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FOREWORD

This document reports on an investigation by the Aerojet Solid
Propulsion Company from July 1968 to November 1971, to determine the
correlation between acoustic emission and fracture in selected aluminum
alloys under Contract NAS 8-21405. The work was administered under

the direction of Mr. W, Clotfelter of the NASA Marshall Space Flight

Center.

Aerojet personmel who participated in the investigation include
C. E. Hartbower, Associate Scientist, W. G. Reuter, Senior Engineer;
C. F. Morais, Test Engineer and P. P. Crimmins, Manager of the Metallurgy
Section of Advanced Technology, Aerojet Solid Propulsion Company,

Sacramento, California.
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B,

I. INTRODUCTION

A. DEVELOPMENT OF THE TECHNOLOGY

1. Historical Background

The use of stress-wave emission as a nondestructive inspection

technique has been under development for over a decade. The technique is based

upon the elastic energy which is spontaneously released when a material undergoes

plastic deformation and/or cracking. Thus, stress-wave emission constitutes a
unique nondestructive inspection method in that the material defect when pro-
pagating, transmits its own signal, with the sensor acting as the receiver.
In other words, the material undergoing crack growth both generates and trans-
mits the signal (stress wave emission) which then can be detected by suitable
instrumentation and the source located using seismic techniques,

In Germany, Kaiser(l)* reported what was apparently the first
comprehensive investigation of stress-wave emission in 1950. 1In the U.S.A.,

(2-4)

the researches of Schofield, et al and studies at Aerojet—-General

(5-28) were largely responsible for triggering the current high

(29-32)

Corporation
activity in this new field of nondestructive inspection. Dunegan at
the University of California Lawrence Radiation Laboratory also did pioneering
work in this area, but most of his early research was for the U.S. Atomic
Energy Commission and, therefore, was not publicized. Graduate studies at
Michigan State University started working in this field around 1960 and
continue to work with the stress-wave emission phenomenon(33—36). Likewise,
other colleges and universities have been encouraging work on the phenomenon

in the last five years(37—45).

*References 1-45 are listed on pages 81 - 84,



In addition to the above references, an extensive literature
survey was undertaken during this program. The articles dealing with the
general area of acoustic emission technology uncovered and reviewed during this
survey are shown in Appendix A. Although this background is extensive, no
reported work was found which involved application of the technique to monitoring
of crack initiation and growth at cryogenic temperatures. Primarily, the work
has involved room temperature laboratory tests and the monitoring of structures,
principally pressure vessels, also at room temperature. The results of these
prior programs are incorporated in this report where applicable to the results

of this study.

2. Subcritical Crack Growth

Examination of failed rocket motor cases has indicated the
typical failure origin to be a small crack or crack-like flaw. The flaw is
sometimes sufficiently large to cause fracture on initial loading and some-
times it is so small that the structure can withstand many load cycles or a
prolonged period of sustained stress before the flaw attains critical size
for failure. From service-failure analyses, it is clear that fabricated
structures and even raw materials contain defects of various kinds. Service
life then is controlled by (1) the initial flaw size, (2) the rate of slow
crack growth in the environment of the proof test and/or service, and (3) the
flaw size (critical crack size) to cause fracture at the operating stress.

The latter is determined by a quantitative measure of fracture toughness. The
rate of subceritical crack growth and the threshhold stress intensity below
which slow crack growth will not occur is determined by laboratory evaluation
and can be monitored by nondestructive inspection using the Stress-Wave Analysis
Technique (SWAT). The initial flaw size is estimated by quality control and

verified by proof test.

The basic philosophy of the proof test is that once a pressure
vessel has withstood the proof pressure, subsequent loading to a lesser pressure

will not produce failure. Obviously, this assumes that there will be no fatigue

o



cracking in service and no slow crack growth of existing subecritical defects

due to time-dependent mechanisms such as hydrogen, stress corrosion and/or
strain aging. Without SWAT, experience shows that failure can occur in proof
testing as a result of undetected subcritical crack growth. Moreover, when a
material is susceptible to slow crack growth, the concept of the proof test is
invalid; i.e., after proof testing, tankage can fail at a lesser load if stress—
corrosion, strain aging, hydrogen or cyclic loading are involved in service.
There are numerous examples to illusttrate the fact of subcritical crack growth

in proof testing as well as in service.

Consider the second-stage Minuteman, a 42-in.-dia rocket
motor case which was proof tested with inhibited water with three cycles of
ninety seconds each to 1.1 of the mean expected operating pressure (MEOP).
One chamber failed "prematurely" during the fourth cycle (a test-rig mal-
function on the first cycle mecessitated a fourth cycle to proof pressure).

The failure occurred after 40 seconds at pressure during the last cycle of

proof testing. Thus, the chamber withstood a total of 220 seconds at maxi-
mum pressure., The fabricator's failure analysis reported that failure
initiated in the LD surface, in the fusion and heat-affected zone of the
center girth weld. ©No cracks were found by norndestructive inspection prior
to proof testing. The only explanation for such a failure is subcritical

crack growth during proof testing.

Consider also a first-stage Polaris rocket motor case which
was proof tested with inhibited water at 1150 psig and held at pressure for
180 seconds, with two or more pressure cycles. In the early development of
the Polaris, there were numerous failures in proof test, and some had gll
the characteristics of subcritical crack growth. One chamber, for example,

failed after 120 seconds at proof pressure on the second test cycle. The

chamber had been inspected by magnetic-particle, dye-penetrant, radiographic

and visual procedures; all failed to reveal cracking. Another Polaris



chamber failed after the second proof cycle during the first few seconds of

depressurization, after withstanding a total of 360 seconds at proof pressure.

The above examples show that incipient flaws in a pressure
vessel can increase in size as a result of proof testing. The concern here
is not only with those pressure vessels that fail during proof test (an
economic loss) but also with those that suffer suberitical crack growth
without failure in the proof test. The latter then enter service with
enlarged cracks which may be subject to additional slow crack growth at
service loads. However, if the proof test does not fail the pressure vessel
and if a system is employed to detect and locate flaw(s) undergoing subecritical
crack growth, the information gained from the proof test outweighs the damage
done by slow crack growth. Furthermore, with the safeguard of SWAT, proof
testing significantly above the pressure anticipated in service can be
advantageous. For example, if a vessel survives the first cycle to 1.5
MEOP, then the largest flaw that can be present in the successfully proof-tested
tankage is smaller than that at 1.1 MEOP*. Thus, a vessel which survives the
first cycle at a proof pressure of 1.5 MEOP is less likely to fail in service
because of the significantly smaller defects demonstrated to be present by the
proof test. However, if SWAT is not used to detect flaw growth and permit
unloading before a crack reaches critical size, the higher proof pressure

(1.5 MEOP) will increase the probability of failure in the proof test itself.

The examples of subcritical crack growth cited in earlier
paragraphs involved high-strength materials. Some who are primarily concerned
with lower-strength materials will take comfort in this. However, one other

example should be considered. During the routine air-leak test of a large

* ¢. F, Tiffany, F. A. Pall, "An Approach to the Prediction of Pressure Vessel
Minimum Fatigue Life Based Upon Applied Fracture Mechanics,”" Boeing Doc.
D2-22437 (163) . Unlimited Distribution. ASTM Special Committee on Fracture
Testing of High Strength Sheet Materials Fifth Report, Materials Research &
Standards, Vol. 4(3), March 1964.




steel pressure vessel, a catastrophic brittle failure occurred at a pressure
of about 3,200 psig, even though the vessel previously had passed two hydro-
static tests at 7,500 psig. The pressure vessel was in the form of a
sausage-shaped flask. about 15-ft long with a 19-1/2-in. ID and a 1-1/4-in.
minimum wall thickness; it was manufactured in accordance with ASTM Spec.
A372 Class 4, modified to a minimum yield strength requirement of 80,000 psi.
Investigation of the failure* revealed that, following the hydrostatic tests,
prior to leak test, the pressure vessel, had been galvanized twice, including
a five to eight hour warm-acid-stripping operation prior to the second
galvanize. Hydrogen embrittlement arising from the acid stripping was
suspected to be a factor contributing to the brittle failure. Standard
Charpy V-notch impact tests revealed the 15-ft-1b transition to be 100°F

and the FATT to be 125°F; the drop-weight NDT was approximately 80°F. Thus,
the brittle condition of the steel was confirmed by the high transition
temperatures of the pressure-vessel material (although the material met all
requirements of the applicable ASTM specification). Nevertheless, the failure
was considered to be unusual inasmuch as the pressure vessel had successfully
passed two cycles of proof test to 7,500 psig and then failed at 3,200 psig

in a routine air-leak test.

Positive assurance of the structural integrity of pressure
vessels depends upon determination of (1) the initial flaw size, (2) the
rate at which pre-existing flaws grow under operating conditions, and (3) the
maximum flaw size the material can tolerate under operating conditions.
Before proof testing (or leak testing, as in the preceding example), the only
basis for estimating the initial flaw size is a knowledge of the quality-

control procedures employed during fabrication. For example, if X-ray is the

* R. C. Bates and H. D. Greenberg, "A Study of the Fracture Resistance of Steel
Pressure Vessels by Means of Charpy, Drop—Weight, and Full-Size Burst Tests,"
AIME Met. Soc. Conf., Vol. 31, APPLICATION OF FRACTURE TOUGHNESS PARAMETERS
TO STRUCTURAL METALS, Edited by H. D. Greenberg, Chairman of the Symposium
Committee, Gordon and Breach Sci. Pub. New York, 1964.



is the nondestructive inspection method used, then the largest crack in the
pressure vessel at the time of proof testing might be estimated as being

2 percent of the thickness. If the critical crack size at the proof pressure
is less than 2 percent of the wall thickness, then the pressure vessel may
fail during proof test. (With acoustic emission as a nondestructive inspec-
tion method employed during proof test, one should be able to detect the
growth of such a defect at loads well below the proof pressure and discontinue
the test before failure occurs.) If there are no cracks in the pressure vessel
of critical size at proof pressure, then one can estimate the largest flaw at
the start of service to be no larger than the critical crack size at the proof

pressure. This then is the estimated initial flaw size.

B. SCOPE OF THE RESEARCH

The objective of the research reported here was to investigate the
correlation of stress-wave-—emission characteristics with fracture of aluminum
alloys in environmments of particular interest for liquid-rocket-engine tankage.
Selected aluminum alloys were investigated, including 7075-T73, 2219-T87 and
2014-T6. The 2014-T6 alloy was TIG welded with 4043 and 2319 filler wire and
MIG welded with 4043, The materials were tested as smooth (unflawed) tension
specimens and as part-through-crack (PTC) tension specimens at room and at
cryogenic temperatures. In addition, 18-in.-dia subscale pressure vessels
were tested using a computerized SWAT system for detection and location of

stress—-wave sources.




IT. SUMMARY

Previous programs at Aerojet have extensively utilized the stress-wave-
analysis technique (SWAT) as a crack-monitoring system at room and elevated temp-
perature. One observation common to the earlier studies, regardless of the
material investigated, is that the stress-wave—emission signals have characteristics
which serve to identify plane-strain instability and presage plane-stress instability.
The characteristics which have been found to serve as a precursor of failure are
(1) a marked increase of the amplitude of the signals as observed in real time on
an oscilloscope, (2) a marked increase in the signal repetition rate (count per
second) and (3) a marked increase in the slope of the cumulative count-versus-
load plot.

Koom~temperature data from PTC-tension tests in the study reported hereiln
confirmed the usefulness of the above characteristics and provided a precursor
of the plane-strain instability. However, the characteristic marked increase in
acoustic~emission count rate observed at room temperature was not generally
observed in cryogenic testing PTC-tension specimens. Nevertheless, crack growth
was detected in all of the cryogenic tests and at loads sufficiently below criti-
cal stress intensity to permit unleading and cenfirmation by conventional non-
destructive inspection. Highlights of the findings upon which these general

observations were based are summarized below.

Laboratory Tension Tests. Acoustic-emission measurements in cryogenic

testing were found to be complicated by the following factors:

1. bubbling (boiling) of the cryogenic medium
2. formation of ice on the tooling above and below the cryostat
3. low sensitivity of the Model 2242 accelerometer used in low-

temperature testing.

Solution to these problems was obtained in the testing of tension specimens by
the use of 60 KHz to 600 KHz band-pass filtering, meticulous care to avoid the
formation of ice around the cryostat, and the use of a Model 2213 acclerometer

mounted on a wave guide extending out of the cryogenic. bath.

Larger cumulative counts were obtained from unnotched tension specimens
than from part-through~crack tension specimens. The large count recorded from the
unnotched specimens occurred primarily as a precursor at loads close to failure.
The following tabulation summarizes the results of both the room-temperature
tests and the cryogenic-temperature tests where ice was eliminated and a model

2213 accelerometer was used mounted on a wave guide.



PRECURSOR IN NOTCHED AND UNNOTCHED TENSION TESTS

Test Material

Temp.

Condition

Unnotched 2014
Tension

2219

2014

2219

PTC- 2014

Tension

2219

2014

2219

RT

RT

-320

-320

RT

RT

-320°F

-320°F

BM
WM
WM

BM
WM
WM

BM
BM
BM
BM

WM
BM
BM

BM
BM

WM

2% ¥

2F 2

BM
BM

BM

EE

(a) BM, base-metal test; WM, weld-metal test.
(b) increase in count occurring in the precursor of failure.

(c) no significant increase in count just before failure.

Specimen

C

22
25

36

RN aH T

32

18

29
30

8
9
26

19

31
34

Thousands
of Counts

120
1,750
240
145
1,000
61

35
70
140
120

300
200
40

70
90

35

60

330
200




From'thgfabpve summary, it will be 'seen that at room temperature both the
uﬁnotéhe& and the PTC-tension specimens gave useful precursors, but at cryogenic
temperature, there was little or no warning of failure in the plane-strain (PTC)

tension tests.

Two instrumentation considerations were found to affect the room-
temperature precursor, viz., the trigger level used in cdunting, and the sdaie
factor used in plotting cumulative count versus’ load. If the trigger level is
setlclose to the background noise, this is effectively an increase in gain and
the precursor gives an early warning of failure. If a higher voltage trigger
setting is used (effectively less gain), the warning comes just before failure.
‘ If the X-Y plot of count is recorded at 106 full scale, the precursor may bé
somewhat indeterminant. With high sensitivity, a 105 full-scale count setting
for the X-Y plot provided the best precursor.

The lack of precursor in the PTC-tension tests at cryogenic temperature
points up (1) the advantage of proof testing tankage at room temperature where
large counts generally presage failure and (2) the need for a real-time acoustic-
emission triangulation system in cryogenic testing. In cryogenic testing, the
computer, using the triangulation technique, determines the location of each
signal source, and, thus permits judgements based on multiple emissions from a
single source. In general, single events are disregarded but multiple emissions

from a single location serve as the precursor of failure at cryogenic temperature.

