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ABSTRACT

This report consists of a series of investigations on
problems of the type which arise in the control of switched
electrical networks. The main results concern the
controllability and observability of these systems. Subsequent
work will address itself to the stabilization of these systems,

building on the basic theory given here.
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System Thecry on Group Manifolds and Coset Spaces
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Abgtract

The purpose of this paper is to study questions regarding con-
trollability, observability, and realization theory for a particular
class of systems for which the state space is a differentiable mani-
fold which is simultaneously a group or, more generally, a coset
space. We show that it is possible to give ° her explicit eapressions
for the reachable set and the set of indistinyuishable states in the
case of autonomous systems. We also establish a type of state space
isomorphism theorem. These results parallel, and in part specialige
to, results available for the familiar case described by k(t) =
Ax(t)+Bu(t); y(t)=Cx(t). Our objective is to reduce all questions
about the system to questions about Lie algebras generated from the
coefficient matrices entering in the description of the system and in
that way arrive at conditions which are easily visualized and tested.
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1. Introduction

A standard assumption in modern control theory is that the state
sp.ace is c vector space. This assumption is both valid and natural in
many situatioms, but there is a significant class of problems for which
it cannot be made. Typical of these are certain problems which arise
in the control of the attitude of a rigid body. The state space in
this case is not a vector space. Linearization often destroys the
essence of the problem -- even if one can work locally -- and in any
case new and different methods are needed for treating global questions.

In this paper we substitute the following hypothesis for the usual
vector space assumptions. We let & ami ‘€ be matrix groups and study

\

X(t) = (A + 121 u, (E)B)X(E) ; y(t) = €X(t) ; Xe F
where A and B 1 belong to the Lie algebra associated with &, the u 4 are
the controls, and the notation €X(t) is to be interpreted as being a
coset in #. We also study vector systems of a similar type whereby
we can view their evolution as occuring in a coset space. The results
concern the explicit construction of the reachable set and a character-
ization of observability which is easily tested. Our main point is that
'thia class of systems is in many ways not more difficult than linear
systems of the usual type in "}R“

There is a moderately large literature on the use of Chow's results [1]
and related ideas to study controllability, including the work of Hermann,

Kucera, Hermes, Haynes, and Lobry (see [2-6]). This work is relevant here



but we are directly interested in controllability only in-so-far

as it contributes to the identification of a framework in which we
can study a full range of system-theoretic questions, including
observability and realization theory. Notice that it is impossible
to pass directly from controllability results to observability results
in the present set up because there is no clear notion of duality.

The main motivation for thié work came from some work on Lie algebraic
methods in differential equations (see [7-10]) a_nd, above all, from
being confronted with certain physical problems where linear theory
was simply inadequate.

Some unpublished work [18,19] by Jurdjevic and Sussmann is
related to this paper. In particular they give in [19]) an alternative
proof of our theorem 5 and make a serious study of the unsymmetric
case (treated only superficially in theorem 7 here). We also mention

a recent paper by Elliott [20].



2. Examples

We postpone the development of the subject long enough to present
a few simple examples which will help justify why the assumptions are
set up the way they are.
Example 1: (Control Systems Design) Consider the problem of deter-

mining the gain, k in the system

x(t) = Ax(t) - k(t)Bex(t)

so as to achieve good performance relative to an index of the form
n= rx'(t)Mx(t)dt ;s M=M 30
0

1f a particular initial state is chosen and k( ) is selected so as

to minimize n, then the performance might be bad relative to some other
initial state. In cases where the initial state is not known it is much
more realistic to pick a collection of initial state vectors and to

pick k in such a way as to minimize a weighted average of the individual
performances. In fact, just to insure stability it is necessary to
average over at least n linearly independent initial states. If exactly
n are chosen then k should be regarded as controlling the evolution of

the matrix equation

B(t) = (A-k(t)be)&(t) ; &(0) = [X).Xpse.e,x ]
The state space is then the space of nonsingular n by n matrices, G(n)

Example 2: (Rigid body control) The orientation of a rigid body

relative to some fixed set of axes is described by a 3 by 3 orthogonal



matrix A which satisfies the differential equation

a,,(t) 512(t) &, 4(t) 0 wa(t) -~w,(t)] [a,;(t) a,,(t) a,,(t)
521(t) 522(t) 523(t) - -w3(t) 0 wl(t) ?21(t) azz(t) a23(t)
531(t) iaz(t) 533(t) mz(t) -wl(t) 0 '31(t) a32(t) 333(t)

The w's themselves are usually controlled via the equations

&l(t) - [(12-13)/1111»2(:)@3(:) + nl(t)lll
&z(t) - [(13~Il)112]w1(t)w3(t) + nz(t)/I2

&3(t) - [(11-12)/13]m1(t)m2(t) + na(t)lla

The state space for the first set of equations is F@W(3) -- the set of
3 by 3 orthogonal matrices -~ the state space for the second set of
equations is R3 -~ cartesian 3-space. For our present purpose suppose
that the center of mass of the body is fixed and suppose that the
observed output of this system is a pencil beam of light generated by a
light source which is mounted in the body along a line passing theough
the center of mass. In this case the output is €X(t) where € 1is a

subgroup which corresponds to a rotation about the pencil beam (an

undetectable motion).

Figure 1 : Illustration of the observability of a rigid body.



Example 3 : (A model for DC to DC conversién) The electrical network
shown in figure 1 contains switches which are to be manipulated in
sﬁch a way as to transfer the energy stored on the capacitor 1 to
capacitor 2. In order to have a sensible physical model we demand

that there be exactly one path through the inductor at all times.

1

Figure 2 : An electrical network for which energy is conserved.

The equations of motion are

il(t) 0 sl(t) 0 xl(t)
iz(t) - -sl(t) 0 sz(t) xz(t)

:‘:3(t) 0 -sz(t) 0 x3(t)

vwhere x; = vlch, Xy = JC; v, and x, = 12/5 and s, and s, are Cepend
. on the switch positions and take on the values 1 or zero. We have
81 = 1 and 5, = 0 and if the switch on the left is closed and we have

x, = 0, 8, = 1 if the switch on the input is closed.



3. Lie Algebras and Lie Groups

Let 77‘5“ " denote the set of real n by n matrices; ‘7Rm is a
vector space of dimension nz. By a Lie algebra ¢ in R ve under-
gtand a subset of .’Rnxn which is a vector space and which has the
property that if A and B belong to # thus so does [A,B] = AB-BA.
1f 1’1 and !Zz are Lie algebras in 7prn and their intersection
z N ¥, 1s also a Lie algebra since if A and B belongs to 3’1 and
~‘l’2 and both are algebras then [A,B] belongs to both .Ql and Z’z. The
union % U %, of two Lie algebras, the sum 9’1 + 1’2 of two lie
algebras and the commutator [Ql, .9”2] of two Lie algebras are not
necessarily Lie algebras.

Given an arbitrary subset of .Pmm we can add additional elements
to it so as to imbed it in a Lie algebra. To obtain the smallest
Lie algebra which contains a given set .4/ we first add to .4 all linear
combinations of elements in .# so as ic get a real vector space ‘A’l'
Then commute elements 1n-/1i to get ./l/2 - ./ii + [./71. «Ai] if this 1s
not contained in .#; then we form .4, = A, + [./l'l. c/”z] etc. Clearly
this process stops in a finite number of steps mince at each stage we
increase the dimension of the vector space by at least one and the
dimension is uppe. bounded by nZ. We call this Lie algebra the Lie
algebra generated by # and denote it by {4} A°

. 1f .# 1is a set of nonsingular matrices in Rmm ve let {.ll}c

devote the multiplicative matrix group generated by 4, i.e. the

smallest group in ‘Rm‘" vhich contains .# and is closed under multiplication



and inversion. If.# is a linear subspace of TRm then the set

N1 N2 N
M= {M: M=¢e e ceoe P 3 Ni ewxs ;p=0,1,2,...}
contains no singular matrices since det(expNi) = exp(trNi) > 0.
Clearly # is closed under multiplication and inversion and in our

notation

M = {expA},

Let Z be a Lie algebra. At each point M in {exp.‘l’}c there 1s a
one to one map ¢H from a neighborhood of 0 in & onto a neighborhood

of M in {exp Q}G which is defined by
¢y ° .Q-’{epr}G : ¢H(L)-e11(

This map has a smooth inverse which shows that {exp .Z’}G is a locally
Euclidean space >f dimemsion equal to the dimenstion of Z. We may
check that the maps ¢;l satisfy the conditions for a C manifold in
the sense of reference [11] (page 97). Thus we may give {epr}c the
structure of a differentiable manifold. This justifies our referring

to {expg?}c as a group manifold.

If .« is a linear subspace of 7Rm whach is not necesssrily a
Lie algebra we might inquire as to the relation between {exp.s }G and
{exp{/ }A}c. Clearly the latter contains the former. The following

theorem claims that they are identical.



Theorem 1 : Let JI’I o, -,...,,dp be a collection of linear subspaces of

I 2
711‘“. Then
{exp,,[l,exp ""s"“’e"p‘dp}c = {exp{e'fl,ﬂ ""'dp}A}G

Before proving Theorem 1 is is appropriate to make a few remarks
about its relationship to the controllability literature. (Perhaps a
glance at theorem 5 would help at this point.) In considering equation

. n

X(t) = (I u ()AX(2)

i=1

as a differential equation in ¥(n) it is clear from the theorem of
Frobenius [12] that the solution pusi:ng through X € %2%(n) lies in
{exp{Ai }A}Gx because at each point X in %t(n), {A:lx}A is an
involative vector field which contains X and spans the tangent space
of {exp{Ai}A}Gx at X. Wei and Norman [ 9] confirm this fact by
giving @ocally valid) formulas for the solution of this differential
equation in terms of the fnnctiowui(-) and the structural constants
of the Lie algebra generated by the ay (without pointing out the differ-
ential geometric interpretation of the result).’ On the other hand, if we
regard X(t) = ( ? ui(t)Ai)x(t) as a control problem then the natural
| question is notit.ol];at manifold contains the solution, but rather what
set can be attained from a givern point, given freedom over the choice
of (“1’“2"”’“11:)’ The results of Chow [l1] (see also Hermann [2]) are
applicable here. Chow showed under a suitable regularity condition that
the set of pcints reachable for the vector system x(t) = f u:"(t)f:l [x(t))

i=1
using piecewise constant controls as the same as those points reachable for



n
x(t) = v,(t)g,[x(t)]
121 1 i

vhere {g4 (x)} is a basis for the involative distribution generated
by {f 1(x)}. That is {g 1 (x)} spamg a vector space which includes {f i(x)}

and is closed under the Lie bracket operation

(f,g] ‘%g‘%&f

In our case the Lie bracket of A X and ij is [Al,Ajlx. Thus we see
that for the differential equation in question the reachable set
includes {exp{Ai}A}c and the theorem of Frobenius insures that it
" includes nothing more.
The proof of theorem 1 given below could be shortened considerably
by the use of these ideas. The reason for preferring the longer proof given
here is that it is comnstructive, it is self-contained (nothing harder
than the implicit function theorem is useﬁ) and it has the merit of proving

a theorem about n by n matrices using the notation and tools natural

to that subject.

Proof : We give a proof which relies on an implicit-function theorem
which, under suitable hypothesis, insures the existence of a solution
of a equations in B < a unknowns. (See reference [13] pages 29-30.)

We also need the Baker-Hausdorff formula which asserts that

At. -At
e

AtLe™At o L 4+ [At,L) +% (At, [At,L]]+ -3-%- [At, [At, [At,L]]]+...

Note that the norm of the (n+l)th term in this series is less than
[|L]]2®]]a||®/n! so that the series is majorized by the stories

HLlte2]jal] + @l Al D240 = [[L]]-e2/ 1A 4 nence 1o
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absolutely and uniformly convergent on -T ¢ t ¢ T for all T.

Let {Al,Az,...,An} < .,41 U.,vlz U... .,dp be a basis for

1
{AI,A;_,...,Ar}. Assume this algebra is of dimension q. There

o+ »42 S .,dp and let # be the Lie algebra generated by

exists a basis for Z which conaists of terms of the form

Lt -AI

Leel = I8 oe1) 22 (1) ]

L2 = B 2y A (me2) !

Lots = g (res) "o (rts)

Losatl = By(rrst))’ A (rest1) 2a(rtet) )]

Lh - ['"lAk(q)’°°°’Ah(q)]°"]

We are quite explicit here because at certain points in our proof it
is necessary to regard these expressions as formal expressions as
opposed to matrices.

" We introduce the following speclal patation. The operator EXP
maps formal expressions into wmatrices. It is defined on A, and its

commutators (i.e. formal expressions such as Ai’[Ai’Ajl’ [A,, (A .Ak]] ete.)
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as follows

A/t A e -A -Aj/_:’

e e e e t30

EXP[A ,A ]t = _ _
14 AyTTET &, /TET -y /TET A /TET

t<o0

The definition is completed by recursion. If B is a commutator

expression then

Ak Ak 21
e (EXP BVt)e (EXP B/t) t>0
EXP[A,,B]t =
i A /Te] -A,/Tt]
lEXP BJltle i (EXP B/|t|)-1e 1 t%0
and
AE N3
(EXP B/t)e (EXP B/t) e t3>0
EXP[B,Ai]t =\ a /TET

-A VTeT
el ‘(PB/tDe ¥ (P BEDY t<o

It is an easy calculation to verify that E!P[Ai,Aj]t = I+[A1,A3]t+o(t)
where o(t)/t goes to zero as t goes to zero. We now show that in

general if B is a commutator expression then
EXP Bt = I + Bt + o(t)

To carry out this proof we use induction. Assume that the result

is true for commutator expressions B with n-1 brackets we will show

it true for those cuntaining n brackets. We write B as B = [A,C] with
C having n-1 brackets. (Similar calculations cover the case B = [C,A]}.)

By the induction hypothesis

EXP Ct = I + Ct + o(t)
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Of course EXP Ct can be expanded in-a conve;gent pover series

involving fractional powers of t. If G(t) denotes the terms

2

idvolving povers of t between tl and t~ and if F is the coefficient

of tz then
2 2
EXP Ct = (I+Ct+G(t)+Ft +o(t"))

The power series expansion for the inverse of EXP Ct is then

(EXP Ct) ! = I-Ce-G(t)+(C?-F)t2+o(td))
as is verified by multiplication with the expression for EXP Ct
. itself. Now for t nonnegative
EXP Bt = EXP[A,C]t
= (I+A/E+A%e/ 2+0(t) ) (T+C/EHG (/D) +Fr+o(L))
(I—AJEhAzt/2+o(t))(I;CJE;G(JE)+02-F)t+o(t))

1+[A,c]:+F:+A2:/2+A2t/2-A2t+(c2-r)t-92

t+o(t)

I+[A,C])t+o(t)

and the case t < 0 leads to the same result.

Well known properties of the matrix exponential function let
one conclude that for |t| > 0 EXP Bt is continuously differentiable.
The Qbove argument shows that EXP Bt is differentiable with respect
to t in a neighborhood of t = 0 and

-9 exp Be - B

de t=0



- 13 -

Hence we have for the basis elements Lv,

d
<— EXP L t = [
dt \Y t=0 v

Now consider a function of u = (ul,uz,...,uq) and v = (Vl,vz,...,vq)

vhich maps TR? x Y into R™™" and which is defined by

F(u,v) = ~I+(EXP L,u,) (EXP L,u,). .. (EXP Lquq)e‘L1V1-szz--.-quq

2%2)
Clearly F(0,0) = 0. Now the linear approximation of F at (u,v) =

(0,0) is given by

)(Gu,dv) = L. 8u,+L,6u +...+Lq6uq-L Sv,-L.8v

F(u,V) (u.V) (o’o 1°%17%49%% 1°V1™"2 2'0 . .-quvq

so that the range space of F(u v)(u,v)ko 0)( u,0) is the q-dimensional
9
subspace of R spanned by {Li}' Now F(u,v) + I is a finite product

of exponentials which we write as

1, D2 ™ vl L
u u A, u = aVe=LaAaVAa™0 e v
11 ile 12 12 . 1v ive 1'1 272 qq

A
F(u,v)+l = ¢

Since the Baker-Hausdorff formula lets one write

Ait -Ait
e Ake = Ak + [Ai’Ak]t + .o
_ At ~-At
we see that e Ake belongs to the Lie algebra generated by the

A's. Moreover, it is continuous with respect to t and at t = 0
takes on the value Ak' Using this result repeatedly we see that

for each {u1 } we can find R1 in Z such that

k k
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P P P P P
1l 2 k k+l v
A_u A, u A, u A u A u
1) 1ty Lt Thy L i Lyt i,
e e see@ A e oo e
i
k
= (F(u,v)+I)R, (u, ,u, ...u, )
ik 11 12 1\)

simply by pushing Ak past the exponentials one at a time. Clearly

R1 (0,0,...,) = Ai . Thus we see that for a and b small

k k

Flu,v) V) (a’b)(G“:GV) - (F(a:b)+I)(izlsi(a,b)6u£+ﬂi(a,b)svi)

for some Si(a,b) and Hi(a.b) in ¥. Since 81(0,0) = Hi(0.0) e Li

and since S " and H " depend continuously on their arguments this
establishes that the Jacobian of the map F : ‘Rq x 7Rq »> 7#”“‘
must have rank 5 in a neighborhood of (0,0) and hence by the implicit
function theorem cited earlier there exists an € > 0 and a map

¢ : RY + RY such that if ||v|| < € then

F(¢(v),v) = 0

Since F(u,v) = 0 implies that

L,v.+L.V.+...*L v
EXP L.u.EXP L.u....EXPLu =e 11 22 149
™1 2%2 q9q

We conclude that there exists el > 0 such that if L ¢

ve can vrite

sd |[1]] < ¢,

Ai “1 ".:"2111:'_2 Aivuiv
e =g e ool

Now for any L ¢ & it follows that II% L]| < €, for some integer m
and thus we can express L as expL/m-explL/m...expL/m. Likewise we

L, L L
can express ¢ e ...e 9 in this form.



-15 -

Let .# and ¥ be Lie algebras in mm. It can happen that
{eprif}c is a bounded subset of 'mm which is not closed, and it
can happen that the closure of {exp¥ }G equals {erp Q}G vith ¢ 7.
The skew-1line on the torus [11) is an eas; example. Also, {epr(}c
is not necessarily simply connected. Nonetheless, we have the following
result which we deduce from theorem 1 rather than sending the reader

to the literature.

Corollary 1 : If 4 and % are Lie algebras in ,Rnxn then {epr(}c <

{exp #}, 1f and only 1f ¥C £ and {expor), = {exp 7'}, if and only if
H = L,

Proof : For both statements the sufficiency is obvious. To establish
necessity in the first case notice that if {expX}, C {expZ}, then

by theorem 1
{expA}, = {expH, exp £}, = {exp{X, Q}A}c

Suppose & 1is of dimension n. To obtain a proof by contradictionm,

suppose that o is not contained in %. Then %Q}A is of dimension

nt+l or greater. Then expZ 1is an n dimensional manifold and

{exp{.#, £}} 18 not which contradicts {exp %’} = {exp{Z,4}}. To

establish necessity in the second case repeat this argument verbatum

but with "contained in" replaced by "equals" both verbally and symbolically.
The notation adﬁB = B, adi‘l! = [A,B], adin = [A,[A,B]] etc. is

standard. If A and & are Lie algebras we use the notation {ad ¥ Y

to denote the Lie algebra generated by Jf under commutation with

elements of Z. That is

{ad',/,J(}A w (AL K] yoeos [V [C oo (2 ,J(]...]]...}A

This algebra may also be described as the intersection of all Lie
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algebras which contain J¢ and are closed t;ndet commutation with £Z.
1f 5 and ¥ are groups we introduce an analogous notation. The
;mllest group which contains ¢ and all products of the type GFG-]‘
for G in ¥ and F in & will be denoted by {AD F}.. " This group
may be described as the 1n;ersection of all groups which contain &
and are closed under conjugation with elements of ¥ . If € {1s

{expg'}c and & 18 {expX }G then clearly {Ang F }G consists of products

of terms of the form

L, K, -L, L, K, ~L L X =L
H-ele 1e le ze 2e 2...¢mene n

Theorem 2: Let X and ¢ be Lie algebras in‘pfm‘ « Then

{ U MAM L}, o {ad o}
Melexp 2, Ao

and
W0, @y (e X clg = Lexpladg X 1,1

Proof: From the Baker-Hausdorff formula we see at once that if L belongs to

£ and K belongs to ) then elxe L belongs to {adgﬂ },- Thus the right side

of the first equality in question contains the left. On the other hand,

expressions of the following type belong to the left side.

o % Ke oL 1K+ o)

(L (kL1 o(0))e ™™= £ [K,L1+o(@)=[LIL,K] +o(a)

etc.

Since ‘Rm is a finite dimensional space and since
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{ U werh

Me{exp Z’}G A

1s a linear subspace, it is closed. Thus [L,K] [L[L,K]]... etc.
belongs to this set ané the first equality is seen to hold.
The second statement is obtained by exponentiating the first.
This gives
{exp{ U MQH-I}A}G = {exp{ad , %} },
Me{exp £}, -

L

but since eLeKe- = exp (eLxe.L) we see that

-1 .
{GXP{ME{Le/pr}GMQM }A}G = {AD{expg}G{epr’}G}G

so the result follows.

