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A NUMERICAL STUDY OF ELECTROMAGNETIC SCATTERING
FROM OCEAN-LIKE SURFACES

R. R. Lentz
The Ohio State University ElectroScience Laboratory

CHAPTER 1
INTRODUCTION

The scattering of electromagnetic waves from the ocean surface
has been of great interest for some time. In this work the scat-
tering from one dimensional sea-like random surfaces {s ex-
amined by a variety of computational methods, with a view to
establishing what practical Timitations must be satisfied on such
surface parameters as radius of curvature, mean squared height, etc.,
in order that the statistical properties of the scattered radiation
may be calculated with reasonable accuracy. The results of the com-
putations are then used to discuss the applicability of the several
theoretical models for sea-surface scattering (geometrical optics,
physical optics, perturbation theory and the composite model) and the
prospect for direct calculation of the scattered fields from the
actual sea surface.

During the past few years, theoretical and experimental work here
and abroad (Refs. [1]-[7]) has led to an understanding of the mech-
anisms responsible for scattering and emission of microwaves by the
ocean. For off-normal backscatter, the "Bragg-scatter" from capil-
Tary and short wavelength components of the ocean surface, which

can be calculated by perturbation theory, has explained the angular




and polarization dependence of the microwave radar return. When
combined with the known height spectrum (Ref. [8]) of the ocean
surface, it explains the weak dependence of backscatter on electro-
magnetic wavelength and wind velocity. Near the specular direction,
i.e., near normal incidence for backscatter, the scattering is con-
trolled by the slope distribution of the large scale structure of

the surface. This part of the scattering is calculated by geometrical
optics, and explains the dependence of the emissivity of the surface
on wind velocity.

Nevertheless, the many assumptions required in finding the
scattered fields by the perturbation or geometrical optics approxi-
mations, particularly assumptions about the Gaussian character of the
surface height statistics, and the applicability of the theoretical
approximations to the actual sea surface, have led to considerable
discussion about the validity of the various theoretical solutions
(Ref. [9]). Since straightforward verification by measurement is
not practical, partly because of difficulty in the measurement process
itself and partly because of the difficulty in specifying exactly what
the surface was when the measurement was being made, it is desirable to
have a direct method for calculating the scattering from a specific
realization of the ocean surface. Direct calculations will allow a
realistic assessment of the validity of the various theories, without
any assumptions about the statistical properties of the surface. If
a statistical average of the scattered fields over an ensemble of

surface representations is requived, it can be obtained (albeit at




some cost) by a direct summation of the scattered fields from the
individual surface representations.
The specific surfaces considered here are cylindrical perfectly

conducting surfaces as shown in Fig. 1. The surface generators are

y

THI

V4

=2 7

4

z

Fig. 1.--The scattering surface.

parallel to the z axis, and the surface elevation is specified by
y = H(X). The incident field is a plane wave whose direction of
propagation Ties in the x,y plane and makes an angle of THI with
the positive x axis, while the observation direction makes an angle
of THS with the positive x axis. Time dependence is assumed to be
ej""t and has been suppressed throughout. All distances are measured
in centimeters.

Three different methods for calculating the fields from such
a surface are developed here. Although the details are discussed

later it is desirable to outline each technique at this time.




The first approximate meihod is the geometrical optics tech-
nique (G.0.). For a given surface, and given scattering and in-
cidence angles, the program locates the specular points on the
surface (points where the local incidence angle equals the Tlocal
scattering angle) and evaluates the radius of curvature at each
specular point. The scattered far field is then found by summing
the contribution from each of the specular points, including an
extra 90° phase shift for the fields scattered from concave up
portions of the surface. Shadowing of one section of the surfacé by
another section may be taken into account.

The next approximation is the physical optics (P.0.) technique.
For a given surface the scattered field is computed by integrating

over the approximate surface current

(1) J =2 x A

where n is the outward normal to the surface and H4 is the incident
magnetic field. Shadowing is always taken into account, as this is
implicit in the physical optics formulation.

The Tast method developed here is based on a point matching
solution to the integral equation satisfied by the true surface
current 3;. The scattered fields are then found by integrating
over the surface currents. Test cases (e.g., the wedge
problem) have shown this method to be by far the most accurate;
hence it is used as a standard to which all others are compared.
However, because of computer storage limitations, this program can

not handle surfaces whose arciengths are greater than ~60 electrical




viavelengths, vhevreas the G.0. and P.0. programs can, in principle,
handle surfaces of any length provided sufficient computer time is
available.

In order to avoid edge effects, tapering of the incident field
is necessary in the integral equation solutions. The same tapering
has been applied in both the G.0. and P.0. solutions so that they
can be directly compared to the exact fields. The tapering applied
here is illustrated in Fig. 14 of Chapter IV.

In the succeeding chapters each of these methods will be
described in detail. By comparing the results for a series of

test surfaces, the limitations of each method are established.




CHAPTER II
THE GEOMETRICAL OPTICS METHOD

The first approach to examining the scattering from a one
dimensional rough surface is the geometrical optics method. By
this is meant that the scattered field is computed by finding
the specular points on the surface, and associating with each such
point a scattered field amplitude and phase which depend on the
geometrical properties of the surface at the specular point.

A. Geonmetrical Optics

Conservation of energy flux along a ray path will provide us
with the geometrical optics field strengths (Ref. [10]).

Consider the two dimensional ray tube shown in Fig. 2. If Uy
is the field strength at some reference point at a distance p from
the caustic and u is the field strength at distance p + 2 from the

caustic, then the conservation of energy in the ray tube requires

dé
CAUSTIC
¢
. o g

Fig. 2.--Ray tube geometry.




(2) ug p do = u2 (p + 2) do

so that one may write

(3) u(e) = g o eI

The factor e'jk%5 with Ag the electrical wavelength and

(4) k = Zw/he

accounts for the phase shift between p and ptL. Equation (3) fails
at ¢ equal to -p. This location (at the confluence of the rays) is
termed a caustic. Kay and Keller (Ref. [11]) have demonstrated that
at points beyond the caustic (% less than -p) Eq. (3) is still valid
if a phase shift of +90° is introduced.

To use geometrical optics it is necessary to find all points
on the scattering body at which the law of reflection is satisfied
locally for the particular set of THI and THS under consideration.
Once these points are located Eq. (3) is used to calculate the scat-
tered field. Figure 3 shows the geometry for the calculation of
the scattered field from one such specular point. By the law of
reflection, the local incidence and scattering angles are equal and
are marked ANG in the figure. The distances marked re and p are the
radius of curvature and the distance from the specular point to the
optical image of the source (i.e., the caustic distance) respectively.

The distance p is given by a cylindrical mirror formula as




y  OBSERVATION
POSITION

SOURCE
POSITION
THS ~
THI
AN
ANG
Ji\J OPTmAL\x, f IS THE NORMAL
/ IMAGE OF TO THE SURFACE
THE SOURCE
X
0
Fig. 3.--Specular point geometry.
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(5) P IrCT'cos {ANG) %

In the cases considered here the distance to the 1ine source, 20,

will be assumed to be infinite, hence

[r.| cos (ANG)
) 2

(6)

©

If the specular point is taken as the reference position then Eq. (3)

gives ug the scattered field at the observation position

l o -jkg
S Ru'i o+e €

R u; {E‘e-ij/JE'for ¢ >> p (far field)

(7) u

1l




vhere u. is the incident fiel

ne Ui 1 ne inciaent 1 ia

evaluated at the

[72]

pecul
D

(=3}

v point and

R is a reflection coefficient. If the electric field is parallel
to the surface genevators (T.M. case) and us is taken as the inci-
dent electric field, then Ug is taken as the scattered electric
field with R = -1. If the magnetic field is parallel to the surface
generators (T.E. case) and u; is taken as the incident magnetic field,
then ug is the scattered magnetic field and R = +1. For dielectric
scatterers the corresponding Fresnel reflection coefficients are to
be used for R. This makes the geometrical optics program the easiest
to convert from perfectly conducting bodies to penetrable bodies.

Up to this point the scattering surface has been assumed to
be concave down at the specular point. If the body is concave up
at the specular point then the caustic position is above the surface
instead of below, the scattered rays pass through the caustic on
the way to the observation point if the observer is in the far field,
and thus a phase shift of +90 degrees must be introduced. The

‘distant scattered fields may then finally be written

Jlrcl cos (ANG) e-jkg

S _ i
(8) Ez(z) = —Ez 5 7z €

Specular
Point

for the T.M. case and

~Jke

. |r | cos (ANG)
(9) H;(ﬁ) = H;‘ j c 5 S €
Specular Ve

Point
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for the T.E. case, where ¢ is +1 if the surface is concave down at
the specular point and +j if the surface is concave up at the specular
point.

On an actual surface there may be several specular points con-
tributing to the total scattered field, so it is important to pre-
serve the phase relationships among them. Phase reference is taken

at the origin, and an incident wave of unit amplitude is assumed,

i.e.,

10) g =eF R (1 case)

(1) H; = e_JE- R (T.E. case)

where

(12) K-R-= %g-(-x cos (THI) - H(X) sin (THI)).

With the aid of the geometry shown in Fig. 4, the scattered far
field is found from Egs. (8) and (9), with ¢ = 2+ 255 where

(13) 8y = -R * 65 = - x cos (THS) - H(x) sin (THS),
and
(14) D = cos(THS)x + sin (THS) y




THS

Fig. 4.--Far field scattering geometry.

is the unit vector in the scattering direction. Since % >> s

Eq. (8) becomes, for the T.M. case

(ang) KM
(15 E(y) = - 4|r°' — e, 0
o
where
(16) Q(x) = x (cos (THI) + cos (THS)) + H(x) (sin (THI)

+ sin (THS)).

Similarly, for the T.E. case

r_| cos (ANG) 'jk21 .
(17) Hy(27) = {l c . e e edkQx)

./’!I]‘

11
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The total scattered field in the THS direction is the sum of the
fields scattered by each of the specular points. The numerical
values of the scattered fields as calculated by the programs of
Appendix A, and plotted in the various figures of Chapter V are
denoted by Ei and Hi, and have been normalized with respect to

. s s
the actual fields Ez(21),Hz(z]) by

s s
E E2(24)
z jk21 z'\"]
(18) = /o, e
HS ] H (3 )
z z'*7

It is clear that Eqs. (15) and (17) fail if the radius of
curvature is infinite at the specular point. This is because the
source was assumed at infinity, i.e., Ly ™ - If %, Were to be
held finite then from Eq. (5)

(19) 1im o = 2

re ™ ® °

and the singularity in Eqs. (15) and (17) would not occur. In ad-
dition to the singularities caused by an infinitely distant source,
there are a number of other shortcomings of the G.0. approximation.
Among them are: a failure to account for wedge diffraction effects
(radius of curvature goes to zero), a failure to account for dif-

fraction from shadow boundaries into shadowed regions (Ref. [12]),

a failure to properly predict the scattered fields if the surface



features subtend only a few Fresnel zones (Ref. [13]), and finally
a failure to predict any scattered field if no specular point exists
on the body.

Implicit in the geometrical optics technique is the concept of
shadowing, that is, a specular point cannot contribute to the scat-
tered field unless it can be seen by both the source and the observer.
The program developed here can account for shadowing of this type.

B. Discussion of the Geometrical Optics Program

For geometrical optics calculations the first order of business

is the location of the specular points. Figure 5 shows the geometry.
y

AN N/
XSTART Seer”’ N

Fig. 5.--Geometry for specular point location.

The surface height profile is described by H(X) and the regions under
investigation 1ies between XSTRT (X START) and XSTOP. THI and THS
have already been defined; THN (THETA of the NORMAL) is the angle
between the nommal (ﬁ) to the surface and the positive x axis.

Clearly

13
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(20) THN(x) = /2 + Tan™! (dH(x)/dx).

The law of reflection gives (x,H(X)) as a specular point when

(21) THS - THN(X) = THN(X) - THI
i.e.,
(22) (THS + THI)/2 = THN(X).

The program calculates the function

(23) E(X) = (THS + THI)/2 - (x/2 + Tan~' (dH(X)/dx)

for many points in the interval (XSTRT, XSTOP) and when this
function changes sign a specular point has been Tocated. The col-
lection of points so located is stored in an array XN(J). To save
running time two searches are made, first a coarse grain search and
then, in the neighborhood of each specular point, a finer grain pass
is made.

The search must satisfy two requirements. First, it must be
fine enough to locate all specular points; this requires that the
surface must be sampled often enough to get an adequate description
of its structure. For example i1f the surface were described by a
Fourier series then one would expect that sampling every twentieth
of the minimum mechanical wavelength would be sufficient. Secondly,
the specular positions must be located to within a small fraction of
an electrical wavelength so that the phase relationships among the

various specular points are correctly maintained. In the light of




these considerations a first search might be made at a step size of
(the minimum mechanical wavelength)/20. The fine grain search would
then be made with a step size of say (Ae/Z0.0) or (Ist step size/2.0)
whichever is the sma]]est. In the program, the coarse step size is
called DLTAX (DELTA X) and the fine step size is called DLTAX00. The
local angle of incidence for each specular point is stored in an
array ANG(J). This angle is used in the computation of the scat-
tered field and is shown in Fig. 5. Once a complete pass is made
over the surface, the scattered fields are computed. It should be
noted that whenever any one of THI, THS, H(X) is changed, the
complete pass must be made again.

The actual program, given in Appendix A, makes the scattered
field computation for two cases:

1) all specular points contributing,

2) scattering from concave up specular points neglected

when calculating the scattered field.

The second case, clearly incorrect, was an attempt to see how the
computed fields would correspond to the results of certain statisti-
cal theories which neglect the concave up specular points. In the
program the electric field calculated from the first case is called
ESCNS (ELECTRIC FIELDS SCATTERED WITH NO SHADOWING) and from the
second case ESCDNS (ELECTRIC FIELD SCATTERED FROM CONCAVE DOWN
POINTS WITH NO SHADOWING).

Geometrical optics allows shadowing to be taken into account
without much extra effort. The three types which may occur

(specular point not illuminated by source, specular point not visible

15



to observer, both) are shown in Fig. 6. Each point in the array of
specular points, XN , is examined for inbound shadowing in the
following way. A line is passed through the specular point XNj,

H(XNj) with slope tan(THI). The equation of the line is

(24) YI(X) = Tan(THI)x + (H(XNj) - Tan(THI) XNj)

Y

/THS

4/__r:’ THI

d
—
N’ N

INBOUND SHADOWING ONLY

— 1T~ A
OUTBOUND SHADOWING ONLY

THS y THI

) X

N\’
INBOUND AND OUTBOUND SHADOWING

Fig. 6.--Specular point shadowing.
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Then x is incremented in the proper direction until one of the
following occurs. The first possibility is that at some point

X, YI(x) becomes greater than the maximum value that H(x) can
attain for any value of x in the interval XSTRT, XSTOP. This

vaTue of H(x) is called HMAX and must be supplied for each surface
being considered. If the surface is a sum of sinusoids then HMAX
is equal to the sum of the individual magnitudes. The second
possibility is that at some point the value of x is incremented out
of the interval (XSTRT, XSTOP) being considered. The third and
final possibility is that at some point x the Tine YI(X) intersects
the surface profile H(x). When the first or second case occurs the
specular point is not shadowed. In the third case the specular
point is inbound shadowed and for that particular j, XN(j) is set
equal to a number much larger than XSTOP. This allows XNj to be
skipped when the contribution from each of the specular points is
being computed. A very similar test is applied for outbound
shadowing.

When both the inbound and the outbound shadowing tests are
completed the array of specular point positions contains values
which are either in the range XSTRT < X < XSTOP or XNj >> XSTOP.
The scattered field is calculated as in the case where shadowing
is neglected except that when XNj > XSTOP the field from this
specular point is not put into the sum. The scattered field with
shadowing accounted for is called ESCWS (ELECTRIC FIELD SCATTERED
WITH SHADOWING) and the scattered field calculated with only con-

cave down non-shadowed specular points contributing is called ESCD.

17
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C. Using the Geometrical Optics Program

While the storage requirement is minimal, the running time of
this program depends largely on the step sizes which have to be
used during the search for the specular points, and the number of
scattering angles. This means that as the length of the surface
increases, the time per pass required to find the specular points
goes up and the number of passes over the surface also increases,
since to see detail in the scattered field pattern the scattering
angle must be examined at a larger number of points (finer grain).
The han;power beanwidth of a uniformly illuminated aperture of
width XSTOP-XSTRT,

0.88 A
(25) beamwidth 2 < radians
XSTOP = XSTRT

affords a crude estimate of the fineness of the grain which must

be taken. The increment in THS should be less than a fifth of this.

The program has been checked for several cases, two of which
will now be mentioned. The simplest check was the comparison with

hand calculations for a surface described by
(26) H(x) = 50 cos {2mx/800)

with x in the range (-200,200). This surface has only one specular
point or none at all depending upon THI and THS. Another check was

performed for a sinusoidal surface iike the one shown in Fig. 7.



y
JTHS E STHI

® SPECULAR POINTS

Fig. 7.--Specular points on a sinusoidal surface.

In this case the specular return comes from a collection of regu-
larly spaced points which look like a pair of linear arrays of
point sources. The program found the specular points and cal-

culated the total scattered field correctly.

19
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CHAPTER III
THE PHYSICAL OPTICS METHOD

The next complexity of approximation to the scattered fields
to be considered here is given by the physical 6ptics method.

A. The Physical Optics Approximation

Physical optics (P.0.), (Ref. [14]), approximates the true
surface currents on a perfectly conducting body by the currents

2n x H' on the portions of the surface which are
illuminated

(27) J,

0 on the portions of the surface which are
shadowed

where n is the outward normal to the surface and Hﬁ is the incident
magnetic field evaluated at the surface. These approximate currents
are then used in the radiation integral to calculate the scattered
fields. The P.0. surface current is exact if the scattering body

is perfectly conducting half space and the incident field is a plane
wave. As the surface curvature decreases the P.0. currents depart
more and more from the true currents; as the curvature at some point
on the surface goes to zero (a wedge), the method fails entirely. Nor
do the scattered fields predicted by P.0. satisfy the reciprocity
theorem except for backscattering. Nevertheless, the P.0. method

has a significant advantage over G.0. in that the fields remain



bounded even if the radius of curvature of the surface becomes in-
finite. Hence the flat facets of a surface can be approkimate]y
analyzed.

Whether or not P.0. provides any more usefu] information than G.O.
is a question of long standing,and the answer seems to depend upon the
geometry of the scattering body (Ref. [15]). For the kind of surfaces
considered here it will appear that P.0. gives a good approximation
to the scattered fields over a significantly wider range of surface
characteristics than G.0. It is important to note that in this work
the far field radiation integral over the physical optics currents is
evaluated numerically to give the scattered fields. Unlike a number
of rough surface scattering theories (Ref. [16]§, no stationary phase
approximation to the far field radiation integral is used. It is
we]f known (Ref. [17]) that when the stationary phase approximation
must be made, one obtains the G.0. result and there is then no dif-
ference between the two approaches.

The far-zone scattered fields will now be calculated using the
physical optics currents. In the T.M. case, (see Fig. 8) the
incident electric field is a z polarized plane wave of unit magnitude
and the incident magnetic field is

s +jk {xcos (THI )+H(x)sin(THI)) N N
(28) A = e [-sin(THI)x + cos(THI) y1/n

where n is the impedance of free space. Using Ref. [18] and the fact
that the tangential electric field vanishes on the surface, the

scattered electric field is given by

21
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THS . THI

)

Fig. 8.--Geometry for T.M. physical optics.

@ o -3k|FT
S - ¢ ~rly €
(29) E (Y‘o)— - o J j (an ) l—__‘_—-l——— dz dc
r-r
“11° °

oo]

where ?6 is the position vector to the observation point, r is the
position vector of a point on the surface and n is the unit outward
normal to the surface. The notation i1 indicates that the inte-
gration is to be carried out only over those portions of the contour
which are optically illuminated.

Since ﬁﬁ and n are independent of z one can show, by using an
appropriate integral representation for the Hankel function (Ref.

[18 1), that the scattered field is



(0 B =-k [ @) iB ke,

%1

where all variables are confined to the x,y plane

(31) Py = Xg X+ Y Y
(32) CExx+yy
and Héz)(x) is the Hankel function of the second kind and zero order.

Using the large argument approximation for Héz)(x), the far field

scattered electric field becomes

N |
(33) S, = - G2 ke — sin(THI-tan™ 1 (i1))
leol Cip
jka(x) o2
e 1+(H)" dx

where H(x) describes the surface height profile,
(34) f=dd

dx

and Q(x) is given by Eq. (16). As before, the factor
-3k]5,|
o —_—
e jlool

23



has been suppressed in both the computed and reported values of the
scattered electric field, so that the actual field Ez(Eb) is related

to the print out value Ez by

+ik o |
S _ .5,— = 0
(35) ES = E(p,) leg| e

When the incident magnetic field is z directed (transverse
electric case) it is convenient to work with the scattered magnetic
field. The latter is found from Ref. [18]

-Jklr—rol

J (ﬁxﬁﬁ) XV S—— dz dc

(36) 4nﬁ’5(F)=2j —
C o Ir-rol

i1l

where A' is the incident magnetic field (see Fig. 9). The two

dimensional far field scattering becomes from Eq. (36)

Fig. 9.--Geometry for T.E. physical optics.
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jkQ (X
(37) “2(55) _e er_ J sin(téh(ﬂ) - THS)eJ )
l|g' e ¢

0 i1l

2

1+H1° dx.

Again, the factor

-3k o]
e 0
N
is suppressed in the programs of Appendix A, so that the plotted

or tabulated field strengths, Hi, are related to the true fields,

S—_
H; (o) by

_ = [yl
o) =) (e

There are two further considerations that may be discussed at
this time. For bistatic scattering it may happen that not all of
the currents set up on the surface by the incident field are optically
visible to the observer (see Fig. 10). In the physical optics pro-
grams developed here no account was taken of this possibility.
Obviously such considerations do not arise for backscattering.

So far, in this chapter a perfectly conducting surface has
been assumed. Physical optics can be generalized to treat dielectric

surfaces by using a pair of equivalent electric and magnetic surface
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Fig. 10.--Optically invisible surface currents.

currents obtained from the fields of a plane wave incident on a
dielectric half space (Ref. [19]). Since two integrations would

be required to compute the scattered fields, it would seem that the
running time should nearly double, but very Tittle extra storage space
would be required.