Pressure Vessel Tests. At room temperature the pressure-vessel tests

demonstrated that acoustlc emission monitoring can be employed to detect and
locate growing defects in the aluminum alloys tested, and provides the basis for
terminating a pressure test prior to failure. A marked increase in both the
count rate and stress-wave amplitude (as observed on an oscilloscope in real
time) served as precursors of failure. The existence of the Kaiser effect duting
structural loading also was verified in the room temperature tests; i.e., sig-
nificant SWE activity was not observed in successive cycles until prior pressure
levels were exceeded. However, when defects (or deliberate flaws) were at the
onset of instability, the Kaiser effect no longer was operative. Practical
application of the Kaiser effect lies in its use to determine prior maximum

pressure (stress) levels.



At cryogenic temperature the pressure-vessel tests again demonstrated

the capability to detect and locate stress—-wave-emission sources in real time.
Moreover, in spite of the low sensitivity of the transducer used in cryogenic
testing, it was still possible to detect and approximately locate the failure

origin in each vessel. Multiple emissions from weld defects and/or deliberate

flaws served to indicate incipient failure.

In the 2219-T87 cryogenic test, the error in defect source location
based on signal triangulation was approximately 4 inches; a similar error
(1 to 3-in.) in source location was observed in the room—temperature test of
the same material. During each pressure-vessel test, multiple emissions were
observed from the defect area which indicated potential failure. Inspite of
the error, the indicated source was within the zone which would have to be
ultimately inspected using conventional NDT methods to establish the size,

orientation and location of the source defect.

A comparison of the performance of the 2219 and the 2014 pressure vessels

‘indicated that the 2219 alloy was much superior to the 2014 alloy both at

room temperature and -320°F. At both temperatures, the 2219 chambers burst at
hoop stresses approximating the uniaxial ultimate strength level; whereas, at
cryogenic temperature the 2014 alloy burst at a hoop stress significantly below
the ultimate strength. The poor performance of the 2014 alloy may have been

at least in part the result of 2014 welding problems which required extensive
weld repair to remove weld porosity and cracking in the 2014 material. However,
from an acoustic-emission-monitoring standpoint, i.e., the ability to detect and

locate flaw propagation, there appeared to be no difference between the two alloys.
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ITT. TEST PROCEDURE

A, MATERIALS

The aluminum alloys evaluated during this program included
2014-T651, 2219-T87 and 7075-T73. The nominal chemical compositions of these
materigls are shown in Table L. The 7075-T73 alloy was procurred from a
commercial source (Reynolds Metals Co.) while the 2014 and 2219 alloys were

supplied by NASA-MSFC.

The parent metal * sile and metallurgical properties are shown
in Table II and Figures 1 through 3, respectively. Both the tensile and
metallurgical properties are considered typical of the materials tested. The
microstructures indicate varying degrees of residual cold working and also
contain relatively large amounts of non-metallic inclusions. The micro-
structures shown in Figures 1 through 3 are representative of the materials
employed to fabricate both the tensile specimens and the subscale pressure

vessels.

Welding was performed using both 2319 and 4043 filler wires. The
nominal compositions of these materials are shown in Table IIT. Both alloys

were used in fabricating tensile specimens while the subscale pressure vessels
were welded only with the 2319 alloy.

B. FABRICATION OF TEST SPECIMENS

1. Uniaxial Tensile Specimens

Table IV shows the test plan for the uniaxial tensile
program. Various specimen configurations were employed as discussed in

subsequent sections of this report.
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TABLE I

NOMINAL CHEMICAL COMPOSITION OF ALUMINUM PLATE MATERIALS EVALUATED

Alloy Type
Element 2014 2219 7075
Silicon 0.50 - 1.2 0.20 0.50
Iron 1.0 0.30 0.7
Copper 3.9 - 5.0 5.8 - 6.8 1.2 - 2.0
Manganese 0.40 - 1.2 0.20 - 0.40 0.30
Magnesium 0.20 - 0.80 0.20 2.1~ 2.9
Chromium 0.10 - 0.18 ~ 0.40
Zinc 0.25 - 5.1 - 6.1
Titanium 0.15 0.02 - 0.10 0.20
Zirconium - 0.10 - 0.25 -
Aluminum Bal. Bal. Bal.
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TABLE II

PARENT METAL TENSILE PROPERTIES(I) OF ALUMINUM ALLOYS
Specimen Ultimate 0.2% Offset

Alloy No. Strength (ksi) Yield Strength (ksi)
2014-T6 4-12 70.5 62.6
4-11 70.1 62,8
Avg 70.3 62,7
2219~T87 19-2 68.3 56.4
19-1 67.8 56.1
Avg 68.1 56.3
7075-T73 73-1 73.8 67.0
73-2 65.5 60.0
Avg 69.7 63.5

(1) A1l specimens oriented parallel to the direction of plate rolling.
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TABLE III

NOMINAL COMPOSITION OF ALUMINUM FILLER MATERTALS

Alloy Type

Element 2319 4043
Silicon 0.20 4.5 - 6.0
Iron - 0.30 : 0.8
Copper 5.8 - 6.8 0.03
Manganese 0.20 - 0.40 0.05
Magnesium 0.20 0.05
Zinc 0.10 0.10
Titanium 0.10 - 0.20 0.20
Zirconium 0.10 - 0.25 -
Vanadium 0.05 - 0.15 -
Aluminum Bal. Bal.
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TABLE IV

SUMMARY OF TEST SPECIMENS

7075-
2014-T6 2219-T87 T73
Specimen DC TIG Weld MIG Weld
Thickness Test 4043 2319 4043
Flaw (in.) Temp. Parent Filler Filler Filler Parent Parent
PTC* 0.180 75°F X X
PTC 0.300 75°F X X X X X X
None 0.300 75°F X X X X X X
PTC 0.500 75°F X X
PTC 0.180 -320°F X X
PTC 0.300 -320°F X X X X X X
None 0.300 -320°F X X X X X X
PTC 0.500 ~320°F X X
PTC 0.300 ~423°F X X
None 0.300 -423°F X X
SEN 0.300 75°F X X X

*Fatigue precracked part-through~crack tensile specimen.
**Fatigue precracked single-edge-notch-tensile specimen.
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The parent metal specimens were obtained with the longitu-
dinal axis oriented parallel to the plate rolling direction and tested in the
as-received (-T73, -T87, or =T651) condition. Both 0.3 and 0.5-in. thick
materials were supplied; 0.18-in. thick specimens were machined from
the 0.3-in. thick material by removing stock equally from both sides of
the plate. No surface preparation was required for the 0,3 and 0.5-in.

thick specimens.

Table V shows the welding parameters used in fabricating
the weld tensile specimens. Both tungsten-inert=gas (TIG) and metallic-
inert-gas (MIG) welding processes were employed. Welding head oscillation
(TIG welding process) was employed to make the second (filler) weld pass;
all weldments were tested in the as-welded condition with the reinforcement

removed prior to testing.

Figures 4 through 6 show typical weldment macrosections.

The characteristics of these macrosections vary, depending on the number of
welding passes, filler metal and weld process employed. All weldments were
dye penetrant and X-ray inspected. No cracks were detected; however,
scattered fine porosity was observed in most of the weldments produced. Some
scattered large porosity was also observed in the TIG weldments in the
0.18-in. thick plate, although the larger porosity was not generally observed
in the weldment areas from which the test specimens were obtained. The
porosity detected through nondestructive inspection is evident in the macro-
sections shown in Figures 4 through 63 in other respects, the macrostructure

is considered typical for these materials and weld processes.

2. Subscale Pressure Vessels

Subscale pressure vessels were fabricated using both the
2014 and 2219 aluminum alloys. The vessel configuration is shown in Figure 7

while Table VI schematically shows the fabrication sequence employed for
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Weld Process

Nominal Thickness, (in.)

Filler Metal

Joint Design

Included Angle
Root Land, (in.)
Amps

Volts

Head Travel Speed
(in./min)

Wire Feed (in./min)
Wire dia, (in.)
Gas (cfm)

Helium
Argon

TABLE V

TYPICAL WELDING PARAMETERS USED IN PREPARING

TENSILE SPECIMEN WELDMENTS

DC-TIG

0.18 0.312% 0.312% 0.5%
4043 4043 2319 4043
Butt Single Single Double

"y A !
- 60° 60° 60°
- 0.050/0.060 0.050/0.060 0.050/0.060
165 170 170 240
9.5 9.5/9.7 9.5/9.7 9.5
8 8 8 5
12,5 40/60 40/60 70
1/16 1/16 1/16 1/16
50 50 50 50

95%
5%

95%
5%

95%
5%

957%
5%

MIG
0.312
4043

Single
|lvll

60°
0.050/0.060
120

32

10

215
1/16
50

957%
5%

*Weld Head Oscillator used on 2nd weld pass of 0.3-in. thick and both passes on
0.5-in. thick material.
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8T

2014 Al
T451 CONDITION

Shear Spin

Age to T651 Condition
(10 hrs at 340°F)

Machine Outer
Diameter

Prepare Girth Weld

(Single ‘'V'', 30°v bevel =

0.06 in. land)

Drill and Tap
ANPT Fitting
(3/4 in.- 14)

2219 Al
T-37 CONDITION

ghear Spin

‘ Age to T87 Condition
(24 hrs at 325°F)

‘ Machine Outer

Diameter

@ Prepare Girth weld

0.06 in. land)

@ Drill and Tap
ANPT Fitting
(3/4 in. = 14)

CYLINDER

2014 A1
T-651 CONDITION

2219 Al
T.37 CONDITION

(Single **V'", 30° beve —

Roll Form

Prepare Long. Weld

(Single ''V"', 30° bevel —

0.06 in. land)

Prepare Girth Weld

(Single “'V"’, 30° bevel -

0.06 in. land)

Weld Longitudinal Joint
(TIG=2319 Filler Wire)

Inspect
(X-Ray Dye Penetrant)

Trim Length

Prepare Girth Weld
{Single "'V’ 30°bevel -
0.06 in. land)

Roll Form

Prepare Long. Weld
(Single V"', 30° bevel ~
0.06 in. land)

Prepare Girth Weld
(Single **V'’, 30° bevel —
0.06 in. land)

Age to T87 Condition
(24 hrs at 325 °F)

Weld Longitudinal Joint
(TIG - 2319 Vire)

Inspect
{Dye Penetrant, X-Ray)

Trim Length

Prepare Girth Weld
(Single *V'’, 30° bevel ~
0.06 in. land)

Weld Girth Joints
TIG - 2319 Wire)

Inspect Girth Welds
(X Ray, Dye Penetrant)

Table VI. Fabrication Sequence Used in Processing the Subscale Pressure Vessels



each material. Both aluminum alloys were TIG welded using 2319 filler wire.
The cylinder-section longitudinal weld was produced using head oscillation
(2nd filler pass) while the girth welds were not. The welding parameters
are shown in Table VII (0,3 in. thick plate and 2319 filler wire)., All
chambers were tested in the as-welded condition; the weld reinforcement

was not removed.

As indicated in Table VI, all vessel welds (both girth and
longitudinal) were dye penetrant and X-ray inspected. In general, the
2219 vessels required minimal repair and usually only for removal of scattered
porosity. Conversely, the 2014 alloy vessels required extensive weld repair
for removal of excessive porosity, non-metallic or tungsten inclusions and
cracks. Most of the defects, including all of the cracks, were removed during
repair of the 2014 vessels. However, as indicated in subsequent sections of
this report, some porosity and tungsten inclusions were not removed and were
found to be sources of SWE; tungsten inclusions remaining in the longitudinal
weld of the 2014 vessel tested at room temperature were found to be the origin

of failure.
C. TEST SPECIMENS AND FRACTURE TESTING

1. Specimen Configuration and Test Procedure

Smooth (unflawed) and part-through-crack tension specimens
were tested of each alloy. The part~through—crack (PTC) tension specimen
was originally developed for the purpose of simulating flaws of the type
frequently encountered in service. PIC-tension specimens are sometimes used
to obtain information on the effects of realistic flaws in terms of fracture
strength versus crack depth or area; the test also is used to obtain plane-
strain fracture-toughness data (KIc)‘ Figures 8 and 9 show the specimen
designs used. The PTC tests were performed in two major series. Initially,
transverse weld tensile specimens (Figure 8) were tested followed by a

second series of specimens incorporating a longitudinal weld (Figure 9).
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TABLE VII

TYPICAL WELDING PARAMETERS
USED IN WELDING SUBSCALE PRESSURE VESSELS

Weld Process
Nominal Thickness
Filler Metal
Joint Design
Included Angle
Root Land
Amps
Volts
Head Travel Sveed
Wire Feed
Wire Dia.
Gas

Helium

Argon

*
TIG

0.312 in.
2319
Single "V"
60°

0.060 in.
175

9.5

8 in./min.
50-65 in./min.
1/16 in.
50 cfm

75

25

*Weld Head Oscillator used on 2nd weld pass of

vessel longitudinal weld.




This procedure was employed to evaluate effects of high localized strain
(transverse weld) vs lower fracture strain (longitudinally welded) on the
stress-wave-emission weld-fracture characteristics. ~Note that two specimen
sizes were used in cryogenic testing; at —-423°F, because of cryostat space

limitations, a smaller specimen was tested (1.5-in. gage width by 1l-in. long).

Two loading systems were used in the program: (1) a Baldwin-—
Tate~Emery 60,000-1b hydraulic testing machine and (2) a 50,000-1b Research
Incorporated Material Test System, Initially, the specimens were instru-
mented with two post-yield strain gages. If there had been specimen mis-
alignment in the tensile machine, the output of the two gages on an X-Y
recorder would have shown bending. When it was confirmed that there was no
significant bending, a single axial strain gage was used in the remainder of

the program.

The initial tests of unflawed specimens produced a high
rate of stress—wave emission at very low load. Figure 10 is a plot of both
stress versus strain as measured by an axial electric-resistance strain gage,
and acoustic-emission count rate versus strain. Note the high initial stress-
wave count rate followed by a short period of relative inactivity and then
a rising count rate just before failure. Ixperimentation showed that the
high initial SWE counts were due to deformation at the specimen pin holes and
if the pin holes were preloaded in compression in the manner shown in Figure 11,
the initially high count rate was substantially reduced or eliminated. All
of the subsequent tension specimens were preloaded in this manner. Note that
with this type of preloading, the precracked section was unstrained in the

preloading operation.

