 
HAKE DIMENSICNS OF ESSS , SCANG,EFPA SMALL AS POSSIBLE TO AVOID 
LAGE # OF CARDS RETURNED 
NANI SHOULD BE THE DIME~~SION OF ESSS,SCANG,EFPA 
vAMELIST/RON/AB,ANG,DTHS 
JIMEhSION SCbNG(3601 tEFPA(3601 . 
COMPLEX S,BINT 
SCATTER SHADOWING HAS NOT BEEN ACCCUNTED FOR 
COMMON /DOG/AONE,CONE,PONE,ATWO~CT~O,PTWO,ATRE,CTRE,PTRE 
COMMON /HOG/ G,THI,THS,WE 
COMMON/PIG/ SECTOR,DX,REP,SECDiO 
COMMOh/GSNN/GWl,GW2,GW3,GW4,GW5,~Ul,GU2,GU3,GU4~GU5 
WE=25.0 
WE IS THE ELECTRICAL WAVELENGTH 
G=2.0*3.1415927/WE 
SRTWE=SQRT(WEl 
CX=WE/lS.O 
AONE=SO.G 
CDNE=2.0*3.1415927/800.0 
PCbE=3.14159/2.0 
ATWO=D. 0 
CSLG=O.O 
PTI\O=O.O 
ATRE=O. 0 
CTRE=O.O 
PTRE=C.O 
NANI= 
SECTOR=WE/Z.O 
SECDlO=SECTOR/lO.O 
CONSTANTS FOR GAUSSIAN INTEGRATION 
GH1=0.2369268 
GU2=0.47862867 
~~~=~O.;““““’ 

GW5==GNl 
GUI=-C. 9061798 
GU2=-0.53846931 
GU3=C.O 
GU4=-13~2 
GUS=-GUl 
THE ANGLE OF INCIDENCE SHOULD NOT BE GREATER THAN 90 DEG 
THI=60.@*3.1415927/180.0 
IF THE INCIDENCE ANGLE IS KITHIN TtN DEGREES OF 90 NO SHADOWING 
TAKEN INTO ACCOUNT 
IF(ABS(TkI-1.57071.LT.O.175) GO TO 563 
TANTHI=TAN(THIl 
DTHI=18O.O+THI/3.1415~92~ 
WRITE(6r10711 DTHI 

1071 FOJMATI’ ‘1’ ANG OF INC FROM POS X AXIS =',ElS.B) 
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106 

109 

105 
C 

:z 

53 

29 

39 

92 

563 

564 
C 

101 

10 

‘C 

REP=200.0 
ALEP=-REP 
SN-WE/lo.0 
NSP=l 
DIMENSION SXtlOOOJ 
IF(DH(REPJ.GT.TANTHIl GO TO’106 
SXINSPJ=REP 
GO TO 105 
SLOPE=TANTHI’ 
B=:H( REP)-T SLCPE+REPl 
X=REP 
X=X-Sh 
IF((SLOPE*XJ+B.GT.H(XJJ GO TO 109 
IF(X.LE.ALEPJ GO TO 1000 
SXINSPJ=X-ISN/Z.OJ 
CO#T INUE 
THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT 
X=SXf hSPJ 
X=X-SN 
XN=X-Sly 
IF(lObtXJ.LT.TANTHIJ.AND.~llH~XNl.GT.TANTHIJJ GO TO 53 
IF(X.GT.ALEPJ GO TO 22 
GO TO 92 
NSP=NSP+l 
SX(NSPJ=XN 
SLOPE=TANTHI 
B=Ht SXI N’SPJ I- ISLOPE*SX(NSPl J 
X=5X( NSPJ-SN 
X-X-Sh 
IF((SLOPE*XJ+B.LT.H(XJJ GO TO 39 
lFfX.GT.ALEPI GO TO 29 
GO TO 92 
NSP=NSP+l 
SX(NSPI=X-(SN/Z.OJ 
GO TO 15 
NSP=NSP+ 1 
SX(NSPJ=ALEP 
GO TO 564 
SX(lJ=REP 
SX(ZI=ALEP 
NSP=2 
CONfl NUE 
LAST VALUE IN SXlJJ IS ALEP 
CiRITE (6,lOlJ (K,SX(K),K=lrNSPJ 
FORMAT{’ ‘,‘SXL’,14,‘J=‘eE15.8J 
DO 317 JNX=l,NANI 
THS=FLOAT( JNXJ*( 0.8726646 E-02’) 
DTHS=lf30.0*THS/3.L415927 
SCAN’Gt JNXJ=DTHS 
S=CMPLX~O.O,O.O~ 
KKN=l 
CONT IHUE 
ALCW=SXI KKN+lJ 
AUPP=SX( KKNJ 
S=S+BINT(ALOW,AUPPJ 
KKh=KKN+Z ’ 
IF ((KKN.LT.NSPJ.ANO.T(KKN+ll.LT.NSPJJ GO TO 10 

TO CCNVERT TO TRUE SCATTERED E FIELD FOR EINC OF UNITY HAG. 
S=CMPLX(-0.70711 ,-0.70711l*S/SRTWE 
AB=CABS( SJ 
ESSS( JNX J=AB 
ANG=lSO.O*ATAN2TAIMAG(S) ,REAL(SJ l/3.1415927 
EFPAt JNX J=ANG 

317 CONTINUE 
DO. 531 JK=l,NANI 
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-E=ESSSIJKJ 
OB=20.0*ALOG10(EJ 
A=EFPAl JK) 
AS=SCAhG(JKJ 

531 WRITE (6,532) AS,E,A,DB 
532 FORMAT{’ ‘,’ SCAT ANG FROM HORIZ=’ rE15.8,’ HAG OF E FIELD=‘, 

2 E15.8,’ PHASE ANG=‘,E15.B,’ DE=’ rEl5.8) 

535 

1000 

1592 
1002 

DO 535 IKE=l,NANI 
IND= IKE- 1 
THSD=FLOATIIKE)/2.00 
Y( lJ=ESSSI IKE) 
CALL PLOT (THSD,Y,1,1ND~50.0,0.0) 
GO TO 1002 
hRITE(6rl592) 

FORMAT( ‘SURFACE IS NOT. ILLUHINAT.ED’J 
CG NT I NUE 
STOP 
END 

FUNCTION H(X) 
COMMON /DOG/AONE,CoNE,PONE,AT~O,CThO,PTWO~ATRE~CTRE*PTRE 
H=ADNE+SIN(CON~eX+PONE)~ATWO*SIN(CTHO*X+PTWO~+ATRE~S~N(C~RE*X+PTRE 

2) 
RETURN 
END 

FUNCTION DHTXJ 
COMMON /DCG/AGNE,CONE,PONE,ATWO,CT~D,PTUO,ATRE,CTRE,PTRE 
DH=AONE+COKE*COS ICCNE*X+PONE J+ATWO*CTWO*COS( CTWO*X+PTWOJ 

2 +ATRE*CTRE*COSI CTRE*X+PTREJ 
RETURN 
END . . 

C 
C 
C 

C 
C 

100 
C 

10 
50 

FUNCTION BINT(XX,YYJ 
XX IS LOWER LIMIT OF INTEGRATIONtYY IS UPPER LiMIT 
PHYSICAL OPTICS RADIATION INTEGRAL WJTH PLANE WAVE INCIDENT 
TM CASE 
COMPLEX S,BINT 
COMPLEX GASSS 
COMMON /HOG/ G,THI,THS,WE 
COMliON/PIG/ SECTOR,DX,REP,SECDlO 
BREAK INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS OF LENGTH 
SEClOR AND INTEGRATE OVER EACH SEGMENT USING GAUSSIAN INTEGRATlON 
s=cMPLx(o.o*o.DJ 
LDS=INT( TYY-XXI/SECTOR) 
IF(LOS.EQ.0) GO TO 10 
DO 100 INJ=lrLDS 
UL=XX+TFLOAT( INJJ*SECTORJ 
ALL-XX+TFLOAT(INJ-lJ*SECTORJ 
S=StGASS5(ALL,UL) 
NOW TO GET LAST FRACTION OF SEGMENT LEFT OVER FROM SURFACE SEGMENTATION 
S=S+GASS5(XX+1FLOAT(LDSJ*SECTORJ ,YYJ 
GO TO 50 
S=GASS5( XX,YY) 
COhT INUE 
BINT=S 
RETURN 
END 
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FUNCTION GASSS IXLtXUJ 
COMPLEX GASSS rFTf31 

C FIFTH ORDER GAUSSIN INTEGRATION 
XL IS LOWER LIMIT,XU IS UPPER LIMIT 
XU-XL IS LESS THAN OR EQUAL TO SECTOR 
COMHDN/GSNN/GUl,GWZ,G~f3rGW4rGW5,GUl~GU2rGU3rGU4rGU5 
DVDFEP=(XU-XLJ/Z.O 
DVSMEP=IXU+XLJ/Z.O 
XUS=GU5*DVDFEP+DVSMEP 
XU4=GU4*DVDF EP+DVSMEP 
XU3=GU3*DVDFEP+DVSMEP . 
XU2=G&?*DVDFEP+DVSMEP 
XUl=Gul*DVDFEP+DVSMEP 
GASS5=DVDFEP~IGWL~FTBIIXUlJ+GW2*FTEI(XU2J+G~3~FT6IIXU3J 

2 +GW4~FTEI(XU4J+GW5~FTBI(XUS)) 
-RETURN 

END 

FUNCTION FTBIIXJ 
CDPPLEX FTBI 

C THIS IS THE FUNCTLON TO BE INTEGRATED . 
C THIS IS FOR THE TM CASE 

COMMON/HOG/G.THI ,THS,WE 
COt’~lOh/PIG/ SECTOR,DX,REP,SECDlO - 
GCC=G*ICDSITHIJ+COS(THSJJ 
GSS=G*ISINITHIJ+SIN(THSJJ 
RCK=REP-IZ.O*WEJ 
FTBI=SINITHI-ATANIDHIXJJl*SQRTIl.O+ICHIXJ&2JJ* 

2 CEXPICMJ-‘LXID.O,I(X*GCCJ+IH~Xl*GSSJ JJ J 
C THE FOLLOWING ACCOUNTS FOR +APERiNG 

’ ABSX=ABS(XJ 
IFIABSX-RCKJ 1500r1500,2000 

2000 IFIX.LE. (WE-REP) J FTBI=CMPLXIO.O,O.OJ 
IFIX.GE.IREP-WE1 J FTBI=CMPLXIO.O,O.OJ 
IFTIX.GT.IUE-REPJJ.AND.IX.LE.II2.O*kJEJ-REPJJJ 

2 FTBI=FTBI~IO.S+IO.5~SINIIG/2.OJ~IX-IIL.5~WEJ-REPJJJJJ 
IFIIX.LT.(REP-HEJJ.AND.(X.GT.IREP-l2.OqdEJJJ J 

2 FTBI=FTBI~I0.5-I0.5*SINI~G/2.0J~~X-IREP-I1.5*HEJJJJJJ 
1500 CDNT INUE 

RETURN 
. .END 
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C 
C 
C 

cc 
C 
C 
C 
C 

E 
C 
C 
C 
C 

.C 

cc 
.c 

C 

C 

C 

C 

C 
C 

THIS IS THE TE CASE 
THIS PROGRAM USES PHYSICAL DPTICS TO CALCULATE THE BACKSCATTERING 
FROM A SEA SURFACE BY 01 VIDING SURFCLCE INTO LIT AND UNLIT REGIONS 
IN THE LIT REGIONS THE SURFACE CURRENT IN 2NXH 
GAUSSIAN INTEGRATION USED 
FOR THIS PROGRAH TO Gl VE USEFUL RESULTS THE SURFACE MUST HAVE 
RADII OF CURVATURE NO LESS THAN l*WE 
NSP IS THE NUMBER OF SHADOW POINTS 
SURFACE IS DESCRIBED BY AONE*SINICONE*X+PONE J +ATWD*SINI CTWO*X 
+PTWOJ+ATRE*SINIC?“E*X+PTREJ 
SURFACE UNDER CONSIDERATION LIES BETHEEN ALEP AND REP 
SN IS THE STEP SIZE TAKEN TD DETERMINE SHADOWING 
IT MUST BE SMALLER iHAN ANY SURFACE FEATURES AND MUST AL SD 
ALLOH THE LOCATIONOF THE END PO1 NTS OF INTEGRATION W [THIN 
A SMALL FRACTION OF A WAVELENGTH 
NAN1 IS THE NUMBER OF ANGLES (SCATTERING) TO BE EXAMINED 
MAKE DIMENSIONS OF ESSS , SCANGtEFPA SMALL AS POSSIBLE TO AVOID 
LAGE # OF C.ARDS RETURNED 
NANI SHOULD BE THE DIMENSION OF ESSSrSCANG,EFPA 
DIMENSION YIlOJrESSS(360J 
NAHELI ST/RON/AB ,ANG ,DTHS 
DIMENSION SCANGI 360) rEFPAI.360) 
COMPLEX S,BINT . 