The next theorem states a purely group theoretic result which
although easily proven, is stated formaily because we need it in cur
study of observability.

Theorem 3 : Let 5¥ and & be subgroups of a group @. Let & be the

subset of ¥ defined as
P ={pP: RPR'le.%’; all R € R}

Then & is a subgroup of ¥, P is a subgroup of ¥ and & is a

normal subgroup of #FP. Thus R ()P 1is a normal subgroup of A and
RP|P 1is isomorphic with R/R () L.

Proof : Suppose Pl and P2 belong to & then for each R in J? there exists

H)(R) and Hy(R) in H such that npln'l(npzla'l) - ul(n)-[nz(nz)l'l. Since
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1.-1

.18 a group this means RPIP; R ~ belongs to S and thus trit & is

a sutgroup of 4. Clearly it is a subgroup of S since the choice
R =1 is possible. To see that J2# is a group, .ote that if Rl and

R, belong to & and P, and P

1 9 belong to 4 then

2

R - Rlle(x 1 8 VY6 R e

: -1 -1 -1
R\Py(RyPy) = = RP,R, RyP PRy Y (RPR,

1172 7272 2

Since &R 1s a group and since # is a group which hes the property thai
if P beluags to & then so does RPR™! for each R in &%, we see that
this product belongs to 3. Clearly & is a normal subgroup of RS
since RP.?P"IR-1 = % for each RP in ARF By the second isomorphism
theorem (Rotman [14], page 26) R /1FP 1is normal in & and
RPIP = RIRN P.

Vs novw state and prove a Lie algebraic analog of this theorem.
Algebraic tests for observability will te derived from this result.
Theorem 4 : Let #.and & be Lie algebras in 7Rm e . ‘P be defined

Pe{pP:rRR!c {exp¥}., allR e {exp.?}c

If % is a Lie algehra in 7R then {expit }G C % if and only 1if
{ad P } AC . There exists a unique Lie algebra ) such that
y C
{adf//l}l} ZS I and o, contains all other Lie algebras having this
property.
Proof : Suppose {adg.%.’ }‘C.#. Then for L, in < and K, in X we see

from theorem 2 that {.itxpx’}c contains

L, L L K, K K -L -L. -L
RPR-I-clc 2...0 Pe le 2...e e p...e 20 1

By the hypothesis and corollary 1 {exp{ad g,.j(}A}G C{exp.}f}c.
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N in Z and all Ki in .% we have

L, L L K, K K -L -L, -L
RPR'I-ele 2...e Pe le 2...e 9de P,..e ze 1e{epr(’}G

On the other hand, if for all L

then since {exp.#}, is a group we see that {AD {exp Q}c{exp.f( }G}G C
{eprl’}G and again from theorem 2 and corollary 1 we see that
{ad o } A C M,

Finally, notice that if {ad‘gJ( 1} AC X and {ad Z}Acx
then {ad, (.7(1+J(2)} A o thus there is a largest Lie algebra vith

this property.
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4. Controllability on Group Manifolds

The first question of a system theoretic character which we
investigate is that of controllability. Since we want to emphasize
global results we work with the most elementary type of evolution

equation appropriate to our present steeing, namely
X(t) = (A + Zu, (£)B,)X(t)

The choice of control affects the direction in which X moves. How-
ever A is a constant over which there is no control. This evolution
equation has the property that the change of variables X + XP for
P nonsingular, leaves the equation unchanged. This invariance gives
the vector field which a given choice of {ui(t)} establishes on
G2(n) a particular simple form.
Theorem 5 : Consider the linear dynamiqal systen

. m

X(t) = (121 u (t)B)X(t) ; X = n by n matrix
Given a time ta > 0 and given two nonsingular wmatrices Xl and xz,
there exists piecewise continuous controls whicy steer the state

from xl at t =0 to x2 atts= t. if and only if xle belongs to

- A{exp(n,}, },..
Proof : (Sufficiency) Theorem 1 asserts that any matrix M in

{exp{Bi}A}G can be written as a finite product, say

B11°'1 B12‘"2 Binam
M L e e [N ] .e

1

Suppose xzxz = M, Divide the interval 0 € t € tg, UP into m equal
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intervals ([t 1) whereby t1 = i-ta/m. Let ta/n - 3.1. On

1°%14+
the interval [O,tl) all controls are zero except the imth control

which takes on the value amB. On the interval [tl,tz) all controls

are zero except the 1m_1th which takes on the value am_iB, etc.

down to the last interval on which all controls are zero except

the ilst which takes on the value GIB. Since the differential

equation is linear and constant on each of the subintervals the solution
is a product of exponentials and the result follows.

(Necessity) To show that Xz cannot be reached from xl unless xle is

L L L
~of the form e 2e m-l...e 1 we assume the contrary and ocbtain a con-

tradiction. Suppose that ul(-),...,u(-j is a control which steers the
system from xl at t=0 to Xz at t =t by theorem 1 of [9] we know
that there exists a sequence of times to’tl’t2’°"’tm such that on
each of the subintervals [ti,ti+1] the transition matrix of

k() = ( u, (£)B,)x(t)
i=1

", (¢)
can be written as e for some Hi( ) in £. Thus we can vrite

L L L
X(t‘) =e e n.l...e lxo

ﬁhich establishes the contradiction.
As an application which emphasizes the ease w' which we can
study global questions using this theorem we observe the following

results relating to the classical groups. Here J is given by

]

and a matrix is called symplectic if 6'J0 = J,
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Theorem 6 : Consider the system of Theorem 5. Given a time
t. > 0 and given two nonsingular n by n matrices xl and x2 with
det xlxz > 0, there exists a piecewise continuous control which
steers the state from X, at t = 0 to X, at t = t_ if {Bi}A

i) spans R
ii) spans the n2-1 dimensional subspace of R consisting
of the zero trace matrices and det xl - detxz.
i111) spans the n(n+l)/2 dimensional subset of ]Rnxn consisting
of the set of matrices which satisfy JA+A'J = 0 and xzxil
is symplectic
iv) spans the n(n-1)/2 dimensional subset of zwnxn consisting

of all skew-symmetric matrices and XZXII is orthogonal.

Proof : As is well known any nonsingular matrix can be written as OR
with 6'0 = I and R = R’ > 0. Also real orthogonal matrices with
positive determinants and real symmetric positive definite matrices
have real logarithms. Moreover in case iii) the factors in the polar
representation inherit the property of the group itself, which is to
say that the and R in the polar representation of a symplectic matrix
are symplectic. To complete the proof we need only invoke theorem 5
since the previous remarks justify our writing xzx'l - enes with
Q=-Q' and S = S' both in the appropriate Lie algebras.

The results of theorems 5 and 6 are somewhat unsatisfactory in that

the A term is absent. The following theorem describes one way in

which this can be relaxed.
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Theorem 7 : Consider the linear dynamical system

. v
X(t) = (A+ ] ui(t)Bi)x(t) ; X = n by n matrix
i=1

Suppose that [adk}i,nj] = 0 for i, j=1, 2,...v and k=0, 1, ...nz-l.

Let .# be the linear subspace of St spanned by adkBi for i=1,2,...v
and k=0, 1, ...nz-l. Then given a time ta > 0 and two n by n matrices

x1 and X2 there exist continuous controls which steer the system from

the state Xl at t=0 to the state X2 at t =t if and only if there

exists H in .# such that

X, = eAtaeHX1

2
Proof : First of all, notice that

k-1
QLE_[eAtB e-At’Bj] d [eAt[A’Bi]e-At

t=0  dtfL

» &)
3 ‘:-o

k=2

d At -At
—_— [ (adzB Je ,B.]
152 A1 3 I:-o

]

At -At
[e (ad:Bi)e ,Bj -

[adkni .Bj ]

Thus .[em:Bie-A

However, adA is a linear operator from an nz dimensional space

t,Bj] is identically zero if {ad:Bi,Bj] = 0 for k=0,1,2,....

into itself so that by the Cayley-Hamilton theorem all powers above

nz-l are linearly dependent on the first nz-l. Thus under the hypothesis
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of the theorem statement [eAtB 1e-'A':,B J] vanishes identically. Also

At_ -At A =At
0=¢ Bie BJ-Bje 'T'Bie

= (At 1e.At) B 3 e M0_A%p 3 Aty 1_e'-At eV

Now let t+0 = 8 and Y = 6. Thus for &l1l B and Y

0= [eABB ie.AB,eAYB s e

For the purpose of solving the differential equation we introduce

z(t) = e MX(t) and observe that

v
2(t) = (] u e "2
i=1

But recall (see e.g. Martin [15]) that the solution of é(t)-B(t)z(t)
t )

is exp] B(o)do if [B(t),B(c)] vanishes for all t and 0. Thus we
0

can write

« N
2(t) = exp(fo {lui(t)e°AtnieAtdt)z(0)
i=

It is a well known and frequently used fact (e.g. [16] page 79)
that the image space of the map taking continuous functions into

. t
RP according to the rule x = L(u) = J 1eA"lm(a)du, is spanned by

0
the first p derivatives of e"*b evaluated at zero. Using this fact
here we see that for each B in J¥ and each t a > 0 we have a continuous

u defined on [0,1:‘] such that

2(t,) = &z(0)
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Therefore in terms of X we see that we can }aach at t_ using X which
can be expressed as eAtae“x(O) with H in . ¥
As an application of this result we derive a familiar relatiomship.
Example 4 : Consider the system in Rn
m

x(t) = Ax(t) + [ bu () ; x(0) = given
1=1

Related to this is the matrix system in R(n+1)x(n+1).

X(t) = [3 g] X(t) + 151 u, () [g gi] X(t)

- Let A and B1 be the matrices appearing in this exyression. In this

case [Ad:(Bi),Bj] vanishes as required and so the reachable set

from x(0) = I 1s

3?(:)-exp[:t g]{exp H; He .#}

where . is the subspace spanned by Ad:Bi. A computation gives

o

so that the reachable set at t is

eAt H
Re{X:Xm= [ ]; H € Range, B,AB,...An.JB} .
0 1

where ve have used the fact that eAtH = H for all t and all H in

Range (B,AB,...,AP-ln).
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5. Observability

In order to get a theory having a scope comparable to linear theory,
it is necessary to treat observability. The choice of an appropriate
form of the observational equation is critical for the success of the
overall theory. As it turns out, the natural choice is indicated by
the second example in section 2.

Let & be a matrix group and let € be a subgroup. Consider the
system evolving in &

. v
X(£) = (A + 121 u (£)B)X(E) ;5 y(t) =@X(t)
by which we mean that instead of observing X(t) directly, we observe
what equivalence class X(t) belongs to with respect to the equivalence
relation in & defined by ¢. Thus y(t) takes on values in the coset
space F/¥ which is generally not a group manifold. (see section 7)
We call two states X, and X, distinguishable if there exists some

1
control which gives rise to different outputs for the two starting

states. In general the zero control is not adequate to distinguish
between all states which are distinguishable as contrasted with the
situation one finds for linear systems.

Theorem 8 : Let ¥ be a matrix group and suppose that the set of

points 97 reachable from the identity for the system

. Vv
X(t) = (A + 21 u, (£)B)X(t) ; y(t) = €X(t)
i=

is a group. Then the set of initial states which are indistinguishable

from the identity is given by
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P = {P: RPR-le’g for all R e # )}

& is a normal subgroup of R and a subgroup of <.
Proof : Suppose that X is a starting state for the given equation which
is indistinguishable from the identity. That means that for each R
in & there is C(R) in € such that
C(R)RX = R

since /# and & are groups we can take inverses to get

Thus the set 9 is exactly those states indistinguishable from the
identity. The remainder of the conclusions come from theorem 3.
Theorem 9 : Let o and & be Lie algebras in K and suppose that
all the points reachable from the identity for

. \

X(e) = (A+ ] u ()B)IX(t) ; y(t) = {exp}, x(t)

1=1 i i G

is {expz}c. Then the set of initial states & which are indistinguish-

able from the identity contains {expe%’}c if and only if {ad X }AC *.

<

Therefore a necessary condition for all states to be distinguishable

from the identity is that ./ contains no subalgebra % such that

{ad P } < .

Proof : Theorem 8 gives a characterization of & which permits one to

bring‘ to bear theorem 4. Theorem 4 immediately gives the desired result.
One might be tempted to conclude that if there is no nontrivial

algebra J¢¥ meeting the requirements of theorem 9 then all initial states

are distinguishable. This is not true because & can be a discrete
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subgroup and hence not trivial and yet not expressible as {epr(}G
for any Lie algebra -X. The next example illustrates this.
‘Example 5. In the numerical integration of the equations of motion
of a rigid body one usually avoids Euler angle representation and
uses instead quaternion or direction cosine representations. As is
well known, the group of ﬁn:lt quaternions covers J€(3) twice.

This causes an ambiguity in going from #7(3) to the group of unit
quaternions. This example illustrates this idea. Consider an
equation in the group of unit quaternions 2 which we parameterize

2,2, 2 .2

in the usual way (a™+b“4c"+d" = 1.)

ra b ~-¢c -d O u

d ¢ b al l-u

y(t) = €

4 =-¢ b a

vhere € 1is the subgroup given by

"0 a O 01

-a 0 0 O
%’ = {mmc; e#-

0 0 0 a

0 0 -a 0
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Now it is true that {exp W’}G includes I and -1 and it is also true
that this pair of elements form a normal subgroup of 2. Thus I
as .an initial state cannot be distinguished from -I. Yet there is

no nontrivizl Lie algebra .4 such that {ady,JZ}AC A
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6. Realization Theory

Cne of the central results in linear system theory is the fact
that any two time invariant, ~ontrollable and observable reaiizations
of a given time-invariant input-output map are related to each other
in a very simple way. .ur purpose here is to establish a similar
theorem in this context.

Suppose we have two systems

. m
X(t) = (] u(£)BX(t) ; y(t) =&X(t)
{=1

m
z(t) = (] u (£)G)Z(t) ; y(t) =or2(t)
i i
i=]1

We assume that i) the systems are observable in the sense that no two initial
states give rise to the same response y for all piecewise coutinuous

inputs, and 1i) that there exist one to ore maps say c(*) and h(*) both
mapping into a set S such that if each system starts at the identity

gstate and if each system receives the same input,cﬁﬁl(t)) = h{xz(t))

for all future time. A pair of systems me¢ ..ng these criteria will

be said to be observable realizations of th> same input--output map.

We emphasize that X(t) and Z(t) are squ-ve matrices but not nece.sarily
of the same dimension.

Suppose we have two observable realizations of the same input-
output map. Let u(:) be a nonzero plecewise constant controi defined
on {0,1] which when applied to the X system takes the state X(0) = I
into the sta 2 X(1) = I. Then of course it must do the same for the

Z system because they are observable realizations of the same input-
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output map. Thus we see that if 11,12,...,1q is a collection of

integers with 1 < i, < m and if a, are any real nu-bers such that

k i
alBil azB12 an1
e e Y 1« I
then a.G, a.G aG
Lil 212 qi
e e ...e q'I
Let Ll’L2’°"’Lr be a set of commutator expressions in Bl’BZ""’Bh

such tha- {Li} forms a basis for {Bi}A' Let Kl’KZ""’Kr be in an

analogous expression obtained by replacing B. by Gl’ 32 by GZ’ etc.,

1
Let S be an arbitrary commutator expression in Bl’BZ""’Bm and let
T be the analogous commutator expression in Gl’GZ""’Gm' Then in the

notation of the proof of theorem 1, there exists differentiable fuactions

ai(p) such that for !p! small

EXPal(p)L1 EXP az(p)Lz... EXP av(p)Lr = EXP pS

and

EXPal(p)K1 EXPaZ(p)KZ... EXPa(p)Kr = EXPpT

Since the a, are differentiable we can write (prime denotes derivative)

m
I+p] al(OL, + o(p?) = I+ ps + o(p?)
i i
i=]
and
° 2 2
I+p) a/(0)K, + o(p®) = I + oT + o(p°)
i=]
Thus 1f
)
S = Y,L
1=1 i1

then
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r
T= 121 Y K
From this we see that the algebra {Gi}A is generated from {Bi}
in exactly the same way as the algebra {Bi}A is generated from
{Bi} and thus that the algebras are isomorphic. We summarize
this discussion with a theorem.
Theorem 10 : Consider the two systems

. m
X(¢) = (I uw (£)BX(£)) ; y(t) = €X(t)
i=1

. m
Z(e) = (] u (£)6 z(t)} ;5 y(t) = HU(r)
i=]

where X and Z are n by n and q by q respectively. Suppose that these
systems are observable realisations of the same input output map.

Then {Bi}A and {Gi}A are isomorphic as Lie algebras and moreover if

L,sLys...,L  are commutator expressions in {Bi} which form a basis
for {Bi}A and 1if Kl,KZ,...,Kt are the analogous expressions in G1
obtained by replacing B, by G, then K ,K),...,K_ is a basis for {G)A
and if
)
(L,,L,] = Y.., L
1ol T L Tagktk
Then

r

[Ky,K, ] = kzl Y

Of course this does not mean that the reachable sets from I namely {exP{Bi}A}G

and {exp{Gi}A}G are isomorpnic as groups. For example the group of unit

quaternions and the group of 3 by 3 orthogonal matrices have isomorphic

Lie algebras yet they are not isomorphic as groups.
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7. System Theory on Coset Spaces

In this section we reinterpret our results in a somewhat
different way. This interpretation leads to some facts about
systems on manifolds which do not admit a group structure. In
particular we have in mind the n-sphere s" = {x:x"x=1, x € 77i’n+l}
which, as i; well known, does not admit a Lie group structure
except for the cases n=1 and 3.

Let M < 7" be a manifold. Let & be a matrix group in Rm.
We say that ¢ acts on M if for every x ¢ M and every G £¢ ¥, Gx
belongs to M. By the orbit of ¢ through x we mean the set of points

Yx = {y:y=Gx, G ¢ ¥}. We say that & acts transitively on M if it

acts on M and if for every pair of points x, y in M, there exists G
in ¢ such that Gx = y. If ¥ acts transitively on M then at any
point x € M there will be a subset ]fxc % such that for each

HEJ(;,Hx-x. Clearly 1if H lexandH eJZ’xthe; H.H.x =

1 2 12

Hlx = x and H-lx = x so that .}fx is a subgroup. We call .7{’x the

isotropy group at x. Notice tha. if Gx = y then y = Gfox -

G.Y{’xG-ly and thus G;{’XG-]' is the isotropy group at.y =- all iso-

tropy groups are conjugate in 4. Now suppose M is a manifold for
which there actually exists a group ¥ acting transitively. Pick a
point x € M. Define in ¢ an equivalence relation whereby Gl ~ Gy
if and only if (;1 = Gzﬂx for some Hx € Ay There is a one to one

correspondence between this space of equivalence classes, %/x x’

and M. In this case we call M a coset space.

We study systems in which the state is represented as an n-vector
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and the evolution is governed by
v
x(t) = (A+ ] uw (t)B)x(t) ; y(t) = €x(t) (*)
i=1

By ¢x(t) we mean an equivalence class of vectors, X being equivalent
to x, if and only if Cx_L =X, for some C in ¥.

Let # be the . _‘gebra generated by {A,Bi) and let M C 1{‘ be
a manifold such that {expSé’}G acts on it. Then the above equation can
be thought of as evolving on the manifold M < R for if x(0) € M
then regardless of the control, x(t) € M for all t > 0. If there exists
a differentiable manifold M 7R" such that {expg’}c acts on M then
we will say that (*) is well posed on M.
Example 6 : Consider the n-spherve, s?. Let Bl’BZ’”"Bm be n+l by
nt+l skew symmetric matrices. Clearly the systea

m
X(t) = [ ] uw(©)B)x(t) ; y(t) = €x(t)
i=1

1s well posed on S” since {exp &}, consists of orthogonal matrices
and orthogonal transformations preserve norm. If we can observe only
the first component of x then we should let ¢ be the subsets of

Ho(n+l) consiscing of those matrices which have a 1 in the first

column and first row. That is

1 0 ]
%-[0 Fo(n)

With respect to.controllability we can say given any two vectors
X and X, in " there exists a plecewise continuous control vhich

steers the system from xl‘ to x, if and only if x, = Rxl for some R in
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{exp #'}, where ¥ is the Lie algebra generated by {Ai}' Also, an
arbitrary point can be transferred to an arbitrary point if and only
if {expff}G acts transitively on S".
At the same time we might observe that any x_ such that ||xo|[ =1
can be transferred to any x, such that lelll = 1 if and only if
{exp 1@6 acts transitively on S". This second point of view is useful
because it puts the problem of controllability on s™ in contact with
standard results in geometry. In particular a great deal is known
about Lie groups which act transivitely on st. [Samelson [17] page 26].
As for observability, we note that two initial states 3% and x,
in S® give rire to the same y if and only if for all R in {expﬁ?}c
there exists C(R) in ‘¢ such that Rxl = C(R)Rx2 which is to say that
R']‘C(R)sz - x;.
We now abstract from this example the essential features and

state formally a result which summarizes the development.