B. Discussion of the Physical Optics Computer Programs

For either polarization the physical optics program is divided
into two parts. The first, and by far the most difficult, finds
the shadow boundaries on the surface, since the integrations are to
be performed only over the illuminated section of the contour. The
second part performs the necessary integration to calculate the

scattered far fields.
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The program opens by considering the function H(X) which des-
cribes the surface between the defined endpoints ALEP (Left End Point)
and REP (Right End Point). The search for shadow boundaries begins
at REP by determining whether or not the right endpoint casts a

shadow on the surface and proceeds from right to left (see Fig. 11).

y

y
él é’
H(x)

o\ ///—\\\\ 7 N\ ¢:2¥’ 4:::;: ,Af::ffx

SN—” 1 X
ALEP N~—//4-}‘/REP ALEP REP

END PCINT CASTS SHADO%HONTO END POINT DOES NOT CAST A
THE SURFACE i.e. TAN—N;; )} >THI SHADOW ONTO THE SURFACE

REP —17dH
le. TAN %7- } < THI
x REP

Fig. 11.--Shadowing at the right end point.

If THI (the incidence angle-required to be less than 90°) is greater
than 80° it is assumed that no shadowing occurs. The starting point
of the illuminated zone (either REP or A of Fig. 11) is stored in the
first position of an array called SX (Shadow boundaries X co-
ordinate). The value of x is decremented until either a point on

the surface is reached where the tangent-slope condition

dH _
(39) S = tan(THI)

is satisfied, at which point a shadow zone begins, or x becomes less
than ALEP, in which case the second entry in SX 1is ALEP. On the
other hand if Eq. (39) is satisfied for some x between SX] and ALEP

then this value of x is stored in SX5s @ Tine with slope tan (THI)
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is passed thru the point, and its intersection (if any) with H(x) is
found. If there are no such intersections, then all of the surface
to the left of the point is shadowed. If an intersection does exist
then the search for a point where the tangent-slope condition is
satisfied begins again. This process continues until x is decre-
mented past ALEP. The array SX thus stores the positions of

points with an illuminated zone on their left in oddly subscripted
locations and the points with an illuminated zone on their right in
evenly subscripted locations (see Fig. 12). The size of the decrement
used to locate the boundaries should be small enough to catch the
surface features, and to Tocate the ends of the shadow zones w{thin

a fraction of a wavelength.

THI

_ET\S’;? AN\ LN\ sx3,ﬂ/7//\

{

1

1

T 74 T
w sx4 REP = 5"!

sxg = ALEP SXg -

Fig. 12.--I1lustration of shadowed and illuminated zones.

The integration over the illuminated sections of the surface
to find the scattered fields is performed in a subroutine called
BINT(XX,YY) (Bistatic radiation Integral) the arguments of which are

the initial and final coordinates of one of the illuminated zones in



sx{J). The integration is repeated for each zone until all illum-
“inated zones have been considered. The total scattered field (caJ]ed
S) for a particular THI and TNS is the sum of the zone fields.

Except for normalization, the programs for the two polarizations
differ only in the subroutine called FTBI(X) (Function To Be
Integrated); the factor sin(THI—tan_] (A)) for the T.M. polarization
is replaced in the T.E. case by sin(THs-tan™)! (f)). The actual
integration over the physical optics surface currents is performed by
a five point Gaussian integration. In choosing the interval on the x
axis over which the five point Gaussian integration is to be applied,
two conditions must be met. The first is that the number of sample
points along the contour must exceed five per wavelength. Presuming
surface slopes of less than 60°, this means that ten sample points
should be taken per electrical wavelength on the x axis. The second
condition is that, if the surface were to be represented by a Fourier
series, there should be 8-10 sample points per minimum mechanical
wavelength along the x axis. Presuming ,for example,that the first of
the above conditions is the most stringent, each section of illumin-
ated surface (i.e., between x = ij+] and x = SXj, J odd) would

be divided into half electrical wavelength intervals plus a fractional
interval, and five point Gaussian integration would be applied to each
of the half electrical wavelength intervals, and to the last,

fractional, interval.
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C. Comments on the Use of the Physical Optics Programs

‘As in the case of G.0., the storage requirements are minimal,
while running time depends upon the length of the surface and number
of incidence and scattering angles whicﬁ.are investigated. For each
THI the search for illumination boundaries is performed only once,
but the integration must be repeated for each scattering angle con-
sidered. For many of the scattered field computations considered here
the angle of incidence was held fixed and the scattering angle was
varied between 0 and 180°. For such cases the time required to find
the illuminated zones on the surface is small compared to the time
required to do the integrations for the scattered field.

As the surface length is increased the time required goes up
rapidly since the integration for each scattering angie takes Tonger
and THS must be incremented with a finer grain to get an accurate
reproduction of the structure in the scattered field pattern. The
size of the increment for THS has already been discussed in connection
with the geometrical optics program. For example, the time required
to run a surface 16 electrical wavelengths long, with THS incre-
mented by 0.5° from O to 180°, was 1.8 min. By comparison, 21 min.
were required for a surface 100 electrical wavelengths long with
increments in THS of 0.25° from 30° to 170°, i.e., 560 values of THS.
The value of the increment in the last case appears to have been
just adequate to see the detail in the pattern.

Among the checks of the P.0. program is a.computation for a flat

strip with no tapering of the illumination, for which a closed form



physical optics result is easily obtained. The agreement was

excellent for both polarizations. In Chapter V, P.0. will be compared
with the other two methods of computing the scattered fields. Special
attention will be given to the range of surface parameters over which

the P.0. approximation is valid.
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CHAPTER IV
~ THE INTEGRAL EQUATION METHOD

In this chpater the third and most accurate method for calcu-
lating the scattering will be examined. Here the scattered field
is obtained from the exact surface current, which is found from a
moment method solution of an integral equation (see, e.g., Refs., [20],
[21]). There are no restrictions on the curvature or form of the -
surface, but because of machine storage limitations only surfaces of
rather short length (30 Ao to 60 xe) can be handled.

A. Moment Methods

This section contains a brief introduction to the method of
moments. For more information and other applications of this method
refer to Ref. [22], on which the following is based.

The objective of the moment method is to determine, numerically,
the function F which is a solution of the inhomogeneous operator
equation
(40) C(F) = G
where C( ) is a given linear operator and G is a given function.

Suppose that F can be expanded in a set of basis functions bn

N
(41) F=ZFb



where'Fn is the n-th unknown coefficient of the expansion of F in
that basis. Note that if a computer is to be used, N will have to

be finite. Using the linearity property of C

N N
(42) C(F) = C ( 2] F, b, ) = 3 Fr c(bn) = G.
n=

n=1
To convert the operator equation to a set of simultaneous equations
an 1nner.product, a scalar, <h,g> is defined for functions h,g and s

and scalars o, B such that

(43) <h,g> = <g,h>
(44) <ah + 8g,s> = a<h,s> + B<g,s>
(45) <h,h*> =0, if h = 0.

Let {Wi} be a set of weighting functions and take the inner
product of both sides of Eq. (42) with wm. Using the properties of

the inner product, the original operator equation is converted to

(46) LW, Clb)> Fo= <, G

(47)

He~=Z
(@]
-—h
0]
[<p]

n=1

where
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(48) Cop = W c(b,)>

and

(49) 6, = <H .G

The solution, Fi’ to this system of equations can be found by any
one of several methods, two of which are discussed in Appendix B.
The solution may be exact or approximate depending upon N, bn, and
W,

For the integral equations to be solved here, the current is
expanded in a basis of non-overlapping pulses of unit amplitude,
while the weighting functiqns are chosen to be delta functions whose

singularities occur at the centers of the pulses. The inner product

is chosen to be

(50) <g,h> = J g h dc

o
where c is the contour of the scattering surface. This choice of
basis and weight functions amounts to enforcing the integral equation
at the centerpoints of the pulses, and is usually called "point-
matching." For the operator equations considered in this work the
system of simultaneous equations which result from poiht matching are

well conditioned, i.e., suitable for computer solution (see Ref. [23]).



B. Integral Equation for Transverse Magnetic Polarization

In order to apply the point matching technique to the rough
surface scattering problem, it is first necessary to find an
appropriate linear operator. For this'purpose the integral equation
relating the unknown surface current to the known incident field
has been chosen.

The incident electric field is z directed, the incident magnetic
field is transverse (T.M. polarization) to the generators of the

surface with contour ¢ as shown in Fig. 13. If the total electric

~g
)
=\

Fig. 13.--Geometry for T.M. scattering.

field is written as the sum of the incident field Eﬁ and the scattered

field ES, the boundary condition
(51) B +E5 =0

must be satisfied on c¢c. The scattered field is given in terms of

the z directed surface currents, JZ(E"), by (see Ref. [24])
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=~

-5 [ 0,60 HP wlp ) e
(o

(52) E§

for the two dimensional case, where Héz) is the Hankel function of
the second kind and order zero, n is the impedance of free space
and k is the wave number, 2w/Ae. Combining this with the boundary
condition (Eq. (51)) gives the integral equation for the unknown

surface current
i ,— k — 2 - — .
63) G =42 [ 9,GM P ks e
c

where 5, o' are now both confined to the contour c. Equation (53)

can now be identified with Eq. (42) as follows:
E;(E) corresponds to G,

JZ(E“) corresponds to F,

and the operator

%H-J () Héz)(k|5l5“|) de' corresponds to C( ).
c

As it stands the integral equation requires the consideration of

the current on the entire boundary c; if the entire contour of a

two dimensional earth were to be included, the storage requirements

for a moment method solution would be astronomical. It seems reason-

able to assume that for standard radar wavelengths and with directive

antennas, the surface current is appreciable over only a very small



portion of this contour. Thus it will be presumed that the surface
current outside a certain illuminated region, which extends from -EP

(End Point) to +EP, can be neglected (see Fig. 14). To simulate the

y t (x)- THE ILLUMINATION
/ TAPERING

~EP4+)\, EP—ZX;)cd/F‘”\
II} J LN P TN\ 4 e} et ey X

~—7p70H" ! :
{45P ‘-/-—)E’P+2R,\/ ¥ uEP— xe E \
\ CONTOUR )
\\s //

——
—— g m—— ——— — - o am—

NEGLECTED PORTION OF THE CONTOUR

Fig. 14.--Modification of true contoﬁr to
a shortened contour.

i1llumination of the surface by a directive antenna, an amplitude
taper t(x) is introduced* in the following way. The amplitude of
the incident field is taken as unity to within two electrical wave-
lengths from each end point. Between one and tWo electrical wave-
lengths from each end the field is sinusoidally tapered to zero.
Over the last wavelength the incident field is taken to be zero.

The incident field with tapering included, E;(E), is thus

*The use of amplitude tapering on a plane wave amounts to independently
specifying the amplitude and phase, which makes such a field differ
from a Maxwellian field. Changing the specification of the incident
field would require no fundamental change in the methods and programs
employed.
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. —— (cos(THI) x + sin(THI) H(x))
(54) E.Iz(;) = t(x) e'Jk'p = t(x) e e

The neglect of the surface currents beyond the endpoints (+EP)
has been checked by lengthening the dead zone at each end of the region
under consideration and noting the change in the surface currents and
scattered fields. The results of this test are presented in Section
D of the chapter and do indeed justify the assumption of negligible
currents beyond the illuminated region.

Although tapering of the incident field is not needed in the
P.0. or G.0. formulations, it has usually been included in the
calculations so that the results of all the techniques can be fairly
compared. The only cases in which tapering is not used are special
tests of the individual methods.

The integral equation becomes

EP

(55)  Ei(p) =Ko i 5, W ks )) av
-Ep

i
z
with p, o' both confined to the section of the contour for which
~EP<x<EP.

The method of moments can now be applied. The surface is
divided into segments of equal arclength DC, and the current, JZ, is

expanded in a basis of non-overlapping pulse functions as



N
(6) 3G = 1 Fy Py Gopy)
n:

where Eﬁ is the position vector of the midpoint of the n-th segment
of the surface, Fn is a complex number representing the magnitude
and phase of the current over the n-th segment of the contour, and
the n-th basis function Py (o' —En) is a pulse of unit amplitude and
width DC along the contour c. Thus the actual surface current is

to be approximated as shown in Fig. 15. For a reasonable represen-

tation of the surface current, the pulse width, DC, must be a fraction

SURFACE
CURRENT

— = >
0 | DC
0] S—THE ARCLENGTH

Fig. 15.--Approximation of the surface current.

of an electrical wavelength; Ae/]O has been found to be satisfactory.
The shape of the surface must also be considered in choosing DC,
since the surface must be accurately modeled by strips of width DC.
Hence, if An is the shortest mechanical wavelength in the Fourier
spectrum of the surface, then DC should also satisfy DC 5_Am/10.

O0f course the more restrictive of the two conditions should be met.

Applying the method of Section A of this chapter to Eq. (55)
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B

=3
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(57  E@ i zF Pee (" -57) WP (k[5-5) e

EP
P ip b ('-57) M (k|55 |) an

1l
-P-,K‘
=3
12

n

]
Bl
=
Hi~1=2Z

R f 12 (k5-5]) an

n
bC,,

where [ means "integrate over the n-th segment of the contour".
DCp
Taking the inner product of Eq. (57) with the weighting functions,

. N
(58) <6(o-op ), E;( = ZD' Z Fr <8 (o=pp) j.HéZ)(klElE“l) dg'>
n
SO
i— kn )17 =
(59) E ) =7 I F, f Hy ™/ (ko -0 |) d2
n=1 Dcn

which is the same as the NXN matrix form
(60) [C] [F] = [E]

where

61) ¢ =‘<“L H s 1) @,
C



(62)  E, = E ()

and Fn is the unknown amplitude and phase of the current in the
n-th contour segment. Once Eq. (60) is solved, the surface current
is known.

The far field scattering from the surface is found from the

surface currents and Eq. (52) to be

s o [ KFEeklsl F k(" p)
(63) Ez(p_) T '_ﬂ'—k— e ——::—'*— Jz(p )e ds
sl -

D 1 EP A
kn eJ4 e Jklpl J g ejk(pl.p)dg'

= 4 N1k 1 Fr H% (5“-5%)
ol -Ep "
O R
~ EB_J?Z: 37 omklel N r edk(e'p)
4 ’)Tk l;l n='| n

The output of the computer programs is a normalized scattered field,

Ei, which is related to the true scattered field, Eq. (63), by
S _ ¢S~ I = oJklo]
(64) E, = E (o) llo] e :

C. Discussion of the Computer Program for Transverse

Magnetic Polarization

Several different programs were written using the above formu-

lation of the problem. 1In the first part of this section the common

41



42

features of the programs will be discussed and later their dif-
ferences and relative merits.

A1l of the T.M.I.E. (transverse magnetic integral equation)
programs require that the surface have its arclength subdivided into
segments of width DC, and have the endpoints and midpoints of these

segments stored. The surface breakdown is shown in Fig. 16. The

Fig. 16.--Breakdown of surface into segments
of length DC.

j-th segment lies between X5 and xj , while the j-th midpoint

+1
(XMj) is such that Xj<XMj<xj+]' The surface is segmented by using
the arclength formula and rectangular rule integration. After the
surface subdivision is completed the programs differ somewhat
depending on how the matrix elements are calculated.

Once the matrix elements have been calculated the first part

of a two part solution of the system of equations begins. In all

of the solution methods used the matrix is factored into an upper



and a lower triangular matrix, see Appendix B. The matrix elements
depend only upon the surface profile H(x), and are independent
of the incident field, THI or THS so that the factorization need be
done only once for a given profile. In the second part of the
solution the array [F] is loaded with the tapered incident electric
field at each of the XMj; the back substitutions (described in
Appendix B) are then carried out to find the current coefficients,
Fn‘ The scattered fields are then calculated from Eqs. (63) and
(64).

The differences in the several programs for the T.M.I.E. lie
mainly in the calculation of the matrix elements (Eq. (61)). The

simplest way to evaluate Eq. (61) for m#n is to presume that

Héz)(kIEhFS“I) is constant over the n-th interval; then

v kn o (2) = =
(65) Cnn =7 Hy (klpm-pnl) DC
If men, a small argument approximation to Héz)(x) is made and

integrated analytically, giving

v kn e y(2) k_DC
(66) Cnm =12 DC H0 (2 A )

where e is the base of the natural logarithm. In practice the
matrix elements are simply the Hankel function and the %ﬂ-- DC is
accounted for when the fields are printed out. This approximation

results in a symmetric matrix which, if efficiently stored, requires
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only N(N+1)/2 storage 1ocatidns. The length of surface which can be
treated is increased by a factor of v¥2 over that which can be treated
by methods requiring the storage of the full matrix. Appendix B
gives the details of the storage and solution methods.

In another program, 5 point Gaussian integration, Ref. [25], is

used to evaluate the Cmn for n¥n, and when m=n Eq. (66) is used.

* The matrix is no longer symmetric so all N2 terms must be stored.

A third program was written which takes advantage of the fact
that the currents are continuous on the surface except at sharp |
edges (Ref. [26]). Since the column vector [F] of Eq. (60) represents
the current, continuity requires that adjacent entries be similar.
Hence it is possible to interpolate. The currents at the even
numbered stations may be approximated in terms of the adjacent
currents by

(67) Fon = (Fpp_q + Fpiq)/2.

2n

For simplicity, the original matrix will be assumed to be of odd

order
(68) N=2kk+1.

If, for example, N=7 then, using Eq. (67) in Eq. (60), one obtains

the reduced system



e F o 2(EE) 4 CLFL Tae 1r) 4 CoF, + 96k 4) + ¢
nh t Tz el * G 7 (F3tFg) + Cygfg + 5 \Fg*fa) + Gggfy

17 3
c c c
) 32 3 C3
Ey = CyFy + 5o(Fy#Fg) + Cagfg + 5 (FatFy) + Cysfy + 5 (Fg#Fy) + Cyfy
(69) . '
£ = CorFy + S2(F4F.) + CoF, + 4 4p ) + Coo, + %56 4.y + . F
5 = CyyFy + 3o(Fy#Fy) + Coaf g + 57 (FgHFg) + Cogfg + 5{FgtFy) + Cyyfy

m
]

C,.F, + EZE(F +F,) + é F, + EZ&(F +F) + CocFe + EZQ{F +F,) + C,oF
7 1 2 V13 733 2 V'35 75'5 2 V'57 777

where only odd rows have been retained, i.e., F2, F4, F6 are considered

known. Collecting terms,

ko Cka Cka Ck6

C
K2
) Fp+ (= Gy )3+ (o + Gg + 7 )Fs

(70) & = (Gq + =~

C
+ (—5§-+ C

> k7)F

7
for k = 1,3,5,7,

and the number of unknowns has been reduced to kk. Since matrix
manipulations are made using regular subscripts in the machine, it is
very desirable to relabel the coefficients in the reduced system as
follows

C
(71) (

_ Yem), i-2) 2m-1),(21)
2 2

Ci * Clam1),(2i-n Y

for the “interior" columns where ne1,2,3,--°.,kk and i=2,3,--- ,kk-1.

The first and last columns of the reduced matrix are

C .
. (2m-1),2 .
(72) C 2 - C(zm_])’] + 2 — ITF] ,2,3,' ,kk

45



46

(73) C&,kk

_ femn), (2kk-2) |,
; (2m-1), (2kk-1).

The Cij are the elements of the original NXN matrix while C%j are ele-
ments of the kkXkk reduced matrix. In the computer program the C%j are
called Cij while the original matrix elements Cij are labeled coij.
When using the interpolation technique the surface is subdivided
as usual except that, if an even number of segments is produced, then
the last segment is dropped to make N odd. The system of equations

is now

(74) [CI[FP] = [E]

where [E] is filled with the incident electric field at the midpoints
of the segments with odd subscripts and the matrix [C] is loaded
according to Egs. (71), (72) and (73). After the solution has been
found the column vector FP(J) contains the currents on the segments
with odd subscripts. The complete set of surface currents [F] is

obtained by interpolation with

F,. , = FP. for j
(75) 2j-1 3

(FP; + FP54q)/2 for

1,2, ,kk

-n
1]

1,2, ,kk-1.

Once the column vector [F] has been filled in, the calculation of the
scattered field proceeds as in Egs. (63) and (64). The interpolation
technique has been applied to the program which uses Gaussian

integration to calculate the matrix elements.



The big advantage of interpolation is the dramatic increase in
the size of the surface which can be handied for a given storage
capacity. If the machine can handle an arciength of L using the
non-symmetric, non-interpolation program then the symmetric matrix
program can handle an arclength of [2 L while the interpotation
technique will do an arclength of 2 L with the same amount of storage.
The interpolation program still requires that all of the original
matrix elements be evaluated to fill in the reduced matrix (Egs. (71),_
(72) and (73)).

The integral equation programs require iarge amounts of storage
and fairly long running times compared to either the G.0. or P.O.
programs. The IBM 360-75 used here can hold a 275 x 275 complex
matrix in high speed storage so that surfaces of length 27 Ags OT 54 Ao
if interpolation is used, can be handled with DC = Ae/10. As for the
running time, consider the 16 Aa long surface mentioned in Chapter III
Section C, which took 1.8 minutes using the P.0. program. The scat-
tering from the same surface was computed by the three T.M. integral
equation methods. The symmetric formulation required 2.8 minutes and
storage for 14,000 complex numbers. The program which uses Gaussian
integration to evaluate the matrix coefficients required 5.0 minutes
and twice as much storage,while the interpolation program required
3.3 minutes and storage for 7,000 complex numbers. Where speed is
impqrtant the use of the symmetric I.E. program is indicated, while

long surfaces are best handled by the two point interpolation program.
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D. Tests of the Transverse Magnetic Integral

Equation Programs

The shortened contour assumption is one of the most crucial
in the construction of the integral equation programs (Fig. 14). The
obvious way to test it is to extend the non-illuminated portion of the
surface, which amounts to lengthening the contour without changing
the non-zero portion of the illumination (see Fig. 17). If the
approximation is indeed valid, then the current in the non-illuminated
sections should fall off rapidly and the scattered fields should be
the same in both cases. The assumption was tested on a sinusoidal
surface, using the program with Gaussian integration. When regular
tapering was used, the current at the outer enﬁs of the dead zones
was down by a factor of 30 from that in the central part of the
contour. When the extended taper was used, the current at the new
outer ends was down by a factor of 100, The scattered fields for the
two cases are displayed in Fig. 18 and show clearly that the dif-
ferences are insignificant. Thus it may be concluded that tapering
of the incident field does permit the replacement of the true contour
by the shortened contour.

The wedge, Fig. 19, for which asymptotic solutions are available,
provides a test case for the integral equation programs. The angle of
incidence, THI, was chosen to be 90°. 1In order to emphasize the
corner contribution, a Gaussian tapering of the incident field was

used, i.e.,

2
~(x/2
(76) t(X) = e ( Ae) .
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Fig. 19.--Geometry for wedge test.

The surface current, Fig. 20, shows the expected singularity at the
corner. The computed scattered field is plotted in Fig. 21 along with
the scattered field calculated independently using the geometrical
theory of diffraction, Ref. [27]. Again, the agreement is seen to
be excellent. A1l three T.M. integral equation programs produced
essentially identical scattered fields. In a test of the self
consistency of the three programs the scattering from the surface
H(X) = 5 sin %%ﬁ—x was computed. The differences in the scattered
fields are very minor and would not be perceptible on the scale of,
e.g., Fig. 18.