SCATTER SHADOHING HAS NOT BEEN ACCOUNTED FOR 
COMMON /DOG/AONE,CONE~PDNE,AT~O,CTWO,PTWO,ATRE,CTRE~PTRE 
COMMON /HOG/ G,THI,THS,WE 
COMMON/PIG/ SECTOR,DX,REP,SECDlO 
COMMON/GSNN/GWf, GW2, GH3, Gkt4rGWS,GUL,CUZ,GU3,GU4,GU5 
WE=2 5.0 
WE 1S THE ELECTRICAL WAVELENGTH 
G=2.0*3.1415927/WE 
SRTWE=SQRTI L&J 
DX=WE/LS .O 
AONE= .O 
CDNE=2.0*3.1415~27/200.0 
PONE=O .O 
ATWO=O.O 
C TWO=Q. 0 
PTWO=O .O 
ATRE=O.O 
CTRF=O. 0 
PTRE=O .O 
NAN1 =360 
SECTOR=WE/2.0 
SECDLO=SECTOR/LO .O 
CONSTANTS FOR GAUSSIAN INTEGRATION 
GWl=O.2369268 
GW2=0.47862867 
GH3=0.568889 
GHG=G W2 
GWS=GWl 
GM=-0.9061798 
GU2=-0.53846931 
Gu3=0.0 
GlM=-GU2 
GU5=-GU 1 
THE ANGLE OF INCIDENCE SHJULD MOT BE GREATER THAN 90 DEG 
THI=60.0*3.L4L5927/180.C 
IF THE INCIDENCE ANGLE I S WI THIN TEN DEijREES OF 90 NO SHADDOH ING 
TAKEN INTO ACCDUNT 
IFIABSITHI-1.5707J.LT.0.175) GO TO 563 
TANTHI=TAN(THI J 
DTHI=180.O*THI/3.1415927 
WRITE (6,10711 DTHI 

1071 FORMAT{’ It ’ ANG tlF INC FROM POS X AXIS =‘,EL5.81 
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106 

109 

105 
C 

15 
22 

53 

29 

3 

92 

REP=ZOI). 0 
ALEP=-REP 
SN=WE/LO.O 
N’SP-1 
DIHENS ION ix1 1000) 
IF(DHIREPJ.GT .TANTHI I GO TO 106 
SXJNSPJ=REP 
Go TO 105 
SLOPE=TANTHI 
B=H(RCPl-( SLOPEsREP) 
X=REP 
x=x-sn 
fF((SLOPE*Xl+B.GT.H(X)I GO TO 109 
IFLX.LE.ALEPJ GO TO LOCO 
SXLNSPJ-X-(SN/Z.OJ 
CONTINUE 
THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT 
X=SXl NSPJ 
X= X- SN 
XN=X-SN 
IFl~DH~XJ.LT.TANTHIJ.AND.~OH~XNJ.GT.TAYTHIJJ GO TO 53 
IFIX.GT.ALEPJ GD TO 22 
GO TO 92 
NSP=NSP+l 
SXlNSP)=XN 
SLOPE=TAYTJJI 
B=HlSXfNSPJ J-(SLOPE*SX (NSPI J 
X=SXLNSPJ-SN 
X=X-SN 
IF( (SLOPE*X I+B.LT.H(X I I GO TO 39 
IFJX.GT.ALEPJ GO TO 29 
GO TO 92 
NSP=NSP+l 
SXINSPJ =X-t SN/Z.OJ 
GO TO 15 
NSP=NSP+l 
SX(NSPl=ALEP 
GO TO 564 

563 SXIlJ=REP 
SXI ZJ=ALEP 
NSP=2 

564 CONTI NUE 
C SURFACE IS NOW SEPERATED INTO LIT AND UNLIT ZONES 
c LAST VALUE’IN SX(Jf IS ALEP 

WRITE (6,101) (K,SX(KJ,K=L,NSPl 
101 FORHATL ’ ‘,‘SX(‘rI4,‘)=‘rE15.8~ 

C THE FOLLOWING FINDS THE SCATTERED FIELDS DUE TD THE LIT ZONES 
DO 317 JNX=l rNAN1 
THS==FLOATLJNXJ*L0.8726646 E-02) 
DTHS=lCJO.O*THS/3.1415927, 
SCANGt JNXJ =DTHS 
S=CHPLXtO.O*O.OJ 
KKN=l 

10 CONTINUE 
ALOW=SX(KKN+lJ 
AUPP=SX (KKN) 
S=S+BINT(ALOW,AUPP) 
KKN=KKN+Z 
IF ((KKN.LT.NSPJ.AND.(IKKN+lJ.LT.NSPJJ M TO 10 

t.. TO CONVERT TO TRUE SCATTERED H FIELD FOR HINC OF UNITY HAG 
S=S*CMPLX~0.70?11,0.707~1 t/SRTWE 
AB-CPBSI SJ 
DB=ZC .O*ALDGlOLA5J 
ESSSl JNX J=AB 
ANG=180.0*ATANZLAIHAG(SI ,REALtSJ J/3.1i:15927 
EFPA( JNX J=ANG. 
WRITEIbr143J DTHS,~B,ANG,DB 
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143 FORMA T( ’ SCATTERING ANG’rElS.Br’ HAG=‘,ElS.Br PHAS E ANGLE= ‘, 
2E15.8,’ DB=‘rE15.8) 

317 CONTI NUE 
Db 531 JK=lrNANI 
E=ESSS IJK 1 . . 

A=EFPAI JK) 
AS=SCAN G( JK 1 

531 WRITE (6,532) AS, E,A 
532 FORMAT(’ ’ ,’ SCAT ANC FROM HORIZ=’ rE15.8,’ MAG OF H FIELD=‘, 

2 E15.8,’ PHASE ANG=‘,E 15.81 
DO 535 IKE=lrNANI 
INO=IKE-1 

TtiSD=FLOAT( IKE L /2.00 
Yf 1 )=ESSSfIKEJ 

535 CALL PLOT (THsO,Y,l ,INO,SO.O,O .O 1 
GO TO 1002 

1000 WRlTEl6,1592) 
1592 FORMATL’SURFACE IS NOT ILLUMI,NATED’l 
1002 CONTINUE 

STOP 
END 

FUNCTION Ii(X) 
COMMON /OOG/AONE,CONE,PONE,A~WOICTWO,PTW~~ATREICTRE~P~RE 
H=AoNE*sIN(CoNE~:X+p~NE)+ATWo*sIN(CTwo*x+PTWO~+ATREo:SSN(CTRE*XtpTRE 

2) 
RETURN 
END 

FUNCT ION DHLX T 
COMMON ,OOG/AONE,CONE,P~NE,ATW~~CTW~~~T~~.ATRE~CT~E*~~~~ 
~=AONE~C~NE*~~~(~~N~tX,PON~~+ATWO*CTWO*CO~~CT~~*~+~~~O~ 

2 tATRE*CTRE*COS(CTRE*XtpTRE) 
RETURN 
EN0 

c” 
C 

: 

100 

10 
50 

FUNCTION BINTL XX,YY) 
XX.Is LOWER LIMIT OF INTEGRATION,YY IS UPPER LIMIT 
PHYSICAL OPTICS RADIATION INTEGRAL WITH PLANE WAVE INCIDENT 
TH CASE 
COIjPLEX SvBINT 
CO)(PLEX GAS55 
COMMON /HOG/ GvTHI,THS,WE 
COMMON/PIG/ SECTOR, DX, REPIS ECOlO 
BREAK INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS OF LENGTH 
SECTOR AND INTEGRATE OVER EACH SEGMENT USIYG GAUSSIAN INTEGRATION 
S=CHPLXI 0.010.01 
LDS=INTL(YY-%X)/SECTOR) 
fF(LOS.EQ.0) GO TO 10 
00 100 INJ=l *LOS 
UL-XX+(FLOAT( INJI *SECTOR) 
ALL=XX+IFLOAT!INJ-l)*SECTOR) 
S=StGASS5(ALL,ULl 
S=S+GASS51XXtIFLOAT(LDS1*SECTOR),YY) 
GO TO 50 
S=GASSS( XXI YYI 
CONTINUE 
BINT=S 
RETURN 
END 
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FUNCTlClN GASS5 LXL,XUJ 
COMPLEX GASS5 rFTB1 
FIFTH ORDER GAUSSIN INTEGRATION 
XL IS LOWER LJHITtXU IS UPPER LIMIT 

C XIJ-XL I S LESS THAN OR EQUAL TO SECTOR 
CO~MON/GSNN/GWl,GWZ~GW3,GW4,GW5,GUl.~GU2,GU3,GU4rGU5 
DVDFEP=L XU-XLJ /2.0 
DVSMEP= L XU+ XL J /2.0 
XU5=GUS*DVDFEP+DVSflEP 
XU4=GWi*DVCJFEP+DVSMEP 
XU3=GU3*DVDFEP*DVSHEP 
XU2=GUZ*DVDFEP+DVSMEP 
XUL=GUl*OVDFEP+OVSWEP 
GASSS=DVDFEP*LGWl*FT81 IXULJ+GWZ+FTBI( XUZ)+GW3*FT.BItXU3J 

2 +GW4+FTBI (XU4J+Mi5*FTBI IXU5J J 
RETURN 
END 

FUNCTION FTf31 (XI 
COMPLEX FTBI 

C THIS IS THE FUNCTION TO BE INTEGRATED 
C THIS IS FOR THE TM CASE 

COMMON/HOG/G, THI t THS I WE 
COMMON/PIG/ SECTOR,DX;REP,SECDlO 
GCC=G*ICOSI THJJ+COSLTHSJ J 
GSS=G*TSINLTHTJ+SINITHSJJ 
RCK=REP-(Z.O*WEJ 
FTBI=SINITHS-ATANlDHfXJJJ*SQRTll.O+~DHLXJ**2)J* 

2 CEXP(CMPLXJO.OrI(X*GCCJ+(HTXJ+GSStIJJ 
C THE FOLLOW1 NG ACCOUNTS FOR TAPPERING 

ABSX=ABSL XI 
IFLABSX-RCK J 1500.1500.2000 

2000 fF(X.LE.(WE-REPIJ f=Tt3I=CMPLX(O.O,O.OJ 
IF(X.GE.(REP-WEJ) FTBI=CMPLX(O.O,O.O) 
IFLtX.GT.IWE-REPJJ.AND.(X.LE.LLi.O*wEJ-REPJJJ 

2 FTBI=FTBI*f0.5~f0.5*SIN((C/2.0!*(X-((L.5*WEJ-REPJ)JJJ 
IF((X.LT.CREP-wEIJ.AND.(X.GT.lREP-tZ.O*wEJJll 

2 FTRI=FTBI*~0.5-~0.5*SINI(G/2.0I*IX-(REP-~l.5*WEJ~JJJJ. 
1500 CONTINUE 

RETURN 
END 
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C THIS IS A METHOD OF MOMENTS SOLUTION 
C TM POLARIZATION SYMMETRIC MATRIX 
C NBUB SEGMENTS ,HAVE N MIDPOINTS 
C NSUB .IS THE SUBSCRIPT WHICH CDUNTS THE END POINTS 
C N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS 
C WATCH fiAX SLOPE SO THAT TkE X INCKEMEkTS ARE S+fl\LL ENOUGH 
C THE. REGION UNDER CONSICERAT ION LIES BETWEEN -EP AND EP 

UIMENSION Y(101 ,CMC(36D) 
CGCPLEX SNN,SST 
COMPLEX FSS 
UOUBLE PqECISIDN DAL,DDX,DDCZ,DDC,DALCtDR 
COMPLEX .FINC(30 ItSTS 
COMMON /PIG/ AONE~CONEIPCNE~AT~~O~CTWC~PTWO~N 
COMPLEX AHAN 
COMPLEX F(3001,5(4515~1,SS,T 
COMPLEX FIN 
DIMENSICN X(300) 
DIMENSICN XMIIJ(300) 
CUb’PLEX ST0 

C ‘WE IS THE ELECTRICAL WAVELENGTH 
WE=25.0 
G=6.2831853 /WE 
S1S=SQRTIWEI*CMPLXI1.@,1.~~~~+0.7D71G7~/3.1415927 
DC=NE/lO.D 
DX=9C/10($.5 ’ 
DC2 =DC/2 .D 
fP=ZrJO.O 
API=3.1415927 

C THE FCLLGWI hG CONSTANTS DEFINE THE SURFACE 
AONE=25.C 
CCNt!=2.0*3.1415927/2OG.O 
PGN E=C. 0 
ATkO=C .O 
CTUC)=C, .3 
PTWO=C.C 
CALL SCLOKl 

C THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG 
C BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THF INTEGRATION 

NSlJG= I 
XINSUBl=-EP 
DDC=DBLEIDCI 
DDX=CBLE tDX1 
DDCZ=DBLEI DC2 I 

1002 DAL=O.OOD 00 
DR=CELE(XINSUBtt 

100 1 DR=DR+DDX 

R=SNGLIDKI 
DALCl=DAL 
CAL=CAL+(CDXaDSWRT(l.DD 03 +((CBLE(DH(R))~~~~~)) 
IFI ((CDCZ-DAL) .Lt .C.DD iD).AhD.(IUDC2-CALOI.GE.:J.DD DD)) 

2 XYIDtNSUBt=K 
IFI CAL.LT.CCClGD TO 1001 
lNSUB=~SU5+ 1 
X(NSUBJ=R 
AL=SNGLICALl 
WRITE 16,352) AL,NSUB 

352 

3276 

FDRMATf ’ ’ t ‘AL=’ ,E 15.8, ’ NSuB= ‘, 141 
IF IK.LT.EPl GO TO 1002 
TIME=ZCLCKlI 1.C) 
WRITET6,3276 1 TIME 

FQRMATI’ ‘,‘TIME=‘,F10.6,‘SECCNDS* I 
N=NSUB- 1 
CO 1004 J=l,NSUB 
IF (J.EQ.NSUB) XMID(NSUBI=O.O 
XxX=X( J I 
XMD=XHID( J 1 

100 



lCC4 WRITE Iht1003) XXX,X#D,J 
1093 FORMAT (hli XIJ)=,E15.8,9H XMID~J)=,E15.8,3H J=,131 

C THIS ENDS THE SURFACE SUBDIVISION 

C 
C 

C 

400 

C 

C 

100 
C 

C 

1 

3 

6 

5 

C2 

1222 

9333 
C 

C 

NMO=N- 1 
NM3=N-3 - 
OIFIENSIUN OF S IS NINt11/2 
DINENS 10N OF F INC,F I S N 
DPIF=0.7853982. 