Theorem 11 : Consider the dynamical system (x(t) € 7RP)
x(t) = ( g u (©)B)x(t) ; y(t) = {eprt’}Gx(t)
i=]1

which is well posed on the manifold M< 7R". Let Z be the Lie algebra

generated by {Bi}' A given state x, is reachable from x, if and only
if x, = Nx, for some N in {exp#}.. Let . = {p:rRPR"!

all R € exp¥)}. Two states x

c {eprt}G

1 and x, are indistinguishable if and

only if X, = le for some P in .#. In particular, two states Xy

and x, are indistinguishable if x, = Px;, for P in (epr(}G vwith

being any Lie algebra such that {adg, J(}A -
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ot
Example 7 : Consider the submanifold M of 7RP 1 congsisting of those

points whose last coordinate is 1. The evolution equation in M

d (t) A Bu(t)rx 0 KerC (t)
e I S IR I EECRY G I |
1 0 0 1 0 0 1

corresponds to the more familiar x(t) = Ax(t) + Bu(t) ; y(t) = Cx(t).

lising theorem 7 we see that for the associated group equation

. A O m 0 b,
X(t)-[ ] + 1 u(n) [ ] X(t)
0 O i=1 00

the reachable set at time t consists of those matrices which can be
written as

At
e

x
R = {X:X= [ ] ; x € range(B, AB,...,An-]'B)}
0 1l

Thus if B,AB,...,An-lB spans 7}%l then the reachable group acts
transitively on M and we have controllability.

As for observability, we note that

0 KerC I KerC
(o) ()
0 0 0 1

The subalgebzas of # which are closed under commutation with ¥
correspond to the linear subspaces of KerC which are invariant under A.
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The Control Problem x = (A(l1-u)+Bu)x : A Comment on an Article by J. Kucera

*
Hector J. Sussmann

In an article recently published in this journal ([1}), J. Kulera
studied the control problem x = (A(l-u) + Bu)x. The main results of (1]
are that the set .»/(w,T) of points attainable at time T > 0 from a fixed
point w is an "integral manifold of the distribution.ﬁ(é,}})" ([1), Theorem
2.2), and that the set /' (w,T) -U{ﬂ(w,_‘l_') :0<t €T} 41s an "integral
manifold of the distribution #/(A,B)" ([1], Theorem 2.1). The purpose
of this note is to show that Lemma 2.8 of d],_which is a fundamental step
in the proof of Theorems 2.1 and 2.2, is false. The natural question to
be asked nuw is whether these results are nevertheless valid; it will be
shown in a forthcoming paper that they are. The proof, however, is based
on a completely different technique.

We quote the statement of Lemma 2.8 of (1] :

"{Let] T >0, & € (O, % )» u € M(6,1-6). Let the function u

be not constant in <0,T> (not equivalent with a congstant functior), then

Vix(Tu) < UV rk @."
Lol

The notations of the above statement have the following meaning:

a) "“(a,B)" (r?sp. <a,B>) is the open (resp. closed) interval with
endpoints a,B.

b) "M(a,B)" is the set of all measurable functions in (0,«) whose
values lie in <a,B8>, a < B.

c) t -+ x(t,u) is the solution of the equation

ba

at x(t) = (A(1-u(t)) + Bu(t))x(t)

which satisfies x(0) = w. Here w is a fixed element of ‘I}E (n-dimensional

—

*This work was performed while the author was at the Division of Engrg. and
Applied Physics, Harvard Univ., Cambridge, Mass. The author 's current address
" ig: Dept. of Math., Univ. of Chicago, Chicago, Illinios 60637.
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real space), and A, B are fixed elements of J(n (the set of all n by n real
matrices). ‘

d) 'Y is the "distribution created byd3", i.e. the mapping that
assigns to each x € .5‘1 the set 7{x’ of all elements of '59‘ of the form
Px, P e B

e) 8", or "B(A,B)" is "the smallest linear space of n by n matrices
which contains the matrix C[=B-A] and, with each P €3, contains also
both matrices [A,P] and (B,P]" ({1], Def. 2.2; the notation "[M,N]"
means "NM-MN").

£) 53(1‘) is the set of all vectors _:_gl(g,y), v € M(-1,1) ,where
I A
naw - 3o Slosowe |
0

and where

g) t * X(t) is the n by n matrix-valued solution of

A 2© - @e-uey + BuENxE

vhich satisfies X(0) = I, (I is the n by n identity matrix).

ke shall show that Lemma 2.8 is false by means of a counteraxample.

Consider the space .?o of all real polynomials in two noncommuting variables
y,2. Form the space & by equating to zero all the monomials of degree 5

‘ .

‘or more (in other words 3"’0 is the free algebra over the reals generated

by y and 2z, and & 1is the quotient of 9:, by the ideai generated by all the

monomials of degree S). Thus, & is a 31-dimensional real vector space,

and the monomials 1,2,5, 22’ ¥z, ¥, 52. 23, 225, 2y, zyz, yzz zyz, Ezy,

]
3 ¢ 1 2 2 .3 22 2 2 22 3 2
.Y sz, ymy, yEy, zy, Y2, YIyZ, 2y°2, YE'Y, 2YEY, 2Y, Yz, Zyz
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/A
5215, _532, 2 are a basis for & Moreover, #is an associative algebra

over the reals, with the obvious multiplication table (for instance:
zy 'z = zyzy, 25 - 30 = 0, ete.).

By means of this basis we can (and shall) identify & with ,&31.
In 3° the mappings g(z,_:;) -+ Z;_)(z,z.) and g(z,_g) -+ z_p-‘,z,_g) are linear.

Via the above mentioned identification, we obtain two 31 by 31 matrices

e
£ =

M and M_ such that these mappings correspond to x + M x and x + M x,

-7 z . p A

respectively. We let A = _l_(_z, B« ‘l'!!. + 51, so that C = _}1}_. To begin

with, we compute the space . It i8 clear from the definition that & is
the smallest lincar space that contains C such that, ‘f P ¢%&, then [A,P]
and {C,P] belong to #. Thus & 1is the linear hull of the set & of all
matrices (91’[92""’[95-1’91;]“‘”’ where k i8 an integer > 0, and where
91 = A or_Qi = C forie=1,...,k1, Bk = ¢ Using the facts that (C,C] = 0
and that [A,[C,[A,C]]] = [C,[A,([A,C)]] (an immediate consequence of the
equality (P,P]) = 0 and of the Yacobi identity [P,(Q,R]] = [(P,Q],R] +

[Q,fP,R]]) we see that the following a:e all the elements of B corresponding

to k < &:
!4_1 = C, }_{2 = [A,C], .ya = [A, [A,C]), l‘l’ - [9»[&99]]:
!!5 - [é: [_69 [_A_og]]]) EG - [Es[_éo [A,_C_]]] and _}_4_7 - [Q.[Q. [_A_’_C_]]l'
In addition, all the elements or & corresponding to k 3 5 vanish,

This is so because, via our identificetion of 331 with 3 (and of the

corresponding identification of«./gl with the set of endomorphisms of the

vector space %), every element Q= [91’(9-2"”'[93-1'9«]“’” of & corresponds
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to the muitiplication in P by a homogeneous polvnomial p(Q) of degvee k
(for instance, if Q= [5._9], then 9(Q) = g-gj). Since every homogeneo:s
polynomial of degree 35 vanishes in & our assertion fcllows.

Thus & 1is the linear hull of M,,...,M.. We show that thezse matrices
are linearly independent. It is sufficient to prove that the r :lplications
by the corresponding polynomials P‘(yl),...,g(g_i.]) are linearly independent.
If these multiplications were not independent, then tte images of the poly-
nomial 1 would be depcndent, i.e. the polynomials B(}_il),...,g(y_.,) would be
dependent. Thus, 1t is sufficient to show that these polynomials are
independent. F... B(_)gl),... ,2@7) are homogeneous polynomials both in y

and z, snd no two of them have the same degrees both in s ind z. Hence

they are independent.

We have chown that M,,...,M, form a basis for 3B, so that B -3 dimensiocrn

geven.

3l

We shall take w to be the element of R™" which corresponds to the

poiynomial 1 of # Thus, ¥(w) is tue livear hull of p(M,),...,p(M,),
and dim 7{w)=7. We take & to b~ an arbitrary element of (O,-;-), and

define the contrcl u by
u(t) =6+t for 0t <T,

vhere T = 1 - 28, Thus all the assumptions of Lemma 2.8 of [1  hold.
We show that the dimension of ¥(x(T,u)) is also seven. This is an
immediate consequence of Lemma 2.11 of [1], or it cam be proved iirectly

as follows: the equation
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- e e e Y ¥

implies * '.e derivative of the polynomial AgQ,g) is a polynomial
in y,z vichout a constant term. This ‘wplies that the constant term
of x(t,u) 1s 1 for all ¢ (because x(0,u) = w = 1). From this it follows

i- mediately that the seven polynomials 2@1)5(5,9_) are iinearly independent.

We shsll show thet the dimension of the subspace Li_Jl

[
greater thsn six. To begia with,rL.Jl_x_-. 5“(2) is obviously the set of all

K (T) is not
I“’!l.(“)

elements of the form
I
X(D (]0 X “(D)CX(t)v(t)dt)w
where v is an arbitrary bounded measurable function in <0,T>. We see
immediately that this is the sa.me as the linear hull L" of
EQ)_A_\:-I(E)‘C_X(S)_@. t € <0,T>. The dimension of L" is the same as that
of the linear hull :.' of all the elements _J{'l(g.)_gg)w (because X(T)
is nonaing;xlar). ¥.aaily, this dimension is not greater than that of the
linear hull . ox all the matrices _1{1(5)_01(_:), t € <0,T>.
Thus, it .o sufficient to show that dim L € 6. Since u(t) =t + 6,
the function t +}_'1(_§)c_§(;_) = y(t) is analytic. Thus? L is tne linear hull
of the coefficients o_f the pover series expansion of y in a neighborhood
of t = 0 or, equivalently, L is the linear hull of {% I |iup ¢ n=N,1,...}.

Since X(t) = (A+u(r)C)X(t), we c2e that

) = - lavuoo .

ol w

If M(t) 1s any matrix-valued function, we have

HE OU@EE) = =X @ra ) OMOXEE T OBE) (D OXE)
w g uw - 2
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Applying this formula to the successive derivatives of Y we obtain

i

£ v - 5 wr (X ,

d_t_“ =

uhc'are

B(t) =C, B(t) = [AL), Fy(t) = [A+(H)C,[A,C]),
Fa(t) = [A+(eH)C, [A+(e+8)C, [A,C111+IC, [A,C)I,
B, (8) = [C, [A+(t+5)C, [A,C) ] )+2[A+(£46)C, [C, [A,C] ],
By () = 3[C,[C,[A,C]]] and Fc(c) = 0.

In the above computations we have used the fact that every element of

g corresponding to k 3 5 vanishes.

- LY
Our computations show that, of all the matrices Ln !(E)It-u ’

dt

only those for n=0,...,5 are nonzero. Thus, the dimension of L is not

greater than 6.

The preceeding remarks show that, in our example, the dimension of &
0

1/ (X(T,u)) is seven, while the dimension of rt-Jl _g.gu(_‘{‘) is less than six.
Therefore, the conclusion of Lemma 2.8 of [1] does not hold, even though all

the assumptions are satisfied. Thus, Lemma 2.8 of [1] i5 false.

Reference

‘[l] J. Kulera : Solution in large of Control Problem x = (A(1-u)+Bu)x.
Czech. Math. J. 16(91), 1966, 600-623.



THE BANC-BANG PROBLEM FOR CERTAIN CONTROL SYSTEMS

IN GL(n,R) *
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ABSTRACT
m
We discuss the linear control problem X(t; = [éo(£)+ = Lli(E)éi(-t-)]
=1 11
X(t), where A,,... ’ém are nxn matrix-valued functions of time, and

where X(t) ¢ G L(n, R). We show that the set attainable from any element
M € GL(n,R) at time t by ""bang-pang'' controls is closed, provided
tne following very strong assumption is satisfied: for alli,"j and for

allt', t'" suchthat 0 S : <t 0 < t' St the matrices A.(t!) and

Aj(g_':) commute. We also show, by means of counterexamples, that

these assumptions cannot be weakened.
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1. Introduction

Recently, interest has arisen in the study of the linear control
problem in manifolds and Lie groups (Brocke*t {1], Haynes and Hermes [4],

Kulera [5] and [6]). Such a control problem is of the form

x(t) = Xo (x(t)) +
1

>

u (8) X, (x(0) ,

L M3

where i(t) denotes the tangent vector to the curve 7 - x(1) at 7 =%,
and where _}So, ..., X are vector fields.
A particularly imporiant case is that in which the manifold is a

Lie group, and the vector fields are translation-invariant. When the

Lie group is GL(n,R), the problem takes the simple forn:

where A A are constant matrices.

07"
The purpose of this article i¢ to indicate what hopes there should be
of building a reasonable "bang-bang" theory for this problem, and for the
more general one in which the matrices éi are time-~dependent. The
important issue fs , as usual, to determine-whether the attainable set at
time T is closed. It might seem likely that the tool to be used shonld
be some generalization of the well known theorem of Lyapounov, which
has proved so fruitful for similar problems (Lyapounov [7], Halkin [2] and

[3]). However, as we shall show, not much is to be expezted in this

direction. We shall prove, that, under certain very restrictive conditiens,

¢. seduess of the attainable set follows by a straightforward application

of Lyapounov's theorein. We shall also show thai, if these conditions are
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weakened, it is possible to give examples of control systems for which
the attainable set fails to be closed.
The new aspect that plays a ‘undamental role is that of the

commutativity of the matrices _P_x_i. The very restrictive assumptions to

which we have referred are the following:
a) The condition that [éi(i)’ éj(t_')](l) should vanish for all i, j, t,
t'. This will guarantee that the set attainable at time T by "bang-bang"

controls is closed, provided we define a "bang-bang" control as a

measurable function with values in the set {-1, 1}.

b) The additional condition that the functions }_\i(t.) should be piecewise

analytic. If this is true, we will be able to get closedness even if we

restrict the class of "bang-bang" controls to piecewise constant functions

with values in {-1, 1}. Of course, this covers the time-independent case
in particular.

The main point of this paper is that these conditions cannot be
weakened. This will be shown by giving three examples of non-closed
attainable sets. These examples cover, in our opinion, the simplest
possible conceivable departures from the commutativity condition. Thus,
our results constitute a rather final answer to the closedress nroblem.

Our results also apply to systems in which X is a column vector in

Bg, rather than an nxn matrix (cf. Remark 1 of section 4).
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2. Notations and Preliminary Lemmas

We shall consider the control problem

X = @y +

o M3

[ A) X© M

where X(t) belongs to GL(n,R) (the set of all nonsingular real nxn
matrices). The functions éi(g) are supposed to be bounded and
measurable, with values in 't;e set M(n,R) of all nxn real matrices.
For A e¢M(n,R), define the norm of A (denoted by nﬁn) as the supremum
of Hé_’i"’ where x ranges through all the vectors in 59“ such that

n 1

Ixll =1, and where, for ieg_ﬁ, x| denotes the Euclidean norm (Z %)

izl —
We shall denote by U(T), for each T > 0, the set of all

measurable(z) functions defined in the closed interval [0, T} with values

): 21 S u S1 i=l

—i

in the cube {(9_1, SRS y o e ,Ln_} . We shall denote

by UB(T) the sub:et of U(T) whose elements are the "bang-bang"

functions, i.e. the measurable functions (gl(g), cey \_1m(£)) such that

El(l:)zl or gl(_)- -1 forall i=1,...,m andall 0 StS T. Finally, the

set of all 1 eUB(T) that are piecewise constant wii) ve denoted by UBP(T).
It is clear that U(T) is a bounded and weakly c.osed subset of

!,2[0, T], so that U(T) is weakly compact. We also have:
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LEMMA 1. UBP(T) is weakly dense in U(T).

Proof: It is clearly sufficient to assume m=1. Since every function
in U(T) can be approximated in the I_:.Z-norm by piecewise constant
- functions, it follows that it will be sufficient to show that every cornstant
function is a weak limit of elements of UBP(T).
Let u{t)=r S 1, for 0StS T. Wecanassume r > 0. For each

interval I = [a,b], let the function 1, be defined as follows:

for

"

]
ot
i»

StSatl(l-r)(b-a)

()

il(i)

1]
Yot

for a+i(-r)(b-a)<tSH

b .

Then, clearly, S‘ ’_f_l-(_t_)'itj;-g-(l_)-;a). Now define L (for k=1, 2,...)
a —

by partitioning the interval [0, T] into k intervals [

kl""’zkk of

length Tk ', and letting u(t) = £ () for each teL ,i-1,.. ,k Itis
- T Tk - S
now obvious that the functions Yy belong to UBP(T) and that their weak limit

is u. The proof of cur lemma is thus complete.
Let ueU(T). Let X(u,+) be the solution of equation {J) which

satisfies the initial condition X(0) =1 (I = nxn identity matrix}). The set

of all matrices X(u,T), for ueU(T), is the attainable set at time T, and we

shall denote it by §_(I). If we restrict ourselves to functions u e UB(T),
iresp. ueUDT™IT)), we can similarly define the sets SB(T), SBP(I).
The union of wie sets S(t) forall 0 S t < T will be denoted by S'(T).
In a similar way, we detine the sets SB'(T), SBP'(T).

It is clear that no loss of generality is involved in limiting ourseives
to the study of the sets attainable from the identity. Indeed, the set of

matrices attainable from any other M e€G L(n,R) is just the set of ali
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products X(u,t)M.

LEMMA 2. Let the functions 2‘& converge weakly to u. Then

{z(\.xk

, 1)} converges uniformly to X(u,t) for 0St<T.

Proof: For each veU(T), we have

m

t
X(v,t) = _I_+S-[é,0(7) + Z v (1) A(7)] X(v,7) dv (2)
0 j=1 7% 1

Since the functions éi are bounded, and lzi('r)l € ], there is a

constant 9 > 0 such that
t
I Xtv,t)] S 1+C . I X(v, )l ar

for all veU(T), andall 0 St < T,

It follows by a well-known argument that
IX(z 0] < exp (Ct), for all v,t.

In particular, we see that the functions X(v,")(veU(T)) are uniformly
bounded. Equat‘ion (1) then implies that the derivatives of these functions
are also uniformly bounded.

To show that _X(gk, *) converges uniformly to 2(,(3, *), it is sufficient
to show that every subs:e-quence has a subsequence that converges uniformly
fo X(u, ). By the previous paragraph and the Ascoli-Arzeld theorem,
every subsequence has a subsequence that converges uniformly to some
function Thus, our lemma will be proved if we show that, if {Xk} converges

weakly to v, and if _)_{(yk, *) converges uniformly to X(¢), then

X() = X(v, ).
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Equation (2) implies that

[ d

m

l(_(\ik)_t) - l + S.— [éo(’r) +i§ (Y.l_(_)l(T)é.l.(T)] ['X-(XE’ T) - K(T)] dr

o

t m
+ So [Ay(7) +i‘:51 (\_'_ls)i('r)éi_(v)] X(7) dr

Using the weak convergence of v, to v, and the uniform convergence

k
of E(.(Y.k’ ") to X('), it follows that
t m
X(t) =1 +S‘ [_P_xo(v') + Z v.(7) A.(1)] X(7) d7
- 0 =1~ T T

Then, Xit) = X(v,t), and our lemma is proved.

COROLLARY 1. The mapping u - X(u, ') is continuous from

U(T) with the weak topology into the space of continuous M(n, R) -valued

functions in [0, T] with the uniform topology

SOROLLARY 2. The sets S(T), SYT) are compact.

COROLLARY 3. The sets SBP(T), SBP'(T) are dense in S(T),

_S_'(I_), respectively,

Proof. Corollaryl is a restatement of Lemma 2. Zor. 2 follows

from Cor. 1 and the fact that H(I) is weakly compact,

Finally, Cor. 3 follows from Lemma 1 and Cor. 1.

. Clo,2. ness of the "Bang-Bang'-Attainable Set

It is clear from the preceding section that closedness of the attairable
set SB(T) (resp. SBP(T), SB'(T), SBP'(T)) is equivalent to the identity

S(T) = SB(T) (resp. S(I) = SBP(T), S(T) = SB(D), S'(I) = SBRPYT)).
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The following theocrem is a positive result in this direction and, as we

shall prove in the next section, it is the best possible result of that type,

THEOREM 1, If all the brackets [/_\i(;), Aj(t,'}} verish (for all i, j,

t,t'), then SB(T) and SB'(T) are closed. If, in addition, the functions AL

are piecewise analytic, then the sets SBP(T) and SBP'(T) are also closed.