2. Fracture Mechanics Considerations

Fracture testing was done with a PTC—tension specimen. The
PTC surface flaws were started from an electric-discharge-machined slot in
one surface of the test specimen. The slots were then extended by tension-

tension bending fatigue in a Burke milling machine converted for this use.
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The specimen was loaded as a cantilever beam. By use of different initial
slot configurations and sizes. different flaw shapes (a/2c) and sizes were
produced for testing. Although the PTC-tension specimen is not recommended
by ASTM Committee E-24, it is used by many investigators for determining
KIc'
The plane-strain value of fracture toughness is generally
considered a more fundamental unit of fracture toughness than the plane-
stress value because, within certain limits of crack and specimen size, it
is independent of specimen dimensions. Furthermore, plane-strain fracture
toughness is concerned with the most dangerous type of flaw; viz, a flaw
which initiates catastrophic fracture before growing through the thickness.
With such a flaw, both initial growth and instability are controlled by the

plane-strain fracture toughness, KIc'

The expression used for calculating the plane-strain fracture

toughness value was:

/

K. = FG(l.ZlnAO)l 2/¢

Ic

where FG = gross stress and ¢ is the commonly tabulated elliptic integral

m/2
(1 - k2 sinze)l/2 de
o
where k = l—(AO/C)Z, and C and AQ0 are one half the major and minor axes,

respectively, of an ellipse. With a plastic-zone correction, the equation

becomes

/ 1/2

K. = FG(1.217A0)* %/ - 0.212 (FG/FTY)?]

Ic

where FTY is the 0.2 percent offset yield strength.
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If the elliptic-integral function and plastic-zone correction are represented
by Q, the equation becomes
2 21wA0 2
K;.© = 1.21r80-FG°/Q (Eq 1)
Figure 12 is a plot of the flaw shape parameter Q as a function of flaw

depth-to-length ratios (A0/2C) for various fracture stress levels.

The criteria used for assessing the validity of the KIc
measurements were as follows: (a) gross failure stress should not exceed
the yield strength (FG/FTY < 1) and (b) the crack depth should not exceed

50% of the specimen thickness (AO/B < 0.5).

Paris and Sih® have an approximate solution for a semi-

elliptical surface crack. This approximation gives the stress intensity

. _ 3 1/2
, 2 o1 an e FG(n A0)1/2 28 .. wAD o
K. = [0+ 0120 AO/L)] ; =LAy 20 (lq 2)

at the end ol the semi-minor axis (AO). Paris and Sih estimate the accuracy
of the above cquation to be within about +5% for A0/2C from 0.5 to 0.05 and for
AO/B from zero to 0.5. TFor AQ/B up to about 0.75, the accuracy is still

probably better than +10%.

In using the solution of Paris and Sih, 1t the crack-tip
plastic-zone subtends a major portion (say half) of the distance vetween the
crack front and the back of the test specimen, the use of the equation is
doubtful. 1In this connection, it should be noted that the crack-tip plastic-
zone extends much further ahead of the crack as it approaches the back surface
than it does near midthickness; the free-surface effect extends into the

thickness of the specimen for a distance which is proportional to (KIC/FTY)Z.

*Paris, P. C. and Sih, G. C., "Stress Analysis of Cracks" ASTM Special
Technical Publication (STP) 381, pp.30-33, April 1965.
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Thus, when the thickness and/or the crack depth is less than some critical
value that is proportional to (KIC/FTY)Z, the constraint-relieving influence
of the free surfaces will result in fictitious KIC measurements. On the
basis of these observations, Brown and Srawley have suggested another
criterion for valid KIc measurements, viz, that the crack depth should exceed
2.5 (KIC/FTY)2 in., where FTY is the 0.2% offset yield strength.

Figure 13 compares the Irwin and Paris approximations; for
all practical purposes the two gave the same value of KIc‘ In this study,
the thickness of the material under test was sometimes less than 1.0
(KIC/FTY)2 and almost always less than 2.5 (KIC/FTY)Z. For example, with a
fracture toughness of the order of 30 ksi-in.t/2 and a yield strength of

60 ksi at room temperature.

0.250 in.

2
(K, /FTY)

0.625 in.

2
2.5 (KIc/FTY)

and for a yield strength of 70 ksi at -320°F

(KIC/FTY)Z 0.184 in.

0.459 in.

2
2.5 (KIC/FTY)

and for a yield strength of 30 ksi at —-423°F

(K /FTY)2 0.141 in.
Ic

0.352 in.

oy 2
2.5 (KIC/FlY)

Thus, according to the 2.5 (KIC/FTY)2 criterion, few of the data are valid,
and yet from Figure 14, it will be seen that the calculated values of KIc
were remarkably constant when plotted as a function of (1) normalized crack
depth, a/Q, (2) crack-depth-to-thickness, A0/B, ratio and (3) crack-depth-
to length, A0/2C, ratio. Moreover, when the tests were invalidated by too

deep a crack (A/B > 0.5) and/or when the gross stress exceeded the yield
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strength (FG/FTY > 1.0), as shown in Figure 14, there was little or no

difference betweer the valid and" "invalid'" telt ‘results.

‘3. Acoustic-Emission Instrumentation for Tension Testing

The basic instrumentation system used in Phase 1 of the
investigation (transversely welded specimens) is shown schematically in
Figure 15. The system consisted of (1) an Endevco piezoelectric accelerometer,
(2) voltage amplification, (3) filtering, (4) an oscilloscope, (5) tape
recorder, (&) eleétronic counter-printer, and (7) X-Y plotter. With this
systém, a real-time data display was obtained on both X-Y plotters and an
oscilloscope, while all data were taped for record purposes. To compensate
for the change in transducer sensitivity at the respective testing temperatures,
the tape-recorded data were played back at a constant SWAI-system sensitivity
(triggering level) for a given temperature of test, and for different

temperatures of test, an adjustment was made in the playback triggering level.

In Phase 1 of the investigation (transversely welded test
specimens), a Hewlett-Packard electronic-counter and strip-chart-printout
system was used; whereas, in Phase 2 (longitudinally welded specimens) a
Dunegan totalizer was used. In Phase 1, the gain was constant, and the
trigger level was adjusted to the background noise. The gain for the system
shown in Figure 15, then, was fixed at 100 db. In the Dunegan system, on
the other hand, the trigger level was constant at 0.707 volt RMS (1 volt
pk—to-pk) and the gain was adjusted so that the background noise was increased
to the trigger level. In both phases, the basic—system gain was 100 db; with
the Dunegan system, the set-point adjustment resulted in a gain variation of
100 db plus or minus 10 db. The Dunegan system was selected for the phase-2
investigation because of the convenience and efficiency of real-time record-

ing on an X-Y plotter.
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The method used during this program for developing the
total number of stress-wave emissions (cumulative count) in reality produces
a value weighteéd by SWE amplitude, specimen and sensor geometries. This
method was used because of the complexity of a data-reduction system which
produces one aud only one count for each burst-type stress wave, as compared
to the simplicity of counting each signal excursion above the noise level
as an individual stress wave, Large-amplitude burst-type stress waves with
typical sensor (and/or specimen) resonant decay provide many counts rather
than just a single count. In other words, in gemeral, the larger-amplitude
burst-type stress wave with its longer ring-down time provides a larger
number of SWE counts than does a smaller—amplitude burst-type stress wave.
Primarily because of this fact, the cumulative-total count obtaimed in this
program is weighted by the relative amplitude of the stress waves and is

possibly more nearly a measure of the released energy than a measure of the

number of burst-type stress-wave emissions.

Figures 16 and 17 and the followimg tabulation illustrate

the effect of SWAT-system trigger-level setting on the plot of cumulative

count versus load. DNote that in the case of 7075-T73 parent metal tested

at -320°F, the cumulative count increased markedly as the triggering level

was set increasingly close to the background-noise level.

Specimen Test Trigger Level, Cumulative
Jdo. Temperature, °F volts Count
73-3 =320 0.35 25,000

.26 52,500
0.18 145,000

Likewise, in the case of 2014-T6 TIG welded with 4043 filler wire,
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Specimen Test Trigger Level, Cumulative

No. Temperature, °F volts Count
PT43-10 =423 0.26 550,000
0.07 1,115,000
=20 =423 0.26 420,000
0.07 710, 000
=30 =423 0.26 435,000
0.07 820,000

the cumulative count increased markedly with decreasing triggering voltage.
This is the result of the increased SWAT-system sensitivity provided by the
lower triggering level and the progressively smaller amplitude of stress~

wave emissions that are detected as the system sensitivity is increased.

D. HYDROTEST PROCEDURE AND INSTRUMENTATION FOR SUBSCALE PRESSURE
VESSELS

1. Details of Hydrotest Procedure

The nominal hydrotest procedure which was employed in testing
both at room temperature and cryogenic temperature is shown below; variations
in this procedure, if employed, are indicated in discussions of the results

obtained with each vessel.

1st Cycle - pressurized to 50% of FTY without a part-through-
crack (PTC), held at maximum pressure for

30 seconds and then depressurized.

2nd Cycle - pressurized to 75% of FIY without a PTC, held
at maximum pressure for 30 seconds and then

depressurized.

3rd Cycle - pressurized to 90%Z of FTY without a PTC, held at

maximum pressure for 30 seconds and then depressurized,



If the chamber did not fail during the above pressurizations,
a-PTC flaw was introduced and the three steps were repeated in the indicated
order, If failure did not occur during the sixth pressurization, the chamber
pressure was increased until failure occurred. The PTC type semi-elliptical
defect was introduced in the center of the longitudinal weld using a 1-1/2-in.
diameter x 0.020 in. thick grinding wheel. The longitudinal axis of the flaw
was oriented parallel to the vessel longitudinal axis. Varying PTC lengths
and depths were employed depending on the vessel being tested; the actual

depth ana length is indicated in discussion ot each vessel tested.

The room—-temperature tests were conducted using uninhibited
water as the filler and gaseous nitrogen as the pressurizing media. The
pressurized gas was obtained through a cumulator from several banks of
gaseous nitrogen. Figure 18 shows the 2014-T6 aluminum pressure vessel prior
to testing and is typical of the test set-up employed for both room and -320°F
testing. A nominal pressurization rate of 100 psi/min was employed for the
room temperature tests although this was also varied as indicated in subsequent
discussions. A single strain gage (Type SR-4) was mounted in the parent metal
area adjacent to the longitudinal weld at the center of each vessel tested at
room temperature and was employed in conjunction with pressure gages to monitor

and control both the pressure level and pressurization rate,

The :cryogenic tests at -320°F were conducted using liquid
nitrogen as the test media. The chambers were initially filled with fine
sawdust in order to reduce the volume of liquid nitrogen required for chamber
fill and thus reduce the energy release occurring upon chamber failure.
Pressurization was accomplished using a cumulator of several banks of
gaseous nitrogen. The vessels were mounted in the vertical position; rubber
pads coated with silicone were used to prevent direct contact with the metal
support structure and thereby eliminate possible sources of extraneous

emissions due to relative motion between the vessel and retaining fixture.
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A nominal pressurization rate of 50 psig/min was employed for the tests

at -320°F., Strain gages were not mounted on the chambers for the cryogenic
tests; the pressure level and pressurization rate was controlled by monitoring
gages at Ehe pressurization system cumulator. The oveérall test procedure for
the -320°F tests was to fill the chamber with dry powder, then with the liquid
nitrogen, and pressurize immediately (within five minutes) after the vessel
was filled with liquid nitrogen. Successive refills with liquid nitrogen were
required after each pressurization cycle. With this procedure, a vessel

temperature of -320°F and minimum "boil off" was attained.

2. Acoustic Emission Instrumentation System for Pressure
Vessel Testing

The ASPC-SWAT Mobile Laboratory shown in Figure 19 was used
to monitor the pressure vessel hydrotest. Figure 20 shows a schematic diagram
of the sixteen (16) channel Acoustic—-Emission-monitoring system contained within
the van. When a defect propagates in the monitored structure, the associated
energy release is detected by the transducer mounted on the vessel. The
detected energy pulse is converted to an electrical signal which is preamplified,
amplified, filtered to remove extraneous background noise and then transmitted
to the SWAT system for triangulation and display of the detected impulse.
Figure 21 shows typical burst type stress wave data at two different sweep

rates and indicates the type of data to which the SWAT system is tuned.

For the tests reported herein, the trigger level of the SWAT
system was set to varying sensitivity levels depending on the background noise
encountered. These signals were band-pass filtered (30 KHz - 60 KHz) with a

gain of 60 db.

The SWAT system computer is programmed to operate on the
detected acoustic emission data. A main and a test subroutine triangulation

program is employed.
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The triangulation program (main program) for a test vehicle
is written so that location or the acoustic-emission sources can be
automatically furnished as data output. Through this system, various data
handling techniques can be automatically accomplished and displayed in real-
time so that decisions or actions may be taken. The computer, functioning
as process control, also can be programmed to make decisions and react to
any pre—established situation such as applications involving continuous

surveillance of critical components.

The main program provides real-time triangulation to the
acoustic-emission source. This program locates the individual sources on
a video display as an X-Y coordinate on a background representing the test
article in flat pattern. The main program also services the time clock and
counters which show total counts for each sensor when it is the first sensor
activated. These counts are transmitted to and tabulated by a teletype at

programmable clock intervals determined by the operator.

The subroutine test program provides the necessary
instructions to post the first four sensor numbers that are activated, the
corresponding three delta-time differences in microseconds and the test time
in hundredths of hours. This information is posted by the teletype in tenths
of microseconds and is used during the test calibration and post-test set up
procedure in conjunction with the acoustic-emission simulator. This program
alsoc can be used for monitoring small, simple test articles where only a
tabular format is desired. A typical teletype record for the subroutine

program is shown below:

T T T fest
1st Channel 2nd Channel ~1  3rd Channel ~2 ~3 4th Channel Time
5 3 23 6 38 41 4 0.03
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The numbers listed under the channel headings are the channel numbers
identified in the order of acoustic—emission arrival. The numbers presented
under Tl’ T2 and T3 headings represent arrival time in microseconds between
the 1st and 2nd channels, lst and 3rd channels and 1lst and 4th channels,

respectively. Readout time per pulse is 7-1/2 sec.

Data display is accomplished by visual and graphical means

in real time during the test; display time per pulse is in microseconds. The
video display is on a television monitor which also shows the sensor locations
on an overlay plan view of the test article. The sources of detected stress
waves are posted on the screen of the monitor so that their location can be
determined in relation to critical structure areas such as welds. Particular
attention is paid to areas indicating multiple emissions from a single source
since this can be indicative of subcritical flaw growth. Video tape records

of the monitor display also are made for subsequent data analysis if required.

Analog records were made of the detected stress wave emissions
for each of six channels used to monitor the pressure vessels during hydrotest.
These records were made using a fourteen channel Sangamo 3500 tape recorder
operating in a direct record mode. A seventh channel was used for tape

synchronous control,

In addition, a Dunegan Research Corporation Totalizer system
was used to plot the cumulative stress wave emission count vs pressure for
each hydrotest cycle. The output from one channel, corresponding to one
of the sensors mounted at the center of the cylindrical section, was monitored

using the totalizer systemn.

