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ABSTRACT 

This report consists of a series of investigations on 

problems of the type which arise in the control of switched 

electrical networks. 

controllability and observability of these systems. 

work will address itself to the stabilization of these systems, 

building on the basic theory given here. 

The main results concern the 

Subsequent 
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Abstract 

The purpose of t h i s  paper ia t o  study queetions regarding con- 
t r o l l a b i l i t y ,  observabi l i ty ,  and r ea l i za t ion  theory f o r  a p a r t i c u l a r  
class of systems for which the state space is a d i f f e ren t i ab le  mani- 
fold which ia simultaneously a group or ,  more generally,  a coset 
space. 
fo r  the reachable set and the set of i n d i s t i ~ d 8 h a b l e  states i n  the 
case of autonomous systems. We also es t ab l i rh  a type of state space 
isomorphism theorem, These results pa ra l l e l ,  end in part  spec ia l i ze  
to ,  results ava i lab le  for the  familiar case deacribed by &(t) - 
Ax(t)+Bu(t); y(t)=Cx(t). 
about the system to questions about Lie algebra8 generated fror the 
coef f ic ien t  matrices entering in the descr ipt ion of the spntem and i n  
that way a r r i v e  a t  conditions which are eae i ly  ttirualirred and tested. 

We show t h a t  i t  is possible  t o  give her  e x p l i c i t  u p r e s s i o a s  

Our object ive is t o  reduce all questions 
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1. Introduction 

A standard assuaption i n  modern cont ro l  theory is tha t  the  state 

space is 2 vector space. This assumption I8 both v a l i d  and na tura l  i n  

many s i tua t ions ,  bu t  there is a s ign i f i can t  class of problems f o r  which 

i t  cannot be made. 

i n  the control  of the a t t i t u d e  of a r ig id  body. 

Typfcal of these are ce r t a in  problllgms which arise 

The state space i n  

this case is not a vector  space. Linearization of ten  destroys the  

essence of the  problem -- even If one can work loca l ly  -- and i n  any 

case new and d i f f e ren t  methods are needed f o r  t r ea t ing  global  questions. 

I n  t h i s  paper w e  subs t i t u t e  t he  following hypothesis f o r  the usual 

vector space assumptions. We le t  S a n d  g be matrix groups and study 

where A and Bi belong to  the  L i e  algebmraseociated with S, the  ui are 

the controls ,  and the notat ion %%(t) is t o  be in te rpre ted  as being a 

coset i n  S. We a l so  study vector  systems of a similar type whereby 

we can view t h e i r  evolution as occuring in a coset space. The r e s u l t s  

concern the  e x p l i c i t  construction of the reachable set and a character- 

i za t ion  of obrrentability which is eas i ly  tes ted.  Our main point  is that 

t h i s  class of systems i 8  i n  maw way8 not more d i f f i c u l t  than l i n e a r  

systems of the  usua l  type in*. 

There is a moderately l a rge  l i t e r a t u r e  on the me of Chow's r e su l t s  [I]  

and related i d e m  to  study con t ro l l ab i l i t y ,  including the  work of Rermann, 

Kucera, Hemes , Haynes , and Lobry (see [2-6]) . TU8 work is relevant here  
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but we are d i r e c t l y  in te res ted  in con t ro l l ab i l i t y  only in-80-far 

88 it contributes t o  the iden t i f i ca t ion  of a framework i n  which we 

can study a f u l l  range of system-thaoretic questions, including 

obme-vability and r ea l i ea t ioa  theory. 

t o  pass directly f ram con t ro l l ab i l i t y  results to observabi l i ty  results 

in the present r e t  up because there Is no clear notion of duality. 

The main motivation for t h i s  work came from so14 work on L i e  algebraic 

methods i n  d i f f e r e n t i e l  equations (see [7-10]) and, above all, from 

being confronted with ce r t a in  physical problem8 where linear theotp 

w a e  sipply inadequate. 

Notice t h a t  it l a  Impoarible 

Some unpublished work (18,191 by Jurdjevic and S u r n m n  l a  

related to this  paper. In par t i cu la r  they give in [19] an alternative 

proof of our theorem 5 and aakc a serioua study of t he  usraymetric 

case (treated only supe r f i c i a l ly  i n  theorem 7 here). We aloo mention 

a recent paper by E l l i o t t  (20). 
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2. Examples 

We postpone the  development of the  subject long enough t o  present 

a few simple examples which w i l l  help j u s t i f y  why the  assrr~lptions are 

set up the way they are. 

Example 1: (Control System8 Design) Consider the problem of deter- 

mining the gain,  b i n  the system 

%(t) Ax(t)  - k(t)Bcx(t) 

so ae t o  achieve good performance r e l a t i v e  t o  an Index of the form 

x'(t)Mx(t)dt ; M 0 M' b 0 nO( 

If a par t i cu la r  i n i t i a l  state is chosen and k( ) i8 selected so as 

to  minimize n, then the performance might be bad r e l a t i v e  t o  some other  

i n i t i a l  state. In cases where the  i n i t i a l  state I s  not  known it  i8 much 

more realistic t o  pick a col lec t ion  of i n i t i a l  state vectors  and t o  

pick k i n  such a way as to minimize a weighted average of t he  Individual 

performances. 

average over a t  least n l i nea r ly  Independent i n i t i a l  states. 

n are chosen then b should be regarded as control l ing the evolution of 

In fact, just to  insure s t a b i l i t y  I t  I s  necessary t o  

I f  exactly 

the matrix equation 

The state space is  then the space of nonsingular n by n matrices,%L(n) 

Exaaple 2: 

r e l a t i v e  t o  some fixed set of axe6 i e  dascribed by a 3 by 3 orthogonal 

(Rigid body control)  The or ien ta t ion  of a r i g i d  body 



matrix - A which s a t l a f l e a  the  d i f f e r e n t i a l  equation 

The a's thereelvets are u e d l y  control led via the  

The state space for the  first set of equations is 

3 by 3 orthogonal matrlcea - t he  state space for  

equations 

P@(3) -- t he  set of 

the second set of 

3 equations l a  R -- 
t h a t  the  center  of 

observed output of 

l i g h t  8ource which 

car tee lan  +space. 

MSS of the body iar Elxed and suppose t h a t  the 

t h i s  clyrtem ie a pencil be- of l igh t  generated by a 

l e  mounted In  the  body along 8 line p a 8 s l ~  thmugh 

For our present purpoae suppolre 

the center of w o e  

subgroup which corre8poadr t o  a ro t a t ion  about the pencil beam 

undetectable motion) . 

In  t h i s  caac t he  output is %?X(t) where W 

FQure  1 : f l l u e t r a t i o n  of the  obrervabllitp of a ri i id body. 



- 5 -  

Example 3 : (A model f o r  DC t o  DC conversion) The electrical network 

shown i n  f igure  1 contains switches which are to  be  manipulated i n  

such a way as t o  transfer the energy s tored  on the  capaci tor  1 t o  

capaci tor  2. In  order t o  have a sens ib l e  physical  model w e  demand 

t h a t  there  be exactly one path through the  inductor a t  a l l  times. 

Figure 2 : An electrical network for  which energy is conserved. 

The equations of motion are 

where x1 = v1 r, 5 = $ v3 and x2 = i2a and el and 82 are Cepend 

. on the  switch posi t ions and take on the  values 1 or zero. We have 

s - 1 and s2 = 0 and i f  the switch on t he  left  ir closed and we have 

= 0 ,  s2 = 1 i f  t he  switch on the  input is clored, 
1 

x1 
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3. Lie Algebras and L i e  Groups 
axn 

L e t  71Fp"" denote the set of real n by n matriceu; is a 
2 nlcn 

vector space of dimension n . By 8 L i e  algebra $E' i n  P we under- 

stand a subset of xmn which is a vector  space and which has the 

property tha t  If A and B belong t o  53' thua BO does [A,B] - AB-BA. 

If Z1 and y2 are Lie alqebrae i n  f l  and t h e i r  i n t e r sec t ion  

Pl 
.p2 and both are algebras then [A,B) belonmto both .!Zl and iZ2. 

union g1 u .P2 of two L i e  a lgebrm,  the  stm pl + s2 of two L i e  

5f2 is also a L i e  algebra s ince  i f  h and B belongs t o  gl aid  

The 

algebras and the conmutator [ gl, g2] of two L i e  algebras  are not 

necessar i ly  L i e  algebras. 

Given an a rb i t r a ry  subset of we can add addi t ional  elemmtm 

t o  i t  so ae t o  Imbed it  in a Lie algebra. To obtain the ru l le r t  

L i e  algebra which contairm a given set Ar we first add to &' a l l  l i n e a r  

combinations of elcmsatr i n >  60 aa tc  get  a real vector  apace ./yi. 

Then commute elements i n d l  t o  g e t  d2 = dl + [dl,a1] if thir ia 

not contained In ,Ml then we form Aj = d2 + [dl,d2] etc. Clearly 

th i s  proceer s t o p e - i n  a f i n i t e  amber of rtepa mince a t  each stage w e  

iacretme the diPrsaeion of the vector  space by at leaat one and t he  

dimension b uppei bounded by n . We call thim Lie auebra t h e  L i e  2 

algebra generated by /t and deaote it by {&IA. 

. I~.M is a set of noasingular aatricea i n  $m we let W), 
2 

deuote the m l t i p l l c a t i v e  matrix group generated by A, 1.c. the  

mallert group i n  xmn which c o n t a i n a d  and l a  closed under mult ipl icat ion 
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and inversion. I f &  is a l i n e a r  subspace of R- then the set 

N 
A= {M : M =  e N1 e N2 ... e ; N i E &  ; p - 0,1,2,...1 

contains no singular  matrices s ince  det(expNi) = exp(trNi) > 0. 

Clearly ,# is closed under mult ipl icat ion and lmtersion and i n  our 

notation 

L e t  P be a tie algebra, A t  ea& point H in brp5??}G there  I s  a 

one t o  one map % from a neighborhood of 0 i n  9 onto a neighborhood 

of M i n  which is defined by 

 his map has a -0th inverse which shws t ha t  ( a x p p I G  IS a l oca l ly  

Euclidean space D f  dimension equal t o  the d ipensbn  of 9, 

check tha t  the paps $il s a t i s f y  the conditions f o r  a C” manifold I n  

the sense of reference [ 111 (page 97)  . 
s t ruc ture  of a d i f f e ren t i ab le  manifold. 

We may 

Thu8 we 88y give bpP)G the  

This j u s t l f i e e  our re fer r ing  

to { e x p 9 } c  as a group auralfold. 

IlxIl If  d is a l i nea r  subspace of whrch l a  not neceem8rily a 

Lie algebra we d ~ h t  Inquire aa t o  the relation between { c x p d G  and 

{ e ~ p { d ) ~ } ~ .  Clearly the  latter contains the  former. The follawing 

theorem claims tha t  they are ident ica l .  
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Theorem 1 : L e t  .d .. , , d be a co l lec t ion  of l i n e a r  subspaces of 
1’ 2’ P 

Before proviag Theorem 1 is is appropriate  t o  make a few remarks 

about its relat ionship t o  the con t ro l l ab i l i t y  l i t e r a t u r e .  (Perhaps 8 

glance n t  theorem 5 would help a t  t h i s  point.) In considering equation 

as a d i f f e r e n t i a l  equatjon i n  %‘L(n) it is clear from the theorem of 

mobeniua [12] that the so lu t ion  p a ~ ~ i n g  through c 81L(~) lie8 in 

because a t  each point X i n  $1L(n), {A5x}A is an 

invola t ive  vector f i e l d  which coatainrr X and 8p-8 the tangent space 

of {-{A } } X a t  X, We1 and Noram [ i A G  

givfng (locally v a 1 i d ) f o d a s  for the so lu t ion  of t h i s  d i f f e r e n t i a l  

] confirm t h i s  fact by 

equation in terms of the functiomui(.)  and the  s t r u c t u r a l  constants 

of the  L i e  algebra generated by the Ai (without pointin$ out  the  d i f f e r -  

ential geometric i n t e rp re t a t ion  of t he  

regard i(t) = ( 1 ui(t)Ai)X(t) as a control  problau then the  na tura l  

question is not what manifold aontains  the solut ion,  bu t  rather w h a t  

result):  On the other  hand, i f  we 
m 

i-1 

set can be  a t ta ined  from a given point ,  given freedom over the  choice 

of (ul,u2,...,u ) D  m 
appl icable  here, 

The r e s u l t s  of Chuw (11 (see also Eenwmn (21) are 

Chow showed under a s u i t a b l e  regular i ty  condition tha t  

the set of pclnta reachable fo r  t he  vector  system i( t)  = ui ( t ) f i [x( t ) ]  
i=l 

using piecewise constant controls  as the same m thoec points  reachable fo r  
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where 

by {f (x)). That is 6,(x)) spsm a vector space which Includes { f ,(x)} 

and is closed under the L i e  bracket operation 

(x)) Is a basis  for  the involatlve dis t r ibut ion generated 

In our case the Lie bracket of AIX and A X is [A ,A ]X. 

that  f o r  the d i f f e ren t i a l  equation i n  question the reachable set 

Thus we see 5 i j  

includes {exp{Ai)A)G and the theorem of Frobenius 

includes nothing more. 

iaCrUreS tha t  It 

The proof of theorem 1 given below could be shortened considerably 

by the use of these ideas. The reason fo r  preferring the long- proof given 

here is t h a t  i t  is constructive, i t  is self-contained (nothing harder 

than the  implicit  function theorem is wed) and it has the merit of proving 

a theorem about n by n matrices using the notation and tools natural 

to  that  subject. 

Proof : We give a proof which relies on an Implicit-function theorem 

which, under su i tab le  hypothesis, Insures the existence of a solution 

of a equations In 8 a unknowm. (See reference 1131 pages 29-30.) 

We also need the Baker-Hawdorff forrula  which amerts that  

eAtLeoAt = L + [At,L] + # (At,[At,L]]+ 1 [At,[At,fAt,L]]]+...  

Note tha t  the norm of the (at1)th term in t h i s  aerier is lees than 

I IL112"1 I A I  ln/n! so that the serier is majorized by the  rtorier 
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absolutely and uniformly convergent on -T C t 6 T for all T. 

A }Cdl ud2  U ... d be a b u i r  for Let { A ~ , A ~ , .  . . , n P 
d + d2 + *.. d and let 

{A1 ,A. , . . ,A 1. 

exists a basis f o r 9  uhi& consists of term of the form 

be the L i e  aGebta generated by 

There 
1 P 

Assume this algebra Is of dimmelon q. 
L r 

Lr *r 

We are quite explicit here bccawe at certain point6 in  our proof i t  

is necessary to regard these uprearlons an formal expremaloru u 

opposed t o  matrices. 

We Introduce the following rpacial n 9 t a t i a .  The aper8tor BXP 

It i r  defised on Ai d i ta  maps formal cxprasrlona into matrices. 

comutatora (Le. formal expre8riona ruch u Ai,@ ,A 1, [Ai,[A,+l] etc.) i f  
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as follaws 

Ait EXP Ait  = e 

t a o  
A i 6  A fi -Ai& -A fi 

e e ' e  e j .  

Aj Aim -Aj -Aim e e e e t < O  

=[A ,A I t  = 
i J  

The definit ion I s  completed by recursion. If B is a camawrtator 

expression then 

Ai& -A1& 
e (RIP B 6 ) e  (EXP B&')'l t a o  

t * O  
- A i m  

(EXP Bm)-'e 
A i m  

EXP Bme 

Ai& -Ai& 
t r o  

E W [ A i , B J t  = 

and 

((EXP B&)e (EXP B&)"e 

It is an easy calculation to  ver i fy  tha t  =[A A ]t - I+[A ,A ]t+o(t) 
i' 3 1 9  

where o( t ) / t  goes 

general i f  B is a 

To carry out this 

to  zero as t goes t o  zero. We nuw shaw that  In 

conmutator expression then 

EXP B t  * I + B t  + o(t)  

proof we  use induction. Ibaume that  the reault 

is t rue  for c m u t a t o r  exprwsione B with n-1 brackets w e  w i l l  ehw 

i t  t rue f o r  those containing n brackete. We w r i t e  B aa B - [A,C] with 

C having n-1 brackets. 

By the Induction hypothesis 

(Similar calculatione cover the case B - [C,A].) 

EXP C t  = I + C t  + o(t)  
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Of course EXP C t  can be expanded i n . a  convergent power series 

involving f r ac t iona l  puwers of t. 

involving powers of t between t1 and t 

2 of t then 

I f  G ( t )  denotes the  terms 
2 and i f  F Is t he  coe f f i c i en t  

EXP C t  9 (I+Ct+qt)+Pt2+o(t 2 )) 

The power series expansion f o r  the  inverse of EXP C t  I s  then 

(EXP Ct)" = I-Ct-G(t)+(C2-F)t2+o(t2)) 

as is v e r i f i e d  by mult lpl lcat lon with the axpresrion f o r  EXF+ C t  

. itself. Now for t nonnegative 

EXP B t  = EXP[A,C]t 

( I-Afi+A2 t / 2+0 ( t) ) (I-C&G( K)+C2-P) t+o( t) ) 

2 2 2 2 2 = I+[A,C]t+Ft+A t / H A  t/2-A t+(C -F)t-S t+o(t) 

= I+[A,C]t+o(t)  

and the  case t < 0 leads t o  t he  same resu l t .  

Well known proper t ies  of t h e  matrix exponential funct ion let 

one conclude t h a t  f o r  I t1 > 0 EXP B t  I s  continuowly d i f f e ren t i ab le .  

The above argument shows t h a t  EXP B t  is d i f f e ren t i ab le  with raapect 

t o  t i n  a neighborhood of 

d - EXP d t  

t 9 O a n d  

E t  = B  
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Hence w e  have f o r  the bas i s  elements Ly, 

d 
d t  - EXP L"t 

Now consider a function of u = (ul,uz, ..., u ) and v = (V ,v ,..., v ) q 1 2  Q 
nxn which maps * x 7Rq i n t o  and which is defined by 

Clearly F(0,O) = 0. 

(0,O) is given by 

Now the  linear approximation of F a t  (u,v) = 

(6u,6v) = L16Ul+L26U2+.. .+L 6u -L 6v =L 6v . .-L 6v 
(u,v) (usv) I (0,O) q q 1 1 2 2 -  q q  

F 

so t ha t  the  range space of F (u,v)(u~v'~O,O) ( u,O) is the  q-dimensional 

by {Li). How P(u,v) + I is a f i n i t e  product 

write as 

subspace of Ram spanned 

of exponentials which w e  

PI 
pv -L1V1=L2V2-. 0 .L v 

Ai V V  ui q q  
F(u,v)+I - e . . .e e 

Since the Baker-Hausdorf f formula l z t s  one write 

= \ + [A,,%]t + ... 
Ait  -Ait 

belongs t o  the  Lie algebra generated by the  Ak" we see t h a t  e 

A's. Moreover, it is continuous with respect t o  t and at t = 0 

takes on the value %. Using th ia  result repeatedly we see tha t  

f o r  each {u } we can f ind  R i n  9 such t ha t  
'k ik 
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P H l  PV 
L1V1+L2V2. .+L v 

q q  ilceluitrcl . .e e 

P1 p2 A u  il il Ai2Ui2 
e e . . .e 

= (F(U,V)+I)R (U ,U ... u 
ik il '2 

simply by pushing $ pas t  the exponentials one a t  a t i m e .  Clear ly  

R (0 ,0 , . . . , )  = A . Thus w e  see that f o r  a and b small 
ik ik 

f o r  some Si(a,b) and Hi(a,b) in 9. 

and s ince Si and H depend continuously on their arguments th i s  

eatabl iehes  tha t  the Jacobian of the map F : 7Rq X 71pq -* e 

Since S,(O,O) = Hi(O,O) m Li 

i 

m u s t  have rank Q i n  a neighborhood of (0,O) and hence by the  intplicit 

function theorem cited earlier there e x i s t s  an 8 > 0 and a map 

4 : Rq * Rq auch that i f  l l v l l  < c then 

Since P(u,v) 0 implies tha t  

L1V1+L2V2+ ...+L 0 
EXP L u EXP L2u2.J2XP L u = e q q  

11 Q Q  

We conclude 

and IlLll < 

loaw for any 

and thua we 

can expresr 

t ha t  there  exlsts el > 0 such t ha t  If L 6 

c w e  can write 1 

At % A U  L : u  
v v  . .e i2 I 2  e L e = e  

L L S?? i t  follarrs t ha t  11; LI I < el for m o w  intaer I 

can express L aa axpL/m*expL/m. . .cbxpL/r. Likrwiea we 
L1 L2 L 

e e ...e i n  t h i s  form. 
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nxn L e t  ,x and Y be L i e  algebras i n  . It can happen t h a t  

{expJy)C is a bounded subset of 0-m- which is not  closed, and it  

can happen t h a t  t he  closure of {exp3Y)G equals { ~ Z E P ~ ? ) ~  with X #  F . 
The skew-line on the  t o m a  [11) is an easy example. 

is not necessarily simply connected. 

Also, {expZ)G 

Nonetheless, w e  have the  following 

r e s u l t  which we deduce from theorem 1 ra the r  than sending the  reader 

t o  the l i t e r a t u r e .  

nxn Corollary 1 : I f  X and 9 are L i e  algebras i n  then {expXIG c 

{exp Z}G i f  and only i f  SYCZ and {expSIG = {axp VIG if and only if 

A'- 9. 

Proof : For both statements t he  suff ic iency is obvious. To e s t a b l i s h  

necessity i n  the f i r s t  case not ice  t h a t  i f  {expS}GC{expP)G then 

by theorem 1 

S u p p o s e 9  is of dimension n. 

suppose t h a t  * is not contained i n  E. 

n+l or greater.  

{exp{.X,€)) is not which contradicts  { expY)  = {exp{F,X}}. 

es tab l i sh  necessity i n  the  second case repeat this argment verbatum 

but with "contained in" replaced by "equals" both verbal ly  and eymbolicelly. 

To obtain a proof by contradiction, 

Then w,sIA is of dimemion 

Then e x p p  is an n dimensional manifold and 

To 

l B  - [A,B], a d 2  = [A,[A,b]J etc. 18 The notat ion adAB - B, adA 0 

standard. If 

to denote the  L i e  algebra generated by iX under comnutation with 

elements of 2. That is 

and Sf' are L i e  algebras we w e  the  notat ion {adv%)A 

This algebra may a l so  be described aa the  in ta rbec t ion  of a l l  Lie 
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algebrm which contain and a re  'closed under c m u t a t i o n  with 9'* 

If  r a n d  %? are groups w e  introduce an analogous notation. The 

slmallert group which contains &F and a l l  products of the  type GFG-' 

for G in S and F I n  iF w i l l  be  denoted by { A D s s ) G =  

mag be described as t he  in te rsec t ion  of a l l  groups which contain S 

and are closed under conjugation with elements of 8 If 8 $8 

This group 

{ ~ X P Y ) ~  and $ IS {@IG then c l ea r ly  {ADs S I G  ConSists of 

of t e m  of the form 

L1 K1 -L1 L2 IC2 -Lp L m r  x -L m M - e  e e e e e ... e e e 

Theoram 2: Let* and 9 be Lie algebras i n p .  Then 

and 

Proof: - 
s? and I '  

Fram the Baker-lausdorff formula w e  see a t  once t h a t  If 

lt belonm to S then belong8 t o  {ad93y)LL* Thua 

products 

L belonga to 

t he  r i g h t  s i d e  

of the firut equal i ty  i n  quartfon containe the l e f t .  On t he  o the r  hand, 

txpreamianr of the fol1ar ing type belong to  the l e f t  s ide ,  
Ke-OL- 

a a K - [LJ] + o(a) 

etc. 

Since xrn l a  a f in i t e  dimenrional space and oincc 
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is a l i n e a r  subspace, i t  is closed. Thus [L,K] [L[L,K]].. . etc. 

belongs t o  t h i s  set ane. the f i r s t  equal i ty  is seen t o  hold. 

The second statement is obtained by exponentiating the  f i r s t .  

This gives 

so the  r e s u l t  follows. 

The next theorem states a purely group theo re t i c  result which 

although e a s i l y  proven, I s  s t a t e d  formally becauae we need it  i n  cur  

study of observabili ty.  

Theorem 3 : L e t  3yp and lR be  subgroups of a group 9. L e t  9 be t he  

subset of 8 defined as 

Then 9 is a subgroup of 8, 

normal eubgroup of a9. Thus i%! is a normal subgroup of and 

l%'9/9 is isomorphic with @/a 0 Pm 

- Proof : Suppose P1 and P2 belong t o  9 then fo r  each R In  

is a subgroup of 8 and 9 l a  a 

there exists 
H1(R) and H2(R) I n  H auch t h a t  RPlR~'(RP2 -1 R -1 ) 0 Ha(R)*[H2(R2)]-'. Since 
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-1 -1 X,is a group t h i s  means RPlP2 R belongs t o  Af' and thus t b  it 9 i r  

a subgroup of 9. 

R = I is possible. 

R2 belong to 94! and P1 and P2 belong t o  9 then 

Clearly i t  is a subgroup of Sf slnce the  choice 

To see t h a t  is a group, c o t e  t h a t  i f  R1 and 

R1Pl(R2P2)-l = R1PlRi1R2Pi1R;' = RlRi1(R2PlRi1) (R2Pa -1 RZ -1 ) 

Since 

i f  P belcnge t o  iP then so does RPR-l f o r  each R in @, we see t h a t  

t h i s  product belone8 t o  g.9. Clearly 9 is a normal subgroup of .%@ 

s ince  R P P P  H- - l# f o r  each RP i n  #@! By t h e  8econd l8orporph~sm 

theorem (Rotman [14], page 26) -9P fl9 ir normal i n  &R and 

@9/9 = a/* n 9. 

is a group and since 9 is a group which has the  property t h a i  

-1 1 

YC now etate and prove a L i e  a lgebraic  analog of t h i s  theorem. 

Algebraic tests f o r  obsemab i l i t y  will be derived frow t h i s  r-ult. 

Theorem 4 : Let =.and 9 be  L i e  algebras in # L - -9 be defined 

If  

{ad9S),CX'. 

{ad@l)AcAf' and S1 contains a l l  other  L i e  algebrdr h w i n p  th i s  

is a Lie algebra in 7 p  thlsn { e x p j l l ) G C B  i f  and only i f  

There d a t a  a unique L i e  algebra Sl ruch t h a t  

property. 

- Proof : Suppose {adp3y]k C X'. 

from theorem 2 t h a t  containo 

Then for  Li i n  2?' and Ki in J%! we .ea 

L K K  K -L -L* -L1 
R P R - ~  0 e L1 e L2 ... e P I 2  e e ... e qe P. ..e e 
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On the other hand, i f  for a l l  Li in ,P and a l l  Itl Inc% we have 

then since {expJV’}G is a group we see that {AD {exp 9 IC {exp3y)G)G c 
{expW), and again fram theorem 2 and corollary 1 we see that 

{adylJy)AC M .  

Finally, notice that i f  {ad Jy } CX‘ and (adaJy2)ACX 

then {ad9 (eNl+Jy2)’AC S‘ thus there ie a largest Lie algebra with 
iz 1 *  

th i s  property. 
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4. Contro l lab i l i ty  on Group Manifolds 

The first quemtion of a system theoretic character which we 

inves t iga te  is t h a t  of con t ro l l ab i l i t y .  

global  results we work with the most elementary type of evolution 

Since we want t o  emphasize 

equation appropriate t o  our present s teeing,  namely 

The choice of cont ro l  affects the d i r ec t ion  i n  which X moves. How- 

ever A ls a constant over which there  is no control.  This evolut ion 

equation has the  property tha t  the change of var i ab le s  X + XP f o r  

P nansingular, leaves the equation unchanged. This invariance gives  

the  vector f i e l d  which a given choice of {ui(t))  e s t ab l i shes  on 

Gll(n) a pa r t i cu la r  simple form. 