Proof. If our assumption about the brackets holds, the solution of

equation (1) is given by

t m t
X (u, t) =exp(J—0-iO(’r)_c_i_‘T). T expt j" o Ai(Me;(ndn.
i=1 -

To verify this. notice that:(i) the derivative of exp(E(t)) is E'(t) exp (Z(t)),
if F is a matirix-valued function such that 1:(;_1) and g(gz) commute for all
5

muting matrices (these two facts are proved, using the power series expan-

,12, and that: (..) exp (M + N) =exp(M) - exp(N) if M and N are two com-

sion for the exponential, in exactly the same way as for the scalar case; the
commutativity makes it possibletto "rearrange'' factors). From (i) it fol-
lows easily that X(u,t) = exp (f— (AO + Z Eiéi)). The desired expres-
sion then results from (ii). o

It follows from Lyapounov's theorem on the range of a vector-valued
measure (Lyapounov [7], Halkin [2],, that the set of matrices f-t__éi('r)g(r)g_'r,
where u ranges over the set of all measurable functions with valoues.in {-1, 1},
is compact for each i, Thus, the first part of our statement is clear. The
second part follows in a similar way: according to a theorem of Halkin
(vsee[Z] and [3]), the set of valuesf—t-i(’r)g('r)g'r, where u ranges over all
piecewise constant {-1, 1}-valued fu(:mtions in {0, T ], and where f is a

vector-valued piecewise analytic function, is compact.

4, Counterexamples

We _w show that the assumptions of Theorem 1 cannot be weakened,
Clearly, the simples¢ situations in which thesc assuraptions do not hold are

a) the control problem |
X{H) = (B + +{)C) X(M), (3)
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where B and C are constant matrices such that BC # CB,

b) the problem
X() = (u(O)B +v(t)C) X(t) (4)

where B and C are as in a), and

c) the problem
X(t) = v(t) Et) X(1), (5)

where F is a matrix-valued function such that [F(t), F(t")] # 0 for some

Lt
THEOREM 2. In each of the cases a), b), c), the set SB(T) need
not be closed.

Proof. We shall exhibit examples of prcblems where SB(T) fails
to be closed. Our three examples will invoive 4x4 matricec, i.e , we
shall be working in GL(4,R). The examples for cases b) and c) will Le

derived from the ex.mple for case a).

We let
0 0 0 0] 0 1 0 0]
B - 0 ¢ 0 O , c- 0 0 1 0 ,
- 0 0 0 1 0 9 0 0
o0 0 0o 0] 0 0 0 ¢C_

Let X(v,t) be the solution of equation (3) whose value at t = 0 is

the identity matrix.

i- is possible to compute .,v,t) explicitly. The result is
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™ . 2 -]
S (IR S0 (1) R (7
0 1 (¢, h(t)
_).E(vai) = ’
0 0 1 t
[ 0 0 ) 1 |
where
nt
£ =\ v(n) ar ,
3 Jo
t
h(t) = S 7 v(r) d7 )
o

o
——
-
e

"

t
glt) = 5“3(7) h(r) dr
0

If SB(T) were closed for some T >0, it would {fo. ow from Cor. 3
that 5B(T) = S(1). Iun particular, the matrix X(0,t) would belong to SB(T).

Thus, there would exist a "bang-bang" contro. v for which

1~

T I rT
wngr - (Trsmer - [Fam [ rsmger o

(\
O =
‘) 0 0 0

0

We shall show that this is impossible. Inde=d, by repeated

integrations by parts we get:

~

L T (
(Zvn {rvumaver = (Cremnm e
0 v 0

&

o

T
£(T) h(T) - S“ £lr) h'(7) ¢
0

T
40 (@ - (1) 0y g
0
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T .2
£(T) W(T) - 4 S; -‘g;— (1) 7 dr

T
(o -3 TED+3 (Tl e
0

T
If a control v satisfies (6), it follows that S [_1;('1')]2 dr = 0. This
0

implies that f(7) = 0 almost everywhere. Since y is the derivative of {

—

a.e., we must have that v=0 a.e., so that v cannot be "bang-bang". This

completes the proof that SB(T) is not closed for any T > 0.

Turning now to case b), we shall use the same matrices B and C as
before If X(u,v, ) denotes the solution of equation (4) whose value at
t =0 is I, it is clear that X(l,v,-) ie the function X(v,‘') of the previous
paragraph. We claim that X(1,0,T) cannot be attained by "bang-bang"
controls u,v, Inview of what we have proved above, it is sufficient to
show that, if X(u,v,T) = X(1,0,T), then u =1 But this can be seen easily
as follows: we can compute X(u,v,T) explicitly and obtain 513(7) dr as
the value of the entry in the third row, fourth column. Since tgis entry has
to be equal to T for X(1,0,T), and since u(7r) €1 for all 7, u must be

1 almost everywhere.

Finally, we consider case c). Here, we define
F(t) = exp(-Bt). C. exp(Bt),

where B and C are the same matrices that have been used for the other
two cases. Let Y(v,') be the solution of equation (5) whose value at t = 0

is 1. It is seen immediately that

Y(v,t) = exp(-Bt). X(v,1)
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Since we know that there does not exist a "bang-bang" control v
such that X(v, T) = X(0, T), it follows that Y(0,T) is not attainable at
time T by "bang-bang" controls. Our proof is thus complete.

Remarks:

1) It is clear that all our results are equally valid for control problems

of the type
. m
i) = [AyL +E u(t) Al)] x) , (7)
jzp b T
where x(t) is a column vector in R® and Ay - ’-ém are matrix-valued

functions(s). This is obvious for all our positive results, because the
solution of equation (7) with initial condition x(0) = X0 is just X(u, ) Xq-
As for Theorem 2, we need only observe that the problem considered in case

a) is equivalent to the "vector" problem

x(ty = (B + v(t)C) x(t),

where x(t) is a 4x4 matrix, considered as a vector in 16-dimensional space,
and where B and C are suitable 16x16 matrices (the matrices of the
linear transformations x - Bx and x— Cx , respectively, with respect

to an appropriate basis of 516). The sets attainable from the "vector"

X0
counterexample for case a) of the "vector" problem Obviously, similar

= 1 will coincide with the sets §(1:), SB(T), and in this way we get a

considerations apply to the other cases.

2) For ccmpleteness, we should give an example of a situation in
which all the commutativity assumptions of Theorem 1 hold, but SBP(T)
fails to be closed because of non-analyticity of the functions éi‘ It is well-

T -
known (and easy to prove) that the set of numbers S £(t) u(t) dt , where
0
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(t) = sin(l/g), and where u ranges over all piecewise constant
{-1,1} -valued functions in [0, T], is not closed for any T > 0. Let this
be denoted by éT' The set QT = {Q?S:gc_eé} is therefore not closed.

But B.. is the set of points attainable from x = 1 at time T by ''bang-

T

bang'' controls, for the system

x(t) = £(t) u(t) x(t)
(which is of the form that we are considering, with n = 1), Moreover, by
multiplying the function f by a smooth function that vanishes at the
origin to a sufficiently high order, we can modify our counterexample

so that f will be as smooth as desired and even Qw).
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Footnotes

N-NM. Thus

p———

1. We are using here the standard notation [M, N] =
"[M,N] = 0" is another way of saying that the matrices M and N

commute.
We follow the standard convention of identifying functions that are

2.
equal almost everywhere.

3. This is the problem studied by Kulera in [5] and [6].
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1. Introduction

In this article we study the controllability of non-linear systems

of the form

dx
dt

= Fix, u). (%)

Our objective is to establish criteria in terms of F and its de-
rivatives at.a point x which will give qualitative information about the
sets attainable from x. The study is based primarily on the work of
Chow [4] and Lobry [16], although it is similar in its approach to works
by other authors in that it makes systematic use of differential geometry
(for instance, see Hermann [8],[9], Haynes & Hermes [6], Brockett
[2], etc.).

The state variable x is assumed to take values in an arbitrary

real analytic manifold M, rather than ian. We chose this generalization
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because it creates no essential new difficulties while, on the other hand,
it allows for certain applications which are not commonly treated in
control theory. For instance, when M is a Lie group, then the present
results can be specialized to obtain more detailed controllability
criteria. Control problems on Lie groups were first considered by
R.W. Brockett in [2], and will be treated in a forthcoming paper by the
authors,

Most of the recent studies on controllability of non-linear systems
have essentially dealt with symmetric systems, i.e., systems of the
form (*) with the property that F(x, -u) = -F(x, u) (Hermann [9], Haynes
and Hermes [6], Lobry [16]). As remarked by Lobry in [16], the con-
sideration of symmetric systems often excludes interesting situations

arising from mechanics, In these cases the system is of the form

-%’tﬁ- = A(x) + H(x)* u.

A notable exception is the work by Lobry [17]. Lobry stated
(and proved for the case of two vector fields in33) the result for non-
symmetric systems that appears here as Theorem 3, 1,

Our results apply to non-symmetric systems., We obtain some
general information about the geometric structure of the attainable
sets showing that they ''practically'' are submanifolds (see Theorems
4.4 and 4,5 for the precise statements). This information yields a
complete answer to the problem of deciding when the sets attainable
from a poi: x have a non-empty interior. The criteria obtained
involve purely algebraic manipulations of F and its derivatives (of all

orders) at the point x (see the Remark below).
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In particu'ar, our results contain those of Kugera [14]. In this
connection we observe that our proofs are of interest even for the case
treated by Kucera (see Sussman [21]).

We have cmitted the consideration of non-autonomous systems;
they can be treated analogously by the familiar procedure of reduction
to an autonomous system (i.e., by considering the state variable to be
defined in M X R).

The organization of the article is as follows: in section 2 we intro-
duce notations and basic concepts; in addition, we quote some well-known
basic results which will be used later, In section 3 we prove our main
results in differential geometric terminology.

In section 4, we apply these results to control systems., We
derive the algebraic criteria mentioned above (Corollaries 4, 6 and 4, 7)
and we prove two ''global results: we show that, for a large class of
manifolds, accessibility (i. e. the property that, for any given x, the
set of points attainable from x has a nonempty interior) implies strong
accessibility (i. e. that, for any given x and any given fixed positive t,
the set of points attainable from x at time t has a nonempty interior). We
also show that, for a still larger class, including the Euclidean spaces,
controllability implies strong accessibility,

Finally, section 5 contains examples. We shovw how our results
can be used to derive the classical controllability criteria for the

system
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We also derive the results of Kudera and indicate some generalizations,

Remark. An assumption that i§ made throughout the article is
that F is an analytic function of x. This guarantees that all the inform-
ation about the system is actually contained in F and its derivatives (of
all orders) at a given point x. The analyticity assumption cannot be
relaxed without destroying the theory (cf. Ex>mple 5, 3),

Another assumption that we make is tha' the trajectories of the
system are everywhere :fined. As opposed to the previo‘us one, this
assumption is not essential (except for the ''global'’ Theorems 4. 9 and
4,10). We use it, however, because it considerably simplifies all the
proofs,

2. Preliminaries

We shall assume that the reader is famiiiar with the fundamental
notions of differential geometry. All the definitions and basic concepts
utilized in this paper can be found in standard books, (for instance,
[1], [3], [7]. [13] and [19)).

The following notations will be used throughout:

R--the set of real numbers.

Bn- -n-dimensional Euclidean space,

M -- the tangent space to the manifold M at the point x,.

TM--the tangent bundle of the manifold M,

V(M)--the set of all analytic vector fields on the analytic
manifold M,

We will regard V(M) as a Lie algebra over the reals.

For any X and Y in V(M), we will denote the Lie product by
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(_‘_(_'(](1 e., [_}_<__¥_] = XY - YX). All the manifolds will be assumed to
be paracompact., Recall that a submanifold of a paracompact manifold
is paracompact. Also, a connected pai'acompact manifold is a countable
union of compact sets. These facts imply (cf. Lobry [16], p 589):
LEMMA 2, 1. Let M be a (paracompact) manifold of dimension n.
Let S be a k-dimensional connected submanifold of M. If k< n, then
the set of points of S has an empty interior in M.
A subset D of _\_f_(_l\_/l_) will be called involutive if, whenever _‘_x_ and Y
belong to D, then [X, Y] also belongs to D. A subalgebra ofij\_[(_l\_/[) is an

involutive subspace, Let D ¢ V(M). An integral manifold of D is a

connected submanifold S of M with the property that Sx =¥ (D(x)) for
every x ¢ S, where D(x) = {X (x) : X ¢ D}, and where ¥ (D(x)) is the
subspace of Mx spanned by D(x). We state the followinz b2sic results
about integral manifolds:

LEMMA 2.2. Let D be an involutive subset of V(M), and Jet

¢ M. Then x is contained in a unique maximal integral manifold of

F

D (here "'maximal'' means ""maximal with respect to inclusion'’).
This result is classical if the dimension of £ (D(x)) is the same for
each x ¢ M(Chevalley [3]). For a proof in the general case, see Lobry

[16].

If D € V(M), we denote the smallest subalgebra =i V(M} which

contains D by (D), and the maximal integral manifold o: 1)) through
x by (D, x). Recall that, if X is a vector field on M, then .. .. an

integral curve of X if qis a smooth mapping from a closed interval I,

1 CR, into _I\_/I__such that
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—d—%(-tﬁ— = X(a(t)) for ail t e1,

DEFINITION 2,3, If D is a subset of V(M), then an integral
curve of D is a mapping g from a real interval [t,t'] into M such that
there exist t = t0< 9 <.,..< tk =t, and elements Xl" .. ,Xk of D
with the property that the restriction of a to [ti-l’ ti] is an integral
curve of Xi for eachi=1,2,..,,k, We have the following clementary
fact:

LEMMA 2.4. LetD V(M). Leta: [t),t;] ~M be an integral
curve of D, and let a(t) = x for some t ¢ [to, tl]. Then a(s) e (D, x)
for all s ¢ [fo, tl].

Proof. It is sufficient to consider the case when ais an integral
curve of X, X ¢ D. For each maximal integral manrifold S of J(D),
let J(S) be the set of all s ¢ [to,tl] such that g(s) € S. From the I»cal
existence and uniqueness of solutions of ordinary differential equations
it follows that, if s € J(S), then there exists r >0 such that (e-r, s+r)n
[to, tl] < J(S). Thus, J(S) is open relative to [to,tl]. Zince the
maximal integral manifolds of & (D) are disjoint, we h~.ve that, for some
maximal integral manifold S, [to, tl] C J(S). But oft) ¢ XD, x); therefore,
our proof is cdmplete.

Chow's theorem provides a partial converse to the above lemma,
If D CV(M), then D is symmetric if, whenever X ¢ D, -X also belongs
tc D. We can now state Chow's theorem as follows:

LEMMA 2,5, LetD € V(M) be symmetric, and let x ¢ M. Then,
for every y ¢ (D, x) there exists an integral curve a: [C,T] - M of D,

with T 20, such that q(0) = x and o(T) = vy.
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In other words, every point of the maximal integral manifold of
7 (D) through » an be reached in positive time by following an integral
curve of D having x as its initial point.

DEFINITION 2. 6. Let D (’_X(_I\_/{), and let x ¢ M. If T > 0, then,

for any y ¢ M, y is D-reachable from x at time T if there exists an in-

tegral curve a of D defined on [0, T] such that g (0) = x and a(T) =y. The
set of all D-reachable points from x at time T is denoted by Lx(D, T).
The union of Lx(D,t) for 0 <t < = (respectively for 0 st s T) is denoted
by EX(D) (respectively EX(D,T)).

3. Integrability of Families of Analytic Vector Fields

As an introduction to the general situation, we first considered the
case when D is a symmetric subset of Y(M). Chow's theorem can be
utilized to obtain a necessary and sufficient condition for I;x(D) to have
a non-empty interior in M. Let n =dim M =dim #(D) (x). Then
ID,x} is an n-dimensional submanifold of M, and hence is open in M,

By Chow's theorem we have thati.,x(D) = (D,x). We conclude that ’ldx(D)

is >pen in M. Conversely (and without invoking the symmetry of D) if
dim¥ (D) (x)<n, then_I(Q),z_c) is a connected submanifold of M of dimension
less than n; then from Lemma 2,1 it follows directly that}(_]i),x) has an
empty interior in M, Since EX(D)CH D, x), Ex(D) also has an empty interior,
Thus, if D is symmetric, a necessary and sufficient condition for kx(D)

to have a non-empty interior in M is that lim &(D)(x) = dim M, Moreover,
this condition is necessary even in the non-symmetric case (Lobry [16]).
We shall show that it is alsc sufficient. For this purpose we shall

assume that the elements of D are complete--recall that a vectc r field

X is complete the integral curves of X are defined for all real t

(Cf- [13]' p- 13).
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THEOREM 3. 1. Let M be an n-dimensional analytic manifold,
and let D ¢ V(M) be a family of complete vector fields. A necessary
and sufficient condition for l,x(D) to have :;1 non-empty interior in M is
that dim.7(D)(x) = n. Moreover, if this condition is satisfied, then for
e;ach T >0, the interior of E’JX(D, T) is dense in i_,x(D, T) (thus, in
particular, }:x(D,T) has a non-empty interior).

Proof. We already know that the condition of the theorem is

necessary. So we assume that dim #{D)(x) = n, and we prove the
second statement, Clearly, this will imply that I“x(D) has a non-empty
interior in M. Without loss of generality we can assume that D is finite.

Let D = {X ,,.,,Xk}. For eachi=1,2,...,k, let@i(t,-) be the one-

1

parameter group of diffeomophisms induced by Xi(i. e., t —>Qi(t, y) is

the integral curve of Xi which passes through y at t = 0; the fact that

it is defined for all realt follows from the completeness of Xi)' If m
is a natural numberiz (tl, oo tm) is an element ome, andi =

(il, .o s im) is an m-tuple of natural numbers between 1 and k, then we
denote the element Qil(tl, Qiz(tz, e ey 5im(tm. x)...)) by Qi(b x). Let + D

be the family of vector fields obtained from D by adjoining the vector

fields -X .»-X, toD. Then, + D is symmetric, and dimF(1D) (x) = n.

| k

From Chow's theorem we conclude that Lx(;l_- Q)'is open in M. Clearly,
the elements of L _(1D) are exactly those elements of M which are of

the form Qi (t,x) for some m, some m-tuple i, and some t € Rm_ For

each i, and for each natural number N > 0, let A (i, N) be the set of

all points of M of the form ¢ (t,x),where ||t|| =N (here, litl = It,|

+... +| tml). Since A (i, N) is the image of the compact set

{t: HL | = N}under the continuous mapping t - § . (t, %), we have

~
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that A(i , N) is compact. Also, since Lx( + D) is the union of the sets
A(i,N) (taken over m, i and N), it follows from the category theorem that,

for some i and N, the set A(i,N) has a ﬁon—empty interior in M. For
such ani, let F:R™ -~ M be defined by F(t) = ;i(b x). Then F is an

~

l analytic mapping whose image has a non-empty interior in M. By Sard's

theorem (Sternberg [19]), the differential dFt of F at t must have rank

~

n for some t ¢ R ™ Since dFt depends analytically on t , it follows

~
~ ~

~

# .
that the set @ ={t:t =z R m, rank d-—Ft <n} has an empty interior.

#
Let @ =R™ - Q". ThenQ is open and dense in Em

LetT >0, and lety ¢ LX(D,T). We now show that y is in the

<

closure of the interior of Lx(D,T). It is clearly sufficient to assume
that y € Lx(D' t), where 0= t < T (for each point of kxlD, T) is in the

closure ofU{Lx(D,t) :0st<T]}). Lety =§j(i,x) where j =(jl,....j ).

~ ~ p

= > = =
s (sl....,sp), 5, O,...,sp>0, andsl+...+sp t. Let U =Qf)

{t:HtH<T-t}n{t:t1>0,...,t >0}. U is open, and its closure
~ ~ ~t m —
contains the original 0 of R ™ Since dFt has rank n at each pointt ¢ U,

it follows that F(U) is open. LetV = {@J.(i, F(f)) : t e U} V is the
image of F(U) under the diffeomorphism z - §. (3 . 2); therefore, V is

A~

open in M and, moreover, every eiement ofX is D-reachable from x
at time ||s|| + |[t]l =t + {[t]l < T (here we use essentially the fact

that t tm are non-negative). It remains to be shown that y belongs

-l,..-,

to the closure of V. Let {t q} be a sequence of elements of U which
converges to 0. Then

lim 8.(s, F(t ) =8, (s, F(0) =2.(s,%) =v.

J
~ ~ ~

This completes the proof of the theorem.