EE=2.7182B 
GA=G+DC/ (Z.O*EE ) 

SNN IS THE DIAGC-NAL ELEMENT OF THE INPUT MATRIX 
SNN=AHAN20(GAl 

HRIrE (6,400) SNN 
FORMAT (5H SNN=,ZE15.81 
W 100 NJ=l,N 
NJPO-NJ+1 
SIISU@(NJ,NJII=SNN 
THIS F 1NDS ELEMENTS ON THE DIAGONAL 
IF (NJP0.GT.N) GO TO 100 
DO 100 m=NJPfl,N 
THIS FINDS OFF DIAGONAL ELEMENTS 
XM=XMID(NJI 
XN=XMI I)( NA) 
RHO=SQhT(I(XN-XMJ**2)+((H(XN)-Holt*2)l 
KHG=RHD* G 
SI ISUB(NJ,NA) l=AHANZOIRHGl 
CONT INUE 

THIS CCFf’LETES THE FILLIN OF Tl+E MATRIX 

THIS HEGINS iHE CCNVEKSICN TO UPPER TRIANGULAR MATRIX 
S(ll=CSQRT(S(ll) 
DO 1 K=Z,N 
S(KI=S(Kb/S(ll 
IIIJ 2 1=2-N 
IMC= I-l 
IPO=I+l 
T=CMPLXI O.O,O.Ol 
DO 3 L=l,IMO 
LI=~L~~~-~~I~L-ll+L~/Z)+N-Il 
T=TtISI LI l**1Zl 
II=~I~Nt-~~~~I-1~~Il/2l+N-I~ 
S(II)=CSQKTlS(II)-Tl 
IFI 1PO.GT.N) GOT0 2 
L)cI 5 J=IFO,N 
T=CMPLX(Q.O,O.d) 
DC; 6 M=l,IMU 
MI=IM+Hl-I(((M-l)~Ml/2)+N-I) 
MJ=(M*N)- I((M*(M-lIl/ZltN-J) 
T=T+IS(MJl*SIMI) I 
IJ=(I~H)-((((I-ll~It/21+N-J) 
Sl I J)=I S( 1J B-T I/S( I I ) 
CQNT IP(UE 
THIS ENDS THE CCNVERSICN TO UPPER TRI,\NGULAR MATRIX 
WRITE (6.1222) NvWE 
FDRMATI3h M=rI3,4H WEL,E15.8) - . . 
TH=60.0*3.14159?7/180.C 
THXXD=180.0*TH/3.1415927 
WR ITL lb,9333 1 THXXD 
FoRMATI~H Irdc ~~G=,E15.8b 
TH IS tHE ANGLE OF INCIDENCE FROM 
STH=fI9ITY) 
CTH-COS I TH I 
THIS FINOS ThE INCIDENT FIELD ION 
DO 455 NJ=1 tN 
ENJ=FLOATINJ I 

THE HORIZONTAL 

THE ‘NJTH SEGMENT 

XM=XHIDlhJ) 
FINJI=CEXP(CMPLXID.O,G*i IXM*CTHl+(HIX~l*STHI II) 

101 



TAPERED ILLUMINATION +****************+*********** *********** 

C 
IF(XM.LE.((WE+l.C b-EPI 1 FlhJ)=CMPLXI0.3’3.01 
IF(XM.GE.(EP-(l.Q*WElll F(NJ)=CMPLX(O..)r~.Ol 
IF((XM.GT.I(1.C~WE)-EP)).AND.(XM.LE.((2.~~~E)-EPl)) 

2 F(NJ)=F(hJ)~(0.5+(0.5~SIN((G/2.Ol~(XM -((1.5*WEI-EP))l)I 
IF(1X.M .GE.TEP-(2.0*WE) tT.ANU.(XH .LT.IEP-(l.O*WE))l) 

2 F(NJ)=F(NJI*T~.~-(CI.~+SIN~(G/~.~J~~XM -tEP-(1.5*WEIlI))t 
455 CONTINUE 

WKITE(b,ZS’td) (NJ,FLhJt,NJ=l;NI 
294#t FU.F?:AT(’ “’ INC FIELD Ft”I4”t=‘.2flS.B) 

C-- 

11 

lti 

26 

25 
C 

491 
492 

310 
C 

317 
312 

- THIS BEGINS THE BACK SUBSTUT IUN - 
F( lb=F(l)/S( 1) 
DO 10 I=Z,N 
IbfO=I-1 
T=CMPLX~0.O,O.OI 
DO 11 L=l, I;clC 
Ll=(L+N)-((l(L-lI+L)/2)+N-I) 
T=T+TS(LI)*F(L)l 
II=II*~~-~~IlI-l~~I~/2~+N-I~ 
F(I)=(F(Il-T)/S(II) 
NN=(N*tN+l I l/2 
F(KI=F(ht/S(hNI 
NMC=N- 1 
DC 25 I=l,NMO 
K=N-I 
KI’O=K+ 1 
TZCHPLXtO.D”i.OJ 
DO 26 L=KPG,N 
KL=IK*N:)-I (t (K-ll*KJ/Z)+N-Lt 
T-T+(S(KL)*F(L) 1 
KK=(K*Nt-( (( (K-1 t*K) /Zl+N-K) 
F(KJ=LF(K)-TI/SiKKJ 
CUKTI NUE 
THIS ENDS THE BACK SUBSTITUTIONS 
DO 491 K=l,N 
SlT=CABS( F( KJ I 
S7O=F(KI 
A~\IN~~=ATOtrrZ~~I~~G~F~K~~,KEAL~F~K~ll+1B0.L‘/3.1415927 
WRI TEL6,4921 K,S-TO,STT,AhNN 
FORMAT1 * ‘,‘F(‘,I4,‘)=‘,2El5.8,’ OR ‘,‘AMP=‘,E15.8,‘AT ANGLE=‘, 

2 lr‘15.8) 
011 317 JNX=1,360 
Tbt=O. 872664625E-02 *FLOAT( JNXI 
T=CMPLX(0.0’0.0) 
DO 310 I=lrN 
XN=XM ID( I I 
T=T+ I(F(I~~CEXP~CMPLX(C:.D’G~lIXN*U)S~TH~)+(H(XN)*SIN(TH)~l~~)) 
TtiI S CCRRECTS f TO TRUE SCATTERED FIELD 
T=STS*T 
CM=CARS(TJ 
CMC t JNX l=CM 
CANG=57.296*ATAN2(AIMAGo,REALO 1 
THD=Ttj*57.296 
DB=20.0*ALOGlO(CM) 

WRITE (6,312) CM,CANG,ThU,CB 
FORMAT (l@H RELATIVE E FIELD=rEl5.8’7t-t ANGLt=,E15.8’ 

2 23H ANGLE FROM HOPIZUNTAL=,El5.A,7H DB=rE15.8) 
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C 

C 

C 

C 

UO 576 IKE=11360 
THSD=FLDATIIKEI/2.G 
lND=IKE- 1 
Y(lI=C~IIKEl 

576 CALL PLOT(fHSD,Y,l ,IND~50.0vD.DI 
STOP 
END 

FUNCTION HiXl 
THIS DEFINES THE SURFACE 
COMMGN /PIG/ AONE,CDNE,PONE,ATWO,CTWOIPTWO,PTWO~N 
H=ADNE*SIN(CUNE*X+PONEI+ATUO*SIN(CTWO*SIN~CTWO*X+PTkdUJ 
RETURN 
END 

f-UNCT IDN DHI Xl 
DHIXJ IS THE DERIV. OF HIXI 

CUI’H4ON /PIG/ ACNE~CCNE,PONE,ATkO,CTND,PTWO,N 
DH=A~~E*.CONE~COSICONE*X+PONEl+ATWO~CTkU~CDSICTWO*X+PTWOl 
RETURN’ 
END 

FUNCTION ISUHi J,KI 
COMMON /PIG/ AflNE,CONE,PONE,ATWD,CTUO,PTWU,N 
THIS CONVERTS ELEMENTS OF UPPER TRIANCULAR MATRIX TO A LINEAR 
ISU8=(N*JI-~LLLJ-1I*J)/ZI+N-K) 
ARRAY CDUNTING LEFT TO RIGHT SlARTING WITH FIRST ROW 
RETURN . 
END 
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c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

C 
C 

C 

c - 

C 

THIS 1 S A METHOD OF MOMENTS SOLUTION FOR BISTATIC SCATT TM CASE 
GAUSSIAN INTEGRATION IS USEG TO CALCULATE THE MATRIX ELEMENTS 
UNIT INCIDENT ELECTRIC FIELD. IS ASSUMED’OF COURSE THIS IS MODIFIED 
NEAR THE ENDPOINTS OF THE SURF4CE BY ILLUMINATION TAPPERING 
NSUB SEGMENTS HAVE N MIDPOINTS 
NSUS IS THE SLJBSCRIPT NHICH COUNTS THE ‘END POINTS 
N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS 

WATCH MAX SLOPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH 
‘THE SURFACE UNDER CONSIDERATION LIES BETkEEN -EP AND +EP 
THE ARRAY XC(J) CONTAINS THE X COCRDINATES OF THE MIDPOINTS OF THE 
SEGMENTS,XMLl) IS THE- MIDPOINT OF THE I’TH SEGMENT 
THE ARRAY X(J) CONTAINS THE X CDORDINATES OF THE ENDPOINTS OF THE 
SURFACE SEGMtNTS,X(Il,XLI+l) ARE THE LOWER AND UPPER X COORDINATES 
OF THE ENDPOINTS OF THE I ‘TH SEGMENT 
PHASE REFFERENCE IS AT THE ORIGIN OF.THE COORDINATE SYSTEM 
CCMPLEX SNN,SST 
COMPLEX S 
OIMERSION YL10lrCMCL3601 
NAMELIST/D/ WE’CP,THXXD,AONE,CONE,PONE,ATWO,CTWO,PTWO,N 
NAMELIST /E/F,XMID 
CQMPLEX FSS 
COHPLEX STS 
COMMCIN /PIG/ AONE,CONE,PONE,ATWO,CTWl),PTWO,N 
COMPLEX CL23612361 
COMPLEX FL2361 ,SS,T,CTEST 
THE DIMENSICNS OF C AND F MUST BE COMMENSURATE 
THAT IS CLL,Ll ---- F(L) 
COMPLEX FIN 
COMPLEX HAN2 
OIMEhSION XL5c)C’l 
DIMEhSIDN XMl5CO) 
THE FOLLOlJING CONSTANTS DESCRIBE THE SURFACE 
ACNE=-50.0 
CONE=6.28318/800.0 
PONE=3.1415927/2.0 
ATWO=C.O 
CTWO=O.O 
PTWO=“. 0 
WE IS THE ELECTRICAL WAVELENGTH 
WE=25.C 
G=6.2831853 /WE 
DC=HE/lO.O 
DX=DC/lCCC.O 
DC2=DC/2.@ 
EP=ZOO.O 
THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG 

c BY LI\E INTEGRATION USING STEPS OF LENGTH DX FUR THE INTEGRATION 
NSIJS-1 
XLNSl3)=-EF 

1002 AL=D.“JOO 
R=XLI’JSUBI 

1001 R=R+DX 
ALU=AL 
AL=AL+IDX~SQRT(l;O+ID~iIR)~~2JJ) 
IFL(LDCZ-ALl.LE.O.O).AND.LLDC2-ALtlJ.GT.O.0)) XMLNSUBL=R 
IF(AL.LT.DC)GO TO 1301 
WRITE (6,352) AL,NSUB 

352 FCKMAT ( ’ ‘,‘hL=‘,El5.8,’ NSUB=’ ,141 
NSUB=NSUH+l 
XLNSUR)=R 
IF IR.LT.EPl GO TO 1002 
N=NSUB- 1 
DO 1004 J=l,NSUB 
IF (J.EQ.NSUBl XMLNSUBI-C.0 
XXX=XLJ) 
XMD= XMLJ) 
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1004 WRITE (6.10031 XXX,X’MD,J 
1003 FORMAT (6~ xT~1=,El5.8,9~ XM(JI=,El5,8,3H J=, 13) 

C THIS ENDS THE SURFACE SUBDIVISIDN 
NttO=rJ-1 
NM3’=t+ 3 

C DIMElsSION OF F1NC.F IS N 
DPIF=0.7a5398.? 