Theor- 5 : Consider t he  linear dynamical system 

X ( t )  = ( 1 ui(t)Bi)X(t) ; h - n by n matrix 
ill 

Given a tSme ta > 0 and given two noasingular matrices X1 and X2, 

there  eaclsts piecewise continuous controls which steer the  state 

from X1 a t  t = 0 t o  X2 at t = ta i f  and only i f  X2Xi1 belongs t o  

Proof : (Sufficiency) Theorem 1 asserts that any matrix M i n  

{ ~ J C ~ { B ~ ) L L } ~  can be wr i t t en  as a f i n i t e  product, aay 

- 

Suppose X2X1 -' - M. Divide the In t e rva l  0 C t C ta up i n t o  m equal 
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i n t e rva l s  [ti,ti+l) whereby ti = i * t a / m .  Let t a / m  - BO'. ~a 

the  in t e rva l  [O,t ,)  a l l  controls  are zero except the  imth  control  

which takes on the value amL On the  in t e rva l  [tl,t2) a l l  controls  

are zero except t he  iPlth which takes on the  value awl$, etc. 

down to the  last in t e rva l  on which a l l  controls  are zero except 

the  ilst which takes on the  value a,S. 

equation Is l i n e a r  and constant on each of t he  subintervals  the solut ion 

Since the  d i f f e r e n t i a l  

is a product of exponential8 and the  r e s u l t  follows. 

(Necessity) To show t h a t  X2 cannot be reached from X1 unless X2Xi1 is 

of the  form e e L1 ... e w e  assume t he  contrary and obtain a con- La LUI-l 

t radict ion.  Suppose tha t  ul(*),...,u(*) is a control  which steers the  

system from X1 a t  t = 0 to X2 a t  t = ta by theorem 1 of (91 w e  knm 

t ha t  there  exists a sequence of times to,tl,t2, ..., tm such t ha t  on 

each of the subintervals  [ti, ti+l] the  t r ans i t i on  matrix of 

ui (t) 
can be wr i t ten  as e f o r  some Hi( ) in 9. Thus w e  can write 

which es tab l i shes  the  contradiction. 

As an appl icat ion which emphasizes the  ease w' which we can 

study global  questions using t h i s  theorem we observe the following 

r e s u l t s  r e l a t ing  to the  classical groups. Here J is given by 

and a matrix I s  cal led symplactic i f  8'38 = J .  
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Theorem 6 : Consider the system of Theorem 5. Given a t h e  

ta > 0 and given two nonsingular n by n lnrrtrlces X1 and X2 with 

det X1X2 > 0 ,  there exists a piecewise continuous control which 

steer8 the state from X1 at  t 0 0 to X2 a t  t = fa i f  {BllA 

2 flxn ii) spam the  n -1 dimensional subspace of l? conais t lng 

of the zero trace matrices and de t  XI = detXp. 

spans t he  n(n+1)/2 dimensional subset of coneiat* nJm iii) 

of t he  set of matrices which s a t i s f y  JA+A'J - 0 and X&' 
is syaaplectlc 

spans t he  n(n-1)/2 dlmenslonal subset of w- consl8tIng 

of all s k e w - m t r l c  matrices and X?i1 l a  orthogoaal. 

iv) 

- Proof : As l e  well knm any nonsingular matrix can be w r i t t e n  a8 8R 

with 8'8 = I and R - R' > 0. Also real orthogonal matrices wi th  

pos i t i ve  determinants and real spnaretrlc po8lt lve d e f i n i t e  matrices 

have real logarithms. Moreover tu case iii) t h e  f ac to r8  in t he  polar  

representation inherit the  property of t h e  group itself, which I s  to  

say t h a t  the  and R In the polar  r e p r e s e n t a t l m  of a symplectic matrix 

are symplectic. 

since the  previouo remark# j u s t i f y  our writins X$-' 0 an=' with 

Q = -0' and S 0 S'  both In t he  appropriate  Lie a l g e b r a .  

To complete the  proof we need only invoke theorem 5 

The r e s u l t s  of theorems 5 and 6 are somewhat wrrratl8factory in that 

the  A term i u  absent. The follasing theorem descrlbea one way in 

which this can be relaxed. 
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Theorem 7 : Consider the  l i n e a r  dynamical system 

V 

i( t)  = (A + 1 ui(t)Bi)X(t) 
I- 1 

; X = n by n matrix 

2 Suppose t h a t  [ad>i,Bj] = 0 f o r  I, j-1, 2,...v and k=O, 1, ...n -1. 

L e t  .W be the  l i n e a r  subspace of R 

and k=O, 1, ... n -1. 

nxn spanned by adkBi f o r  i = l , 2 , . . . ~  
2 Then given a time ta > 0 and two n by n matrices 

X1 and X q  t he re  e x i s t  continuous controls which steer the  

the state X1 a t  t = O  to  the  state X p  at t - ta i f  and only 

e x i s t s  H i n  JV such t h a t  

system from 

i f  there  

xp - eAtae% 1 

Proof : F i r s t  of all, not ice  t h a t  

-At dk'2 
m- [ eAt ( a d s i )  e k-2 d t  

. . . . . . . . .  - [eAt(ad)i)e -At 

Thus .[eAtBieOAt,B ] is i den t i ca l ly  zero i f  iad>,,Bj] - 0 f o r  k=0,1,2,.... 
j 

Hwever, adA is a linear operator from an n2 dimeaaional apace 

i n t o  itself so t h a t  by the Cayley-Hamilton theorem a l l  powers above 

n -1 are l inea r ly  dependent on the  f i r a t  n -1. 2 2 Thus under the hypothesia 
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of the theorem statement [eA%ie-At,B ] vanishes ident ica l ly .  Also 9 

-At 0 - eAtB eDAtB -B eA% e i J 9 ' i  

-At -Au AU A t  -At -AU - e'(eA%ie )B,e -e B e Bie a 9 

Naw let t + ~  $ and y = a. Thus f o r  all 8 and y 

For the purpose of solving t he  differential equation w e  introduce 

Z ( t )  = e-*%(t) and observe that 

. 
But recall (see e.g. Martin [lS]) t h a t  the so lu t ion  of Z( t )=B( t )Z( t )  

iu exp/i B(u)& i f  [B(t) ,B(u)]  vanishes' f o r  a l l  t and u. Thu8 w e  

can write 

It is a w e l l  knawn and f r equmt ly  used fact (e.& [la] page 79) 

that the Image space of t he  pap taklng continuous functions In to  

# according to the rule x = L(u) = e bu(O)&, is spanned by I:1 Aa - 
the f i r s t  p der ivat ive8 of e% evaluated a t  zero. U s i a g  th lu  fact 

here we see t h a t  f o r  each I la X and each ta > 0 we have a continuous 

u defined on [O, ta ]  ruch tha t  
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Therefore in terms of X w e  see 

can be expressed as eAtaeHx(0) 

As an appl icat ion of t h i s  

t ha t  w e  can reach a t  t, using X whfch 

w i t h  H i n  .X. 

r e s u l t  we derive a famil iar  re la t ionship.  

Example 4 : Consider the system inRn 

m 

i=l 
%(t )  = & ( t )  + 1. biui(t) ; x(0) - given 

(n+l)x(n+l) Related t o  t h i s  is the matrix system i n  R 

. Let  A and Bi be the  matrices appearing i n  t h i s  expression. I n  t h i s  

k case [Ad (B ),B ] vanishes as required and so the  reachable set 
A i  5 

from x(0) - I I s  

so t h a t  the reachable set at t is 

A t  

9 2  - {X : X = r0 :] ; H 6 Range, B, AB,... An%} . 
A t  where we have w e d  the  f a c t  t h a t  e H = B f o r  a l l  t and a l l  H in 

Range (B,AB,. . . ,An-b) . 
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5. Observability 

In order t o  ge t  a theory having a scope comparable t o  l i n e a r  theory, 

i t  is necessary t o  treat observabili ty.  The choice of an appropriate 

form of the observational equation is cri t ical  f o r  the success of the  

overa l l  theory. 

the  second example i n  sec t ion  2. 

Aa i t  turns out,  the  na tura l  choice is indicated by 

L e t  Y be a matrix group and let %' be a subgroup. Consider t he  

system evolving i n  S 

V 

i(t) - (A + 1 ui(t)Bi)X(t) 
1-1 

; y( t )  -m(t) 

by which w e  mean that instead of obeeming X ( t )  d i r ec t ly ,  we obacrpe 

what equivalence class X ( t )  belongs t o  w i t h  respect t o  the  equivalence 

r e l a t ion  i n  S defined by W. Thus y( t )  takes on value8 in t h e  c o ~ e t  

space $/% which is generally not a group manifold. (see 8ection 7) 

We call two states X1 and X2 dist inguishable  i f  there exist8 .ane 

control which gives rise to  d i f f e ren t  outputs f o r  t he  two a t a r t l a g  

states. I n  general t he  zero control  is not adequate t o  d i ~ t i n g u i a h  

between a l l  states which are dis t inguishable  a6 cont rmted  with the  

s i t u a t i o n  one f inds  f o r  l i n e a r  8yateme. 

- Theorem 8 : L e t  

points .9? reachable from the  iden t i ty  f o r  t he  rpstem 

be  a matrix group and 8uppore t h a t  t he  set of 

is a 

from 

group. 

the ident i ty  18 given by 

Then the  set of i n i t i a l  state6 which are indistingui8hable 
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9 is a normal subgroup of 9's and a subgroup of e. 
Proof : Suppose tha t  X is a s t a r t i n g  s t a t e  f o r  the  given equation which 

is indistinguishable from the iden t i ty .  

in ;'R there  is C(R) i n  %' such t h a t  

That means t h a t  f o r  each R 

C(R)RX - R 
s i n c e %  and W are groups we can take inverses t o  g e t  

Thus the set 9 is exactly those states indis t inguishable  from the  

ident i ty .  The remainder of the conclusions come from theorem 3. 

Theorem 9 : L e t  Z' and 9 be L i e  algebras i n p  and suppose t h a t  

a l l  the points reachable from the  iden t i ty  f o r  

V 

is {exp5fiC. 

ab le  from the Iden t i ty  contains { e x p m G  if and only i f  {ad XIAC X'. 

Therefore a necessary condition f o r  a l l  states to  be dis t inguishable  

Then the  set of i n i t i a l  states 9 which are indistinguish- 

2 

from the  iden t i ty  is tha t  3i? contains no subalgebra X such t h a t  

Proof : Theorem 8 gives a character izat ion of &P which permit8 one t o  

bring t o  bear theorem 4. Theorem 4 immediately gives the  desired r e su l t .  

One might be tempted t o  conclude tha t  if the re  is no nont r lv la1  

a lgebra% meeting the requirements of theorem 9 then a l l  i n i t i a l  states 

are distinguishable,  This is not t r u e  because 9 can be  a d i s c r e t e  
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subgroup and hence not t r i v i a l  and y e t  not expressible as fexpx), 

for  any Lie algebra .%. The next example Illustrates t h i s .  

'Example 5 .  

of a r i g i d  body one usually avoids Euler angle representat ion and 

uses instead quaternion or d i rec t ion  cosine representations. 

I n  the numerical in tegra t ion  of the equations of motion 

Ae is 

w e l l  known, the group of un i t  quaternions covers m(3) twice. 

This causes an ambiguity In  going from 9 f l 3 )  t o  the  group of Unit 

quaternione. This example illustrates this idea. Consider an 

equation i n  the group of uni t  quaternions 9 which w e  parameterize 

i n  the usual way (a*+b2+c2+d2 - 1.) 

where %? is the subgroup given by 
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Now I t  is  true that { e x p H ’ I G  lncl\;des I and -I and i t  is also true 

that this pair of elements form a normal subgroup of 2. 

as an i n i t i a l  s t a t e  cannot be dist inguished from -I. Yet there is 

no nontriviel Lie algebra A such that {adgX)AC *W. 

Thus I 
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6. Renllzation Theory 

Cne of the cent ra l  Yesults i n  l i nea r  system theory is the f a c t  

t ha t  any two time invariant ,  control lable  and observable rea i iza t ione  

of a given time-invariant input-output map are re la ted  t o  each other 

i n  a very simple way. :ur purposle here is t o  e s t ab l i sh  a similar 

theorem i n  t h i s  context. 

Suppose we have two systems 

We assume t h a t  i) t h e  systems are observable i n  t he  sense t h a t  no two i n i t i a l  

states give rise t o  the  same response y €or a l l  piecewise coutinuous 

inputs,  and 11) tha t  there  exist one t o  m e  maps say c( . )  and h ( . )  both 

mapping in to  a set S such t ha t  i f  each system starts a t  the Ident i ty  

s ta te  and i f  each syetea receives the same input,c@?K(t)> = h(JL.'z(t)) 

f o r  a11 fu ture  t i m e ,  A p a i r  of systems mc ,Ing these cri teria w i l l  

be  sa id  t o  be observable rea l iza t ions  of th? same input-output map, 

We emphasize t h a t  X ( t )  and Z(t)  are squ-ye watricea but  not n e c c s a r i l y  

of the same dimension. 

Suppose we have two observable r ea l i za t ions  of the same input- 

output map. 

on [ O , l ]  whfch when applied t o  the X system t a k a  the s ta te  X(0) = I 

i n t o  the  s t a  2 X(1) = I. Them of course i t  must do thc same f o r  the  

Let u(0) b e  a nailzero piecewise constant controi  defined 

2 syrrtem because they art: observable rea l lza t iona  o f  the  same input- 
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output map. 

integers with 1 C i c ra and i f  a 

Thus w e  see t h a t  i f  ll,I2,. . ,I is a co l lec t ion  of 
c 

a i e  any real nc-Tbers such t h a t  k I 

a B  a B  a B  1 ll 2 i2 
e e . ..e 

L e t  L1,L2,. . ,L be a set  of commutator expressions in B1,B2,. . . ,B r m 
such t h a -  {Li) forms a bas is  f o r  { B i J A .  L e t  K1,K2, ..., K be in an 

1: 

analogous expression obtained by replacing B1 by GI, B2 by G2, etc. 

L e t  S be an arb i t ra ry  commutator expression i n  B1,B2, ..., B and le t  m 

T be the analogous commutator expression i n  G1,G2,...,Gm. Then i n  the 

notation of the proof of theorem 1, there  exists d i f f e ren t i ab le  functions 

ai(p) such tha t  f o r  small 

anti 

Since rhz a are d i f fe ren t iab le  we can write (prime denotes derivative) 
i 

and 

Thus i f  

r 

then 
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From t h i s  we see tha t  the algebra {G } 

I n  exactly the same way as the algebra {B 1 

{Bl} and thus tha t  the algebras are Isomorphic. 

is generated f r o m  {B } 

Is generated 'from 
I A  i 

I A  

We smmnarlze 

t h i s  discussion with a theorem. 

Theorem 10 : Consider the  two systems 

where X and 2 are n by n and q by q respectively.  Suppose t h a t  these 

systems are observable reallaatlans of the same input output map, 

Then {BI}* and {G } 

L1,L2,..*,L 

are isomorphic as L i e  algebras and moreover If i A  
are conmutator expressions In  {Bi)  w h i c h  form a b a s i s  r 

I f o r  {BIIA and If Kl,K2, ..., X are the analogous expressions I n  G r 

obtained by replacing Bl by GI then K1,K2,***,Kr Is a basis f o r  {GIA 

and i f  

Then 

Of course t h i s  does not mean t h a t  the reachable sets from I namely (exp{B } } 

and {exp{G } } are isamorphlc as groups. For example the  group of u n i t  

i A G  

I A G  

quaternions and the group of 3 by 3 orthogonal matrices have isomorphic 

Lie algebras y e t  they are not isomorpktc as groups. 
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7. System Theory on Coset Spaces 

In  t h i s  sect ion we r e in t e rp re t  our r e s u l t s  i n  a somewhat 

d i f fe ren t  way. This in te rpre ta t ion  leads t o  some f a c t s  about 

systems on manifolds which do not admit a group structure'.  

par t icu lar  w e  have i n  mind the  n-sphere Sn - {x:x'x-l, x E 7J?+'} 

I n  

which, as is w e l l  known, does not admit a L i e  group s t ruc tu re  

except fo r  the  cases n i l  and 3. 

L e t  M C- mn be a manifold. nxn L e t  S be a matrix group i n  7F: . 
be say tha t  g ac t s  on M i f  f o r  every x E M and every G E 3 ,  Gx 

belongs t o  M. By the  o r b i t  of through x w e  mean the set  of points 

2Zx - (y:p=Gx, G E %}. 

acts on M and i f  f o r  every p a i r  of points x, y i n  M, there  exists G 

We say tha t  3 ac t s  t r a m i t i v e l y  on M i f  i t  

i n  92 such t h a t  G x  = y. I f  92 acts t r ans i t i ve ly  on M then a t  any 

point x E M there  w i l l  be a subset -Yex< $2 such tha t  f o r  each 

H 

H1x = x and H 

isotropy R roup a t  X. 

,Xx, Hx - x. Clearly i f  HI E .Wx and H2 e Sx t he ,  H1H2x * 

x = x so tha t  .H' is a subgroup. -1 We ca l l  .Wx the 
X 

Notice tha ,  i f  Gx = y then y = GeWxx = 

G.'v;G-ly and thus G WxGo1 is t h e  isotropy group at  . y  =- a l l  iso- 

tropy groups are conjugate i n  $2. Now suppose M is a m a n i f  old f o r  

which there  ac tua l ly  exis ts  a g r o u p s  act ing t rans i t ive ly .  Pick a 

point x E M. Define i n  3 an equivalence re la t ion whereby G1 G 2  

I f  and only If G1 - G2Hx f o r  some Hx There is a one t o  one 

correspondence between t h i s  space of equivalence classes, %la x, 

,xx. 

and M. I n  thist case we c a l l  M a coset space. 

We study systems in which the  state I s  represented as an n-vector 
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and the  evolution is governed by 

By %(t) w e  mean an equivalence c l a s s  of vectors ,  x1 being equivalent 

t o  x2 I f  and only if Cx. = x2 f o r  some C in W. 
L 

Let k' be the I .  ,'eebra generated by {A,BI) and let  M c -# be  

Then t he  above equation can a manifold such t h a t  ( e x p 9 1 ,  acts on It. 

be thought of as evolving on the  manifold M c # f o r  i f  x(0) H 

then regardless of the control,  x ( t )  M f o r  a l l  t > 0 .  I f  there  exists 

a d i f f e ren t i ab le  manifold M C  Rn such t h a t  {expPp), acts on M then 

we w i l l  say t ha t  (*) is w e l l  posed on M. 

Example 6 : Consider the n-sphere, Sn. L e t  BlsB2,...,B be  n+l by m 

w t l  skrcJ symmetric matrices. Clearly t h e  system 

is w e l l  posed on Sn s ince  {expBIG cons is t s  of orthogonal matrices 

and orthogonal transformations preserve norm. If we can obreme only 

the f irst  campone.nt of x then we should l e t s  be the  subsets of 

Yo(n+l) conslsclng of those matrices which have a 1 in t h e  f i r s t  

column and f i r s t  raw. That is 

With respect t o - c o n t r o l l a b i l i t y  we can say given any two vectors  

x and x2 In .r4' there  ex ls ta  a piecewise continuow control  which 1 

steers the  system from x1 t o  x2 i f  and only i f  x2 - Rxl for  iome R In 
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{expf/')G where Y' is  the Lie algebra generated by {AI). Also, an 

c rb i t r a ry  point can be t ransfer red  t o  an a r b i t r a r y  point  i f  and only 

if iexpv'IG acts t r ans i t i ve ly  on s". 
A t  the  same time w e  might observe tha t  any xo such t h a t  I IxoI I 1 

can be t ransferred to  any x 

{exp V')G acts t r ans i t i ve ly  on Sn. 

such tha t  I lxll I - 1 If and only I f  1 

This second point  of view is useful  

because It puts t h e  problem of con t ro l l ab i l i t y  on Sn i n  contact with 

standard r e su l t s  i n  geometry. I n  pa r t i cu la r  a g rea t  dea l  I s  known 
n about L i e  groups which act  t r a n s i v i t e l y  on S [Samelson [ I t ]  page 26).  

As f o r  observabi l i ty ,  we note  t h a t  two i n i t i a l  states x1 and x2 

i n  S" give r ice  t o  the  same y If and only i f  for  a l l  R i n  Cexp9)C 

there  exis ts  C(R) I n  $ such t h a t  Rxl = C(R)RxZ which is t o  sag t h a t  

R%(R)RX, = xl. 

We now abs t r ac t  from t h i s  example t h e  essential f ea tu res  and 

s t a t e  formally a r e s u l t  which sunrmarlzea t h e  development. 

Theorem 11 : Consider the  dynamical system (x( t )  E mn) 

which is w e l l  posed on t h e  manifold M Cxn. L e t  9' b e  the  L i e  a lgebra 

generated by {BI).  A given a t a t e  x2 I s  reachable from x1 I f  and only 

a l l  R E e x p y j ) .  

only i f  x - Px f o r  some P i n  9. I n  pa r t i cu la r ,  two states x 2 1 

and x2 3re Indis t inguishable  i f  x2 = Pxl f o r  P i n  ( e e l ,  3 i t h  

being any Lie algebra such t h a t  { a d y m A  C*X'. 

Two states x1 and x2 are indis t inguishable  If and 

1 
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Example - 7 : Consider t h e  submanifold M of 

points whose last coordinate is 1. 

consis t ing of those 

The evolution equation i n  M 

corresponds t o  t h e  more familiar % ( t )  - Ax(t) + Bu(t) 

Using theorem 7 we see t h a t  f o r  the  associated group equation 

; y ( t )  = Cx(t). 

the  reachable set at time t cons is t s  of those matrices which can be 

wr i t ten  as 

Thus i f  B,AB, ..., A""B spans @ then the  reachable group acts 

t r ans i t i ve ly  on M and w e  haFre con t ro l l ab i l i t y .  

As f o r  observabi l i ty ,  w e  note tha t  

The subalgebaas of X' which are closed under commutation with LE' 

correspond t o  the l i n e a r  subspaces of KerC which are invar ian t  under A. 
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3 9  
The Control  Problem k = (A(I-U)+BU)X': A Comment on an Art i c l e  by J. Kucera - - - - -  

* 
Hector J .  Sussmann 

I n  an a r t i c l e  recent ly  published i n  t h i s  journa l  ([l]), J .  Kugera 

are t h a t  the set .d(o,T) of poin ts  a t t a inab le  a t  t imez > 0 from a f ixed 

point w is an " in t eg ra l  manifold of the dlstributionL8(_A,B)" ([l] , Theorem 

2.2),  and t h a t  t h e  set d' (wJ) - h w , T )  : 0 < .g C Y TI is an ' ' integral  

manifold of the  d i s t r i b u t i o n  W(@)" ([l], Theorem 2.1). The purpose 

of t h i s  note is t o  show t h a t  Lemma 2.8 of k l ] ,  which is a fundamental s t e p  

i n  t h e  proof of Theorems 2.1 and 2.2, is f a l se .  The na tu ra l  quest ion t o  

be asked nrlw is whether these  r e s u l t s  are neverthelees va l id ;  i t  w i l l  be 

shown i n  a forthcoming paper t h a t  they are. The proof, h a ~ e v e r , ~ i 8  bared 

on a completely d i f f e r e n t  technique. 

We quote the  statement of Lemma 2.8 of [l] : 

u c _H(6,1-6). L e t  t he  funct ion 2 "(Let] - T > 0, 6 E (0, 1, - -- 
be not constant i n  cO,T> (not equivalent with a conotant fttnction), then - - ---- - 

The notat ions of t h e  above statement have t h e  followi- meaning: 

a) "(a,B)" (resp. <a,B>) is the  open (resp. closed) internal with 

endpoints a,B. 

b) %(a,B)" - is the  set of a l l  measurable functions in (0,a) whose 

c) 5 -* x ( t  - 9- u) is the  so lu t ion  of the equation 

which s a t i s f i e s  x(0) = w. Here o is a f i x e d  element of R9 (n-dimeneional 
c r / -  - 

* This work was performed w h i l e  the  author was a t  the Division of Engrg. and 
Applied Physics , Harvard Univ., Cambridge, Mass. The author 's  current address 

* is: Dept.  of Math., Univ. of Chicago, Chicago, I l l i n i o s  60637. 
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real space), and I -  A, B are f ixed elements of .'Kn ( the  set of a l l  - n by L n real 

matrices) . 
- 

d)  'v' is the  "d i s t r ibu t ion  created by@', 1.e. the  mapping t h a t  

ass igns t o  each x E 5% t he  set -Yfx: of a l l  elements of RE of t h e  form 
- 

- N - 

e) 'g', or '%A,!)" is "the smallest l i n e a r  space of E by -c n matrices 

which contains the  matrix c C[-B-A] - -  and, with e a c h g  c.9,  contains a b 0  

both matrices [A - '- PI  and flJ,Z]" ( I l l ,  Def. 2.2; t h e  notat ion "&,N]" 

means "NM-MN") . -- 
f )  I( (T) is t he  set  of a l l  vectors ~ ( Z , , V ) ~  E E z!-J.,l)~where -u - 

and where 

g) 5 + X ( t )  is t h e  - n by L n matrix-valued so lu t iou  of - -  

which satisfies a(0) = J, (I- is  t he  - n by - n i d e n t i t y  matrix). 

k'a s h a l l  shav t h a t  Lemma 2.8 is false by means of a couateraxaaple. 

Consider t he  spacego of a l l  real p o l p n d c a l s  i n  two noncoamuting va r i ab le s  

y , ~ .  Form the  space 9 by equating t o  zero a l l  t he  monomiale of degree 5 

' o r  more ( in  other  words Po l e  the  f r e e  algebra over t h e  teals generated 

by. y and 

monomials of degree 3) .  

4 

Z, and Pis the  quot ient  of go by the  i d e a i  generated by a l l  the  - - 
Thus, 9' is a 31-dimensional real vector  space, 
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2 3 4 
4 yZ, y , ,  4 a r e  a b a s i s  fo r  9. Moreover, 91s an a s soc ia t ive  a lgeb ra  

over the  reals, w i t h  the  obvious mul t ip l i ca t ion  t a b l e  ( fo r  instance: 

ZJ *'?ky - zyzy, zy = p  - 0 ,  etc.). 3 

By means of t h i s  b a s i s  w e  can (and s h a l l )  i den t i fy  9 ! ~ I t h & ~ ~ .  

I n  3'. t he  mappings p(z,?:! A -  * ~ ( y , ? )  and _- p ( y , z )  - - * - zpCy,z) - -  are linear. 

V i a  t he  above mentioned i d e n t i f i c a t i o n ,  w e  obtain two 31 by 31 matrices 

M and M 

respect ively,  We le t  A - M B y M + M so t h a t  C 0 M . To begin 

such t h a t  these mappings correspond t o  E +  M x and x 4 M x, 
"2' - -I- -2  7 - 

-2 - 7' - -g -p' L 
- 

with,  we compute the  space a. It is c l e a r  from the  d e f i n i t i o n  t h a t s i s  

t h e  smallest l i n c s r  space t h a t  contains ,C ouch t h a t ,  !f ,P ~ 4 6 ,  then [&PI 

and [5P] belong t o  A?. Thus 3 is t h e  l i n e a r  h u l l  of the  set of a i l  

matrices [gl, [g2, . . , [9,,,gk]. . . I ] ,  where c k is an i n t ege r  > 0 ,  and where 

Using t he  f a c t s  t h a t  ic,_C] - @ 
- - A o r  Q = C f o r  - i - l , . .*,k-1,Jk - 

91 - -1 - - - 
and t h a t  [A, (C, [A,C] ] ]  c .- - -  = [E,[fi,[b,C]]] (an immediate consequence of t h e  

equal i ty  [_PIP] - 0 and of t h e  Jacob1 i d e n t i t y  [,P,[9,4]] = [[I,g],gj * 
[9,f!,_R]]) we see t h a t  t h e  following aye - a l l  the  elements o f 3  corresponding 

t o  & c 4: 

I n  addi t ion,  a11 the  elements oi &corresponding t o  ,k a 5 vanish. 