-70-

We now waat tu state an analogous theorem for the sets Lx(D, T).
For this purpose, we shall introduce a Lie subalgebra JO(D) of .7(D)
which will be related to these sets in the same way as (D) is related to
the sets 14\~(D,"_"). The aim of the following informal remarks is to
motivate our definition of Jb(D). We shall ignore the fact that time has
to be positive. Moreover, we shall assume, for simplicity, that D
consists ot aree vector fields Xl'x?. and X3, Let Ql’ ¢, and § 3 be the
correspondirg one-parameter groups. It is clear thatJ{D) has the
f,1lowing ''geometric interpretation'': F(D)(x) is, for each x ¢ M, the
set of all liriting directions of curves through x that are entirely « n-
tained ir LJX(D). Thus, for instance, if i=1,2,3, then all the points in
the curve t — § i(t, x) are attainable from x (recall that we are forgetting
about positivity), and this is reflected in the fact that Xi(x) belongs to
FJ(D)(x)j. Sim‘lariy, the curves aij(t) = Qi(-t,Qj(-t,Qi(t,Qj(t, x))))are also
contained in I':.‘X(D). By the well known geometric interpretation of the
Lie bracket (cf. Helgason [7], p. 97), the limiting direction of a'ij
is [Xi,Xj](x) (after a reprrametrization). Thus, it is clear why [Xi,Xj]
belongs to #(D). Obviously, a similar argument works for the brackets
of higher order, The geometrical meaning of #{D) is now obvious,

1f ,VO(D) is-going to play the desired role it is clear that J’O(D)(x)
will have to be the set of all limiting direction s of curves y through x
such that y (t) is "attainable from x in zero units of time' for all t.
Notice that the curves ¢ iJ.(t) of the preceding paragraph have this
pfoperty. Indeed, qoft) ca. he reached from x by ''moving forward' in

time 2t units, and then ""backward'' another 2t units, This shows that
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the vector fields [Xi’xj] are reasonable candidates for membership in
,i’O(D). A similar argument applies to higher order brackets, such as
[X., [Xj,Xk]], etc. On the other hand, a vector field such as X. should

1

not be included in.fO(D) by definition, because we do not know whether

the points 4 i(t.x), t 4 0, can be reached from._ig in 0 units of time (but,

of course, it may happen that some Xi will belong to %(D) anvhow;

for instance, we could have X, = [XZ’X3])‘ However, the vector fields

Xi - Xj will have to be included, because (Xi-Xj)(x) is the limiting

direction of the curve t—»Qj(;t,Qi(t, x)). In other words, the subspace

generated by the differences Xi - Xj will have to be included in .fO(D),
This subspace can also be defined as the set of all linear combinations

)\ Xl + )\2X2+x 3X3 such that At )\2 tAg = 0 (that all the differences

1

Xi - Xj are linear combinations of this type is trivial; conversely, if

Y = A X+ Ok X, hgXg withhy +h, +h5 =0, then ¥ = X X, +),X, +

(-h] - Ap) Xg,de, Y =4 (X -X5) +X,(X, - X))

1
We conclude that the reasonable candidates for membership in
Jy(D) are: (i) all the brackets [Xi'xj]’ [Xi’ [X.,Xk]], etc., and (ii) all
the sums "1X1 3’
generated by (i) is clearly the derived algebra of F(D) (by definition,

)
+ X2 + )\3X where Z)\i = 0. Notice that the subset

the derived algébra of a Lie algebra L is the subalgebra L' of L generated
by all the brackets [X,Y], X ¢ L, Y ¢ L; it is easy to check that L'
is in fact an ideal of L; cf. Helgason [7], p. 133.

We now return to o..r formal development. LetJZD) denote the
derived algebra of (D). Motivated by the previous remarks, we define

.i'o(D) to be the set of all sums X + Y, where X is a linear combination
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MT

A.X. withX.,...,X e¢eDand Z), =0,
i ) i

i=1 1

and where Y ¢ (D). It is obvious that .FO(D) is an ideal of (D),

One shows easily that 7 (D) is the set of all vector fields of the form

n M

AX,. +Y
ii

i=1

where Xl"' . ,Xp belong to D, Y belongs to 4 '(D), and \ 1* - ’)‘p are

reals (but Xl

mediately that J'O(D) is a subspace of J(D) of codimension zero or one. The

+... + )‘p need not be zero), From this it follows im-

codimension will be zero if and only if someXe D belongs to F,(D) (in
which case every X ¢ D will belong to J’O(D)). Similarly for each x ¢ M,
if k = dimJ(D) (x), then the dimensio.n ofg'o(D) (x) will either be k or
k-1,

We shall also be interested in associating to each D CC V(M), a
set D* of vector fields in the manifold MXR, Recall that the tangent
space to MXR at a point (x,r) (x e M, r eB) is identified, in a natural
way, to the direct sum M, ® R_. Ifx eV(M), Y e V(R), we define the

vector field X @Y ¢ V(MXR) *v

(X ®Y) (x, r) =(X(x), Y(r)).
3

The set D* is defined to be the set of all vector fields X@-é-t-, where
X €D, and where —a%- is the '"canonical' vector field on R ( -a-a-t—f) (r) =

%{- (r)). Using the identity [X@X', Y®Y' ] =[X,Y] ® [X',Y'], one

shows easily that F7'(D* is the set of all vector fields of the form X () 0,
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where X .7 (D) and 0 is the zero vector field, Therefore, #(D*) is the

set of vector fields of the form

P 3

> _ #

2 )\i(xi@ at)+Y@g (#)
where Xl""'xp belong to D, Y - .57' (D), and )\1,... ,)\pare scalars,

THEOREM 3.2. Let M be an malytic n-dimensional manifold, and
let D be a family of comp_lete analytic vector fields on M. Let x ¢ M, and
let T >0. Then LX(D,T) has a non-empty interior in M if and only if dim.ﬂ(‘)(D)
(x) = n. Moreover, in this case, the interior of Lx(D,T) is dense in Lx(D,T),

Proof. The main idea in this proof is to modify our problem so that

we can ''keep track' of the time elapsed while we move along an integral
curve of D. We shall then apply Theorem 3,1 to the modified system. We
shall work in the manifold M X R. As in the preceding paragraphs, we
let the family D* of vector fields on M X R be defined by D* = xX® -aa—t :
X ¢ L'} Itis clear that there is a one-to-one correspondence between
integral curves g of D such that o(0) = x, and integral curves 8(D*) such
that g(0) = (%, 0). This correspondence is given by assigning to each curve
athe curve t —(aft),t). It follows that y ¢ Lx(D’ T) if and only if (y, T)

€ E(x, 0)(D*,T). We show that Lx(D, T) has a non-empty interior in M

if and only if L (x, 0) (D*) has 2 non-empty interior in M X R. Assume
that LX(D, T) has a non-empty interior in M, and let V be a non-empty
open set such that V& LX(D,T). Let X ¢ D, and let & be the one-para-
meter group of diffeomorphisms of M generated by X. Consider the
mapping F : VXE» MXE defined by F(v,t) =(3(t,v),T +t). Itis
immediate that the differential of F has rank . + 1 everywhere. Therefore

F maps open sets onto open sets.
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Since F(VX(O,m))C’%(X’O)(C*}, we conclude that E(x,O)(D*) has a non-
empty interior in MXR,

To prove the converse, assume that I’:’.(x' 0)(D*) has a non-empty
interior in MXE By Theorem 3,1, for each t with 0 <t< _'I;. E(x, 0)
(D*,t) has a non-empty interior in MXR, Let V be a non-empty open
subset of M, and let W be a non-empty open subset ofB such that VXW C
L (x, 0)(D”‘,t:). Let s e W, Since VX {s} [l L X, 0)(D"‘,t), we conclude
that VC Lx(D' s). LetX ¢ D, and let ¥ be the corresponding one-para-
meter group on M. Denote the mappingy - 8 (T-s,y) by G. Then
G(V) is open. Since G(V) is contained in Lx(D,T), it follows that
Lx(D,T) has a non-empty interior,

We conclude from Theorem 3,1 that Lx(D,T) has a nonempty
interior if and only if dim F(D*)(x,0) =n + 1, To complete the proof of
the first part of our statement, we must show that this last condition holds
if and only if dimg’o(D)(x) =n, We recall, from the remarks pre-

ceding this proof, the fact that every X* ¢ J(D¥*) can be expressed as

P
# ¥ = b _é..
(F) Xxx= 2 (XD 55 )+YF)O where X)se.. s X belong to D

i=1

and Y ¢ (D), Now assume that dim J (D*){x,0) =n + 1, Let
Ve Mx‘ Then (v, 0) must belong to F(D*)(x, 0), so that (v, 0) = X*(x, 0),
where X* ¢F(D*). Then formula (#) holds for suitable Ay X Y,

Therefore

v=(Z )‘ixi + Y) (x),

é.nd
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The last equality implies that Z)‘i = 0, so that the vector field Z) ixi +Y
belongs to J'O(D). Thus - ¢ .%(D)(x). We have shown that Mx C%(D)(x).
Therefore the dimension of g’O(D)(x) is n, Conversely, let dim Q'O(D)(x) = n,

Let v ¢ Mx. Then v ¢ J’O(D)(x), so that
= (=
v=(EAX +Y) (),

where the Xi belong to D, Y ¢ J(D) and Eki =0, Therefore,

(v,0) = (ZA X, +Y) D) (Er) 2 (x,0)

) 3
_(E;\i(xi@-&- + Y @2)(::,0).

This shows that (v, 0) belongs to J(D*) (x,0). Pick an X ¢D.,
Then X@-éét- (x,0) belongs to D¥(x, 0) by definition, and X @ E
(x, 0) belongs to 4 (D¥*)(x,0) by the previous remarks. Therefore

(0, 5%— (0)) belongs to F (D*)(x,0). We have thus shown that F(D*)(x, 0)

contains all the vectors (v,0), v ¢ Mx, and also the vector (0, -éa-{- (0)).

ThereforeJ (D*)(x, 0) = (MXE)(X’ 0y’ so that dim . (D¥*)(x,0) =n + 1
as stated,

We now prove the second part of the theorem., As we remarked
earlier, there is no loss of generality in assuming that Dis finite, Let
VG Lx(D, T). Using the notations cf the proof of Theorem 3.1, let

=3 .(t,x), wherei =(i,,...,i_), and where t ¢ R ™ is such that
Y 1 ~ ~ l m -~ ~

ti>0 fori=1,...,mand \“l:‘“ =T, Let {sk] C (O,tm) be such that

lim 81 = 0, Since our condition for Lx(D,T) to have a non-empty

k + o

interior is independent of T, we conclude that Lx(D,t) has a non-empty

interior for allt >0, In particular, for each k > 0, there exists X,

which belongs to the interior of Lx(D, sk). Let L K (tl’ e tm-l’
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tm - sk), and let Yy = Qi (ik,xk), For each k >0, Yy belongs to Lx(D,T);

~v

since Qi is a diffeomorphism, Vi is the interior of Lx(D,T). Also,x, -x

k
as k -=» because D is finite and S - 0. Since Qi is continuous in both
variables, and siice t K b we have that Y Yo and our theorem is proved.

The results of the previous theorems can be utilized to obtain inform-
ation about the sets Ex(D'T) and LX(D, T), even when dimZF1D)(x) < n.

THEOREM 3.3. Let D C V(M) be a family of complete vector fields,
Then, for each T >J, the set I:'x(D,T) is contained in I(D, x). Morzover,
in the topology of I(D, x), the interior of I.ix(D’ T) is dense in I':(D,T).
Lx(D, T) has a non-empty interior in I(D, x) if and only if dimgo(D(x)) =
dimJ(D)(x) and, in this case, the interior of LX(D,T) is dense in Lx(D, T).

Proof. If§ e (D), then X is tangent to I(D, x). Thus, there is a
well-defined restriction_}s# of X to _I;(Q,J_c). We denote the set of all such
restrictions of elements of D by D#, Since [X,Y}# = [X#, Y#], it follows
that 9’(2)# =J(2#). Analogously, we have that JO(D)# = J’O(D#), If
we now apply the previous theorems to the family D# of vector fields in
I(D, x), we get all the conclusions of the theorem.

COROLLARY 3.4. Let S be a maximal integral manifold of (D).
Then the dimension of gb(g)(:_c) is the same for all x ¢ S,

_Pi_x:go_f._ If dimJ(D) (x) = k then, for each x ¢ S, the dimension of
g'o(D)(:r.) is either k or k-1. We show that, if dim J'O(D)(y) = k-1 for
some x ¢ S, then dim 9’0(D) (y) =k-1 forall yeS. "etQ be a non-
empty, open (relative to S) subset of I,Jx(D) (this is possible by Theorem
3.3). We first show that, if y €2, then dim JO(D)(y) = k-1, If this
were not the case, then necessarily dimﬂb(D)(y) = k., Then Ly(D, t) would

have a non-empty interior in S for all t >0. This would
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imply that Lx(D, t) has a non-empty interior in S, But by our assumption
this is impossible, Thus, dim JO(D)(y) =k -1 forally €. Siuce S
is connected, and 2 is open in S, we have that dim j’o(D)(y) = k-1 for
all v ¢ 5; therefore, our statement is proved,

We now proceed to study the case when dim JO(D)(x) = dim

J(D)(x) - 1. We begin by proving some preliminary lemmas,

LEMMA 3,5, Let D V(M) be a family of ~~mplete vector fielcs,
IfXeD, let {8 t} be the .one-parameter group generated by X. Then,
for every x ¢ M, and every t ¢ R the differential da_st maps J‘O(D)(x)
onto .JTO(D)(Qt(X))-

Proof, We first show that for every y ¢ M there is an r >0 such

that, if v QJO(D)(y), then d 8 t(v) € .%"O(D)(Qt(y)) for all t with |f| <r,
It is sufficient to show that for every'r_z € M and every v eJO(D)(y)
there exists an r >0 such that 48 t(v) € J'O(D)(Q t(y)) for all t with
|t| <r, LetvyeM, andletve .70 (D)y). Ifv =Y{y) for some
Y e JO(D), then an easy computation shows. that there exists a neighbor-
hood of t = 0 such that d8 (v) = Z, L'l_ll.l_ x'P v (@t(y))ti for all
t in this neighborhood, where [X(o),Y] =Y, and [X(n), Y] = [X, [X(n- l),
Y]] forn =1,2,... Since each term of the above series belongs to

T 0(D)(Q t(y)), we have that d3 t(v) e.?'o(D)(Qt(y)) for t sufficiently small.
Also, for such * we have that dq:t (.70(D)(y)) = JO(D)(Qt(y)); this is so
because d§ ¢ is une-to-one, and dim J’O(D)(y) = dim J'O(D)(Qt(y))
(Corollary 3.4), It follows easily that the set of all t such that
dit(yO(D)(x)) = JO(D)(Qt(x)) is both open and closed, If v ¢ J’O(D)(x),

we can conclude that Qt (v) e J’n(D)(Q t(v)) for allt. This completes

our proof,
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As we remarked earlier, .70(_];)_) is a subalgebra of .7(D). We will
denote the maximal integral manifold of 9’0(2) through x by IO(D' x).
If X ¢ D then, by the previous lemma, @t(IO(D, x)) i8 a maximzal integral
manifold of J'O(D).

LEMMA 3.6, Let D C V(M) be a family of complete vecto. fields.
Let X and Y be elements of D, and let { Qt} and {‘yt] be their correspond-
ing one-parameter groups. If S is a niaximal integral r-anifold of

.fO(D) then, for any t ¢ R, e}t(S) =Yt(S).

Proof, LetX,Y, q>t, ‘}'t and S satisfy the conditions of the iemraa.

Let P be the maximal integral manifold of & (D) which contains S. If

dim P = dim S, then S = P, and @t(S) =S =yt(S). Assume that dim 5 = k
dim (P) -1. We first show that there is an r >0 such that &y (S) = \yt(S)
whenever |t | <r, Letx¢S. The mapping (s,t) —» Qt(s) has rank k +1
at (x,0). Let 2 be a neighborhood of x in S, and let §> 0 be such that
this mapping, restricted to 2 X (- 6,8 is a diffeornorphism onto an open
subset Qf of P, If y ¢Q#, let s(y) and f(y) be such that By (89D = y.
Clearly, f is analytic in Q#, and fly) =0 if ~ond nly if y e Q. Mr .. over,
Xf=1inQ# For every t such that |t| < 8, the net 6t($2) is nn
integral mani{»ld of 3’0(9). The vector fieid Y - X ie tangent to Qt(Q)
and, since f is constant on Qt{Q), it follows that Yi = Xf on Qt(Q). Since
Q# is the union of the sets 6t($'2) over -§ < t <« §, we conclude that
Yf=Xf =1 on Q#, Letr >0 be such that the curve t — 8_Jv(x), de-
fined on -r<t< r, is contained in Q#, In addition, let v< 8, Let g(t) =
f(@_t(‘ft(x)). Then g is analytic in (-r, r), and moreover g(t) = f(‘yt(x)) -t
We have that q' = (Yf) (\yt(x)) - 1 = 0 and, since g(0) = 0 it follows that

g =0on(-r,r), But this means that @_t(‘yt(x)) e N

for alt t ¢ (-r,r). Hence, if |t| < r, the manifold
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Q_t(\yt(S)) intersects S. Sirce Q_t(‘yt(S)) is a maximnal integral manifold
of .‘/'C(D), it follows that Q-t(‘lj t( S)) = S, and tnat \yt( S) = §t( S). LetA

be the set of all t such that QT (S) =Y T(S) for all v in a neighborhood of
t. Then A is obviously open, and we have shown that ' ¢ A. It follows
easily from the preceding argument that A is closed. Therefore,

@t(S) = \yt( S) for ail real t, and our proof is complete,

Acccrding to the above lemma, if DC V(M) and if x ¢ M, then
the manifold Q’;(IO(D’X)) depexds only on t, and not on the particular
choicz of X . We shall derote this manifold by Ig (D,x). It is clear
that IB(D,x) could be defined as the maximal integral manifold of
JO(D) passing through y, where y is an arbitrary point of Lx(D, t).

Finally, we prove a factorization property of maps that will be
utilized several times,

LEMMA 3.7, Let E be a locally convex vector space, Jet
KCE, and let C be a convex dense subset of K. Let F: K - ID,x)
be a continuous mapping such that F(C) is contained in a maximal
integral manifold S of JO(Q), Then F(K) is contained in S, and F,
as a mapping from K into S, is continuous,

Proof. If din. S = dim I(D,x), then S = (D, x), and the conclusion

follows trivially, Therefore, we shall assume that dim S = dim I(D,x) -1,
Letk e K, let X ¢ D, and let {Qt] be the one-parameter group

induced by X. Then, as in the proof of Lemma 3, 6, we can find a

neighborhood Q »f F(k) in IO(D,E(E)), and a positive number §, such

that the mapping (s, t) -»!t(s) is a diffeomorphism of Q@ X (-5, §) onto

an open subset Q# of I(D,x). Let U be an open convex neighborhood of

k such that F(UNK) C Q#. For eacht ¢ (-8, §), the set g (Q) is an
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integral manifold of J'O(D); therefore, if Qt(Q) intersects _§, then
Qt(Q) is contained and open in S, Let A = {t: |t| < &, Qt(Q) C Ss}.
It follows that S N Qf is the union of the sets Qt(Q), t ¢ A. These sets
are mutually disjoint and, since S is separable, it foliows that A is at
most countable, Let y —»(s(y), f(y)) be the inverse in Q¥ of the map
(s,t) - Qt(s), Then the function g defined in UN E by g(m) = {(F(m))}
is continuous, Since F(UNC)C S N Qff, we conclude that g(m) ¢ A
forallm ¢ U () C. ButA is at most cour:;table, and U N C is convex;
therefore g is constant on UN C. Since UN C is dense in U N K, we
have that g is constant on U K. Obviously g(k) = 0, and therefore
g(m) =0 forallm ¢ UNK; thus F(m) ¢ 2. This shows that Q con-
tains a point of S; hence QCS, agd F(k) ¢ S, This proves the first
part of the lemma,

To prove the second part, let {kn} C K converge to k. Since F
is continuous, F(kn) - F(k). For large n, s(F(kn)) is defined. Since
5 is continuous, s(F(k )) converges to s(F(k)) inﬁ. But g(k ) =0, and
therefore s(F(kn)) = F(kn). Similarly, s(F(k)) = F(k). We have thus
chown that F(kn) converges to F(k) in S,and our proof is complete.

Remark 3.8, It ir clear that the preceding lemma is valid under
weaker assumptions about _(_3_ and K. For instance, it is sufficient to
assume that, for every k ¢ K and for every neighborhood U of k,
there exists a neighborhood V of k suchthat V¢ U and V ) C is
connected,

We now state and prove the theorem towards which we have been

aiming.
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THEOREM 3.9. Let D C V(M) be a set of complete vector
fields, andletx ¢ M., Then, for each}'_ > 0, LX(D,T) (s I:)(D,x) and,
moreover, the interior of Lx(D,T)(reiative to I;(D,x)) is dense in Lx(D, T)
(and is, in particular, non-empty).

Proof. If dim 4 0(D)(x) = dim J(D)(x); then we have from Corollary
3.4 that J’O(D)(y) = F(D)(y) for all y ¢ ID,x). THherefore, IO(D,x) =
IE(D,x) and our conclusion follows from Theorem 3, 3, Assume that
dim J‘O(D)(x) =k = dirﬁJ(D)(x) - 1, It is clear from Lemma 3. 6 that,
if « is an integral curve of D such that q(0) = x, then o(T) ¢ Ig(D,x);
hence, Lx(D,T) C I'g(D,x).

We now show that, if y ¢ Lx(D,T), then y 1is the limit of points
which belong to the interior of Lx(D,T). Let D = {Xl, e Xk} and
lety = Qi('l‘l,x), where “E“ =T, and Ti >0 fori=1,2,,..,m (the
notation: here are the same as in the proof of Theorem 3.1), Let
i= (jl’ e js) be an s-tuple of integers between 1 and k such that the
rank ofi —»Qj (£, x) is equal to dim F(D)(x) for all t in an open dense
subsethfE?. Let Q' ={£:i € BS, ti>0 fori=1,...,s} N Q.