In the light of the above tests, there seems to be no reason
to prefer one T.M. integral equation program over the other two if
numerical accuracy is the only criterion. If the running time or
storage requirements must be considered then the preferred formulation
can be determined by the comments at the end of Section C of this

Chapter.
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Fig. 21.-- Wedge scattered fields, T.M. case



E. Integral Equation for Transverse
Electric Polarization

For the T.E. polarization, the incident magnetic field ﬁﬁ is
z directed and it will be convenient to work with the integral
equation for the magnetic field given (Ref. [28]) by
(77) TP =20 x B + i@ x | T(F) x T E————us

2m
S

where ¥, T' are both position vectors of points on the surface, A (r)
is the incident magnetic field, 3;(?) js the surface current, n is the
outward normal to the surface and f indicates that the region about

— — .S . .
r' = r is to be deleted from the integration. See Fig. 22.

3>

AN

7,7 BOTH ARE POSITION VECTORS
OF POINTS ON THE SURFACE s

Fig. 22.--Three dimensional geometry for
T.E. integral equation.

The two dimensional integral equation can be obtained by con-
sidering an infinitely long cylinder as shown in Fig. 23. When the
incidence direction lies in the x,y plane the fields and surface

current have no z dependence so that Eq. (77) can be reduced to
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BOTH LIE IN x,y PLANE

Fig. 23.--Two dimensional geometry for
T.E. integral equation.

~ -, — A -— _/\_
(78)  T) =20@) x TG+ 5 RE) x f TG x Gph)
c
2 - 1
H®) (k|5 de
_/\_.l . . . ™ . O (2)
where (p~p') is the unit vector in the p-p' direction and Hy (x)
is the Hankel function of the second kind and order 1.
Just as in the T.M. case, tapering is introduced to account
for the directional properties of radar antennas, and to limit the
size of the system of linear equations which will result from

Eq. (78). One may now assume that the surface currents are zero

except near the illuminated region and the closed contour can then



be replaced by the open contour of Fig. 24. For this polarization

the current flows transverse to z along the surface so

Fig. 24.--Open contour.
(79) T 6 = (zxn (') 9 G) =T6G") I (V)

where f(E“) and 5(5“) are the unit tangent vector and the unit normal
vector to the surface, as shown in Fig. 24. f(g") is given in terms

of the profile, H(x), by

) TG - - Bkl
1+ (aGe))?

where H has the meaning assigned by Eq. (34). Using

(81) de' = (1 + (1(x'))8)1/2 gx:
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and Eqs. (78) and (79) with the tapered incident field

. -jK: o
@ W@ =tkae

the integral equation becomes

ek D)
2 4

(83) t(x) e 1 =

P (x-x")2H(H()-H(x'))2
L(HOX)-H(x' D) -F(x) (xex") T

where the integration over x' excludes a small region in the contour
about the point described by p.

The method of moments is applied to Egqs. (83) just as in the
T.M. case. the current is expanded in a basis of non-overlapping
pulse functions of width DC, delta functions are used as weighting
functions and the scalar product is the same as in the T.M. case.

The current is thus represented by

N
(84) 36 7 TR Py (')
n=

where, o', Bh 1ie on the contour ¢ and Eh is the position vector of
the midpoint of the n-th segment, the Fn's are the unknown expansion
coefficients and the pulse functions P%_(E"-Eh) have been described
in connection with the T.M. case. Placing this current in Eq. (83),
taking the scalar product of both sides with the weighting functions

and using the non-overlapping property of the basis functions results

in



(85) -t(xm) e mo- . noy

EP
Fa ippg G -8 Kl

-Pnr—l-
=~
1] s 3=

n

[(H(x ) -H(x'))=Alx ) (x -x")]

dx'

Lx=x 12+ ((x ) -tix))?

Since it is necessary to avoid p' = Bhlin the integration of Eq. (85),

the summation will be forced to skip n=m giving as a system of

equations
-ik. o N
(86) -t(x) e i 2] Con Fo
n=
where
(.
= if m=n
(87) Crm ={
*n+1 .
. H -H(x"'))-H -x'
%E'J H§2)(k|55-5“l) LR (x ) -H(x'))-H(x ) (x=x") ] i
L%, Jo -x)2 + (ex)-r(x )2
- if mtn

and Xn410 X, 2are the upper and lower x coordinates of the endpoints

of the n-th surface segment respectively.
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Once Eq. (86) is solved for the coefficients of the surface

current, Fm, the scattered field may be found from Ref. [18]

L3k |FT
JJS(F-) XT & gst.
S

(88) A (¥) = —
| r-r'|

ol et
&y

Specializing this to the far field scattering from an infinite
cylinder and using the fact that 3;(?“) is independent of z and

non zero only over a portion of the cylinder (see Fig. 25).

THN (x)

TN

— X
—EP \] 0] \/EP

Fig. 25.--Geometry for calculation of far
field scattering, T.E. case.

Kl BaEe

(89) () = & j e i 5_(5v) Lsin(THS)-A(x')cos (THS]
i JIzl b J+(ix)?

ejk(x'cos(THS)+H(x')sin(THS)) dc’



Substituting Eq. (84) whose coefficients are now known into Eq. (89)
and assuming that the integrand is nearly constant over a surface

segment of length DC,

s -3kle] g
(90) H3 (o) = £ DCE—— ¥ F_ cos(THS-THN(XM ))
z 2/5\— l_ n=1 n n

ol
jk(XMncos(THS)+H(XMn)sin(THS))
e

where THN(x) (THETA NORMAL) is given by

(91) THN(x) = (n/2) + tan™| (fi(x))

as shown in Fig. 25. The computed and plotted value of the scattered

field, Hi, is given by
_ = *ikle|
(92) H = 13 () JIole

F. Discussion of the Computer Program for the
Transverse Electric Polarization

The programs for the T.E. polarization are very similar to those
for the T.M. polarization. As in the T.M. case the contour is broken
up into segments of equal length DC. The same notation is used for
the endpoints (x) and midpoints (XM) of the segments (Fig. 16). The

T.E. and T.M. programs differ mainly in the values of the elements

of the matrix [C], and in the driving side of the system of equations.
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Also, for the integral equation used, the matrix is non-symmetric no
matter how the coefficients are evaluated. Once again the system of
equations, (Eq. (86)), is solved in such a way that different
scattering and incidence angles do not require a completely new
solution. Only the back substitution portion need be repeated (see
Appendix B).

Several different programs have been written for the T.E. case,
the major difference between them being the method used to evaluate
the coefficients (Eq. (87)). The simplest way is to assume that

the integrand is constant over the strip width so that

%— if men
(93) Cmn =<
KB s 7))
jk 1 PmPn .
T (DC) [(HOXM_)-H(XM ))-A(XM )

(XMm-XMn)] if m#n.

In practice, only the five point Gaussian integration was used to
evaluate the off diagonal elements of [C], since it did not require
much more running time than the simpler method. However, the iﬁter—
polation technique retains all of its advantages and goes exactly as
in the T.M. case with the C%j given by Egs. (71), (72), and (73).
Thus surface lengths of 27;\e (or 54Ae with interpolation) can be
handled. As an example of the running times required, consider again
the surface of length 16Ae mentioned in Chapter 3 Section C. The
T.E. physical optics program required 1.8 minutes while an equivalent

run using the T.E. integral equation program required 5.0 minutes.



The interpolation program for this polarization took 3.5 minutes.
Thus the interpolation program is superior to the non-interpolation
program both with respect to storage requirement and running time.

G. Tests of the Transverse Electric Integral
Equation Programes

The shortened contour assumption plays the same role and is
tested in the same way in the T.E. integral equation programs as
in the T.M. case. The contour is extended as shown in Fig. 17.
When the regular tapering was used, the current at the outer ends of
the dead zones was down by a factor of 70 from that in the central
portion of the contour. When the extended surface was considered the
current at the new outer ends was down by slightly more. The nearly
identical scattered fields for the two cases are shown in Fig. 26.

The wedge provides a test case for which an independent result
is available. The test geometry is as shown in Fig. 19 except that
here the incident magnetic field is parallel to the corner of the
wedge. Gaussian tapering of the incident field, Eq. (76), is used.
In contrast to the current singularity in the T.M. case, the surface

current in the T.E. case, Fig. 27, shows the expected r2/3

behavior
at the corner. The excellent agreement between the scattered fields
calculated by the integral equation method and the fields obtained
from the geometrical theory of diffraction, Ref. [27], is illustrated
in Fig. 28. Both the non-interpolation and the interpolation T.E.

integral equation programs gave the same result in this test.
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Fig. 27.--Computed |Jq| near corner of wedge, T.E. case.
——— —
1.5 - . INTEGRAL EQUATION
) — ——— SIMPLE DIFFRACTION =
= / ow
- = COEFFICIENT / _—
- O —- ’_<
| ad -1
o - o
1.0 =T w -
lHSI - LE wz
z Y- ouw
= O e
= S
S 2 Suw
o5 =y Zo
| o no
- - —_—
B oo T T T T
0] 15 30 45 60 75 S0 105 120 135 150 165 180

THS

Fig. 28.--Wedge scattered fields, T.E. case.
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The consistency of the two T.E. integral equation programs was

'checked on a surface with a height profile H(x) = 5 sin(2wx/200). The

results were nearly identical.

The above tests indicate that so far as numerical accuracy
is concermed the non-interpolation and interpolation T.E. integral
equation programs do not differ. The interpolation program is pre-

ferred however because of the savings in storage.



CHAPTER V
APPLICATIONS

In this chapter the previously developed computer programs will
be used to check the applicability of the geometrical optics, physical
optics and perturbation approximations to the calculation of the
scattering from non-uniform surfaces. The integral equation programs,
which are believed to be exact, are used as standards.

The first surface to be considered has been especially chosen
so that it fulfills the requirements necessary in order that physical
and geometrical optics both give a valid approximation to the true
scattered fields. The surface, a single half-cycle of a sine wave,
has a profile H(X) = 50 cos(2xX/800) with x between 200.0 cm and
-200.0 cm, and é]ear]y has but one specular point. The incident field
is tapered, and has an electrical wavelength of 25 cm. Unless other-
wise noted, these conventions have been used throughout. The criteria
for the successful application of G.0. and P.0. are met by this profile
since the minimum radius of curvature is 12.8 Aa and, having a maximum
height of two Aas there are several Fresnel zones on the surface. The
scattered fields predicted by the G.0., P.0. and I.E. programs are shown

in Figs. 29 and 30 for the T.M. and T.E. polarizations respectively.
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It is apparent that all netﬁods give nearly the same result for

THS between 87° and 155°. No scattered fields are predicted by G.O.

for THS outside the range 78° and 163° since the normals to the surface

have a Timited range of directions as illustrated in Fig. 31. The

NO GEOMETRICAL OPTICS
SCATTERED FIELD —
OUTSIDE THIS REGION /

—200 cm 0o 200 cm

Fig. 31.--Limitation of scattering directions predicted
by geometrical optics.

rise in the value of scattered field predicted by G.0. near 78° and
163° is due to the movement of the specular point into a regioﬁ of
the sﬁrface of increasing radius of curvature. However, as the
specular point gets within two wavelengths of either endpoint the
tapering of the incident field suppresses the expected singularity
in the scattered field.

It should also be noted that for the P.0. results, the T.M.

fields differ slightly from the correct fields for THS near grazing.



For either polarization the ripple observed in the scattered field
and correctly predicted by P.0. is probably a consequence of the
finite length of the surface. G.0., being a purely local theory,
wi]] not predict effects of this nature.

As a further check of the programs, the above profile was
multiplied by minus one, i.e., instead of being concave down the
surface was concave up. The amplitudes of the scattered fields re-
mained unchanged but they all showed a phase shift of 90° due to what
in G.0. theory is termed the caustic correction factor.

In order to establish more quantitatively the limitations on
the G.0. and P.0. approximations, the scattered fields have been

computed for a set of surfaces with height profiTe
(94) H(X) = A sin(27X/200)  -200 cm. < x < 200 cm.,

i.e., the surfaces are two complete mechanical wavelengths Tong.
With THI fixed at 60°, the amplitude, A, was varied over a range of
5.0 cm. to 50.0 cm. so that the minimum radius of curvature, em?
varied from 8.0 Ao to 0.8 Ao The important features of the scattered
fields over this range of e for each polarization are shown in
Figs. 32-37 in order of decreasing ’em: Some general trends are
worthy of mention.

In the first place, as r‘cm/xe decreases from 8 to 0.8, the
agreement between the P.0. results and the exact fields goes from

excellent to poor. It would appear that as long as the surface al-

ways has rcm/xe_greater than, say, 2.5, the P.0. approximation will
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give reliable values for the.scattered field. Even for values of
rcm/xe = 1, P.0. may still be considered usable, that is, it will
reproduce the general structure of the scattered fields although with
significantly 1owef accuracy. This Timitation on the radius of curva-
ture necessary for the successful application of the P.0. approxi-
mation is in agreement with the results of Ref. [29] in which the
current on a sinusoidal surface of infinite extent is found. Except
for scattering and incidence angles for which no specular points occur
or for which a specular point coincides with a point of infinite |
radius of curvature, the G.0. and P.0. approximations give scattered
fields very similar to each other even when they are not correct, e.g.,
Fig. 38. It is interesting to note that where the I.E. and P.0. (and
hence the G.0.) fields agree the T.E. and T.M. fields are nearly
identical but as the radius of curvature decreases the exact fields,
T.E. and T.M., not only differ from the respective P.0. fields but from
each other. This behavior islnot entirely unexpected since for bodies
with Targe radius of curvature in terms of wavelength the polarization
independent G.0. is known to be a good approximation. As the radius
of curvature goes to zero, e.g. a wedge, G.0. and P.0. both fail and
the scattering is polarization dependent (see the wedge tests in
Chapter 1V).

The failure of G.0. when no specular point occurs on the surface
or when a specular point coincides with a point of infinite radius of
curvature makes it far less attractive than P.0., especially when

numerical methods are involved. For example, when A=5, (see Fig. 32)
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G.0. predicts no scattered field outside the range 102° < THS < 138°,
and gives fields which are singular at either end of the range. On
the other hand, the P.0. approximation correctly predicts the scattered
fields for a far wider range of THS, including backscatter, and the
fields are always bounded.

It is also of interest to note that what might be called the
ffine structure" of the scattering, particularly for THS < 80°,
(see Fig. 32) is not due entirely to the finite length of the
illuminated region as in Figs. 29 and 30 but is strongly controlled
by the height profile.

Another approximate theory whose validity can be checked by
the numerical methods developed here is the perturbation theory for
the scattering from "slightly rough" surfaces as formulated in
Refs. [.30] and [31 ]. Perturbation theory predicts that if the ampli-
tude of the surface profile is much less than the electrical wave-
length of the incident fields, then the amplitude of the scattered
field due to the perturbation of the surface is proportional to the
surface height amplitude. This was checked by calculating, using
the T.M. integral equation program, the scattering from a surface

profile described by

(95) H(x) = ¢ (sin(27x/50) + 1/2 sin(27x/19.71))

for various values of c. The field scattered by slightly rough
surfaces is dominated by the scattered field from the unperturbed

surface (c=0) which is quite complex for the finite strips considered



here. Thus the behavior of the perturbed fields can best be

illustrated by considering the difference between the actual field
and the flat plate field. The perturbation in the scattered fieid,
E_, due to the perturbation in the height profile of the originally

p
flat strip is then given by

- S _ fS
(96) Ep = Ez EZo

where Ei is the total scattered field as predicted by the computer
program, and Eio is the field scattered when c is zero (i.e., a flat
strip). In order to test the prediction thai |Ep| ac, a low value
of ¢ (c=0.01 cm.), was chosen as a reference surface amplitude with

reference scattered field lEp]|, so that for a fixed scattering angle

E
(97) %Elr %]—
expresses the perturbation theory result. The exact fields are
compared with perturbation theory in Fig. 39 for several values of c.
The theory appears to fail at about c/c] = 200 which corresponds to
a root mean square surface amplitude of approximately Ae/lo.

In addition to permitting the examination of the applicability
of various electromagnetic approximations to the ocean surface scat-
tering problem, the programs permit direct calculation of the scattered
fields from any appropriate surface. One such application is to the
calculation of the expected value of the backscattered power from an
ensemble of ocean-1ike surfaces. Such an ensemble may be constructed

from the known height spectrum, Ref. [32]. For the sea surface, the
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C C .

H{x) =, (C, sin(27x/50) + 7 sin (27wx/19.71))
THI =60°
THS = 90°

- = — — — FIELD RAT!O PREDICTED
500— BY INTEGRAL EQUATION

FIELD RATIO PREDICTED
BY PERTURBATION THEORY

400
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-~ e
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{00
o | l
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£
Cl
Fig. 39.--Perturbation theory test.
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height spectrum, Fig. 40, decays approximately as k%4 over the signifi-

cant range of wave numbers, where km is the mechanical wavenumber.

Wik)
{cm’)
k4
0
_ 2w -
k= SHORTER
m MECHANICAL
(em™") WAVELENGTH

Fig. 40.--Sea surface height spectrum.
Thus a particular member of the ensemble can be chosen to be a finite

sum of sinusoids with random phases whose amplitudes vary roughly as
k2.
m

ocean, will be aperiodic. One example of a surface of this type is

If the km's are not harmonically related, the surface, like the

given by the series

(98) H{x)

2.5(0.4 sin(2nx/200.0 + 0.78)
0.8(10.0/20.0)2 sin(2rx/10.954 + 1.6)
0.8(6.66/20.0)% sin(2wx/6.28318 + 2.4)
0.8(5.0/20.0)% sin(2wx/4.795 + 0.4))

+

+

+

illustrated in Fig. 41. An ensemble of surfaces of finite length can
be generated by using successive non-overlapping sections of this

surface.
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75 cm. END OF FIRST SURFACE

W _,
~—~ o —

Fig. 41.--Four component representation
of the surface

Physical optics was used to calculate the expected value of
the backscattered power and field strength from a 75 member ensemble
made from the surface described by Eq. (98). Each member of the

ensemble was 75 electrical wavelengths long. On a CDC 6600 computer,



the time required for the run was about 40 minutes. The expected
2
values <|E§[ > are shown in Fig. 42; the expected value of Ei was

found to be extremely small compared to the root mean square field.

251
A I’\
2()T1¢/ \ \
\',A,,/ \
15| \§
| \
A 0 \
W N \
M ~
v - ]
o ° \
Q b
3 =5 \
Q \
—10H oo
15 | | | | | | |
90 80 70 60 50 40 30 20 10 O
THS = THI

Fig. 42.--Expected value of backscattered
|ES|2 from ensemble.

Notice that no special form of the slope distribution or
other statistical properties of the surface have to be assumed. It
is also possible to use a point by point, i.e. discrete, representa-
tion of the surface, such as might be generated by the prescribed

statistical properties of the surface.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

In this work the scattering properties of cylindrical
rough surfaces have been investigated by several numerica] techniques
in order to test the validity of previous theoretical work. The
results, using as checks the integral equation solutions, show that
geometrical optics is not usable for surfaces with radius of
curvature smaller than 2.5 e and may give poor results even when
this condition is satisfied should the scattering geonétry be such
that no specular point exists or a specular point coincides with a
point of infinite radius of curvature. With the exception of these
two cases, geometrical optics and physical optics give nearly the
same scattered fields.

[t was found that the numerical evaluation of the scattered
fields from the physical optics currents gives good results for
almost any geometry (except perhaps deeply shadowed configurations)

as long as the radius of curvature condition, r_ > 2.5 A, is

cm
satisfied. Physical optics, although not always so accurate, has
an advantage over the integral equation formulation in that the length
of surface which can be treated is not limited by machine storage

capacity.



The integral equation program has been used to check the pert-
urbation theory prediction that the amplitude of the scattered field
increases in proportion to the increase in the amplitude of the
surface height profile. The numerical results confirm in a quantita-
tive way the fact that the theory fails when the root mean square
height is about one tenth of an electrical wavelength.

The physical optics program, because of its ability to handle
long surfaces and its superiority to geometrical optics, has been
applied to the direct calculation of the expected value of the
scattered power from an ensemble of ocean-1ike surfaces which were
constructed from a height spectrum similar to that of the sea. The
computer time required, while lengthy, was not found to be prohibitive.

The extension of the programs to very long surfaces, to non-
cylindrical surfaces or to dielectric surfaces appears feasible only
for the G.0. and P.0. methods; the storage requirements for an I.E.
solution in either case would be prohibitive. P.0. would probably be
the easiest to modify to non-cylindrical surfaces, especially if
shadowing were neglected. Since location of the specular points becomes
much more complicated in the non-cylindrical case, the G.0. method

would be more difficult to implement.
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APPENDIX A
COMPUTER PROGRAMS

A listing of all the programs discussed in the text is presented
here. To facilitate understanding of the programs, the symbols used
in the programs have been used in the text whenever possible.

A1l programs require the plot subroutine listed at the end.

The function subprograms AHAN20(x) and AHAN21(x) are required in

the T.M, and T.E. integral equation programs respectively.



[z¥sXslsNeNaNeNeNeNaNaKel

aoo

Aol

THIS PROGRAM IS FOR BISTATIC BACKSCATTERING
ESCNS IS THE RETURNED € FIELD WITH SHADCWING NOT ACCOUNTED FOR
ESCWS IS E SCATTERED WITH SHADOWING ACCOUNTED FOR

GEOMETRICAL OPTICS FOR THE OCEAN SURFACE

SPECULAR POINT SEARCH IS DONE IN TwhO STEPS
#1 1S MECHANICAL WAVELENGTH DEPENDENT,#2 ISREFINNED MECHANICAL OR
ELECTRICAL WHICHEVER IS MORE STRINGENT.
DLTAX [S THE SEARCH SIZE#1,DLTAX0O0 IS SEARCH SIZE#2
DELSHA IS SHADUW TEST STEP SiZE
THIS PROGRAM CAN HANDLE 200 SPECULAR POINTS /PASS TE. ONE THIELTHS
DIMENSICN XN{20Q) yANGLE(200)
DIMENSION ACDNS(720) 4 ANS(720),AWCS(T20),ASNS(720),A0S(720)

DIMENSION ECDNS{ 720 }4EWS {720}, EWCS(720),Y( 10)},ESNS(720)
REAL Pl,PI2
REAL MTWO

CUMPLEX ESCNS, ESCHWS,ENS

COMMON CA4CB,CKA yCKBsPHA,PHB,CC»CKCy PHC

COMPLEX ESCDNS,ESCD

NAMELIST/CAT/CA CByCKA,CKByPHA, PHB, CCyCKC4PHC »WAVE, THID
NAMELIST/CUT/ESNS4ASNS (ECDNS s ACDNSy) EWS s AWS+EWCSyAWCS , ADS

THE FUNCTION WHICH DESCRIBES THE SURFACE IS

H{X)=CA%S IN({CKA*X)+PHA)+CBXSIN((CKB* X} +PHBE ) +CC*SIN((CKC*X}+PHC)
CA=10.0 :

CKA=6,28318/200.0

PHA=0,.,0

CB=0.0

CKB=000

PHB=0 .0

CC=0.0

CKC=0.0

PHC=0.0

HMAX=ABS(CA}+ABS(CR}+ABS({CC)

P1=3.14159

P12=1.5707963

TPI=6.283185

WMMIN IS THE MINIMUM MECHANICAL WAVELENGTH

WMMIN=TPI/AMAX1 (CKA,CKB,LKC)

DLX=0.01000

THOLX=20.,0%DLX

NANI IS THE NUMBER OF ANGLES TO BE INVESTIGATED

NANI =360

XSTRY=-200,0

XSTCP==XSTRT

THS IS THE ANGLE BETWEEN THE PO0S. X AXIS AND THE SCATTERING DIREC.
THI IS THE ANGLE BETWEEN THE POSe. X AXIS AND THEINC. DIRECTION

THI=60.0%3,1415927/18C .0

WAVE IS THE ELECTRICAL WAVELENGTH
WAVE=25,0

DLTAX=WMMIN/10.0
DLTXOO0=AMINL{{DLTAX/5.0) y (WAVE/2CD})
DELSHA=WMMIN/10.0
XSKIP=XSTOP+(10%%9]
TANTHI=TAN(THI )
THID=THI*180.0/3.14159
CSTHI=COS(THI)

SNTHI=SIN{THI)

NAMEL IST/TOM/DLTAX,DLTXDO,DELSHA

WRITE(6,TOM)

DO 93 IRE=1,NANI

ASNS{IRE)=0.0

ACDNS( IRE)=0.0

ARS{IRE}=0.0

AWCS(IRE) =0.(

ESNS{IRE)=0.0

ECDNS ( IRE }=0,0
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EWS(IRE)=0.0
EWCS(IRE)=0.0

93 CONTINUE

356

c

102

160

101

DO 17 1J=1,NANI .