EE=2.71828 
GA=G=OC/(Z.O*EE I 

C SHN IS THE DIAGONAL ELEMENT OF THE INPUT MATRIX 
SNN=HANZ( GA1 *DC 
WRITE (6.4001 SNN 

4oc FORHAT 15H SNN=,2E15.81 
DO 100 NJ=l,N 
C(NJ,NJ)=SNN 

100 CONTINUE 
C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER 

GUl=-0.9t61798 
GU2=-0.53846931 
GU3=0.0 
GU4=-GU2 
GUS=-GUl 
GW1=0.2369268 
Gb!5=0.2369268 
Gbl4=0.47862867 
GWZ-0.47862867 
GW3=0.5685888 
DO 3361 MR=l.N 

X’HM=XM(fiAI 
HXRM=H( XMHI 
DO 3361 NC=l,N 
IF (HC.EO.MRI GO TO 3361 
EPL=X(MCI 
EPU=X (MC+1 1 
DVDFEP=TEPU-EPLl/Z.O 
DVSMEP=TEPU+EPCl/Z.O 
XUS=GU5*DVDFEP+lJVSMEP 
XlJl=GIl1+DVDFEP+DVSMEP 
XU2=GU2*DVDFEPtDVSMEP 
XU3=GU3*DVDFEP+DVSMEP 
XU4=GU4*DVUFEPtDVSMEP 
CTMR,MC l=DVDFEP+( 

2+GWl~HAh2~G+SQRT~~~XUl-XMM~~~2~+~~HIXU1~-HXMM~~~2~~~~SQRT~l.O+~DH~ 
2 xul)**z)) 
2+GW2*HAN2(G*SQRT(((XU2-XMM)<~42)+((HO.U2l-HXMM)~~?l)~~SQRT(l.O+(DH( 
2 xu2 1+*211’ 
Z+GW3~HANZ(G~SPRT~I(XU3-XM~~~~2~+~~H~~U3~-HXMMt~~2l~~~SQRT~l.O+~DH~ 
2 XU31**211 
Z+CW4*HANZ(G*SQRTL (IXU4-XMMI**21+1 (H(XU41-HXMM1**2111*SQRT(l.o+TDHI 
2 xuq 1-2) 1 
2ctW5*HAN2(G~SQRT(IIXU5-X~~M~*~2)+((HI;,U5)-HXMM)~~2)~)~SQRT(l.O+(DH( 
2 xus:)~‘*21) I 

3361 CONTINUE 
C THIS COMPLETES THE FlLLIN OF THE MATRIX 
C NCHSYMMETRIC CROUT 

E 
FIRST COLUMN OK 
T@ GE7 FIRST ROW 

ld 
DO 10 J=2rN 

C 
CLl,JI=C(l,J1/C(l.l) 

NOW WORK ON ROW AND COLUMN SET < 
DO 11 K=2,N 
KHO=K-1 
KPU=K+1 
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C 

12 

C 

14 
13 

C 

16 
15 
17 
11 

TO GET DIAGONAL ELEMENT 
S=cMPLXTO.O,O.Ol 
DO 12 ‘IK=l,KMO 
S=S+CTK, IKI*C( 1K.K) 
C(K,K)=CtK,KI-S 

TO GET ELEMENTS IN COLUMN K BELOW ROW K 
IF tKPO.GT.N! GO TO 17 
DO 13 IROW=KPO,N 
s=cMPLxIo.o,o.o~ 
DO 14 JJ=lrKMO 
S=S+CTIROW,JJt*CfJJ,K) 
CfIROW,Kt=CtIRUW~KT-S 

TO GET ELElr(ENTS IN ROW K TO THE RIGHT OF COLUMN K 

DC 15 ICOL=KPO,N 
S=CMPLXtO.O,O.Cl 
DO 16 JR=l,KMO 
S=S+CtK,JR)*CtJR,ICOL) 
C(K, ICOLI=(C(K,ICOLI-SI/C(K,Kl 
CCNT INUE 
CCNT TNUE 
WRITE TCt1222) N,WE 

1222 FORMATt3H N=,13,4H WE=,E15.8) 
THI=3.1415927*60.0/180.0 
THXXD=TH1*180.0/3.1415927 
WRITE lb,93331 THXXD 

9333 FClRMAT(9H INC ANG=,E15.81 
C THI IS THE ANGLE OF INCIDENCE MEASURED FROM THE HORIZONTAL 
C I.E. THE PDSITIVE X, AXIS 

STH=SINt THI I 
CTH=COS I THI I 

C THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT 
DO 455 NJ=l,N 
XG=XM( KJ) 
F(NJ)=CEXPtCMPLX(O.d,G*t LXG*CTH)+IFTXGI*STH) I I) 

C 

i TAPERD I LLUMI KATlbN 
c 
L 

IF(XG.LE.((WE*l.O)-EPII F(NJ)=CMPLXTO.‘Y,O.O) 
IFIXG.GE.tEP-Il.O*WETbj FINJ)=CMPLXt3.0,C.O) 
IF~~XG.GT.~~1.3~WE~-EP~~.AND.~XG.LI:.~~2.O*WE~-EPl~~ 

2 FtNJ)=FtNJ)*tO.5+tO.5*SlNl IG/Z.O)+(XG -II1.5*WE)-EPt)))) 
IPTtXG .GE.tEP-(2.0*WE)t 1 .AND. (XG .LT.(EP-(I.O*WEJI)l 

2 FTNJt=F(NJ)*t0.5-tO.5*SINtTG/2.O!*(XG -(EP-11.5*WE)))I)) 
ABSF=CABStF(NJ t I 
WRITE16,83) NJ,ABSF 

83 FCRMATT ’ INC FIELD AT XM(‘,I4,‘l=‘,E15.8~ 
455 CON7 INUE 

C TkIS BEGINS’ THE BACK SUBSTUTION 
C CCNVERSION CF SOUKCE SIDE 

F(l)=F(l)/C(l,l) 
DO 90 IJ=2,N 
S=CMPLX(O.C,O.Ol 
I JMO=IJ-1 
00 91 IK=lsIJMO 

91 S=S+CTIJ,IK)*FI IKJ 
90 F(IJ)=(F(IJ~-SI/C(IJIIJl 

C NOW FOR FINAL BACK SUBSTITljTIDN 
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NMO=N-1 
00 160 L=lrNMO 
K-N-L 
KPO=K+l 
S=CMPLX(O.O,0.0J 
DO 175 JO=KPO,N 

175 S=S+C(K,JOJ+FIJOJ 
160 F(KJ=FIKJ-S 

. DO 425 KCURR=l ,N 
ABF=CADS(FiKCUKRJ J 
ANGF=180.0*ATAN2(AIMAGtFtKCURRl J ,REAL(FiKCURRJJ J /3.1415927 

425 WRITE(b,553J KCURR,ABF,ANGF 
553 FORMAT{ ’ F(‘.,I4,‘J=‘,El5.8,’ AT. ANGLE’rE15.6) 

C THIS ENDS THE BACK SUBSTITUTICJNS 
DC 439 KURR=l,N 
IND=KURR-1 
Y(ll=CA8S~F(KURRJJ*4.OsWE/(6.28318*377.0J 
XCRD=FLCJAT(KURRJ 

439 CALL PLOT(XORO,Y,l,IND,O.O2CO,O.OJ 
DO 440 KURR=l,N . 
IND=KURR-1 
Y~1J=l80.G~ATAN2~AIMAG~F~KUKRl~,REAL(F(KURRJJ~/3.l4l5927 
XORD=FLOAT ( KURR J , 

440 CALL PLOT(XGRD~Y,l,INO,1I3O.O,-lt3O.OJ 
DC 317 JNX=l,>bO 
Tl-=0.87266463 E-OZ*FLDAT(JNXJ 
T=CMPLXLO.O,O.OJ 
00 310 I=ltN 
Xti=XM( I J 

310 T=T+ ((F(IJ~CEXP(CMPLX(O.C,G~~(XN~COS(THJJ+(H(XN~~SIN(THJJJ)J)J 
T=T*0C~SQRTIWEJ~CMPLX~-0.7071~7,-0.7~7107J/3.1415927 
C)\=CABS(TJ 
DB=20.0*ALOGlO(CMJ 
CYC ( JNX J =CM 
CANG=57.29b*ATAN2(AIMAGLTJ,REAL(TJJ 
THD=TH*57.296 

317 WRITE (6,312) CQtCANG,THO,OB 
312 FORMAT 118H RELATIVE E FIELD=,El5.8,7H ANGL&=,E15.8, 

2 23H ANGLE FRUM HORIZONTAL=,E15.8,bH DE%= (El5.8) 
DO 441 IES=l,360 
IND=IES-1 
Y(lJ=CMC( IESJ 
THS=FLOAT( IESJ/2.0 

441 CALL PLOT~THS,Y.lrIND,50.0,0.0~ 
STOP 
END 

FUNCTION H( XJ 
THIS DEFINES THE SURFACE ’ 
COMMON /PIG/ AUNE~CDNE~PONE~AThO~CTWOIPTWOIN 
H=AONE*SIN(CUNE*X+PONEJ+ATWD~SIN~CTWCl*X+PTWDJ 
KETURN 
END 

FUNCTION HANZtXJ 
I DO THIS TO AVOID RETYPING THE WHOLE GAUSS INT. PART 
CCMPLFX HAN2 
COMPLEX AHANZO 
HANZ=AHANZOI XJ 
RETURN 
END 

FUNCTION DH( XJ 
DHLXJ IS THE DERIV. OF H(X) 

COWMCN /PIG/ ADNE,CONE,PONE,ATW&CThftl,PTWO,N 
D~=ACNE+CONE*CDS~CDNE~X+PONE~~AT~~~CTWO*COSlCTWO~X+PTWOJ 
RETURN 
END 

-lo7 



- .--- 

C 

; 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 
C 
C 

THIS IS A METHdD OF MCMENTS %OLUTIOi FOR 8ISiATIC SCATT TM CASE 
USIMG TtiR POINT IMTERPOLATIDN 

GAUSSIAN INTEGKlTIOh IS USED TO CALCULATE THE MATRIX ELEMENTS 
NSUD SiGMENTS HAVE N MIDPUINTS 
NSUB IS THE SUBSCRIPT irHICH COUNTS THE END POINTS 
N IS THE SUBSCRIPT hHICH CCJUMTS THE MIDPOINTS 

WATCH MAX SLOPE SO ThAT Twit X INCRtMENTS 4RE SMALL ENOUGH 
THE SURFACE UNDER CONSIDERATION LIES BETWEEN -EP AND +EP 
COl4VLEx SNN, SST 
CUHPLEX s,co 
COMPLEX FSS 
COMPLEX FINCLZOJ ,STS 
COHMCJN /PIG/ AClNE,CP~E,PUNE,ATtiO~CT~,PTWOtN 
COHHUN /HOG/ XH(4CJOJ ,X(400 I ,GA,C,DC 
CUMMUN/GASSN/ GUlrGUZ,GU3,GUC,GU5,GWl,~Z~Gw3tGW4,.GW5 
CCMPLEX CL150,15OJ 
COMPLEX F(406J ,FP(400J,SS,T,ClEST 
CCHPL EX F.IN 
CONI’L EX HAN2 
DIMENS ION ABESL3bOJ,Y110J 
WE IS THE ELECTRICAL WAVELENGTH 
WE=25.0 
THE FDLLOUING, CiJNSTArJTS DESCRIBE THE SURFACE 
AONE= 15.0 
CONE=Z.O*3.1415927/2QO.O 
PONE=O. 0 
ATWO=O.O 
CTh’O=o.O 
PTRO=O.d 
OC=WE/lO.O 
~X=DC/lOOO.O 
UC 2=uc/ 2 .o 
DPIF=D .7853582 
G=h. 2831853 /WE 
Et=?.71828 
G4=G*CC/ LZ.O+EE J 
EP I S THE END POINT 
EP=t?OD .o 

CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER 
GUl=-0.9061798 
GUi’=-0.53846911 
GU3=0.0 
GU4=-GU2 
GUS=-GUI 
GH1=0.2369268 
Gti5=0.236926& 

GW4=0.47562.!67 
GWZ=0.47362Hb7 
GW3=@. 5688899 

CONSTANTS FOR GEOSSIAN INTEGRATION 5 TH * ORDER 
THE FOLLaWINC BREAKS THE SURFACE INTO SEGWENTS DC CENTIpETERS LONG 
fT:,;iy’ INTEGRATION USlNG STEPS OF LENGTH DX FOR THE INTEGRATION 

Xl NSURJ =-EP 
1002 AL=O.CQ) 

1001 ~IXR:y) 
ALO=AL 
AL=ALtLDX*SDRTL1.6+(DH~RJ~*2JJJ 
lF(LLDC2-4LJ.LE.0.Dl.~ND.(LDC2-ALOJ.GT.O.OJJ’ XMINSUBJ-R 
IFTAL.LT.DCJGD TO 1001 
NSUl3=NSUB+l 
XLPJSUBJ=R 
IF (R.LT.EPI GO TO 1002 
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N=NSUC-I 
. DO 1004 J=lrNSUB 

IF I J.EQ.NSUD) Xfi(NSUR)=G.G 
XxX=X(J) 
XMD= XMIJ, 

1004 MKITE I6r1003) XXX,XMD,J 
1003 FORMAT (6H X(JI=,ElS.S,YH XM(JI~,El5.~,3H J=, I31 

C THIS ENDS THE stJl’.FACt SUYDIVISIaN 
c THLS INSURES THAT N IS ODD 

KK=O 
5733 KK=KK+l 

II- ((Z*XK-11.EQ.N) GO TO 5731 
1F (Z*KK.EQ.N) GO TO 5732 
GO TO 5733 

5732 N=N-1 
5731 CONTINllE 

WRLTE (5.3728) d,KK 
3728 FOWilAT ( ’ ’ ,‘CllRRECTED VALUE OF ~=‘tT4r’KK=‘rI4,‘2*KK-I=N’) 

NHO=N-1 
NMO=N-3 . 