3. SWAT Sensor Location and Attachment

The room temperature tests were monitored using Endevco
Model 2213 accelerometers, while Endevco Model 2242 accelerometers were

used for the tests at —=320°F, The location of each of the sensors on
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the pressure vessels are shown schematically in Figure 22. Figure 18 shows

a vessel prior to hydrotest, while Figure 23 shows a sensor attached to the
vessel; the strain gage attached to the vessels for room temperature testing

is also shown. Figure 22 also represents the video display for the SWAT svstem
since the computer was given coordinates which would place the sensors as

shown on the display.

For the tests performed during this program, the sensor
pattern was arranged around the cylindrical section longitudinal weld. Since
the pressure vessels were tested in the as-welded condition, the weld area
was significantly lower in strength than the base metal; a PTC type notch was
also inserted in the longitudinal weld in the event failure did not occur during

the initial pressurizing cycles.

In addition to the sensors, one pulser (test transducer) was
located on the vessel. This unit provided a means of introducing an artificial
stress wave into the test article to check the SWAT system operation both
during set-up and while the vessel was under load. The location of the
pulser is shown in Figure 22, while Figure 24 shows a closeup of the pulser
attached to the vessel. The pulser location was varied during the test

program,

The sensor and pulse attachment method is shown schematically
in Figure 25. The pulser was attached through an isolation stud which was
attached to the vessel using adhesive (dental cement). Yor the room tempera—
ture tests, the sensors were mechanically attached to individual mounting
blocks which were held in place by wrap-around, expandable shock cords as
shown in Figure 23, A light film of Dow Cormning Silicone was applied between
the chamber and aluminum block, and between the aluminum block and sensor to
provide a continuous film contact. For tests at -320°F, the sensors were
attached to the vessel using anodized aluminum studs (flange dimensions of
1/2" hex, dia, thickness 0.125", an overall length of 0.245"). The studs
were individually bonded to the pressure vessel usiug a 7343 basin resin and

the sensors mechanically attached to the mounting stud.
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Iv. TEST RESULTS

A. FRACTURE TOUGHNESS

1. Parent Metal

The fracture toughness values as obtained from the part-
through-crack (PTC) tension tests are summarized in Table VIII. ©Note that a
slight increase in toughness was indicated at cryogenic temperature. Note
also that the second batch of 2014-T6 was somewhat tougher than the first
batch supplied by NASA-MSFC for the contract.

It was noted that the fatigue precrack was interrupted by
delimination-type cracking in some of the 7075-T6 and 2219-T87 specimens.
The following data from specimens with and without delimination-type cracking
show that the delamination-type flaws resulted in a higher apparent plane-

strain fracture toughness than the flaw-free material.

K_  Toughness

2. Welded Plate

Test Internal Ic

Material Temp. Flaws Irwin Paris
7075-T6 75 Delam. 33.9-39.5 30.0-38.8
Av(3)37.5 Av(3)34.8
75 Clear 31.6 29.9
2219-T87 75 Delam. 33.7-33.8 32.2-34.7
Av(2)33.8 Av(2)33.4
75 Clear 19.4 19.0
-320 Delam. 42.3 43.1
-320 Clear 32.6-36.0 30.4-34.7
Av(2)34.3 Av(2)32.6

The fracture toughness values as obtained from the PTC-

tension tests of welded plate

transversely welded specimens
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TABLE VIII

SUMMARY OF PARENT-METAL APPARENT FRACTURE TOUGHNESS
PART~THROUGH-CRACK (PTC) TENSION TESTS

Plane~Strain Toughness<a>
Temp. Thick. (ksi~-in.1/2)
Allgy (°F) (in.) First Batch Second Batch
2014~-T6 75 0.17 26.5~28.2
Av(2)27.3
0.31 28.9~30.0 34.4-34.5
Av(3)29.6 Av(2)34.4
0.47 26.9-35.1
Av(3)31.9
-320 0.17 28.1-30n.8
Av(3)29.3
0.31 28.5~-33.9 38.2-38.3
Av(3)31.2 Av(2)38.2
0.47 29.8
-423 0.31 34.0-36.0
Av(2)35.0
2219-T87 75 0.30 33.7-33.9
Av(2)33.8 33.0
-320 0.30 32.6-42.3 37.3-38.4
Av(3)37.0 Av(2)37.8
7075-T73 75 0.30 31.6-39.5
Av(4)36.0
-320 0.30 39.1

(a) FirsL and Second Batch refer to different test series.
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TABLE IX

SUMMARY OF WELD APPARENT FRACTURE TOQUGHNESS
PART-THROUGH-CRACK (PTC) TENSION TESTS

Plane-Strain Toughness

Temp . Thick. (ksi-in.1/2)
Alloy (°F) (in.) Transverse Weld Longitudinal Weld
2014-Té6 75 0.18 12.0-18.2
4043 wire Av(3)14.2
TIG Welded
0.30 16.1-18.0
Av(3)17.1
0.49 15.7-20.0
Av(2)17.8
=320 0.20 13.5~19.6
Av(2)16.5
0.31 12.5-20.6
Av(3)17.3
0.50 13.2-23.8
Av(3)20.0
-423 0.31 16.6-20.0
Av(3)18.5
2014-T6 75 0.31 12.1-17.0
4043 Wire Av(3)15.2
MIG Welded
-320 0.31 15.7-20.8
Av(3)17.7
2014-T6 75 0.31 17.7-21.1
2319 Wire Av(3)19.9 30.3
TIG Welded
-320 0.31 18.8-23.1
Av(3)18.5 37.8
2319-T87 75 0.34 - 32.4-32.7
2319 Wire Av(2)32.5
TIG Welded
-320 0.34 -~ 3R8.3-39.4

Av(2)38.8



deposited weld metal, the fracture toughness values were low and not signifi-
cantly different irrespective of parent metal, filler wire or welding process.
In the longitudinally welded PTC temsion tests, the part-through-crack was
centered on the weld joint and extended into the heat—affected base metal on
either side of the joint. Note that the apparent fracture toughness as
determined in the longitudinally welded plate was approximately the same as

that of the parent metal.

B. ACOUSTIC EMISSION

1. Stress-Wave Emission as a Precursor of Failure

Most of the materials testing done previously at Aerojet
using SWAT as a crack monitoring system has been at room or elevated tempera-
ture. One observation common tb all the earlier studies, regardless of the
material investigated, is that the stress-wave-emission signals have char-
acteristics which serve to identify plane-strain instability and presage
plane~stress instability. The characteristics which have been found to
serve as a precursor of failure are (1) a marked increase of the amplitude of
the signals as observed in real time on an oscilloscope, (2) a marked increase
in the signal repetition rate (count per second) and (3) a marked increase in
the slope of the cumulative count-versus—load plot. These characteristics
were first identified at Aerojet in a study for the Office of Naval
Rusearch(19 ) However, rhe characteristics were observed to be dependent

upon material toughness.

In highly tough HY-80, HY-150, D6aC (austenitized at 1/507¢
and tempered at 1100°F), and 6Al-4V (aged at 1250°F) where there was no
detectabie pop—in by either crack—opening-displacemenl gage or slress wave
emission, the failure process was identified by an increasing stress-wave

count, starling al approximately the load corresponding to deviation {rom

linecarity in the crack-opening-displacement chart. In the more brittle D6aC
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steel (austenitized at 1750°F and tempered at 600°F) and 7075-T6 aluminum,
plane-strain instability was identified by an order-of-magnitude increase in
stress-wave amplitude and the final failure process was identified by an
increasing stress—wave count, generally starting at approximately the plane-
strain pop~in. In the extreme embrittlement of D6aC austenitized at 1550°F,
fracture occurred directly from the plane-strain pop-in with only two or

three stress waves before the final unstable burst of crack growth.

In the ONR study, the plane-strain (KIc) instability was
identified by acoustic emission but the acoustic emission monitoring system
used did not have sufficient amplification and/or sensitivity to detect a
instability. However, in a recent study for the

Ic
Advanced Research Projects Agency(28 ), an improved acoustic—emission detec-

precursor for the K

tion system demonstrated that acoustic emission can also provide warning of
the plane-strain (KIC) instability. This study and the Navy study were based

on room—temperature testing.

Figure 26 illustrates the precursor in a part-through-crack
(PTC) tension test of 2014-T6 at room temperature. The results at cryogenic
temperature and other factors affecting the precursor are discussed in sub-

sequent sections of this report.
a. Precursor in Room Temperature Testing

In this investigation, the effect of trigger level on
the precursor was investigated. It was found that the trigger level used:in
counting the stress-wave emissions had a marked effect on the precursor.

For example, in Figure 27 the data from 2014-T6 specimen 8-8, tested at 73°F,
were played back at trigger levels of 0.059, 0.070, 0.090 and 0.12 volt.

Note that at the highest trigger level, the precursor occurred just before
fracture; whereas, at the lowest trigger level, the precursor appeared to
occur at about 25% of the failure locad. 1In Figure 28, it will be seen that

at an 0.15-volt trigger level 2219-T87 specimen 19-7 showed no precursor

37



whatsoever; whereas, at an 0.07-volt trigger level there was an unmistakable
precursor. Because the choice of trigger level is arbitrary, selection of a
quantitative value of load corresponding to the onset of crack instability

does not appear to be meaningful.

The effect of trigger level on the precursor is best
understood by a consideration of the background '"noise'" level. If the back-
ground noise increases (band widens) as the load is increased, the stress~
wave count could be affected if, at the start of the test, the triggering

"' level. Comparisons between

voltage is set just above the background '"noise
the background 'noise' band widths at the start of loading and near fracture
are prasented in Figures 29, 30, and 31. At room temperature, the background
"neise'" band at the start of loading was relatively narrow; while near frac-
ture, the band was relatively wide. At cryogenic temperatures, where plastic
deformation would be minimized, the width of the band was essentially the

same near fracture as at the start of loading. This suggests that the
broadened band near fracture in the 75°F tests was the result of plastic-

zone formation. In Figures 29 through 31, no attempt was made to photograph
burst~type stress waves; when they appeared in the photographs, it was by
chance. Figure 32 schematically shows the effect of background '"noise" at
three triggering levels for room-temperature tests. To simplify the illu-
stration, no burst-type stress waves are shown until failure. As the load

is increased, the net section yielding and the plastic zone at the crack tip
increases and, consequently, the continuous emission increases (see Figures 29
and 30, 75°F PTC tests). At a low-voltage trigger level, the background
"noise'" increases to trigger-level one at a relatively low load, producing

an anomalously low precursor. At trigger-level three, the specimen is
practically at the failure load before the background '"noise" has increased

to the trigger voltage, giving little or no precursor (see Figure 27 for

actual test data).
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b. Precursor at Cryogenic Temperatures

Examination of the cumulative count versus load curves
for cryogenic-temperature tests indicated that the precursor of failure is
likely to be very short at cryogenic temperatures, often less than 1 sec.

In Figure 17, for example, there was a sharp upward turn in the curves just

before failure, but the warning time was very short.

Figure 33 schematically shows the effect of trigger
level at cryogenic temperature (-320°F). At cryogenic temperature there was
little or no increase in the background-noise band (see Figures 29 through 31).
However, at cryogenic temperature there were many stress waves starting
almost immediately on applying load, including a 1arge number of small stress
waves interspersed with much larger amplitude stress waves. The latter,
because of the ring-down characteristic of the signal, were counted as
several stress waves rather than one. Effectively, then, the electronic
counter produced an integration of the size and number of stress waves. At
a low-voltage trigger setting (level 1), the small stress waves, as well as
the large, were counted, producing a rapid increase in cumulative count at a
low load. At trigger-level three, on the other hand, the small stress waves
were not counted and the count-versus-load plot tended to look more like the

room-temperature precursor curves (see Figure 34 for actual test data).

Figure 35 was obtained from a -320°F cryogenic test of
7039~T61 aluminum using a WOL configuration (B = 1.00 in. and W = 2.00 in.).
The instrumentation used in this test for NERVA was comparable to that used
in the NASA-Huntsville study. The specimen gave over 220,000 counts before
it failed, and the plot provided a more or less typical precursor to failure.
However, it is apparent that the counter triggering level affected the nature
of and the ability to detect the precursor. Figure 36 is a comparison between
the curves presented in Figures 16 and 35 (comparable SWAT systems) indicating

a difference in the results obtained from the PTC tests of 7075-T6 and the
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WOL tests of 7039~T61. Whether this difference at essentially constant
trigger level is attributable to differemces in the alloys or in the specimen

configurations is not known.

Several factors are believed to affect the precursor
in cryogenic testing including, in addition to trigger level, the noise pro-
duced by ice cracking and the low sensitivity of the tramnsducer used in
cryogenic testing. These factors are evaluated in subsequent sections of

this report.

2. Effect of Delamination

The following data were obtained from 7075-T73 parent metal
PTC-tension specimens tested at room temperature with and without delamina-

tion flaws in the fracture surfaces.

Trigger Cumulative
Crack (in.) Level Count
Material Specimen Delam. A0 2C (volts) x 103
7075-T73 73-6 Yes 0.084 0.382 0.32 3,310
73-7 Yes 0.105 0.382 0.32 3,330
73~-10 No 0.110 0.380 0.07 212
2219-T87 19-7 Yes 0.126 0.398 0.07 55

Figure 37 shows the 7075-T73 fracture surfaces with the delamination-type
cracking. Note that the delamination caused an order—-of-magnitude higher
acoustic emission count. Delamination observed in the 2219-T87 specimens,

on the other hand, did not generate a high count.
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3. Prpcedural Variables

a. Effect of Tape Playback

In the course of the investigation, there were a number
of occasions when tape-recorded data were played back for purposes of evaluating
the effect of trigger level or adjusting the trigger level to compensate for

loss of transducer sensitivity at cryogenic temperature.

In tape playback, even using an instrumentation-type tape
recorder with high frequency response, there is a considerable loss of data, as
will be seen from Figure 38. Figure 38a is an X-Y plot of cumulative stress—
wave count versus load for 2219-T87 Specimen No. 32 as recorded in real time
during the cryogenic test at 106 full scale. Figure 38b for the same test was
obtained by tape playback at lO5 full scale. From a comparison of the two
jumps, one at 47.5 kips and another at 50.7 kips (failure load), and the indi-
cated cumulative total count in the two plots, it will be seen that the loss of

stress wave data can be very significant.