THS=FLOAT([J)*0,8726646 E-02

THSD=THS*%57,29578

AQS(1J}=THSD

WRITE(6,356) THID,THSD

FORMAT{11H INC ANGLE=4E15.8413H SCATT ANGLE=+E15.8)
SUCOS=CSTHI+COS{ THS)

SUSIN=SNTHI+SIN(THS)

N=0 :

FIRST FIND POSITICNNS CF SPECULAR RETURN AND STORE THEM
THE FIRST POSITION CAN NOT BE A SPECULAR POINT
XP=XSTRT

SUMD2=( THI+THS) /2.0

E=SUMD2-( TH{XP)+PI2)

XP=XP+DLTAX

EO=E

E=SUMD2-(TH(XP)+PI2)

IF(E.EQ.D.0) GO TO 100

IF{((EQeGCTe0e0) e ANDe(EeLToQe0))eORe ((EQeLTe0e0}eAND2{EeGT0.0))}
2 GO 70 100

60 10 101

N=N+1

XN(N)=XP

ANGLEIN)=THS=(TH(XP)+PI2)}

IF (XP«.LE. XSTOP) GO TO 102

IF(N.EQ.C) GO TO 372

THIS IS TO REFINE THE POSITIUN OF THE SPECULAR POINT
DO 25 K=1,4N

X50=XN{K) -DLTAX

E=SUMD2-(TH(XSO)+P12)

222 XS0=XS0+DLTXCO

252
253

25

10

59

EO=E

E=SUMD2-{TH(XSO)+PI2)

IF{E.EQ.Q.0) GU TO 252

IF(((ECeGTo0+C) s ANDe(EelLTs0e0})) ORa((ECLT+Da0U)eANDe(EaGTo040)1})
2 GO 10 252 ’

GO 710 253

XN{K)=XSO

ANGLE(K)=THS-(TH{XSO) +PI2)

CONTINUE

IF (X3C.LT.XN{K)} GO TO 222

CONTINUE

ESCNS=CMPLX{0.0,0.0}

ESCDNS=CMPLX{0.0,0.0)

DO 10 K=1,N
PHASE={TPI/WAVE)*{{SUCOS:XN{K)} )+ { SUSIMN*H(XN(K))))
RC=RS{XN{K))*COS (ANGLE(K))

IF{RC.LT.0.0}) PHASE=PHASE+(PI/2.0)

ENS=~( (SQRT {ABS(RC/2.0) ) ) *CEXP(CMPLX(UeD4PHASE))})
TAPPERING INCLUDED

XG=XN{K)

IF{XGC+GTo (XSTUP~-WAVE)) ENS=CMPLX{C.0,(.0)
TF(XGoL T {XSTRT+WAVE) ) ENS=CMPIX{TeUsl o)

TFCUXGeGT o (XSTOP-{2.C*WAVE) } )  AND« [ XGoLEL{ XSTOP-WAVE}))
2ENS=ENS* (Qe5-(0a5*SIN((3,14159/WAVEI*{X5=(XSTOP-(1le5%WAVE})})}))
TFCEX5e GEe {XSTRTHWAVE ) ) e ANDa{ XGuoLE& {XSTRTH (24 C*WAVED ) ) )
2ENS=ENS*(0.5+ (0, 5*%SIN({3,14159/WAVE ) *{XG—( XSTRT+(1le 5¥WAVE)) ) ) )]}
ESCNS=ESCNS+ENS ’

IF(RS{XN(K)})).LE.O.O0) GO TO 10

ESCONS=ESCLCNS+ENS

CONTINUE

ACD=CABS(ESCDNS)

IF(ACC.LT.1.0 E-05) GO TO 59

ANACC=57.29578%ATAN2 {ATMAG(ESCONS } yREAL(ESCDNS) )
CONTINUE

IF{ACC.LT. 1.0 E-05) ANACD=0.0



ESMAG=CABS{ESCNS)
ESANG=ATAN2{ATMAG(ESCNS} , REAL({ESCNS))*180.0/3,1415927
WRITE(64726) ESMAG,ESANG

726 FURMAT(' ','MAGs CF SCATT. E FIELD=',E15.8,*PHASOR ANGLE="',E15.8,

121

47¢C
471

499
327
500

670
671

699
633
639

23X "WITKOUT SHAQDWING' )

WRITE (&6¢121) ACD+ANACE

FORMAT (' ¢ ,YSCATT. FIELD NO SHADOW CONCAVE DCWN TIPS ONLY=',E15,8,
2YPHASOR ANGLE=',E15,8)
ESNS( [J)=ESMAG
ECDNS{1J)}=ACD
ASNS( IJ)=ESANG
ACDNS (1J)=ANACC
NOW FINDC THE SHADOWING EFFECT
INBOUND SHADOWING
IF (ABS{THI-P12).LT.0.C5) GO TO 508
DO 327 K=1,4N
BI=H(XN(K) )= ( TANTHI *XN(K) )
STEPI=DELSHA .
IF (TANTHI.LT.0.0) STEPI=-DELSH
XI=XN(K}+STEPI
GO TO 471
XI=XI+SYEPI
YI={ TANTHI*XI)+BI
IF (YT RELHI{XTI)) XN(K)=XSKIP
IF(ABS(XNIK) )Y GT.XSTOP) GO TO 499
IF(ABS(XI).GT.XSTQP) GO TO 499
IFtYi.LE.HMAX) GO TO 470 .
CONTINUE
CUNT INUE
CONTINUE
OUT BOUND SHADCWING
IF(ABS(THS-PI2).LT.0.05) GO TO 639
TAN THS=TAN( THS)
DO, 633 KK=1,N
IF (XN(KK}«GT«XSTOP) GO TO 633
THE ABOVE CARD MAKES SURE THAT TIME IS NOT SPENT ON A PT, ALREADY
KNOWN TO BE SHADGWED
BO=H{XN{KK) )= (TANTHS®*XN(KK) )
STEPO=DELSHA
IF(TANTHS L T.0.0) STEPO=~DELSHA
X0=XN{KK}+STEPO
GO TO 671
X0=X0+STEPO
YO=( TANTHS%XQ) +80
IF{YO.LELH{XO)) XN(KKI=XSKIP
IF(ABS(XN(KK))GT.XSTOP) GO TO 699
IF (ABS(X(0).GE.XSTOP) GO TO 699
IF (YOJLLE.HMAX) GO TO 670
CONTINUE
CONTI NUE
CONTINUE
END OF SHADOWING EFFECT
INININ=0
ESCWS=CMPLX(0.0,0.0)
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ESCD=CMPLX(0.0+0.0)
DU 19 K=1,4N
NEXT CARD SKIPS THE SHADOWED SPECULAR POINTS
IF (XN(K)«GT.XSTOP ) GO TO 19
INININ=K
PHASE=(TPI1/WAVE) * {{SUCOS%:XN(K) I+ (SUSIN*H(XN(K)})))
RC=RS{XN{K} )*COS(ANGLE(K))
IF(RCelTe0.0}) PHASE=PHASE+(PI/2.0)
ENS=—({SQRT(ABS(RC/2.C)} )1 *CEXP{CMPLX{G.04PHASE)))
TAPPERING INCLUDED
XG=XN{K)}
ITF(XGeGT o (XSTOP-WAVE} )} ENS=CMPLX{0.,1,3.0)
IF(XGelTa (IXSTRT+WAVE)) ENS=CMPLX(L 4C0eu)
IF(UXGeGTo{ XSTOP=(2eT%WAVE) ) ) cANDo(XGeLE{XSTOP-WAVE]) )}
2ENS=ENS*(Ce5-(0.5*SIN{( 3. 14159/WAVE)*{XG-{ XSTOP=~{1.5%WAVE))))))
IFCIXGeGE I XSTRT+WAVE)) ¢ ANDe{XGaLES(XSTRT+( 2, *WAVE))))
2ENS=ENS* (Coe S+ (0o5%SINI( 3414159/ WAVE)* (XG-(XSTRT+(1.5%WAVE))}})})
ESCWS=ESCWS+ENS
TF(RSIXN(K)).LE,. G.O) GC TO 19
ESCU=ESCO+ENS
19 CONT (NUE
IFL INININ.EQ.O) WRITE(643149)
IFCINININGLEQ.Q) GO TO 23 °
ABESCD=CABS(ESCD)
IF(ABESCD.LT. 1.0 E-05) GO TO 58
ANESCD=57.,29578%ATAN2(AIMAG(ESCD) yREAL(ESCD))
58 CONTINUE
IF{ABESCD «LTe 1.0E-05) ANESCD=0.0
ESMAGS=CABS{ESCWS)
ESANGS=ATANZ2 (AIMAG{ESCWS) 4y REAL (ESCWS))*180.0/3.1415927
3149 FORMAT(' *,*NO SCATTERED E FIELD WITHH SHADUWING*)
IFCINININGNE SO ) WRITE(64T776) ESMAGS, SSANGS
776 FORMAT(' *,*MAG OF SCATT. E FIELD WITH SHADOWING='yE15.8y *PHASOR
2ANGLE=',E15.8)
ITF(INININJNE.O) WRITE(6,2118) ABESCOD,ANESCD .
2118 FORMAT(* *,*SCAT FIELD wITH SHAD. CCNCAVE OOWN ONLY=',E15.8,
2' PHASOR ANGLE=',E15.8)
EWS(IJ)=ESMAGS
EWCS(IJ)=ABESCD
AWS{ IJ)=ESANGS
AWCS{1J)=ANESCD
GO 7O 23
372 WRITE (6,3152) THID,THSD
3152 FORMAT(' ND SPECULAR POINTS FOR THID=',E15.8," AND THSD=',E15.8)
23 WRITE(6,4779)
WRITE(64779)
779 FORMAT(1H )}
17 CONTINUE

C FOR THE PLOTS
DO 536 IKU=1,NANI
IND=1KO-1
THSO0=AQS( IKD)
Y(1)=ESNS(IKD)
536 CALL PLOT(THSD,Y 41 ,IND+50.0,04C)
D0 537 1KO=1,NANI
IND=IKO~1
THSD=AOS(IKO)
Y{1)=EWS(IKO)
537 cCcALL PLCT(THSD Y41 4IND+50.0,0.0)
00 533 IKO=1,NANI
IND=1KO~-1
THSD=A0S ( IKD)
Y({1)=ECONS(IKO)
538 CALL PLOT(THSD Y31 5INDy5C Gy 0.0)
DO 539 IKO=1,NANI
IND=1KO-1
THSD=AOS (IKO)
Y{l)=EWCS(IKO)



539 CALL PLGT(THSD,Y;14IND¢50.G40.0)

937

DO 36 KKRL=14NANI .

ANGOS=FLOAT (KKRL) /2.0
IF{ESNS(KKRL)<LE.0,0001) GO TO $36

DBNS=20 L *ALOGLO { ESNS(KKRL})

WRITE(6,937) DBNS,ANGOS

FORMAT (¢ DBNS=1,E15.8," ANGOS="',E15.8}

936 CUNTINUE

737
736

DO0736 KKRL=14NANI

ANGOS=FLOAT (KKRL) /2.0

IF( EWS(KKRL)«LE.C.0001) GO TO 736
" DBS=20.Q*ALUGLO(EWSI{KKRL))

WRITE(6,737) CBSyANGOS

FORMAT(®* DBS=*',E15.8+' ANGOS=*,E15.8)
CONTINUE

sTOP

END

FUNCTION RS(X)

COMMON CA,CByCKA3CKB3PHA 3 PHB3CC yCKC 5 PHC

THIS GIVES THE RADIUS OF CURVATURE AT X

HP=(CA¥CKA%COS( (CKA%X) +PHA) ) + (CB#CKB+CUS { { CKBX) +PHB ) )
2+(CCHCKC*COS((CKC*#X ) +PHCT )
HPP—-((CA*CKA4CKA*SIN((CKA*X)+PHA))+(CB*CKB*CKB*SIN((CKB*X)+PHB))
2+ (CCCKCHCKCHSIN( (CKCXX)4PHCI) ),

RS=((1.0+(HP#HP) |%%145)/(~HPP]

RETURN

END

FUNCT ION TH(X}

COMMON CA,CB,CKA,CKB, PHA, PHIBy CCo,CKCyPRC

TH=ATAN2 ((CA%*CKA%COS{ {CKA*X) +PHA) )+ (CB*CKB*COS{ (CKB*X }+PHB) )
2+ (CC*CKC*CAS ((CKC*X)4PHC) )} y1.0)

THIS FUNCTION GIVES THE ANGLE BET. THE TANGENT TO H(X) AND THE

HORIZONTAL

RETURN

END

FUNCTICN H{X)

COMMON CA,CB,CKA,CKB ,PHA, PHB, CC4CKC 5 PHC

H= (CA*SIN((CKA*X)+PHA]I+(CB*SIN((CKB*KI+PHB))+CC*S[N((CKC*X]+PHCI
RETURN

END
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OO0 OOO0ON

DIMENSION Y{10),ESSS{360)
THIS IS THE TM CASE .
THIS PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING
FROM A SEA SURFACE BY DIVIDING SURFACE INTO LIT AND UNLIT REGIONS
IN THE LIT REGIONS THE SURFACE CURRENT IN 2NXH
GAUSSIAN INTEGRATION USED
FOR THIS PROGRAM TO GIVE .USEFUL RESULTS THE SURFACE MUST HAVE
RADII OF CURVATURE NO LESS THAN 1#*kE
NSP 1S THE NUMBER OF SHADOW POINTS
SURFACE IS DESCRIBED BY ADNE#SIN{CCNE*X+PONE} +ATWO*SIN{CTWO*X
+PTHO) +ATRE*SIN(CTRE*X+PTRE} :
SURFACE UNDER CONSIDERATION LIES BETWEEN ALEP AND REP
SN IS THE STEP SIZE TAKEN TO DETERMINE SHADCWING
IT MUST BE SMALLER THAN ANY SURFACE FEATURES AND MUST ALSO
ALLCW THE LOCATIONOF THE END POINTS OF INTEGRATION WITHIN
A SMALL FRACTION OF A WAVELENGTH
NANI IS THE NUMBER OF ANGLES (SCATTERING) TO BE_ EXAMINED
MAKE DIMENSICNS OF ESSS , SCANG,EFPA SMALL AS POSSIBLE TO AVDID
LAGE # DOF CARDS RETURNED
NANT SHOULD BE THE DIMENSION OF FSSSSCANG,EFPA
NAMEL1ST/RON/AB, ANGs DTHS
JIMENSTION SCANG{360) sEFPA(3601}
COMPLEX S,BINT
SCATTER SHADOWING HAS NOT BEEN ALCCUNTED FOR
COMMON /DOG/ AONE 4 CONE {PONE s ATHO, CTWO 4PTWO,ATRE s C TRE, PTRE
COMMON /HOG/ G, THIs THS,HWE ’
COMMON/PIG/ SECTOR,DX,REP,SECDIO
COMMON/GSNN/ GWL» GH2 1 GH3 y GH4 ¢ GWS , GU 1y GU2 4 GU3 5 GU4 GUS
HE=25.0C
WE IS THE ELECTRICAL WAVELENGTH
6=2.0%3.1415927/WE
SRTWE=SQRT(WE}
CX=WE/15.0
AONE=50.0
CONE=2.0%3,1415927/800.0
PONE=3,14159/2.0
ATKO=C.0
CThG=0.0
PThD=0.0
ATRE=0.0
CTRE=0.0
PTRE=C.0
NANI=360
SECTOR=WE/2.C
SECD10=SECTOR/10.0
CONSTANTS FOR GAUSSIAN INTEGRATION
GH1=0.2369268
GW2=0.47862867
GH3=0.568889
CH4=GH2
GW5=GW]
GU1=-C. 9061798
GU2=-0.53846931
GU3=0.0 ’
GUL4=-GU2
GUS=-GU1
THE ANGLE OF INCIDENCE SHOULD NDT BE GREATER THAN 90 DEG
THI=60,0%3,1415927/180,0
IF THE INCIDENCE ANGLE IS WITHIN TEN DEGREES OF 90 NO SHADOWING
TAKEN INTO ACCOUNT ’
IFLABS(THI-1.5707).LT,0.175) GO TO 563
TANTHI=TAN{THI) )
DTHI=180.0%THI/3.1415927
WRITE(6,1071) DTHI

1071 FORMAT(' *,' ANG OF INC FROM PDS X AXIS =',E15.8)



REP=200.0
ALEP=~REP
SN=WE/10.0
NSP=1
DIMENSION S$X{1000)
IF(DH(REP).GT.TANTHI) GO TO 106
SX(NSP)=REP
GO TO 105 .
106 SLOPE=TANTHI
B=H(REP)~( SLCPE*REP}
X=REP
109  X=X-SA
IF((SLOPE%#X)+B.GT.H{(X)) GO TO 109
IF(X.LE.ALEP) GO TGO 1000
SXINSP)=X~-(SN/2.0)
105 CONTINUE
THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT
15  X=SX{ASP)
22 X=X-SN
XN=X-SN
IF((DH(X)}LT<TANTHI ) . AND.(DH{XN) .GT. TANTHLI}} GO TO 53
IF(X.GT.ALEP) GO TO 22
GO T0 92
53  NSP=NSP+1
SX(NSP)=XN
SLOPE=TANTHI
B=H{ SX{NSP) )- (SLOPE*SX{(NSP))
X=SX{NSP)-SN
29  X=X-SN
IF((SLOPE*X)+B.LT.H(X)) GO TO 39
IF(X.GT.ALEP) GO TO 29

60 T4 92
39 NSP=NSP+1

SX{NSP)=X-{SN/2.0)
GO TQ 15

92 NSP=NSP+]
SX{NSP}I=ALEP
GO TO 564

563 SX(1)=REP

SX{2)=ALEP
NSP=2

564 CONTINUE
LAST VALUE IN SX{J) 1S ALEP
WRITE (65101) (KeSX{K)eK=1,NSP)

101 FORMAT{(?' *,%SX(%,14,%)=",E15.8)
00 317 JNX=1,NANI
THS=FLOAT{JNX)*(0.,8726646 E-~ 02)
DTHS=180.0%THS/3.1415927
SCANG({JNX)=DTHS
S=CMPLX{ 0-0'0-0’
KKN=1

10 CONTINUE
ALCW=SX(KKN+1)
AUPP=SX{KKN)
S=S+BINT(ALOW,AUPP)
KKA=KKN+2
IF ((XKKNJLTeNSP) AND. { {KKN+1)  .LT.NSP)) GO TO 10
TO CCNVERT TO TRUE SCATTERED E FIELD FOR EINC OF UNITY MAG,
S=CMPLX{~0.70711+-0.707T11)%S/SRTWE
AB=CABS{S)
ESSS{ JNX)=AB
ANG=180.0*ATAN2{ AIMAG(S) +REAL(S))/3.1415927
EFPA{ JNX }=ANG
317 CONTINUE

DO 531 JK=14NANI
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531
532

“E=ESSS{JK)
DB=20.0%*ALOG10O(E)
A=EFPA(JIK)
AS=SCANG({JK)
WRITE (64532) AS.E,A,D8
FORMAT(® %,' SCAT ANG FROM HORIZ="' ,E15.8,' MAG OF E FIELD=?,

2 E15.8,' PHASE ANG=',E15.8,* DB=*4E15.8)

535

1000

1592
1002

[aXgN e

100

10
50

DO 535 IKE=1,NANI

INB=1IKE-1

THSD=FLOAT(IKE)/2.00
Y{1)=ESSSUIKE)

CALL PLOT (THSDy+Y,1,IND450.0+0.0)
GO TQ 1002

WRITE(64+1592)

FORM?T('SURFACE 1S NDT.ILLUMINATED®)
CGN

sTOP
END

EgpgaéoyDgé/AONE1CONE'P0NE'ATH0 CThO,PTWO,ATRE,CTRE,PTRE

H= AUNE*SIN(CDNE*X+PONE)+ATHO*SXN(CTHO*X+PTHOI+ATRE*SIN(CTRE*X+RTRE
2)

RETURN

END

FUNCTION DH(X)

COMMON /DCG/AGNE 4CONE 4PONE, ATHO,CTHD PTWO,ATRE(CTRE,PTRE
DH=AONE*CONE*COS (CONE*X+PONE ) +ATWO*CTWO*COS{CTWO*X+PTWO)
2 +ATRE*CTRE*COS{CTYREXX+PTRE)

RETURN

END

FUNCTION BINT{XX,YY)
XX IS LOWER LIMIT OF INTEGRATION,YY IS UPPER LIMIT

PHYSICAL OPTICS RADIATION INTEGRAL WITH PLANE WAVE INCIDENT
TM CASE

COMPLEX S,BINT

COMPLEX GASSS

COMMON /HOG/ Gy THI,THS,WE

COMMON/PIG/ SECTOR,DX,REP,SECDIO )

BREAK INTEGRAL FROM XX TO YY INTO SHMALLER SEGMENTS OF LENGTH
SECTOR AND INTEGRATE OVER EACH SEGMENT USING GAUSSIAN INTEGRATION
S=CMPLX(0.0,0.9) -

LDS=INT({YY-XXJ/SECTOR)