This is so because, via aur i d e n t i f i c e t i o n  of J31 with S' (and of t h e  

corresponding ident i f  i c a t i o n  of C U  

vector apace 9) , every element c 0 - [gl, [g2, . . , [9k-1,9k] . . 1 ] of 8" corresponds 

with the  set  of endomorphisms of t he  31 

IC 
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t o  t he  msi t ip l ica t lon  i n  9 b y  a homogerreoaa polynomial 4 -  p(Q) of degree k - 
( f o r  instance,  I f  - Q 
polynomial of dzgree 35 vanishes i n  3. cur  a s se r t ion  r 'o l lws .  

[_Ass], then ~ ( 4 )  - z y - y z ) .  c Since every homogeneo!.?s 

Thus B i s  the  linear h u l l  of I J I ~ , . . . , H , .  We shw t h a t  these matrices 
- t  

are l inea r ly  independent. It is s u f f i c i e n t  t o  prove t h a t  t he  r : lyl lcat ions 

by the corresponding polynomials p (M1), . . . ,p (g. ) are l i n e a r l y  independent 

I f  these mul t ip l ica t ions  were not independent, then t t e  images of the poly- 

nomial 1 would be dependent, 1.e. ;he polynomials p(M ),...,E@$) - would be 

dependent. 

independent. 

and c 2, and no two of t h a n  have t h e  same degree8 both i n  y rmd - t .  

-. - - I  

- -1 
Thus, It I s  s u f f i c i e n t  t o  show t h a t  these polynomials arc 

- -1 Li p(M ), . . ,I&) are homogeneous polynomials both in e- y 

Hence 

they are independent . 
We have shown t ha t  M ,..., - H7 form a basia for 8, 80 t h a t s  h-.s dinerwrier-. - --I. 

ewen. - 
Qe s h a l l  take lr5 t o  be the  element of &31 which corresponds t o  t h e  

yoi.ynomia1 1 of 3? Thuss ly(o) i a  the llEear h u l l  of p(H ), . . . ,E@ ), 

and dim"t/(w)-TI. 

define the cont rc l  - u by 

- -1 -7 
1 
2 We take 6 to  b s  an arbitralp element of (O,-)# and 

for 0 < t 5 T , 
- - L  

u(:, - 6 + t c 
L 

where - 1 - 26. Thus a l l  t h c  assumptions of L e m a  2.8 of [l- hold. 

We show t h a t  the  dimension of V(JC(T,,~)) 18 adso seven. Thla is an 

immediate consequence of Lemma 2.11 of [ 11, or i t  can b e  provd 3irectly 

as follows: the  eqaation 
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implies ' ~ . * e  der iva t ive  of t h e  polynomial - x(t,_u) is a polynamial 

I n 2 , z  - d.c!:aut a constant term. Fiis 'mplles t h a t  t he  constant term 

of - x(_t,,u) is 1 f o r  a l l  (because - x(0,y) - w = 1). From t h i s  it follows 

i. Aediately t h a t  the  seven polynomials p@li)x(; - -  ,u) are i i n e a r l y  Independent. - - 
We e h c l l  show t h t 5  thz dimension of the  subspace 0 r K (T) is not - Fl'*--Y - 

00 

grea ter  thsn six.  

elements of the  fonn 

To begin w i t h , U r .  K (T) Is obviously the  set of a l l  rl- -E - - 

c- 

d a r e  - v is an a r b i t r a r y  bounded measurable funct ion in 

Ismediately t h a t  t h i s  is the  same as t h e  linear h u l l  - L" of 
- X(T)X - (t)CX(t)W, - - - -  & c <O,T>. - 
of the l i n e a r  h u l l  :,' of a l l  tbe elements c Xol( t )CXG)W (becauaczTJ 

is nonsingular). 

l i n e a r  h u l l  J' ax a l l  the  mattices 3 @)E@), f c <O,p. 

<O,T>. c We see . 
-1 The dimension of &" is t h e  same as t h a t  

~ x a i l y ,  t h i s  dimension is not g rea t e r  than t h a t  of t h e  

-1 

Thus, it  id s u f f i c i e n t  t o  show t h a t  dim - L < 6. Since u(g) = - t + 6, 

the function & + - -  X-'(t)CX(t) 9 p(s) is analyt ic .  Thus, 4 is ttw linear hull. 

of the coef f ic ien ts  of t he  power series expansion o f x  In a neighborhood - 

- of t = 0 or ,  equivalently, & is t h e  linear h u l l  of fdtn L I(:) ltmO : @,1,...} . - L - 

If - M(t) i s  any matrix-valued function, we have 
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Applying this formula t o  the  successive der ivat ives  of Y we obtain 

In t he  above computations we have used t he  f a c t  t ha t  every element of 

8 corresponding t o  3 5 vanishes. 

dE 
dLn 

Our computations ahow that, of a l l .  the matrices - I(:) It-* 
only those for L 111O,...,5 are nonzero. Thus, t he  dimension of & I s  uot 

grea ter  than 6. 

The prcceedinq remarks s h w  tha t ,  i n  our cmmple, t h e  dimension o f 8  

v(X(T,u)) is seven, v h i l e  the  dimension of 6 - r .K -p (T) - I 8  l e a s  than six. - 
Tnercfore, the conclusion of Lemma 2.8 of [l] doe6 not  hold, wen though a l l  

the m r m p t i o n s  are sa t i s f i ed .  Thus, L e s m  2.8 of [l] I d  falrrt. 
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THE BANC-BANG PROBLEM FOR CERTAIN CONTROL SYSTEMS 

IN GL(n ,R)  + 

H. T. Sus s m a n n  +"' 

ABSTRACT 

m - 
W e  d i s c u s s  the l i n e a r  con t ro l  p rob lem z(g = [b0(t)+ u.(L)&.(g] 1 L=1 2 - 

X(t), where  Ao, . . . A - -  '-m 

w h e r e  - X(tJ E: GL,(EL,R). 

are - -  n x n  mat r ix-va lued  functions of time, and  

We show tha t  the set a t ta inable  f rom any e l emen t  
- 

- M G L ( g , g )  -- at time - t by  "bang-bangf1 con t ro l s  is closed,  provided 

tne following v e r y  s t rong  a s sumpt ion  is sat isf ied:  f o r  al l-f ,- l  and  for 
/ 

all - 9  t '  - t" such  that 0 -. t * 1 9  + 0 - t" 3 t the  m a t r i c e s  -1 A.(t ' )  - and - 
A.(tl ') commute .  
7 - 
t h e s e  assumpt ions  cannot be weakened. 

W e  also show, by m e a n s  of counterexamples ,  that  - 

,::This work was pe r fo rmed  while the author  was a t  the Division of 
Engineer ing and Applied Phys ic s ,  "arvard Universi ty ,  Cambr idge ,  
Mass. 
the Joint Serv ices  Elec t ronics  P r o g r a m  by Cont rac t  N000i4-67-A-  
(3298-0006. 

It was supported by the U: S-. Office of Naval  Resea rch  under 

:.:-::Department of Mathemat ics ,  Universi ty  of Chicajio, Chicago, 111, 
60637.  
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1. Introduction 

Recently, interest  has a r i sen  in the study of the linear control 

problem in manifolds and Lie groups (BrockeY [I], Haynes and Hermes [4], 

Kutera [5] and [ 6 ] ) .  Such a control problem i s  of the form 

t 

where G(t)  denotes the tangent vector to the curve r * x(7) at 7 = i, - -  - 
and where &, . . . , X a r e  vector fields. 

v 

A particularly impozhnt  case 

Lie group, and the vector fields a r e  

Lie group is GL(n,R), the problem -- - 

is that i n  which the manifold is a 

translation-invariant. When the 

takes the simple form 

t Z u. (t‘ A.)  X(t) , -. X&) = ‘Ao 
1, d-l  -- - - i=l 

where ,Ao,. . , A are constant matr ices .  -- 
The purpose of this article i: to indicate what hopes there  should be 

of building a reasonable ”bang-bang” theory for this problem, pnd for the 

more  general one in  which the matr ices  A. are time-dependent. The 

important issue is, as usual, to determine whether the attainable set at 

time T is closed. It might seem likely that the tool to be used sho-ild 

be some generalization of the well known theorem of Lyapounov, which 

has proved so fruitful for similar problems (Lyapounov [?I, Halkin [2] and 

[3]). However, as we shall show, not much i s  to be expczted in  this 

direction. 

c: set!iLe ss of the attainable s e t  follows by a straightfoi ward application 

of Lyapounov’s theorem.. 

-1 - 

- 

W e  shall prove, that, under certain very restrictive conditions, 

We shall also show tha’i, i f  these conditions are 
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weakened, it i s  possible to give examples of control systems for which 

the attainable set  fails to be closed. 

The new aspect that plays a Cundamental role is t?at of the 

commutativity of the mat r ices  Ai. 

which we have referred a r e  the following: 

The very restrictive assumptions io - 

a)  The condition that [A.(t), A.(t')](l) should vanish for all i, j, t, - -  - -1- - -J - - 
t ' .  This will guarantee that the set  attainable at t ime T by "bang-bangll - 

controls is closed, provided we define a "bang-bang" control as a 

measurable functiofi with values in the set  { -1, 1). 

b) The additional condition that the functions A.(t_) should be piecewise 
-1 - 

analytic. If this is true,  we will  be able to get closedness even i f  we 

restr ic t  the class  of "bang-bang" controls to piecewise constant functions 

with values in {-1, 1). Of course, this covers the time-independent case 

in particular. 

The mkin point of this paper is that these conditions cannot be 

weakened. This will  be shown by giving three examples of non-closed 

attainable sets.  These examples cover, in our opinion, the simplest 

possible conceivable d e p a r h r e s  from the commutativity condition. Thus, 

our results constitute a rather  final answer to the closedress ?roblem. 

Our results a l so  apply to systems in which X is a colwnn vector in - - 
RE, rather than an  - -  n x n  matr ix  (cf. Remark 1 of section 4). - 
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2 .  Notations and Prel iminary Lemmas 

We shall consider the control problem 

where X(t) belongs to - - -  GL(n, R )  (the set af all nonsingular rea l  - -  n x n  

matrices). The functions A.(t)  a r e  supposed to be bounded and 

measurable, with values in the set M(n,R) of all n x n  - -  rea l  matrices. 

For - A cM(n, - - -  R), define the norm of A (denoted by EA!) - as the supremum 

of !Axil, where - x ranges through all the vectors in - R- such that 

-- 
-1 - . -. 

- -  - 

n - 
IIxII - = 1, and where, for  

We shall denote by 

n 2 $  &e&-, IlrII denotes the Euclidean norm (E x. ) . 
-1 i=1 - - 

-- U!T), for each > 0, the set  of all 

functlons defined in  the closed interval [0, T] with values - 
i n  the cube { (q, . . . , ): -1 u 1, - i = 1, . . . 9- m}. We shall denote -i - - 
by UB(T) the subzet of U(T) e- whose elements are the "bang-bang" - -  
functions, i. e. the measurable functions (g1(4), . . . (9) such that - 
c (tJ =1 or  u.(tJ = -1 for  all = 1,. . . ,E and all 0 6 t .- - T. Finally, the 
-1 - 1 
set of all -1 E UB(T) that are piecewise constant wiil be denoted by UBP(X). - -- 

It is clear that U(T) is a bounded and weakly closed subset of 

- L 2 [ 0 , ~ ] ,  so that g(T) is weakly compact. W e  a lso  have: 
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LEMMA 1. UBP(T) 3 weakly dense in - U(T) .  - -  
Proof: It is clearly sufficient to assume m = l .  Since every function - 

in - -  U(T) can be approximated in  the - LZ-norm by piecewise constant 

functions, it follows that i t  wil l  be sufficient to show that every cor.stant 

function is a weak limit of elements of UBP(T). -. - 

Let u(t) - -  - r 1, for 0 - t 1. We can assume 3 0. Fo r  each 

interval I = [%&I, let the functioi! f -I be defined as follows: - - 

for a t - a t 2 (1-r)(b-a) - - -  - - 

Now define 11- (for k - = 1, 2, . . . ) 
-% - men,  clearly,  

b y  partitioning the in te rva l  [0, - T] into - k intervals -kl> I ' . * 5 !J& of - - 
length Tk-' and letting uk(t) - = - fI &) for each - t E: L i , i - 1 ,  . . .  9 -  k. I t i s  

- 9  - ki 
now obvious that the functions I+ belong to UBP(T) -- and that their  weak limit 

is - u. The pIoof of our lemma is thus complete. 

Let u eU(T) .  Let -- X(u, 9 )  be the solution of equation { I )  which - - -  
satisfies the initial condition X(0)  = I (I  = n x n  identity matrix).  The set  - - -  - -  
of all matFices X(u, T),  for u - e U ( T ) ,  - -  is the attainable -15- set a t  t ime T,  - and we -- - 
shall  denote it by S(T) .  If we res t r ic t  ourselves to functions u - - -  € U B ( T ) ,  - -  
i-esp. u - -  E:UIJPIT) ) :  - we can similarly define the sets -- SB(T) ,  - SBP(T). 

The union o i  Llie sets  S( t )  for  all 0 - t - T will  be denoted by 3 -  S ' ( T )  

I n &  similar way,  we desine the sets  - SB'(T),  SBP'(T). 

- -  

It is clear that no lcss of generality is involved in limiting ourselves 

to the study of the sets  attainable from the identity, Indeed, the set  of 

matr ices  attainable from any other - u I _  M EG L(2,S)  is just the set  of all 
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products X ( u ,  t)M. 

LEMMA 2. Let the functions u converge weakly to 2. Then 
n - -k -- 

(X(uk9 i)} - converRes unihrmly  - - - -  to X(u, t)  - for OB - -  tQ T. 

Proof: For each v - cU(T) ,  -- we have - 

Since the functions A. are bounded, and l v . ( ~ ) 1  1, there  is a 
-1 -1 - 

constant C > 0 such that - 

nt 

for all veU(T) ,  and all 0 - t T. - - -- 
It follows by a well-known argument that 

11x<-f, t)  11 Q exp (ct), for all v, t .  
- L -  - -- - -  

In particular, we see that the functions - -  X(v, e )(vcU(T)) - - -  are uniformly 

bounded. Equation (1) then implies that the derivatives of these functions 

are also uniformly bounded. 

To show that X(\, * )  converges uniformly to  X(u a ) ,  i t  is sufficient - -  4, -’ 
t9  show that every subsequence has a subsequence that converges uniformly 

- 

to - -  X(u, ). 

every subsequence has a subsequence that converges uniformly to some 

function 

weakly to z, and if -. X(v -k9 ) converges uniformly to - X(&), then 

By the previous paragraph and the Ascoli-Arzela theorem, 

Thus, our lemma will  be proved if  we show that, i f  {v  1 converges -k - 
- 

- X(. ) E - -  X(v, * ) .  
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Equation (2 )  implies that 

Using the weak convergence of v to y, and the unifdrm convergence -k 
of X(v . )  to X(.), it  follows that - -k' - 

Then, -. X(t)  - z - X(v -9 - t) ,  and our lemma is proved. 

COROLLARY 1. The mappinq 2 * X(u,. \ i s  continuous from - - - 
U(T) with the weak topology into the space of contintlous M(n,R) -valued --- -- - -- - 
functions in [ 0, T] with the uniform topology - - -- 

30ROLLARY 2. The sets  S(T),  S1(T) are compact. ---- - - -  
COROLLARY 3. The sets  SBP(T), SBP'(T) a r e  dense - in  -- S(T), - - - -  - e -  

- S'(T), respecti\- 

Proof. Corollary 1 is a restatement of Lemma 2 ,  Sora 2 follows - 
from Cor. 1 and the .fact that U(T) - -  is weakly compact,  

Finally, Cor.  3 follows from Lemma 1 and Cor. 1. 

3. Clo,2. -~~ 1iess of the ffBang-Banglf-Attainable Set 

Ir is clear from the preceding section that closedness of the attaicable 

se t  SB(T) ( resp.  -- SBP(T), - SB'('I'), - -  SBP'(T)) is equivalent to the identity - -- 
S(T) = SB(T) ( resp.  - -  S(T) = - -  SBP(T), - Sf(T) = - SBf(T) ,  - S I C )  = SBP'(T)).  - -  --  -- 
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The. following thec,rcm i s  a positive r e su l t  i n  th i s  d i rec t ion  and ,  as w e  

sha l l  provc: in  the next sect ion,  it is the best poss ib le  r e s u l t  of that  type. 

THEOREM 1. If --- a l l  the - b r a c k e t s  

t, c ) ,  -- then SB(2)  -- and SB'(T) a r e  closed. If, in adeition, the xknctions A 
-i - - 

a r e  piecewise analyt ic ,  - - _ _ L - - - -  then the sets SBP(T) and SBP' (1)  -- a r e  a l s o  qlosed. - 
P r o o f .  If o u r  assumpt ion  about the b racke t s  holds ,  the solution of 

T o  ve r i fy  th i s .  notice that:(i) the der iva t ive  of exp(F(t))  - .- is Et&! exp  (FJi)), 

if - F is a m-kix-va lued  function 7- such  tha t  E($) -- a n d  F(,tZ) commute  f o r  a l l  

t t and that: ( .  .) exp ( M  t N) =exp(M) - exp(N) - i f  M - and - N a r e  two com-  - -1J-2' - -  
.muting m a t r i c e s  ( t h e s e  two facts a re  proved,  usirig the  power series expan- 

s ion  f o r  the exponential ,  in  exact ly  the same way as f o r  the s c a l a r  case ;  the 

commutat ivi ty  m a k e s  it possible  to " r e a r r a n g e "  factors). F r o m  (i) it fol- 
t - 

(A t C u.A.)). T h e  d e s i r e d  e x p r e s -  -0 -1-A - lows e a s i l y  that  - - -  X(u,  t) = exp  (1 
sion then r e s u l t s  from (ii). 

It follows f r o m  Lyapounov's t h e o r e m  o n  the r a n g e  of a vector-valued 
A. L 

m e a s u r e  (Lyapounov [7], Halkin [Z:;, tha t  the  set of m a t r i c e 9  1-Ai(TM?)g7. 
0 -  

w h e r e  - u r anges  ove r  the  set  o f  al l  m e a s u r a b l e  functions with va lues  in {- 1, 11, 

is compac t  for each  - i .  Thus ,  the first part of o u r  s t a t emen t  is  c l e a r .  T h e  

second part follows in  a similar way: accord ing  to  a t h e o r e m  of Halkin 
t 

( see[2]  and [3]) ,  the set of values/-  - 4 -  f ( 7 ) ~ ( 7 ) d 7 ,  w h e r e  - u rar4ges ove r  a l l  
0 

piecewise constant  {- 1, 1 ] -valued functions i n  [O, 1, and w h e r e  4 f is a 

vector-valued p iecewise  analyt ic  function, is compact.  

4. Counterexamples  

We Jw show that  the a s sumpt ions  of T h e o r e m  1 cannot be weakened. 

C lea r ly ,  the s i m p l e s l  sit,uations i n  which theac, dssur-iptians do not hold a r e  

a )  the cont ro l  p rob lem . 
Xi!) = ( E  J 'it)(:) - - _I. X ( t ) ,  - 
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where B and C a r e  constant matr ices  such that - BC { CB - 9  - - 
b) the problem 

X(t) = ( u ( t )  B t v(t)  C )  X(t) -- - - -  - - I  - -  

where B and C a r e  as in a), and - - 
c )  the problem 

.- k( t )  - = v(t) - -  - -  F( t )  - X(tJ, 

where F is 3 matrix-valued function such that [F(t) ,  Fit')] f 0 for some - - -  - -  
I 5, L 
THEOREM 2. In each of the cas- a), b), c ) ,  the set  =(_T) need - ---- 

riot be closed. 
7- 

Proof ,  We shall  exhibit examples of prcblcmb where -- SB(T) fails -- 
to be closed. Our three examples will involve 4 x 4  mati-ice:, i .  e , we 

shall  be working in - -  G L ( 4 , R ) .  The examples h r  ca.ses b) and c )  wil l  Le 

derived from the ex,mple for case a ) .  

Mrc let 

Let X ( v , t . )  be the solution of equation ( 3 )  whose value at  L= 0 is - -  
the identity mktrix. 

i r  is possible to compute - :. ,v,  N I  t )  explicitly. The result  is 
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where 

fit) r r" v ( 7 )  - 47 
J O  

- -  

g(t) :- J' v(7) - h(7) - d7 
0 -  

- -  

If SB(T) were closed for some - T > 0, it would fL.'ow frorr, Cor. 3 -- - 
that SB(T) = -- S( I;. 

Thus, there wo-dd ex is t  a l1bang-bangIt contro, v - €or which 

IfA particular, the matrix - -  X ( 0 ,  t)  would belong to -- SB(T). -- 

We shall show that this is impossible. Indesd, by repeated 

integrations by parts we get: 
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2 -1 - 

0 
If a control v satisfies ( 6 ) ,  it follows that I-[:(.)] 27 = 0. This 

implies that - f (7)  = 0 almost everywhere. Since c v i s  the derivative of - f 

a .  e . ,  we must have that - v = 0 a .  e . ,  so that v - cannot be rrbang-bangl'. This 

completes the proof that -- SY(T) is not closed for  any L T > 0 .  

Turning now to case b), we shall use the same matr ices  B and C as - - 
before If - -  X(u, v, - ) denotes the solution of equation (4) whose value at 

t = 0 is I, it  is clear that - -  X(l,  v, ) ie the function - X(x, - ) of the previous 

paragraph. We claim that - X(l, 0, - T) cannot be attained by rlbang-banglr 

controls u,v,  In view of what we have proved above, i t  is sufficient to - -  
show that, i f  X(u, v, T) = X(l ,  0, - T), then - u E 1. 

as follcws: we can compute c- X(u,_v,T) explicitly and obtain j 3 7 ) g 7  as 

the value of the entry in the third row, fourth column. 

But this can be seen easily -- - - - 

Since this entry has 

to be equal to T for  0, - T), and since ~ ( 7 )  6 1 for all T g must be - 
1 almost everywhere. 

Finally, we consider case c ) .  Here, we define 

- F(t) = exp(-BtJ. C. exp(Bt), 

where - B and - C a r e  the same matrices that have beenused  for the other 

two cases.  Let Y(v, - -  - ) be the solution of equation ( 5 )  whose value at - t = 0 

i s  - I. It i s  seen immediately that 

e- Y ( v , i )  = exp(-Bt) . ~ ( _ v , t )  . 
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Since we know that there does not exist a "bang-bang" control v 

such that - -  X(v, T) - = it follows that x(0, - T) is not attainable at  

t ime - T by "bang-bang" controls. Our proof is thus complete. 

Remarks: 

1) It is clear  that all our results are equally valid for  control problems 

of the type 

where - -  x(t) is a column vector in - RE and - Ao,. . . & are matrix-valued - 
func t ion~ '~ ) .  This is obvious for all our positive results,  because the  

solution of equation (7) with initial condition - x(0) = x+ is just - X& - )zo. 
A s  for Theorem 2, we need only observe that the problem considered in  case 

a) is equivalent to the "vectort1 problem 

-- %t; = ('15 t - - -  V(t)'15) - x(t) , 

where -- x(t) is a 4 x 4  matrix,  considered as a vector in 16-dimensional space, 

and where and a r e  suitable 16x16 matr ices  (the matr ices  of the 

linear transformations x * Bx and - x+ - ,  Cx respectively, with respect 

to  an appropriate basis of - R ). 

- -  
16 The sets attainable from the "vectorlf 

. = I will coincide with the sets  - b  S(T), S B ( T ) ,  and in this way we get a 3 -  
counterexample for case a) of the llvectorll problem Obviously, s imilar  

considerations apply to the other cases  

2) For ccmpleteness, we should give an example of a situation in 

which all the commutativity assumptions of Theorem 1 hold, but SBP(T) -- 
fails to be closed becauee of non-analyticity of the functions A.. It is well- - -1 - 
known (and easy to prove) that the set  of numbers 
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- f(t_) = sin(l/t), - and where g ranges over all piecewise constant 

{ -1,1} -valued functions in [0, x], is not closed for any T > 0. Let this - 
X be denoted by AT. The set BT = { ~ - - : I C E & }  is therefore not closed. - - 

But BT is the set  of points attainable from x = 1 at time T by "bang- 

bang" controls, for the system 

c - - 

&, = gt, x(t) 
(which is of the form that we are considering, with - n = 1). Moreover, by 

multiplying the function - f by a smooth function that vanishes a t  the 

origin to a sufficiently high order ,  we can modify our counterexample 

so that d f will  be as smooth as desired and even - C-).  
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Footnotes 

1 .  We are using here the standard notation [M, u] = &fIJ- NM. Thus 
t1m,N = 0" is another way of saying that the matrices - M and N 
commute. 

2. We follow the standard convention of identifying functions that are 
equal almost everywhere. 

3. This i s  the problem studied by Kulera in [5] and [ 6 ] .  
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CONTROLLABILITY O F  NON-LINEAR SYSTEM* 

H e c t o r  J. Sussmanxc* and Ve l imi r  Jurdjevic*** 

1. Introduction 

In this a r t i c  Le we study the controllabil i ty of non- l i nea r  s y s t e m s  

of the f o r m  

dx - -  - F(x, u).  
d t  

Our  object ive is t o  es tab l i sh  c r i t e r i a  in t e r m s  of F and its de- - 
rivatives a t  a point - x which wil l  give quali tative information about the 

sets at ta inable  from - x .  T h e  study is based p r i m a r i l y  on the work of 

Chow [4]  and Lobry  [16], although it i s  similar in  its approach  to works 

by o t h e r  a c t h o r s  in . tha t  it m a k e s  sys t ema t i c  u se  of different ia l  geomet ry  

( f o r  ins tance ,  see H e r m a n n  [8], [ 9 ] ,  Haynes & H e r m e s  [6], Brocket t  

[2], etc.). 

T h e  state v a r i a b l e x  is a s s u m e d  to t a k e  values  in  a n  a r b i t r s r y  

real analyt ic  manifold M, r a t h e r  than in R Y  W e  chose  this  genera l iza t ion  
ry - 

*This work  was  p e r f o r m e d  while the au tho r s  w e r e  a t  H a r v a r d  Univers i ty ,  
Division of Engineer ing and Applied P h y s i c s ,  Cambr idge ,  Massachuse t t s .  
T h e  first au thor  was  supported by the U. S. Off ice  of Naval R e s e a r c h  
under  the Jo in t  E l e c t r o n i c s  P r o g r a m  by Con t rac t  N00014-67-A -0298-0006. 
T h e  second au thor  w a s  supported by the  Nationa1 Aeronaut ics  and Space 
Adminis t ra t ion  under Gran t  NGR 22-007- 172. 

**Department of Mathemat ics :  TJniversity of Chicago, 

***Department of Mathemat ics ,  Universi ty  of Toronto.  
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because  it c r e a t e s  no  e s sen t i a l  new diff icul t ies  while,  on the o the r  hand, 

i t  al lows for ce r t a in  applications which a r e  not commonly treated in  

control  theory. 

r e s u l t s  can be special ized to obtain m o r e  detai led control labi l i ty  

criteria. Control  problems on  Lie groups w e r e  first cons idered  by 

R .  W. Brocket t  in [2], and wil l  be treated in a for thcoming pape r  by the 

authors .  

For ins tance ,  when - M is a Lie group,  then the present 

Most  of the  r e c e n t  s tud ies  on controllabil i ty of non- l i nea r  s y s t e m s  

have essent ia l ly  d e a l t  with s y m m e t r i c  s y s t e m s ,  i. e. , s y s t e m s  of the  

r * o r m  (*) with the  p rope r ty  tha t  F ( x ,  -u) = -F(x, u) (Hermann  [ 9 ] ,  Haynes  

and H e r m e s  [6], L o b r y  [16]). A s  r e m a r k e d  by L o b r y  in [16], t he  con- 

s idera t ion  of s y m m e t r i c  s y s t e m s  often excludes in te res t ing  s i tua t ions  

a r i s i n g  from mechanics .  In these cases the s y s t e m  is of the form 

- dx = A(x)  t H(x)' u. 
d t  

A notable exception is the work  by Lobry  [17]. Lobry  s t a t ed  
3 (and proved f o r  the c a s e  of two vector f ie lds  i n E  ) the r e s u l t  f o r  non- 

s y m m e t r i c  s y s t e m s  that  appears h e r e  a s  T h e o r e m  3. 1. 