C DIMENSION UF FINC,F IS N 
C MATRIX FILL IN 

s 
DD BY CDLIJMNS 
FOR FIRST COLUMN 
ob 3661 I=lrKK 

C 
3661 C~I,l~=CO~2*I-1,1~+~COIzII-l,Z~/~.O~ 

FLIR LAST CULUMN 
DO 367rj I=l,KY 

3678 C~I,KK)=~CllI2+I-1,2*KK-2~/2.O~+CD~2*I-l,2*KK-ll. 
c 

56 

E 
C 
C 

10 
C 

C 

12 

C 

14 
13 

C 

16 
15 
17 
11 

FDR MIDDLE CmLWINS 

DO 56 I=l,KK 
11=2*1-l 
KKhl-KK-1 
DO 56 J=Z,KKM:’ 
JJ=2*J-1 
C~I,J~=~CO~II~JJ-1J/2.~~+CO~II,JJ~+~Co(II,JJ+I~/2.~~ 
CONTINUE 

THIS CDMPLETkS THE FILLIN OF THE MATRIX 
NUNSYMMETRIC CROUT 
FIRST CDLLOM OK 
TD GET THE FIRST ROW 
DO 10 J=Z,KK 
C(l,JI=CIl,JI/C(1,1~ 

NOW WORK 11N RUH AND-COLUMN SET K 
DO 11 K=2,KK . 
KMQ=K- 1 
KPO-K+l 

To GET DIAGONAL ELEMENT 
s=c~PLx(a.o*o.oI 
DO la IK=l,KMO 
S=S+CIK,IK)*C(IK,K) 
C(K,K)=ClK,K)-S 

TO GET ELEMENTS IN CDLUMN K BELOW ROW K 
IF(KPO;GT.KK) GO TO 17 
DO 13 IKOU=KPO,KK 
$=CHPLXIO.O,O.O) 
DO 14 JJ=l,Kfl\P 
S=S+C(IRQWtJJl*CIJJ,K) 
C(IROd,Kl=C(IRO~,KI-S 

TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K 
00 15 ICOL=KPO,KK 
S=CMPLx( 0.0,o.O) 
Do 16 JR=l,KMO 
S=S+C(K,JP)~C(JR,ICOL) 
C(K,ICoLI=(C(K,ICOL)-S)/C(K,Kl 
CONt INUE 
CONTINUE 
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1222 

9333 
C 

C 

w4ITE (6,12221 KK,WE 
l=lJPMAT(’ ‘9’ KK=', 14,' WE=',f15.81 
TH=3.1415927*6~.0/180.0 
THDEG=57.2957d=TH 
WRITE (br93331 THDEG 
FDRMAl(.9H-IEX: ANG=rE15.81 
TM IS THE ANGLE UF INCIDENCE FROM THE HORIZONTAL 
STH=SIh(THI 
CTH=CDS(THI 
THIS FINOS THE INCIDENT FIELD ION THE IJJTH SEGfdENT 
DO 455 NJ=l,KK 
XG=XMIZ*NJ-1) 
FP(NJJ=CEXP(CMPLX(O.O,G*~(XGI*STHtttl 
IFIXG.LE.ItWE*l.Ot-EPlI FPINJI=CMPLXlO.O,O.Ol 
IF(XG.-GT.(EP-l.OtCElI FP(NJt=CMFLX(O.O,O.OJ 
IF(IIC.CT.((l.orHE)-EP)l.~ND.(XG.LE.I(Z.~~~E)-EP))) ' 

2 FP(NJI=FP(NJt~(O.5+tO.5*SINItG/2.Ol~~XG -((1.5*h'Et-EPlItlI 
IF((XG.GE.(EP-(2.O~W&~tl.AND.(XG.Ll.~EP-~l.~~WE~~~~ 

2 FP(NJI=FPI~~J)+IO.5-(0.5~SIN((G/2.O)~(XG-(EP-(l.5~~E)))~)) 
455 CONTINUE 

WRITE(6,94101 (NJ,FP(NJ) ,NJ=l,KKI 
9410 FORMAT{' ','INCID&NT FIELD FINC(',I4,'t='rZE15.81 

C THIS BEGINS THE BACK suBsTuTI0~ 
C CONVERSION OF SOURCE SIDE 

c 

175 
160 

C 

47 

48 

4370 

553 
C 

FPIlI=FP(lI/Ctl,ll 
DO 90 IJ=ZyKK 
S=CMPLX~0~0,0.0) 
IJMO=IJ-1 
DO 91 IK=l ,IJMO 
S=S+C( IJ,IKl*FP(IKl 
FP(IJ)=(FP(IJ)-S)/C(IJ,IJl 
NMO=;;WIFCIR FIISAL BACK SUBSTITUTION 

DO 160 L=I,NtiU 
K=KK-L 
KPO=Ktl 
S=CMPLX (0.0 ,o.o I 
DO 175 JQ=KPD,KK 
S=S+C(~,JOI*FP(JO1 
FPLKI=FPIKI-S 
KKMl= KK- 1 
TD RECONSTRUCT THE CURRENTS 
DO 47 IRA=l,KKMl 
F(il*IRAl=(FP( IRA)+FP( IRA+111/2.0 
DO 46 IKA=l,KK 
F(Z*IRA-l)=FP( IRA) 
URITE (6,4970)( (J,FPlJ)) ,J=l,KK) 
FORMAT{’ ','FP(',I5,')=',2E15.6) 
tiRITE (6,553) (F(Kt,K=l,Nt 
FORktAT (6H F(K1=,2E15.81 
THIS ENDS THE BACK SUBSTITUTIONS 
DO 439 KURR=l,N 
IND=KURR-1 
YIlI=CABS(FIKURRl1*4.OsWE/16.2B3LB*377.81 

439 
XORPFLUAT [ KURR I 
CALL PLQT(XORbrYt1, IND,0.0200,0.0~ 
DO 440 KURR=l,N 
INO=K.UKK-1 
Yll~=180.O~AT4N2~AIMAG~F~KURR~~,REAL~F~KURR~l~/3.1415927 
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440 

i10 
C 

317 
312 

XUKD=F LCAT ( KLtRRl 
CALL PLOT(XORD,Y,l,IND,lB~.~~,-l~~.~) 
IJO 317 JNX=1,360 
TH=0.017~~329*FLCAT~JNX)/2.0 . 
T=CMPLX( O.O,O.oI 
DC1 310 I=l,N 
XN=XV’LI 1 
T=T+ ~~F~IJ~~EXPLC~LX~~.O,G~~~X~~C~S~TH~~+~H~XN~~SIN~TH~~IlI~l 
*********+ THIS CORRECTS TWE pUTPUT TO TRUE ELE. FIELD 
T=T*DC~S~T~U61~C~lPLX~-0.7071~7,-0.7~7107~/3.1415927 
CM=CABS( T I 
DB=7O.O*ALOGlO (CM) 
CANG=57.296*ATANZ(AIMAG(TI,REAL(TJ 1 
THD=Ttj*57.296 
ABES( JtdXI=CH 
ktIjITE (6,312) CM,CANC,THD,DB 
FORMAT (18H REL4TIVE E FIELD=,E15.t3,7H ANGLE=,ElS.fl, 

2 23H ANGLE FROM HORIZONTAL=iE15.A,6H DH=,E15.8) 
Do 9500 JC=1,360 
Y(l)=ABES( JCl 
E=FLOAT( JCI /2.0 
IND=JC-1 

9500 CALL PLOT(E~Y~l~IND~5C.O~n.C) 
STOP 
END 

FUNCTION CD(MR,MCI . 
COMPLEX CD 
COWL EX AHANZO 
COhi’IONiGASSN/ .tiUlr GU2,GU3,OU4rGU5rGWl.GW2,GW3,GW4,GW5 
CUMMIN /HOG/ Xbi(400) ,X(4001 ,GA,G,DC 
IF(MK.EE.NC J GO TD 100 
CO=DC*AHAhZO 1 GA I 
GO TO 200 

l)C CONS INU E 
XMM=XM(MRI 
HXMH=H ( XMMI 
EPL=X(MCI 
EPU=X( MC+1 1 
DVDFEP= (EPU-EPLt /2.0 
DVSMEP=I EPUtEPL I/2 .O ’ 
XU5=GU5*DVDFEP+DUSMEP 
XUl=GUlWVDFEP+OVS~EP 
XU2=GU2*DVOFEPtDVSMEP 
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FUNCT1Dl-J Dtl(X) 
c DH(XJ IS THE DERIV. OF H(X) 

connctfl /PIG/ qpNE,CONS,PO)IE,.ATWO.‘CTWa,PTWDrN 
~~=~~~~+~~~Ee~DS(C~~~~X+PO~E~tAT~~l~CTHO*C~lS(CTWD~X+PTH~~ 

RETURN 
kND 

FUNCT IaN H(XI 
C THIS DEFINES THE SURFACE 

RE7 URN 
END 
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C TE CASE .GAUSSIAN INTEGRATION USED TO FILL IN MATRIX,INTEGRfk FC?i’N.’ 
C NSUB SEGMENT.S HAVE N MIDPOINTS 
C NSUB IS THE SUBSCRIPT WHICH COUNTS THE END POINTS 
C N IS THE SUBSCRIPT WHICH CUUNTS THE MIDPCINTS 
C WATCH MAX SLCPE SD THAT THE X INCREMENTS ARE SMALL ENOUGH 
C THE ARRAY XHlJ) CONTAINS THE X COOROINATES OF THE MIDPOINTS OF THE 
C SURFACE SEGMENTS,XlI lrXlI+l) ARE TI-E LOWER AND UPPER X COORDINATES 
C OF THE ENDPOINTS OF THE I’TH SEGMENT 
C THE SURFACE UNDER CONSIDERATION LIES 6ETkEEN -EP AND +EP 

CGMPLEX SNN, SST 
COMPLEX S,CO 
CCHPLEX FSS 
COMMCh/GASSN/ GULtGU2,GU3,GU4,GU5~GWl,GW2,Gbl3,GW4,GW5 
COMPLEX FINClZOI rSTS 
COtjMCN /PIG/ ACNEtCONEtPONErATWO,CTWOrPTWO,N 
COMPLEX Cl235.2351 
CCHHON/HOG/ XHl4001 rG,Xl400) 
COtfMON /DOG/ DJC 
CCMPLEX CJC 
CCMPLEX F1235) ,SS,T,CTEST 
CCMPLEX FIN 
COMPLEX HAN2 
DIMENSlON ABESl3601,YllOl 

C THE FOLLOWING CONSTANTS DESCHIBE THE SURFACE . 
AONt=40.0 
CONE=6.2B318/200.0 
PONE=O.O 
ATWO=O.O . 
CTWD=O.O 
PTHQ=O.O 

C WE IS THE ELECTRICAL WAVELENGTH 
WE=25.0 
G=6.2831053 /WE 
OC= WE/10 .O 
DX=DC/lOOO.O 
DC2=DC/2 .O 
EP=ZOO.O 

. STS=-DC*CMPLX10.707107,0.7@7107~/12,0*SQRT1WE~1 
DJC=CMPLXlC.C,l.Ob+G/4.C 

C CGNSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER 
GUl=-C. 9061798 
GU2=-0.53846931 
GU3=0 .O 
GU4=-GUZ 
GUS=-GUl 
GW1=0.2369268 
GW5=0.2369268 
GW4=0.47862 067 
GW2=0.47862867 . . 
GW3=0.5688888 

C CCNSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER 
C THE FOLWWING BREAKS THE SURFACE -INTO SEGMENTS DC CENTIMETERS LONG 
C BY LINE INTEGRATION USING STEPS Of LENGTH OX FOR THE INTEGRATION 

NSUB=l 
XlhSUB)=-EP 

1002 AL=O.COO 
R=Xl NSUB) 

1001 R=R+CX 
ALO=AL 
AL=ALtlDX+SQRTl1.0+lDHlR~**2)~~ 
IF(l(CCZ-AL).LE.O.@I.ANO.((DCZ-ALOl.GT.O.01~ XH(NSUB)=R 
IFlAL.LT.DC)GO TO 1001 
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kRITE(br3521 AC,NSUB 
352 FORMAT ( ’ AL=‘,ElS.B, NSUB=‘,I41 

NSUB=NSUB+l 
X(hSUBI=R 
IF (K.LT.EPI GO TO 1002 
N=KSUB-1 
kRITEIG,?SlI N,NSUB 

251 FORMATI ’ N=‘,I4,’ NSUB=‘,I4) 
DO 1004 J=l,NSUB 
IF I J.EQ.NSUDI XNINSUBI=D.O 
XXX=XlJ) 
XMD= XM(Jt 

1004 WRITE (6,1003) XXX,XMD,J 
1003 FDRMAT 16H XI JI=,E15.8,9H XHIJt=,E15.9,3H J=,I31 

C THIS ENDS THE SURFACE SUBDIVISION 
hMC=N-1 
tiM3=N-3 

C DIMENSIGN OF FINC,F IS N 
DPIF-0.7653982 

C MATRIX FILL IN 
DO 3661 IR=l ,N 
00 3661 IC=l,N 

3661 C(IR,ICt=CO(IR,ICI 
C THIS COMPLETES THE FILLIN OF THE MATRIX 
C NCNSYMMETRIC CROUT 
c FIRST COLUMN OK 
C TO GET THE FIRST ROW 

DO 10 J=2,N 
10 Cl1,J)=Cll,J)/Cl1,1) 

C NOW WORK ON ROW AND COLUMN SET K 
DO 11 K=2,N 
KMC=K-1 
KPO=K+l 

C TO GET DIAGONAL ELEMENT 

S=CMPLX(0.O,O.OI 
00 12 IK=l,E(IO 

12 S=S+C(Kq IKt+Ct IK,KI 
ClK,KI=ClK,Kt-S 

C TO GET ELEMENTS IN COLVMN K BELOW RDW K 
IF (KPO.GT.Nl. GO TO 17 
DO 13 IROW=KPOvN 
S=CMPLxtO.O,Q.OI 
DO 14 JJ=l,KMC 

14 S=S+CtIROW,JJI*C(JJ,KI 
13 CIIROh,K)=Ct IRD\I,K)-S 

C TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K 
00 15 lCDL=KtiD,N 
S=CMPLX( 0.0.0.0t 
DO 16 JR=l,KMD 

16 S=S+ClK,JRt*CtJR,ICOLt 
15 C(K, ICOL I=lCtK,ICOLl-SI/CIK,KI 
I?’ COAT ZNUE 
11 CENT INUE 

C THIS ENDS THE MATRIX FACTORIZATION 
WRITE (6.1222) M,NE 

1222 FORnAT(3H N=r 13r4H WE=,E15.81 
TH1=66.0*3.14159/180.0 
WRITE (6,9333 t .THI 

9333 fORMAT(9H INC ANG=vEl5.81 
C THI Ifi THE ANGLE OF INC. MEAS. FROM THE +VE X AXIS 

STH=SIN( THI I . 