IF(LDS.EQ.0) GO TO 10

DO 400 INJ=1,LDS

UL=XX+{FLOAT({INJ)*SECTOR)

ALL=XX+{FLOAT(INJ-1)*SECTOR)

S=S+GASSS(ALL,UL)

NOW 7O GET LAST FRACTION OF SEGMENT LEFT OVER FROM SURFACE SEGMENTATION

S=S+GASSS{ XX+ {FLOAT{LDS)*SECTOR) »YY)
GO TO 50

S=GASSS{XX,YY)

CONTINUE

BINT=S

RETURN

END



aAOn

2000

1500

S5 (XLsXU}

EONBLEX GASSS,FTBI

FIFTH ORDER GAUSSIN INTEGRATION

AL IS LOWER LIMIT,XU IS UPPER LIMIT

XU-XL IS LESS THAN OR EQuAL TO SECTOR 5
COMMON/GSNN/GHI:GWZ'GH3tGw4oGw5vGU1yGU2,GU3.GU4yGU
DVOFEP=(XU-XL}/2.0
DVSHEP=1XU+XL1/2.0
XU5=GU5#DVDFEP+DVSMEP
T XU4=GU4* DVDFEP+DVSMEP
XU3=GU3*DVOFEP+DVSMEP
XU2=GU2*DYDFEP+DVSMEP

= #*0DVDFEP+DVSHEP

égésggévngP*(Gwl*FTBI(XUI)+GN2*FTBI(XU2)+GH3*FTBIIXU3)
2 +GHASFTBI(XU4)+GRS*FTBI(XUS))

RETURN

END

FUNCTION FTBI{X)
COMPLEX FTBI
THIS IS THE FUNCTLON TO BE INTEGRATED
THIS IS FOR THE TM CASE
COMMON/HOG/G » THI , THS,,WE
COMMON/PIG/ SECTOR,DX4sREP,SECDIO
GCC=G*(COS(THI)+COS(THS))
GSS=G¥*(SIN{THI}+SIN(THS)}
RCK=REP-(2.0%*WE) .
FTBI=SIN(THI-ATAN(DH(X) ) )*#SQRT{1.04({ CH{ X)%%2 )%
2 CEXP(CMPLX{D.0,({X*GCCI+(HI{X)I*GSS))))
THE FOLLOWING ACCOUNTS FOR TAPERING
ABSX=ABS(X)
TF{ABSX~RCK) 1500,1500,2000
IF(X.LE.(WE-REP)) FTBI=CMPLX{0.0,0.0)
IF{X.GE«{REP-WE)) FTBI=CMPLX{0.0,0.0}
IFU{XGTo(WE~REP)) .ANDo [ XoLEo{{2.0%HE)~REP)))
2 FTBI=FTBI*{Q.5+{0.5%SIN{1G/2,01%( X~ ({1.5%WE}~-REP))) )]}
TFUIX LT {REP~WE)})  AND«{XoGT o {REP~{2.0%WE))) )

2 FTIBI=FTBI*(045~(0.5+SINI{G/2.0)% (X~ {REP~(1.5%HE))))))
CONT INUE

RETURN
_END

95




96

3 X232 2020203202 s 202 sRa s ha e s

THIS IS THE TE CASE

THIS PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING
FROM A SEA SURFACE BY DIVIDING SURFACE INTO LIT AND UNLIT REGIONS

IN THE LIT REGIONS THE SURFACE CURRENT IN 2NXH

GAUSSIAN INTEGRATION USED

FOR THIS PROGRAM TD GIVE USEFUL RESULTS THE SURFACE MUST HAVE
RADII OF CURVATURE NO LESS THAN 1%WE

NSP IS THE NUMBER OF SHADOW POINTS

SURFACE IS DESCRIBED BY AONE#*SIN{CONE*X+PONE) +ATWO®SIN{CTWO*X
+PTHO) ¢ ATRE*STIN{CTRE*X +PTRE}

CIEACE UNDED COAMCIDERATINN I IEC RETWEEM A1 £ED AND DED

SUNT RLE VIWOEN LCUINJLUCRAR T LU aled un.nu\.-.u ABLCE A RO T

SN IS THE STEP SIZE TAKEN TD DETERMINE SHADDWING

IT MUST BE SHALLER THAN ANY SURFACE FEATURES AND MUST ALSD
ALLOY THE LOCATIONGOF THE END POINYS OF INTEGRATION WITHIN
A SMALL FRACTION OF A WAVELENGTH

NANT IS THE NUMBER OF ANGLES (SCATTERING) TO BE EXAMINED
MAKE DIMENSIONS DF ESSS ¢ SCANG,EFPA SMALL AS PODOSSIBLE TO AVOID
LAGE # OF CARDS RETURNED

NANI SHOULD BE THE DIMENSION OF ESSS.SCANG,EFPA
DIMENSION Y{10), ESSS(360)}

NAMEL I ST/RON/AB ANG {DTHS

DIMENSION SCANG{360) ,EFPAL360)

COMPLEX S+BINT .

SCATTER SHADOWING HAS NOT BEEN ACCOUNTED FOR

COMMON /D0DG/AONEsCONEPONE,ATHO+CTHOPTHWO,ATRE +C TRE 4 PTRE
COMMDN /HOG/ G+THITHS WE

COMMON/PIG/ SECTOR,DX,REP,SECD10

COMMON/ GSNN/GH 1y GH24 GW 3y GH4s GHS5,GUL,GU2,6U3,6GU4,GUS
HE=25.0

HWE 1S THE ELECTRICAL WAVELENGTH

G=2.0%3,1415927/HE

SRTWE=SQRT{ WE)

DX=HWE/15.0

AONE=40.0

CONE= 2-0*3-1415927/200.0

PONE=0,.0

ATNO=0-0

CTHO=0.0

PTHO=0.0

ATRE=0.0

CTRF=0.0

PTRE=0.0

NANI=360

SECTOR=HE/2.0

SECD10=SECTOR/10.0

CONSTANTS FOR GAUSSIAN INTEGRATION

GW1=0.2369268

GN2=0.47862867

GW3=0,.,568889

GH4=G W2

GHS5=GW1

GUL=-0.9061798

GU2=~0, 53846931

GU3=0.0

GU4=-GU2

GU5S=~GU1

THE ANGLE OF INCIDENCE SHDULD NOT BE GREATER THAN 90 DEG
THI=60.0%3,1415927/180.C

IF THE INCIDENCE ANGLE IS WITHIN TEN DEGREES OF 90 NO SHADDOWING
TAKEN INTO ACCOUNT

IFIABS(THI-1.5707}.LT.0.175) GO TQ 563

TANTHI=TAN(THI }

DTHI=180.,0%THI/3.,1415927

WRITE(6,1071) DTHI

1071 FORMAT(®¢ *,* ANG OF INC FROM POS X AXIS =*',E15,8)



106

109

105

15
22

53

29

92

563

564

101

10

REP=2°D¢ 0

ALEP=~REP

SN=WE/10.0

NSP=1 .

DIMENS [ON 5X{1000)

IF(DH(REP).GT ,TANTHI) GO TG 106

SX{NSP)=REP

GD TO 105

SLOPE=TANTHI

B=H{REP)~(SLOPE*REP)

X=REP

X=X-SHN

IF{(SLOPEXX}+B.GT.H(X}) GO TO 109
IF(X.LE.ALEP) GO TO 1000

SX{NSP) =xX=(SN/2.0)

CONTINUE

THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT
X=SX{NSP)

X=X~SN

XN=X-SN

TF((DHIX)}oLTTANTHI ) . AND. {DH{XN) <GT .TANTHI)) GO TD 53

IFIX.GT.ALEP) GO TO 22

GO TO 92

NSP=NSP+1

SX{NSP)=xN

SLOPE=T ANTHI

B=H{SX{NSP) )~ (SLOPE*SX (NSP) )

X=SX{NSP)-SN

X=X~SN

IF((SLOPE*X1+B.LT.H{X)] GO TG 39

IFIX.GT.ALEP) GO TO 29

GO 0 92

NSP=NSP+1

SXINSP)=X-{5N/2.0)

G0 10 15

NSP=NSP+1

SX{NSP)=ALEP

GO TO 564

SX (1) =REP

SX{2)=ALEP

NSP=2

CONTI NUE

SURFACE 1S5 NOW SEPERATED INTO LIT AND UNLIT ZONES
LAST VALUE IN SX(J) IS ALEP

WRITE (6,101) (K,SX{K)yK=14NSP)

FORMAT(* *,9SX{%,T4,')=,E15,8)

THE FOLLOWING FINDS THE SCATTERED FIELDS DUE TO THE LIT ZONES
D0 317 JNX=1,NANI

THS=FLOAT(JINX)*{0.8726646 E-02)
DTHS=180.0%THS5/3.1415927

SCANG{ JNX)=DTHS

S‘CMPLX(0.0Uan’

KKN=]

CONTINUE

ALOW=SX{KKN+L}

AUPP=SX ( KKN)

S=S+BINT{ALOW,AUPP)

KKN=KKN+2

IF ((KKNoLT<NSP).AND, ( (KKN+L) LT ,NSP)) GO TD 10
TO CONVERT TO TRUE SCATTERED H FIELD FOR HINC OF UNITY MAG
S=S*CMPLX{0«T0TELy 070711}/ SRTHE

AB=CABS(S) :

DB=2C ,0*ALDG10(AB)

ESSS{JINX)=AB

ANG=1 80, O%ATANZ { AT MAG(S) ;REAL{S))/3.1415927
EFPA(JUNX }=ANG

WRITE{6,143) DTHS,AB, ANG, DB
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" 143

FORMAT(? SCATTERING ANG? ¢E15.89¢ MAG=* ¢yE15.8+' PHASE ANGLE=?,

2E15.84' DB=',E15.8)

317

531
532

CONTINUE

DD 531 JK=1,NANI

E=ESSS (JK)

A=EFPA( JK)

AS=SCANG(JK )

WRITE (64532) AS,EsA :
FORMAT(® *,' SCAT ANG FROM HORIZ=' ,El5.8,° MAG OF H FIELD=",

2 E15.8,' PHASE ANG=',E15.8)

535

1000
1592
1002

oon

100

10
S0

DO 535 IKE=14NANI
IND=IKE-1

THSD=FLOAT(IKE) /2.00

Y{1)=ESSS(IKE)

CALL PLOT (THSD4Y41,INDy50.0,0.0)

GO 70 1002

HWRITE(6,1592})

FORMAT{' SURFACE IS NOT [LLUMINATED®]
CONT INUE

sTop

END

FUNCTION H(X)

COMMON /DOG /AONE,CONE,
H=AONE*SlN(CONE*X+PDNE)OATHU*SIN(CTNO*

2)
RETURN
END

ATWO,CTWO,PTHO,ATRE,CTRE, PTRE
Seamn y y X+P THWO ) +ATRE*SINICTRE* X+PTRE

FUNCT[DN.DH(X’ O, PTHO,ATRE, CTRE,PTRE

AONE s CONE » PONEy ATWO, CTHOy ’
ggr:g:E:ggﬁé*CDS:CDNE*X#PONE)+ATNO*CTND*COSlCTHU*XfPTHO)
2 +ATRE*CTRE*COS(CTRE*X+PTRE)

RETURN
END

FUNCTION BINT( XX, YY)

XX IS LOWER LIMIT OF INTEGRATION,YY 1S UPPER LIMIT

PHYSICAL OPTICS RADIATION INTEGRAL WITH PLANE WAVE INCIDENT
TM CASE :

CONPLEX S+BINT

CONPLEX GASSS

COMMON 7H0G/ Gy THI,THS,WE

COMMON/ PIG/ SECTOR, DX, REP,SECDLO

BREAK INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS OF LENGTH
SECTOR AND INTEGRATE OVER EACH SEGMENT USING GAUSSIAN INTEGRATIDN
S=CMPLX(O-010¢G) '
LDS=INTL(YY-XX)/SEC TOR)

IF{LDS.EQ.0) GO TO 10

00 100 INJ=1.+LDS

ULeXX+{FLOAT( INJ) *SECTOR)

AtL=XX+(FLOAT {tINJ-1)%SECTOR)

S=S+GASSS(ALL ,UL)

S=S#GASSS(XX+ { FLOAT {LDS § *SECTDR ), YY)

GO TO 50

S=GASSS{ XX. YY)

CONTINUE

BINT=S

RETURN

END



rinen 8

FUNCT IGN GASSS (XL, XU)

COMPLEX GASS5,FTBI

FIFTH ORDER GAUSSIN INTEGRATION

XL IS LOWER LIMIT.XU IS UPPER LIMIT
XU-xt. IS LESS THAN OR EQUAL TO SECTOR
CUHMDN/GSNNIGHI.GHZ'GH3'GH4'GH5.GU1.GUZ.GU3'GU4.GU5
DVDFEP=( XU-XL} /2.0

DVSMEP={ XU+ XL) /2.0

XU5=GUS*DVDFEP +DVSMEP
XU4=GU4*DVDFEP+D VSMEP
XU3=GU3*DVDFEP+DVSMEP
XU2=GU2*OVDFEP+DVSMEP
XUL=GU1+*DVOFEP+DVSMEP

o0

GASS5= DVDFEP*(GHI*FTBI(XUl)tGHZ*FTBI(XUZ)+GH3*FTBI(XU3)'

2 +GWAsFTBI(XU4) +GHWS*FTBI (XUS5))
RETURN
END

FUNCTION FTBI{X)
COMPLEX FTBI
c THIS IS THE FUNCTION TO BE INTEGRATED
C THIS 1S FOR THE TM CASE
COMMON/HOG/Gy THI , THS s WE
COMMON/PIG/ SECTOR,DX,REP,SECDI10O
GCL=G*(COSI THE)Y+COS{THS)}
GSS=G*{SIN(THII+SINI{THS))
RCK=REP-{(2.0%NWE)
FTIBI=SIN(THS-ATAN(DH{ X)) }*SQRTI1.0+{DH(X)*%2))*
¢ CEXP{CMPLX(O.04+{{X*GCC)+{ HI X)I%GS5S)11))
c THE FOLLOWING ACCOUNTS FOR TAPPERING
ABSX=ABS{ X}
IF(ABSX-RCK ) 1500v150012000
2000 IF( K LEL{WE-REP)) FTBI=CMPLX(0.04040)
IF(X «GE.(REP-WE)} FTBI=CMPL X{ Q. (}y 0. 0) :
IE((XoGT o {WE~REP) ) s AND.(XoLEs ({2 JO*WE)-REP) )}
2 FIBI=FTBI*(0.5¢{0.5%SIN{(G/2.0*{X=-((1.5*HE)~REP)))))
IFUIX LT s {REP-WE) ) s AND ol XoGT e {REP=( 2, 0%WE)) ) }
2 FTBI=FTBI*{0.5-(0.5%SINUI(G/2.0V*#(X~(REP~-(L.5*dE1})))}) .
1500 CONTINUE
RETURN
END
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100

OO0

1002
1001

352

3276

THIS IS A METHOD OF MOMENTS SOLUTION

TM POLARIZATION SYMMETRIC MATRIX

NSUB SEGMENTS HAVE N MIDPOINTS

NSUB.IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
WHATCH MAX SLDPE SO THAT THRE X INCREMENTS ARE SMALL ENOUGH
THE. REGIUN UNDER CONSICERATION LIES BETWEEN -EP AND EP
DIMENSION Y{10),CMC(360)

CGMPLEX SNN,SST

COMPLEX FSS

UOUBLE PRECISION DAL,DDX,DDC2,DDC4DALC.DR

COMPLEX FINC{(30 ),5TS

COMMON /PIG/ AONE,CONEPCNE,ATWO,CTHC,PTWO,N
COMPLEX AHANZ20

COMPLEX F(300}),5(45150Q)+SS,T

CUOMPLEX FIN

DIMENSICN X(300)

DIMENSICN XMID(300)

CUMPLEX STO

WE 1S THE ELECTRICAL WAVELENGTH

HE=2500

G=6.2831853 /WE
STS=SQRTIWE)*CMPLX{1+0pled) ¥ (+0.T7C71067)/3,1415927
DC=WE/10.0

DX=DC/100¢ .0

DC2:DC/2.0

EP=20Q.0

AP1=3,1415927

THE FCLLCWING CONSTANTS DEFINE THE SURFACE
ADNE=25,C

CCNE=2,0%3.1415927/20G.0

PONE=Ce0

ATHO=C.0

CTWO=(C,.D

PTHWO=0.C

CALL SCLOK1

THE FOLLOWING BREAKS THE SURFACE INTQO SEGMENTS DC CENTIMETERS LONG
BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THF INTEGRATION
NSUB=1

X{NSUB)=-EP

DOC=DBLE(DC)

DLOX=CBLE (DX}

DDC2=DBLE(DC2)

DR=CELE(X(NSUB) )

DR=DR+DDX

R=SNGL(DR)

DALO=DAL

CAL=CAL+({CDX*DSQRT{1.0D QN +((CBLE(DH(R)) ) %%2)))
IF(({CDC2-DAL) L0 40D CO) e ANDW {{DUC2~CALO)+GELD 0D 001))

2  XMIDINSUB)=R

IF(DALL.LT.CCCIGO TO 1001

NSUB=NSUB+1

X{NSUBI=R

AL=SNGL(CAL)

WRITE (6,352) AL,NSUB

FORMAT(® *,'AL=1,E£15,8," NSUB=*,14)

IF (R.LTLEP) GO TO 1002

TIME=RCLCK1{1l.C})

WRITE(6,3276 ) TIME
FARMAT(' ', *TIME=*4Fl064+"SECCNDS")

N=NSUB~1

DO 1004 J=1,NSUB

IF {J.EQ.NSUB) XMID(NSUB}=0.0

XXX=X{(J)

XMD=XMID(J)



c

c

c
C

10C4
1003

400

100G

1222

9333

WRITE (641003) XXX+XMD,yJ

FORMAT (6H X({J)=,E15.8,9H XMID(J}=,E15. 8.3H J=,13)
THIS ENDS THE SURFACE SUBDIVISION

NMO=N-1

NM3=N-3

DIMENSION OF S IS N{N+1)/2

OIMENS ION OF FINC,F IS N

DPIF=0.7853982.

EE=2,71828

GA=G%DC/ (2.0 *EE)
SNN IS THE DIAGUNAL ELEMENT OF THE INPUT MATRIX
SNN=AHAN20Q{GA)

WRITE (6,400) SNN

FORMAT (5H SNN=,2E15.8)

DO 100 NJ=1,N

NJPD=NJ+1

SUISUBINJ4NJ))=SNN

THIS FINDS ELEMENTS ON THE DIAGONAL

IF (NJPB.GT.N) GO TO 100

DO 100 NA=NJPO,N

THIS FINDS OFF DIAGONAL ELEMENTS
XM=XMID(NJ)

XN=XMID(NA)

RHO=SQRT (( { XN=XM}*%2) ¢ ({H{XN)—H( XM} ) 2%2)}
RHG=RHD* G

SCISUBINJ,NA) }=AHAN2O (RHG)

CONT INUE

THIS CCMPLETES THE FILLIN OF THE MATRIX

THIS BEGINS THE CCNVERSICN TO UPPER TRIANGULAR MATRIX
SU1)=CSQRT(S(1)}

DO 1 K=2,N

S(K)=S(K}/S(1}

oo 2 I=2,N

IMC=1-1

1PO=1+1

T=CMPLX(0.0,0.0!}

DO 3 L=1,IMD

LI=(L*=)~(({IL=1)%L)/2)+N-1)

T=T4+{S{LI)*%2)

IT=CI%N)~((((I=-1)%1)/2)4N=T)
SCII)=CSQRTES(IT)I-T)

IF(IPO.GT.N) GOTO 2

D0 5 J=IPGyN

T=CMPLX{0.0,0.0)

DC 6 M=1,IMU

MI=(MEN)~({({M-1)%M)/2)+N=-1)

MI=(MEN) ~ (((M*{M=1)1/2)+N-J)

T=T+{S{MJI£S(M]))

IJ=CE#R)~(({(I-1)%1)/2)+N-J)
S(IJ)=(S{1I)-T)/S(II)

CQNTINUE

THIS ENDS THE CCNVERSICN TO UPPER TRIANGULAR MATRIX
WRITE (641222) N,WE

FORNAT(3H N=,13,4H WE=,E15.8)
TH=60.0%3,1415927/180.C

THXXD=180,04TH/3,1415927

WRITE (6,9333) THXXD

FORMAT(9H INC ANG=,E15.8)

TH 1§ YHE ANGLE OF INCIDENCE FRUOM THE HORIZONTAL
STH=SIN(TH)

CTH=COS(TH)

THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
DO 455 NJ=1,N

ENJ=FLOATINJ}

XM=XMIDINJS}

F(NJl‘CExP(CMPLX(O O,G*((XM*CTH)*(H(Xi)*STH))))
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IF(XMeLE« { {WEX]1+C)I-EP)) FIANJ)I=CMPLX(04I90.D)
TF(XMeGEL{EP-{1.0%WE})) FINJI=CMPLX{DeIy’.0)
IF((XMeGTa{{LCH*WE)=EP)) AND (XM oLE «{{2.3*WE)-EP)))

2 FINJI=FINJ)*({0e5¢({05%SIN((G/2,0)%(XM —{{1.5%WE)-EP})}))
IF({XM eGES{EP~(2.0*WE}))«AND . (XM o LT {EP-(1.0%WE))})
2 FINJ)I=FINJ)I*(D.5-(0e5*%SINLIG/24 D) * (XM —{EP-{1.5%WE))) 1)}

455 CONTINUE
WRITE(6+2548) (NJyFINJ) ¢yNI=13N)
2948 FURMAT(Y *,¢ INC FIELD F{'y14,')=1,2E15.8)
c THIS BEGINS THE BACK SUBSTUTIUN
FLLY=F(1)/5(1)
DO 10 1=2,N
IM0=1-1
T=CMPLX{0.0+0.0)
DO 11 L=1,IMC
LI=(LEN)—{(((L-1)%L)/2) ¢N-1)
11 T=T+{SILI)*F(L))
TI=(I%N)=C 0L (T-1)*1)}/2)4N~-1)
10 FOI)=(F(1)}=-T)/SUII)
NN=(N*{N+1))/2
FIN)=F(N)/S(NN)
NMC=N-1
DC 25 I=1,AMO
K=N-1
KPO=K+1
T2ZCMPLX (0 319540)
DG 26 L=KPG,N
KL={K*N)={ (((K=1)%K)/2)+N-L)
26 T=T+(S(KL)=F (L))
KK={ KENI=( C((K=1 %K) /2)+N-K)
FUKI=LF(K)=T)/S(KK)
25 CUNTINUE
C THIS ENDS THE BACK SUBSTITUTIONS
Pl 491 K=1,N
STT=CABS(F(K))
STO=F(K)
ANNN=ATAN2 (AIMAG(F{K}),REAL (F{K))1%18B0.0/3.1415927
491 WRITE(6+4492) K,STO,STT,ANNN
492 FORMAT(® ¢, 0F(*, 14,2 )=4,2615.8,* OR ','AMP=',E15.8,'AT ANGLE="',
2 C15.8) )
DN 317 JNX=1,360
THR=0.872664625E~02 *FLOAT{JINX)
T=CMPLX(0.0+0.0)
DO 310 I=1,N
XN=XMID( 1)
310 T=T+ ((FUI)*CEXP{CMPLX{C +DsG*IIXNRXCOSITH))+{ HIXNIXSIN{THI)}I})}))
o THIS CCRRECTS T TO TRUE SCATTERED FIELD
T=STS*T
CM=CARS(T)
CMCLJUNX)I=CM
CANG=574296%AT AN2{AIMAG(T),REAL(T))
THD =TH*57.296
DB=20.0%ALOGL0O(CM)

317 WRITE (64312) CM,CANG, THU,CB
312 FORMAT (18H RELATIVE E FIELD=4yE15.8y7H ANGLE=,E15.8,
2 23H ANGLE FROM HOPIZUNTAL=4E15.8,7H OB=,E15.8)
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DO 576 IKE=1,360
THSD=FLOAT(IKE) /2.0

IND=IKE-1

Y(1)=CMC (IKE)}

CALL PLOT{THSDyYs1 ¢IND¢50.0+0.0)
sToP

END

FUNCTION H(X)

THIS DEFINES THE SURFACE

COMMCN /P1G/ AONE,CONE,PONE,ATWO,CTWO,PTHO,N
H=AGNE*S IN(CONEXX+PONE ) tATWO*S IN(CTHO*X+PTHO)
RETURN

END

FUNCTION DH(X)
DH(X) IS THE DERIV. OF H(X)
COMMON /PIG/ ACNEsCCNE¢PONEsATWO,CTHO ,PTHO WN
DH=ADNE *CGNE #C0S (CON EXX+PONE ) +AT WO #C ThU%CO SIC THO# X+PTWO)
RETURN
END

FUNCTION lSUB(JvK!