Our  r e s u l t s  apply to non- symmet r i c  s y s t e m s .  We obtain gome 

g e n e r a l  information about  the geomet r i c  s t r u c t u r e  

sets  showing that they "pract ical ly"  a r e  submanifolds ( see T h e o r e m s  

4 .4  and 4. 5 fo r  the p r e c i s e  s ta tements ) .  

of t h e  at ta inable  

T h i s  information yields  a 

complete answer  to the problem of deciding when the sets attainable 

from a poi: - x have a non-empty in te r ior .  

involve purely a lgeb ra i c  manipulations of - F and its de r iva t ives  (of all 

o r d e r s )  a t  the point x (see the R e m a r k  below). 

T h e  criteria obtained 
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c/ 
In  pa r t i cu la r ,  o u r  r e s u l t s  contain those of Kuce ra  [14], In this 

connection we o b s e r v e  that o u r  p roofs  a r e  of interest even for the c a s e  

t r ea t ed  by Kuce ra  ( s e e  Sussman [21]), 

W e  have c,mitted the considerat ion of non-autonomous sys t ems :  

t h e y  can  be  t rea ted  analogously by the f a m i l i a r  p rocedure  of reduct ion 

to an  autonomous s y s t e m  (i.  e ,  , b y  cons ider ing  the s t a t e  var iab le  to be 

defined in M x E). - 
The  organizat ion of the a r t i c l e  is as  follows: in sect ion 2 we in t ro-  

duce notations and bas ic  concepts;  i n  addition, we quote s o m e  well-known 

bas i c  r e s u l t s  which will  be  used la te r .  

results in  different ia l  geomet r i c  terminology. 

In  sec t ion  3 we prove  ou r  ma in  

In sect ion 4,  we appiy these  r e s u l t s  to  cont ro l  sys t ems .  W e  

d e r i v e  the a lgebra ic  c r i t e r i a  mentioned above ( C o r o l l a r i e s  4. 6 and 4. 7)  

and we prove  two "global resu l t s :  we show that,  fo r  a l a r g e  c l a s s  of 

manifolds ,  access ib i l i ty  (i. e. the p rope r ty  that ,  fo r  any given - x, the  

set of points a t ta inable  f r o m  - x h a s  a nonempty in te r ior )  imp l i e s  s t r o n g  

access ib i l i ty  (i. e. that ,  fo r  any given - x and any given fixed posi t ive - t ,  

the set of points a t ta inable  f r o m  x at time - t h a s  a nonempty in t e r io r ) .  

a l s o  show that ,  f o r  a s t i l l  l a r g e r  c l a s s ,  including the Eucl idean  s p a c e s ,  

con t r o 1 lab  i 1 i t  y 'imp li e s s t r o ng a c c e s s i b i 1 it y , 

W e  

Final ly ,  sect ion 5 contains examples .  W e  show how o u r  r e s u l t s  

can be  used to d e r i v e  the c l a s s i c a l  control labi l i ty  c r i t e r i a  for the 

system 

-- dx - A x  t B u  . 
d t  
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We a l s o  d e r i v e  the r e s u l t s  of Kuze ra  and indicate s o m e  genera l iza t ions .  

R e m a r k ,  An assumpt ion  that  i d  m a d e  throughout the  a r t i c l e  is 

t ha t  E is a n  analyt ic  frtnction of x. T h i s  gua ran tees  that  all the  inform.- 

ation about the s y s t e m  is actual ly  contained in  F and i t s  der iva t ives  (of 

all o r d e r s )  a t  a given point 5. T h e  analyticity asgumption cannot be 

re laxed  without des t roying  the theory (cf. Example  5. 3). 

Another  assumpt ion  tha t  we  m a k e  is thsL+ the t r a j e c t o r i e s  of the 

s y s t e m  are  everywhere  cfined. A S  opposed to the prev ious  one, th i s  

a s sumpt ion  is not e s s e n t i a l  (except  for  the  "global" T h e o r e m s  4. 9 and 

4. 10). W e  u s e  it, however,  because it cons iderably  s impl i f ies  al l  the  

proofs.  

2, P r e l i m i n a r i e s  

W e  s h a l l  assume tha t  the reader is famiLiar with the fundamental  

A 11 the definit ions and bas ic  concepts  notions of d i f fe ren t ia l  geometry.  

uti l ized in  this  paper can  be found in  s t anda rd  books,  ( f o r  ins tance ,  

~ 1 ,  [31, [71, ~ 3 1  and ~191) .  

T h e  following notations wi l l  be used throughout: 

R-- the  set of real numbers .  

N Rn- -n-dimensional  - Eucl idean  space, 

M - -  t h e  tangent space to the manifold - M at the point - x. 

TM- -the tangent bundle of the manifold - M. 

V(M)--the set of all analyt ic  vec tor  f ie lds  on the  ana ly t ic  

ILV 

-X 

- 

manifold - M. 

W e  wil l  r e g a r d  V(M) - -  as a L ie  a lgeb ra  o v e r  the r e a l s .  

For any X and - Y in - -  V(M),  we will  denote the Lie product  by - 
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[ X ,  Y ]  = X Y  - Y X ) .  Al l  the manifolds  w i l l  be a s s u m e d  to - -  [X - -  , y](i. e. 

be paracompact ,  Reca l l  that  a submanifold of a pa racompac t  manifold 

is paraconipact.  A l s o ,  a connected paracompact  manifold is a co(iiltab1e 

union of compact  s e t s .  T h e s e  fac ts  imply (cf.  Lobry  1161, p 5 8 9 ) :  

LEMMA 2, 2 .  L e t  - M be a (paracompact )  manifold of dimension - n. 

Le t  S be  a k-dimensional connected submanifold 0f .M.  If k c  n, then 

the  set of points of  S has  a n  empty in t e r io r  i n  - M. 

- _. d -  

A subse t  D of V(M) will  be cal led involutive i f ,  whenever N and Y 
e -- - - 

belong to  - D ,  then [ X , Y ]  - -  a l so  belongs to  D, A subalgebra of y(A4) is an  

involutive subspace.  Le t  - D V(M). L- An integra1 manifold of - D is a 

connected submanifold S of E. with the  proper ty  that  S 

eve ry  x 8 S, w h e r e  D(x) = {E (x) : X, c: D], 

= %'(D(x)) for 
X 

and w h e r e  Y ( D ( x ) )  is the 

subspace  of M 

about in tegra l  manifolds:  

spanned by D(x). W e  state the followillg %sic  r e s u l t s  
X 

LEMMA 2. 2 .  L e t  L D be  a n  involutive subse t  of - -  V(M),  and let 

- -  x E, M. Then  is contained in  a unique max ima l  in t eg ra l  manifoId of 

- D ( h e r e  "maximal"  means "maxima 1 with r e s p e c t  to inclusion"). 

T h i s  r e s u l t  is c l a s s i c a l  i f  the dimension of &?(D(x)) is the s a m e  for  

each x cM(Cheval1ey [3]). For a proof  i n  the  gene ra l  case, see Lobry  

WI. 
If D C V(M), we  denote the s m a l l e s t  subaIgebra - V(h?) .- -.v).ich 

contains  - D b y y ( D ) ,  - and the m a x i m a l  in t eg ra l  manilold r): .. )) thrDugh 

x by I(D,x). Recall that ,  if L X is a vec tor  field on  - M, ther, .. _ -  a n  -- -L - 
in tegra l  cu rve  of i f  a i s  a smooth mapping from a closed in t e rva l  I, 

I CJ, into M such  that  - - 



-66-  

DEFINITION 2, 3. If D -- is a subse t  of Y(M), then a n  integra! 

c u r v e  of D is a mapping a f r o m  a real  interval  [t, t ' ]  into - M such that 

t h e r e  ex i s t  t = t < c 

with the proper ty  that the restriction of a t o  [t 

cu rve  of X.  for  each  i = 1 , 2 , .  . . , b, 
fact: 

< . . . < tk = t , and e l emen t s  X 1,. I .  'Xk ofD 0 1  

, t . ]  is a n  in tegra l  i- 1 1 

W e  halre the following e l emen ta ry  
1 

LEM.IMA 2.4. Let - D c V(M). - 
c u r v e  of D, and let a(t) = x fo r  some t e [t , t 1. - 0 1  
f o r  all s 6 [to, tl]. 

Froof. 

cu rve  of - -  X ,  X E: - D. 

l e t  J(S) be the set of a l l  s c [t , t 1 such  tha t  a ( s )  e S. 

exis tence and uniquefiess of solutions of o rd ina ry  different ia l  equations 

Let a: [to, t l ]  -M - be a n  in tegra l  

T h e n  a(s)  g I (3 ,  x) 

It is suff ic ient  to cons ide r  the  ca s t  when ais a n  in tegra l  

For each  maximal in tegra l  mar.ifo1d S o f Z ( D ) ,  L 

F r o m  the ! x a l  - -  0 1  

it follows that,  i f  

[ tO'tJ  c JG). 

maximal integral  

maximal integral  

s e J(S), then t h e r e  exists - r > 0 such  that  ( e - r ,  s+r) 0 
Thus ,  - -  J(S) is open relative to [to, tl]. 

manifolds  of X ( D )  - are  dis joint ,  w e  hr.ve that ,  C Q r  some 

manifold 2, [to, t l ]  C J( 3. But &( t) c: I(D, x); t he re fo re ,  

Since the 

our  proof is complete, 

Chow's  t h e o r e m  provides  a partial conve r se  to the above lemma. 

If D CV(M),  then - D is s y m m e t r i c  if, whenever  -. X sD, c- -X - also belongs 

to Q. W e  can  now state Chow's  t h e o r e m  as follows: 

LEMMA 2, 5. Let D C V(M) be s y m m e t r i c ,  and let x c M. T h e n ,  

f o r  e v e r y  y E: I(D, x) t h e r e  exists a n  in tegra l  c u r v e  a:  [C,  T ]  + - -  M of D, 

with T z 0,  such that  a(0) = x and a(T)  = y. 
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In other words, every point of the  maximal integral manifold of 

, f ( D )  - through - x an be reached in positive time by following a n  integral 

curve of D having x as its initial point. - - 
DEFINITION 2. 6. Let D C V(M), and let x 6 hl. If T - > 0, then, - -  - -- 

for a n y y  E, y is - D-reachable from x a t  time - T if  there exists a n  in- 

tegral curve a. of - D defined on [OPT] such that ~ ( 0 )  = x and a(T)  = y. The 

s e t  of all - D-reachable points from - x at time T is denoted by Lx(D, T).  

The union of L (D, t) for 0 5 t < 

by Lx(D) (respectively L (D,T)) .  

(respectively for 0 5 t =i T) is denoted 
X 

cv -X 

3. Integrability of Families of Analytic Vector Fields 

As an introduction to the general situation, we f i rs t  considered the 

case when D is a symmetric subset of - V(M). 

utilized to obtain a necessary and Sufficient condition for L (D) to have 

Chow's theorem can be - 
H X  

a non-empty intsrior in M .  - Let - n = dim M - = dim T ( D )  0 -  (x). Then 

4D, x) is an n-diAmensional submanifold of M ,  and hence is open in M. - - -- - - 
By Chow's theorem we have that L (D) = 4 0 , ~ ) .  W e  conclude that L (D) 

is >pen in - M. 

dimZ(D) (x) < n , then I(D),x) is a connected submanifold of - M of dimension 

less than n; then from Lemma 2. 1 it follows directly that I(D,x)  has an 

empty interior in M. Since L ( 3 ) C Y D , x ) ,  L ( D )  also has an empty interior. 

Thus, if D is symmetric, a necessary nad sufficient condition for L (D) 

to have a non-empty interior in  Y M is that Jim S(D)(x)  - -  = dim - M. Moreover, 

H X  -X 

Conversely (and without invoking the symmetry of - D )  if 

e - -  - -  - 
-- c - 

N X  - 
3 -dX 

this condition is necessary even in the non-symmetric case (Lobry [16]). 

W e  shall show that it is alsG sufficient. Fo r  this purpose we shall 

assume that the elements of - D are complete--recall that a vectc r field 

X is coTplete the integral curves of X are defined foz a l l  real h - -. - 
(cf. [13], p. 13). 
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THEOREM 3. 1. Let  - M be  an  - n-dimensional  analyt ic  manifold,  

and l e t  e D c V ( M )  -- be a family of complete  vec to r  fields,  

and sufficient condition f o r  L,(D) to have a non-empty i n t e r i o r  in - M is 

A n e c e s s a r y  

N 

t ha t  dim.y’(D)(x) d -  = - n. Moreove r ,  if th i s  condition is sa t i s f ied ,  then for 

each  T > 0, the in t e r io r  of L (D ,  T) is d e n s e  i n  L ( D ,  T)  ( thus ,  in 

pa r t i cu la r ,  L ( D , T )  h a s  a non-empty ifiterior). 

- N X  N X  

N X  

Proof .  W e  a l r eady  know that  the condition of the t h e o r e m  is 

necessa ry .  

second s ta tement .  

So we a s s u m e  tha t  dirnaTD)(x) = n, and we  prove  the 

C l e a r l y ,  this  will imply that  $(D) has a non-empty 

- -  

.y 

i n t e r io r  i n  M. 

Let D = { X , , .  . . ,Xk]. 
p a r a m e t e r  group of diffeomophisms induced by X.( i. e. , t + gi( t, y) is 

the  in t eg ra l  c u r v e  of Xi which p a s s e s  t h r o u g h 1  at d t = 0; the fact tha t  

it is defined for all real t 

( t l , . .  . , t  ) is a n  e l emen t  of R is a na tu ra l  number  t = 

( i l , .  . . , i 

Without l o s s  of general i ty  w e  can  a s s u m e  tha t  D is finite. - - 
For each  i = 1 .2 , .  . . , k ,  let b . ( t , * )  be the one- 

1 

1 

follows f r o m  the  completeness  of X.). If - m 1 - 
m , and i = 

N m cy N 

) is a n  - m-tuple  of na tu ra l  n u m b e r s  between 1 and - k, then w e  m 

be the family of vec to r  fields obtained from D by adjoining the vec tor  - 
-Xk to L). fields -X1,. . . , Then,  i- D is symmetric, and d i m X ( t D )  (x) = n. - 4 -  -- 

From Chow’s t h e o r e m  w e  conclude tha t  L (t D) is open in - M .  

the elements of L ( t D )  a re  exact ly  those e l emen t s  of M which a r e  of 

the .form 0 .  ( t ,  x) for some m , some m- tup le  i , and some t 6 R . F o r  

each  i 

C l e a r l y ,  
N X -  - 

nax -- - 
m 

N N N  - - 1 -  
Iv 

and for  e a c h  na tu ra l  number  N > 0, let A ( i ,  N )  be the set of 
O H -  N ’  - 

t . . . t 1 t I). m Since A ( i ,  N) is the  image  of the  compact  set - -  - 
Et : 11: 11 5 N) under  the continuous mapping t 

-t 4 ( t  , x) ,  we have 
N N Y 

N 
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that  A ( i  , N) is compact.  Also ,  s ince  L ( t D) i s  the  union of the s e t s  - Y -  cux - -  
A ( i ,  N)  ( t a k e n  ove r  m,  i and - N ) ,  it follows from the category t h e o r e m  tha t ,  

N 
- n d -  

- 

fo r  some  i and N,  the set A( i ,  N )  h a s  a non-empty i n t e r i o r  in - M. For 
- r y  - - N 

such  a n  i , let F : R m  --+ M be defined by F(t) = c i ( t , x ) .  cu 

analyt ic  mappingwhose image  h a s  a non-empty in t e r io r  in - M. 

T h e n  - F is an  
cu rv cv 

Y 

B y  Sard’s 

t heo rem (S te rnbe rg  [IS]), the different ia l  d F  of F at w t m u s t  have rank 

n for s o m e  t R . Since d F  depends analytically on t , it follows - N - t ‘y 

that  the set !J 

Let 52 = R 

t -  
N m 

Ccl # ’ m  
= {i: t : R , rank dF < n )  h a s  a n  empty  in te r ior .  

N N -t - 
cy m # m . 
W e  now show t h a t y  is i n  the 

- s2 . T h e n  s2 is open and d e n s e  in R N 
ry 

L e t  T > O ,  and l e t  y 2 L ( D , T ) .  
-X - 

c l o s u r e  of the  in t e r io r  of L ( D , T ) .  It is clearly suff ic ient  to a s s u m e  

tha t  y e L (D,  t), w h e r e  0 5 t < T (for e a c h  point of L (D,  T) is i n  the 

c losu re  of 0 {L ( D , t )  : 0 5 t <  T 1): L e t  y = Q . ( s  ,x) w h e r e  j = ( j l , .  . . , j p ) ,  

ryx 

X -X 

X J -  cy 

N 

> O  ,..., s > O ,  a n d s l t  ... t s  = t .  L e t U  - 
{ t : t l  > 0 , .  . . , t > 0 1 .  

m 

1 P P 
s = ( s  1 ’ .  . . , sp” s 
ry 

{L : 11 t 11 < T - t 

contains  the or ig ina l  Oof R 

- U is open, and its c l o s u r e  
m N rv 

. Since d F  h a s  rank  n a t  e a c h  point t s - U,  
- N  t cv 

h) 

it follows that  F (U)  is V - i s  the 

image  of - d  F(U) under the d i f feomorphism - z + +.  ( s  . 21: t h e r e f o r e ,  - V is 

open in  - M and, m o r e o v e r ,  e v e r y  e l emen t  of - V is - D-reachable  f r o m  - x 

open. Let V = { e .  ( s ,  F(t)) : ry t c U 1. 
J -  - - -  
ru 

3 “ -  
hr 

at  time \I w s 11 + 
t h a t  t l , .  . . , t m 

to the c losu re  of V .  Let { t 

conve rges  to 0 .  Then  

IIi 11 = t t 11: \ \  < T ( h e r e  w e  use  e s sen t i a l ly  the f ac t  

are non-negative). It r e m a i n s  to  be shown tha t  y belongs 

be a sequence  of e l emen t s  of - U which 
-q 

N 

lim $ . ( s ,  F(t q)) = f . (s,F(O)) = 5 ( 2 , ~ )  = V. 
J -  ry J -  hr 9 

T h i s  comple tes  the proof of the theorem.  
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W e  now wa..it t;, state a n  analogous t h e o r e m  for the sets L ( D ,  T) .  

For th i s  purpose,  we sha l l  introduce a Lie subalgebra  z o ( D )  of .F(D)  
X 

which will be re la ted  to t h e s e  sets in  the same way a s X ( D )  is r e l a t ed  to  

the sets L$ (C,T). T h e  aim of tk,e following i n f o r m a l  remarks is to 
cv a. 

motivate o u r  definition of g ( D ) .  

to be positrve. 

cons i s t s  of hree vec tor  f ie lds  X1,X, and X3. Let @ O z  and 8 be the 

correspondi1,g one -pa rame te r  groups. 

W e  s h a l l  ignore  the fac t  that  time h a s  0 
Moreover ,  we  sha l l  a s s u m e ,  for s impl ic i ty ,  t ha t  - D 

4 3 

It is clear t h a t a D )  h a s  the 

! ,llowing "geometr ic  interpretation": S(D)(x) is, for  e a c h  x c M, the 

set of all l imiting d i rec t ions  of c u r v e s  through - x that are en t i r e ly  c n -  

tained ir i (D). Thus ,  fo r  ins tance ,  i f  i = 1 , 2 , 3 ,  then all the points i n  

the c u r v e  t -. 0 .( t, x) a r e  a t ta inable  from - x (recall that  we are forget t ing 

about positivity), and th i s  is reflected i n  t h e  fact that X.(x)  belongs to 

3(D)(x). Sim;lar'.y, the c u r v e s  a,.(t) = Q.(-t ,g . ( - t ,B.(t ,@.(t ,x))))are also 

contained in  L (D). 

Lie bracket (cf. Helgason [7], p. 9 7 ) ,  the  l imit ing d i r ec t ion  of a.. 
13 

is [X.,X.](x) (after a r e p . r a m e t r i z a t i o n ) .  T h u s ,  it is c l e a r  why [ X . , X . ]  
1 3  f 3  

belongs to3(D) .  Obviously, a similar a rgumen t  w o r k s  for the brackets 

- x  

1 

1 

11 1 3 1 3  

By the wel l  known geomet r i c  in te rpre ta t ion  of the -X 

of h igher  order. The geomet r i ca l  mean ing  o f f lD)  is now obvious. 

0 
If 9$D) is going to play the desired role it is clear tha t  3 (D)(x) 

wil l  have to be the set of all l imit ing d i r e c t i o n s  of c u r v e s  v through x 

such  that  v (t) is "attainable from x in z e r o  uni ts  of time" for  a!l t .  

Notice that the curves c ..(t) of the preceding  p a r a g r a p h  have th i s  

property.  

- - 
1J 

Indeed, alt) 238.) he r eached  from - x by "moving forward"  in  

time 2t  units,  and then "backward" another  2 t  units,  T h i s  shows tha t  



-71- 

the vec tor  f ie lds  [ X . ,  X.] a r e  reasonable  candidates  f o r  m e m b e r s h i p  in  

.fo(D). A s i m i l a r  a rgumen t  appl ies  to  h igher  o r d e r  b r a c k e t s ,  such a s  

[ X . , [ X . , X k ] ] ,  etc.  On the o the r  hand, a vector field such  a s  X .  should 
1 J  1 

- not be included i n X  (D) b y  definition, because  we do not know whether  0 

the points a .(t, x) ,  t =/ 0 ,  cpn be reached  from x i n  0 units of t i m e  (bu t ,  

of c o u r s e ,  it m a y  happen that  s o m e  X.  wil l  belong to  3 ( D )  anyhow; 

fo r  instance,  we could have X 

1 J  

- 1  

1 0 

= [X2,X3]). However ,  the  vec tor  fields 1 

X.  - X. wil l  have to  be  included, because  (X, -X. ) (X)  is the l imit ing 
J .- 1 J  1 

di rec t ion  of t h e  c u r v e  t 

generated by the d i f fe rences  X. - X .  wil l  have to be included in .fl (D).  

T h i s  subspace  can a l s o  be defined a s  the set of all l i n e a r  combinat ions 

@ .( - t, Qi ( t ,  x)). In o the r  words ,  the subspace  
J 

1 J 0 

AIXl  t x,X,tX 3X3 such  tha t  X 1  t Xz + 1 = 0 ( tha t  all t he  d i f f e rences  

X .  - X .  a r e  l inear  combinations of this  type is trivial;  conve r se ly ,  if 

Y = h X t 

( -  X I  - A,) Xg, i. e . ,  Y = X l(X1- X3)  t X,(X, - X 3 ) ) ,  

1 J 
X -*.X3X3 w i t h l l  t A 2  t x 3  = 0, then Y = X I X l  t x,x, t 1 1  2 2  

W e  conclude that  t he  reasonable  candidates  for m e m b e r s h i p  in 

Zo(D) are: (i) all the b r a c k e t s  [ X . , X . ] ,  [X., [X X,]], etc. , and (ii) a l l  

the s u m s  XIXl t X t X3X3, w h e r e  EA = 0. Notice tha t  the subset 

generated by ( i)  is c l ea r ly  the der ived  a lgeb ra  of 3 ( D )  (by definit ion,  

1 3  1 j '  

2 2  i 

t h e  der ived  a lgebra  of a L i e  a lgeb ra  L is the subalgebra - L' of - L genera ted  

by a l l  the b racke t s  [ X , Y ] ,  X 8 L, Y g L; i t  is easy to check  that  L' 

is i n  fact  a n  ideal  of - L; cf. Helgason [7], p. 133. - 
W e  now r e t u r n  to o..r f o r m a l  development. L e t S i D )  denote the 

der ived  a lgebra  ofX(D).  Motivated by the  preivious remarks,  w e  define 

Y (D) to be the  s e t  of a l l  sums X t Y ,  w h e r e  X is a l i nea r  combination 
0 
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D 
1- 

22 1 . X .  with X1 ,... , X  g D  and ZX = 0, 
1 1  P i i=l  

and where  Y c d - ' ( D ) .  

One shows eas i ly  t h a t 3 ( D )  is the set of a l l  vec tor  f ie lds  of the form 

It is obvious that  3 (D) is a n  ideal  of X(D) .  0 

P 

i=l 
X.X. + Y  
1 1  

where  X1, .  . . , X belong to D, Y belongs to  3 '(I)), and X l , .  .~. , X 
P P 

a re  

reals (but X 1  + . . . t 1 
media te ly  tha t  3 (D) is a subspace  of g ( D )  of codimension z e r o  o r  one. T h e  

codimension wil l  be z e r o  i f  and only i f  son-exC D belongs to  s o ( D )  ( in  

which case e v e r y  X 8 D will belong to Zo(D)). Simi la r ly  for each  x M, 

need not be zero) .  F r o m  th is  it follows im- 
P 

0 

i f  k = d i m S ( D )  (x), then the dimension ofXO(D) (x) will  e i the r  be k or 

k- 1. 

W e  sha l l  a l s o  be in te res ted  in  a s soc ia t ing  t o  each  D C V(M),  a 

set 

space to  M X R  at a point (x, r) (x 8 M, r e R )  is identified,  in  a na tura l  

way, t o  the  d i r ec t  s u m  Mx @ R 

vec tor  field X @Y 6 V(MXR ) Fv 

D* of vec to r  f ie lds  i n  the  manifold M X  R .  Reca l l  that  the  tangent 
N 

- 
. If x s V ( M ) ,  Y g V(R) , we define the  - r  U 

rv 

T h e  set D* is defined to be the set of all vector fields IC@-", where  at  
X D, and where  - is the  "canonical" vector f ie ld  on R (( zf) (r) = at N 

df (r)). Using the  identity [XOX', Y @Yt ] = [ X , Y ]  0 

shows eas i ly  that  3 ' ( D q  is the set of all vec tor  f ie lds  of the f o r m  X @ 0 ,  

a b 

[ X ' , Y f ] ,  one x 
cy 
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w h e r e  X crlj l (D) and 0 is the z e r o  vec to r  field.  T h e r e f o r e ,  Z ( D * )  is the 
N 

set of vec tor  fields of the f o r m  

P a c h . ( X . @  1 1  x) + Y O 0  h. 

i = l  

, X belong to  D, Y r ,$' (D) ,  and h l , .  . . , A  a r e  s c a l a r s .  
l ' . ' .  P P 

where  X 

THEOREM 3 . 2 .  L e t  L M be an  analytic - n-dimensional manifold,  and 

l e t  D be a fami ly  of comple te  analyt ic  y. zc tor  f ie lds  on  M. L e t  x E M. and 

let T > O .  Then  Lx(D,T)  h a s  a non-empty i n t e r i o r  i n  M i f  and only i f  dim$(D) 

(x) = n. Moreove r ,  in  t h i s  c a s e ,  the in t e r io r  of L ( D , T )  is dense  in  L ( D , T ) ,  

e - -  
0 - - 

X X 

Proof .  T h e  m a i n  idea i n  this  proof  is to  modify o u r  p rob lem so that  

we  can "keep t r ack"  of the time e l apsed  while we move along an in t eg ra l  

c u r \ ?  of D. W e  sha l l  then apply T h e o r e m  3. 1 to  the modif ied sys t em.  We - 
sha l l  w o r k  i n  the manifold M X R . A s  i n  the preceding pa rag raphs ,  we 

cy - 
a let the family D* of vec tor  f ie lds  on M X R 

X c L). 

in t eg ra l  c u r v e s  &of - D such  that a(0) = x, and in t eg ra l  c u r v e s  $(D*) - such  

that  B(0) = (x, 0). T h i s  co r re spondence  is given by ass igning  to  e a c h  cu rve  

a the  c u r v e  t -(a(t), t). 