CTb=COS( THI I 

C THIS FINCS THE INCIDENT FIELO ION THE NJTH SEGMENT 
DO 455 NJ=l;N 
XG=XMlhJ) 
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C 
C 

THE SIGN ON THE ‘INCIDENT FIELD HAS BEEN ADJUSTED TO AGREE WITH 
THE INTEGRAL EQUATION 

r TAPPERED ILLUMINATTCN 
IF(XG.LE.((WE*l.Oi-EP1) F(NJT=CMPLX(O:O,O.OT 
IF(XG.GE.(EP-((.O*WEI11 F(NJI=CMPLX(O.O,O.O) 

. . 

IF((XG.GT.((l.O~WE)-EPI).AND.(XG.LE.((2.O*WE)-EP))~ 
2 F(NJ7=F(NJI*(O.S+(O.S*S(N((G/Z.O)+(XG 

IF((xG 
-((1.5*WEI-EP)OTT 

.GE.(EP-(Z.O*WE))T .AND.(XG .LT. (EP-(l.O*WE) 1) 1 
2 F(NJT=F(NJ)*(0.5-(0.5*SIN( (G/Z.OT*(XG 

CCNT IhUE 
-(EP-(l.S*WET)))lI 

455 

2948 
C 
C 

RRITE(6r2948) (NJ,F(NJl,NJ=l,NI 
FOPMAT(’ ’ 1’ INC FIELD F(‘,14;‘)=‘r2E15.13) 
THIS BEGINS THE BACK SUBSTUTION 
CONVERSION OF SOURCE SIDE 

F(lT=F(l)/C(ltlj 
00 90 IJ=ZvN 

91 
90 

C 

‘175 
160 

C 

554 
553. 

9553 

9554 

310 

C 

317 

S=CMi’LX(C.O,C.OT 
IJMO=IJ-1 
II@ 91 IK=l,IJMD 
S=StC(IJ,IK1+FlIKT 
F(IJ)=lF(IJT-ST/C(IJ,IJl 

N&d FOR FINAL BACK SuBSTITUTIOh 
hHC=N-1 
00 160 L=l,NMO 
K=N-L 
KPC=Kt 1 
S=CMPLX(0.0,0.0T 
00 175 JO=KPO,N 
S=StC(K,JOI*F(JOT 
F(C)=F(KI-S 
THIS ENDS THE BACK SUBSTITUTIONS 
00 524 IKUR=l,N 
bAf=cA~s(F( IKUR) T 
ANF=S7.296*ATAN.Z lAIMAG(F( IKUR) 1 ,REPL(i=( IKURT )T 
W’RITE(6;553) IKUR,AAF,ANF 
FORMAT (’ ‘r’F(‘,14.,‘)=‘, El 5.8, ’ AT ANGLE=‘,E15.8) 
DO 9553 IRRO=l,N 
INC= IRRO-1 
Y(l(=CABS(F(IRRDTI 
XRRO=FLOAT( (RRDT 
CALL PLOT(XRRO,Y,l,IND,5.00,0.0) 
DO 9554 IRRO=l,N 
IND=TRRO-1 
Y(1)=57.295BrATAN2(AIMAG(F(IRROT1,REAL(F((RRDTTT 
XRRO=FLOAT I IRHO) 
C4LL PLOT(XRRO,Y,l,IND,lBO.O,-1BO.C) 
00 317 JNX=lr369 
THS=0.01745329+FLOAT(JNX)/2.0 
T=CMPLX(O.O,O.OT 
DO 310 I=l,N 
XN=XM(Il 
THN=1.5707963+ATAN(DH(XNTT 
T=T+ ((F(I~~CEXP(C~PLX(O.O,G*((XN*COS(THS)~+(HIXN~*S~N(THS~~~~~~ 

2 *COS(THN-THSIT 
******Se** THIS CORRECTS THE OUTPUT TO TRUE HAG. FIELD 
T=T*STS 
CM=CABS( TI 
lJB=2O.O+ALOGlO(CM~ 

.CANG=57.296+ATAN2(AIMAG(TT,REAL(TT) 
THSD=THS*57.296 
ABES( JNXT=CH . 

WRITE (6,312) CH,CANG~THSDID~ 
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312 FDRMAT (18H RELATIVE H FIELD=,El5.8,7H ANGLE=,E15.8, 
2 23H ANGLE FRON HORIZONTAL=,ElS.B,6H 

DO 9500 JC=lr360 
DB=.E15.8) 

Y(lT=ABES(JC) 
U=FLDAT(JC)/Z.O 
IhlD=JC-1 

9500 CALL FLOT(U~Y,lrIND~50.0,O.O~ 
STOP 
END 

FUNCTION H(X) 
C THIS CEFINES THE SURFACE 

CDNMON /PIG/ AQNE,CONE,PONE,ATWO~CTWD~PTNO~N 
~H=AQNE~SINllCONE~X~+PONE~+ATWO~S~N~lCT~O~X~+~TWO~ 

RETURN 
END 

FUNCTION DH(X) 
C DH(X) IS Tl-E DERIV. OF H(X) 

COMMON /PIG/ AONE,CQNE,PONE,ATWO,CTWOIPTWOtN 
DHsAONE*CONE*COS ( (CONE*X 1 tPONE~tAT~O*CTWO*COS( lCTWO*XItPTWD) 
RETURN 
END 

C 
FUNCTION COlMR,MCT 
THIS GIVES THt OLD MA.TRIX COEFFICIENTS 
COMPLEX CD 
COMPLEX DJC 
COMHON/GASSN/ GU1,GU2,GU3,GlJ4,GU5,GUl,Gbd2,GW3,GW4,GW5 
COMHCN/HCG/ XM(400) ,G,Xl400) 
COMMOh /DOG/ DJC 
COMPLEX AHAN 
IF(MR.NE.MC) GO TO 100 
CO=cHPLX(0.50D,0.01 
GO TO 200 

100 COhT INUE 
XMb’=XClMRt 
HXt’M=Hl XMMI 
EPL=X (MC 1 
EPU=X lMC+ll 
CVDFEP=l EPU-EPL) /2.D 
DVSMEP=l EPUtEPL)/Z.O 
XUS=GUS*DVDFEPtDVSMEP 
XUI=GUl*OVDfEP+DVSMEP 
XU2=GUZ*DVDFEP+DVSMEP 
XU3=GU3*DVDFEP+DVSMEP 
XU4=GU4*DVDFEP+DVSMEP 
HXUl=H( XUl 1 
HXUZ=H( XU2 I 
HXU3=H( XW3 1 
HXU4=H( XU4 I 
hXUS=H( XU5 1 

.DHXUl=DH(XUl) 
DHXUZ=DH(XUZT 
DHXU3=DH(XU3) 
DHXU4=DHlXU41 
DHXUS=DHlXUS) 
CO=DVOFE I’*:( 

2+(GWl*AHAN21 LG*SQRT( L (XUL-XMMl**ZT t( IHXUl-HXMMT**Z) 11 
2 +II-DHXU1*lXMM-XU1T)tlHXMM-HXUl~~ 
2/SClRT(~~XMM-XUl~**2)+((HXMM-HXUlT**2T~~ 
2+(GW2*AHAN21lG*SQRT~((X02-X~M~~~2~tllHXU2-HX~M~~~2~~~ 

. 2. *( (-DHXIJZ+(XMM-XUZT )+IHXMM-HXUZ) 1 
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i.?/SQRT(( (XHM-XU2~+*2J+((HXMM-HXU2)*+2JJJ 
2+(GW3~AHANZl(G~SQRT((IXU3-XMn)e+2)+I(HXU3-HXMMJ*~2JJJ 
2 *((-DHXU3*(XM~-XlJ3)J+IHXMM-HXU3J J 
t/SQRT(((XMH-XU3J*+2)+(IHXMM-HXMM-HXU3J**2~JI 
2+(GW4*AHA~ZltG*SQRT( 1 (XU4-XMMI**21+( (HXU4-HXMMI**LI 1 b 
2 *( (-DHXU4*( XMM-XU4J J+(tiXMM-HXU4k J 
~/SQRT(((XRM-XU~J**~I+I(HXMM-HXI’~M-HXU~J**~~~J 
2+(GW5*AHAN21(G~SQRTC((XU5-XMM)*92)+((HXU5-HX~MJ4*2JJJ 
2 4( (-DHXU5*~XMM-XU5I I+(HXMM-HXUSI 1 

2/SQRT((~XMM-XUSJ**2)+((HXMM-HXUS)**2)))~ 
CO=CO*DJC 

,200 COhT IhUE 
RETURN 
END 

117 



C 

C 

C 
c 

1002 

l& 1 

THIS I-S TE CASE USING TWO PDINT INTEfiPOLAil0N 
THIS PROGRAM USES GAUSSIAN INTEGRATION to GET MATRIX ELEYENTS 
NSUB SFGHZNTS HAVE N HlDPPINTS 
NSu6 IS THE SUBSCRIPT HtICH CCIUNTS THE END POINTS 
N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS 

HATCH H&X SLOPE SO THAT THE X IEICRPNENTS ARE SMALL ENOUGH 
EP IS THE END PUINT 
CUHPLEX S(VN,SST 
COMPLEX S *CD 
COMPLEX FSS 
CUMHON/GASSfd/ tUl,GUZ,GU3,CU4,GUS rGW1 ,GW2tGW3,GW4,GWS 
COMPLEX FINCi 20) rSTS 
CmHf3N /PIG/ AONE,CONE,P,UNE,ATWU,CTWO,PTWO,N 
CC’MPLEX C(156,150) 
COMMON/ HOG/ XM(400),G,X(4001 
COMWbN /DOG/ CJC 
COWDLEX DJC 
COMJLEX F~400)rFP~4001,SS,T,CTEST 
COMPLEX FIN 
CUMPLEX HAN2 
[1lt!fNSIClN ABESf 360) cY( 101 
liE IS THE ELECTRICAL WAVELENGTH 
kE=25.C 
G=6.2831853 /WE 
AOKE=5.O 
CCINE=6.2831 O/200. C 
PCNE=G .c 
ATWO-O. G 
CTWD=?).C 
PTWD=O.C 
DC=RE/15.D 
DX=DC/ 1CLC.c. 