COMMON /PIG/ AONE, CDNEyPONEvATNDvCTwO’PTNOvN .

THIS CONVERTS ELEMENTS OF UPPER TRIANGULAR MATRIX TO A LINEAR
ISUB=(N*J)-((((J-1)%J)/2)+N-K)

ARRAY COUNTING LEFT TO RIGHY STARTING WITH FIRST ROW

RE TURN

END
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THIS IS A METHOD OF MOMENTS SOLUTION FOR BISTATIC SCATT TM CASE
GAUSSIAN INTEGRATION IS USED TO CALCULATE THE MATRIX ELEMENTS
UNIT INCIDENT ELECTRIC FIELD-IS ASSUMED,OF COURSE THIS IS MODIFIED
NEAR THE ENDPOINTS OF THE SURFACE BY ILLUMINATION TAPPERING
NSUB SEGMENTS HAVE N MIDPOINTS
NSUB IS THE SUBSCRIPT WHICH COUNTS THE "END POINTS
N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
WATCH MAX SLOPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH

‘THE SURFACE UNDER CONSIDERATION LIES BETWEEN —-EP AND +EP

THE ARRAY XM{J) CONTAINS THE X COCRDINATES OF THE MIDPOINTS OF THE
SEGMENTS,XM(1) IS THE MIDPOINT OF THE I*TH SEGMENT

THE ARRAY X(J) CONTAINS THE X COORDINATES CF THE ENDPCINTS OF THE
SURFACE SEGMENTS,X{I)yX(I+1) ARE THE LOWER AND UPPER X COORDINATES
OF THE ENDPOINTS OF THE I*TH SEGMENT

PHASE REFFERENCE IS AT THE ORIGIN OF THE COORDINATE SYSTEM
CCMPLEX SNN,SST

COMPLEX S .

DIMERSION Y(10)4,CMC(360)

NAMELIST/D/ WE,EP,THXXDsAONE,CONE PONE s ATWO 4CTWO,PTHO 4N

NAMELIST /E/FyXMID

CAMPLEX FSS

COMPLEX STS

COMMON /PIG/ AONE,CONE,PONE,ATWO, CTHD,PTWO.N

COMPLEX C(236,2361

COMPLEX F(236)+SSyT4CTEST

THE DIMENSICNS OF C AND F MUST BE COMMENSURATE

THAT IS ClL4L} -—=- F{L)

COMPLEX FIN

COMPLEX HANZ2

DIMEANSION X({50C])

DIMEANSION XM({500)

THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE

ACNE==50.0

CONE=6.28318/800.0

PONC=3.1415927/2.0

ATWO=C.0

CTHO=C.0

. PTHO=0.0

1002

1001

a52

WE IS THE ELECTRICAL WAVELENGTH

WE=25.C

6=6.2831853 /WE

DC=WE/10.0

DX=DC/1CCC.0O

DC2=DC/2.0

EP=200.0

THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG

gg LI?E INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION
us=

X{NSL3)=-EP

AL=0.500

R=X{NSUB}

R=R+DX

ALU=AL

AL=AL+{DX¥SQRT(1.2+{DH{R)*%2)))

TFE((DC2-AL ) «LE.0.0)AND.((DC2-ALD) «GT+C.0}) XM{NSUB}I=R
IF(AL.LT.DC)}GD TO 1001

WRITE (64352) AL,NSUB

FCRMAT(® ', %AL='4E15.8,4" NSUB=1,14)

NSUB=NSUB+1

X{NSU8)=R

IF (R.LT.EP) GO TO 1002

N=NSuB-1

DO 1004 J=1,NSUB

IF (JL.EQ.NSUB) XMINSUB)=C.0

XXX=X1Jd)

XMD= XM(J)



1004 WRITE (641003) XXX,XMDsJ
1003 FORMAT (6H X(J)=,E15.8,9H  XM{J)=yEL5.8,3H J=,(3)
c THIS ENDS THE SURFACE SUBDIVISION
NMO=N-1
- NM3=N-3
c DIMENSION OF FINC+F IS N
DPIF=0.7853982
EE=2.71828
GA=G=0C/(2.0%EE)
c SHN IS THE DIAGONAL ELEMENT OF THE INPUT MATRIX
SNN=HANZ2(GA) *DC
WRITE (64400} SNN
40C FORMAT (5H SNN=,2E15.8)
DC 100 NJ=1,N
C{NJ,NJ)=SNN
100 CONTINUE :
c CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
GU1=-0.9C61798
GU2--0.53846931

GuU3=0.0
GU4=-GU2
GU5=-GUl

GH1=0.2369268
GW5=0.2369268
GH4=0.4T862867
GH2=0.4T7862867
GW3=0.5688888
DO 3361 MR=1,N
XMM=XM{NR)
HXMM=H ( XMM)
DO 3361 MC=1,N
IF (MC.EQ.MR) GO TO 3361
EPL=X{MC)
EPU=X(MC+1)
DVDFEP= (EPU~EPL)/2.0
DVSMEP=(EPU+EPL) /2.0
XU5=GU5*DVDFEP+DVSMEP
XUl=GUl =DVDFEP+DVSMEP
XU2=GU2%DVDFEP+DVSMEP
XU3=GU3*DVDFEP+DVSMEP
XU4=GU4%*DVDFEP+DVSMEP
C{MR,MC }=DVDFEP*(
2+GWLHHAN2 {GESQRTL( ( XUL=XMM)*x2)+{ (H(XUL)=HXMM)%%2)) )} *SQRT(1.0+(DH(
2 XUl)x%2)}
2+GH2*HAN2 (G*SQRTUL{ XU2-XMM) %521+ { (H{).U2 )= HXMM)}%*2}) } *SQRT(1.0+{DH(
2 XU21%:%2))
2+ GHI*HANZ (GHSQRT{({ { XU3=XMM ) %52} + { {H{XU3 }-HXMM)%%2) ) }¥SQRT(1.0+(DH(
2 XU3)%%2))
24+ CHWA*HANZ (GXSQRT{ L XU4=XMMY %2} 4+ ( (H(XU4)-HXMMI%%2) ) ) *SQRT{1 .0+ (DHI
2 XUQ)yx%2))
2+BWSRHANZ2 {GHSQRT{ L { XUS—XMM} %2} + { {H{; U5 }-HXMM)} %£%2) ) ) «SQRT(1.0+(DHI
2 XUS)Ix%2)))
3361 CONTINUE
c ‘THIS COMPLETES THE FILLIN OF THE MATRIX
c - NCNSYMMETRIC CRQUT
C FIRST COLUMN OK
c TOO GET FIRST ROW
DO }O J=2,N
10 C(IJJ)=C(1|J)/C(191)

C NOW WORK ON ROW AND COLUMN SET <
DO 11 K=2,N
KMO=K-1
KPO=K+1
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C TO GET DIAGONAL ELEMENT
: S=CMPLX(0.,0,0.0)
DD 12 '1K=1,KMO
12 S=S+C(KyIK)*C{IK,K)
CIK¢K)=ClKyK)I-S
c TO GET ELEMENTS IN COLUMN K BELOW ROW K
-IF (KPO.GT.N) GO TO 17
DO 13 IROW=KPOsN
S=CMPLX(0.0,0.0)
DO 14 JJ=1,KMO
14 S=S+C{IROW+JJI*CIIJ4K)
13 C{IROW,K)=C(IRUOW+K)~S
c TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
DC 15 ICOL=KPO,N :
S=CMPLX(0.0,C.0)
DO 16 JR=1,KMC
16 S=S+C{K,JR)*C(JR,ICOL)
15 CUKy ICOLI=(C(KyICOLI-SI/CIK,yK)}
17 CCNT INUE
11 CONT INUE
WRITE (€41222) NsWE
1222 FORMAT{3H N=,13,4H WE=,E15.8)
THI=3.1415927%60.0/180.0
THXXD=TH1%*180.0/3.1415927
WRITE (€49333) THXXD
9333 FORMAT(SH INC ANG=,E15.8) .
c THI IS THE ANGLE OF INCIDENCE MEASURED FROM THE HORIZONTAL
c LE, THE POSITIVE X AXIS
STH=SIN(THI }
CTH=COS(THI)

c THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
DG 455 NJ=1,4N
XG=XM{NJ}

FNJ)=CEXP (CMPLX{0.0yG*{(XG*CTH)+(K(XG)*STH})))

TAPERD ILLUMINATION

[eXaNzEaNel

IFIXG.LE.({WE*]1 . 0)=-EP)} F(NJ)=CMPLX(0.0,0.0)
IF{XG.GE.(EP-(1.0%WE)}) FINJI=CMPLX(J.0,C.0)
IF({XGeGTe{{LeD*WEDI—EP)) dAND{XGe Ll o ((2.0%WE)-EP))})

2 FINJI=FINJI)%{0.5+{0.5%SINIIG/2.0)+(XG —{{1.5%WE}-EP)})}))
IP{(XG «GE.{EP-(2.0%*WE) ) ) «AND. (XG LT (EP-{1.0%WE))))
2 FINJI=F{NJ)}*{0.5-10.5*%SINI{G/2.0)*(XG -{EP-{1.5*WE)})))))

ABSF=CABS(F(NJ))
WRITE(6483) NJyABSF
83 FCRMAT(* INC FIELD AT XM(®yI4,%)=t,E15.8)
455 CONTINUE .
C THIS BEGINS THE BACK SUBSTUTION
C CCNVERSION GF SOURCE SIDE
FL1)}=F(1}/C(1,1)
DO 90 [J=2,N
S=CMPLX(C.C40.0)
I1JM0=1J~1
DO 91 IK=1,1JM0
91 S=S+C{1J,IK}=F(IK)
90 FUIJ)I={F(TIJ1=-S)/C(1J,14)
Cc MNOW FOR FINAL BACK SUBSTITUTICN
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175
160

425
553

439

440

310

317
312

441

NMO=N-1

DO 160 L=1,NMO '

K=N-L

KPO=K+1

S=CHMPLX(0.0,0.0)

DO 175 JO=KPGyN

S$=S+C{K,JO)*F(JD)

FIK)=F(K}-S

DO 425 KCURR=1,N

ABF=CABS(F{KCURR)}}
ANGF=180.0*ATAN2 (ATMAG (F(KCURR} ) ,REAL{F{KCURR})) /3.1415927
WRITE(64553) KCURRyABF,ANGF

FORMAT( ' F("%,14,')=',E15.8," AT ANGLE',E15.8)
THIS ENDS THE BACK SUBSTITUTIONS

DC 439 KURR=1,N

IND=KURR-1

Y{(1)=CABS(F(KURR} 1*4,0¥%WE/(6.28318%377.0])
XCRD=FLQAT(KURR)

CALL PLOT(XORD+Y+1,IND,0.020040.0)

DU 440 KURR=14N

IMD=KURR-1
Y(1)=180.C*ATAN2(AIMAGIF{KURR) ) +REALIF(KURR})1/3.1415927
XORD=FLOAT(KURR)},

CALL PLOT(XGRDyYys1l,yINDy180,09-180.0}

DC 317 JUNX=1,360

" TF=0,87266463 E~02%FLOAT{JNX)

T=CMPLX(0.010-0)

DO 310 I=1,N

Xh=XM(1) ’

T=T+ ({FOI)#CEXP(CMPLX(0+CyG I {XN*COS{TH} )+ (H(XN}*SINITH))})))})
T=T*DC*SQRT (WE) *CMPLX(~0.707107,-0., 7871071/3.1415927
CA=CABS(T)

DB=20.0%*ALOGLO(CM)

CMCUJUNX)=CM

CANG=5T7.296*ATAN2 (AIMAG(T),REAL(T))

THD=TH#57.296

WRITE (64312) CMCANG,THD,DB

FORMAT (18H RELATIVE E FIELD=yE15.8,7H ANGLE=,E15.8,
2 23H ANGLE FRUM HORIZONTAL=,E15.8,6H DB= ,E15.8)
DO 441 I[ES=1,360

IND=]ES~-1

Y(1)=CMC(IES)

THS=FLOAT(IES}/2.0

CALL PLOT{THSsYs14INDy50.040.01}

sTOP

END

FUNCTION H(X)

THIS DEFINES THE SURFACE

COMNON /PIG/ AONECONE,PONE,ATWO, CTHO,PTHO,N
H=AONE*S IN(CONExX+PONE )} +ATRO*SIN{ CTHO%X+P THO)
RETURN

END

FUNCTION HAN2(X)

I DO THIS TC AVOID RETYPING THE WHOLE GAUSS INT. PART
CCMPLEX HAN2

COMPLEX AHAN20D

HAN2=AHAN2Q( X}

RETURN

END

FUNCTION DH({X)
DHU X} IS THE DERIV. OF HI(X}
COMMCN /PIG/ ADNE,CONE ,PONE,ATHW@, CTWO,PTHD, N
Dh=AGNE*CONE*COS { CONE*X+PONE) +ATHOA*CTWOX*COS [CTHO*X+PTHO) T
RETURN
END
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THIS IS A METHOD OF MCMENTS SOLUTION FOR BISTATIC SCATT TM CASE
USING TWg POINT INTERPOLATION .

GAUSSIAN INTEGRATION [S USED TO CALCULATE THE MATRIX ELEMENTS
NSUB SEGMENTS HAVE N MIDPUINTS

NSUB IS THE SUBSCRIPT wHICH COUNTS THE END POINTS

N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
WATCH MAX SLOPE SO ThHAT TutE X INCREMENTS ARE SMALL ENOQUGH
THE SURFACE UNDER CONSIDERATION LIES BETWEEN —EP AND +EP
COMPLEX SNN,SST

COMPLEX S,CO

COMPLEX FSS -

COMPLEX FINC(20),STS

COHMON /PIG/ AGNE, CONE,PUNE,ATWOCTWO 1P THO oN

COMMON /HOG/ XM(400),X{4001,GA,G,DC

COMMON/GASSN/ GULsGU2,6U3,6U456U5 1GHL yGW2 sGH3 4GW4,GHS
CCMPLEX C(150,150)

COMPLEX F{4006),FP(400),55,T,CTEST

COMPLEX FIN

CGMPLEX HAN2

DIHKENS ION ABES(360),Y(10)

WE IS THE ELECTRICAL WAVELENGTH

”E=25-°

THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE
AGNE=15.0

CONE=2,0%3,1415927/200.0

PDNE=0.0

ATN°=°.O

CTHO=0.0 .
PTwd=0.0

DC=WE/10.0

PX=D0C/1000.0

DC2=0€/2.0

DPIF=0.7853982

G=6.2831853 /YE

Ee=2.71828

GA=G*CC/ (2.0%EE)

EP 1S THE END POINT

EP=200.0

CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
GU1=-0.9061798
GU2=-0.53846921

GU3=0.0
GU&=-GU2
GUS=-GUl

GW1=0.2369268
GW5=0, 2369268

GW4=0,4TR62867
CHZ=0 . 47862867
GYW3=0, 5688888 .
CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
THE FOLLOWING BREAKS THE SURFACE INTD SEGMENTS DC CENTIMETERS LONG
BgU;ITE INTEGRATION USING STEPS QIF LENGTH DX FOR THE INTEGRATION
N
X(NSUB)=-EP
AL=0.000
R=X (NSUB)
R=R+Dx
ALO=AL
AL=AL+{DX%SORT (1 .0+( DHIR }%%2)})
TF(((DC2-AL) «LE.0.0) LAND, ({DC2~ALO) +GT .0.0)) XM (N SUB)=R
IF{AL.LT.DC)GO TO 1001
NSUB=NSUB+]
X(NSUB)=R
IF (R.LT.EP) GO TO 1002



N=NSUB-1
PO 1004 J=1,NSUB
IF (J.EQ.NSUB)  XM(NSUB)=0.0
XXX=X{ J)
XMD=  XM(J)
1004 WRITE (6+1003) XXX(XMDyJ
1003 FORMAT (6H X(J1=,E15.8,9H  XM(J1=,E15.8,3H J=,13)

c THIS ENDS THE SURFACE SUBDIVISIGN
# THLS INSURES THAT N IS 0ODD
KK=0

5733 KK=KK+1 .
IF ((2%<K-1).EQ.N} 68 T@ 5731
IF (2%KK.EQ.N} 60 TO 5732
GD 7O 5733
5732 N=N-1
5731 CONTINUE
WRITE {5,3728) N,KK
3728 FORMAT(' ' ,'CDRRECTED VALUE BF N=',144'KK=",14,%2%KK-1=N")
NMO=N~1 ' .
NM3=N-3 :
DIMENSION OF FINC,F IS N
MATRIX FILL IN
DO BY COLUMNS
FOR FIKST COLUMN
O 3661 I=1,KK
3661 C{I,1)=CO(2*T-1,1)14(CO{2%1-1,2}/2.0)
C FOR LAST COLUMN
Do 3678 1=1,KK
3878 C{I,KK)={CO{2%I-142%KK=2)/2,0)+CO[2%I=142%KK~1),
C FOR MIDDLE COLUMNS
DO 56 I=1,KK
I1=2%1-1
KKML1=KK-1
DO 56 J=2,KKMY
Jd=2%J-1 .
ClI,d)=(CO(IT:JJ~1)/2.0)1+CO(IT,JJ)+{CO(1I,dJ%1}/2.9)
56 CONTINUE
THIS CBMPLETES THE FILLIN OF THE MATRIX
NONSYMMETRIC CRQUT
FIRST COLLOM OK
THB GET THE FIRST ROW
DO 10 J=2,KK
10 ClleJd1=ClL1:J)/CC(Ls1)

e ¥aNeXn!

o000

¢ NOW WORK (IN ROW AND-COLUMN SET K
DO 11 K=2,KK .
KHO=K~1
KPO=K+1

c TO GET DIAGONAL ELEMENT

S=CMPLX(3.0,0.0)
DO 12 IK=1,KMO
12 S=S4+C{R,IK)I*CL1K,K)
C{K, K}=C(KyK)-5
c TO GET ELEMENTS IN COLUMN K BELOW ROW K
IF({KPO.GT.KK) GO TO 17
DO 13 IROM=KPO,KK
S=CMPLX{0.0,0.0}
DD 34 JJ=1,KMO
14  S=S+C(IRQW+JJII=C(JJ4K)
13 C{IROW,K)=C(IRDW,4K])~-S
c TO GET ELEMENTS IN ROW K TO THE RIGHT OF CODLUMN K
DO 15 1COL=KPO,KK
S=CMPLX(0.0,0.0)
DO 16 JR=1,KMO
16 S=S+C{K,JRI*C(JR,ICOL)
15 CUK,ICOLI=(C(K,ICOLI-S)/C(K,K}
17 CONT INUE
11 CUNTINUE
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C
c

1222

9333

455

9410

S1
90

175
160

47
48
4370

553

439

WRITE (6,1222) KK,HE

FORMAT(? ',? KK='y1l4,' WE=!',E15.8) .
TH=3,1415927%6p.0/180.0

THDEG=57.29578%ThH

WRITE (6,9333) THDEG

FORMAT{SH-INC ANG=,£15.8)

TH IS THE ANGLE OF INCIDENCE FRUM THE NORIZONTAL
STH=SIN(TH) -

CTH=CBS(TH)

THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
DO 455 NJ=1,KK

XG=XM{2%NJ-1)
FPINJ)=CEXP(CHPLX{ 0.0 6% ((XGXCTH)+ {H(XG)*STH}} 1}
IF(XGLEL{{WE*1.O)~EP)) FP(NJ)=CMPLX(0.0,0.0)
IF(XGaGTo(EP~LOME}] FPINJI=CMPLX(0.0,0.0}
IF({AGuGTa{(1.0%WE)=EP)} AND(XG.LEL [ (2. "% AE)-EP)))
2 FPINJ)=SFP(NJII=(0.5+{0.55SIN({G/2.0)1%(XG = ({ 1.5%KEI~EP}I)))
IF(U{XGeGEe (EP~(2.0%HE) )} dAND(XGolTo (EP-(LS*WE) )}
2 FPANJI=FPINJ)I={0.5-(0.5%SIN((G/2.0)% (XG-(EP-(1.5%wE)})))))
CONTINUE :
WRITE(649410) (NJyFP{NJ) 4NJI=1,KK)

FORMAT (' %, *INCIDENT FIELD FINC{'yI44?)=',2E15.8)
THIS BEGINS THE BACK SUBSTUTION

CONVERSION GF SOBURCE SIDE

FP(1)=FP{1)/C(1,1) -

DO 90 1J=2,KK

S=CMPLX(040,0,0}

[JMO=1J-~1

.D0 91 IK=1,1JHD

S=S+C( 1J,IKI2FP( 1K)

FPLIJ)=(FP(IJ)-S)¥/CLIJ,s 1)

NOW FOR FINAL BACK SUBSTITUTION

NMO=KK~1

DO 160 L=1,NpH0

K=KK~L

KPO=K+1

S=CMPLX (000 '0 «0)

DO 175 J0=KPD,KK

S=S+G (K, JOI*FP(JQ)

FP{K)=FP{K}-S

KKH 1= KK-1

TO RECDNSTRUCT THE CURRENTS

DO 47 IRA=1,KKM1 .
F(2xTRA)=(FP( IRA)I+FP(IRA+11})/2.0

DO 46 1RA=1,KK

F(2*IRA-1})=FP(IRA)}

WRITE (654970)((JsFPLJ)) ,J=1,4KK)

FORMAT(? *,1FP(!,15,')}=?,2E15.8)

WRITE (64553) {F(K)sK=1,N)

FORMAT (6H F(K)=,2E15.8)

THIS ENDS THE BACK SUBSTITUTIONS

DO 439 KURR=1,N

IND=KURR-1
Y(1)=CABS(F(KURR) )*4.0%WE/ (6.28318%377.0)
XORD=FLOAT(KURR )

CALL PLQAT(XORD,Ysl,y [ND+0.0200,0,.0)

DO 440 KURR=1,N

IND=KURR -1

Y{1)=180 .0 *ATAN2 (AIMAG(F(KURR) },REAL (F{KURR) 1}/3.1415927




440

310

317
312

9500

200

XURD=F LOAT { KURR) :

CALL PLOT{XORD sYyl s INDy183e0y~18C043)

DO 317 JNX=1,360 -

TH=0,01745329%F LCAT{JINX /2.0

T=CHMPLX{0.0,0.0).