C L  

be defined b y  D* = [X@ : 
- c y  

It is clear that  t h e r e  is a one-to-one cor respondence  between 

It follows that  y E: L (D,  T )  i f  and only i f  ( y ,  T) 

W e  show that  L ( D , T )  h a s  a non-empty i n t e r i o r  i n  - M 

A s s u m e  

Y, 

(D*,T) .  
X - P, 0) 

(D*) h a s  2 non-empty i n t e r i o r  i n  M X R . 
N 

i f  and only i f  L - - ( X , O )  

that  L ( D , T )  h a s  a non-empty i n t e r i o r  i n  - M, and le t  4 V be a non-empty 

open set such  that  V C  L ( D , T ) .  

X 

Let X - -  6 D ,  and l e t  @ be  the one -pa ra -  
X 

meter group of d i f feomorphisms of - M generated by - X. 

mapping F : V X R  + M X R  defined by F(v, t) = ( $  ( t ,  v ) , T  4- t ) .  

Cons ide r  the 

It is 
N % 

immedia te  that the different ia l  of F has  rank - r. t 1 everywhere .  T h e r e f o r e  

F m a p s  open sets onto open sets. - 
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Since F ( V X ( O , C O ) ) C  - L (x, 0) (Z.b) ,  we conclude that L - (x ,  0) (D*) has a non- 

empty in te r ior  in M X R .  
cu 

To prove the converse ,  assume t ha t  - L (x, 0) (D*) has a non-empty 

in te r ior  i n  MXR , By T h e o r e m  3, 1, for each t with 0 < t 4 T, L 
- c v  - - w(x, 0) 

(D*, t )  has  a non-empty in te r ior  i n  M X R .  - . .N  L e t  -L V be a non-empty open 

subset of M, and l e t  W be a non-empty open subse t  of R such  that - -  VXW c 
N - 

(D*,t). L e t  s e W. Since V X  { s ]  L (D*, t), w e  conclude - 4% 0) - . -  - (x, 0) 
that  V C  L (D,  s). 

meter group on M. Denote the mapping y 4 Q (T-s, y) by - G. 

- G(VJ is open. Since - 4  G(V) is contained i n  Lx(D,T), if follows that 

LJD,T)  has  a non-empty inter ior .  

Le t  - -  X D, and let b be the  cor responding  one-para- 
X 

Then  

W e  conclude from T h e o r e m  3. 1 that L ( D , T )  has a nonempty 
X 

i n t e r io r  if and only if dim S(D*)(x ,  0) = n t 1. To complete the  proof of 

the first p a f t  of our  s ta tement ,  we m u s t  show that t h i s  last condition holds 

if and only i f  d imZ0(D)(x)  = q. 

ceding th i s  proof,  the  fact that  e v e r y  X* G S(D*) c a n  be expressed as 

W e  recall, f r o m  the  remarks pre- 

- 
b P 

( # )  X* = 22 1. ( X . 0  bt ) t Y@O where  X1,.. . ,X belong t o  - D 
P 1 1  cv i= I 

and Y ek?'(D). Now assume tha t  dim 5 (D*)(x, 0) = n -t 1. Let 

v 

where  X* G$(D*)~ Then  formula  (#) holds for sui table  Xi, Xi, Y. 

T h e r e f o r e  

Mx. Then (v, 0) m u s t  belong t o  S(D*)(x ,  0), so that  (v, 0) = X*(x, 0), 

v = (2:X.X. -t Y) (x), 
1 1  

and 
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T h e  last equality implies that  22 1 

belongs to  S,(D). Thus  1’ Xo(D)(x). We have shown that  M ~ % ( D ) ( x ) .  

The re fo re  

Let v e Mx. Then  v E: .T,(D)(x), so tha t  

= 0, so that  the  vec tor  field CX .X. t Y i 1 1  

x *  
the  d i m e m i o n  of S (D)(x)  is - n. Converse ly ,  let d i m  Z0(D)(x)  = n. 0 

v = (EX .x. t Y) (x) , 
1 1  

where  the  X.  belong t o  D, Y €$(D) and = 0. The re fo re ,  
1 i 

b (v,O) = ( ( Z A . X .  1 1  + Y )  @(ZX.) 1 X ) ( X , O )  

This shows tha t  (v, 0) belongs to  S(D*) (x, 0). P i c k  a n  X s D .  

b Then  X o  bt (x, 0) belongs t o  D*(x, 0) by definition, and  X 

(x, 0) belongs to  3 (D*)(x, 0) by the previous r e m a r k s .  

(0  , 
contains all the vec to r s  (v, 0), v 

Therefore$(D*)(x,  0) = ( M X  R ) 

as stated.  

@ 0 

T h e r e f o r e  

M 

b (0)) belongs t o  9 (D*)(x, 0). We have thus  shown tha t  X(D*)(x,  0) 
N 

a Mx, and a l s o  the  vec to r  ( 0  , - (0)). 

so that d i m  3 (D*)(x, 0) = n t 1 
- a t  

- ( X I  0)’ 

W e  now prove  the  second p a r t  of the  theorem.  A s  we remarked 

earlier, t h e r e  is no loss of genera l i ty  in  a s s u m i n g  that - D i s  finite. 

y c Lx(D, T). 

y = ig 

t .  > O  fo r  i = 1, ... , m  and 1; t I\ = T .  

lim s = 0. Since ou r  condition fo r  L ( D , T )  t o  have a non-empty 

in t e r io r  is independent of T ,  we conclude tha t  L (D, t) h a s  a non-empty 

in t e r io r  for all - t > 0. 

which belongs t o  the  in t e r io r  of L (D, sk), 

Let 

Using the notations cf the  proof of T h e o r e m  3. 1, let 

m ( t , x ) ,  where  i = ( i l , .  .. , i  ), and w h e r e  t 8 R is such  tha t  

L e t  [sk) < ( 0 , t  ) be such  that  

N N m - n d  
N 

1 N m 

k X k + m  

X - 
k In pa r t i cu la r ,  for each  .I k > 0, t h e r e  exists x 

X w k  m- 1’ 
- Let t - ( t l , .  . . , t 
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t - sk), and le t  y = B i  (Lk,xk) .  F o r  each k > O ,  y belongs to L ( D , T ) ;  m k k X - 
ry 

s ince  Q is a diffeomorphism,  y is the in t e r io r  of L ( D ,  T). A l s o ,  x - -x  

a s  k --rw because  D is f ini te  and s 

i k X k 

is continuous i n  both 
h) 

-c 0. Since Q i 
N 

k - 
variables, and si,ise t t ,  we  have tha t  y - y ,  and o u r  t heo rem is proved.  

'vk ry k 

T h e  r e s u l t s  of the previous t h e o r e m s  can  be uti l ized to obtain inform- 

at ion about the sets L X ( D , T )  and L x ( D , T ) ,  even  when d i m D ) ( x )  - -  < - n. 
'v 

THEOREM 3. 3.  Let D C V(M) be a fami ly  of comple te  vector  fie!ds. 

Then ,  for each  T > 3, the  set L ( D , T )  is contained in  I (D,x) .  Morzove r ,  

in the topology of I (D,x) ,  the i n t e r i o r  of L ( D , T )  is d e n s e  in L ( D , T ) .  

Lx(D, T) h a s  a non-empty in t e r io r  in  I(D, x) i f  and only i f  d i m s  (D(x)) = 

dim*D)(x) and ,  in  this  c a s e ,  the i n t e r i o r  of Lx(I),T) is dense  in  L (D ,  T). 

N X  

,x N 

0 

X 

Proof .  If X T ( D ) ,  then - X is tangent to I(D,x).  Thus ,  t h e r e  is a -- - 
well-defined r e s t r i c t i o n  X f# of X to I(D,x) .  

r e s t r i c t i o n s  of e l e m e n t s  of D by D#. 

tha t  N(D)# - =X(D#) .  - Analogously,we have tha t  S 0 ( D ) #  = X0(D#). If 

we now apply the prev ious  t h e o r e m s  to the fami ly  D# of vec tor  f ie lds  in  

W e  denote  the set of all such  - - -  - - 
Since [x, - Yj# = [X#, - -  Y#], it follows 

I (D,x) ,  we  ge t  a l l  the  conclusions of the theorem. 

COROLLARY 3. 4. Let - S be a maximal in t eg ra l  manifold of 3 ( D ) .  - 
T h e n  the d imens ion  of So(D)(x) - -  is the same f o r  a l l  x e S. 

Proof. If d i W D )  (x) = k then, for e a c h  - d  x e S ,  the  dimension of - 
so( D)(x) is e i the r  - k o r  - k- 1. W e  show that,  i f  d i m  x0( D)(y) = k, 1 for  

s o m e  - -  x 6 S, then dim s o ( D )  (y) = k-1. for - all y €5 .  
empty ,  open ( r e l a t ive  to S) Yubset of L (D) ( th i s  is poss ib l e  by T h e o r e m  

3. 3). 

w e r e  not the c a s e ,  then n e c e s s a r i l y  d imgo(b ) (y )  = k. 

have a non-empty interior in - S for all - t > 0 .  

' et Q be a non- 

N X  - 
W e  first show that ,  if y € 5 2 ,  then dim s , (D)(y)  = k - 1 .  If this  

Then  L ( D , t )  would 
Y 

T h i s  would 
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imply that L ( D , t )  has  a non-empty in t e r io r  in L S. 

th i s  is impossible .  

is connected, and C? is open in d S, we ha;e that  d i m  SO(D) (y )  = k- 1 f o r  

But by o u r  assumpt ion  
X 

Thus ,  d i m  d o ( D ) ( y )  = L k - 1  f o r  a l l 1  6 !J. Si;ice - S 

all  v c S ; t he re fo re ,  our statement is proved. 
A d  

We now proceed  to  study the  c a s e  when dim ZO(D)(x)  = d i m  

X(D)(x)  - 1. W e  begin by proving s o m e  p re l imina ry  l emmas .  

LEMMA 3. 5. Let D - C”(M) - -  be a family of p-mplete vec tor  fielils. 

If X D ,  let { +  ] be the  one -pa rame te r  group genera ted  by - X. Then,  t 
for e v e r y  x E M, and e v e r y  t 

onto zo( D) ( ih  t( x) ). 

Proof.  

- -  
R the d i f fe ren t ia l  dg m a p s  x O ( D ) ( x )  t - -  - c y  

W e  first show that  fo r  e v e r y  y c M t h e r e  is a n  r > 0 such  - - 
that ,  i f  v cXo(D) (y ) ,  then dq ,(v) E eFo(D)(@t(y)) for  a l l  - t with It1 c r. 

It is sufficient to  show that for everyy E M and e v e r y  v e 3  (D)(y) 

t h e r e  exists a n  r > 0 such  tha t  d Q  ,(VI e JTO(D)(@ (y) )  f o r  a l l  t with 

It1 < r. 

Y E 3 (D),  then  a n  e a s y  computa?iqn shows that  t h e r e  exists a neighbor- 

hood of t = 0 such  tha t  dp t (v)  = .Ci=l 00 

0 - 
t .- 

Lety  8 - M, and let v E go (D)(y). If v = Y(y) f o r  s o m e  

0 

,E$- [xii), Y ]  (m,(y)) t i  for  a l l  
1 .  - 

t i n  th i s  neighborhood, where  [X(@), Y] = Y, and [X‘”), Y ]  = [X, [X (n-  1) - 
Y]] for  n = 1,2 , .  . . Since each  term of the  above beries belongs to  

3 O(D)(Q ,(y)), we have tha t  d #  (v) c: 3 (D)(dt(y)) f o r  - t sufficiently small. 
t 0 

A l s o ,  for such  - f: we have tha t  dBt (ZoiD)(y))  = z0(D)(Ipt(y)); t h i s  is so 

because  dO 

(Coro l l a ry  3.4). 

d#,(X0(D)(x)) = Z0(D)(cpt(x)) is both open and  closed. 

we can  conclude tha t  ib ( v )  X,,(D)((b (v))  for all t. T h i s  comple tes  

o u r  proof. 

is bne-to-one, and dim Xo(D)(y)  = d i m  Z0(D)(cht(y)) t 
It follows e a s i l y  that the  set of a l l  - t such  tha t  

If v c X0(D)(x),  

t t 
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A s  we remarked ear l ier ,  ,Fo(D) - is a subalgebra of .F(D). 

denote the maximal integral manifold of So( - 3) through x u by IO(D, x). 

If X 6 D then, by the previous lemma, 9 (I  (0,~)) is a maxim21 integral 

manifold of Z0( D). 

LEMMA 3 . 6 .  

W e  will 

- -  t o  

Let - D C V(M) -- be a family of complete vecto- fields. 

Let X and Y, be elements of D, and let [ @ ] and [ y  ] be their correspond- 

ing one-parameter groups, 1’ 

.7 (D)  then, fo r  any  t E R ,  if 

t 

- t - t  

- S is a A;;aximal integral r-anifold of 

(S) = y t  is). 0 Lv 

Proof,  Let X ,  Y, !$ t, \y and - S satisfy the conditions of the iemr.ia. -- 
Let P be the maximal integral manifold o f X ( D )  which contains - S. 

dim - P = dim - S, then - -  S = F, and !$,(S) = S =yt(S) .  

dim (P) -1. 

whenever I t I e r. 

a t  (x, 0). 

this mapping, restricted to 52 X ( -  6, 6; is a diffeornorphism onto a n  open 

subset SI# of - P . If 1 E: SI#, let - e(y) and fJy) he such that @f(y)( s(y)) = y. 

Clearly, - f is analytic in  E#, and f(y) = o if  9nc1 .k-tiy i f y  E: SI . 
X f 

integral maniflld of S0(D). The vector fieid Y - X is tangent to IJ (0) 

and, sinc:e f i s  .constant on @ ‘Q), it  fo1lows that Yf 

SI# is the union of the sets  $60) over -6 < t < 6, we concitJde that 

Yf z X f  

fined on - r c t < r ,  is contained in  n#. 

f (@-t(  yt(x)). 

We have that q’ = (Yf) (vt(x)) - 1 2~ 0 and, since g(0) = 0 it follows tha,t 

g zz 0 on ( - r , r ) .  

for all t c (or, r) ,  Hence, if  I t  1 c r ,  the manifokd 

If 

A s s u m e  that dim S = k = 

W e  f i rs t  show that there is an r > 0 such that F (SI = y ( S )  

The mapping (8,  t) -. 4 ( 8 )  has rank - k t 1 

t t - 
Let x e S .  t - -  

Let S2 be a neighborhood of - x in - S, and let 6 >  0 be such that - 

M r  . . aver, 

1 in  sZ#. For every - t such  that It I < 5 ,  the ne?*, 6 t [ Q !  is nn 

t e - -  
Xf on @,(sl). Since t ‘  - 

1 on SI#. Let r > O  be such that the curve t -. Q-,!V~[X)), de- 

Let g( t) = In  addition, let r <  6. 

Then 4 is analytic in  ( - r ,  rj,  and moreover g(t) = f(yt(x)) - t. 

But this means that #- t ( y t (X) )  E: 52 
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0 ( y  (S)) intersects S. Sir-ce a (y (S)) is a maximal integral manifold 

of .9-c(D), it follows that Q-,(v ,(S)) = S, and tnat yt(bJ = St(S). 

be the set  of a l l  t such that O 7  (S) = Y (S) fo r  a l l  T i n  a neighborhood of 

- t .  

easily from the preceding argument that * A is closed. 

- t  t - t  t 

Let - A 

7 - 
Then - A is obviously open, and we have shown that -’ 6 - A .  It follows 

Therefore, 

ip ( S )  = y (S) for a l l  real  - t , and our proof is complete. t t 
Acccrding to the above lemma, i f  D C V ( M )  L d  an2 if - x -’ M then 

the manifold @,.(I ( D , x ) )  depends only on 4 t , and not on the particular 

choicz of X . W e  shall defiote this  manifold by I ( D , x ) .  It is clear 

that I ( D , x )  could be defined as the maximal integral manifold of 

Z (D) passing through y, where y is an arbi t rary point of L (D ,  t). 

b o  
t 
0 - 

t 
0 

3 X 

Finally, we prove a factorization property of maps that will be 

utilized several times. 

LEMMA 3.7. Let u E be a locally convex vector space, Jet 

K c E ,  and let C: 5e a convex dense subset of - K. Let F : K - I(D, x) - - - 
be a continuous mapping such that _F(C) is contained in a maximal 

integral manifold - S of Xo(Q).  

as a mapping from - K into - S ,  is continuous. 

Then_F(K) is contained i n  S, and - F , 

Proof. If din, S = dim I(D, x), then S = I(D, x), 

follows trivially. Therefore, w e  shall a s s u m  that dim S = dim I(D,x) - 1. 

and the  conclusion 

Let k e K ,  let X e D, iLnd let {a  } be the one-parameter group t - -  L -  

induced by - X. 

neighborhood R q f  F(k) in Io(D,_F(k)), and a positive number 8 ,  such 

that the mapping ( s ,  t) r* 0 (s) is a diffeomorphism of R X ( -  6 ,  a )  onto 
a n  open su5set S2# of I(D,x). 

- k such that - -  F ( U n K )  - C 52#. 

Then, a s  in  the proof of Lemma 3.6, we can find a 

- - -  
t 

Let - U be a n  open convex neighborhoo? of 

For each .L t E. (-6, a ) ,  the set  4 t  (0) is a n  
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integral manifold of 5 (D); therefore, i f  4 ( R )  intersects S ,  then 

4,(!2) is contained and open in I S. 

It follows that S n R #  is the union of the sets fi t (sZ) ,  t 

a r e  mutually disjoint and, since d S is separable, it foliows that A is at 

most countable. 

( s , t )  + 4 4 s ) .  

is continuous. 

0 t 
Let A = [t : 1: I e 6 , Q J R )  c S ]  , 

A.  These sets 
I - -  

Let y * ( s ( y ) ,  f(y)) be the inverse in  R # of the map 

Then the funct ions defined in - -  Ul? K by g(m) = f(F(m)) 

Since F ( U  n C) C S r\ R#,  we conclude t h a t g ( m )  - E A 

for all m 8 U fl C. But A is at most countable, and U fl  - C is convex; - -  - - 
therefore g is constant on U (7 C. Since U r\ C is dense i n  U l7 K ,  we - -  - -  - -  
have that g is constant on - -  Uf\ K. Obviously g(k) = 0, and therefore 

g(m) = 0 for all m e U f l  K ;  thus -- F(m) e 52. This shows that R con- - - -  
tains a point of - S; hence QCS, - and - -  F(k) e S. - This proves the first 

part  of the lemma. 

To prove the second part, let {k ] C K converge to k. Since F 

Since 

- - n 
is coniinuous, F(k ) -. F(k). 

- s is continuous, s(F(kn)) converges to s(F(k)) in - S ,  

therefore s(F(k )) = F(kn). Similarly, s(F(k)) = F(k). We have thus 

shown that F(k ) converges to F(k) in S,and our proof is complete. 

For large - n, s(F( kn)) is defined. n 

But g(kn) = 0 ,  and 

n 

n 

Remark 3.8. It i p  c lear  that the preceding lemma is valid under 

weaker assumptions about - C and - K. F o r  instance, it is sufficient to 

assume that, for every - -  k g K and for every neighborhood - U of - k, 
there exists a neighborhood V of such that V C U and V C is 

connected. 

.-. - - - - 

We now state and prove the theorem towards which we have been 

aiming. 
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THEOREM 3. 9. Le t  - D C - -  V(M) be a set of comple te  vec to r  

t 
X 0 

f ie lds ,  and let x M . Then,  for each T > 0,  L ( D , T )  c I ( D , x )  ar.d, 

m o r e o v e r ,  the  i n t e r i o r  of L ( D ,  T ) ( r e l a t i v e  t o  I ( D ,  x)) is dense  i n  L ( D ,  T )  
X 0 X 

d - 
t 

(and is, in  pa r t i cu la r ,  non-empty). 

Proof.  If d i m  &,(D)(x) = d i m  ~ ( G ) ( x ) ;  then  we have from Coro l l a ry  

3. 4 t ha t  X0(D)(y) = 3 ( D ) ( y )  f o r  a l l  y 

10(D,x) and o u r  conclusion follows f r o m  T h e o r e m  3. 3. 

dim Zo(D)(x)  = k = d i m X ( D ) ( x )  - 1. 

i f  a is a n  in t eg ra l  c u r v e  of - D such  tha t  a(0) = x, then %(T) E: 10(D,x) ;  

hence, L ( D , T )  C I (D,x). 

I ( D , x ) .  T h e r e f o r e ,  I ( D , x )  = 

A s s u m e  that  

0 
t 

It is clezr f r o m  L e m m a  3. 6 that ,  

T 

T 
X 0 

W e  now show that ,  if y 6 L ( D , T ) ,  t h e n y  is t h e  limit of points 
X 

which belong to t h e  i n t e r i o r  of L (D,T).  

let y = #.(T ,x) ,  w h e r e  \\TI\ = T ,  and T. > O  for i = 1 , 2 , .  . . , m  ( t h e  

notations h e r e  are the same as  in  t h e  proof of T h e o r e m  3. 1 ) .  

Let D = {X, ,  . . . , Xk] and X 

1 -  cy 1 
N 

Let 

j of in t ege r s  between 1 and - k such  tha t  t h e  
N 

rank  of t + $  

subse t  Roof R < 
Let ( t  

T 

we  l e t y  = Q .  (T 

y is i n  the i n t e r i o r  gf L ( D , T )  r e l a t ive  to I (D,x) .  Since t h e  

mapping z 'ei(T 

(t , X) is equal  to dim Z ( D ) ( x )  for all L t in  a n  open d e n s e  
rv j -  

s ] n  R. 
S Let R '  = ( t  : t 8 R , t. > 0 f o r  i = 1,. . . , 

.y U N  cv 1 

] C R be a sequence  that conve rges  to 0, and  let T = ( T I , .  . . , - P  -P 
T - \kpll ). W e  can a s s u m e  tha t  I\ t I\ T fo r  all  p > 0. If 

,x)), then  y c L (D,T). W e  next show thzt 

m-1' m PI m 

X 1 cv p~ Q j E p  P T p w  

I \  t I '  

N 3 -P  X -P 

? X c 
z) is a diffeomorphisxr f r o m  Io -P ( 0 , ~ )  onto - P' 

N T IC (D, x), it suff ices  to show that  Ip .( t 

Let V 

t e V 

defined by F (5 = 0 . ( t  ,x). 

, - -8 i n  the i n t e r i o r  of L ( D ,  \It 11). 
S = 1 t : t g R , t l  > 0, .  . , ,ts>O, 11 t \I = !\ip\\]. C l e a r l y ,  if 

then m j  (t ,x) c Lx(D, 11 t 1). L e t  F : V + I  "tdl ) ( D , x )  be 

- H  - Lv P 

P' N - P  P P O  hr 

W e  show tha t  F is analytic.  Since F 
P -  3 -  P P 
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is analytic as  a map from V into I(D, x), it suf f ices  to show that it is 

continuous. But this follows f rom the previous lemma, because V is 
P 

P 
convex. The rank of t - @ . ( t  , X) is equa l  t9 di&(D)(x) at t = t Since 

N 3 -  N "P' 
S -  

V is a submanifold of R of codimension 1, it follows that the rank of 

F at t is equal to the dimension of J -p ( 0 , ~ ) .  Thus, F ( V  ) con- 

tains a neighborhood of F (t ) in I IlLPl\ (D,x). It follows that 

(D. ( t  

;e conclude that y is interior to Lx(D,T) in I (D,x). 

to be shown that y converges to y in  I (D,x). The  mapping ( t  , s) - 
@ . ( t  ,Q .(s,x)! is continuous as  a map from R%RK i n t o  I(D.x). 

!I I I  N P 

P -P 0 P P  

P-P 0 

, x )  is in  the interior of L (D, \ \  t \ I  ). By the previous remark 
3 " P  X -P 

T 
0 N N  

T There remains P 0 

P 
The set 

1 - p H N 
N 

T 
0 is convex, and is mapped into I ( 0 , ~ ) .  Therefore,  the previous lemma is 

applicable, and we conclude that y + y  in I i ( D , x ) .  This  proves our  
P 

theorem. 

4. Applications -to Control Systems 

W e  shall consider s y s t e n x  of the form 

= F(x(t), u(t)) dt  

defined on an analytic manifold M. - The functions - u belong to a class 

%?of "admissible controls". W e  make the following assumptions about 

W and the system functiong: 

(i) The elements of W are piecewise continuous functions- defined 

i n  [Os- ) ,  having values in a locally path connected s-eCS2. R C R - - H 

( R  is locally path connected if, for every w e f2 and every neighborhood 

V of w ,  there exists a neighborhood of w such that U C V, and U - - -L 

n R is path connected). In addition, we assume that 4V contains 
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- a l l  the piecewise constant functions with values  in R , and that  e v e r y  

e lement  of h a s  f ini te  one-side l imi t s  in each  point of discont inui ty .  

4 2  is endowed with the topology of uni form convergence o n  compac t  

intervals .  

( i i )  F:  M X R -+TM is jointly continuously different iable .  For 
d -  - - 

e a c h  u c r?, - F( .  , - u)  i s  a complete  analyt ic  vector  field on M. W e  k n o w  -- 

that  for each  - x c - -  M ,  u c a, the different ia l  equation 

dx( t) 
_I__- = F(x(t) ,  u( t))  x( 0) = x, dt 

solution by T I  (x, u,  - ) ,  and we assume that TT ( 5 ,  _u,_t) is defined f o r  a l l  

F o r  the above defined control  s y s t e m ,  w e  now state the basic 

controllabil i ty concepts.  W e  s a y  that  y e - M is at ta inable  from 0 -  x e M  

a t  time - t ( t  2 0 ) ,  if t h e r e  exists - u c: 4Y such  that  n(x, u,  t) = y. For each  

x E M, we l e t  A(x, t) denote the set of all points attainable from - x at - -  - - -  
time t .  If 0 5 t < C D ,  we define A (x, t) = u A  (x, s) and A(x)  = u ,A 

t r O  .u - - - 
ss t 

(x , s ) .  W e  s a y  that  the s y s t e m  is control lable  f r o m  x i f  A(x) = M, and  -- N 

that  it is - control lable  i f  it is controllable from e v e r y  x f: M. We s a y  

that  the s y s t e m  h a s  the access ib i l i ty  p rope r ty  f r o m  x if A(x) h a s  a non- 

empty in te r ior ,  and that  is h a s  the access ib i l i ty  property if i t  has the  

access ib i l i ty  p rope r ty  from e v e r y  x Q M. 

k 

Final ly ,  we sha l l  s a y  that  the 

s y s t e m  has  the s t rong  access ib i l i ty  property from x if A(x ,  t; h a s  a non- 

empty in te r ior  for some t > 0, and that  i t  h a s  the strong access ib i l i ty  

proper ty  i f  i t  h a s  the s t rong  access ib i l i ty  p rope r ty  from x for e v e r y  

x c M. 
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For  w 6 52, let Xu = F( - ,u); f rom assiiniption (i i)  it follows that 

X 

part of this art icle w e  let D = {Xu : w € 9 ' ) .  

is a complete analytic vector field-on - M. Throughout the remaining w 

LEMMA 4.1. For each x 6 M , A ( x )  is contained in I ( D , x ) .  

The proof is identical to that of Lemma 2. 4,. and will, therefore, 

cv - -  

be omitted. 

Remark 4. 2, It is easy to see that the control system defined by 

restricting L F to -- I (D ,x )  - satisfies the same assumptions a s  the original 

system. Since it c a n  be readily verified that the map u - V(x,  u,  t) is  

continuous a s  a map f r o m e i n t o  M,  it  follows that th i s  map is also - 
continuous as a map from e into I ( D , x ) .  

W e  now want to obtain a result for A ( x ,  t) which is similar to that -- 4 

of Lemma 4. 1. It is here that the assumption about s1 will be utilized. 

Let ,!be the class  of piecewise constant R-valued functions defined on 

LO,=) .  Clearly, 9' is dense in w .  Moreover, the local connectedness 

of G? implies that the condition of Remark 3. 8 is satisfied (this can be 

easily \- Yified, and we omit the proof). Thus, we can apply Lemma 

3. 7 ,  with C =@and K =W, to obtain the following result: 

LEMMA 4. 3. Let - -  x c M .  For each t z 0,  A(x,t)  C I i ( D , x ) .  