Let {£ p} C Q be a sequence that converges to 0, and letNTp = (Tl’ ey
T T, - “E pu ). We can assume that || tp | < T forallp>0. If
we let yp = Qi (;[" p’ Qj(ip,x)), then yp € LX(D,'I'). We next show that
(D, x). Since the

0
e N
mapping 2 —»Qi(s P’ z) is a diffeomorphismr from I0 ~P (D, x) onto

Y, is in the interior of Lx(D,T) relative to I

IT(D,x), it suffices to show that $ (t ,* .s in the interior of L (D ']t Ih

0 ;l'\"p X ’ ‘~p :
s _ .

LetV_ = {t:teR°, t,>0,...,t>0, ||t| -l\gp\\}. Clearly, if

defined by Fp(i?i =@ i (t ,x). We show that Fp is analytic. Since Fp

~/
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is analytic as a map from Vp into I(D, x), it suffices to show that it is
continuous., But this follows from the previous lemma, because Vp is
convex. The rank of t —» Qj (t,x) is equal to dimF(D)(x) at t =t _. Since

P
V is a submanifold ost of codimension 1, it follows that the rank of

Fp at Lp is equal to the dimension of IO“LP (D,x). Thus, Fp(VP) con-
tains a neighborhood of Fp(£ p) in IOH,E,P “ (D, x). It follows that

Qj(i p,x) is in the interior of Lx(D, “Lp“ ). By the previous remark

we conclude that yp is interior to Lx(D,T) in Ig (D,x)., There remains

to be shown that yp converges to y in Ig(D,x). The mapping (L , ~s) -

$ . (L,Q .(E,x)) is continuous as a map from Em)(gg- into I(D,x). The set
V~={(£,§) Dt > 0, sj>0,i =1,...,m, j=1,...,s, “L“ +] sl =T}

is convex, and is mapped into Il(I)' (D,x). Therefore, the previous lemma is
applicable, and we conclude that yp -yinl g (D,x). This proves our

theorem.

4. Applications to Control Systems

We shall consider systems of the form

dx(t)
dt

= F(x(t), u(t))
defined on an analytic manifold M. The functions u belong to a class
% of "admissible controls'. We make the following assumptions about

% and the system function F:

(i) The elements of # are piecewise continuous functions defined

in [0,), having values in a locally path connected set 2. 2 € R m

(2 is locally path connected if, for every w ¢ 2 and every neighborhood
V of w, there exists a neighborhood U of w such that U C V, and U

N Q is path connected). In addition, we assume that % contains
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all the piecewise constant functions with values in Q@ , and that every

element of ¢/ has finite one-side limits in each point of discontinuity.

% is endowed with the topology of uniform convergence on compact

intervals,

(ii) F: MX Q --TM is jointly continuously differentiable. For

eachu ¢, F(-,u) is a complete analytic vector field on M. We know

that for eachx e M, ue %, the differential equation

dx(t

Oy, ut)  x(0) = x, (1)
has a solution defined for 211t ¢ [0,#), where #>0. We denote such a

solution by TI (x,u,-), and we assume that TT (x,u,t) is defined for all

t e[0,9.

For the above defined contro!l system, we now state the basic

controllability concepts. We say that y ¢ M is attainable from xeM

at time t (t = 0), if there exists u ¢ % such that n(x,u,t) =y. For each
x € M, we let A(x,t) denote the set of all points attainable from x at
timet. If 0= t< o, we define A (x,t) =UA (x, s) and A(x) = U A

sgt t=z0"
(x,5). We say that the system is controllable from x if A(x) = M, and

that it is controllable if it is controllable from every x ¢ M., We say

that the system has the accessibility property from x if A(x) has a non-

empty interior, and that is has the accessibility property if it has the

accessibility property from every x ¢ M., Finally, we shall say that the

system has the strong accessibility property from x if A(x,t, has a non-

empty interior for some t > 0, and that it has the strong accessibility

property if it has the strong accessibility property from x for every

X ¢ M,
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Forwe 2, let Xw = F(-,w), from assumption (ii) it follows that
Xw is a complete analytic vector field -on M. Throughout the remaining
part of this article we let D = {Xw tw ey,

LEMMA 4.1, For eachxc¢ M, _é (x) is contained in I(D, x),

The proof is identical to that of Lemma 2, 4, and will, therefore,

be omitted,

Remark 4.2, It is easy to see that the control system defined by
restricting I to I{D, x) satisfies the same assumptions as the original
system, Since it can be readily verified that the map u — T(x, u, t) is

continuous as a map from % into M, it follows that this map is also

continuous as a map from % into (D, x).

We now want to obtain a result for A(ﬁ’.t.) which is similar to that
of Lemma 4.1, It is here that the assumption about 2 will be utilized.
Let # be the class of piecewise constant 2-valued functions defined on
[0,0), Clearly, & is dense in % . Moreover, thp local connectedness
of  implies that the condition of Remark 3, 8 is satisfied (this can be
easily v rified, and we omit the proof). Thus, we can apply Lemma
3.7, with C =%and K =4, to obtain the following result:

LEMMA 4.3, LetxeM. Foreachtz0, A(x, CI:)(D.x),

Proof. Since# contains &, we have that Lx(D' t) € A(x,t). Let
G: % - 1ID,x) be defined by G(u) = TI(x,u,t), We have that G(#) = Lx
(D, t) and by Theorem_ 3.9, (&) C I;(D,x). Now our conclusion
follows immediately from Lemma ‘3. 7, and the proof is complete,

The above lemmas combined with the theorems of the preceding
section yield the following results:

THEOREM 4.4, Letx e M. Thené (x) C (D, x). Moreover,

for every T > 0, the interior of’é(x,T) relative to (D, x) is dense in
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é(x,T)(and, in particular, is non-empty).

Proof. The first part is just the statement of Lemma 4. 1. To prove
the second part, we can assume that I(f),x) = M (if not, replace the
original system by its restriction to I(D, x), cf. Remark 4. 2), Since
' EX(D,T) is dense in .i\J(x,T), our conclusion follows immediately from
Theorem 3. 1,

THEOREM 4.5, Let x ¢ M, Then, for each t >0, A(x,t) C
I(;(D,x) and, moreover, the interior of A(x,t) relative to I(;:(D,x) is
dense in A(x,t) (and, in particular, is non-empty).

Proof. The first part is just the statement of Lemma 4.3. To prove
the second part, we apply Lemma 3.7 to the function G of Lemma 4. 3,
and we get that G is continuous as a map into ItO(D,x); therefore,

Lx(D’ t) is dense in A(x, t) relative to IB(D,x). Our conclusion now follows
immediately from Theorem 3.9, and the proof is complete,

The following two controllability criteria follow immediately from
the Theorems 4.4 and 4.5, and from Lemma 2. 1;

COROLLARY 4.6, The system has the accessibility propertv
from x if and only if dimF{D)(x) = dim M. In this case A(x,T) has a non-
empty interior for every T >0,

COROLLARY 4,7, The system has the strong accessibility
property from x if and only if .70(D)(x) = dim M. In this case A(x,T) has
a non-empty interior for every T >0,

The preceding results can be utilized to derive relationships
between accessibility and strong a.ccessibility. Even though the latter
property seems much stronger than the former, we show that, for a very
large class of manifolds (including the spheres S" for n> 1, and all com-

pact semisimple Lie groups, but not En). it is in fact implied by it,
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On the other hand for a still larger class of manifolds (including R")
controlability (which trivially implies accessibility), is sufficient to
guarantee strong accessibility (the fact that controllability implies
that dim # (D*)(x) @ n + 1 for all x was proved by Elliott in [5]),
Consider a system on a connected n-dimensional analytic
manifold M, having the accessilility property but not having the strong
accessibility property. Létl_I_Dbe the family of associated vector fieids,
By Corollary 4, 6, dim J(D)(x) = n for all x ¢ M, By Corollary 3, 4 the
number dim J’O(D)(x) is independent of x. Since this number is either
norn-1, Corollary 4, 7 implies that dim JO(D)(x) =n-1 for all

x ¢ M. Choose a fixed X ¢ D, and use §, to denote the one-parameter

t
group generated by X(i, e., for every y ¢ M, the integral curve of X
that passes through y at t = 0 is the curve t - Ot(Y)). Define a mapping

F from the manifold SXR into M by
F(s,t) =4 .(s).

One shows easily that F is a local diffeomorphism onto M.

Moreover, SXR is connected. In fact, we have (cf. [18], Ch, 2, for
the definition of a covering projection):

LEMMA 4.8. The map F is a covering projection.

Before we prove Lemma 4,8, we show how the results mentioned
above follow from it.

THEOREM 4,9, Let M be a manifold whose universal covering
space (cf. [18]) is compact, Then every system having the accessibility
property has the strong accessibility property,

Proof, If the universal covering space of M is compact, then

every covering space of M is compact. If it were possible to have
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a system on M having the accessibility property but not the strong
accessibility property, we could define, for such a system, Sand F
as above. It woulu follow that SXR is compact, which is clearly a
contradiction.

Remark. If n>1, the sphere s" is .simply connected (and compact).
Therefore Theorem 4.9 applies. Also, if M is a connected compact
semisimple Lie group (for instance SO(n), if n >2), the universal
covering group of M is also compact (cf. [7], p. 123) and, therefore,
Theorem 4. 9 applies in this case as well,

THEOREM 4, 10. Let M be a manifold whose fundamental group
has no elements of infinite order, Then every controllable system on
M has the strong accessibility property.

Proof. A controllable system obviously has the accessibility
property. Assume it does not have the strong accessibility property.
Define S and F as before. We show that F is one-to-one. Otherwise,

there would exist s c Sand a T # 0 such that F(T,s!) =% T(sb) =

]
0’50

F(0, s Therefore » T(S) = S. Define H: SXR -+ SXR by

0) =8,
H(s,t) = (& T(s), t-T). Then H is well defined, because 3 T(S) = S, and

is a homeomorphism, Moreover, if (s,t) ¢ SXR

F(H(x,t) =8, 1(s..(s)) =8,(s) = F(s,1).

Therefore H is a covering transformation (cf. [18], Ch, 2),

Moreover, H has infinite order, because Hm(s, t) = (&mT(s),t-mT),

‘80 that H™ is not the identity map if m # 0. We know from [18] Ch, 2
that the group of covering transformations of the covering space

(GXR, F) is isomorphic to a subgroup of the fundamental group mof M,
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If mhas no elements of infinite order, then this is a contradiction,
Therefore F must be one-to-one. On the other hand, the points that

are attainable from x, must belong to S*(= Qt(S)) for some nonnegative

0

"t (cf. Theorem 4.5), Therefore the points in S-t are not attainable,

if t> 0. Thus, the system is not controllable, and we have reached a

contradiction.

<

Remark. Theorem 4,10 applies, in particular, to any simply

connected manifold, such as Rn.

Proof of Lemma 4.8, We must show that every point of M has a

neighborhood that is evenly covered by F. Let m € M. Since Fis a

local diffeomorphism onto, there exist s ¢S, te 5, €¢> 0 2nd a connected
neighborhood U of s in S such that F(s,t) = m and that the restriction of

F to UX(t-¢,t + ¢ ) is a diffeomorphism onto an open subset Vof M.

We claim that V is evenly covered. LetA = {T: @T(S) =S}. For each

T ¢ A, let U'r = 'r(U)‘ Since 5, ¢ S-~Sisa diffeorporphism, it follows

that U'r is open in S and connected for each 7 ¢ A. We first show that,
if0<|7- nf<2e, 7TecA, neA, then U'r and UY\ are disjoint. Assume
they are not. Then & T(U'r) and 3 T(U'{ are not disjoint, for any T. Choose
T such that both T +7 and T + n belong to (t-'e, t+e). Letu = QTH(uI) =
5 +n(u2) be a common element, where u, and u, belong to U, Then the
points (ulT +71) and (uZ,T + n) belong to UX(t-¢,t+¢). Since the re-
striction of F to this set is one-to-one, it follows that 7 = n, which is

a contradiction, For each 7 ¢A, let WT = U'r X (t-T-¢, t-T+¢), We shall

conclude our proof that V is evenly covered by showing:
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(a) the sets \VTare open, connected and pairwise disjoint,
(b) for each T ¢ A, F maps W_r diffeomorphically onto V, and
(c) the'in{r‘:arse image of V under F is the union of the sets W'r‘
The first two assertions of (a) are obvious. If T and n beloag to
A, and 7 # n, then either |7 - n| < 2eor |7-n|Z2¢c. In the first
case W'r and WT\ must be disjoint, because U'r and Unare disjoint,
In the second case, W_’; and W'ﬂ are also disjoint, because the intervals
(t-7-¢, t-T+e¢) and (t-mr g t-n+ €) cannot have a point in common,
To prove (b), take 7 ¢ A, Define G: UX (t-¢,t +a - W’r by
G(u,s) =(#& T(u), g-T). Clearly, G is a diffeomorphism from UX(t-¢,
t + ¢) onto W'r' Moreover if uelU, t-e<q <t +¢ ,thenF(G(u,g))z(bc-'r(@.r(u)) =
Qo (u) = F(u,s). Since the restriction of F to UX(t-¢, t+€) is a diffeomor-
phism onto V, the same must be true for the restrictinn of_lf to WT .
Finally, we prove (c), Letuc S, g ¢ B be such that F(u,s) ¢ V.
T'hen there existu'e U, '€ (t-¢,t+ ¢) such that F(u‘,J') = F(u, o).
Therefore u = Qc' _éu'). This implies, in particular, thatr=¢g"' - ¢
belongs to A, and thatu € U'r . Moreover, sincet-c¢<0'< t+e,
it follows thatt - 1+ - e<@ < t- v+ ¢. Therefore (u, o) ¢ WT )
The proof Lemma 4. 8 is now complete.

5. Examples.

Example 5.1, LetM =R", @ =R™, andletF: MX Q -TM

be defined by F(x,u) = Ax + Bu, where A and 3 are, respectively,
nXn and n X m real matrices. We kave that D = {A(-) +Bu:uce Rm},

~

Let b, denote the i -th column of B, Then, as shown by Lobry [16],

T (D)(x) contains the vectors:



It i5 not dAifficult to see that the above set of vectors forn.s a
system of generators for J(D)(x). From Corollary 4, 6 we gel that

A(0O,t) has a non-emnty interior in R "yt and only if {j_-bi,iAbi,. Ce

~ o~

+A bi.i =1,2,...,m} has rank n; equivalently. A(0,t) has a non-
-1
ernpty interior in Ijn if and only if rank [B,AB,... ,An B] = n.

Since, obviously, g'o(D)(O) = J(D)(B), we conclu”e *hat A(E, t)
has a non-empty interior whenever é(O,t) does. The above statements,

along with the fact that A(0,t) and A(O,t) a: !inear subspaces oan,

n-1

imply that, if rank [B,AB,...,A B] = n, then for each t> 0

A(9,t) =£;(E, t) = A(E) = R? (Kalman [12]). Thus, in this example, the
accessibility property 18 equivalent to contrcllability. This is, of

course, not true in general.

Example 5.2, LetM =R”, @ ={ueR™: 0su =1, i=1,....m}

: - m
and lei F(x, u) -(AO + 2i=1 0"
Am are nXn real matrices., Then D is the set of all vector fields Xu

where Xu(x) = (A0 + Zlizl uiAi) x, The set M™ of all nXn real matrices

Aiui)x for all (x,u) ¢ RnX 2, where A

is a Lie algebra, with the bracket defined by [P,Q] = PQ - QP. To
each matrix Pthere corresponds a vector field V(P) defined by V(P)(x) =
Px. It is easy to check that V([P,Q]) = [V(P)V(Q)]. Using this fact,

the spaces 7 (D)(x) and JO(D)(x) can be readily computed:
F(D)(x) ={Px: PeL},

'and

F(D)(x) = {Px: PeL]
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where L is the Lie algebra spanned by A Am, and Lis the ideal of

opo.n,

L. spanned by A ,... ,Am. We remark that for this example the theory

1

of Section 4 is valid even if 9/ is the set of all bounded and measurable

2 -valued functions. This is so because the only properties of the

class of admissible controls that were utilized in Section 4 were:
(a) that the class of piecewise constant controls is dense in g (in the
topology cof uniform convergence), and (b) that, if {Ba} are elements of
% that converge uniformly to u, then ]'1(3(1,5,1:_) converges to Tl(u, x, t).

In our example, both (a) and (b) remain valid if the topology of
uniform convergence is replaced by thai of weak convergence. .This
is easy to verify, and we shall 20t do it here (see Kufera [14)).
Moreover, the set of 2-valued measurable fuuctions defined in [0,_'_1'__]
is weakly compact. It follows that the sets é(x,T), A(x,T) are com-
pact fcs each T > 0. Denote their interiors (relative to I(D,x) and
Ig (D,x) respectively) by Int é(x, T), Int A(x,T). It follows that
;/}(x,'I) is the closure of Int _ﬁ,(x,T), and that A(x, T) is the closure of
Int A(x,T). Therefore, our results contain those of Ku¥era (in this
connection, see also Sussmann [21)),

Remark. The result of the preceding example is a particular
case of a more general situation. Let G be a Lie group, and let M
be an analvtic manifold on which G acts analytically to the left.
Then there is a homomorphism A from the Lie algebra of G into
V(M}, defined by

AX)(m} = (exp (£X) - m),

the derivative being evaluated at t =0, If XO, cees Xk belong to

the Lie algebra o" G, we can consider the control problem
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dx K
— = X' z
0(x) +i=

dt uiX i(x)'

1

where X% = )‘(Xi)' Example 5. 2 results by letting G = GL(n, Ii) and
M =R".

Example 5. 3. This example shows that the analyticity assumptions
are essential. Consider the following two systems defined in the (x, y)
plane:

(Sl) X = fl(x,y,u)

y =g lxy,u)
and
(SZ) X = fz(x, Y, u)

y = g,(x,y,9)
Let fl_=£ fzal, gla.;-s 0, and gz(x, y,u) =9 (x) where p is a C® function
which vanishes for - «<x <1, and which is equal l;o 1 for x> 2. It is
clear that for (Sl) the seté((O, 0)) is the half line {(x,y) : y = 0, x =20}
while, for (SZ), é((O, 0)) has a non-empty interivcr. However, both systems
are identical in a neighborhood of (0, 0).
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CONTROL SYSTEMS ON LIE GROUPS*

Velimir Jurdjevic® and Hector J. Sussmann¥*%*

1. Introduction

In this article we study the controllability properties of systems

which are described by an evolution equation in a Lie group G of the

form:
dx (8 _ m
(+) dr - X+ EE a0 X, (x()
where 2_(0 se oo ,_}f_m are right-invariant vector fields on G. Systems

——p—

described by (+) we term right-invariant. This study is based on the
results of [11], and is related to the work of R. W, Brockett [1]. As
remarked by Brockett, there are many important applications in
engineering and in physics which are not treated by classical ccntrol
theory because of the assumption that the state space is a vector space.
In particular, when controlling the orientation of a rigid body relative

to some fixed set of axes, the state space can be naturally regarded as
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SO(3), the group of orthogonal 3 x 3 real matrices with positive determinant.
The evolution equation describing this system is of the form given by
() ([1]). Instead of restricting our study to groups cf matrices, we con-
sider systems described in an abstract Lie group G. This generalization
in no essential way affects the nature of the problerr;.

From the theoretical point of view a study of systems of the form
(+) appears natural for several reasons. For instance, the algebraic
criteria developed in [11] can be used to obtain global results by exploit-
ing the algebraic structure of the state space and the sets attainable from
the identity. In this regard, the analogy with the controllability of linear
systems is striking.

In this article we shall look for necessary and sufficient conditions
for a right-invariant system to be controllable. A necessary condition
is that the system have the "accessibility property' (cf. [11]). We show
that this condition is also sufficient if G is connecte‘d and if either (a) the
system is homogeneous (i. e, —)SO = 0) or (b) G is compact. When neither
(a) nor (b) hold, accessibility (plus the connectedness of G) is not suf-
ficient for controllability. In this case we give some sufficient conditions,
and a necessary condition, and we single out a particular situation in
which a necessary and sufficient condition can be obtained.

An obvious necessary condition for controllability is that the set
é(_e_) of points reachable from the identity of G be a subgroup of G. Thus,
the controllability problem reduces to the following two:

(a) when is é (e) is a subgroup? , and

(b) ifé (e) is a subgroup, when is ’é (¢) =G? Question (b) is much

easier to answer than question (a). In Theorem 4. 6 we show that if A(e)
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is a subgroup then, necessarily, this subgroup is the connected Lie
subgroup S of G whose Lie algebra is the subalgebra E generated by
2(0, ce ,_)_(_m. From this it follows that the system will be controllable if
. and only if (1) é(_e_) is a subgroup, (ii) G is connected, and (iii) E is the
Lie algebra of G. This shows that the crucial question is that of determin-
ing whené(g) is a subgroup.
This question is (partially) answered in Sections 5 and 6,

The organization of the article is as follows : In Section 2 we intro-
duce notation and basic concepts: in addition, we quote a result about
Lie groups which will be used i.ter. In Section 3 we single out the
relevant Lie algebras induced by a right in - .viant system. In Section 4
we derive the basic properties of attainable sets. In Section 5 we study
the homogeneous case, and in Section 6 we study the general case. In
Section 7 we interpret our results in terms of controllability,

Finally, Section 8 contains examples,

2. Preliminaries

We shall assume that the reader is familiar with the basic facts
about Lie groups (cf. [2], or [4], or [5]).