Stress Wave Emission

Event Cumulative
Count Total
Load Real Play Real Play
(kips) Time Back Time Back
47.5 10,000 1,300 42,000 6,600
50.7 45,000 9,000 110,000 23,700

Likewise, the real-time plot of RMS voltage versus load when compared with the
playback plot shows the same loss of precursor data (Figures 39a and 39b). The
reason for the discrepancy is that the minimum signal the tape recorder will
record and play back is 150 mv whereas the noise level for these tests was on
the order of 30 mv meaning that tape playback does not include data between

30 and 150 mv. The limited frequency response of the tape recorder (300 KHz)

may also be a factor.
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b. Effect of Filter Level

Bamrd~pass filtering has long been recognized as an essen-
tial part of any acoustical-emission detection system. Variations in machine
or environmental noise from day to day sometimes necessitates changes in the
filtering level; however, an attempt is made to minimize such changes because
of the effect of filter level on the cumulative count. Consider, for example,
the following data for unnotched, 2219-T87 longitudinally welded, tension
specimens No. 27 and 28, and also 2219-T87, longitudinally welded, PTC-tension

specimens No. 29 and 30.

Test High—-Pass Trigger
Temperature Filter Level Cumulative
Specimen No. (°F) KHz (set Point) SWE Count
27 75 90 + 90 8.5 0.13 x 102
28 75 40 + 40 5.0 2.02 x 10
29 75 90 + 90 8.0 0.08 x 102
30 75 40 + 40 5.0 1.18 x 10

As seen from these data, reducing the filter level from 90 KHz to 40 KHz
increased the cumulative count by an order of magnitude. The difference in
set point was an adjustment in signal gain in the Dunegan system, and not a
change in trigger level. 1In the Dunegan system, the trigger level is fixed
at 0.707 volt. When filtering at 40Kiz, more background noise was detected
and therefore less gain was required to bring the signal up to a level just
under the 0.707-volt trigger level. Figure 40 schematically illustrates this
condition. With the quieter system provided by 90 KHz filtering, a higher
set point (gain) was required to bring the signal up to a level just under

the 0.707-volt trigger level.
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4. Kaiser Effect in Welded Aluminum

Figure 41 is a comparison of data from longitudinally welded,
unnotched, tension specimens 22, 27 and 28 which indicates an increase in
stress—-wave activity in the range of 5 to 10 kips load. When the specimens
were loaded for a second time, the activity in this range completely dis-~

appeared. This behavior is comsistent with the Kaiser effect.

Joseph Kaiser in Germany in 1950 was the first not only to
use electronic instrumentation to listen to the subaudible sounds produced by
the deformation of metals but also to observe that acoustic emission activity
is irreversible. In other words, acoustic emission is not generated during
the reloading of a material until the stress level exceeds its previous high.

This irreversible phenomenon is now known as the 'Kaiser effect".

One of the specimens (No. 27) shown in Figure 41 was sub-
jected te a third load cycle. For the third cycle, a Model 2213 accelerometer
was spring mounted on the specimen. The data were filtered at a band width of
60 KHz to 600 KHz with approximately the same gain as in the previous cycles,
viz., 100 db. The following tabulation of stress-wave-count data illustrates
the marked drop in count in each successive cvcle at a given load and the
marked increase in count just before failure in the 3rd cycle (the precursor

of fracture).

Specimen  Cycle Date Load Count Max. Load Total Count
27 1 11-3-70  36.85 134,000€a) 36.85 134 ,000(a)
11-3-70  36.85 3,200(b) 38.30 3,500(b)
9-29-71  36.85 730 40.65 610,000(c)

(a) High count resulting from the peak in stress-wave activity at 10 kips
(b) Kaiser effect

(c) Precursor

43



Figure 42 shows the precursor as seen in the 3rd cycle; the specimen fractured
at 40.65 kips. Note the Kaiser effect in that the stress-wave activity began

at about 38 kips, the maximum load of the 2nd cycle.

The fact that welded specimens showed increased stress-wave
activity at about 10 kips whereas unwelded (parent-metal) specimens did not,
suggests that the activity at low load could be the relieving of residual
welding stresses. Figure 43 is a comparison of welded and unwelded, unnotched,

room—temperature tests. Note that the parent-metal specimen showed virtually

o slress—-wave activity until there was a tooling problem, at which time the
specimen was unloaded, the situation corrected and then reloaded.

A comparison of data from PTC specimens 21, 29 and 30 also
indicated an increase in stress-wave activity in the range of % to 10 Lips load.
These are part—through—crack (PTC), longitudinally welded, Lension npecimens
of* 2014 and 2219 aluminum. From Figure 44 note Lhal when the tilter level was

reduced from 90 Kz to 40 KHz, the evidence of activity at 10 kips was markedly
increased, and when the specimen was loaded a second Lime, the aclivity com—
pletely disappeared. This behavior is consistent both with the Kaiser cffect
and with what would be expected if the first load cycle had produced a stress

reliet.

S. Effect of Flaw Size

In general, flaw size appeared to have little or no effect on

the SWE cumulative count.

Material Specimen Test Crack, in. Trigger Cumulative
Wire No. Temperature, °F AQ 2C Level, volts Count
2014-Té PT43-13 75 0.1183 0.730 0.35 86,500
4043 Wire -23 75 0.138 0.560 0.35 50,500
TIG -33 75 0.165 1.090 0.35 68,500
2014-T6 PT43-11 75 0.091 0.290 0.14 22,500
4043 Wire =21 75 0.091 0.477 0.14 23,500
TIG -31 75 0.064 1.500 0.14 30,500
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The plots of cumulative count versus load corresponding to the tests in the

above tabulation are presented in Figures 45 through 48.

Figures 49 and 50 and the following data illustrate a case
where increasing crack size appeared to be attended by an increase in cumula-

tive SWE count.

Material Specimen Test Crack, in. Trigger Cumulative
Wire No. Temperature, °F A0 2C Level, volts Count .
2014~T6  PT19-1 75 0.098 0.300 0.32 13,500
2319 Wire -2 75 0.126 0.520 0.32 28,500
TIG Welded -3 75 0.114 1.090 0.32 32,500

However, the difference in count was not great and may not be significant.

Comparisons of notched (PTC) and unnotched tension tests
revealed a result that at first appeared to be anomalous. As indicated below
some of the transversely welded specimens gave higher counts in the unnotched
tests than in the PTC-tension tests. In subsequent tests of the longitudinally
welded specimens, both parent metal and welded 2014-T6 specimens confirmed
that the smooth, unflawed specimens generated larger counts than PTC-tension-

tests at both 75°F and -320°F.

Test High Pass (set point)
Specinen Temperature Filter Trigger Cumulative SWE

Material No. (°F) (KHz) Level Count x 103
2014~T6 Parent Metal
Unnotched 4 75 90 + 90 8.0 4000

5 75 90 + 90 8.0 4600

6 75 90 + 90 8.0 3000
PTC 1 75 180 + 180 3.0 22

2 75 90 + 90 8.0 53
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Test High Pass (set point)
Specimen Temperature Filter Trigger Cumulative SWE
Material No. (°F) (KHz) Level Count x 103

2014-T6 Parent Metal (cont.)

Unnotched E -320 60 + 60 7.5 120
G -320 60 + 60 7.0 180
F -320 60 + 60 6.0 360
PTC 8 -320 54 + 54 7.0 103
9 -320 50 + 50 6.0 90
2014-T6 Welded with 2319 Wire
Unnotched 22 75 90 + 90 8.0 1800
PTC 21 75 90 + 90 8.0 250
Unnotched 25 -320 60 + 60 3.8 720
36 -320 54 + 54 8.0 350
PTC 26 -320 60 + 60 5.0 150

Likewise, both parent-metal and longitudinally welded 2219-T87 tests showed
that the smooth, unflawed specimens generated either larger counts or about

the same count as PTC-tension tests at both 75 and -320°F.

Test High Pass Level
Specimen Temperature Filter Trigger Cumulative SWE

Material No. (°F) KHz (set point) Count x 103
2219-T87 Parent Metal
Unnotched 12 75 90 + 90 8.0 1000

13 75 90 + 90 8.0 1500
PTC 18 75 90 + 90 8.0 1
Unnotched J -320 60 + 60 4.0 70

K -320 60 + 60 1.1 + 20db 150
PTC 19 -320 60 + 60 9.2 100

20 -320 6C + 60 3.5 170
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Test High Pass Trigger
Specimen  Temperature Filter Level Cumulative SWE
Material No. (°F) KHz (set poirt) Count x 103

2219-T87 Welded with 2319 Wire

Unnotched 27 75 90 + 90 8.0 2200
28 75 40 + 40 5.0 1200
PTC 29 75 90 + 90 8.0 800
30 75 40 + 40 5.0 1200
Unnotched 32 ~-320 54 + 54 - 310
33 -320 60 + 60 6.7 550
PTC 31 -320 54 + 54 7.0 200
34 ~-320 54 + 54 7.0 150

The explanation for the high counts obtained with smooth
(unnotched) tension specimens as compared with PTC-tension tests is the result
of continuous emission occurring in the smooth specimens during the final
stage of the failure process. Figure 51 illustrates this in unwelded 2014-T6
material. Note that at 37 kips, the smooth specimen had generated a count of
only 3 x 103; the PTC failed at 36.9 kips with a count of 53 x 103. At 44 kips,
the smooth-specimen count had increased to 130 x 103 with an unmistakable pre-
cursor of failure. Likewise, consider the case of welded specimens No. 21 and
22, At 33 kips, the smooth specimen No. 22 had generated a count of only

40 x 103; PTC specimen No. 21 failed at 32.8 kips with a count of 250 x 103.

At failure (36.9 kips) the smooth-specimen count had increased to 1800 x 103.

A comparison of longitudinally welded PTC test No. 26 and
smooth specimen No. 36 at -320°F showed the same trend as the room temperature

tests. At 38 kips, the smooth specimen had generated a count of 33 x 103; the

PTC specimen failed at 37.9 kips with a count of 150 x 103. At failure

(42.3 kips) the smooth specimen count increased to 350 x 103.
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6. Relationship Between Acoustic-Emission Count
and Stress-Intensity Factor

(31 previously showed a relationship

Dunegan and Harris
between stress—-intensity factor and acoustic-emission cumulative count in
rising-load-to-failure tests of 7075-T6 aluminum. In Figure 52, note that
data obtained from four initial crack lengths grouped into a single curve
fitting the theoretical fourth—~power curve. Unfortunately the plots of such
data did not always conform to a fourth power curve; in another study, Dunegan
and Harris reported the exponent to vary between the 6th and 8th power. Later,
constant-load, stress—corrosion studies at Aerojet(lh) indicated a direct pro-
portionality between stress~intensity factor and cumulative stress-wave count
in single-edge-notch tension specimens (Figure 53). It was hypothesized that
the difference between the LRL and Aerojet test results could be the result of
a difference in the monitoring system trigger level. At LRL the counter trigger
level was set to include the continuous emission produced by plastic deforma-
tion; whereas, in most Aerojet studies, the trigger level was set above the
continuous emission, focusing on the burst-type stress—-wave emission associated
with incremental crack growth. However, differences from test to test, even

with a supposedly comstant data-acquisition system, have been encountered and

as yet not explained.

The importance of the relationship between stress intensity

factor and acoustic emission lies in the possibility of estimating flaw sizes

and failure load based on in-service, real-time, nondestructive inspection of

a flawed structure utilizing acoustic emission. However, before this can be

realized, much has to be learned about the variables affecting the count-

versus-K relationship.

A limited number of tests was made during this program using

a single-edge-notch (SEN) tension specimen to facilitate the calculation
of stress-intensity factor as a function of increasing crack length as measured

by crack-opening displacement.
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With the SEN-tension specimen configuracion, the 7075-T73
alloy generated a much higher stress-wave count than either of the other two
alloys tested. Figure 54 is a plot of cumulative stress-wave count versus
applied stress intensity as calculated from the measured load and crack-
opening displacement for duplicate specimens. No explanation was found for
the discrepancy between the curves. Table X presents the data from the dupli-

cate 7075-T73 tests.

The data from the SEN-tension tests of the 2014-T651 and
2219-T87 alloys are shown in Tables XI and XII. Figure 55 is a plot of cumu-
lative stress—-wave count versus applied stress intensity for the same mate-
rials. The data from dupiicate specimens of 2014~-T651 alloy did not fall on
a common curve at low load, but as the load and crack length (COD) approached
the critical stress—intensity factor, tne data appeared to fall on a common
curve. From Figure 55, note that the 2219-T87 alloy as compared with the
2014-T651 alloy generated a higher stress—-wave count initially and at frac-

1/2

ture. +the critical stress intensity was approximately 48 ksi-in. in the
2014-T651 alloy with a total stress-wave count to failure of 22,000, and

68 ksi—in.]'/2 in the 7075~-T73 alloy with a total count to failure of 110,000
1/2

45,000. Thus, based on these data there did not appear to be correlation

and 79 ksi-in. in the 2219-T87 alloy with a total count to failure of
between toughness and cumulative count indicating other variables such as

material type and condition are important factors in this relationship.

Figure 56 illustrates the excellent correlation that can be
found between crack-opening~displacement (COD) measurements and acoustic-
emission count rate. Note that at approximately the load at which there was
both pop-in and deviation from linearity in the COD-load X-Y plot, there was
a marked increase in the rate of stress-wave emission. The stress-intensity

corresponding to the load at this point of instability was 25.7 ksi—in.llz.
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TABLE X

SUMMARY OF STRESS-WAVE-EMISSION STRATIN-GAGE FRACTURE DATA
7075-T73 ALUMINUM ALLOY - 0.30-IN. THICK
Single—-Edge~-Notch Tensile

Crack Applied Axial Cumulative
Specimen Length Applied Stress Inteysity Strain Stress Wave
No. (in.) Load (1bs) (ksiéin.l 3) Q!b -in.) Emission Count
73-14 1.14 2,000 8.4 280 5,170
1.12 3,000 12.3 425 7,975
1.12 4,000 16.3 560 11,009
1.11 5,000 20.2 695 13,078
1.10 6,000 24.2 840 14,094
1.11 7,000 28.3 990 14,958
1.12 8,000 () 32.8 1145 18,985
1.15 9,000 38.5 1310 27,087
1.18 10,000 44,2 1470 38,430
1.21 11,000 50.3 1650 51,725
1.27 12,000 59.9 1850 79,501
1.30 12,460 (Fail) 64.9 1960 112,750
73-15 1.04 2,000 7.6 230 6,353
1.05 3,000 i11.5 370 11,258
1.06 4,000 15.4 505 18,510
1.06 5,000 19.4 635 29,793
1.06 6,000 23.1 775 37,838
1.06 7,000 26.9 915 44,666
1.06 8,000 30.9 1050 49,672
1.07 9,000(b) 35.1 1190 55,932
1.12 10,000 42.0 1360 69,384
1.15 11,000 47.5 1510 81,000
1.18 12,000 54.4 1675 83,000
1.23 13,000 62.5 1845 114,000
1.30 13,680 (Fail) 72.1 2000 134,000
(a) COD pop-in occurred at 8 kips or 32.8 ksi—in.l;2
1/2

(b) COD pop-in occurred at 9.3 kips or 37 ksi-in.