Proof. Sincewcontains 9, w e  have that L ( D , t )  C A(x,t) .  Let 
X 

G: 4# + I ( D , x )  be defined by G(u) = n(x ,u , t ) .  W e  have that G ( 9 )  = L 

( D ,  t )  and by Theorem 3.9,  G ( 9 )  C I o ( D , x ) ,  Now our coriclusion 

follows immediately f rom Lemma*3. 7,  and the proof is complete. 

X 
t 

The above lemmas combined with the theorems of the preceding 

section yield the following results: 

THEOREM 4.4.  Let x M . Then A (x) C I(D, x). Moreover, 

for every T > 0, the interior of A ( x , T )  relative to*I(D,x) is dense i n  

N - -  
N - 
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A ( x ,  T)(and, in particular,  is non-empty). 
h) 

Proof .  The first part  is just the statement of Lemma 4. 1. T o  prove 

the second part, we can assame that I ( D , x )  = M ( i f  not, replace the 

original system by i ts  restriction to I ( D , x ) ,  cf. Remark 4. 2). Since 

L ( D ,  T) is dense  in  A(x,  T ) ,  our conclusion follows immediately from 

Theorem 3. 1. 

- x  N 

THEOREM 4. 5. Let x c M. Then, for each t BO, A(x,t) C 

10(D,x)  and, moreover, the interior of A ( x ,  t) relative to I ( D , x )  is 

- L 

t t 
0 

dense in  A ( x ,  t) (and, i n  particular, is  non-empty). 

Proof. % The first par t  is just the statement of Lemma 4. 3. To prove 

the second part ,  we apply Lemma 3.7 to the function - G of Lemma 4. 3, 

and we get that G is continuous as a map into I (D,x) ;  therefore, 

L ( D ,  t) is dense in  A(x ,  t) relative to 10(D, x). 

immediately from Theorem 3. 9, and the proof is complete. 

t 
0 

O u r  conclusion now follows 

- 
t 

X 

The following two controllability cr i ter ia  follow immediately from 

the Theorems 4.4 and 4 .5 ,  and from Lemma 2. 1: , 

COROLLARY 4. 6. The system has the accessibility propertv 

from - x i f  and only if d i M D ) ( x )  = dim M. In this case  ry A(x, T) has ,a non- 

empty interior for every T > O .  

COROLLARY 4.7. The system has the strong accessibility 

property from - x i f  and only i f  S o ( D ) ( x )  = dim M. 

a non-empty interior for  every T > 0. 

In this case A(x ,T )  has 

The preceding results can be utilized to derive relationships 
, 

between accessibility and strong accessibility. Even  though the latter 

property seems much stronger than the former,  we show that, for a very  

large class of manifolds (including the spheres Sn for  n > 1, and all  c o m -  

pact semisimple Lie groups, but not R) ,  it is i n  fact implied by it. 
N 
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On the other hand for  a still  larger class of manifolds (including Rr) 

controlability (which trivially implies accessibility), is sufficient to 

guarantee strong accessibility (the fact  that controllability implies 

that dim,F(D*)(x) n t 1 for all  - x was  proved by Elliott in  [5]). 

Consider a system on a connected n-dimensional analytic 

N 

manifold M, - having the accessibility property but not having the strong 

accessibility property. Let - D be the family of associated vector fieids, 

By Corollary 4. 6, dim S ( D ) ( x )  = n for all x M, By Corollary 3, 4 the 

number dim 3 (D)(x) is independent of - x, 
n o r  n -1 , Corollary 4. 7 implies that dim S (D)(x) = n - 1 for all  

x F M. 

group generated by X(i. e . ,  for every y M, the integral curve of X 

Since this number is either 0 

0 - - 
Choose a fixed X g D, and u s e  4 to denote the one-parameter t 

that passes through y at t = 0 is the curve t - eiy)). 
F from the manifold SXR into 

Define a mapping 

by 
H 

One shows easily that - Fis a local diffeomorphism -- onto M. 

Moreover, SXR is connected. 

the definition of a covering projection): 

In fact, we have (cf. [18], Ch. 2, for 
N 

LEMMA 4.8. The map - F is a covering projection. 

Before we prove Lemma 4.8,  we show how the results mentioned 

above follow f rom it. 

THEOREM 4.9.  Let  - M be a manifold whose universal covering 

space (cf. [l8]) is compact. Then every system havkg  the accessibility 

property has the strong accessibility property, 

Proof. If the universal covering space of - M is compact, then 

If it were possible to have every covering space of M - is compact. 
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a s y s t e m  o n  M having the access ib i l i ty  proper ty  but not the s t r o n g  - 
access ib i l i t y  proper ty ,  we could def ine,  for  such a s y s t e m ,  S and - F 

a s  above. It would follow that S X R  is compact ,  which i s  c l ea r ly  a 

d 

N 

contradiction 

Remark .  If n > 1, the s p h e r e  S" is s imply  connected (and  compact ) .  

T h e r e f o r e  T h e o r e m  4. 9 appl ies .  A l s o ,  if - M is a connected conipact 

s emis imple  L i e  group ( f o r  instance SO(n), if n > 2 ) ,  the  universa l  

covering group of - M is a l s o  compact  ( c f .  171, p, 123) and,  t h e r e f o r e ,  

T h e o r e m  4. 9 appl ies  in this  case a s  well. 

THLOREM 4. 10. L e t  M be a manifold whose fundamental  g roup  - 
h a s  no e lements  of infinite o r d e r .  Then  e v e r y  control lable  s y s t e m  on 

- M h a s  the s t rong  access ib i l i ty  property.  

Proof .  A control lable  system obviously h a s  the access ib i l i ty  

property.  A s s u m e  it does  not have the s t r o n g  access ib i l i ty  property.  

Define S and F - as  before.  

t h e r e  would exist s s '  

F(0 ,  so) = s T h e r e f o r e  .r, ( S )  = S. Define H: SXR * S X R  by 

H( s ,  t) = ( m  T(~), t-T).  

is a homeomorphism.  Moreove r ,  if ( s ,  t) S X R  

W e  show that  F L is one-to-one. Otherwise ,  

( s t )  0' 0 T O  S a n d  a T f 0 such  tha t  F(T,  si ) = ip 

0' T N cy 

Then - H is wel l  defined, because 8 ,(S) = S, and 

N 

T h e r e f o r e  - H is a covering t ransforma-t ion (cf, [18], Ch. 2), 

m 
Moreover ,  H h a s  infinite order ,  because  H (s, t) - - ( F , T ( S ) ,  t - n m ,  

so that Hm is not the identity m a p  if  m f 0. W e  know from [18] Ch, 2 

that  the  group of cover ing  t r ans fo rma t ions  of the  cover ing  s p a c e  

( Z R ,  F) is i somorphic  to a subgroup of the fundamental  g roup n of M. 
N 
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If vhas  no  elements of infinite order ,  then this is a contradiction, 

Therefore F must be one-to-one. On the other hand, the points that 

a r e  attainable from x must belong to S != ip (S)) for some nonnegative 

' t (cf. Theorem 4. 5). Therefore the points in  S a r e  not attainable, 

i f  t >  0. Thus, the system is not controllable, and we have reached a 

0 t t 

- t  - 

contradiction. 
< 

Remark. Theorem 4. 10 applies, i n  particular,  to any siinplv 
n 

connected manifold, such a s  R , 
N 

Proof of Lemma 4.8 .  We must show tha t  every point of M has a 
- - 

neighborhood that is evenly covered by F. Let m c M, Since F i s  a - 
local diffeomorphism onto, there exist s e S, t c R , E >  0 2nd a connected 

neighborhood - U of - s in - S such that F(s, t) = m and that the restriction of 

F to UX(t-e ,  t + e ) is a diffeomorphism onto an open subset V of M. 

We claim that - V is evenly covered. 

7 

that U 

i f  0 < 17  - nl < 2 6 ,  7 e A ,  VE: A ,  then UT and U 

they a r e  not. Then 5 ( U  ) and $ ( U  a r e  not disjoint, for any T .  Choose 

T such that both T t7 and T t q belong to ( t -e ,  t t e ) .  - - - 'Tt7 1 

ry - -  

- - 
Let A = { 7  : + 7 ( S )  = S 1. 

S -&  S is a diffeomorphism, i t  follows 

We f i r s t  show that, 

F o r  each 

A ,  let  UT = (p 7(U). Since 6 
7 -  

is open in S and connected for  each 7 c A .  - r 

a r e  disjoint. Assume 
rl 

T 7  T r l  - 
Let u = ( u  ) = 

( u  ) be a common element, where u and u2 belong to U. 

2 '  

Then the - ' T t q  2 1 

points (u lT  t 7 )  and ( u  

striction of F to this set iri  one-to-one, it follows that 7 = n, which is 

a contradiction. For each 7 c A ,  let  W = U X ( t - 7 0 ~  t-?+g), W e  shall 

conclude our proof that - V is evenly covered by showing: 

T t q) belong to UX(t-c,ttg). Since the re- 

- 
7 7 
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(a) the s e t s  JY are open, connected and pa i rwi se  disjoint,  
7 

(b)  

I C )  

for  e a c h  7 8 A ,  - F maps ?V7 diffeomorphical ly  onto V ,  - and 

the i d e r s e  image  of V under F is the unio? cf the s e t s  W 

If 7 and n belong to  

+ 
7' - d I 

The first two a s s e r t i o n s  of (a) a r e  obvious. 

A ,  a n d 7 # q ,  t h e n e i t h e r 1 7 - q )  < ~ C C I T ~ ~ - ~ I ? L E . .  I n t h e f i r s t  

c a s e  W7 and W m u s t  be dis joint ,  because  U and U a r e  disjoint. 

In the second c a s e ,  W i  and W 

( t - 7 - g ,  t -7 i -c )  and ( t - p c , t - q t  c )  cannot have a point i n  common. 

rl 7 r\ 
a r e  a l s o  disjoit,t ,  because  the i n t e r v a l s  

r\ 

To  prove (b) ,  take 7 6 A .  Define G : U X ( t -E,  t t 4 + W7 by 

G(u,,?) = ( 5 7(u),  0 - 7 ) .  

t t 8 )  onto W7. 

@ (u)  = F(u,,). 

ph i sm onto V ,  the same m u s t  be t r u e  f o r  the r e s t r i c t i o n  of F to W 

Final ly ,  we prove  ( c ) .  

C lea r ly ,  G i s  a d i f f eomorph i sm f r o m  UX(t-E,  

Moreover  if u c U ,  t - e<,, < t t c , thenF(G(u ,o ) )=@ 
0-7 -7 

Since the r e s t r i c t ion  of d F to UX( t -c ,  t t s )  is a diffeomor-- 

( 6  ( u ) )  = 

0 

- 7 '  - 
L e t  u 8 S, e c R be such that  F ( u , 3 )  e - V. 

N 

1 

r h e n  t h e r e  exist u' E U, 0 e ( t - c  , t t  c )  such that  F ( u ' , J )  = F ( u ,  a) .  

T h e r e f o r e  u = @ , 
belongs to  - A ,  and tha t  u e U T  , 

it fol!ows that  t - 7 - E < g  < t - 7 t C ,  T h e r e f o r e  ( u ,  a )  e W , 

Ju ' ) .  T h i s  impl ies ,  in pa r t i cu la r ,  tha t  T = g ' - 0 

Moreover ,  s ince  t - c < 0 I < t t c: , 
u -  

7 

The  proof L e m m a  4. 8 is now complete.  

-. 5. Examples .  

Example  5 .  1. Let M = R n,  R = Rm, and let F : M X  R +TM - 
*w N 

be  defined by F(x, u) = A x  t Bu, where  - A and - are, respec t ive ly ,  

n X n and n X m real m a t r i c e s .  

L e t  b. denote  the - i - t h  column of - B. 

X(D)(x) contains  the vectors :  

W e  kave that  D = { A ( #  ) t Bii : u g R" ), 
cy - - - -  

Then,  a s  shown by Lobry  [16], 
1 
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n- 1 A x + b . ,  + A b  .,... , f A  b. i =  1, . . .  
1 -  1 1 - 

It is not difficult to see that the above set of v e c t o r s  forn ls  a 

s y s t e m  of gene ra to r s  for  ~ ( D ) ( x ) .  - -  
A ( 0 ,  t) has  a non-emgty in t e r io r  i n  R 

+A 

e m p t y  in t e r io r  i n  R CL 

F r o m  Coro l l a ry  4. 6 we &e: that  

if and only if [ + b . ,  + A b . ,  . , , , n 
cu h, N 1 -  1 - 

n- 1 b. ,  i = 1 , 2 , .  . . , m) h a s  r a n k  n ;  eqr;ivalently. A ( 0 ,  t) h a s  a non- - 1 - N  - 
n i f  and  only if r a n k  [B,AB,  . . . , A n - l B ]  = n. 

Since, obviously, S {D)(O) =$(D)(O), we  conc1u.Jp tha t  A ( 0 ,  t) O N  h, cy 

h a s  a non-empty in t e r io r  whenever  A(0,  t) does.  
n along with the f a c t  that  A(0 ,  t) and 4 0 ,  t! c r :  !inear subspaces of R , 

imply that, if rank [B,AB, .  . . , A n - ' B ]  = n, then for e a c h  t >  0 

A(0 , t )  = A(0, t) =A(O) = Rn (Kalman [lz!). 

access ib i l i ty  p rope r ty  is equivalent to contrcllabil i ty.  T h i s  is, of 

The above s t a t emen t s ,  
N N  

N N C Y  ry 

T h u s ,  in  t h i s  example, the 
ru C Y Y  w r y  N 

c o u r s e ,  not t r u e  in  general .  
n E x a m p l e 5 . 2 .  L ~ ~ M = R  , R = { ~ € R ~ :  0 s u . 5 1 .  i = l ,  . . . ,  m), 

H N 1 

0'. ' 
and l e i  F(x, u) = ( A O  t c'" A .u.)x for a l l  (x,  u) e R"X 0, w h e r e  A 

A 

- -  .v i= l  i 1 

are  nXn real matrices. Then  D is the set of a l l  vector f ie lds  X 
U - m 

w h e r e  X (x) = (Ao t 6" u.A.) x. T h e  set M" of all f i n  real matrices 
U 1=1 1 1 N 

is a Lie a lgeb ra ,  with the bracket defined by [P,QJ = PQ - QP. T o  
each matrix d P t h e r e  co r re sponds  a v e c t o r  field 0 0  V(P) defined by V(P)(x; = 

Px. Ik is e a s y  to  check that  V([P,Q]) = [V( p),V(Q)]. Using t h i s  fact, 

the space5  $(D)(x) and 3 (D)(x) can  be readi ly  computed: 0 

~ ( D ) ( X )  = !Px : P eL], 
N 

and 

.9b(D)(x) = {Px: P E: L] 
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, A  , and L is the idea l  of 

W e  remark that for th i r  example  the theory  

- 0'"' m 
where  L is the Lie  a lgeb ra  spanned b y A  

L s p a n n e d b y A  l , . . . , A  
rv m' 

Qf Section 4 is valid e v e n  i f a i s  the set of 311 bounded and m e a s u r a b l e  

N 

_. 

St -valued functions_. T h i s  is Y O  because the only p rope r t i e s  of the - 
class of admiss ib l e  cont ro ls  that  w e r e  ut i l izeJ  in  Section 4 were :  

(a) that  the c l a s s  of piecewise constant cont ro ls  is dense  in  a ( i n  the 

topology of uniform convergence) ,  and (b) that, if {u a r e  e l e m e n t s  of 
-2 

4?X that  converge uniformly to u ,  then n(u , x ,  t )  conve rges  to T T ( u , x , ~ ,  
d - -  - -  e 

OL 
In  o u r  example ,  both (a) and (b) r e m a i n  valid i f  che topology of . 

uniform convergence is rep laced  by thal  of weak convergence. T h i s  - 
is e a s y  to ver i fy ,  and we  sha l l  l o t  do it h e r e  (see Kugera  [14]). 

Moreover ,  the set of 0 -va lued  m e a s u r a b l e  fuuctions defined i n  [O, T] - 
is wzakly compact.  It follows that  the sets A ( x ,  T ) ,  A(x ,  T) a re  com-  

H 

pact  fc: each  - T > 0. Denote  t h e i r  i n t e r i o r s  (relative to I(D,x) and  
T 

Io (3, x) 

.\(x, T )  is the c l o s u r e  of  In+ 4(x,  T ) ,  and  tha t  A ( x ,  T) is the c l o s u r e  of 

respect ively)  by Int  A ( x ,  T) ,  Int  A(x, T). It follows tha t  
Ly 

ry ry 

Int  A(x ,T) .  T h e r e f o r e ,  o u r  r e s u l t s  contain those  of Kugera  ( i n  th i s  

connection, see also Sussmann [2 I]) ,  

Remark.  The resul t  of the preceding  example  is a p a r t i c u l a r  

case of a more- gene ra l  situation. Let G be a Lie group, and  let M - - 
be a n  analytic manifold on which G - a c t s  analyt ical ly  to the left. 

Then  t h e r e  is a homomorphism 1 f r o m  the Lie  a lgeb ra  of G into - 
V(M),  defined by - -  

d 
x(X)(m: == (exp ( W  m), 

the der iva t ive  being evaluated a t  t = 0. If Xo,. . . , X belong to  k - 
the Lie a lgeb ra  oc  G , w e  can  cons ider  the cont ro l  p rob lem - 
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k 
= X' (x)  t.c U.X'.(X), dx 

d t  0 1=1 1 1 

w h e r e  X! = X(Xi). 

n 
M = R .  

Example  5. 2 r e s u l t s  by lett ing G = GL(n,  R )  and 
1 cv 

N - 
Example 5. 3. T h i s  example  shows that  t he  analyt ic i ty  a s sumpt ions  

are essential. Cons ide r  the following two s y s t e m s  defined in the  ( x , ~ )  - 

and 

Let fl- f -1, gl- - 0, and gz(x, y, u) = q ( x )  w h e r e  cp is a C" function 

which vanishes  for -a< - x < 1, and which is equal  to 1 for - x > 2. It is 

clear that for (S1) the set A((0,O)) is t he  half l ine  {(x, y) : y = 0 ,  x L 01 

while, for ( S 2 ) ,  A((0,O)) has a non-empty in te r ior .  

a re  ident ical  i n  a neighborhood of ( 0 , O ) .  

2- 

ry 

However ,  both s y s t e m s  
N 
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CONTROL SYSTEMS O N  LIE GROUPS* 

Ve l imi r  Jurdjevicw and Hec to r  J. Sussmann*** 

1. Introduction 

In this  a r t i c l e  we study the  controllabil i ty p rope r t i e s  of systems 

which a r e  desc r ibed  by a n  evolution equation in a L i e  g r o u p s  of the 

form: 

w h e r e  Xo,. . . , X 

desc r ibed  by (t) we term right- invariant .  

a r e  r ight- invariant  vec tor  f i e lds  on G. S y s t e m s  - -m - - 
T h i s  study is based  on  the  

resLl t s  of [ l l ] ,  and is re la ted  to  the  work  of R .  W. Brocket t  [l]. A s  

r e m a r k e d  by Brocket t ,  t h e r e  are many impor t an t  applications in 

engineer ing and in phys ics  which a r e  not  treated by c l a s s i c a l  ccn t ro l  

theory because  of the assumpt ion  that  the state space  is a vector space. 

In pa r t i cu la r ,  when controll ing the  or ien ta t ion  of a r ig id  body r e l a t ive  

to  s o m e  fixed set of axes, the state space c a n  be natural ly  r e g a r d e d  as 

* T h i s  work w a s  performed while the  au tho r s  w e r e  at  the Division of 
Engineer ing and Applied P h y s i c s ,  H a r v a r d  Universi ty ,  Cambr idge ,  
Massachuset ts . '  The  first author  was  supported by the National 
Aeronaut ics  and Spar I Adminis t ra t ion  under G r a n t  NGR 22-007- 172. 
T h e  second au thor  w a s  supported by the U. S. Office of Naval R e s e a r c h  
under the Joint  E lec t ron ic s  P r o g r a m  by C o n t r a c t  N00014-67-0298-0006. 

** Depar tment  of Mathemat ics ,  Univers i ty  of Toronto.  

*** Depar tment  of Mathemat ics ,  Universi ty  of Chicago. 
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Sc) ( 3 ) ,  the group of orthogonal 3 x 3 r e a l  m a t r i c e s  with posit ive de te rminant .  

The  evolution equation descr ib ing  th i s  s y s t e m  i s  of the form given bv 

(+) ([l]). 

s i d e r  s y s t e m s  desc r ibed  i n  a n  a b s t r a c t  L i e  group ,C. 

- 

Instead of r e s t r i c t ing  o u r  study to groups cf m a t r i c e s ,  w e  con- 

T h i s  general izat ion 

in  no e s s e n t i a l  way affects  the na ture  of the problem. 

From the theore t ica l  point of view a study of s y s t e m s  of the form 

(+) a p p e a r s  na tu ra l  for s e v e r a l  r easons .  For ins tance ,  the a lgeb ra i c  

criteria developed in [ 111 can  be used to obtain global r e s u l t s  b y  exploit-  

ing the  a lgeb ra i c  s t r u c t u r e  of the state space and  the sets at ta inable  from 

the  identity. In th i s  r e g a r d ,  the analogy with the  control labi l i ty  of l i nea r  

s y s t e m s  is striking. 

In t h i s  article we sha l l  look for n e c e s s a r y  and  sufficient conditions 

for a r ight- invariant  s y s t e m  to be controllable.  A n e c e s s a r y  condition 

is tha t  the system have the "access ib i l i ty  proper ty"  (cf. [ll]). W e  show 

that  t h i s  condition is also sufficient i f  - G is connected and if e i t h e r  (a) the 

s y s t e m  is homogeneous (i. e. ICo = 0) o r  (b) G is compact.  When ne i ther  

(a) nor  (b) hold, access ib i l i ty  (plus the connectedness  of G) is not suf- 

f ic ient  for controllabil i ty.  In th i s  case we give some suff ic ient  conditions,  

and a n e c e s s a r y  condition, and we  s ingle  out a p a r t i c u l a r  s i tuat ion in  

which a n e c e s s a r y  and sufficient condition can  be obtained. 

An obvious n e c e s s a r y  condition f o r  control labi l i ty  is that the set 

A ( e )  of points reachable  from the identity of .L G be a subgroup of - G, 

the cQntrollabil i ty problem reduces  to  the following two: 

T h u s ,  
I u -  

(a )  when is A (e) is a subgroup? , and 

(b) i f  A (e) is a subgroup, when is A (2) = - G ?  

N 

Quest ion  (b) is much 
ry N 

easier to answer  than quest ion (a).  In T h e o r e m  4 . 6  we show that  if  A ( e )  
N -  
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is a subgroup then, necessa r i ly ,  this  subgroup is the connected L i e  

subgroup S of G whose L i e  a lgeb ra  is the subalgebra L genera ted  by 

zo,. . . # X 

ry h. 

. 
-m 

F r o m  th is  it follows that the s y s t e m  wil l  be control lable  i f  - 
, and only i f  (1) A ( e )  is a subgroup,  (ii) G is connected, and (iii) L is the 

Y - w -  

Lie a lgeb ra  of G. T h i s  shows that the c r u c i a l  quest ion i s  that of de t e rmin -  - 
ing when A ( e )  is a subgroup. 

c u -  

T h i s  quest ion is (par t ia l ly)  answered  in  Sections 5 and 6. 

T h e  organizat ion of the a r t i c l e  is as follows : In  Section 2 we intro-  

duce notation and bas i c  concepts:  in addition, we  quote  a resu l t  about 

Lie groups  which wil l  b e  used Lter .  I[-. Section 3 we s ingle  out the  

re levant  Lie a l g e b r a s  induced by a righc i n  . . r l a n t  sys tem.  

w e  d e r i v e  the  bas i c  p r o p e r t i e s  of a t ta inable  sets. 

In Section 4 

I n s e c t i o n  5 we study 

the  homogeneous c a s e ,  and in Section 6 w e  study the g e n e r a l  case. In 

Section 7 we i n t e r p r e t  o u r  r e s u l t s  in  terms of controllabil i ty.  

Final ly ,  Section 8 contains  examples. 

2. P r e l i m i n a r i e s  

W e  sha l l  a s s u m e  that  the reader is familiar with the bas i c  facts 

about Lie groups  (cf. [2], or [4], o r  [SI). 

Throughout thia p a p e r ,  e G wil l  denote a Lie group,  and -- L(G)will 

denote the L i e  a lgeb ra  of G. - We sha l l  think of - -  L ( G ) a s  the  set of vec tor  

f ie lds  on G that  are invar ian t  under r igh t  t ranslat ions.  

t ha t  e v e r y  - X G - -  L(G) is analyt ic ,  and tha t  -.-L L(G) is a Lie a lgeb ra  with the 

obvious vec to r  opera t ions ,  and  with the Lie product  defined by 

It is known 

[x Y] = x Y - Y x 
-'a -- -- 

T h e  exponential  m a p  from - -  L(G) into - G is denoted by exp. Recall 

tha t  exp(0) = - e ( t h e  identity e l emen t  of c), and that ,  fo r  each  - X e - d  L(G),  

the c u r v e  t 3 exp ( t  X) is an i n t eg ra l  c u r v e  of - X. 
4 -- 
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W e  reca l l  that  t h e r e  is a one-to-one cor respondence  between Lie 

subalgebras  of - -  L(G) and connected Lie  subgroups of - G. If - H is a con- 

netted Lie subgroup of - G, the L i e  a lgeb ra  - -  L(H)is  natural ly  identified 

with a subalgebra of L(G). - -  W e  sha l l  also denote th i s  suha lgebra  b y  

,X be e l emen t s  of L(G). W e  sha l l  cons ider  the Le t  5 o s . .  . - m  - -  - 
following cont ro l  s y s t e m  defined on - G: 

- m  
L. - 

i = l  

) belongs to  the c l a s s  of admissible con t ro l s  U. w h e r e  - u = (2 l , . .  . ,im - - 
Throughout the article w e  sha l l  a s s u m e  that  U is one  of the classes - 
U , U o r  U defined a s  follows: -u -r -b' - - -  

(i) gu is the  class of al l  locally bounded and m e a s u r a b l e  functions 

m defined o n  the in t e rva l  [O,ca) having va lues  in  R-. 
N 

(ii) U is the  s u b s e t  of U cons is t ing  of a l l  e l e m e n t s  which t ake  -r -U - 

(iii) U is the class of a l l  p iecewise  constant  functions defined on -b - 
m 

[ O , a )  with values  in  R - such  that  the components of its e l emen t s  only 
rv 

take values  1 and  -1. 

W e  will refer to U , U and U as the class of un res t r i c t ed ,  -b - -u -r - d 

r e s t r i c t e d  and "bang-bang" cont ro ls ,  respect ively.  

If x = (IC,,. . X ) is c n  - m t 1 - tuple of  e lemen t s  of -- L(G),  and 
N - 

if - U is a c l a s s  of admissible cont ro ls ,  then the s y s t e m  described by equa- 

tion ( 1) wil l  be termed right-invariant.  For nctational convenience,  we  

wil l  denote such a s y s t e m  by (X,  U). W e  wi l l  also adopt the convention 
u -  

that  i f  in  a pa r t i cu la r  Statement - U is not specified explicit ly,  we  wi l l  

m e a n  that  such a s t a t emen t  is t r u e  f o r  any class of admissible con t ro l s  
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(i .  e . ,  U , U  o r  Eb). 
-lJ -2  - 

W e  have the following basic fact: 

LEMMA 2. 1. Let ( X  U) be a r ight- invariant  system on C, and l e t  - &'- -- 
u f U. 

defined for 0 5 t < co , such  that  ~ ( 0 )  = g. 

Then f o r  e v e r y &  c G, t h e r e  exists a unique solution ( 1) 5 of( 1) - -  L 

- 
Proof .  Uniqueness and  local  ex is tence  follow f r o m  the s t anda rd  

r e s u l t s  on o rd ina ry  d i f fe ren t ia l  equation. Moreove r ,  we know from these  

r e s u l t s  tha t  there is a x m i n t e r V a l  [O, - T) (T - > 0) on which t h e r e  

exists a solution g of (1) with x(0)  = g. 