DC2=DC/2.C 
EP=200.0 
STS=DC*CMPLX(-0.7C711 ,-I).707111/(2.~9~QRT(WE)) 
DJC=CHPLX~O.O,l.OI*G/4.0 

CONSTANTS FOP GAUSSIAN INTEGRATION 5 TH ORDER 
GUl=-0.9061798 
GU2 =-G. 53846931 
GU3=0.0 
GU4=-GU2 
GU5=-GUl 
GUl=i!. 2365268 
GWS=C.236S268 
GU4=0.47862867 
GWZ=C).47862F67 
GH3=0.5688888 

CONSTAF(lS FOR GAUSSIAN INTEGRATICN 5 TH ORDER 

THE FOLLOWING BREAKS THE SURFACE’INTO SEGMENTS DC CENTIMETERS LONG 
BY L INL IhTEGRATlON USING STEPS OF LEKGTH DX FOR THE INTEGRATION 
blSUB=l 
X(NSUBb=-EP 
AL=0 .(iffC; 
K=X (NSUB) 
R=RtDX 
ALO=AL 
AL=ALt(CX*SQkT(l.Qt~DH(Rl**2)~~ 
IFI((Dt2-AL1.LE.O.O~.AND.~~DC2-ALO~.GT.O.~~~* XM INStiBl=R 
IF(AL.LT.DC )C(1 TO 1001 
WRITE(6.352) AL,NSUB 

352 FORMAT ( ’ AL=’ 1E15.8,’ NSUB=’ , I4 1 
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NSU8=NSUR+1 
X(NSUB)=R 
IF (R.LT.EPI GO To 1002 
N=NSUB-1 
kRITE(6,251 t N,NSUE 

251 FbRMAT( ’ &=‘,I41 NSUB=’ ,141 
DO 1004 J=l ,NSUB 
IF (J.EQ.NSUHI XMINSUB)=O.O 
XxX.=X ( J b 
XMD= EH(JI 

lOO+ \iRITE (6rlOQ31 XXX,XMD,J 
1003 FORMAT (6H X(JI=,E15.8,9H XMIJb=,E15. Br3H J=,I3) 

C THIS ENDS THE SURFACE SUBDIVISION 
C THI S INSUUES THAT N IS ODD 

UK=0 
5733 KK=KK+l 

IF ((Z*KK-11.EC.N) .GO TO 5731 
IF (Z*vK.EO.NI Gc) TO 5732 
GO Tll 5733 

5732 N=N- 1 
5731 CONTINUE 

WRITE 16r3728) N,KK 
3728 FORMAT 1 ’ ‘,‘CORRFCTED VALUE OF N=’ ,14,‘KK=‘,I4,‘2*KK-l=N’) 

NYCl=N-1 
NM3=N-3 

C LIIMENSION OF FINC,F IS N 
DPIF=0.7853982 

C MATRIX FILL IN 
C DO HY COLUblWS 
C FUR FIRST COLUMN 

DO 3661 I=l,KK 
3661 C~1,1l=C~~2*1-1~1~+~C00/2.0) 

c. FUR LAST COLUMN 
DO 3678 I=l,KK 

3678 C(I,KK)=(CD(2*I-1,2*KK-2J/2.C~+C~~2*I-l,2*KK-lJ 

C FOR yIDOLE C@LUF?NS 
00 56 I=1 ,KK 
11=2*1- 1 
KKMl=KK-1 
DO 56 J=Z,KKML 
J J= 2*J- 1 
C~I,JI~~CO~II,JJ-11/2.o)+co~ IItJJ l+(CO~II~JJ+1l/2.0~ 

56 CONTINUE 
C THIS COflPLETES THE FILLIN OF THE MATRIX 
C N~NSYM~~ETI~IC cRouT 
C FIRST COLLCIM OK 
C TWO GET FIRST ROW 

10 
C 

C 

12 

C 

14 
13 

C 

DO 10 J=Z,KK 
C( leJ)=C( l.JI/C( 1~1) 

NOW IRK aN ROW AND COLUMN SET K 
DO 11 K=Z,KK 
KMO=K-1 
KPO=K+l 

TO GET DIAGONAL ELEMENT 
S-CMPLXI O.O,c;.n) 
DO 12 IK=l,KMC! 
S=S+CLK,IK)*C(IK,K) 
C(K,KI=C(K,KI-S 

TO GET ELEMENTS IN COLUMN K BELOW ROW K 
IF(KPO.GT.KK) GO TO 17 
DO 13 IRUW=KPO,KK 
S=CfqPLX (0 .o,o .o b 
DO 14 ;IJ=l,KMO 
S=S+C( IRDW.JJ)*C( JJ,K) 
C(IROW,~l=~(IROW,K~-S 

TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K 
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16. 
15 
17 
11 

1222 

9333 
C 

C 

C 
C 
C 

C 

DO 15 ICOL=KPG,KK 
S=CMPLX (0 .c:,‘; .3 ) 
Do 16 JR=l,KMo 
S=S+C(K,JR)*C(JR,ICOLl 
C(K, ICoL)=(C(K,rCOL)-S)/t(K,K) 
CONTINUE 
CONTINUE 
WRITE (6.1222 1 KKtWE 
FURMAT( ” ’ ;’ KK=’ ,I4,’ WE=‘,E15.8) 
TH=3.1415927*60.0/180.0 
THDEG=5?.29578*TH 
WRITE (6.9333) THPEG 
FORMAT (9H INC ANG=, E15.81 
Tw Is THE ANGLE OF INCIDENCE FKOY THE HORIZONTAL 
STH=SINL TH) 
CTH=COS(TH) 
THIS FINDS THE 1NCIOEN.T FIELD ION THE NJTH SEGMENT 

ViPERED ILLUt’INhTION t**++t**lc *+**+*o* *it***+*+ 

DO 455 NJ=1 ,KK 
XG=XM(2%J-1) 
FP(NJI=CEXP(C~~PLX~~.O1G+o+IH~XG~~CTH~+~H~XG~*STH~~~~*CMPLX~-l.O,~.~~ 
INCIDENT FIELD HAS BEEN ADJUS-fED TO AGREE dITh INTEGRAL EPTN. 
IFIXG.LE.((UE+l.aI-Epll FP(NJJ=C~PLX(O.~~I~.~I 
rFcXG.Cr.cFP-l.Q+~E,, FP(NJ)=C~~PLX(?.C,C.CJ) 
IF((YG.GT.((l.U~~WEJ-EP~).AND.(XG.LE.((Z.~~~lEJ-EP))) 

2 FPINJ~=FPl~J~~IO.5+lO.5~SIN~~G/2.~-~ )*(XG -I11.5+WEJ-EPb)))) 
IF~~XG.tE.~~P-~2.0*W~~~l.AN~.~XG.LT.~EP-~l.~~~WE~l~~ 

2 FP~NJl=FP~NJ~~~O.5-~0.5~~S1N~~~/2.O~~~XC-~~P-~l.5+WE~~l~~~ 
455 CONTINUE ’ 

WKlTE(6r9410) (NJ,FP(NJ),NJ=l,KKI 
94 16 Fc) RMAT ( ’ ‘,‘INCrDENT FIELIJ Ff~C(‘,I4,‘,=‘;2El5.8) 

C THIS BEGINS TtiE BACK SUBSTUTION 
C CClWf’?SICIN OF SOURCE SIOE 

FP(I)=FP(l)/CIl,l) 
DO 90 I’J=2,KK 
S=CMPLX(O.O*O.Pl 
IJMU=IJ-1 
UU 9\ IK=l,IJMCl 

91 S=S+C( IJ, IK J+FP( I K1 
90 FP(IJJ=(FP(IJ)-SJ/CIIJ(IJ) 

C NOW FOR FI I\IAL BACK SURSTITUTION 
NMlJ=KK- 1 
DO 160 L=l,hMO 
K=KK-L 
KPO=K+l 
S=CMPLX IO .o *cl .o 1 
DO 175 JD=KPO,KK 

175 S=S+C(K,JD)*Fti(JO) 
160 FP(kb=FF(K)-S 

KK41=KK-1 
C TO RECONSTRUCT Ttc CURRENTS 

i)U 47 IGA=l rKKb’1 
47 F(Z*IKA)=lFP( IKAt+FP( IEtA+11 j/2.;: 

00 48 IRA=l,KK 
48 F(Z*IRA-l)=FP(IKAl 

WRITE (hr49701( (J,FP( Jb I rJ=l ,KKJ 
4970 FORHAr(’ ‘,‘FPt’, I’j.‘I=‘,ZElS.8) 

URITE (6,553) (F(K);K=l,NI 
553 FORMAT (6H FIKI=,ZE15.8) 

DO 9553 IRRO=l,N 
INO=IRRO-1 
Y(l)=CABS(F( IRRO)) 
XRPQ=FLOAT ( IRRD) 
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9553 

9554 
C 

310 

CALL PLaT(XRRO,Y,l,IND,5.~O,~~.~l 
DO 9554 IRRO=l,N 
IND=IRRO-1 
Y~1J=57.2958*l)T~,yrz~AIMAGIF~IRRO)I,REAL(F(IRRO)~~ 
XRRO=FLOAT( IRRO) 
CALL. PLQT(XaMO,Y,l, IND,180.0,-183.:)) 
THIS ENDS THE BpCK SUBSTITUTIONS 
DO 317 JtiX=1,36d 
lHS=~.017~324*FLITlJNX)/2.? 
T=CHPLX(O.O,O.OJ - 
DO 310 I=l,fl 
XN=XMi I ) 
lHN=1.5707563+ATAh(DH(XN)) 
T=Tt ~IF(I)*CEXP(CMPLX(O.~,G~((~N~COS(THSl)+~ti(XN)~S~N(THS)))))) 

2 *CCS (ThN-THS)) 
C +******f** THIS CORRECTS THE OUTPUT TO TRUE ELE. FIELD 

T=T+STS 
Cbj=CABS(T J 
DB=20.0IALOGlO(CY) ’ 
CANG=.57.2?h*AT4MZ(AIMAG(TJ,REAL(T)l 
THSD=THS*57.296 
A6ES(JNX)=CM 

317 WRITE (6,312) Cfi,CANG,THSO,CB 
312 FORMAT (LBH RELATIVE E FIELD=,E15.8,7H ANGLE-rE15.8, 

2 23H ANGLE FROM MORlZUhTAL=,E15.8;6H o:i=, E 15.8) 
00 9500 JC=l,‘JhD 
Y(l)=ABES(JC) 
U=FLOAT(JCl/Z.n 
IND=JC-1 

9500 CALL PLOT(U,Y,1,(ND,50.G,~.0) 
STOP 
END 

FUNCTION H(X) 
C THIS DEFINES THE SURFACE 

CCNHON /PIG/ AONE,CONE,PONE,ATWO,CT~tl~PTWU,N 
H=ALlNE*SIN( (CONE~XJtPONE)tATW~+SINo+PTWO*X)tPTWOl 
RETURN 
EN0 

FUNCTICh DH(X) 
C DH(X) 15 THE DERIV. OF H(X) 

COMMON /PIG/ AONEICONE,PONEIATtiO,CTWO~PTWO*N 
(jH=AOME’CONEeCOS( (CONE+X) +PONE )tATkil*CTtiO*COS( (CTwO*X)tFTwO) 

RETURN 
END 

.c 
FUNCT ICN CO(MR,HC) 
THIS GIVES THE OLO MATRIX COEFFICIENTS 
COMPLEX co 
CCHPLEX UJC 
CCMHON/GASSN/ GUL,GU2,GU3,GU4rGU5rGWlrCW21GH3rGH41GW4,GW5 
COMMON/HOG/ XM(40Cl,G,Xi400) 
CWMON /DOG/ DJC 
COMPLEX AHAN 
IF(MR .NE.RC ) GO TO lG0 
c0=CHPLX(0.503,3.t) 
GO TO 200 

100 CONTINUE 
XMM=XW~l 
HXhH=H ( XMM) 
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EPL=X(MC I 
EPU=X (MC+l) 
DVDFEP=(EPU-EPL)/Z.D 
DVSHEP=(EPU+EPL J/Z.G 
XUS=GUS+DVDFEP+DVSMEP 
XUl=GUl*DVDFEP+DVSMtP 
XU2=GU2*DVDFEPiOVS?EP 
XU3=GU3*DVDFEP+DVSvEP 
XU4=GU4+0VDFEP+DVSMEP 
ATDHl=AT4h(DH(XUl 1 I 
ATDHZ=ATAN( OH( XUZ) ) 
ATDH3=AT4N( DH( XU3 1) 
ATDH4=ATAN( Dti( XU4 J ) 
ATOkfS=ATAN(DH(XU5)1 
HXUl=H(XUl t 
tfXl&=HtXU2) 
tiXU3=H( XU3) 
HXU4=t+( XU4) 
HXUS=H( xu5, 
CO=DVDfEP*( 

2+GWl~AHAN2l~G*SOKT~~~XUl-XMM~*~2~+~~H~XUl)-HXMM)*~2)))*S~RT~l.O+~ 
2DH~Xllll~~2)l*~~-SIN~~TDHl~~~XMM-XUl~~+~COSf4TCHl~~~HX~M-HXUl~)~ 
2/SQRT(((X~M-XUl1~~2~+((HX~R-HXUl~~~Z~~ 
2+6YZ~AHAN2l(G~SQRT(f(XUZ-X~M)~~2)+((H(XU2)-HXM~)~~2t~)~S~RT(l.~+( 
~DH~XU~)+*~)~~~~-SIN~~TD~~~~~XM~-XU~~)+~COS~ATDH~I~~HX~~M-HXU~~IJ 
2/SORT(LIXfdM-XU2)**2l+~~HXMbl-HXU2l**2)1 
2+GW3*AHA~2lfG~S~~T~~(XU3-X~M~~~Z~+~~H~XU.3~-Hx~~l~~Zl))~S~RT~l.~+~ 
2Dll(XU3)*+2) I*( (-SIN(ATDH3)+( 8MM-XU3) )+(COS(ATUH3)+(HXMM-HXU31 I I. 