TABLE XI

SUMMARY OF STRESS WAVE EMISSTON-STRAIN GAGE~FRACTURE DATA
2014~T651 ALUMINUM ALLOY - 0.30-in. THICK
Single~Edge—- Notch Tensile

Crack Applied Axial Cumulative
Specimen Length Applied Stress Inte 51ty Strain Stress Wave
No. (in.) Load (1bs) (ksi-in. 4) (g« -in.) Emission Count

4-18 1.01 2,500 8.5 400 2,800
1.01 5,000 16.9 840 2,561
1.02 7,500 25.7 1320 7,570
1.14 10,000 40.3 1920 17,055
1.21 10,600 (Fail) 46.4 2120 22,500
4-19 1.08 1,000 .7 15 1,071
1.07 2,000 .4 140 1,150
1.07 3,000 11.0 275 1,361
1.07 4,000 14.6 410 1,436
1.07 5,000 18.4 540 1,546
1.07 6,000(2 22.2 670 1,702
1.08 7,000 26.1 805 3,039
1.13 8,000 31.7 965 7,398
1.19 9,000 38.6 1130 12,787
1.32 9,870 (Fail) 50.2 1360 28,762

(a) COD pop-in occurred at 6.9 kips or 25.7 ksi—in.l/2 (see Figure 56).
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TABLE XII

SUMMARY OF STRESS WAVE EMISSION-STRAIN GAGE-FRACTURE DATA

2219-T87 ALUMINUM ALLOY - 0.30-IN. THICK
Single-Edge-Notch Tensile
Crack Applied Axial Cumulative
Specimen Length Applied Stress Intensity Strain Stress Wave
No. (in.) Load (lbs) (ksi~in.1/2)> QAA-—in.) Emission Count
19-15 1.11 2,000 3.2 235 8,429
1.10 3,000 12.2 375 10,300
1.09 4,000 16.0 515 13,145
1.10 5,000 20.3 665 14,166
1.10 6,000 24,4 815 14,600
1.10 7,000 28.6 960 15,047
1.12 8,000 33.4 1105 15,720
1.15 9,000(3) 38.9 1260 16,759
1.19 10,000 45.6 1420 17,245
1.24 11,000 53.5 1605 17,822
1.48 11,900 (Fail) 79.1 1880 45,000
1/2

(a) COD deviation from linearity occurred at 9.5 kips or 41.5 ksi-in.



The value of KIc for 2014-T6 as determined by PTC-tension tests was

28.9 - 30.0
Av(3) 29.6 ksi~in.1/2
A comparison between the apparent KIc value as determined
from COD pop-in or deviation from linearity in the SEN-tension tests and the
K.  values determined from PTC-tension tests is presented in the following

Ic
room-temperature data summary:

Alloy Plane-Strain Fracture Toughness
SEN-Tension PTC-Tension

2014-T6 25.7 28.9 - 30.0
AvV(3) 29.6

2219-T87 31.0 - 33.9 33.7 - 33.9
Av(2) 32.5 Av(2) 33.8

7075-T6 32.8 - 37.0 31.6 - 39.5
Av(2) 34.9 Av(4) 36.0

Thus, the two tests provided essentially the same KIc values.
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7. Effect of Test Temperature

The following data indicated a marked effect of test temperature

on cumulative count in the 2014-T6 alloy,

Material Specimen Test Crack, in. Trigger Cumulative
Wire No. Temperature, °F A0 2C Level, volts Count
2014-T6 4-4 =320 0.125 0.290 0.25 200,000
Unwelded 4-8 ~423 0.110 0.255 0.25 750,000

When an approximate correction was made for the loss of accelerometer sensitivity
at -423°F, an even greater difference in cumulative count between -320 and

=423°F was indicated.

Material Specimen Test Crack, in. Trigger Cumulative
Wire No. Temperature, °F  AQ 2C Level, volts Count
2014-T6 PT19~1 75 0.098 0,300 0.32 13,500
2319 Wire <4 -~320 0.095 0.300 0.32 85,000

-4 =320 0.095 0.300 0.18 (a) 358,000
2014-T6 PT43~15 75 0.193 0.430 0.79 325
4043 Wire ~45 ~320 0.185 0.450 0.18 (a) 77,500

(a) trigger level corrected to compensate for the loss of sensitivity at -320°F.

The curves and crack photographs for the above data are presented in Figures

57 through 60,

The high count recorded in the cryogenic tests was suspected
to be the result of ice formation in the cryostat and on the tooling. To
verify this observation, specimen I was subjected to a succession of loadings.
Figure 61 is the plot of cumulative count (TSWE) versus load as produced on an
X-Y recorder during loading; on this first cycle of loading at -320°F the load
was dumped at 32.5 kips after recording 500,000 counts., After the lst cycle,
the LN2

to above 32°F, the specimen was replaced and LN

was removed from the cryostat. When the tooling had warmed

2 added preparatory to the
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2nd cycle., Figure 62 is the plot of TSWE versus load for the 2nd cycle; the
load was dumped at 51.0 kips. At 32.5 kips (the maximum load applied in the
1st cycle) the TSWE count was 850,000 as compared to 500,000 in the lst cycle.
The cryostat was then redesigned, removing all insulation from the inner
diameter surface. After redesign and starting with a dry cryostat and dry
tooling, the specimen was subjected to a 3rd cycle at -320°F (Figufe 63a).

At 32.5 kips, the count was only 55,000. At 56.3 kips the load was dumped,
and immediately the specimen was reloaded to failure at 57.7 kips (Figure 63b).
In the 4th cycle (to failure) the count at 32.5 kips was an order of magnitude
lower than in the 3rd cycle. Thus, in the 1lst and 2nd cycles, the Kaiser
effect was not observed because of ice on the cryostat and associated

tooling; whereas, in the 3rd and 4th cycles, after taking precautions to

eliminate ice formation, the Kaiser effect was observed.

The precursor of failure was not evident because of the scale
factor (106) used in the X-Y recording. However when Figure 63b was replotted

to 105 counts full scale, the precursor was evident (Figure 64).

In the cryogenic tests of transversely welded specimens, a
Model 2242 accelerometer was mounted on the specimen, immersed in the cryogenic
bath. During subsequent tests of longitudinally welded specimens, a Model 2213
accelerometer was mounted on a rod attached to the specimen and extending out
of the cryostat. Using the latter procedure, the sensor temperature remained
above -100°F which is the lowest temperature that can be employed without a
significant loss in sensor sensitivity. Also with this procedure, the sensor
was isolated from the cryogenic bubbling which had been a source of extraneous

background noise,

In the following tabulations, from a comparison of data
obtained at 75°F and at -320°F, it will be seen that there was little
difference in the cumulative acoustic~emission count for either the notched or
unnotched tests. In other words, the count for both notched and unnotched
specimens was essentially the same at -320°F as it was at room temperature.
Thus, with an improved cryostat design and care to avoid ice formation omn the
tooling, the large counts previously obtained in cryogenic testing were
eliminated.
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Test High Pass (Set Point)

Specimen Temperature Filter Trigger Cumulative
Material No. (°F) KHz Level SWE Count
Unnotched C 75 60 + 100 2.1*% 0.15 x 106
2014-T6 6
E -320 60 + 60 7.5 0.19 x 10
G -320 60 + 60 7.0 0.18 x 10°
F -320 60 + 60 6.0 0.36 x 10°
PTC-Tension 2 75 90 + 90 8.0 0.065 x 10°
2014-T6
8 -320 54 + 54 7.0 0.085 x 10°
9 -320 50 + 50 6.0 0.090 x 106
Unnotched 22 75 90 + 90 8.0 1.8 x 106
2014-T6 6
(2319 Wire) 25 -320 60 + 60 3.8 0.72 x 10
36 -320 54 + 54 8.0 0.35 x 106
PTC-Tensien 21 75 90 + 90 8.0 0.28 x 106
2014-T6 Welded 6
(2319 Wire) 26 -320 60 + 60 5.0 0.15 x 10
&
Unnotched 13 75 90 + 90 8.0 0.14 x 10
2219-187 LS ~320 60 + 60 6.0 0.29 x 10°
J -320 60 + 60 4.0 0.07 x 106
K -320 60 + GO 1.1 0.15 x 106
L¥* -320 60 + 60 6.0 0.80 x 106
Unnotched 27 75 30 + 90 3.0 0.13 x 10°
2219-T87 Welded p
(2319 Wire) 32 -320 54 + 54 - 0.11 x 10
PTC—Tension 29 75 90 + 90 3.0 0.08 x 10°
2219-T37 Welded 6
(2319 Wire) 31 -320 54 + 54 6.0 0.20 x 10
34 -320 54 + 54 7.0 0.15 x 10°

*Specimen C, like the other specimens in this tabulation, was tested with 100 db
of gain. However, the data for specimen C were filtered at a band width of

60 KHz to 600 KHz and the totalizer was triggered at a set point of 2.1

(20 to 40 db range).

**Specimens F, H and L were tested before redesign of the cryostat; these
specimens had the highest count of the cryogenically tested, parent-metal,

unnotcehed specimens.



8. Effect of Transducer Sensitivity in Cryogenic Testing

In addition to the problem of icing in the tooling and cryo-
stat, there was also a problem with low sensitivity in the transducer used
for cryogenic testing. Both of these problems were suspected to have contri-

buted to the lack of precursor in a number of the cryogenic tests.

Consider the data in the following tabulation where the earlier
testing was done using a Model 2242 accelerometer spring mounted on the test,
specimen, immersed in the cryogenic bath; and the later testing was done with

a Model 2213 accelerometer mounted on a rod, outside the cryogenic bath.

Specimen Test Trigger

Material Specimen Thickness, Temperature, Crack, in. Level, Cumulative

Wire No. in, °F A0 2c volts  Count x 103
2014-T6 PT43-41 0.210 -320 0.055 0.244 0.3§:; 47
2043 Wire =43 0.314 =320 0.122 0.406 0.3( ) 43

45 0.496 -320 0.185 0.450 0.3'2 23

2014-T6 8 0.319 -320 0.127  0.479 7(b) 100
Unwelded
2014-T6 26 0.319 =320 0.151 0.514 S(b)(c) 155
2319 Wire

(a) transversely welded specimens tested in 1969.
(b) set point for Dunegan totalizer, tested in 1971,
(c) longitudinally welded specimen

The amplification (gain) used both in 1969 and in 1971 was approximately 100 db.
The sensitivity of the transducers, however, was appreciably different; viz.,

10 pk mV/pk g voltage sensitivity for the 2242 and 44 pk mV/pk g for the 2213
accelerometer. The sensitivity of the 2242 accelerometer is only slightly
affected by temperature down to and including -320°F. The 2213 mounted on

the end of a rod was operating at about +40°F and, therefore, also was unaffected

by the temperature of the bath.
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The plots of acoustic—emission count versus load for the 1969
tests using the 2242 accelerometer are shown in Figure 65; the flaws are shown
in Figure 66. Wote that there was little or no precursor of failure. The
acoustic—-emission produced by crack growth in these tests was probably obscured

by ice as well as the low sensitivity of the 2242 accelerometer.

The plots of acoustic-emission count versus load for the
tests using the 2213 accelerometer mounted on a rod, outside the cryogenic
bath are shown in Figure 67. Note that there was no longer a high count at
low load, but a typical, gradual, stepped increase in count with increasing
load. However, there was still no definite precursor of failure. The unwelded
specimen showed a marked increase in count at failure but it ocecurred in only

two bursts right at failure.
a. Response of 2242 and 2213 Accelerometers

Specimen No. 27 was 2219-T87, longitudinally welded with
2319 wire, without a deliberate flaw, The specimen had two prior load cycles
at room temperature, one to 36.85 kips and another to 38.30 kips. In the
third loading at room temperature, a 2213 accelerometer was spring mounted on
the test specimen. The data were filtered at a band width of &0 Kiz to 600 Kiiz
with 100 db of gain. The Dunegan totalizer was triggered at a set point of
2.0 (20 to 40 db range). Because of the prior loading to 38.3 kips, one would
not expect a significant count before 38 kips (Kaiser Effect). There was in
fact a count of about 700 up to 38 kips. Failure occurred at 40.65 kips.
Between 38 and 40 kips, there was an unmistakable precursor, with an increase

in count of 61,000 in this interval of load (see Figure 41).

Specimen C was 2014-T6 parent metal without a deliberate
flaw, tested at 70°F. Two transducers were mounted on the test specimen; one
was a Model 2242 accelerometer and the other was a Model 2213 accelerometer.

The data were filtered at a band width of 60 KHz to 600 KHz with 100 db of gain.
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The Dunegan totalizer was triggered at a set point of 2.1 (20-40 db range) for
the 2213 accelerometer and 6.5 (0-20 db rdnge) for the 2242 accelerometer, With
these settings, the background noise associated with the 2242 accelerometer was
just above the trigger level and the background noise associated with the 2213

was just below the trigger level.

The acoustic-emission data for Specimen C at intermediate
load (25 to 35 kips) are shown in Figure 68a. At lO5 full scale range, the
2242 showed a gradual increase in count as a result of its set point; whereas,
the 2213 showed no count at all. When the range was changed to 104, the 2242
showed even more clearly the steady increase in count as the result of back-
ground noise, but no incremental increases until about 30 kips when there was
a jump of 2600 counts recorded by the 2242 accelerometer and 3200 counts by the
2213 accelerometer., This was followed by several bursts of emission at about
32 kips; in these bursts the Model 2242 count increased by 8700 and the Model
2213 count increased by about 26,000. Thus, in the intermediate load range,
the 2242 accelerometer failed to record some of the small bursts of activity,
and when it did record, the count was smaller than that recorded by the 2213

accelerometer.

Figure 68b for Specimen C shows that the Model 2213
accelerometer started to detect continuous emission from plastic deformation
in the test specimen at about 42 kips. From this load until the specimen
was unloaded at 44 kips, the Model 2213 recorded an increase in count of
123,000; whereas, the Model 2242 recorded an increase of only 6,500. These
data show that at loads near fracture where the precursor would be expected,
the 2213 accelerometer gave larger counts for individual bursts and larger
cumulative count than the 2242 accelerometer. Thus, it appears that in
cryogenic testing with Model 2242 accelerometers, as conducted in the first
phase of this study, the low sensitivity of the Model 2242 accelerometer
could explain the lack of precursor in many of the tests. However, the lack

of precursor in the second-phase testing remains to be explained.