T <a. 

W e  show tha t  T = a, A s s u m e  

L e t  ye) be a solution of (1) def ined for T - 6< t < T + 6, w h e r e  

- - 
e - -  - 

6 > 0 ,  a n d s u c h t h a t y ( T )  = e .  L e t g 1 = y ( _ T - Z 6 ) , g " = ~ _ T - T ~ ) .  1 1 - - - 
Let - z (3 be  defined by 

1 z( t )  = x[tJ f o r  0 5 t 5 T - z 6 
-d - c -  

-1  1 
z(-t) =y(tJ g' g" f o r  T - 2 6 < t < T t $ . - --- - 

Than  - zQ) is a solution of ( 1) which satisfies - z(0) = g and is defined for 

0 5 t < r t 6 .  
T h e r e f o r e  - T =OD and our  proof is complete. 

T h i s  cont rad ic t s  the maximal i ty  of t he  in t e rva l  [0, T). - -- 

If u g U and e - G we  wil l  denote  the solution - x of (1)  which satibfies - -  
- x(0) = g by TT ( g , . ~ ,  e ) ;  i, e. , xG) = n(g, u t )  for  all - t 8 [O,m). 

t 2 0, n (&,u,J) = g', we say  tha t  the  con t ro l  - u steers g - into p;' -- i n  t 

units of time. If t h e r e  exists - - L  u e U which steers g into g' i n  - t uni ts  of 

- time, we say  t h a t g '  is at ta inable  (or reachable)  - f romg  --- at time t. 

set of all A' c - G which are at ta inable  from g at time d t wil l  be denoted by 

If, for some 

..b 

--- 
T h e  

A (g,:). We sha l l  also u s e  the notations -- 
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u -  

W e  shall refer to A ( g )  as  the se t  attainable from &. 
. v -  

F’rom the right invariance of our control systems it follows 

( 2) trivially thatA(1,T)  - - = A ( e , T ) &  -. -- N -  A ( g , T )  = A(e,x)&, r v -  andA(g) N’ = A ( e ) g  r y -  . 
Therefore, without loss of generality, - we .can limit ourselves to the study 

of the sets  attainable from the identity, 

We finish this section by quoting a result  about Lie groups whose 

proof can be found in [12] (cf. - also [5], pp. 275). 

THEOREM 2.2.  -.e Let G be a Lie group, and let  -- H be a path-connected 

subgroup of G. Then H is a Lie subgroup of - G. - I- 
3. The A ssociated Lie Subalnebras. 

To every right-invariant control system ( X ,  U)on a Lie group - G, 
h r -  

we shall associate the following three Lie sabalgebras of - L(c): 

‘X -m’ (1) The subalgebra L generated by X - o ’ - ”  - ry 

X -m* The ideal of L generated by El , .  . . , This ideal wil l  be denoted (2) 
N - 

t Y  ko* 
The subalgebra - L of - L  L(G) generated by ICl,. . . , x .  (3)  -m - 
W e  denote the corresponding connected Lie subgroups by S , S and - -0 

S. W e  have: - 
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LEMMA 3. 1. 

(i i)  G o  i - s a  subspace  of L of codi.rr.e:ision zero  o r  one,  
N 

.- - - - - . 

( i i i )  S is a n o r m a l  subgroup of S . -0 rv 

Proof .  ( i)  and (ii) a r e  tr ivial .  (iii) follows f r o m  the fact  that  a 

ccnnected L i e  subgroup H of a connected L i e  group K is a norma1 subgroup 
T - 

of -- K i f  and only if L(H) d- is an  ideal of t ( K )  -- (cf. [2] ,  p. 124). 

t W e  sha i l  u s e  the  notation 3 - f o r  the cose t  cjf S modulo S which 
N O  N -0 

contains  exp ( t  Y ). 

4. 

- -0 
E l e m e n t a r y  Properties of the Attainab!e Sets. 

If (X,U) is a r ight- invariant  con t ro l  s y s t e m  on G, - then the vector  
c v -  

X belong to  the Lie a lgeb ra  of S . T h e r e f o r e ,  we -an fields ICo,.. . ,-m 

cons ide r  ( X ,  U) as a r ight- invariant  .control  s y s t e m  on S ,  and  L e m m a  2. 1 

ry - 
N -  ry 

will  be valid if G is - 
LEMMA 4. 1. 

is cons idered  in S. 
hl 

The  following 

LEMMA 4.2. 

Veplaced by S. T h i s  gives  

If ( X ,  v) is a r ight- invariant  system on G, ther, A(e)  

N 

h ) -  r y -  
- 

l e m m a  s t a t e s  a s i m i l a r  r e s u l t  f o r  the sets A ( e ,  t ) .  

If ( X , g )  is a r igh t - invar ian t  system o n  G. then fo r  

-- 
Ly 

- 
A 

- c -  each  t > 0 -- A(e ,  t) is contained in&+ 

It would be e a s y  to p rove  th i s  l e m m a  d i r ec t ly ,  b u t  since tkis  re- 

su l t  is included in  that  of L e m m a  6. 1 we omit the proof. 

W e  next d e r i v e  s o m e  el e m e n t a r y  topological p r o p e r t i e s  of the 

at ta inable  sets. 

e l emen t s  of U - to [O,T] - by - -  U(T). 

If T 2 0, we tvill denota the  set of a l l  r e s t r i c t i o n s  of 

LEMMA 4, 3. m ( X , U )  be a r ight- invariant  cont ro l  s_vstern on G. 
cy 

T h e  mapping ( u ,  - L  t) -..r:(g,u,_t) f r o m  tJ(T) x [O,-T] into G is c o n t i n u  

- each g ---- and each T 20, 

T h e  proof of this  result a p p e a r s  in [lo],  and t h e r e f o r e  we will  o m i t  it, 

U ( 2 )  i s  given the topology of weak convergence. 

( 3) 
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From this  we  obtain: 

LEMMA 4. 4. Let  ( X , U )  be  a r ight- invariant  cont ro l  s y s t e m  on - - - -  G. -- 
(i; T h e  sets A ( e ,  I), -- A(e) . ,  --- A ( e ,  T) a re  path-connected, --- for  each  

N 

(ii) J f V ,  = Ur t h e n A ( e , T )  2.x) s r e  compact .  
r v -  

Proof .  (i) will  be a n  immedia te  conRequence t - f  the  fac t  tha t  -- Ut?') L 

is path-connected and  of L e m m a  4. 3, The  path-connectedness  of 

U ( T )  is t r iv i a l  in the un res t r i c t ed  2nd in  the r t s t r i c t e d  c a s e .  In the -- 
"bang-bang" case, l e t 2  and 1 belong t o  U('I'), - 
For each  t such  that 0 t e T ,  let w be defined b y  - t  - -- - - 

L 

w (7) =V(q if !!< T <  t -t - -. - - 
w ( 7 )  = U(T) if t < T 4 T -t. - - c -3 

Then  w c E(T). Moreove r ,  w = *I and w v. Since t --w -t - -0 .- -T - - -t 
is a continuous path i n  -- U(T),  it follows t h a t Q ( T )  is ir,deed F,tth-con- 

netted, 

To prove (ii) w e  r e m a r k  that,  if u is the class of r e s t r i c t e d  

con t ro l s ,  thenLJ(T) is  compac t  i n  the weak topology. 

now complete. 

T h e  proof  is 

In regard to the a lgeb ra i c  p rope r t i e s  of the  at ta inable  sets we 

have the following: 

LEMMA 4. 5, Let (XJJU) be a r ight- invariant  cont ro l  s y s t e m  on  C. - I- 
- 
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hen t h e  set A ( e )  is a semi-group. 
N -  

Proot. Let g and belong to A (e j  . Let g = T T ( ~ , ~ , J ,  g' = 
h . -  

n(e ,  u', t ' ) .  Let the control v be defined by - - - -  

v(7) = - u(7) for 0 < 7 < t  - - -  

t < t + t '  - - - - -  - v(7) = u'(7 - tJ for 

Then n(e,  v, t t t') = g'g , and therefore, g'g 6 A (e). The proof 
N - d d  - 

is then complete. 

"'e cannot asser t ,  in general, that A($ is a group. However, 
N 

the foilowing theorem tells us that, if A ( e )  is a group, then i c  - must 

De tLe group s. 
a d -  

ru 

THEOREM 4.6. Let (X ,  U) be a right-invr-iant control sysfem - 
- H -  

on C. If A(e) e a SUbgrGUD of s, then A(e) = S. N - N -  w 

Proof. W e  know tha t  A($ is path-connected. If A@ N is a sub-  
N -- 

group, it follows from Theorcm 2.2 -that it is a Lie subgroup of 

G. Let I\ be its Lie algebra. Then I\C L , because A(e) C S  
N r y -  N 

- 
(Lamma 4. 1). Or: t h e  other hand, l e t  a = . . , a  ) be an =-tuple m - H 

such that each a .  is - t 1. 
- 1  - 
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L e t  u be the constant  cont ro l  u (al,:. . , a ). T h e n  u J and, 

t he re fo re ,  the c u r v e  t - TT ( e ,  u ,  t) (2 "t' 1 is contained in  A (e) .  

- -  -m - - - 
l y -  

d --- 
, In o t h e r  words, if we  le t  

it follows tha t  exp(t X(a)') belongs to  A (e) f o r  all t 2 0. 

subgroup,  this  wi l l  be t r u e  for all r e a l  - t .  

Since A (e) is a 
r y -  

- N N -  - -  
T h e r e f o r e ,  (cf. [4], p. 94), 

w e  can  conclude tha t  X(a) belongs to  ij. Since the  e l e m e n t s  X(a) 
.v - - N  

form a s y s t e m  of g e n e r a t o r s  of L ,  we conclude tha t  L c A and,  t he re fo re ,  

L = .A and A ( e )  = S. 

u w 

N ly . v -  

5, T h e  Homoeeneous C a s e  

A r igh t - invar ien t  cont ro l  s y s t e m  (X,  U) is homogeneous if X = 0. + -  -0 
A s  a n  introduction to the  g e n e r a l  c a s e ,  w e  c o n s i d e r  t h e s e  s y s t e m s  first. 

T h e  r e s u l t  stated i n  t h e  next  t h e o r e m  appeared first in  a study by 

R. V. Brocke t t  [ 11. 

THEOREM 5. 1. Let (X, UJ be a homogeneous r igh t - invar ian t  
- L y  

con t ro l  s y s t e m  on - G. T h e n  - the set at ta inable  f r o m  the identity is t h e  

s u b g r o q  5. Moreover ,  - -  if U is unres t r i c t ed  then, for e a c h  T > 0, 
H 

A 'e T) =A(E) = S.  L'- H ru 

- Proof. To prove the  first s t a t emen t  it is sufficient,  i n  view of 

T h e o r e m  4 .6 ,  to  show that  A(g) is a subgroup. We know t h a t h ( e )  - is a 
ra, 

- 1  semigroup.  It r e m a i n s  to be shown that ,  if g e A(s),  8 e A ( e ) .  
N -  N 

Let TT ( e , u ,  t) =g, w h e r e  - -  u e U ,  z 0. Let --- 

v(s) = -- 4 s )  -- I for s > t. 
e -  
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Obviously,  v c U. L e t  - -  
f(s) = n ( e ,  u, t - s) . - -  d - 4  - 

T h e n  

T h e r e f o r e ,  4 f is a solution of the  evolution equktion cor responding  

to  the cont ro l  - v. By the . r igh t - invar iance  we  m u s t  have f(sJ = n(z,x, sJ h, 

w h e r e  - -  h = f ( O )  = g. But=) = n ( e , u , O )  - -  = - e. T h e r e f o r e ,  n (e ,  -- v , g  = g- I ,  

and w e  have shown that g- * e N -  A( e). 

T o  prove the second s t a t emen t ,  a s s u m e  that u is unres t r ic ted .  L e t  

g = TT ( e ,  u,tJ for s o m e  u F: U and t > 0. Let s > 0, and def ine  a cont ro l  - - -  - -  - - 

A n  e a s y  computation shows that  n(e,v,8) = -- g. W e  have t h e r e f o r e  shown 

tha t  A ( e ,  t ) t  s ( e ,  s). Simi lar ly ,  A ( e ,  s ) C A ( e ,  t). T h u s ,  - - -  A ( e ,  s) = - A(e,  -- t) - - -  _--- d - d  -- - 
f o r  all t, s such  tha t  0 < t ,  0 <s such  tha t  0 e t ,  0 < - a. O u r  proof is then -- - - 
complete. 

Remark. The previous  t h e o r e m  implies that, for a homogeneous 

s y s t e m  

(a) T h e  at ta inable  set A ( e )  is a subgroup of G. - 
(b) T h e  set A (e) is the  same for the three cl.asses of con t ro l s ,  so 

that ,  i n  p a r t i c u l a r ,  e v e r y g  c - ti tha t  can  be r eached  from the identity by 

c v -  

r y -  

means of a n  a r b i t r a r y  cont ro l ,  can  also be reached  by m e a n s  of a 

"bang-bang" cont ro l  (poss ib ly  at a later time). 
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( c )  If U = U , then e v e r y  g E '3 tha t  can  be r eached  f r o m  the identity 
-U - 

can in fac t  be reached i n  a n  a r b i t r a r i l y  s h o r t  time. 

W e  sha l l  see later tha t  nei ther  ( a ) ,  nor  (b), nor  'c) need be t r u e  i n  

the non-homogeneous case. 

6. T h e  gene ra l  Case.  

Our  subsequent  study wi l l  be based on the following l e m m a .  

LEMMA 6 .  1. w ( X ,  U) be a r igh t - invar ian t  con t ro l  s y s t e m  on - G. 
c v -  

T h e n  for  each  T > O  , 

(i) A (e, T) is contained in  S , and the i n t e r i o r  of A (e,T) is d e n s e  
N -  - N - -  - N  

( in  the topology of S ) i n  A(e ,  T). 
N ---- 

T (ii) A( e, T) is contained in  - S3 
T 

- - -  
(in the topology of So ) in  A(e ,T) .  -- - 

, and the i n t e r i o r  of A(e ,T )  - -  is d e n s e  

proof .  W e  sha l l  u s e  +he r e s u l t s  of fl l] .  O u r  s y s t e m  is of t h e  

f o r m  cmAd=& in the  R e m a r k  following Example 5.2  of [ l l ] ,  wi th  M=G,  -- 
and with G - ac t ing  011. G - by left  t rans la t ions .  In  the notat ions of [ H I ,  w e  

m m m m have Q = R - , o r  R = (3 - ( the  unit cube  i n  R-), o r  Q = V- ( the  set of 
H cv H cu 

m vertices of C-) i n  the un res t r i c t ed ,  restricted and  "bang-bang" c a s e s ,  
N 

respect i fe ly .  In  e a c h  of the  t h r e e  caseg, the as sumpt ions  of [ l l ]  are 

sat isf ied,  and-an  e a s y  computation shows that&(D) - = N L and tha t  &o(_D) = cy Lo. 

Since S is the in t eg ra l  manifold of N L through d e (cf. [2] p. 1C8), o u r  first 

s ta tement  follows f r o m  [ 11 ]. Simi lar ly ,  it is e a s y  to v e r i f y  that 

p rec i se ly  the  submanifold Lz (an) of [ l l ] ,  and the  second part of o u r  

l e m m a  follows. 

N 

T 
5 is 

T 

In p a r t i c u l a r ,  it follows from Lemma 6. 1 that the i n t e r i o r  of A(e)  
N -  

re la t ive  to S is nonempty. 
.y 

We sha:! also need the following: 
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LEMMA 6.2.  Let H be a connected Lie group, and let L 1 , ,  . . , L -n -- - 
- 

be elements of L(H) t k t  y n e r a t e  L(H). Ther, every h c H  is a finite - -  -- - - --- 
product of elements of the form e x p c  L.;, where n& t is real  and - i = 

1 - 
1, I . .  , n. 

Proof. The set  - H '  of all finite products of elements of the form - 
exp(t L.) is obviously a path-connected subgroup of c H. Therefore, - H '  - -1 

4 

is a connected Lie subgroup of Theorem 2.2). Obviously, - H' 
contains the one-parameter subgroups generated by L L Therefore, - n' -1'. ' - 
(cf. [4], p. 94) L 1 , .  . . , L belong to L(H'). - Then, - -  H' = H,  and our -n - 
proof is complete. 

LEMMA 6. 3, Let (X,  U) be a right-invariant control system on -- G. 
Y -  - 

If the set  attainable f rom the identity is dense in  S, then it is equa l  
ly 

to s . 
N 

Proof. Let A (e) belong to the interior of A(e) relative to S 
c y -  u -  cy 

(cf. Lemma 6. 1). Let  V c A (  e)  be relatively open i n  S and such that 
N -  hr 

g c V,. Let = {h-': h e V - ] . Then W - is a nonempty relatively open 

subset of S. Our assumption implies that W contains an element - h of 
ry 

A(e);  then the set  V h (cf. footnote (2)) is re.atively open in S,  and is 
w -- c v -  

contained in  A ( 9 .  

semigroup A(  e) contains a neighborhood of the identity in 5 . 
Moreover, ,V & contains the identity. Therefore, the 

Since 

hr 

h.- 

S is connected, we have that A(e) = S, and our proof is complete. 
rv # - -  H 
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LEMMA 6. 4. Let(X,  U) be a * .ght- invariant  cont ro l  s y s t e m  on G 
N -  - 
I1y 

with U = U . Then  3 C A (e) ( t h e  c l o s u r e  is taken re la t ive  to  s). ’ 
c u -  - d -U -- - 

Proof. By L e m m a  6. 2 ,  e v e r y  element of S is a product  of e l emen t s  - 
of the f o r m  exp  ( t  X.) ( -  QD < t < rn,  i = 1 , .  . . ,m). 
belongs to  A (e) 

W e  show tha t  exp(t  X.) 
1 - - -- - -1 - .  - 

for e v e r y  real t and  for e b e r y  i = 1 , .  . . , m. Since 
c y -  - - - 

- - 
A ( e )  is a semigroup,  this  will  imply tha t  S C A(e) ,  and the desired 

N -  - cy- 

conclusion wi l l  follow immediately.  

Let t be a real number ,  and let 1 < i c m. Let u be the constant  -n - d- -d - 
con t ro l  (0 ,  . . . , 0, n, 0 , .  . . 0) w h e r e  n a p p e a r s  in  the i- th position. Then  - - - 
u eU for each  - n > 0 .  W e  have -n - - 

= e x p ( ( t / n )  X t t X.) .  - -  -0 -- 1 - - 
Lett ing n -a, we conclude that  exp(t X , )  E A ( e )  , and our  proof is com- 

ple te. 

1 h r -  - d- - 

Remark. If U is not upreq:  -:.cted, t h e n 3  need not be contained in  - 
- 
A(e)  (cf. Example 8 .  4) 
N -  

W : c a n  now prove: 

THEOREM b. 5. Let {X, U) be a r igh t - invar ian t  cont ro l  s y s t e m  o n  - N -  
.G. A s s u m e  that  the subgroup S is compact.  Then  

N d 

(i) A ( e )  = S. 
h ) -  N 

(ii) T h e r e  exist a T > 0 such that  A ( e  T) = A ( e ) .  
L. -’- r v -  

Proof .  Let H be the c l o s u r e  of A(e)relative to S . Ther, .I Tl is a - r y -  rv 

seinigroup. W e  show that  H is a groop. Let - -  h e H. Then ,  for e v e r y  - 
n 

i .  ive i n t ege r  - -  n, IZ E: - H. T h e  sequence C4-3 n = l ,  . . . has a convergent  - 
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, and we can  a s s u m e  that n(k) < n(k  t 1 )  for subsequence (h-  - 

= l i m  hk. Sinc? n ( k t 1 ) -  a l l  k. 

n(k ) -  1 is non-negative, i t  follows that  h belongs to  H for  e a c h  k. Since 

H is c losed ,  h E H. T h e r e f o r e ,  H is a group. Since A(e) C H and 

n( k) ] - k = l , .  . . -- -- 
n(k+l)-n(k)-  1 

-I 
- 1  -- Now, a s  k -. O D ,  h- = l i m  h- - 

d - - 
- d -k -- - 

-1  
- - I N- - 
A(e) h a s  a non-empty in t e r io r  re la t ive  to  S ,  the same is t r u e  f o r  H. Since - 
'v N 

H is a group and S is conrpcted,  we conclude that  H = S. T h e r e f o r e ,  
Y 

- rv - 
A(e)  is dense  i n  S ,  and (i). follows f r o m  L e m m a  6. 3,  -- N 

To prove (ii) w e  let W( t )  denote,  fo r  each  t > 0,  the i n t e r i o r ,  - -  - 
re la t ive  to S ,  of A ( e ,  t). It is e a s y  to see that  the union of a l l  the s e t s  

ru N-- 

W(tJ is S (ifg 0 S , l e tg  C, A(e ,T ; ;  let h be i n t e r i o r  to A j e , T ' )  and l e t  
cv -- -- 

h) ry N - -  - 

Since the sets W(t )  are increas ing ,  it follows that  W(t )  = S fo r  -- cv -- 
sufficientiy l a r g e  - T, and o u r  proof is complete.  

Remark. T h e o r e m  6. 5 shows that ,  ;If S is compact ,  then conditions 
.y 

(a) and (b) of the r e m a r k  following T h e - # r r r l l  5. 1 a r e  sat isf ied.  However ,  

in  t h i s  c a s e  condition ( c )  need not be sat isf ied.  Even i f  U is un res t r i c t ed ,  

it m a y  not be poss ib le  to r e a c h  e v e r y  e lement  of S in an  a r b i t r a r i l y  small 
N 

Lime (cf. Example  8. 1). 

If S is not compact ,  tnen A(e) need not be equal  to  S.  T h e  following 
N ly- - 

t heo rem gives  a sufficient condition under  which A ( e )  = S ;  we do  not know 
N -  N 

if th i s  coildition is a l s o  necessary .  

THEOREM 6.6 .  Let (X ,  LJ) be a r ight- invariant  cont ro l  system 09 G 
- n # -  - 

with U = U . 

positive numbers  { t ] with t > c >  0 for  s o m e  5 , with the g rope r ty  tha t  

If t h e r e  exists a constant  cont ro l  u and a sequence of 
-U -- - 

-n- - -n - 
Lim n (e ,  u ,  t ) exists and belongs to S ( the  c l o s u r e  is re la t ive  to S), then 

A(2)  = S. 

- --n - r -  - 
N h) 
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Proof.  Le t  u and  {t ] satisfv the conditions of the theoreni ,  and le t  n - 
d 

m If X = X o  + Tj- l im n ( e ,  u ,  t ) = x .  u X . then, s ince u is constant ,  - i  - 1  - - -  i = l  - - -n - - -  - 
- 

n ( e ,  u ,  t )  = exp(t  X). W e  first show that  exp(t  X) e A ( e )  for  e v e r y  r e a l  
N 

- -- -- -- 
number  - t .  

such that  exp(TX)  s - S. 

If {t,] is bounded. then t h e r e  exists a posi t ive number  T 
- - 

Let - -  >e any r e a l  number ,  and le4- n - be a -- 
natura l  n u m b e r  with n T t t > 0. Sii-ce 3 - is a group we have tha t  exD -- - 
( -T  X) c 3 ,  - and hence,  exp ( -T  --- n X) e 3 .  - By Lemma 6 .4 ,  it follows -- 
that  exp ( -T  --- n X) e a A (e). Since,  obviously exp((n T t t ) X )  E u -  A(e) ,  w e  -- - -  
have that exp(t  -- X)= exp  ( -T --- n X) e x p ( ( - x z  ttJx), and hence,  exp(t -- X) - 
e A ( e ) .  If Etn) is unbounded, let f t  ] be a subsequence of { t  7 with -- n - n -  - -k  - r v -  

- t  . W e  have tha t  7 + 00 
k 

- t  > k, and l e t  7 = t  
.- k -n  --n - - - k + !  - k  -n t -n - k t l  -k 

and exp 7 X + e  a s  k -. Q). T h u s ,  for any r e a l  number  t ,  exp(t X) = - - -- k- - - 
lim 
k-ca, - exp((t - t 7 e -  k)X). 
- 

If k is sufficiently l a rge ,  then t t 7 is positive. T h e r e f o r e ,  exp 
k - - - 

( ( t  t 7 )X) belongs to A ( e )  f o r  k l a rge .  It fc l lows that  exp(t X) 5 A ( 9 .  
H - -- - k- H -  

By Lemma 6.4,  exp(t  X . )  belongs to  A(e)  f o r  e v e r y  real - t and 
1 u- -- - 

e v e r y  i = 1, .  . . ,E. Since A (e) is a semigroup ,  it follows tha t  e v e r y  
r y -  

- 
product of e l e m e n t s  of the  f o r m  exp(t Y) ( t  real, Y e [ X, X , . . . , X 

belongs to  A(e) .  C l e a r l y ,  the  e l e m e n t s  X ,  X , . . . , X gene ra t e  L .  

3) -m - - -1 -- - - 
u- - -1 m cy 

By Lemma 6. 2, A ( e )  = S. T h i s  completes the  proof. 
N -  ry 

T h e  following c o r o l l a r y  is immediate: 

COROLLARY 6.7. L e t  (X ,  u) be a r ight- invariant  cont ro l  s y s t e m  
- h , -  

on G with U = U If t h e r e  exists a constant  contro! - u such  tha t  -c - U' ---- 
n(e,  u, t! is per iodic ,  then A(e)  = S . 

Q -- - H  N 
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T h e  following l e m m a  gives  a n e c e s s a r y  condition for A ( e )  to be -- 
equal to S ;  however ,  this  ccndition is not sufficient (see Example  8. 3) .  

N 

LEMMA 6. 8. Le t  ( X ,  U) be a right-.invariant contro1 s y s t e m  on G,  - c y -  -- 
and let A ( e )  = S. Then,  t h e r e  e x i s t s  a non-zero  nii-nber T such :!rat e x p  - ‘u- N 

Proof.  ---- - 

s o m e  t 2 0. 

O u r  assunipt ion impl ies  that exp(-Xo) - belongs to - - -  A(e ,  t) for  

Therefore,  b y  Lemma 4. 2 ,  exp(-X0) = exp(t  X )g w h e r e  0 - -- 
g “(y To complete  the proof,  take - T = - 1  - t. 

T h e r e  is o n e  impor tan t  c a s e  when T h e o r e m  6 . 6  and L e m m a  6. 8 

yield a n e c e s s a r y  and sufficient condition for A(e) = S , namely  when 
r y -  N 

S = S . - -0 T h i s  will happen if and only i f  L - = k 0 .  I t  is e a s y  to check that  

t h i s  equality holds if and only i f  all the b r a c k e t s  [2C0, X.] belong to - L ( i = l , .  . . - m). 
-1 

THEOREM 6.9. L e t  (X, U) b e  a r ight- invariant  cont ro l  s y s t e m  on - - -  
G with U = -u‘‘ U -- If L = k 0 ,  then a n e c e s s a r y  and suff ic ient  condition f o r  --- - 
A ( e )  to be eoual  t o  S is that  t h e r e  ex is t  a number  T .  T # 0. sach tha t  

exp( d -  T Xo) belongs to - S. 

Remark .  T h e  condition L = L holds ,  i n  pa r t i cu la r ,  when - -0 

[x , X .  ] = 0 ‘1,. . . , m) i. e.  , when exp(t  X ) commutes  with the e l e m e n t s  - -0 - -0 -1 

of s. 
7. Controllabil i ty 

Le t  ( X ,  U) be  a r ight  invar ian t  cont ro l  s y s t e m  on - G, and let 8 6 G. d 

h r -  

W e  say  that ( X ,  V,) is control lable  f r o m &  if  P ( g )  = G .  W e  say that  ( A ,  U) 
N -  

- A l -  p rv 

is control lable  i f  it is control lable  f r o m  e v e r y  g c - G .  