Throughout this paper, G will denote a Lie group, and L(G)will
denote the Lie algebra of G, We shall think of. L(G) as the set of vector
fields on G that are invariant under right translations. It is known
that every X ¢ L(G) is analytic, and that L(G) is a Lie algebra with the
obvious vector operations, and with the Lie product defined by

XY =XY-YX

The exponential map from L(G) into G is denoted by exp. Recall

that exp(0) = e (the identity element of 7)), and that, for each X ¢ L(G),

the curve t »exp (t X) is an integral curve of X.
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We recall that there is a one-to-one correspondence between Lie
subalgebras of L(G) and connected Lie subgroups of G. If H is a con-
nected Lie subgroup of G, the Lie algebra L(H)is naturally identified
with a subalgebra of L(G). We shall also denote this suhalgebra by
L(H).

Let X o X be elements of L(G). We shall consider the

0'°

following control system defined on G:

m

(1) X =Xzl + T2

1240 X (x(0)

where u = (u 10 ,_gm) belongs to the class of admissible controls U.

Throughout the article we shall assume that U is one of the classes

U ,U or U,, defined as follows:
—-u —r —b

(1) _I_Iu is the class of all locally bounded and measurable functions

defined on the interval [0,=) having values in R=,

(ii) Hr is the subset of _Ilu consisting of all elements which take

values in the cube {_J_c_eg‘r'n-: l-’-‘-i =1,i=1,...,m}

(iii) y—b is the class of all piecewise constant functions defined on

[0,2) with values in R 2 such that the components of its elements only

take values 1 aﬁd -1.

We will refer to Hu, Hr and _L_T_b as the class of unrestricted,

restricted and '"bang-bang' controls, respectively,
If X = (2(_0,. .o ,_}Sm) is en m + 1 - tuple of elements of L(G), and

if_I_J_ is a class of admissible controls, then the system described by equa-

tion (1) will be termed right-invariant. For nrtational convenience, we

will denote such a system by (X, U). We will alsc adopt the convention
that if in a particular statement U is not specified explicitly, we will

mean that such a statement is true for any class of admissible controls
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(i. e., _E_JB,_I_J ; OF gb).

We have the following basic fact:

LEMMA 2.1, Let(X,U) be a right-invariant system on G, and let
(1)

u e U, Then for every g € G, there exists a unique solution' ' x of (1)

=

defined for 0 < t< =, such that x(0) = g.

Proof. Uniqueness and local existence follow from the standard
results on ordinary differential equation. Moreover, we know from these
results that there is a nrgximal interval [O,LI‘_) (T >0) on which there
exists a solution x of (1) with x(0) =g. We show that T ==. Assume
T <=, Let y(t)be a solution of (1) defined for T - 6<t < T + &, where
5> 0, and such that y(T) =e. Letg' =y(T -56), g" = X(T - 5 ).

Let z (t) be defined by

2O =x(f) for 0S¢sT -5 8

20 =y g g forT-38<t<T 46,
Than z(t) is a solution of (1) which satisfies z(0) = g and is defined for
0=t< I +5. This contradicts the maximality of the interval [0,_1).
Therefore T =« and our proof is complete.
If ue Uand g € G we will denote the solution x of (1) which satisfies
x(0) = gbym(g,u,-); i.e., x(t) =n(g,ut) for allt ¢[0,®). If, for some

t= 0, n(g,u,t) =g', we say that the control u steers g into g' int

units _q_f_ time, If there exists ue U which steers g into g' in t units of

time, we say that g' is attainable (or _reachable) from g at time t. The

set of all g' ¢ G which are attainable from g at time t will be denoted by

A(g,t). We shall also use the notations



Ag,T) = U A(g,T)
0=t=T

Ag = é(_g.};)
0 steo

We shall refer to A(g) as the set attainable from g.

I'rom the right invariance of our control systems it follows

trivially that A(g, T) = A(e, T)g, A(g,T) = A(e,T)g, and Alg) =é,<s>é2).

Therefore, without loss of generality, we can limit ourselves to the study

of the sets attainable from the identity.

We finish this section by quoting a result about LLie groups whose

proof can be found in [12] (cf. - also [5], pp. 275).

THEOREM 2.2, Let G be a Lie group, and let H be a path-connected

subgroup of G. Then H is a Lie subgroup of G.

3. The Associated Lie Subalgebras.

To every right-invariant control system (X, U)on a Lie group G,
we shall associate the following three Lie subalgebras of L(G):

(1) The subalgebra L generated by X 0" , X

—m'
(2) ‘The ideal of L. generated by 2(_1, cen '-}-(-m' This ideal will be denoted
Ly L 0
(3) The subalgebra L of L(G) generated by -}Sl’ oo ,_)_(_m.

We denote the corresponding connected Lie subgroups by S, S0 and

S. We have:



-101-
LEMMA 3.1,

() LC Ly Land SCSyc S,

(ii) L, is a subspace of L of codime:ision zero or one,

(ii1]) S , is a normal subgroup of S.

0

Proof. (i) and (ii) are trivial, (iii) follows from the fact that a
ccnnected Lie subgroup H of a connected Lie group K is a normal subgroup
of K if and only if L(H) is an ideal of L(K) (cf. [2], p. 124),

We shail use the notation 5 t for the coset of S modulo S0 which

contains exp (t X,).

4, Elementary Properties of the Attainable Sets.

If (X,U) is a right-invariant control system on G, then the vector
fields Xare-- ’-}-(-rn belong to the Lie algebra of S. Therefore, we ~an
consider (X, U) as a right-invariant.control system on S, and Lemma 2,1

will be valid if G is ~eplaced by S. This gives

LEMMA 4.1, If(X,U) is a right-invariant system on G, ther A(e)

is considered in S.
~

The following lemma states a similar result for the sets Ae, t).

LEMMA 4.2, If (?_(_, U) is a right-invariant system on G, then for

ach t >0 A(e,t) is contained in_SO-t':

It would be easy to prove this lemma directly, but since this re-
sult is included in that of Lemina 6.1 we omit. the proof.

We next derive some el ementary topological properties of the
attainable sets. If T >0, we will denote the set of all restrictions of
elements of U to [0, T] by U(T).

LEMMA 4,3, Let (X,U) be a right-invarjant control system on G.
The mapping (u,t) »nr(g, u,t) from U(T) x [0, T] into G is continuous for

each g and each T >0, if U(T) is given the topology of weak convergence,

(3)

The proof of this result appears in [10], and therefore we will omit it,
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From this we obtain:

LEMMA 4.4, Let (X,U) be a right-invariant control system on G.

(1, The sets A(e, T), ’Q(g); A(e,T) are path-connected, for each

=)
v
o

(i) U = Ur thené(g,l) and * 2 1) are compact.

Proof. (i) will be an immediate consequence «f the fact that U(T)
is path-connected and of Lemma 4, 3, The path-connectedness of
U(T) is trivial in the unrestricted and in the restricted case, In the
"bang-bang" case, let u and y telong to U(IL).

For each t such that 0 <t <T, let v, be defined by

Thenw, ¢ U(T). Moreover, w, =1 2and w, =v. Since! —w

0
is a continuous path in U(T), it follows that U(T) is indeed path-con-

nected.

To prove (ii) we remark that, if U is the class of restricted
controls, then U(T) is compact in the weak topology. The proof is

now complete.

In regard to the algebraic properties of the attainable sets we

have the foliowing:

LEMMA 4,5, Let (X,U) be a right-invariant contro: system on G.
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hen ‘he set A(e) is a semi-group.

Proot. Let gand g belong to A(e). Let g =mn(e,u,t), g'-=

m(e,u',t'). Let the control v be defined by

v(71) = u(7) for 0 <7<t

fer

IN

fer
-+
-

v(t) =u'(T - ) for

Then m(e,v,t+t') = g'g, and therefore, g'g ¢ A(e). The proof
is then complete.

"Te cannot assert, in general, that é(g) is a group. However,
the foilowing thecrem tells us that, ifé(g) is a group, then ic must

be the group S,

THEOREM 4. 6. Let (X,U) be a right-inv>+~iant control system
on G. 1fAl(e) ig a subgroup of G, then Afe) = S,

Proof. We know that A(e) is path-connected. If A(2) is a sub-
group, it follows from Theorem 2. 2 that it is a Lie subgroup of
G. Let A be its Lie algebra, Then AC k, because Q(E)C-i
(Lzmma 4, 1), Or the other hand, 1let a = (gl, cos ,am) be an m-tuple

such that each a, is + 1,

—



-104-

Let u be the constant control u = (31,_. cea2 ). Thenu e J and,

therefore, the curvet — T(e,u,t) (0=t= =) is contained in A (e).

. In other words, if we let

- - ZLn_
X(a) =X, + 21

it follows that exp(t }_(_(3)') belongs to Q(_g) for allt 0. Since Q(g_) is a
subgroup, this will be true for all real t. Therefore, (cf, [4], p. 94),

we can conclude that 2_(__(3) belongs to \. Since the elements )5(2)

form a system of generators of I;y we conclude that E C A and, therefore,
L =Aand A(e) = S.

5. The Homogeneous Case

A right-invarient control system (5,}_1) is homogeneous if__)go = 0.

A s an introduction to the general case, we consider these systems first.
The result stated in the next theorem appeared first in a study by
R.W. Brockett [1].

THEOREM 5. 1. Let (X, U) be a homogeneous right-invariant

control system on G. Then the set attainable from the identity is the

subgrouyé. Moreover, if U is unrestricted then, for each T > 0,
Ae,T) =A(e) =S, |

Proof. To prove the first ztatement it is sufficient, in view of
Theorem 4. 6, to show that :&(g) is a subgroup. We know that A(e) is a
semigroup. It remains to be shown that, if g ¢ :é(_e_), shen 5-1 e Q(_q).

Letm(e,u,t) =g, whereue¢ U, t 20. Let

<
7>}
e
]
£
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Obviously, v e U. Let

f(s) =m(e.u,t - s)

Then
f(s) = Z= v. (s) X.(£s)) .
- i=1 1 r=--

Therefore, f is a solution of the evolution equztion corresponding
to the control v. By the right-invariance we must have f(s) = n(e, v, s) h,
where h = £(0) =g, But f(t) =n(e,u,0) = e, Therefore, n(e,v,t) =_g-l,
and we have shown that _g-l e Ale).

To prove the second statement, assume that [J is unrestricted. Let
g=1(e,u,t) for someu ¢cU andt >0. Let s >0, and define a control

v by

—

viT) = (t/s)u(vt/s) for 051 < =,

An easy computation shows that ri(e, v,8) = g. We have therefore shown
that Ale, t)C Ale, s). Similarly, Ale,s)cAle,t). Thus, A(e,5) = Ale,t)
for allt,s suech that 0 < t.0<s such that 0 <t, 0<s. Our proof is then
complete.

Remark. 'fhe previous theorem implies that, for a homogeneous
system

(a) The attainable set é(g) is a subgroup of G.

(b) The set é(g) is the same for the three classes of controls, so
that, in particular, every g ¢ U that can be reached from the identity by
means of an arbitrary control, can also be reached by means of a

'"bang-bang'' control (possibly at a later time),
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(c) IfU _—._[J~u, then every g ¢ 5 that can be reached from the identity
can in fact be reached in an arbitrarily short time.
We shall see later that neither (a), nor (b), nor fc) need be true in

the non-homogeneous case,

6. The general Case,

Our subsequent study will be based on the following lemma.

LEMMA 6.1, Let(X,U) be a right-invariant control system on G.

Then for each T>0,

(i) A(e,T) is contained in S, and the interior of é‘(_g, T) is dense

(in the topology of S) in A(e, T).

(ii) A(e,T) is contained in _S_"% , and the interior of A(e,T) is dense

(in the topology of SIO ) in A(e, T).

Proof. We shall use *he results of [11]. Our system is of the
form corsidered in the Remark following Example 5.2 of [11], with M=G,
and with G acting on G by left translations. In the notations of [11], we
have Q = 52 , or 2 = Ein- (the unit cube in EP—), or 2 = XE- (the set of
vertices of E—n-l-) in the unrestricted, restricted and '"bang-bang' cases,

respectifely. In each of the three cases, the assumptions of [11] are

satisfied, and'an easy computation shows thatg (D) = L and that Jo(l_)) =L

Since S is the integral manifold of L through e (cf. [2] p. 1C8), our first
statement follows from [11]. Similarly, it is easy to verify that S :(I)" is
precisely the submanifold _I_%(l_)_,g) of [11], and the second part of our

' lemma follows.

In particular, it follows from Lemma 6, 1 that the interior of A(e)

relative to § i8 nonempty.

We shal! also need the following:

0
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RS

LEMMA 6.2, LetH be a connected Lie group, and let L

be elements of I.(H) thzt generate L(H). Ther every h ¢ H is a finite

product of elements of the form exp(t ~1—‘i;’ where t is real and i =

1,...,n,

Proof. The set H' of all finite products of elements of the form

exp(E&i) is obviously a path-connected subgroup of H. Therefore, H'

—

is a connected Lie subgroup of H(cf. Theorem 2.2). Obviously, H'
contains the one-parameter subgroups generated by -L—l' ce ._I;-n. Therefore,
(cf. [4], p.94) Liseoon Ly belong to L(H'). Then, H' = H, and our

proof is complete.

LEMMA 6.3, Let (X, U) be a right-invariant control system on G.

If the set attainable from the identity is dense in S, then it is equal

to S .
Proof. Let ge é (e) belong to the interior of é(g) relative to§

(cf. Lemma 6.1). Let VCQ(_?_) be relatively open in § and such that

g eV, LetWs= {h-lz heV}. Then Wis a nonempty relatively open

subset of§. Our assumption implies that W contains an element h of

é(g); then the set V h (cf. footnote (2)) is re.atively open in§. and is

contained in A(g). Moreover, V h contains the identity. Therefore, the

semigroup A(e) contains a neighborhood of the identity in S. Since

S is connected, we have that A(e) = §, and ow proof is complete,
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LEMMA 6.4, Let(X,U) be a - ght-invariant control system on G

with U = U

Then-___S-CA (e) (the closure is taken relative to S).

Proof. By Lemma 6.2, every element of S is a product of elements

of the form exp (Ll(_i) (-o<t<»,1i=1,...,m). We show that exp(iz(_i)

belongs to A(e) for every realt and for everyi=1,...,m. Since
A(e) is a semigroup, this will imply that S € A(e), and the desired

conclusion will follow immediately.

Lett be a real number, and let 1 <i<m. Let u be the constant

control (0,...,0,n,0,...0) where n appears in the i-th position. Then

u € U for each n> 0. We have

e, u,,t/m) = exp(X, +n X )t/n)
= exp((t/n) X, +t X.)

Letting n -, we conclude that exp(t _)_(_i) € A(e), and our proof is com-

plete,

Remark, IfH is not urres: -‘cted, then';S- need not be contained in

A(e) (cf. Example 8. 4)
W can now prove:

THEOREM 6. 5. Let (X,U) be a right-invariant control system on

.G. Assume that the subgroup S is compact. Then

(1) Ale) =S,

(ii) There exist a T >0 such that A(e,T) = A(e).

Proof. Let H be the closure of A(e)relative to S, Ther d is a
seinigroup. We show that H is a group. Leth ¢ H, Then, for every

{.ive integer n, _l'x-n ¢H, The sequence {_l}-q} n=l has a convergent

9 o o
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subsequence {bﬂ(l(_)} =1 , and we can assume that n(k) < n(x +1) for
all k. Now, as k — =, b'l = lim h_r_x(l5_+1)-1x_(_l5)-l = lim bk' Sincz n(k+1)-

n(k)-1 is non-negative, it follows that _l_l_k belongs to H for each k. Since

H is closed, 3'1 e H.

Therefore, H is a group. Since é(:e_) € H and
é(g) has a non-empty interior relative to~S. the same is true for H. Since
H is a group and§ is conncocted, we conclude that fl_ =§. Therefore,
A(e) is dense in S, and (i) follows from Lemma 6. 3.

To prove (ii) we let W(t) denote, for each t > 0, the interior,
relative to§, of é(_g,_t). It is easy to see that the union of all the sets
W(t) is§ (if g e § , let g ¢ Q(_e_,_'{'_‘,; let h be interior to é(_e;,_l_‘) and let
h-l cAle, T"); then g e W(T + T' + T").

Since the sets W(t) are increasing, it follows that W(t) = S for
sufficientiy large T, and our proof is complete.

Remark. Theorem 6.5 shows that, if S is compact, then conditions
(a) and (b) of the remark following Ther~n1 5.1 are satisfied, However,

in this case condition (c) need not be satisfied, Even if U is unrestricted,

it may not be possible to reach every element of iin an arbitrarily small
tvime (cf. Example 8. 1),

If§ is not compact, tnen {:(__e_) need not be equal to§. The following
theorem gives a sufficient condition under which é(_c_e_) =§; we do not know
if this coudition is also necessary,

THEOREM 6.6, Let (X,U) be a right-invariant control system on G

with U = I_{u. If there exists a constant control u and a sequence of

——

positive numbers {_t_n} with E‘n—> e>0 for some ¢, with the property that

lim m(e,u,t ) exists and belongs to S (the closure is relative to S), then

='—n

Al = 5.
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Proof. Let u and {tn] satisfy the conditions of the theoren, and let

then, since u is constant,

—

lim m(e,u,t ) = x, If_)_(_=_)_(_o+ pRIL E'E(.i
n j=1"1—1

m(e,u, t) = exp(t X). We first show that exp(t X) ¢ {-}J(e) for every real
number t. If {in} is bounded. then there exists a positive number T
such that exp(_'I_‘z(_-) < E Let - ce any real number, and le“ n be a
natural number withnT +t >0, Sirce E is a group we have that exp
(-T X) ¢ E, and hence, exp(-T n X) ¢ E . By Lemma 6. 4, it follows
that exp (-T n X) ¢ :é_ (e). Since, obviously exp((n T +t)X) ¢ ’é(s), we

have that exp(t X)=exp(-T n X) * exp((-T n +t)X), and hence, exp(t X)

cAe). If {t o} is unbounded, let {t } be a subsequence of {t o} with
~ - —_ ——k ——-

t -t >k, andlet 7, =t -t . We havethat 7, - «

B+l By k k+! B k

and exp 'rk_)_(_ —~e as k - o, Thus, for any real number t, exp(t X) =

lim exp((t +1k)

ke =

X).

If k is sufficiently large, thent + 7 is positive. Therefore, exp

k
((t + 'rk)g(_) belongs to A(e) for k large. It fcllows that exp(t X) ¢ A(e).

By Lemma 6. 4, exp(t Ei) belongs to A(e) for every real t and

everyi =1,...,m. Since A (e) is a semigroup, it follows that every
product of elements of the form exp(t Y) {t real, Y ¢ {_)E,_)Sl, ... ,zm})

belongs to A(e). Clearly, the elements X, X,,...,X generate L.

1’
By Lemma 6.2, A(e) =S. This completes the proof.

The following corollary 1s immediate:

COROLLARY 6,7. Let (.}5,’5) be a right-invariant control system

on G with U = U, If there exists a constant contro! u such thatt —

——— . ——

mi(e, u,_t) is periodic, then A(e) =S,
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The following lemma gives a necessary condition for A(e) to be
equal to S; however, this ccndition is not sufficient (see Example 8. 3),

LEMMA 6.8, Let (X,U) be a right-invariant control system on G,

and let A(e) =S. Then, there exists a non-zero number T such that exp

(EOI) €S o

Proof. Our assumption implies that exp(—zo) belongs to A(e, t) for

somet = 0, Therefore, by Lemma 4.2, exp( -2(_0) = exp(_t__}_(_o)_g where

g €§0. To complete the proof, take T = -1 - ¢,

There is onez important case when Theorem 6. 6 and Lemma 6. 8
vield a necessary and sufficient condition for A(e) =S, namely when
5=8g-
this equality holds if and only if all the brackets [)_(_0,)_(_i] belong to L(i=1,...m).

This will happen if and only if L = Ly It is easy to check that

THEOREM 6.9. Let (X, U) be a right-invariant control system on

G with U :yu. If L =L ., then a necessary and sufficient condition for

=S¥y —=" 20

A(e) to be equal to§ is that there exist a number T, T # 0, such that

exp(T _)50) belongs to S.

Remark. The condition L = L, holds, in particular, when
[;S'O'}—(—i] =0 (i=1,... ,Ln_) i.e., when exp(t _}Eo) commutes with the elements
of S.

7. Controllability

Let (X, U) be a right invariant control system on G, and let g ¢G.

We say that (X, U) is controllable from g ifﬁ(g) = G. We say that (X, U)

is controllable if it is controllable from every g ¢ G.

THEOREM 7.1 A necessary condition for (X, U) to be controllable

is that G be connected and that L =_I_J(C_Ir)_. If G is compact, or if the

system is homogeneous, the condition is also sufficient,

Procf. The condition of the theorem holds if and only if G = S,
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By Lemma 4.1, the condition is necessary. The second part of the state-
ment follows from Theorems 5,1 arc 6, 5 {and from the obvious fact that,
if Q(g_) = G, then Q(g) = G for every g).