¥

In the next section where the effects of a wave guide o
will be discussed, it will be shown in PTC~tension specimen No. 3 that even
with signal attenuation in the wave guide, the 2213 accelerometer recorded

larger jumps than the spring-mounted 2242 accelerometer.
b. Attenuation of Signal in the Wave Guide

Specimen No. 28 was 2219-T87, longitudinally welded

with 2319 wire, without a deliberate flaw. The specimen had two prior load-
ings at room temperature, one to 32.5 kips and the second to 40.0 kips. In
the third loading, two Model 2213 accelerometers were used, one mounted on the
end of a wave guide and the other spring mounted on the test specimen. The
wave guide consisted of a 1/2-in.-dia round of aluminum, stud mounted on the
shank of the test specimen, with a bend to bring the end of the rod up out of
the cryogenic bath. With this set-up the end of the rod where the sensor was

mounted was about +40°F, The length of the wave guide was 20 inches.

The third loading of specimen No. 28 was done at room
temperature. The data were filtered at a band width of 60 KHz to 600 KHz
with 100 db of gain. The Dunegan totalizer was triggered at a set point of
1.0 (20 to 40 db range) for the 2213 accelerometer spring mounted on the test
specimen and at a set point of 2.0 (20 to 40 db range) for the 2213 accelerometer

mounted on the wave guide

Acoustic~emission data at approximately 10 kips are
shown in Figure 69%9a. At 103 full-scale range, the spring-mounted 2213 accelero-
meter gave an average count in 19 bursts of 10 counts per burst as tabulated

in Table X1III, whereas, the wave—guide mounted 2213 accelerometer gave an

average count in 19 bursts of 4.5 counts per burst.
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TABLE XIIT

INCREASE IN COUNT

2213 ACCELEROMETER

BURST SPRING MOUNTED WAVE GUIDE
a @ 9.5 7.0
b - 1.0
c 7.0 9.2
d 9.5 8.6
e .3 1.3
£ - .5
g 2.0 -
h .9 -
i 1.2 -
| 2.2 .7
k 6.5 2.2
1 12.2 7.0
m 15.3 8.8
n 11.5 7.5
o} 39.5 18.0
p - .6
q 2.8 -
T 17.5 1.5
s 49.5 12.0

(1)

See Figure 69a.
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At 15 kips, the range was changed to 104 full scale.
At this range, the wave-guide mounted accelerometer did not show any activity
until somewhat over 40 kips, and the spring-mount accelerometer showed only

one significant burst (200 counts) prior to 40 kips (Kaiser Effect).

At slightly over 40 kips, the spring-mounted accelerometer
recorded several small bursts and the start of continuous emission (Figure 69b).
The wave-guide mounted accelerometer did not record continuous emission and
did not show the onset of fracture until just before failure (41.25 kips). Thus,

there appears to have been signal attenuation in the wave guide.

Specimen 3 was 2014~T6, longitudinally welded with 2319
wire; the specimen contained a part—-through-crack. Two transducers were used
in the test, one a Model 2242 accelerometer spring mounted on the test specimen
and the other a Model 2213 accelerometer mounted on the wave guide. The data
were filtered at a band width of 60 KHz to 600 KHz with 100 db of gain. The
Dunegan totalizer was triggered at a set point of 2.6 (20 to 40 db range) for
the Model 2213 accelerometer on the wave guide and at a set point of 6.5
(0 to 20 db range) for the Model 2242 accelerometer spring mounted on the test
specimen, With these settings both transducers were just inside the noise
(continuous emission) band. Figure 70 shows the strip-chart recording of
load versus cumulative count for the first cycle of loading. Note that even
with the attenuation in the wave guide, the 2213 accelerometer recorded larger

jumps than the 2242 accelerometer.

On the second load cycle to failure (at 33.45 kips) the
low sensitivity of the spring-mounted 2242 accelerometer was apparent; in
Figure 71, note the marked precursor from the 2213 accelerometer with a count

of 330,000 as compared with only 42,000 from the 2242 accelerometer.
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Note that 2219-T37 specimen No. 28 with the 2213
accelerometer mounted on a wave guide (Figure 69) gave little precursor,
whereas, 2014-T6 specimen No. 3 also with the 2213 accelerometer mounted on
a wave guide (Figure 71) gave an unmistakable precursor. No explanation was
found for this difference; however, the comparison does involve two different

alloys.
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C. SUBSCALE PRESSURE VESSEL RESULTS

1. Room Temperature Test of 2014-T6 Aluminum Pressure Vessel

The following tabulation indicates the hydrotesting sequence

used for the 2014 vessel tested at room temperature.

Hold at
Pressure Pressure Rate Max. Load
Cycle (psi) (psi/min.) (sec) Pre-Flaw
1 0-460 150 30 No
0-690 150 30 No
0-880 150 Failed on rising No

load at 886 psig

The failed chamber is shown in Figure 72, while Figure 73 shows close up

views of the chamber fracture.

As indicated by the above data, the vessel burst at 880 psig
during rising load after previous pressurizations to 460 and 690 psig. The
fracture path was entirely within the cylinder longitudinal weld. Based on
the nominal chamber wall thickness of 0.312-in., the stress level (Pr/t where
P is the pressure, r is the chamber radius and t is the wall thickness) at
failure approximated 24 ksi which is slightly below the 0.2% offset yield
strength of 29 ksi previously determined for this base-metal filler-wire

(2014-T6 - 2319) combination.

Figure 74 shows the pressure vs strain data obtained using a
strain gage attached to the parent metal in the center section of the vessel;
no plastic deformation was produced in this area during any of the pressure

cycles.
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Figure 75 is a plot of the cumulative stress wave emission vs
pressure for the three hydrotest cycles. The data were obtained by monitoring
the SWE detected by Sensor No. 3 located at the center of the cylindrical
section. Note in Figure 75 that the Kaiser Effect was observed as indicated
by the fact that significant SWE were not detected during the second or third
pressurization cycle until the maximum prior pressure (460 psi and 690 psi,
respectively) was exceeded. Although no SWE were detected at hold during the
first pressure cycle (460 psi), SWE were observed during the first few seconds
of hold (690 psi) in the second cycle. During the third cycle, significant
bursts of SWE were detected above 690 psi and continued until vessel failure
occurred at 880 psi. From the data in Figure 75, it is obvious that sufficient
warning was obtained from these SWE data to permit depressurization and prevent

failure of the vessel,

Figures 76 through 78 are plots showing the locatiomns of the
SWE detected during each pressurizing cycle; each plot is a reproduction of
the SWE data as displayed on the SWAT system monitor in real-time during the
test. In general, more randomly located SWE are observed during the first
cycle and from different areas than the SWE observed during the second and third
cycles., However, each of the plots show multiple emissions from two general
areas of the vessel longitudinal weld toward the center of the cylindrical
section. This is reflected by the increased size and darkening of the emission
sources as shown on the monitor screen and in these plots. As indicated in
Figure 78, the origin of failure corresponded to one of these multiple emission

sources on the longitudinal weld.

Figure 79 schematically shows the location of defects observed
on X-rays of the longitudinal weld prior to testing. Two areas of tungsten
and/or non-metallic inclusions were observed in the X-rays and are located in

the same areas from which the multiple emissions were detected by the SWAT

system.
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Figures 80 and 81 show the fracture face and defects observed
on the fracture surface, respectively; both porosity and nonmetallic inclusions
or lack of fusion are shown. The weld locations of the defects are schematically
shown in Figure 78 and generally correspond to the weld locations of SWE detected

during vessel pressurization.

In addition to fractographic examination of the fracture
surfaces, ultrasonic and dye penetrant inspection techniques were used in an
attempt to identify possible defects associated with the random emission sources
shown in Figures 76 through 78; no defects were observed at any of these loca-

tions.

From the above discussion, it is apparent that the cumulative
plot of the SWE provided a clear precursor of impending failure and through
real time triangulation of the detected emissions, it was possible to locate
the source of the emissions and subsequent failure origin. Such data could
have been employed to terminate loading, locate the potential failure origin

and repair the vessel.

2. Room Temperature Test of 2219-T87 Aluminum Pressure Vessel

The following tabulation indicates the significant test data

for the 2219 pressure vessel tested at room temperature.
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Pressure

Pressure Level Rate Hold
Cycle (psi) (psi/min) (sec) Pre-Flaw
1 0 - 300 75 30 No
2 0 - 400 75 30 No
3 0 - 400 200 30 No
4 0 - 400 75 30 Yes
5 0 - 500 75 30 Yes
6 0 - 680 100 - Yes
7 0 - 860 100 - Yes
8 0 - 600 200 - Yes
600 - 1250 50
9 0 - 1400 100 - Yes (Double) *
10 0 - 1500 100 - Yes (Double)*
11 0 - 1530:(Failure) 100 - Yes (Double)*

% A second PTC flaw (0.30-in. deep x 0.60-in. long) was added in the longi-
tudinal weld between the eighth and ninth pressurizing cycles.

Figure 82 shows the failed chamber while Figure 83 shows a

close-up view of the chamber fracture.

As indicated by the above tabulation, the vessel burst during
the eleventh pressurizing cycle at 1530 psig after prior pressurizations to
various levels as high as 1500 psig. Based on a nominal wall thickness of
0.35-in., (includes weld reinforcement), the stress level (Pr/t) at failure was
approximated 37 ksi. TFailure originated at a part-through-crack type flaw
which was ground approximately 0.60-in. long and 0.10-in. deep in the
longitudinal weld of the chamber after the third pressurizing cycle. Based

1/2

on these results, the apparent KIc is 23 ksi-in. (calculated using equation

(1)).

Figure 84 shows the fracture face which was contained

entirely within the longitudinal weld. No weld defects such as porosity or
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lack of fusion or secondary failure origins were observed on the fracture
surface. The PTC defect from which failure originated is shown in Figure 84

as is a second PTC defect introduced following the eighth pressurizing cycle.

Figure 85 shows the pressure vs strain plot for the final
two pressurizing cycles and indicates elastic behavior in the parent metal

cylindrical section where the strain gage was located (refer Figure 22).

Figure 86 shows plots of cumulative SWE vs pressure for the
hydrotesting of the 2219-T87 vessel. The data were obtained by monitoring
channel No. 4 in the center of the chamber (refer Figure 22)., In addition
to counts due to SWE, most of the plots show the count increases from the
pulser signals generated throughout the test to check the SWAT system

operation.

Figure 86a is a plot of cumulative SWE versus pressure for
the first three cycles (unflawed condition). The Kaiser effect is apparent
from the data for the second load cycle; the data for the third cycle (loaded
to the same maximum pressure as obtained during the second cycle) shows that
the Kaiser Effect is not dependent on loading rate within the ranges studied
in that no significant SWE were detected when loading to the same pressure

level at 200 psi/min vs prior loadings at a pressurization rate of 75 psi/min.

Figures 86b and 86c are plots of the cumulative SWE count vs
pressure for cycles four through nine. Prior to the fourth loading cycle, one
PTC (length 2c of 0.6~in. and depth of 0,10-in.) was introduced in the longi-
tudinal weld (shown in Figure 84). Again, the Kaiser effect was evident in
that a pressure greater than 400 psi was required before SWE were detected
and each succeeding loading required a higher pressure before increased SWE
activity was observed. No SWE were observed during any of the hold periods
except for the fifth cycle when limited SWE activity was observed during the

first five seconds of hold.
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Figure 86d is a plot of the cumulative SWE count versus pressure
for cycles 10 and 11, Prior to the ninth loading cycle, a second PTC (length,
2¢, of 0.6~in. and depth, a, of 0.13-in.) was introduced in the longitudinal weld,

as shown in Figure 84. Again the Kaiser Effect was observed,

From Figure 86, it is apparent that there were multiple
precursors of failure providing sufficient time to terminate loading prior to
failure. WNote the relatively large SWE bursts detected during the sixth,
seventh, tenth and eleventh cycles. The burst-type SWE detected at the end of
the tenth cycle is of particular interest. These SWE must have been associated
with extension and reorientation of the preflaw introduced in the longitudinal
weld since, during the eleventh cycle, flaw extensions were detected from the
PTC area of the chamber at lower pressures than 1500 psig. Apparently when
fracture instability is approached, the Kaiser effect is no longer observed.
Failure occurred during the eleventh cycle at 1530 psig which is only slightly
higher than the maximum pressure reached during the prior cycle. In all these
instances, sufficient warning of defect propagation was obtained to permit

depressurization prior to failure.

Figures 87 through 94 show the location of the SWE detected
during the indicated pressurization cycles. These schematics also show the
locations of the cylinder section longitudinal weld and the two PTC flaws
introduced into the weld after the third and eighth cycles. As indicated in
Figures 87 and 88, only randomly located SWE were detected during the first
pressurizations without a preflaw; no SWE activity was detected from the weld
area. Following introduction of the first preflaw (Figure 89), only a few
random SWE were detected when the vessel was pressurized to the prior maximum
pressure (400 psig); during this cycle two SWE were detected from the preflaw
region near maximum pressure. On subsequent loading to 500 psig (Figure 90)
and 680 psig (Figure 91) multiple emissions were detected near maximum pressure
from the region of the preflaw; random SWE were also detected although essentially
no SWE activity was detected from the weld area except in the region of the

preflaw. From Figures 90 and 91, it is apparent -that a variation of approximately
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2-in, exists in the SWE source triangulation since the SWE grouping for the
preflaw in both instances is approximately 2- to 3—in. from the actual preflaw

location.

Figure 92 shows that a large number of randomly located SWE
were detected during the seventh pressurizing cycle (to 850 psig). The data
in Figure 92 also shows a grouping of SWE from the region of the preflaw.
Comparison with the cumulative SWE count in Figure 86b shows that these SWE
were detected almost exclusively above the maximum pressure (680 psig) of the
sixth cycle. Further, from Figure 92, it is apparent that a large number of
random SWE sources were obtained during the seventh cycle which were primarily
small amplitude emissions since no large jumps were observed in the corre-

sponding cumulative SWE plot.

Figures 93 and 94 show that in comparison to previous cycles,
relatively few and only randomly located SWE were detected during the last
pressure cycles. Data are not shown for the ninth cycle to 1400 psig since
no SWE sources were displayed on the SWAT system monitor during this cycle.

No SWE were detected from the weld or PTC preflaw regions during pressurization
to 1250 psi (eighth cycle). Figure 94 shows the SWE locations for both the
tenth (1500 psi) and eleventh (failure at 1530 psi) pressurizations; while

only a few SWE sources are shown, these represent large SWE as indicated by

the SWE cumulative count plots in Figure 86d. The last SWE detected near failure
originated from the region of the PTC preflaw although offset approximately

4-in. from the true location of the flaw.

Figure 95 schematically shows the longitudinal weld defects
indicated by X-ray examination of the cylinder longitudinal weld prior to
testing. Except for seven locations of single porosity, the weld was clear.
This would verify the lack of SWE activity from the weld area during testing.
Ultrasonic and dye penetrant inspection was performed of non~weld areas of
the vessel cylinder section after hydyroburst from which random SWE were

detected during testing. WNo defects were indicated by these examinations.
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3. Cryogenic Temperature (-320°F) Test of 2014-T6 Aluminum
Pressure Vessel

The significant data for each pressurization of the 2014-T6

vessel tested at -320°F is shown below.