THEOREM 7. 1 A n e c e s s a r y  condition f o r  (X, U) to be control lable  
Y 

is that  G be connected and that L = L(C), If G is compact ,  o r  if the - - - - - -  
s y s t e m  is homogeneous,  - the condition is a l s o  sufficient. 

Proc f. T h e  condition of the t h e o r e m  holds i f  and only i f  G = S.  
- N  
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By Lercma 4, 1 ,  the condition ;s necessary. The second part  of the state- 

ment follows from Theorems 5. 1 an., 6'. 5 (and from the obvious fact that, 

if A ( e )  = G ,  thenA(g) = - G for everyg) .  
N -  

- r v -  

In the compact case,  we car, prove stronger controllability properties. I 

THEOREM 7. 2 ,  Let G be compact, .and let (X , U) be controllable. 
N -- I-. 

Then there exists - T > O  such that. for  e v e r y g  E d G, &F. - G,  there is a 

control that s teers  g i n t o g '  in  less  than T units of time. If G is semi- - -I L -- 
simple, then there exists - T > 0 such that, for  every s; cG, - g' 6 L G, there 

is a control that s teers  p~ into - g' i n  exact l l  - T units of time. 

Proof. The first statexrent follows f rom Theorem 6 ,  3 (ii). Tc 

prove the second statement, we observe that, if Gis semisimple, then 

( X , u )  has the "strong accessibility property", i. e. the set  d ].(e J.  tJ has a 

non-empty interior for every - t > 0 (for a proof of this, see [ll]). 

N 

From 

this fact the conclusion follows a s  in  the ?roof of Theorem 6. 5 (ii). 

Final ly ,  Theorem 6. 9 can also be interpretpd a s  a control!ability 

result. 

THEOREM 7. 3. Assume that the necessary conditions of Theorem 

7. 1 hold, and that (i) U = U , and(ii) L = L ( o r ,  equivalently, - - -  L is an 
N -  

- -u - - - 
idzal of L) .  Then (X, U) is controllable if and only i f  exp (T X ) 

N H -  r - -0 
belongs to S (=S c )  for  some T L # 0. 

ry d 

COROLLARY 7.4.  If G is connected, L = L (G), U, = IJ and X belongs 
-u - 0 
L 

N 
- -  

to the Lie algebra generated .by - X I  * .  . . , X -m'- then ( X ,  U) - is controllable. - 
8. Examples 

In most of the following examples, we shall work with gr0up.r of 

matrices. 

al l  n x - n qon-singular real  matrices. 

O v  groups will be Lie subgroups of G L ( n ,  H), the group of 
N -d L 

Recall that C L I  L ( n ,  - -  R )  is an open - 
subset of M ( n , ? )  (the s o t  >f a l l  n x n real  rnatrices). Since M(n,  R )  is -- N d -  - O n #  
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a vec tor  space ,  we  can identify thc tangent space  to ( Q ,  R )  a t  each  
rc 

point with M( t i ,  R ) .  With th i s  identification, a r ight- invariant  vec tor  field 
- - N  

cor re sponds  to a mapping X - A  X f r o m  G L ( n , R )  i n t o  M ( n , R ) ,  w h e r e  
ry -- - w  - -“e - -  

- A is a fixed ma t r ix .  If X 0’ ’-m X a r e  r igh t - invar ian t  vector  f ie lds ,  

given by  X - A .  X(i=O, .  . . ,=), then the evolution equation becomes  
-1 - - - 

Example  8. 1. L e t  G = S O(31,  the set of a l l  3 x 3 r e a l  orthogonal - -  - 
matrices with posi t ive de te rminant .  T h e  a lgebra  L(G)  4-  i p  the s a t  of a l l  

3 x 3 a n t i s y m m e t r i c  matrices. A Lasis  for L(G) is given by the m a t r i c e s  
- d  

and l o  0 0 

It L C  e a s y  to check that  [K1, ,K21 = K 3  , --L 

T h u s  -.  r,fi>) -- is i somorphic  to three-dimeiis ianal  r e a l  space ,  with the L ie  

[K_z,K,gl = IS1 and [ K 3 , K l ]  = fc - - -  

b r a c k e t  cor responding  to the -4.ector product. Usi..g this  co r re spondence ,  

it  is obvious that,  i f  A and B arc. any two l inear ly  independent elements 

is a b a s i s  for L(G). of L(G),  -- 4.hen [ A  - , B,, [&,I311 - -  
Let - A and B - be any l inear ly  independent 3 x 3 ant i -sym: . 3tYic 

m a t r i c e s ,  and let ou r  r igh t - i  nvar ian t  cont ro l  s y s t e m  on -- S9( 3) be d e s c r i b e d  

by  

X(t) = (A t uB)X(g - - --- 
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w h e r e  u beiongs to any c l a s s  of admiss ib l e  c m t r o l s ,  Since Sol?)  is corn- - '  - 
pact  and connected, T h e o r e m  6. 5 ?pl ies ,  ~ r . !  c u r  s y s t e m  i e  control lable .  

Moreover ,  t h e r e  is a T > O  such that ,  given any two e lemen t s  P,  Q of - -  - 
SO(3)  t h e r e  is a "bang-bang" cont ro l  u that  steers P i n t o  Q i n  l e s s  than - - - - 
T units of t i m e  In this  connection, it is in te res t ing  to ohse rve  tha t ,  - 
in  genera l ,  t he re  m a y  not exist a r b i t r a r i l y  s m a l l  numbers  T with the 

above proper ty ,  even i f  t ee  . -  cont ro l  u ;s ccrnpletely un ras t r i c t ed .  A'ake,  

If u is an a rb i t r i i ry  c ~ z t ~ s ! ,  zr?d if for  instance,  - A - - 1  K n c i  - B = E2. 
.L 

-- X(t) is the solution of the evolution equation correspo?<:.qy !Q u with ini t ia l  

and 

- -  - u x  -- 12 i - 32 

Multiplying the first equation by L x 12, the  secrJnd equation by x 32 and 

addi-7, we get  

x 
2 d 1 - 2  t 3cc2I = x  

2 d t ( 5 1 2  - -22  1:: 

vsnishec  at  t = 0, we have: 2 2 
-12 -32 I 

Since x t x 

But xL2( 7) and 2 12 (7) are  e n t r i e s  of orthogon; 1 m a t r i c e a .  

are bounded i n  absolute  valae by 1. 

Hence ,  t t i e y ,  

T h e r e i c r e ,  we concindc: ihai  
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= 1 cannot be reached  
2 2 

-122 ' 5 3 2  T h i s  shows that  a matrix ( a  ..) f o r  which a 

from the identity i n  l e s s  than 2 units of time. 
-11 

1 

Exaniple 8. 2. The considerat ions of the  prev ious  example  can  be  

general ized to G = SO(2). In this  c a s e  the Lie a lgeb ra  of G is the set - -  
of a l l  - -  n x n a n t i - s y m m e t r i c  matrices. 

Let A = ( a  . .) and B = (b.  .) be m a t r i c e s  defined a 7 follows: 
-1.l -9 - - 

= -1 f o r  i = 2 , .  . . , ? - l ,  a.. = 0 o ther -  
-9 a = 1 f o r i = 1 ,  - ..., ' - 2 .  - z , i - 1  a. - - i , i t l  - -  -- 

wise ,  and  Let b = I ,  b = -1, b.. = 0 otherwise.  It is e a s y  to show 
-Y -n- I ,  n -n, n- 1 - - - -  

that  the s m a l l e s t  suba lgebr  . that  contains - A a n d  L B is exact ly  -- L(G). 
1 Thus ,  even  though SO(n) -- I is 2 -- n(n-1) - dimensional ,  the s y s t e m  e X = (A - t u -- B) 

X ,  - i n  which only - one con t ro l  is involved, is controllable.  Moreover, as 

before, we  can limit u to be "bang-bang". A n  e a c y  a rgumen t  shows tha t  

th i s  fact, which h a s  been  shown to be t r u e  for the particular matrices 

A and B - defined above, is in  fact t r u e  for "almost all" pairs ( A ,  - -  B) -- L(G) 

x - I,&). P r e c i s e l y ,  the set of pairs (&,E)  such  that A - and B - gene ra t e  

L(G) is open and d e n s e  i n  L(G) - L  x L(G). - -  
Remark .  If G - is a n  a r b i t r a r y  connected Lie group such  that - L E )  - 

is genera ted  by two e lemen t s ,  then Theorem 5, 1 enab les  us to conclude, 

i n  a way similar to  tha t  of the previous  examples that  :he homogeneous 

s y s t e m  on 0-f the form - X(t) = (E& t - -  v B) - Xlf)  is control lable  f o r  

"almost  all" pairs (A,  B) t - -  L(G) x L(G). - -  This result  holds even  if  we - -  
restrict - u and v to be llbang-bangll. 

The  previous  s t a t emen t  holds,  i n  pa r t i cu la r ,  when G = S L(n ,R) ,  - .I.--- 

the set  of a l l  n x n real matrices whose de te rminant  is 1, or when 
L I  

G = G - - + - -  N 

L(n, R), the set of all - -  n x n r e a l  matrices whose de te rminan t  is 

g r e a t e r  than 0. 

c. 3. 
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Example 8. 3, W e  show that, i f&& generate L(c), and if s i 8  

connected and not compact, then the system = (A+, u B)X -- need not be 

controllable, even i f  L(G) is a simple Lie algebra. In particular, this - -  
' 

will show that the necessary condition of Lemma 6.8 is not sufficient. 

Take G = S L(2,R).  Let - - -  h) 

It is clear that A and B generate L(G) and that L (G) is simple. 

an arbi t rary control, and let - X(t) be the solution of the evolution equation 

Let  u be - - .-.- - -  L 

Let X = (x ..) - -9 i , i = l ,  2 corresponding to - u, with initial condition - X ( 0 )  = - I. 

T h e n i I 1  =z l l  t 2 ~ c ~ ~  and%21 - = z ~ ~ ~  -xZl .  Multiplying the f i r s t  

equation by zl 1, the second one by - x 

- 

and subtracting, we get 

is non-decreasing for every trajectory (t) - xzl(L) 2 2 Thus, the function x -11 
of our system. Since its value for t = 0 is 1, it follows that every - 
element of S L (2, R) that can be reached from the identity in  positive 

N -- 
t 1. Hence, the system is not 

2 2 
time satisfies the inequality I x1 ifzl 
controllable. I n  the notations of Section 3, it is clear that L =L(G). 

N - -  
'Thus, .we have shown that A(e) is not a group. However, k o  = &(GI 

N -  

(because L(G) is simple), and hence S 

to S o  for a l l  - d  t > 0. 

= G. - 0  - Therefore,  exp(t A )  belongs - -  
This shows that the condition of Lemma 6.8 is satisfied. 

Examale fi In this example we show that Lemma 6 .4  and Theorem 

H 

6 . 6  need not be valid if U .L is not assumed to be unrestricted. 

R x S , the product of the rea l  line and the unit  circle. Let X be the 
H - -0 

Let G - = 
1 



-117- 

2n it 
-), and let X I  be the - generator of the one parameter group t -* ( i , ~ ,  - 

generator of the one parameter group t -.(t, 1). Let U = U , o r  U = U 
-b' - 

* - -r - -. - - 
1 Then A (e) = [ O , o )  x g  , which is not a group. 

explCO = ( 1 , l )  which belongs to -. S, 

But if u = 0, then n ( e ,  u, 1) = 
N -  - - -  

Thus, Theorem 6.6 does not hold. A s  

for Lemma 6.4 it is clear that - S and N -  A(e) are closed, but S p ry A(e). 

Example 8 . 5  In view of Theorem 6.6 it might seem that a necessary 

condition for a right-invariant system to be controllable is that exp t X 

"gets arbitrari ly close" to L S for some non-zero values of - t ,  
- -0 

This example 

shows that such a statement is false. 

Let G = S L ( 2 , R ) ,  and let 
N - -- 

Consider the system X = (A t B u) X where - u belongs to the class - - - -  
of unbounded controls. 

Let - u be the constant control - u = 1. Then the trajectory - t 4 IT (i, - -  u,tJ 

is the curve t * e  t(A - - B, , which is periodic witl: period Zn, By - -  
Corollary 6.7, the system is controllab. e 

t A  .Now, it is obvious that - e-- s tays  away from for a l l  positive values of 
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FOOTNOTES 

1 .  A solution of (*) is an absolutely continuous G -valued function of the 
real  variable t , with the property that (*) isTatisfied for almost every 
t .  

L 

- 
2. If A is a subset of G, and & 8 we use A B  to denote the set of all - 

prTducts - a & whery - . -  a 8 A. 

3. The resul t  is proved in  [lo] for groups of matrices,  but the proof is 
valid for arbi t rary Lie groups. Alternatively, one could u s e  Ado's 
Theorem (cf. 141) to go from the r e s u l t  of [lei to a "local" version of 
Lemma 4 . 3 ,  and then deduce the general result. 



LIE ALGE' rRM At40 LINEAR DIFFERENTIAL EQUATIONS 

Roger W. Brockett* 

Abdol h o s v i  !I Rahimi** 

1. ' Differential Equatioris --- 
-I---- 

In this paper we study certain s,nimetry prl perties possessed by t he  
solutions o f  linear diffe:*ential equations. This i s  accomplished by use 
of some basic ideas from the theory o f  f in i te  dimensional linear systcnis 
together with the work of  Wei and Norman [l] on the use o f  L i e  algebraic 
methods in differential equation theory. Our study'is a.lso strongly 
motivated by the results of  reference [ Z ]  w h i c h  provided a 'link between 

the present paper and a number, of questions about the contrcl Mi 1 i t y  o f  
systems for which the  control enters mu1 tiplicatively. 

Let RnXm denote the set  o f  real n by m matrices. By a Lie 
algebra in R nxn we understand a subset of  R nxn w h i c h  i s  a real 
vector space having  the property t h a t  i f  A and B be1o;ig t o  2' then 

denote by WlA the sniallest Lie algebra which contains We denote 
the identity matrix by I and introduce the square matrix 

- 0  

. 

so does [A,B] = A B -  BA. G iven  an arbitrary subset ev o f  R nxn we 

- 
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Nunibcr LSY CS-14152 DSR Project 73103. 
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Letting priiiic denote transpose, we say t h a t  a matrix A i s  Hainiltonian 
i f  

JA = (3A)'  . 
We call a matrix P symplectic i f  P'JP = 3. 

o f  differential equations o f  the type 
Wei and Norman [l]  have observed t h a t  for It1 small the solution 

. v  
i( t)  = ( 1 a i ( t )Ai  ) x ( t )  

i =l 
can be expressed as 

.where {,Ii) i s  a basis for the Lie algebra of n by n matrices gen- 
erated by {Ai} and where the 9 j  satisfy a set of nonlinear differ- 
ential equations. 
theory i n  the special case where v = 2. 

In this paper we investigate some aspects o f  t h i s  

2. - Lie Algebras and Rational Functioas 

We begin by establishing two results on the Lie algebra generated 

I n  order to  avoid undue repetition le t  us agree t o  ca l l  a matrix 
by a pair  o f  n by n ,matrices. 

of rational functions G(s)  regular i f  i t  is  square and approaches zero 
as I s 1  approached inf ini ty .  Our f i r s t  point 'is t h a t  i t  i s  possible t o  
associate a Lie algebra w i t h  each regular matrix o f  ra t iona l  functions 
i n  a na tu ra l  way. I t  i s  well 
known [3,  43 t h a t  every regular matrix o f  rational functions can be 
expressed as 

This correspondence goes as follows. 

G ( S )  = c ( I ~ - A ) ' ~ B  

w i t h  C E R  A EIRn ', B EJRn 'a Moreover ft i s  always possible 
t o  pick A ,  B and C such t h a t  

n-1 rank(B, AB, . . * )  A B)  = rank(C; CA; , a m ; ,  CAnol )  = n 
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wht.t-r$ ( .  , } dmotf:s ii c d t i t ~ ~ t ~  i : w t i t i a n  and ( ; ) it r w  r e p e t i t i o n .  
,111 t!ih c i : : ~  ;;e S(iy#i .hJjl .  Ihc tr iple  i s  :. ;;~,~ii..;. 'i i * ~ ~ ~ l i ; ~ z t i w  .-- 
o f  G ( s ) .  Now r i i in imd r e a l i z a t i o n s  a r e  no t  uniquely dckr i i l ined by G(s), 
but  i f  [A,Ei,C] and [F,G,H) are two ntinima'l r e a l i z a t i o n s  then there  
e x i s t s  a unique' nonsingular P such t h a t  PAP" = F, P6 = G and . 

I .  

[A,G,C] 

CP" = H. This r e s u l t  f i r s t  s ta ted  by Kalman [3], i s  known i n  system 
theory as the s ta te  s x c  --- isoiiior-+hisrii - thcoreni (see e,g. [q for an 
in t roduc tory  account i n  the prescnt notat ion) .  We now coria t o  the L i e  
algebra. Given a regu la r  ma t r i x  G ( s )  we f i n d  a m i n i m a l  r e a l i z a t i o n  
[A,S,C], and const ruct  IA ,RCIA ,  the L i e  algebrz o f  r? by n matr ices 
generated by A and BC. This c o l l e c t i o n  depends op the p a r t i c u l a r  
r e a l i z a t i o n  bu t  i f  [F,G,tl] i s  a second minimal r e a l i z a t i o n  o f  G ( s )  
then F = PAP-1 and GH = P6CPo1 s o  t h a t  the Lie algebras are  isornor- 
phic. That i s  EA,BCIA and CF,GHIA are ma t r i x  representat ions o f  
the  same abstract  L i e  algebra, We c a l l  t h i s  abs t rac t  algebra the  - L i e  
-b alq6hra ---I_-..--- associated with G(s) .  This L i e  albegra r e f l e c t  the symmetry 
proper t ies o f  G(s)  as the f o l l ow ing  theorems make c lear .  

THEOREM 1,  Let  A, B and C belong t Q  R nxn Wnxm and R m'" re -  - 
spect ive ly .  Suppose [A,B,C] 1,s a minimal r e a l j z a t i o n  o f  G(s)  and 
suppose B and C are o f  rank m e  Then: . 

PBCP'l are both Hamiltonian i f  and on ly  i f  there ex+st(s a nonsingular 
symmetric mat r ix  T #such t h a t  b 

t 

i) There e x i s t s  a nonsingular ma t r i x  P such t h a t  PAP'' and 

ii) There e x i s t s  a nonsingular P .such t h a t  PAP-' and PBCP" 
are both skew-symmetric i f  and only i f  there  e x i s t s  a nonsingular skew- 
symmetric T such t h a t  TG(s) = G' ( -s )T  and 

-- Proof,  ( t lami l tonian Case) Suppose t h a t  A and BC are Hanii ltonian, 
Then we have JBC = C'B'J '  and i n  view o f  the  rank condi t ions JB = C'T 
for T = 6'J'C'(CCt>-1. Note T i s  nonsingular.,  C lear ly  C'TC = C'T 'C 
so T i s  symmetric. Thus ( r e c a l l  J2 = -1) # 
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. = G ' ( - s ) T  

On the other hand, suppose that  for some synrnetric nonsingular 7' 
we havc TG(s) = GI(-s)T, Thus 

T C ( I ~  - A ) - ~ B  = B ' ( - I ~ - A ~ ) + T  

= - B ~ ( I ~ + A " ) - ~ c ~ T  . 
Since both sides are minimal realizations i t  follows from the s ta te  
space isomorphism theorem referred to  abovea that there exis ts  a non- 
singular matrix P such t h a t  

t h u s  upon transposition and rearrangement we get 

prAp'" = -A' ; p 4 B  r; -C'T ; Cp'r' L -8' . 
Now by uniqueness o f  P (compare w i t h  14 6)) we see t h a t  P = -P I  . 
Thus there exis ts  a nonsingular Q such t h a t  Q'JQ.=.P, Finally we 
see that  [QAQ" QB,,CQol] is a ' rea l i ta t jon  such that  QAQ" and 
QSCQ-' are Hamiltonian, See references 14) and [6] for additional 
i n s i g h t  into arguments o f  this type. 

(Skew-Symnetric Case) Suppose that A and 8C are skew-symnet- 
ric. Then we have BC - -C'B'  and i n  view o f  the rank conditions 
6- C I T  f o r  T = ( B I C I ) ( C C I ) - ~ ,  Note T i s  nonsingular. Clearly 
C'TC = -C 'T 'C and so T i s  skew-symmetric. Thus 

TG(S) = T C ( I ~ - A ) - ~ B  

* B'(1s - A ) %  

* 'B'(Is + A ' ) %  

= . B'(-Is - A') ' 'C'T 

0 G'(-s)T 
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AI 1 zerct:, o f  (I(# I ( 7 s: .- I \ )  -1 ;Ire oii t~i;.: i i i i i i9i tiai * +, 5 9. ' r ~ , ?  A z -?$'. 
:'he p a r t i a l  f r a c t i o n '  expansion o f  
p l i c i t y  one since A i s  normal. . C l e a r l y  the  residirc!:; o f  K ( s )  = 

TC(1s - A ) ' l C ' T '  a t  thcse poles are syinmctr-ic and nonnegative d e f i n i t e ,  
On the  other  hand, suppose t h a t  f o r  sane nonsinyuldr skcwsymnet r i i  

T we have TG(s) 1 -G ' ( -s )T  ., w i t h  TG(s) given by the p i l r t i a l  f r x t i o n  
expansion displayed i n  the  theorem staternetit, Expand each Ri as the 
sum o f  dyads and renumber ( i f necessary) t he  x ' s  so t h a t  

(Is - A) - '  113s cji;ly ieriris c f  i ! ~ ?  t i -  

I 

w i t h  each b i  being an m by m vector.  Now l e t  A, 8 ,  and C be 
given by 

A =  

Then 

0 A 1 0  0 

"1 0 0 0  

O O O A 2  

0 0 -A2 0 

b b b a b m b  

- 
I 

b 

T C ( I s - A ) " B  = TG(s), A = - A '  and BC = - C ' B ' .  -(Compare w i t h  
Theorem 2 o f  [7] from which one can see a r e l a t i o n s h i p  between t h i s  
r e s u l t  and the  s t ruc tu re  o f  lossless electrical networks.) n 

We now character ize the cond i t ions  under which the representat ion 
o f  the L i e  algebras obtained t h i s  way are i r reduc ib le ,  W e  c a l l  a se t  
o f  matr ices {A1 A2, .,. An) -- fryeduc ib le  i f  there  e x i s t s  no nonsin- 

' gu la r  Y such t h a t  a l l  bhe PAiP'1 are i n  block t r i a n g u l a r  form: 

We r e c a l l  the m a t r i x  form o f  Schur's lemma which says t h a t  a s e t  
o f  n by n matr ices arc  i r r e d u c i b l e  i f  and on ly  i f  there e x i s t s  no non- 
sfr iguldr n i a t r i x  which i s  n o t  a sca la r  m u l t i p l e  o f  the  i d e n t i t y  and which 
commutes w i t h  a l l  thc niatrfces i n  the set; 
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THIT:!FX -- ...- - -. .-- 3. 
and Set [A,B,C] &e a minimal rea!izatio;r o f  t i ( ~ ) .  Let A belong t o  
Rwn and let 8 and C belong t o  Rnm and pn respectively, 
Suppose 6 and C are o f  rank m. Then the Lie algebra {A,sC}A i s  
irreducible i f  and only i f  the set o f  II by m matrices 6(C) i s  i r r e i  
ducible ( C  i s  the f i e l d  o f  complex numbers and G(C) 5; i t s  image 
under 6(*)). 

. - Proof. Suppose’ that T6(s) = G(s)T for s- constant matrix T which 
i s  invert ib le and not a u l t i p l e  o f  the identi ty. Let [A,B,C] be a 
minimal real izat ion o f  6(s). Then since 

Let G(s) b~ a given rcgular -atrix o f  rational functions 

C(Is -A)- lB = T’’C(Is A)%T 

ue see that [A,BT,T”C] i s  also a minimal real izat ion o f  6(s)m By 
the state space lsaaorphfw theorem we knw there exists P such that 

Since B i s  o f  full rank P cannot be ;1 

- f IS n o t e  
I ultiple o f  the identtty i f  

- -  . 
On the  other hand, i f  CA,BC3 i s  redudble then there exists a 

mnsingular P, u&aI t o  a u I t i p le -o f . * t t t e  identi ty, such that 
PA+ = A and PBCP’~ = BC. b v e r ,  since B i s  one to one and c 
i s  onto, it f o t l w s  that PB = BT .for soat nomingular T and C P - ~ =  
RC for S a m  nonsingular R. Thus WRC Bc and s h c e  8 and C 
have l e f t  and r i gh t  inverses respectively, we see that  T = Rol and 
thus T6(s) = G(s)T. tlrm P i s  not u l t i p l e  o f  the identfty, and 
so PB f aB (this would v io la te  uniqueness o f  P i n  the state space 
isomorphism theorem). Thus T i s  not a m l t f p l e  o f  the identity and 

-6(C) I s  reducible. 8 

We note that i n  particular, S f  BC i s  I dyad and runk(B, AB, 
AnolB) = rank(C; CA;’ .*; CA n-1 ) = n, then the representation * * e )  

{A,BC}A i s  trrcducible and it  i s  equivalent t o  a Hamiltonian algebra 



i f  snd only i f  g(s) = g(-s).  
vi t h  I/sn depends on \.rhcther n i s  even .or odd. 1 t tias been stwm 

by d i r e c t  construction in [S] that i t  i s  the f u l l  n(n+1)/2 dimensional 
Hamiltonian algebra i f  n i s  even. The Lie algebra associated with 
s"-l/(s"+l) i s  the f u l l  n2-1 dimensional algebra o f  zero trace mat- 
riccs for every n (see [8l!. bJe observe that t o  generate skew-sym- 
metric algebras we can use a 6(s) o f  the f o r a  

In particular, t . 1 ~  a1gebi-a associated 

for  the odd dimensional case and 

for n even. 

3, An Application t o  S t a b i l i t x  

As i s  well known, the symplectic matrices form a group and the 
eigenvalues o f  symplectic matrices occur i n  reciprocal pairs. That i s  
to say, i f  x i s  an eigenvalue o f  a symplectic mtrfx then so i s  I/X. 
This observation together with the basic ideas of 'noquet theory en- 
ables one t o  show that f o r  0 c t < - a l l  Solut~ons o f .  . 

;(t) = (A( t )  + rB(t))x(t) ;: A(t+T) = A( t )  ; '8(f+T) = B ( t )  
b . -  

are bounded for  c s u f f i c i o d y  small provided A( t )  and B(t)  are 
Hamiltonian and the solution o f  the equation 

n(t) = A(t)x(t) 

has d is t inc t  characteristic multipliers. al l  lying on the uni t  c i r c le  
(see reference [9]). This together with Theorem 1 yields the follow- 
ing theorem. - 

THEOREM 3. Let p and q be polynomials with.the degree o f  p larger 
than that  o f  q. Suppose k ( t )  i s  periodic with period T. Then there 
exists 6 > 0 such that  for Ik(t)l < c al l  solutions o f  
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d 0 = - d t  p ( D ) X ( t )  + k ( t ) q ( D ) x ( t )  = 0 s 

arc bounded provided i) q(s)/p(s) = q(-s)/p(-s) where ii) p(s) = 

wfth nonzero mod 2r/T. 

- Proof. Under the given hypothesis there exi.sts a rea l izat ion o f  
[A,B,C) of q(s)/p(s) such tha t  A and BC are Hamiltonian. Thus 
w can express the evolution equations i n  f i r s t  order form as 

(s2+Af)(s2+A:) ...( s 2 2  +An) with X j  a l l  real  and nonzero mod 2r/T 

. 

i(t) = (A + k(t)D)x(t) 
AT M t h  A and 0 Hamiltonian. By hypothesis e has a l l  i t s  eigen- 

values on the u n i t  c i r c l e ,  and none are repeated. Thus by the pertur- 
bation resul t  quoted, there exists c > 0 such that  if I k ( t ) l  < E 

for  a l l  t and k(t+T) = k(t)  then we have stability. 
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