DO 310 I=1,N

XN=XM(I) :

T=T+ ({F(IVHCEXP{CMPLX(0.0+G*{ (XRXCOS(TH) Y +({H{XN)*SIN(TH)))))))
*xrxErkkrk THIS CORRECTS THE QUTPUT TO TRVE ELE. FIELD
T=T«DC*SQRT(WE) *CMPLX(~0.707107,-0.7067107)/3.1415927
CM=CABS(T}

DB=20.0%*ALOG10 (CM)

CANG=57.296%ATAN2(AIMAG({ T)REAL(T))

THD=TH*57.296

ABES (UNX)=CM

WRITE (6,312} CM,CANG,THD,DB

FORMAT (18H RELATIVE £ FIELD=4E15.897H ANGLE=,E15.8,
2 23H ANGLE FROM HORIZONTAL=3;E15.8,6H DB=,E15.8)

PO 9500 JC=1,3¢0

Y(1)=ABES(JC)

E=FLOAY(JC) /2.0

IND=JC-1

CALL PLOT(E, Y 14INDsSGe0yDeC)

sTOP

END

FUNCTIGON CO{MR,MC)

COMPLEX CO

COMPLEX AHANZO

COMMON/GASSN/ - GUL, GU2yGU3 y0U4 s GUSyGWL1GHW29yGW3yGH4yGWS

COMMDN /HDG/ xM(400) ,X(400) ,GA,6,DC

IF(MR NE.NC) GO TO 100

CO=DC*AHAN20 (GA)

GO TO 200

CONT INVE

XMM=XM(MR)

HXMM=H{ XMM)

EPL=X(MC)

EPU=X{MC+1}

DVDFEP=(EPU-EPL) /2.0

DVSMEP=( EPU+EPL)/2 .0

XUS=GUS*DVDFEP+DVSMEP

XU1=GU1*DVDFEP+DVSMEP

XU2=GU2*DVDFEP+DVSMEP

XU3=GU3*DVDFEP+DVSMEP

XU4=GU4*DVOFEP+DVSMEP

CO=DVDFEP*(
2+CW L XAHAN2O (G SQRT({ (XUL-XMM}%%2 )+ ( (H(XUL) -HXMM) *%2) ) ) *SQRT (1.0
2+(DH{XUL }*%x2) )

2+Gh2%AHANZ O (GH*SQRT{{ (XU2-XMM ) %22 )+ ( (H{XU2)-HXMM ) %*%2))) #SQRT( 1.0
2H(DHXU2)%%2))
24+GW3=AHAN20Q (62SQRT( ( {XU3-XMM)*%2 )+ ((H{XU3)=HXMM)%%2) )} *SQRT(1.C
2+(DH{XY3 )%%2))
2+GW4*ARAN2O (B SQRT ([ ( XU4—XMM)}*%:2) + { (H(XU4 ) —HXMM) *%2 ) ) ) *SQRT (10T
2+ (DH(XU4Y=%2))
2+GW5*AHANZ O(G*SQRT { L {XUS=XMM) #%2 )+ ( (H(XUS ) —HXMM) %%2) ) ) %SQRT{1.C
2+(DH{XUS)*%x2})) )

CUNTINUE

RE TURN

END
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FUNCTION DH{X)

DH(X) IS THE DERIV. @F H(X)
COMMON /P1G/ ADNE, CONE,PONE, ATWI,CTWO,PTWO N
DH=AONE+CORE#COS (CONE®X+PONE )+ ATHO* CTHO*COS(CTWO#X +PTHO )
RETURN
END

FUNCTIBN H(X) _

THIS DEFINES THE SURFACE

COMMON /PIG/ AONE,CONE, PONE, AT W, CTWO ,PTHO
e ONE#6 1] CONER R 2 PONE ) Sa B RS TN C THON et )
RETURN

END
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TE CASE ,GAUSSIAN INTEGRATION USED TO FILL IN MATRIX,INTEGRAL EQN/
NSUB SEGMENTS HAVE N MIDPOINTS

NSUB IS THE SUBSCRIPT WHICH COUNTS YHE END POINTS

N IS THE SUBSCRIPT WHICH COUNTS THE MIDPCINTS

WATCH MAX SLCPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH
THE ARRAY XM{J} CONTAINS THE X COORDINATES OF THE MIDPOINTS OF THE
SURFACE SEGMENTS,X{I),X{I+1) ARE THE LOWER AND UPPER X COORDINATES
OF THE ENDPOINTS OF THE I*TH SEGMENT

THE SURFACE UNDER CONSIDERATION LIES BETWEEN —EP AND +EP
CGMPLEX SNN¢SST

COMPLEX S,CO
CCMPLEX FSS
COMMCN/GASSN/ Gu1.Gu2.5u3.6u4.cu5.cw1.cw2.cu3.cu4.su5
COMPLEX FINC{20),STS
COMMCN /PIG/ AGNE,;COMNE,PONE,ATWOsCTHOPTWO,N
COMPLEX C{235,235)
CCHMON/HOG/ XM(400),G,X{400)
COMMON /DGG/ DJC
CCMPLEX DJC
CCMPLEX F(235)45SS,T,CYEST
CCMPLEX FIN
COMPLEX HAN2
DIMENSION ABES{360),Y(10)
THE FQLLOWING CONSTANTS DESCRIBE THE SURFACE
ACNE=40.0
CONE=6.28318/200.0
PONE=0.0
ATWO=0.0
CTW0=0.0
PTWO=0.0
WE IS THE ELECTRICAL WAVELENGTH
WE=25.0
G=€.2831853 /WE
DC=WE/10.0
DX=DC/1006.0
0C2=DC/2.0
EP=200.0
STS=~DC*CMPLX(0.707107,0.707107)/(2,0%SQRT(WE))
DJC=CMPLX(GC Cyle0}%G/4.0

CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ~ORDER

GU1=-C. 5061798
GU2=-0.53846¢31

GU3=0.0
GU4=~GU2
GU5=~GUl

GHW1=0.2369268
GW5=0.2369268
GH4=0.,47862867

- GW2=0.47862867

1002

1001

GW3=0,5688888

CCNSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
BY LINE INTEGRATION USING STEPS OF LENGTH OX FOR THE INTEGRATION
NSUB=1
X(NSUB)=—EP
AL=0.C00
R=XINSUB)
R=R+0X
ALO=AL
AL=AL+(DX*SQRT(1.0+{DH(R}%*2})) :
IF(((CC2=AL) (LE.0.C) .AND.((DC2-ALO).GT.0.01}) XM{NSUB)=R
IF(AL.LT.DC)GO TO 1001
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WRITE(64352) AL,NSUB
352 FORMATI(' AL=*,E15.8,' NSUB=',[4)
NSUB=NSUB+1
X{NSUB)=R
If (R.ALT.EP) GO TO 1002
N=KSUB-1 .
WRITE(6+251) N,NSUB
251 FORMAT( ¢ N=1,14,* NSUB=1,14)
DD 1004 J=1,NSUB
IF (J.EQ.NSUB) XMINSUB)=0.0
XXX=X12)
XMD=  xXM({J)
1004 WRITE (6410031 XXXysXMD,yJ .
1003 FORMAT (6H X(J)=4E15.849H XM{JY=4E15.8:3H J=,413)

c THIS ENDS THE SURFACE SUBDIVISION
AMC=N-1
NM3=N-3

¢ DIMENSIGN OF FINC,F IS N

: DPIF=0.7653982

c MATRIX FILL IN

DO 3661 IR=1,N
D3 3661 IC=1,N
3661 CUIR,ICHI=CO(IR,IC)
C THIS COMPLETES THE FILLIN OF THE MATRIX
c NCNSYMMETRIC CROUT
c FIRST COLUMN OK
c TO GET THE FIRST ROW
DO 10 J=2,N
10 Cl1,0)=C{1,J)/C{1,1)

c NCW WORK ON ROW AND COLUMN SET K
DO 11 K=2,N
KMC=K~-1

: KPg=K+1

c TO GET DIAGONAL ELEMENT

S=CMPLX{ 00070.0'
00 12 IK=1,KNQ
12 S=S+C{K,y IKI*C(TK K}
C(KsKI=C K K)~S
c TO GET ELEMENTS IN COLUMN K BELOW ROW K
’ IF {KPO.GT.N} GO TO 17
DO 13 IROW=KPQO,N
S=CMPLX(0.0,0.0)
DO 14 JJ4=1,KMC
14 S=S+C{IROM,JJI*C(JJI,K])
13 CLIROWsK)=C(IRAW,K}-S
C TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
DO 15 1CDL=KPO,.N
S=CMPLX(0,040.0}
DO 16 JR=1,KMO
16 S=S+C(KyJRI*¥CIJR,ICOL}
15 C{Ky,ICOL)={C(K,ICOL)~S}/ClKK)
17 CONTINUE
11 CONT INUE
c THIS ENDS THE MATRIX FACTORIZATION
WRITE (6,1222) NyNHE
1222 FORMAT(3H N=,13,4H WE=,E15.8)
THI=60.0%3.14159/180.0
WRITE (649333) THI
9333 FORMAT(SH INC ANG=+E15.8)
C THI 18 THE ANGLE OF INC. MEAS. FROM THE +VE X AXIS
STH=SINCTHI}
CTh=COS(THI)

c THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
DD 455 NJ=1,N
XG=XMINJS)
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c
c

455

2948

91
90

175

c

160

554
553

9553

9554

310

317

THE SIGN ON THE INCIDENT FIELD HAS BEEN ADJUSTED TO AGREE WITH
THE INTEGRAL EQUATION

FANJI=CEXPICMPLXL0.0,G*{ {XG*CTH) +{ HI XGI%*STH) ) ) IXCMPLX(=1.040.0}

TAPPERED ILLUMINATICN

IF(XG.LE.{ (WE*X1.00-EP}) F(NJ)= CMPLX(O 040.0)
IF(XG4GE.{EP-(1.,0%WE))) F(NJ}=CMPLX(0.0,0.0)
lF((XG.GT.((I-O*HE)—EP)).AND.(XG.LE.((Z.O*HE)—EP)))

2 FINJI=F{NJI®(0.5+(0.5*SIN((G/2.0)*(XG ={{1.5*%WE)~EP))) ))
IF((XG «GE. (EP~(2.0%WE))) «AND,. ( XG LT {EP-(1.0%*WE))))

2 F(NJI=FINJI*{0.5~-(0.5%SIN((G/2.0)%(XG ~{(EP-(1.5%WE)}))))
CONT INUE

WRITE(6+2948) (NJyFI{NJ) 4NJI=1,N}

FORMAT(' %,* INC FIELD F('y14,')=",2F15.8)
THIS BEGINS THE BACK SUBSTUTION

CONVERSION CF SOURCE SIDE

FLLL=FLL)/CLo )
90 [J=2
S CMPLX(C. O 0.0}
1JMO=1J-1
D0 91 IK=1,I1JMO
$S=S+C{1J,IKI*F{IK)
FOIJ)=(F(1J)-S)/Cl1J,1d)
NdW FOR FINAL BACK SUBSTITUTION
AMC=N-1
DO 160 L=1,NMO
K=N-L
KPC=K+1
S=CMPEX{(0.,0,0.0)
DO 175 JSO0=KPOWN
S=S+C{K,JB)xF (J0Q)
FI(K)=F({K)=S
THIS ENDS THE BACK SUBSTITUTIONS
DO 554 1KUR=1,N
AAF=CABS{F(IKUR))
ANF=S7.296*ATAN2(AIMAG(F(IKUR)),REAL(F(]KUR)))
WRITE(64553) I KURy AAF 4 ANF
FORMAT (' "4'F("yI44%)=%, E15.8,°" AT ANGLE=',E15.8}
DO 9553 IRRD=1,N
INC=1RRO-1
Y{1}=CABS{F{IRRO))
XRRO=FLOAT( IRRO)
CALL PLOT(XRRO,Y,14IND,5.00,C.0)
DO 9554 IRRO=1,N
IND=TIRRO-1
Y(1)357,2958%ATAN2(AIMAGIF({IRRO)) REAL(F(IRRO}})
XRRO=FLOAT ( IRRD)
CALL PLOT(XRRO,Y,1,INDy180.0,~-180.C)
DO 317 JUNX=1,362
THS=0.01745329%FLOAT(JINX)}/2.0
T=CMPLX{0+0+0.01}
DO 310 I=1,4N
XN=XM(])
THN=1.57C7963+ATAN(DHIXN})
T=T+ ({(F(L)*CEXP{CMPLX(O. OVG*((XN*COS(THS,)+(H(XN)*SlN(THS))))"
* HN=-THS)}
2**22§:l*** THIS CORRECTS THE OUTPUT TO TRUE MAG. FIELD
T=1%STS
CM=CABS(T)
DB=20.0%ALOGL1O(CM)
.CANG=57.296*ATAN2(AIMAG(T)REAL(T))
THSO=THS*57.296
ABES{JNX1=CM
WRITE (64312) CM,CANG,THSD,DB
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312

9500

100

5
2 23H ANGLE FROM HORIZONTAL=,E15.8,€6H DB=4E15.8)

FORMAT (18H RELATIVE H FIELD=,E 1 8y TH ANGLE=yE15.8,

D0 9500 JC=1,369
Y{1)=ABES(JC)
U=FLOAT(JC)/2.0

IND=JC-1

CALL PLOT{U»Y,1,IND+50.0,0.0)
sToP

END

FUNCTION H(X)
THIS DEFINES THE SURFACE
COMMON /PIG/ AQNE,CONE ,PONE, ATWO,CTWO,PTWO N

“H= AGNE*SIN((CDNE*X)+PDNE)+ATHD*SlN((CThO*X)+PTHO)

RETURN
END

FUNCTION DH(X)

DH(X) IS THE DERIV. OF H(X)
COMMON /PIG/ AONE,CONE,PONE,ATWD,CTWD,PTWO,N
DH=AONE*CONE*COS ( (CONE*X ) +PONE ) + ATWO*CTWO*COS( (CTWO*X)+PTWD)
RETURN
END

FUNCTION COU(MR,MC)
THIS GIVES THE OLD MATRIX COEFFICIENTS

COMPLEX CO

COMPLEX 0JC ’
COMMON/GASSN/ GU1,GU2,G6U3,GU4,6USyGH1sGW2+GH3¢GW4,GH5
COMMCN/HCG/ XM(400),G4X(400)
COMMON /DOG/ DJC
COMPLEX AHANZ21
IF(MR.NE.MC) GO TO 100
CO=CNPLX(0.500,0.0)

GO TO 200

CONTINUE

XMM=XNM{MR)

HXNMM=H{ XMM)

EPL=X(MC)

EPU=X(MC+1)
CVDOFEP={EPU-EPL) /2,0
DVSMEP=(EPU+EPL} /2.0
XUS5=GUS5*DVDFEP+DVSMEP
XUl1=GU1l*DVDFEP+DVSMEP
XU2=GU2*DVDFEP+DVSMEP
XU3=GU3*=DVOFEP+DVSMEP
XU4=G6U4*DVDFEP+DVSMEP
HXUL=H(XUl)
HXU2=H({XU2)
HXU3=H{Xy3)

HXU4=H{ XU4)

HXUS5=H{ XU5)
.DHXU1=DH({XUl)

" DHXU2=DH(XU2)

DHXU3=DH{XU3)

DHXU4=DH{XU%]

DHXUS5=DH{XU5)

CO=DVDFEP*{
2+ {GW1*AHAN2I (G*SQRT{{ {XUL-)XMM)*%2) +{ {HXUL-HXMM) *%2)})
2 #{{-DHXULl%({XMM-XU1l) )+ (HXMM-HXU1} )}

27SQRT((C (XMM=XUL Y *%2 } + ( (HXMM—HXUL)}*%2}}}

2+(GW2*AHANZ2 T {G*SQRT( { {XU2-XMM)%x%2) +{ (HXU2—-HXMM)%%2)) )
2. = (~DHXU2*( XMM=XU2) ) + (HXMM-HXU2) )



-200

2/SQRT({ ( XMM—XU2) #%2 )+ ( ( HXMM=HXU2)%%2}})

2+ (GW3*AHANZ21 (G¥*SQRT( ( (XU3~XMM) *%:2) +{ (HXU3=HXMM)**2)))
2 ¥ {-DHXU3%({ XMM—XU3)} )+ (HXMM-HXU3) )

2/7SQRTUL ( XMM=XU3 } %%2 ) +{ (HXMM=-HXU3 }1%%2}))

2+ (GWA*AHANZ]L (G*SQRT({ (XU4—XMM)I %% 2) +{ (HXU4~HXMM)*%*2}} )
2 ¥{{-DHXU4*{ XMM=XU4 ) } + (HXMM-=HXU4) )
2/7SQRT {( ( XMM~XU4 ) %%2 } +{  HXMM=HXU4 ) *%2)) )
2+{ GW5*AHAN2]L (G*SQRT({ (XUS—XMM) %% 2) +( (HXUS—-HXMM)%%2)})
2  H({-DHXUS%(XMM—=XUS51 )+ {HXMM-HXUST )

2/7SQRT O (XMM=XUS ) %%2 )+ ( { HXMM-HXUS51%%2)) }}

CO=CO0*DJC :

CONTIANUE

RETURN

END
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THIS IS TE CASE USING TWO PDINT INTERPOLATION
THIS PRDGRAM USES GAUSSIAN INTEGRATION TO GET MATRIX ELEMENTS
NSUB SEGMENTS HAVE N MIDPQINTS
NSUB IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
WATCH MAX SLDPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH
EP IS THE END POINT

" COMPLEX SON,SST

10G2

1601

CAaMPLEX S,CD
COMPLEX FSS
CUMMON/ GASSN/ GUL,GU2, GU3 sGU4 yGUS yGW1 +GH2 1GW3 yGW4,GWS
COMPLEX FINC(20)+STS
COMNMEIN /PI1G/ AONEsCONEsPUNE. ATWU,CTWO,PTWO 4N
CUMPLEX C{156,150)
COMMDON/HOG/  XM(400) Gy X(400)
COMMON /D0OG/ BJC
COMPLEX DJC
COMPLEX F(400),FP(400),S5S,T,CTEST
COMPLEX FIN
CUMPLEX HAN2
DIMENSION ABES({360),Y(10)
WE IS THE ELECTRICAL WAVELENGTH
WE=25.C
6G=6.2831853 /WE
AGNE=540
CONE=6.28318/200.C
PCNE=0 o€
ATWI=0.0
CTWD=9,.C
PTWDR=0,.C
DC=HE/15.0
DX=DC/18CCaC
DCe=DC/2.C
Ep=z°°o 0
STS=DC*CMPLX{=047CT1L+-0.T70711) /{2.0%SQRT(NWE))
DJC=CMPLX (0 .0y1.0)%G/4 D
CONSTANTS FOR GAUSSIAN INTEGRATICN S TH (QRDER
GU1=-0.9061798
GU2=-0¢53846931

GU3=0.0
GU4=-GU2
GUS5=-GU1

GH1=0.,2365268
GWY=L.2365268
GW4=0.4T7862867
GW2=D.47862867
GW3=.5688888
CONSTANTS FOR GAUSSIAN INTEGRATICN 5 TH ORDER

THE FQLLOWING BREAKS THE SURFACE'INTO SEGMENTS DC CENTIMETERS LONG
BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION
NSuUB=1

X(NSUB)=-EP

AL=Q.0NC

R=X (NSUB}

R=R+DX

ALO=AL
AL=AL+(CX*SQKT(1.0+{DH(R)**2))}) .
IFC((DC2-AL) 4 LE.OD) cANDL ( (DC2-ALO) «GTeDeC)) XM(NSUB}=R
IF(AL.LT.OC)GG TO 1001 .
WRITE{64+352) AL,NSUP

352 FORMAT(' AL=',E15.8," NSUB=',I[4)



251

1004
1003

5733

5732
5731

3728

aoo (e

3661

3678

oo o

56

10

12

14
13

NSUB=NSUB+1
X(NSU8}) =R
IF {R.LT.EP) GO TO 1002
N=NSUB-1
WRITE(64251) N,NSUB
FORMAT( N=t,T4," NSUB=*,14)
DO 1004 J=1,NSUB
IF (J.EQ.NSUBR) XM{NSUB)=0.0
XXX=X(J)
XMD=  XMI(J)
WRITE (&4+1003) XXXyXMD,J -
FORMAT (6H X(J)=,E15.8,49H XM{J)=,E15,8y3H J=,13)
THIS ENDS THE SURFACE SUBDIVISION
THI S INSURES THAT N IS QDD
KK=0
KK=KK+1
IF ((2%KK-1)+EC.N} GO TO 5731
IF (2%KK.EQ.N) GU TO 5732
GO TO 5733
M=N-1
CONT INUE
WRITE 16,3728) NyKK :
FORMAT! Y ¢, 1CORRECTED VALUE OF N= 14 ,9KK=" 414, 2%KK=-1=N*)
NMO=N-1 ’
NM3=N-3
DIMENSION OF FINC,F IS N
DPIF=0.7853382
MATRIX FILL IN
DO BY COLUMNS
FOR FIRST COLUMN
DO 3661 I=1,KK
ClIs1)=CO(2%]=1,41)+{CO(2%[~142)/2.0)
FOR LAST COLUMN
DO 3678 I=1,KK
COIKK)I=(CO(2%1=142%KK=2)/2.CI+CO{2%]-1,2%KK-1)
FOR MIDDLE COLUMNS
DU 56 I=1,KK
[1=2=%1-1
KKM1=KK~1
D0 56 J=2,KKM1
Ju=2%J-1
ClI,0)=(CO(I14JI-11/2.0)4CO(T1,JJ)+{COLIT+dI*+1)/2.0D)
CONTINUE
TH1S COMPLETES THE FILLIN OF THE MATRIX
NONSYMMETRIC CROUT
FIRST COLLOM QK
TWO GET FIRST ROW
DO 10 J=2 sKK
Cll,J)=C(1,4)/CL1,1)
NOW WORK ON ROW AND COLUMN SET K
DO 11 K=2,KK
KMO=K~1
KPO=K+1
TO GET DIAGONAL ELEMENT
S=CMPLX{0.0,6.N)
DO 12 IK=1,KMD
S=S+CUK,IK}®CIIK,yK)
C{K.KI=ClKk,4K)=S
TO GET ELEMENTS IN COLUMN K BELOW ROW K
IF(KPQ.GT.KK) GO 7O 17
DO 13 IROW=KPO,KK
S=CHPLX (0.0,0.0)
DO 14 JJ=1,KMO
S=S+C{IRON, JJ)*C{JJyK)
CUIROW,K)I=C{IRDW,K}=S
TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
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15