In the compact case, we can prove stronger controllability properties,

THEOREM 7.2. Let G be compact, and let (X, U) be controllable,

Then there exists T >0 such that. for everv g ¢ G, -&'_g G, there is a

control that steers g_into _g' in less thar_l__T_ units of time. _I_f_g_ is semi-

simple, then there exists T >0 such that, for every geG, g'e G, there

is a control that steers g into g' in exactly T units of time,

Proof. The first statemrent follows from Theorem 6, 5 (ii). Tc

prove the second statement, we observe that, if G is semisimple, then
(X, 1) has the "strong accessibility property', i.e. the set f{e,t) hasa
non-empty interiocr for every t > 0 (for a proof of this, see [11]). From
this fact the conclusion follows as in the nroof of Theorem 6, 5 (ii).
Finally, Theorem 6,9 can also be interpreted as a controllability

result,

THEOREM 7. 3. Assume that the necessary conditions of Theorem

7.1 hold, and that (i) U = Ilu, and(ii) L = L 0 (or, equivalently, L is an

idzal of ). Then (X, U) is controllable if and only if exp (T )_50)

belongs to S (=S ,) for some T # 0.

COROLLARY 7.4. If G is connected, L=L(G), U = gu and X0 belongs

to the Lie algebra generated by X,,... ’—}Sm' then (X, U) is controllable.

8. Examples

In most of the following examples, we shall work with group~ of
matrices. Onr groups will be Lie subgroups of G L (n,R), the group of
all » x n non-singular real matrices. Recall that GL (n,R) is an open

subset of M (n, @) (the s-t >f all n x n real matrices). Since M(n,R) is
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a vector space, we can identity thc tangent space to G I, (n, R) at each
point with M(n, R). With this identification, a right-invariant vector field
corresponds to a mapping X ~A X from g L (r_1‘,R) into .M.(E’ R), where

A is a fixed matrix, Ifz(_o, cus ’Em are right-invariant vector fields,

given by X -»./_B:i X(i=0,...,m), then the evolution equation becomes

v - n
XM =@+ I u(0A;

Example 8.1. Let G =S ((3), the set of all 3 x 3 real orthogonal

matrices with positive determinant. The algebra L(G) is the set of all

3 x 3 antisymmetric matrices. A Lasis for L(G) is given by the matrices

0o 1 0 0 0 1

K, = | -1 0 o] , K,-= 0 0 o

c 0 o/ 1 0 0
and [o o o
K, = 0 0 -I
o 1 o

It 1= easy to check that [51,52] =Kj [52,1_(_3] =K, and [53,131] =K,.
Thus '.’G) is isomorphic to three-dimeusional real space, with the Lie
bracket corresponding to the vector product, Usi..g this correspondence,

it is obvious that, if A and B arc any two linearly indepencent elements

of L(G), then [A,B,[A,B]] is a basis for L(G).

Let A and B be any linearly independent 3 x 3 anti-sym: - 2tric
matrices, and let our right-invariant control system on SO(3) be described
by

X(t) = (A +uB)X(Y)
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where y belongs to any class of admissible cantrols. Since SO(3) is com-
pact and connected, Theorem 6.5 nplies, «r.? cur system ie con“roliable.
Moreover, there is a T >0 such that, given any two ¢lements P, Q of
SO(3) there is a ''bang-bang" control u that steers Pinto Q in less than

T units of time In this connection, it is interesting to observe that,

in general, there may not exist arbitrarily small numbers T with the

above property, even if the control u s completely unrestricted. .ake,

for instance, A=K & ad B = I::Z' If uis an arbitrary contrel, and if

1
X(t) is the solution of the evolution equation correspond’ng ¢n u with initial

condition X(0) = I, write X =(x..). j=1,2, 7" Then we have

.._.1J i

and

X322 58X 2

Multiplying the first equation by x 12° the second eauation by x 32 and

addi~g, we get

p 4 2 2

T d@ Ez tEn' XX
, 2 2 .
Since X2 +_§32 vanishe: at t = 0, we have:
ot
2 .
(_’_‘_12 + _’5"‘32‘ (1) = 2 f fzz('\') 2‘_12(’\') é T

0

But 5&2( 1) and x lz(qv) are entries of orthogonsl matrices. Hence, tney

are bounded in absolute valae by 1, Thereicre, we conciude that

2 2 .,
(x), +X32)() < 2 o
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This shows that a matrix (a ii) for which _@_212 +_a_232 = 1 cannot be reached

. | .
from the identity in less than < units of time,

Example 8,2, The considerations of the previous example can be

gencralized to G = SO(n). In this case the Lie algebra of G is the set
of all n x n anti-symmetric matrices,
Let A=(a..) and B = (lg_ij) be matrices defined as follows:

-4

=lfori=1,...,n-2, a =-1fori=2,...,n-1, a.. =0 other-

i,i+1 i.i-1 - 7L

wise, and let _122_1’2=1,22'2_1= -1, ’b'll =0 otherwise, It is easy to show
that the smallest subalgebr . that contains A and B is exactly L(G).

Thus, even though SO(n) is —21-3(_13— 1) - dimensional, the system _)_(_ =(A +u B)
X, in which only one control is involved, is controllable. Moreover, as
before, we can limit u to be ""bang-bang'’. An eacy argument shows that
this fact, which has been shown to be true for the particular matrices

A and B defined above, is in fact true for "almost all" pairs (A, B) ¢ L(G)

x L(G). Precisely, the set of pairs (A, B) such that A and B generate

L(G) is open and dense in L(G) x L(G).

Remark, If G is an arbitrary connected Lie group such that L(G)

is generated by two elements, then Theorem 5, 1 enables us to conclude,
in a way similar to that of the previous examples that the homogeneous
system on G of the form 2(_(t) =(u A + v B) X(t) is controllable for
"almost all" pairs (A, B) € L(G) x L(G). This result holds even if we
restrict u and v to be "bang-bang''.

The previous statement holds, in particular, when G = §__1_,_(9_, 13),

"the set of all n x n real matrices whose determinant is 1, or when

G=G + L(n, R), the set of all n x n real matrices whose determinant is

greater than 0,
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Example 8, 3, We show that, if A, B generate L(G), and if G is

connected and not compact, then the sfrstem_z(_ = (A + u B)X need not be

controllable, even if L(G) is a simple Lie algebra. In particular, this
will show that the necessary condition of Lemma 6. 8 is not sufficient,

Take G = SL(2,R). Let

1 0 o 1
A= B = .

0 -1 1 0

It is clear that A and B generate L(G) and that L (G) is simple. Let u be
an arbitrary control, and let X (t) be the solution of the evolution equation

corresponding to u, with initial condition X(0) =1. Let X= (E'ﬁ_)_i_,jfl. 2"

Then x tux,, and%k,, =ux,, -x,,. Multiplying the first

~11 11

equation by E3RE the second one by X3 and subtracting, we get

=X

1 4 2 2. 2 2

Z a@ En- X)) 7x)) txp

Thus, the function 521 l(l:) - 521(_9 is non-decreasing for every trajectory
of our system. Since its value for t = 0 is 1, it follows that every
element of S L._(Z, 5) that can be reached from the identity in positive
‘time satisfies the inequality -’Efl 2 x,, + 1. Hence, the system is not
controllable. In the notations of Section 3, it is clear that L =L(G).
‘Thus, we have shown that A(e) is not a group. However, L, = L(G)
(because L(G) is simple), and hence §0 = G. Therefore, exp(t é) belongs

to S, for allt > 0. This shows that the condition of Lemma 6, 8 is satisfied,

~0
Example 8,4, In this example we show that Lemma 6. 4 and Theorem

6. 6 need not be valid if U is not assumed to be unrestricted. Let G =

R x8§ l, the product of the real line and the unit circle, Let _)_(_0 be the

~
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generator of the one parameter groupt - (_t_,_e_,zn -l-t-), and let 2(_1 be the

generator of the one parameter group_?_ ~(t,1). Let U =_l_[r ,orJ = H—b'
Thené (e) = [0, ») x_Sbl, which is not a group. But if u =0, .;hen TT(_e_,_l_.l_.I-) =
exp _}_(_0 = (1, 1) which belongs to S. Thus, Theorem 6. 6 does not hold. As
for Lemma 6, 4 it is clear that S and é(g) are closed, but S ¢ é(g),

Example 8.5 In view of Theorem 6. 6 it migl:nt seem that a necessary

condition for a right-invariant system to be controllable is that exp .E...)f.o
''"gets arbitrarily close' to S for some non-zero values of t, This example
shows that such a statement is false,

Let G = S L (2,R), and let

A = . E =
0o -1 ) -1 1
Consider the system X = (A_+ B u) X where u belongs to the class
of unbounded controls.
Let u be the constant control u = 1. Then the trajectory t - m(i,u,t)

t(A +B)

is the curve t +e , which is periodic witl: period 2n. By

Corollary 6.7, the system is controllab, e

0 -1 T

'(rﬁ

We have that e = ,and e ==

.Now, it is obvious thatggé- stays away from S for all positive values of

_E-o
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FOOTNOTES

A solution of (*) is an absolutely continuous G -valued function of the

real variable t, with the property that (¥) is satisfied for almost every
t.

If A is a subset of G, and g ¢ G, we use A g to denote the set of all
products a g, where a ¢ A.

The result is proved in [10] for groups of matrices, but the proof is
valid for arbitrary Lie groups. Alternatively, one could use Ado's
Theorem (cf. [4]) to go from the result of [1C] to a ''local' version of
Lemma 4, 3, and then deduce the general result,
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1. Differential Equations

In this paper we study certain symmetry properties possessed by the
solutions of linear differential equations. This is accomplishcd by use
of some basic ideas from the theory of finite dimensional linear systems
together with the work of Wa2i and Norman [1] on the use of Lie algebraic
methods in differential equation theory. Our study‘is also strongly
motivated by the results of reference [2] which prov1'¢de'd a ‘1ink between
the present paper and a number of questions about the contrcllability of
systems for which the control enters multi.plicative]y.

Let R™M denote the set of real n by m matrices. By a Lie
algebra £ in R™" we understand a subset of R™" which is a real
vector space having the property that if A and B belong to % then
50 doas [A,B) = AB~-BA. Given an arbitrary subset & of R™" e
dencte by {.N}A the smallest Lie algebra which contains N. We denote
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Letting prime denote transpose, we say that a matrix A 1is Hamiltonian
if

JA = (JA)' .

We call a matrix P symplectic if P'dP = J.
Wei and Norman [1] have observed that for |t| small the solution
of differential equations of the type

v :
X(£) = (3 a;(t)A)x(t)
i=]
can be expressed as

H t
x(t) = o9 (t) eHzSz(t) cee o ugu(t) x(0)
where {H;} is a basis for the Lie algebra of n by n matrices gen-
erated by {Ai} and where the g; satisfy a set of nonlinear differ-
ential equations. In this paper we investigate some aspects of this
theory in the special case where v = 2,

2. Lie Algebras and Rational Functions

We begin by establishing two results on the Lie algebra generated
by a pair of n by n  matrices.

In order to avoid undue repetition let us agree to call a matrix
of rational functions G(s) regular if it is square and approaches zero
as |s| approached infinity. Our first point is that it is possible to
associate a Lie algebra with each regular matrix of rational functions
in a natural way. This correspondence goes as follows. It is well
known [3, 4] that every regular matrix of rational functions can be

expressed as
6(s) = C(Is-A)"'8

with CER™P, AeR"™™, BeR" ™, Moreover it is always possible
to pick A, B and C such that

rank(B, AB, ..., A""1B) = rank(C; CA; verd cA™ 1y = g
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where (-, ) denotes a colunn partition and ( 3 ) a row repetition.
Jn this case we say-thal Lhe triple [A,B,C] s & wiuicl realization

of G(s). Now minimal realizations are not uniquely declcritined by G(s),
but if [A,B,C] and [F,G,H] are two minimal realizations then there
exists a unique nonsingular P such that pap~! = F, PB =G and

cP~! = H. This result first stated by Kalman [3], is known in system
theory as the state spacc isomorphicm theorem (see e€.g. [6] for an

fntroductory account in the present notation). We now come to the Lie
algebra. Given a regular matrix G(s) we find a minimal realization
[A,B,C], and construct {A,BC}p, the Lie algebrc of r by n matrices
generated by A and BC. This collection depends o~ the particular
realization but if [F,G,H] 1is a second minimal realization of G(s)
then F = PAP-1 and GH = PBCP™! so that the Lie algebras are isomor-
phic. That is {A,BC}, and {F,GH}A are matrix representations of
the same abstract Lie algebra. We call this abstract algebra the Lie
algebra associated with G(s). This Lie albegra reflect the symmetry
properties of G(s) as the following theorems make clear.

THEOREM 1. Let A, B and C belong to R™", R™™ and R™" re-
spectively. Suppose [A,B,C] is a minimal realization of G(s) and
suppose B and C are of rank m. Then: !

i) There exists a nonsingular matrix P such that PAP™' and
PBCP~! are both Hamiltonian if and only if there extsts a nonsingular
symmetric matrix T .such that - .

T6(s) = G'(-s)T ..

-

. §1) There exists a nonsingular P .such that PAP™! and PBCP"!
are both skew-symmetric if and only if there exists a nonsingular skew-
symmetric T such that TG(s) = G'(-s)T and

\Y

TG(s) = Z

S . =

s24)2

! i

Proof. (Hamiltonian Case) Suppose that A and BC are Hemiltonian.
Then we have JBC = C'B'J' and in view of the rank conditions JB = C'T
for T = B'J‘C‘(CC')']. Note T 1s nonsingular. Clearly C'TC = C'T'C
so T 1is symmetric. Thus (recall 02 = -1) .
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Te(s) = TC(Is -A)7'B
. TCa'(1s - 9A" )08
= B'(-Is-A')"TC'T
.= G'(-s)T .

On the other hand, suppose that for some symmet}ic nonsingular T
we have TG(s) = G'(~s)T. Thus

TC(Is-A)"'8 = B'(-Is-A')"T¢'T
= -B'(Is+A") ¢'T .
Since bath sides are minimal realizations it follows from the state

~space isomorphism theorem referred to above, that there exists a non-
singular matrix P such that

papl = At 5 PB = C'T s TCPT! = B

thus upon transposition and rearrangement ve get

praptTl = Lt pB s 0T ot = gt
Now by uniqueness of P (compare with [4,6]) we see that P = -P',
Thus there exists a nonsingular Q such that Q'd9Q =.P, Finally we
see that [QAQ‘], QB,,CQ“] is a.realizatjon such that QAQ'] and
QBCQ'] are Hamiltonian. See references [4] and [6] for additional
insight into arguments of this type. ‘ '
(Skew-Symmetric Case) Suppose that A and BC are skew-symmet-

" ric. Then we have BC = -C'B' and in view of the rank conditions
B'=C'T for T=(B'C)(cC')"!. Note T is nonsingular. Clearly
C'TC = -C'T'C and so T {s skew-symmetric. Thus :

Te(s) = TC(Is-A)"'8
= B'(Is-A)"18
= B'(Is+A')" 1B
= B'(-Is-A")"TC'T
e G'(-s)T .
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[

M1 zeros of er(?S--h)'] are on the imagina i-9¢ ~"ren A= JRY
The partial fraction.expansion of (Is-A)"] has only terims of multi-
plicity one since A is normal. Clearly the residucs of 16(s) =

TC(Is -A)-1C'T'  at these poles are symmctric and nonnegative definite.
. On the other hand, suppose that for scie nonsingular skew--symnetric
T we have TG(s) = ~G'(-s)T  with TG(s) given by the partial fraction
expansion displayed in the theorem statement. Expand each R; as the

sum of dyads and renumber (if necessary) the A's so that

Té(s) = E b,b) =3
i=] i 52+A$‘
with each b; being an m by m vector. Now let A, B, and C be
given by

0 2 0 07 b,
24 0 0 0 0
A=10 0 0 Ay B=fby|s TC=[b 0 b, 0 «2].
0 0 -3 0 0
b.QOQQOO— L:_

" Then TC(Is-A)"'8 = TG(s), A =-A' and BC = -C'B'. -(Compare with
Theorem 2 of [7] from which one can se¢ a relationship between this
result and the structure of lossless elucgrical networks.) n

We now characterize the conditions under which the representation
of the Lie algebras obtained this way are irreducible. We call a set
of matrices {Ays Agy ooy AL) irreducible if there exists no nonsin-
- gular P such that all .he PAiP'? are in block triangular form:

F1 Gi ;
PAiP = 3 Fj= vbyviy Hy= ubyu.
0 H1 i )
We recall the matrix form of Schur's lemma which says that a set
of n by n matrices are irreducible if and only if there exists no non-
cingular matrix which 1s not a scalar multiple of the identity and which
commutes with ail the matrices in the set.
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THEOREN 2. Let G(s) be a given rcgular vatrix of rational functions
and let [A,B,C] be a minimal realizatio. of G(s). Let A belong to
R™N and let B and C belong to R™™ and R™" respectively.
Suppose B and C are of rank m. Then the Lie algebra {A,BC}y is
irreducible if and only if the set of m by m matrices 6(C) is irre-
ducible (€ is the field of complex numbers and G(C) i, its image

under G(-)).

. Proof. Suppose that T6(s) = 6(s)T for some constant matrix T which
is invertible and not a multiple of the identity. Let [A,B,C] be a
wminimal realization of G(s). Then since

cis -A)-18 = T-V¢(1s-A) VBT

we see that [A,BT,T7'C] is also a minimal realization of 6(s). By
the state space iscmorphism theorem we know there exists P such that

PB = BT
ol = Tl
! =

Since B 1is of full rank P cannot be a multiple of the identity if
T 1s not. : )

On the other hand, if {A,BC} is reducible then there exists a
wnsingular P, unequal to a multiple -of the identity, such that
PAP-! = A and PBCP-! = BC. However, since B is one toone and C
is onto, it follows that PB = BT for some nonsingular T and cr-l=
RC for some nonsingular R. Thus BTRC = BC and since B and C
have left and right inverses respectively, we see that T = R and
thus T6(s) = G(s)T. Now P is not a multiple of the identity, and
so PB # oB (this would violate uniqueness of P in the state space
isomorphism theorem). Thus T is not a multiple of the fdentity and

_6(C) is reducible. n

We note that in particular, if BC {s a dyad and rank(B, AB,
cens A""B) = rank(C; CA; ...} CA""‘) = n, then the representation
{A,BCYy 1s irreducible and it is equivalent to a Hamiltonian algebra
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if and only if a(s) = g(-s). In particular, the algebra associated
with 1/s” depends on whether n  is even.or odd. It has been shown
by direct construction in [8] that it is the full n(n+1)/2 dimensional
Hamiltonian algebra if n is even. The Lie algebra associated with
s"‘]/(s"+]) is the full n2-1 dimensional algebra of zero trace mat- °
rices for every n (see [8}). HWe observe that to generate skew-sym-
metric algebras we can use a 6G(s) of the form

1 l] 1 1 s . 1 [n s]
e = 2[4 0]+ el R R I

for the odd dimensional case and

1 1 s 1 2 s 1 n s
6 (S) FE e— + —_— [ 4 eoe 4 [ ]
" s241 L=s 1 s?4q L-s 2 s?p? s 0

for n even.

3. An Application to Stability

As is well known, the symplectic matrices form a group and the
eigenvalues of symplectic matrices occur in reciprocal pairs. That is
to say, if A is an eigenvalue of a symplectic matrix then so is 1/A.
This observation together with the basic ideas of 'Floquet theory en-
ables one to show that for 0 < t <= all solutions of.

Z(t) = (A(t) + B(t))x(t) ;. A(+T) = A(t) ; B(£+T) = B(t)

are bounded for € sufficie:.ly small provided A(t) and B(t) are
Hamiltonian and the solution of the equation '

x(t) = A(t)x(t)

has distinct characteristic multipliers all lying on the unit circle
(see reference [9]). This together with Theorem 1 yields the follow-
ing theorem. : ' ‘

THEOREM 3. Let p and q be polynomials with the degree of p larger
than that of q. Suppose k(t) 1is periodic with period T. Then there
exists € > 0 such that for |[k(t)| < € all solutions of



-128-
p(D)x(t) + k(t)a(D)x(t) =0 ; D= &

are bounded provided i) q(s)/p(s} = q(-s)/p(-s) where ii) p(s) =
(szﬂg)(sz*’x%)...(szﬂﬁ) with A all real and nonzero mod 2x/T
with (xi—xj) nonzero mod 2x/T.

Proof. Under the given hypothesis there exists a realization of
[A,B,C] of q(s)/p(s) such that A ard BC are Hamiltonian. Thus
we can express the evolution equations in first order form as

x(t) = (A + k(t)D)x(t)

with A and D Hamiltonian. By hypothesis eAT has all its eigen-

values on the unit circle, and none are repeated. Thus by the pertur-
bation result quoted, there exists e > 0 such that if |k(t)]| <€
for all t and k(t+T) = k(t) then we have stability.
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