Z/SURT(((X~H-XU3lc~Z)+((HXHH-HXU3let2)) 
2+GW4+AYAN21(G~S~dT(((XU4-XMM)~~2~+~~li(XU4~-HX~MJ~~2~~~~SORT~l.@+~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Z/SaRT(I(XMf~-XU4)~*2)tl~~XM~-HXU4)~~2)) 
2+CW5~AHA~21(G~SORT~(~XU5-XMN~**E)+IIH(XU5’~-H~MMJ~~2~~~~S~RT~l.~+~ 
ZDH(XU5)~~2))+11-SIN(A~O~S)~~XM~-XUS))+~CflS(ATDHS)~(HXMM-HXU5))) 

2/SC’RT(((XMH-XUS)*+Z)ti(HXU5)*+2))) .-, 
CO=DJC*CO 

200 CONT I NUE 
RETURN 
END 
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FUNCTION PHANZl(Xl 
C THIS IS THE HANKEL FUNCTION UF TYPE 2 AbiD OF .ORDER 1 

DOUBLE PRECISION XD,DX~Al,A2rA3tA'+,A5,A6,HJl~fil~B2~BStB4rB5~AHJl; 
2TDX,Al,A2,A3,1\4,AS,A6,TlrTZ,T3,T4,T5,T6,T7,USQX,~b 

CCIIPLEX AHAN 
DX=DHLt 1 Xl 

. IF IX.GT.3.0) GO TO 200 
XU=CX*DX/9.0DtQQ 
Ai=-O.31761~-03+0.11C9D-64=XD 
A2=0.00443319U+~0+AlrXD 
A3=-0.039542t39D+66+A2*XD 
A4=C. 2 10935 73Dt “~T+A3*XD 
A5=-#.56249985DtOQ+A4 *XD 
A6=0.5D+bOtA5*XD 
HJ l=A6*DX 
01=-0.840C976U+00+0.#~27873Dt0O*XD 
82=0.3123951D'+dQ+Bl*XD 
R3=-1.31648270+0~+62+XD 
R4=2.1682709D+QOtB3*XD 
H5=0.221209lD+OP+B4*XD 
fl6=-0.636619RD+OO+I35+XD 
AHJI=(B6/UX)+i-.Jl*DLOG[DX/Z.G)+J,63661977 
AHAN21=CMPLX(S~GL(HJll,-StiGLo) 
GO TO 300 

200 TOX=3.O/DX 
A1=Q.il0113653D+60-0.00~20~33*TDX ' 
AZ=-0.00249511@+*~P+Al*TDX 
A3=.0OC171~5U+OO+ AZ*TDX 
A4=0.01659667U+QO+A3*TDX 
A5=I,.156D-(J5tA+*TUX 
Ab=O. 797884560+0O+AT+TDX 
T1=0.00679824D+06-0.000291660+6WT0X 
T2=~.00074348U+03+Tl*T~X 
T3=-0. b0637875D+OC+T2*TUX 
T4=O.O00C565ODtb5tT3*TDX 
15=0.1249.96120+3G+T4rTDX 
T6=-2.35619449Dt~!:c+TS*TDX 
T7=bX tT6 
DSQX=Ati/DSPRT(DX) 
AHAN21=CM~LXLSNGL(USQX~DCOS~T7)lr-SNGL(DS~X~DSIN(T7)l) 

3'30 CCWT I r\lJE 
RETURN 
END 
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FUNCTION AH/!,N201Xl 
C THIS IS THE HANKEL FUNCTION ‘OF ORDER 0 AND OF TYPE 2 

DOUBLE PRECISION XSQ,BlO,BB,B6,B4,B2,ClD,CB,C6,C4,C2,D5,D4,D3, 
2D2rDl,E5,E4,E2,El~EO,XD,DX,FO,E3,HJ,DSX 

COMPLEX AHANZO 
DX=DBLEL X 1 
IF (X.GT.3.0) GO TO.100 
XSQ=DX*DX/C.9D+Ol 
BlO=-0.394440-02+XSQ*O.210-03 
BB=O.O444479D+OO+XSQ+B1C 
B6=-0.3163@66D+OO+XSQ*B8 
B4=1.2656208D+OO+XSQ*B6 
B2=-2.2499997D+OO+XSQ+84 
HJ=l .OD+OO+XSCl*B2 
ClO=O.427916D-02-XSQ*O.248460-03 
C8=-0.4261214D-Ol+XSQ*ClO 
C6=0.2530O117D+OO+XSO+C8 
C4=-O.74350384D+OO+XSQ+C6 
C2=0.60559366D+OO+XSQ+c4 
HY=SNGL~0.36746691D+OO+O.6366l98D~DO~HJ~DLOG~DX/2.O~+XSO~C2~ 
PHAN20=CMPLX(SNGL(HJT,-HYI 
GO TO 200 

100 YO=3.O/DX 
L5=-0.72805D-03+XD*O.l4476D-03 
G4=0.137237D-02+D5+XD 
D3=-0.9512D-C4+D4*XD 
D2=-0.55274CD-02+D3*XD 
Dl=-0.77D-06+02*XD 
FC=0.797B8456D+OO+XD+D1 
E5=-0.29333D-03+XD*O.l3558D-03 
‘:4=-0.54125D-03+E5*XD 
E3=3.262573D-32+E4*XD 
i2=-C.3954D-O4+E3*XD 
El=-0.4166397D-Ol+E2+XD 
EC= (-0.78539816D+CO+XD*EL)+DX 
DSX-DSQRTtDX) 
AHAN20=CMPLX(SNGL(FO~DCOS(EO)/DSX)r-SNGL(FO~DSIN(EO)/DSX.?.) 

200 CGNT INUE 
RETURN 
END 
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SUBROUT-INEPLOT( X,Y,N,IND,YMAX,YMIN) 
DIMENS lil~blT1l91 ,YLABEL(6 ItY (lO)‘,MARK( l@) 
DATA MARK(l) ,‘dARK(Zt ,VARK(3) ,MARKCSt ,MPRK(6) ,NARK(7l,MARK(8), 

2:~AKK~9~,t~ARK~l0~,~~~ARK~4~/lH~,lti., ~HI,~~~U,~HIN,~HH,~H~,~HZ,~H-,~HX/ 
DATA IBLANK,NOPT,IPLUS/lH ,lHB,lH+/ 
IF (INU) l,l, 11 

1 hRITE(6r3) 
3 FORMATIlHl//25X,48HORDER IN WHICH PLOT SYMBOLS ARE USED *.IXONHlZ 

*-//33X, 3Yt:THE SYMBOL ($1 INUICATES OFF-SCALE DATA//) 
DC7J=9,119 

7 M( JI =VARK( 10 I 
NCCUN T= LCi 
SCALE=lCn.O/(YVAX-YMIN) 
LLL=(-YMIN*SCALEI+ll.5 
flO8J=l,6 
R=J-1 

8 YLABEL( JI =R*ZD.D/SCALE+YMIN 
WRITE(6,9) (YLABELI I), 1=1,6) 

9 FOR~~AT(6X,lPE9.2,5(lPE20.2~ / 1 
G’JTO 1?2 

11 NCOUNT=NCOUNT +l 
DD99J=l,119 

99 Ml J I= IBLANK 
, 

lF(LLL.GE.ll.AND.LLL.LE.llO~~~LLL)=MARKIl~~ 
IF’(NCDUNT-101 1339132,133 

132 OC89J=ll, 111~20 
89 M(JI=IPLUS 
133 OOZCJ=ltN 

L=(Y(JT-YHIN)*SCALE+O.5 * 
IF(LIl4~17,17 . 

14 IF(L+10)15,16,16 
15 M(l,=NOPT 

GOT023 
16 LL=L+ll 

M( LL)=MARK( J) 
GDT020 

17 tF(L-lOBTlBrl9,19 
1P LL=L+ll 

M(LLI=MARK(J) 
GOT 020 

19 M( 1191=NClPT 
20 CUNT INUE 

IFtNCOUNT-10)21,25,21 
21 WRITfTtr24) (t’( J 1, J=l,119) 
24 FORMAT( 1X, 119All 

GOT027 
25 WRITE(6r26) (X,(fl(J~,J=9,119)) . 

26 FORNATI lX1F7.3 ,lllAl) 
NCCUNT-0 

27 CCNTINUE 
RETURN 
END 
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APPENDIX B 
; 

. . :2 
I 

SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIflNS 

Several direct methods exist which find the solution.:vector, 

[Xl, when the system of equations ~ - 

(99) Ccl [Xl = [Bl 

is given. The two a&hods used here were the square root (or 

Cholesky).tithod for symmetric systems, and the Crout method for 

non-symmetric systems .(Ref. [33]). Both methods take advantage of 

the fact that a non-singular matrix [C] is equivalent to [L][U], where 

[L] is a lower triangular matrix and [U] is an upper triangular matrix. 

so 

. (loo) 

or 

22, R22 0 *. l 0 

'31 '32 '33 ' ' 

. 

$1 . . . . . %, 

i 11 '12 .** '1N 

0 
'22 -*' '2N 

'11 '12 l .' '1N 

c21 c22 . . . . 

= . . 

3 . ' 'NN. C -Nl .* -.a CNN 
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min(i,j) 
(lo!): k$ 

= 
Rik Ukj = cij 

since 

(102) !+k z 0 if k > i and 

(103) 
. 

ukj q 0 if k > j. 

In order to specify [L] and [u],N'+N unknowns must be determined. 

Since there are only N2 equations, (values of Cij), N unknowns may 

be specified. In the square root method the diagonal elements 

are assumed equal, i.e., 

U ii = R ii for i = 1, ..-, N 

which gives the N extra conditions; in the Crout method one set 

of diagonals is specified, namely 

(104) 'kk =7 fork=l, -a-,N. 

Suppose that [C] has been broken up into [L][U], then 

(105) CilC'Jl[Xi = LB1 

whence by defining 

(106) [RI = [Ui[Xi 

there results 
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"(107) CLICRI = LB1 

which has the solution 

(108) 
i-l 

ri = (bi - kl, Rik xk)/gii = 
for i=l,***,N 

and the sum is omitted, if i equals 1. Once the [R] vector is 

known the system 

(109) CUICXI = CR1 

is solved by 

(110) Xi = (ri - Uik Xk)/Uji for i=l,omo,N 
k=i+l 

where the sum is omitted if i equals-N. Wilkinson (Ref. [ 30) 

has shown that most of the error in a solution of Eq. (99) by 

triangularization methods comes from the decomposition of [C] into 

[L][U] and not in the double back substitution (Eqs. (108) and (110)). 

The details of the decomposition of [C] into [L][U] will now be 

considered. For Crout factorization the diagonal elerrents of [U] are 

set equal to unity leaving N2 equations and N2 unknowns in the set 

of Eqs.'(lQl), (102) and (103), which can be solved as follows: 

k-l 
(111) Rik = Cik - C Rim Umk for i=k,...,N 

IlFl 
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(W 
k-l 

'kj = 6 ('kj - J1 'km 'mj) for j=k+l ,***,N 

(113) 'ik =0 ifi<k 

(114) ukj = 0 if j < k. 

These equations are used in the order: first column of [L], first 

row of [U]; second column of [L], second row of [U]; third column 

of [L], ect. In a computer solution the elements of [U] and [L] may 

be written over the original matrix [C] as they are generated. Once 

this is done the matrix becomes 

FACTORED 

[I i 

'11 ' '12 l '1N 
. 
l * 

. 

C 
- : 

R22 l 

AND . . . . 

STORED !$,j, . . . . .'&NN 

and the fact that the diagonal elements of [U] are unity is used only 

in the previously described back substitution portion of the solution. 

If [C] is symmetric then [C] can be factored into 

(115) cc1 = CUT IN1 

where [U]? is the transpose of [U]. Equation (101) becomes 
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min of (i,j) 
(116) 1 

k=l 
Uki Ukj = cij. 

The ui j 's are found from 
, 

(117) 

(118) 

("9) 

020) 

and 

(727) 

ull =Kl 

'ij = cij/ul, for j=2,*.*,N 

U ii = ('ii - kil ki 
i-1 u2 )1/2 for i=2;-.,N 

i-l 

% = (Cij - kll Uki Ukj)/Uii 

= 

IJ.. = 0 
1J 

if i > j. 

The value of this method lies in the reduction of storage space 

required for a given N. With the usual Crout method N2 storage 

locations are required, but the square root method requires N(N+l)/2 

storage locations since only the upper triangular portion of [C] need 

be stored and [U] can be found using only the upper triangular part 

of [cl. 

A small trick is required if this saving is to be realized in 

practice, since in FORTRAN IV the use of the dimension statement 

"COMPLEX C(N,N)" would set aside NZ complex storage locations for 



the elements of [C] even if only the upper triangular part of [C] 

were to be filled in and manipulated. To economize on storage a 

way was found to load the elements of the upper triangular part of 

[C] into a linear array N(N+l)/2 positions long. It was convenient 

to preserve the double subscript notation for the matrix manipulations 

and use a simple formula to access the proper location in the singly 

subscripted linear array. A symmetric matrix [C] is shown in Fig. 43 

with the elements of the linear array S inserted into the corres- 

ponding locations of [Cl. The order of the matrix is chosen to be 

6 for this example. 

'4 '5 '6 

'7 '8 '9 slo sll 

s12 s13 s14 s15 

'16 '17 '18 

Fig. 43. --Storing a symmetric matrix in a linear array. 

Element cl1 is stored in position s,, al2 in c2, etc. The element 

'ij ( i 5 j) can be accessed in the following way. The rows above 

the i-th row contain N(i-1) - ((i-l)(i-2)/2) elements and in the i-th 

row there are j - i+l elements up to and including the one to be 

accessed, hence 
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(122) cij = s(N(i-1) - (i-1i(i-2) + j - i + 1) 

=(sN.i-[(i(iwl)) + N - j]) - 

In the programs the subscript manipulations are perfomled directly 

in the subscript or accessed by calling a function named ISUB(i,j) 

[&teger Subscript corresponding to i,j]. If, for example, cl5 were 

needed in a computation the element s(ISUB(1,5)) is used. Once the 

factorization is completed, the back substitutions are performed. 

Notice that in either the Crout method or the square root 

nethod there are two distinct steps. The first is factoring the 

matrix and the second is the back substitution. The first step is 

independent of the driving column [B] and hence need be done only once 

for any given matrix [C] so any number of driving columns may be 

considered without re-factoring [Cl. 
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