16

11
1222

9333

anoe ©

455

9410

51
90

175
160

47
48
4970

553

D0 15 [COL=KPG,KK
S=CMPLX (0 .(,f“.())

DO 16 JR=1,KMD

S=S+C(KyJRI*C{JR, ICOL}

CUKy ICOL)={CHK,ICOLI-S)/C(KyK)

CONTINUE

CONTINUE

WRITE (641222) KKoWE

FORMAT(Y L KK=V,14,¢ WE=',E15.8)
TH=3.1415927%60.0/18G,0

THDEG=57.29578%TH

WRITE (6,9333) THPEG

FORMAT(9H INC ANG=,E15.8)

TH IS THE ANGLE OF INCIDENCE FROM THE KORIZONTAL
STH=SIN(TH) '
CTH=CBS{TH)

THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT

TAPERED ILLUNMINATION kdsdsssx A ek X ek Rk Rk

DO 455 NJ=1,KK

XG=XM{2%NJ=-1)
FPINIJI=CEXP{CMPLX{Q B ,G*{ (XG*CTH)+{H(XGIESTH) )} ) #CMPLX{-1.Cy2s0)
INCIDENT FIELD HAS BLEN ADJUSTED TO AGREE WITH INTEGRAL EQTN,
JF(XGLELMINEXL.OI~EP)) FPINJI}=CMPLX(CeDyie D)
IF(XB.GT.(EP-]1 4*WE}) FPINJ)I=CMPLX{Tal yCal)

IF({XGCaGTe( (1. O*¥WE)—=EP)) e ANDu{ XGoeLE L { {247 *WE)}—-EP)})) .
2 FPIMNJI=FPINII®(054{DSHSINI(G/2,7)%{X5 —((1e S*¥WE)I-EP)))})
IF{(XGeGE.NEP-(2.0%WEB) ) ) AN (XGuaLT 4 EP~-(1,0%WE)) )}
2 FPUINJI=FPINIIH(0e5=(0e5%SINI(G/2.0)%(XGC-(EP=(15%WED))})})
CONTINUE '

WRITE(61941Q) (NJ2FPINJ) ¢NJI=14KK)

FORMAT (¢ 'y'lNchENT FIELD FINC(*yI4,%)=',2E15.8)

THIS BEGINS THE BACK SUBSTUTION

CONVERSION OF SOURCE SIDE

FP(1)=FP{1)/C(1l,1)

DO 90 I'J=2,KK

S=CMPLX{Q.0,0,9}

IdMO=1J-1

DO 9\ 1K=1,14M0

S=S+C( 1J,y IK)%FP(IK)

FPIEJI=(FP(IJI-S)/CLIY,1d)

NOW FOR FINAL BACK SUBSTITUTION

NMU=KK-1

D0 160 L=1,NMC

K=KK~-L

KPB=K+1

SSCMPLX (0 .04,0.0)

DO 175 JB=KPO,KK

S=S+C(K,JD)*FP(JQ)

FP{K)=FF{K)-S

KKM1=KK~1

TO RECONSTRUCT THE CURRENTS

DU 47 TRA=1 KKMI

FI2*IRAY=({FP(IRAI*FP(IRA+1))/2.C

DO 48 IRA=1,KK

FE2*=IRA~1)=FP{IRA}

WRITE (€,4970)((JsFPLJ)}sJ=14+KK)
FORMAT (' ', 'FP(',[5,1')="1,2E15.8)
WRITE (6,553) (F(K),K=1,N)

FORMAT (6H F(K)=,2815.8)
DO 9553 IRRO=1,N
IND=IRRO-1

Y{1)=CABS{F( IRRO))
XRPQ=FLOAT( IRRD)
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9553 CALL PLOT(XRROsY 1y INDyS5009N 0

9554

310

317
312

9500

10

DO 9554 IRRO=1,N ]

IND=IRRO-1
Y(1)=57.2958%ATAN2 (ATMAGLF({ IRRO)) ,REAL (F(IRRO)))
XRRO=FLQAT{ IRRO)

CALL PLOT(XRRO,Y,1,IND,180.0,-182.0)

THIS ENDS THE BACK SUBSTITUTIONS

DB 317 JNX=1,360

THS=0 0 1745329%FLDAT(JNX) /2.2
T=CMPLX(0.0,0.0)
ba 310 I=1,N
XN=XML1)
THN=1. 570 7GE3+ATAN(DH( XN} ) . :

T=T+ ((FCI)%CEXP{CMPLX(0a0sG%{ {XN*COS(THS) I+ {H(XN}=SIN(THS))})))
2 *COS(THN=THS))

dkhxaktxk THIS CORREETS THE OUTPUT TD TRUE ELE. FIELD
T=T%STS

CM=CABS{T)

D8=20.0%AL0OG10(C M)

CANG=57 « 296 %ATAN2 (AIMAG(T )+ REAL(T)) -

THSD=THS§%57,296

ABES(JUNX)=CM

WRITE (6,312) CM,CANG,THSD,CB

FORMAT (18K RELATIVE E FIELD=9E154847H ANGLE=,F15.8,
2 23H ANGLE FROM MORIZUNTAL=4E15.8,6H D3=,E15,.8)

DU 9500 JC=1,360

Y{1)=ABES(JC)

U=FLOAT(JC)/2.0

IND=JC-1

CALL PLOT(U,Y 31 9INDy50.Cy3.0)

sToP

END

FUNCTION H(X)

C THIS DEFINES THE SURFACE
COMMON /PI1G/ AGNE,CONE, PONE, ATWD, CTWR ,PTWE,N
H=AONE*SIN( (CONE=X) +PONE) +ATWO*SIN( {CTWO*X } +PTWO)
RETURN
END

FUNCTICN DHI(X) .

DH{Xx) 1S THE DERIV. OF H(X) CTHO.PTHON
COMMON /P1G/ AQNE,CONE,PONEATW3,CTWO, ’
DH=ADNE*CONE*CUS((CONE*X)0PCNE)+ATHU*CTNO*CUS((CTND*X)+PTH0)
RETURN
END

FUNCTICN CO(MR,MC) .
THIS GIVES THE OLD MATRIX COEFFICIENTS
COMPLEX CO
CCMPLEX UJC
CCMHON/GASSN/ GUL,6U2, GU3 yGU4 sGUS yGW ] yGHW2 4 GH33yGH44GHW 5
COMMUON/HOG/ XM(40C),G,X(400)
CCMMON /DOG/ DJC
COMPLEX AHANZ21
IF(MR .NE.MC) GO TO 1GO
CO=CMPLX{0.500,72.C)
GO T0 200
0 CONTINUE
XMM=XM{MR)
HXMMN=H{ XMM)
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200

EPL=X(MC)

EPU=X (MC+1)
DVDFEP=(EPU~EPL) /2.0
DVSMEP={EPU+EPL /2.0
XUS=GUS5%DVDFEP+DVSMEP
XU1l=GU1*DVDFEP+DVSMEP
XU2=GU2*DVDFEP 4+ [VSMEP
XU3=GU3*DVDFEP+DVSMEP
XU4=GU4*DVDFEP +DVSMEP
AYDHI=ATARN(DH(XUL 1}
ATOH2=ATAN(DH( XU2})
ATDH3=ATAN(DH{ XU3})
ATDHG=ATAN(DH{ XU4))
ATOHS=ATAN(DH( XU5))
HXULl=H{XUL)
NXU2=H{xu2)

HXU3=H( XU32)

- HXU4=H(XU4)

HXUS=H( XU%)

CU=DVDFEP=x{

2H+GWIHAHANZ L {GH*SQRT{ L {XUL=-XMM ) *%2 )+ ( (H(XUL)-HXMM}*%2) ) ) 2SQRT(1.0+{
2DHIXUL )2 %2 ) Y% ((~SIN{ATOH1 ) *{ XMM~-XU1) )+ (COS{ATLCHL)*{ HXMM-HXU1)))
27 SQART(LAXMM=XU LI1¥%2 )+ (HXNR-HXU L} *%2)}

2+GN2HAHAN2 I G*SORAT L L IXU2~XMM) %%2) + ( (H{XU2)-HXMM )% %2 ) ) ) %SQRT{1.C+(
2DHIXU2) #%2) 1% ((~SIN(ATOHZ) % { XMR-XU2) 1 + (COS(ATDH2 ) % { HXMM=HXU2) } )
2/SORT(((XMM~XU2 )*%2 )+ ({ HXMM-HXU2) %%*2})

2+GW3IXAHANZ Y (GHSQRT{ ({XU3-XMMI=#2 } 4 ( (H{XU3)-HXMM)*%2)} ) #SQRT(140+(
2DHIXU3) %%2) )= {~SIN(ATDH3 ) *( xMM=XU3) ) +(COSTATDH3 )% (HXMM=-HXU3) })
2/7SQRTCCIXMM=XU3 }%%x2 )+ { { HXMM=HXU3 ) %%2))

2HGWAYAHANZ LI G*SQRT{ LA XU4~XMM) %%2) + ( (H{XU4)-HXMM)%%2 ) ) ) %SQRT(1.0+(
Z2OH{XUS ) =%2) )= {( (-SIN(ATDH&4) *( XM~ XU4%4) ) + (COS{ATDH4 ) * ( HXMM~ HXU4)))
2/7SQRT ({ {XMM=-XU4 ) %%2 }+ { (HXMM-nXU&) *%2) )
2+GN5*AHAN21(G*SORT(((XUS-XHH)**21+((H(XUS)—HXMM)**Z)))*SQRT(I O+
ZDH(XUS)**Z))*((—SIN(ATDHS)*(XMM-XUS)l+(COS(ATDH5)*(HXMM HXUS) ) )

2/7SQRT UL (XMM=XUS)%22) 4 ( (HXMM-HXU5) %2} ) )
CO0=DJC*CO
CONTINUE

" RETURN

END



c

200

390

FUNCTIGN AHAN21(X)
THIS 1S THE HANKEL FUNCTION UF TYPE 2 AND OF ORDER 1}

DOUBLE PRECISION XDsDX AL+ A21A34A44A54A6,HIL, B1yB2¢83,B44B854AHJLy

2TDXsALsA29A33A49A5, A6, TL T2 113974 4T5,T6,TT,05QX,86
CCHMPLEX AHAN21

DX=DBLE( X)

IF {X.GT«3.0) GO TO 200
XU=CX%*DX/9.00+30
Al=-0,31761D-03+0.,11C9D~04%*XD
A2=0,004433190+00+A1%XD
A3=-0.039542390+60+A2*XD

A4=0, 210935730+ 1)+A3%XD
AS=-0.562495850+00+A4 XD

A6=Q, 5D+00+A5%XD

HJ 1FA6%DX
Bl==0.0G400976D+00+0.,03027873D +056%XD
82=0,3123S51D+60+B1%XD
B3==1.,31648270+00+B2%XD
B4=2.1682709D+00+B3 %XD
B85=042212091D+00+B4%XD
B6=-0.6366198D+00+85%XD
AHILI={B6/DX)+EIL*DLOGIDX/2.C)*D.63661977
AHAN2 1=CMPLX{SNGL (HJ1) +~SNGL{AHJL})
GO TO 300

TOX=3.0/DX

Al=0.80113653D+60-0. 00020533 TDX ~
A2==0,00249511D+3C+AL*TPX
A3=,00C1TLCSD+00+ A2%TDX
A4=0.0165966TD+00+A3%TDX
A5=0,1560-05+A4*TDX
A6=0,79788456D+00+A5%TDX
T1l=0.,00075824D+09~-0.00029166D+30+TDX
T2=0£.000743480+D+T1*TDX
T3==0.0063787SD+0C+T2%TDX
T4=0.00005650D+30+T3%TDX
T5=0.124996120+00+T4%TDX
T6=~2.356194490+0+T5%TDX

T7=DX+T6

DSOX=AE/DSART(DX)

AHANZ21=CMPLX({SNGL (DSQX*DCOS(T7))y~SNGL{DSQAX*DSIN(T7)))
CONTIAUE

RE TURN

END
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c

100

200

FUNCTION AHAN20(X) R

THIS IS THE HANKEL FUNCTION OF ORDER O AND OF TYPE 2
DOUBLE PRECISION XSQ,B10,B8,86,4B4y82,C10,085,C6¢C44C24D5,D44D3y
2D02+D1+ES54E44E24E1+EQ9 XDsDX+FO4E34HJ,0SX

COMPLEX AHAN20

DX=DBLE(X)

IF (X.GT.3.0) GO T70O.100

X5Q=DX*DX/C.9D+01

B10=-0.39444D-02+X5Q%0.21D-03
B8=0.0444479D+00+XSQ*B10C

B6=-0.3163866D+C0+XSQ*B8

B4=1,2656208D+00+XSQ*B6

B2==2,24S99G7D+00+XSQ*B4

HJ=1.0D+0C+XSQ*B2

C1C=0.427916D-02-XSQ*G.24846D-C3
C8=-0.4261214D-01+XSQ*C1C

C6=0,2530C1L17D+00+XSQ*C8

C4=-C.T74350384D+00+XSQ*C6

C2=0.,60559366D+00+XSQ*C4
HY=SNGL{0.36746691D+00+0.6366198D +0C*HJ*DLOG{DX/2.0)+XSQ*C2)
AHAN20=CMPLX(SNGL (HJ) y—HY)

GO T0 200

¥D=3.0/D0X

[5=-0.72805D-03+XD*0.14476D-03

04=0.137237D-02+D5%XD

D2=-0.9512D-C4+D4*XD

D2=-0.55274CD-02+D3%XD

D1=-0.77D-06+D2%XD

FC=0.79728456D+00+XD*D1
E5=-0.29333D-03+XD*0.13558D-03

24=-0,541250-03 +E5%XD

£3=0,262573D~02+E4*XD

£2==0+3954D-04+E3%*XD

E1l=-0.4166397D-01+E2%XD

EC= (-0.78539816D+CC+XD*E1) +DX

DSX=DSQRT{(DX)
AHAN20=CMPLX(SNGL(FO*DCOS(EQ)/DSX)+~SNGLIFO*DSIN(EQ}/DSX))
CCNT INUE

RETURN

END



1
3

7

11

99

132

133

14

16

17

19
20

- 21
24

25
26

27

SUBROUTINEPLOT{ XsYsNINDYMAX YHIN)

DIMENS IUNM(119),YLABEL(6)Y(10)HARK(10)

DATA MARK(1) sMARK(2) 4 MARK(3) ¢MARK{S) ¢MARK (6) ¢yMARK{ 7) s MARK(8 ),
20ARK{9)y MARK({ 10) 4 MARK(4) / 1H*, 1H, y 1H] 5 1HO, IHN,1HH 1 HY y1HZ y 1 H=» 1HX/
DATA I[BLANK,NOPT ,1PLUS/1H ,1HS,1H+/

IF {INDIIy1,11

WRITE(643)

FORMAT (1HL//25X +48HORDER IN WHICH PLOT SYMBOLS ARE USED *,IXONH1Z
#=//30Xy 39HTHE SYMBOL ($) INDICATES OFF-SCALE DATA//)

DC7J=9,11¢9

M{J)=FARK(10)

NCCUNT=1G

SCALE=10%.0/(YMAX=YMIN)
LLL=(-YMIN*SCALEI+11.5
D08J=1,6

R=J-1
YLABEL(J)=R*20,0/SCALE+YMIN
WRITE(6+9) (YLABEL(I1),I=1,6)
FORMAT(6X+1PE9424+5(1PE20,2) / )
070122

NC QUNT=NCOUNT +1
D0994=1,119
M{JI=TBLANK
IF(LLL.GESL] sANDSJLLL.LELLLIOIHM{LLL )=MARK( 1G]
IF(NCOUNT-10) 133,132,133
0DC89J=11,111,20

M(J)=IPLUS

D02CJ=1¢N

L=(Y{J)~-YMIN)}*SCALE+0 .5

IF(L)14417,17

IF(L+10)15,1¢&,16
nM{11=NOPT

601020

LL=L+11

M(OLL)}=MARK(J)
GOTC 20

[F{L-108118,19,19

tLL=L+11

M{LL)=MARK (J)

GOT020

M(119)=NOPT

CUNTINUE

IF{NCOUNT-10121,25,21

WRITE(&+24) (N(J )y J=1,119)
FORMAT(1X,119A1)

GOT027

WRITE(64+26) (Xy{M(J)sd=9,1191})) .
FORMAT{1X,F743 ,111A1)

NCCUNT =0

CCNTINUE

RETURN

END

.

125




APPENDIX B

;
SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Several direct methods exist which find the solution'vector,

[X], when the system of equations

(99) [¢] [X] = [B]

is given. The two methods used here were the square root (or
Cholesky) method for symmetric systems, and the Crout method for
non-symmetric systems '(Ref. [33]). Both methods take advantage of
the fact that a non-singular matrix [C] is equivalent to [L][U], where

[L] is a Tower triangular matrix and [U] is an upper triangular matrix.

P

So
— A ] . ]
2]] 0 0 ... 0 Upq u]2 .en u]N c]] c]2 . . C]N
~ %91 %90 0 ... 0 0 u22 “ee Ugy Co1 Cop =--
_(100)
%31 232 #33 0 0 =
KN “ e zNM_gz 0 uyn CNT CNN_
or
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e

. min(i,j)
since
(102) Zik =0 ifk>1 and
(103) ukj =0 ifk > jJ.

In order to specify [L] and [U],N2+N unknowns must be determined.
Since there are only N2 equations, (values of Cij)’ N unknowns may
be specified. In the square root method the diagonal elements

are assumed equal, i.e.,
U.. = !L'i‘i for i =1, ---, N

11

which gives the N extra conditions; in the Crout method one set

of diagonals is specified, namely
(104)_ | Uy =1 fork =1, -, N
Suppose that [C] has been broken up into [LI[U], then
(105) [LICUICXT = [8]
whence by defining
(106) [R] = [UIIX]

there results
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(107) [LI[R] = [B]

which has the solution

i-1
;

-(108) ri = (b - kZ] Raie xk)/zii for i=1,+«<,N

and the sum is omitted, if i equals 1. Once the [R] vector is

known the system

(109)  [VICXT = [R]

is solved by

(110) x; = (ry - k§1+1 Uiy X )/ Us s for i=1,++,N

where the sum is omitted if i equals N. Wilkinson (Ref. [ 34)

has shown that most of the error in a solution of Eq. (99) by

triangularization methods comes from the decomposition of [C] into

[LI[U] and not in the double back substitution (Egqs. (108) and (110)).
The details of the decomposition of [C] into [LI[U] will now be

considered. For Crout factorization the diagonal elements of [U] are

set equal to unity leaving N2 equations and N2 unknowns in the set

of Eqs.(101), (102) and (103), which can be solved as follows:

(1) Yk T Sk T mZ Sim Up  For isk,eceN



1 .
(112) U =-— (Cpa- ) 2. U.) for j=k+1,-+-,N
ki 2kk kj 1 km “mj
(113) Lig = 0 ifi <k
(114) ukj =0 1if j <k.

These equations are used in the order: first column of [L], first
row of [U]; second column of [L], second row of [U]; third column
of [L], ect. In a computer solution the elements of [U] and [L] may
be written over the original matrix [C] as they are generated. Once

this is done the matrix becomes

FACTORED | *11 * Y12 - YN

—_—

AND .
STORED A1 = === = "N

C

and the fact that the diagonal elements of [U] are unity is used oﬁ]y
in the previously described back substitution portion of the solution.

If [C] is symmetric then [C] can be factored into
(15)  [c]=[ul" [u]

where [U]? is the transpose of [U]. Equation (101) becomes
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min of (i,j)
(116) kZ] Ui Ui T Cije

The uj j's are found from

(117) U3 =_|c]1

(118) U5 = Cij/u1] for j=2,---,N
(119) = (c,. - ii1 u2 )]/2 for ‘1=2 «++,N
Yii i1 7 Ly Y RN
i-1 . .
- j=i+l, N

(120) vy = (o = L g U)o f°r{1=z, N
and
(121) U, . =0 ifi > j.

i3
The value of this method lies in the reduction of storage space
required for a given N. With the usual Crout method N2 storage
locations are required, but the square root method requires N(N+1)/2
storage locations since only the upper triangular portion of [C] need
be stored and [U] can be found using only the upper triangular part
of [C].

A small trick is required if this saving is to be realized in
practice, since in FORTRAN IV‘the use of the dimension statement

"COMPLEX C(N,N)" would set aside N2 complex storage locations for




the elements of [C] even if only the uﬁper triangular part of [C]
wevre to be filled in and manipulated. To economize on storage a

way was found to Toad the elements of the upper triangular part of
[C] into a linear array N(N+1)/2 positions long. It was convenient
to preserve the double subscript notation for the matrix manipulations
and use a simple formula to access the proper location in the singly
subscripted Tinear array. A symmetric matrix [C] is shown in Fig. 43
with the elements of the Tinear array S inserted into the corres-
ponding Tocations of [C]. The order of the matrix is chosen to be

6 for this example.

Fig. 43.--Storing a symmetric matrix in a linear array.

Element 17 is stored in position S1s 279 in C,, etc. The element
cij (i < j) can be accessed in the following way. The rows above

the i-th row contain N(i-1) - ((i-1)(i-2)/2) elements and in the i-th
row there are j - i+l elements up to and including the one to be

accessed, hence
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(122) ¢y = sINGE-1) - ii:l%ii:gl-+ G-+ 1)

“(sn-i-LEE) 4w 5D

In the programs the subscript manipulations are performed directly

in the subscript or accessed by calling a function named ISUB(i,J)

[Integer Subscript corresponding to i,j]. If, for example, Ci5 Were

needed in a computation the element s(ISUB(1,5)) is used. Once the

factorization is completed, the back substitutions are performed.
Notice that in either the Crout method or the square root

method there are two distinct steps. The first is factoring the

matrix and the second is the back substitution. The first step is

independent of the driving column [B] and hence need be done only once

for any given matrix [C] so any number of driving columns may be

considered without re-factoring [C].
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