Pressure Pressure Rate Hold
Cycle Level (psig/min.) (sec) Pre-Flaw
Ly Ap Sec) tre~rlaw
0 - 550 100 30 No
2 0 - 975 100 Failed on Yes
Rising Load
@ 975 psig

Figure 96 shows the chamber pieces within the test cell immediately following
failure while Figure 97 shows the chamber pieces reassembled. As indicated in
Figures 96 and 97, the chamber fragmented into approximately 20 pieces on
failure. Figure 98 schematically shows the fracture surfaces in the longitu-
dinal weld region with failure originating (Point A) from the cylinder longi-
tudinal weld near the PTC defect introduced into the cylinder longitudinal
weld following the first pressurization. It is also possible that a secondary
failure origin is located at Point B on the longitudinal weld although the

SWE data indicates failure originated in the region of Point A.

Based on a failure pressure of 975 psig, the gross stress
(Pr/t) at fracture approximated 29 ksi. With a PTC length of 0.5-in. and
depth of 0.1-in., the apparent KIc associated with this defect was 16 ksi—in.l/2
calculated using equation (1). The measured value of KIC based on tramnsversely

welded PTC tension tests was 18.5 ksi-in.l/z.

Figure 99 is a plot of cumulative SWE (detected by sensor
No. 3 located in the center of the cylinder section) vs pressure for both load
cycles. The unusually high SWE count during the initial portion of the first

pressure cycle is due to the bubbling action produced when the relatively warm

71



gaseous nitrogen used for pressurization made contact with the liquid nitrogen
in the vessel. The initial SWAT system trigger level was set on the basis of
static conditions prior to pressurization. When the GN2 was introduced into
the vessel, the bubbling action caused the background noise level to greatly
exceed the SWAT system trigger level. The system was immediately readjusted
to a higher trigger level; however, when the bubbling action stopped, the
trigger level was too high to detect the continuous emission which probably

occurred on further pressurization during the first cycle.

In order to circumvent this noise problem, the SwAT system
trigger level was set at 150 psig during the second loading cycle. As shown
in Figure 99, discrete incremental increases in the SWE cumulative count sub-
sequently were observed throughout the loading cycle. There was also a slight
increase in the slope of the cumulative SWE vs pressure plot which has been
associated with defect formation and growth, and the onset of failure. Both
observations (discrete jumps and slope increase) could have been employed to

terminate pressurization prior to fracture.

Figures 100 and 101 show the locations of SWE detected during
each cycle. These plots represent the plan view of the test article and the
SWAT video display observed on the system monitor in real time during the test.
The plots also show the location of the preflaw introduced after the first
cycle and the fracture branching (Points A and B, refer also to Figure 98)
which occurred from the main fracture path along the cylinder longitudinal
weld. The SWE are generally randomly located within the cylinder zone,
except for the region around Point A on the longitudinal weld from which
multiple emissions were detected. SWE were also detected from this area
immediately before failure indicating the primary failure origin was at
Point A. No SWE were detected from the remaining area of the longitudinal
weld including the region at Point B which possibly corresponded to a secondary

failure origin.
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Figure 79 schematically shows the location of weld defects
observed in the X-rays of the longitudinal weld. Only scattered porosity was
observed except for two areas of multiple, alligned porosity. Areas requiring
repair after the initial longitudinal weld was made also are shown and indicate
the extensive repair welding required to produce relatively acceptable welds in
this material. The locations of the fracture branching from the main fracture
path and the possible primary (A) and secondary (B) fracture origins are also
shown in Figure 79. Figures 102 through 104 show magnified views of the
fracture surface at A and B. The region of multiple porosity near Point A is
readily apparent in-Figure 103 and is thought to be a source of multiple SWE

detected from this area during both pressurization cycles.

Ultrasonic and dye penetrant examination of the chamber did
not identify any defects at the locations of the random emissions shown in

Figures 100 and 101.

4, Cryogenic Temperature (-320°F) Test of the 2219-T87
Pressure Vessel

The following tabulation shows the significant data for each

cycle for the 2219-T87 test @ -320°F,

Pressure Level Pressure Rate Hold
Cycle (psig) _(psig/min.) (sec) Pre-Flaw
1 0 - 550 100 30 No
2 0 - 1000 100 30 Yes
3 0 - 1000 100 180 Yes
4 0 - 1000 100 120 Yes
5 0 - 945 100 Failed on Rising Yes

Load @ 945 psig

Because of potential damage to the test cell, the maximum pressure without
failure was limited to 1000 psig; if failure did not occur when the chamber
was pressurized to this level; the PTC defect was successively enlarged before

subsequent pressurizations.
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Figure 105 shows the failed chamber in the test cell and
shows that there was significantly less fragmentation in comparison to the
2014-T6 chamber tested at -320°F. Figure 106 shows the cylinder section and
a close up view of the PTC defect inserted in the longitudinal weld while

Figure 107 shows the longitudinal weld fracture surfaces.

As indicated by the above tabulation, chamber failure occurred
during the fifth pressurization at 945 psig after prior excursions to pressures
up to 1000 psig. The gross stress (based on Pr/t) at failure was 28.5 ksi
while the net section stress based on the section (0.08 in.) remaining under
the PTC defect approximated 80 ksi. The initjial defect dimensions were 1.5 in.
long and 0.15 in. deep and were successively increased to 2.0 in. long x
0.19 in. deep for the 3rd cycle, 2.45 in. long x 0.25 in, deep for the 4th
cycle and 3.0 in. 1oﬁg x 0.3 in. deep prior to the final cycle., The apparent
K. at failure (945 psi) calculated using Equation (1)sthe Kobayashi correction

Ic
for deep crack, and the final defect size was 48 ksi—in.llz.

Figures 108 through 110 are plots of the cumulative SWE vs
pressure for the last three loading cycXes. These plots were obtained by
monitoring channel 3. Since excessive background noise was encountered during
the lst and 2nd cycles, data are not shown for these pressurizations. To
eliminate the background noise problems (due to bubbling action of the
pressurizing GNZ)’ the SWAT system trigger level was determined at 350-400
psig during each cycle. Although this generally significantly improved the
SWE data obtained, background noise still was detected primarily because the
system trigger level was set as close as possible to the background noise
level. This is particularly true in the plot for the 3rd cycle where the
SWAT system was saturated by the background noise above a pressure level of
approximately 425 psi. The background noise also was a problem during the
fourth cycle near maximum pressure. Consequently, the SWAT system sensitivity
was further reduced for the 5th cycle. As indicated in Figure 110, this
adjustment eliminated the background noise problem while still enabling the

detection of SWE.
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From Figure 110, it is apparent that there was no well
defined precursor of failure during the fifth cycle although there were
discreet steps in the SWE cumulative count indicating the occurrence of defect

formation or propagation which would permit depressurization prior to failure.

Figures 111 through 113 are plots showing the locations of
SWE displayed on the SWAT system monitor during the 3rd, 4th and 5th cycles.
The locations of the longitudinal weld and PTC flaw introduced into the weld
following the second.cycle are also shown. Plots for the lst and 2nd cycles
are not shown because of the excessive background noise due to the nitrogen
bubbling. As indicated in these figures, larger or multiple emissions (heavy
black dots) were detected in the location of the longitudinal weld and the
preflaw during the 3rd, 4th and 5th cycles., During the 5th cycle, emission
sources were detected from along the longitudinal weld, and multiple emissions
were detected from the region of the PTC flaw including three emissions
immediately prior to failure. From these plots, it is apparent that an
error of approximately 3-in. existed between the actual preflaw location and
the location indicated by the SWAT system. However, these data, in combination
with the corresponding cumulative SWE plots (Figure 109), would have permitted

depressurization prior to failure and location of the defect for repair.

Figure 95 schematically shows the results of X-ray examination
of the longitudinal weld prior to testing of the vessel. From this figure,
it is apparent that the weld was essentially free of detectable defects; only
two single pores (both less than 0.030-in. dia.) were located by this exam-
ination. Following testing, ultrasonic and dye penetrant examination was
also performed of the cylinder area adjacent to the longitudinal weld included
in the area monitored by the SWAT system. No defects were detected by these

post~testing examinations.
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5. Discussion of Pressure Vessel Test Results

The tests performed at room temperature demonstrated that
acoustic emission monitoring can be employed to detect and locate defects on
- the aluminum alloys tested and provides the means of terminating loading of
a pressure vessel prior to failure. Both increasing cumulative SWE count and
increasing SWE amplitude (as observed on the oscilloscope in real time) were
verified to be precursors of failure. The existence of the Kaiser effect during
structural loading was also verified through the room temperature tests in
that significant SWE activity was not observed until prior pressure levels
were exceeded. Within the test conditions evaluated, the Kaiser effect was
independent of pressurization rate and was not affected by the introduction
of a semi-elliptical preflaw (not precracked) in the vessel longitudinal
weld. Practical.application of the Kaiser effect lies in its use to determine
prior maximum pressure (stress) levels and to determine whether or not over

pressurization occurred during prior service cycles.

Based on the SWE data, failure of the 2014 vessel originated
from a group of tungsten inclusions which were shown in the X-rays of the
cylinder longitudinal weld and which were visible in the fracture face. The
presence of these defects was detected through multiple SWE from the same
area during each pressurizing cycle. SWE detected immediately before failure
identified this location as the failure origin. Failure of the 2219 vessel
tested at room temperature originated from a part-through-crack (PTC) defect
introduced in the longitudinal weld. This failure origin was also identified
by SWE during the final cycles; however, in comparison to the room temperature

2014 test, the number of emissions detected near failure was small.

The lack of large numbers of SWE immediately before failure
of the 2219 vessel probably was the result of a large number of prior cycles
to pressures near the failure pressure; such a procedure would tend to blunt
the preflaw and thus minimize subcritical extension of the defect before

fajlure, This hypotheses is further supported by the fact that the notch
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was inherently blunt (0.0l in., min radius) in comparison to the natural
defects in the 2014 aluminum vessel and that the failure stress based on the
net sectipn beneath the PTC defect was significantly higher than the uniaxial
transverse weld ultimate strength of this filler wire-base metal composition.
However, the presence of the preflaw (and the second preflaw introduced after
the 8th cycle) was identified and located by multiple emissions detected during
the lower pressure cycles and probably resulted from plastic zone formation

at the notch. Thus, these data, in conjunction with the cumulative SWE counts
could have been used to terminate loading and locate and subsequently repair
the defects. This capability was actually demonstrated during the 6th, 7th
and 10th cycles when large jumps in the cumulative SWE count were used as a
basis to depressurize the vessel without failure; pressurization during the
10th cycle was successfully accomplished without failure from a pressure only

30 psi lower than the failure pressure.

The tests performed at -320°F also demonstrated the capability
to detect and locate SWE sources in real time. However, problems were encountered

due to:

1. excessive background noise from the "bubbling action" of
the gaseous/liquid nitrogen and

2. low sensitivity of the transducer at cryogenic temperatures

By adjusting the system sensitivity after the pressurizing
media-temperature of the test-vehicle had stabilized, it was possible to

minimize the effects of nitrogen bubbling.

Although the system sensitivity of the transducer used in
the cryogenic testing was low in comparison to that used in the room temperature
tests, the SWE data were still useful to detect and locate the failure origin

in each vessel, The cumulative SWE count for both vessels indicated slight
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increases in slope and discrete steps in the curve, both of which are indicative
of defect formation or propagation and provide a basis for depressurization
prior to failure. The real-time location of the SWE sources indicated that
failure of the 2219 vessel occurred at the preflaw in the longitudinal weld.
The fajlure origin of the 2014 vessel was correlated with the origin

shown by analysis of the fracture surfaces and the presence of corresponding
defects (aligned porosity) shown by examination of prefailure X-rays of the
longitudinal weld. However, in view of the relatively low cryogenic tempera-
ture sensitivity of the sensors commonly used with acoustic monitoring systems,
it is considered desirable, when monitoring structures at cryogenic tempera-
tures, to provide for insulation or heating of the sensor thereby insuring

that the sensor temperature does not drop below approximately -110°F.
Alternatively, studies should be undertaken to develop a sensor with high

sensitivity at cryogenic (down to —-425°F) temperatures.

In the 2219-T87 cryogenic test the error in defect-SWE source
location was gpproximately 1 to 4 inches; a similar error (1 to 3-in.) in
source location was observed in the 2219 room temperature test. This error
can be improved by detailed analysis and determination of SWE propagation rates
in these materials. Howe.ar, during each vessel test multiple emissions were
observed from the defect area, which indicated potential failure, and the
indicated source was within the zone which would have to be ultimately inspected

using other NDT methods to establish the true nature and location of the defect.

A comparison of the performance of the 2219 and the 2014
pressure vessels indicates that the 2219 alloy was much superior to the 2014
alloy both at room temperature and -320°F. At both temperatures, the 2219
chambers burst at hoop stresses approximating the uniaxial ultimate strength
level whereas the 2014 alloy at cryogenic temperatures burst at a stress level
significantly lower than thé ultimate strength. This same relative advantage
in 2219 vs 2014 was encountered during chamber fabrication where extensive
weld repair was required to remove weld porosity and cracking in the 2014
material. From an acoustic emission monitoring standpoint and the ability to
detect and locate flaw propagation, there appeared to be no difference between

the two alloys.
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V. CONCLUSIONS
1. Stress Wave Emission monitoring can be used to detect and locate sub-
critical crack growth in 2219, 2014 and 7075 aluminum alloy structures both

at room and cryogenic (-320 and -423°F) temperatures.

2. At room temperature, the stress wave emission precursor of failure is

a marked increase in (1) signal amplitude, (2) signal repetition rate and
(3) the slope of the cumulative count plotted vs load. These precursoré are
observed during uniaxial tensile testing and during the hydroburst of sub-
scale'pressure vessels; multiple emissions from a single location also serve

as a precursor of failure during the vessel hydrotests.

3. At cryogenic temperatures (-320°F and -423°F), a pronounced increase in

signal amplitude and repetition rate immediately before failure is not observed.
However, multiple emissions from a single location serve to locate defects and

indicate incipient failure.

4. The problems encountered during cryogenic testing resulted from low
sensitivity of the transducer when immersed in the cryogenic bath at -320°F
or -423°F, and noise resulting from ice formation. Band pass filtering and
the use of wave guides to mount the transducer out of the cryogenic bath
(sensor temperature approximately -110°F) provide solutions to these

problems.

5. When monitoring structures at cryogenic temperatures, insulation or
heating of the sensor should be provided to insure the sensor temperature
does not drop below -110°F. Alternatively, a sensor with high sensitivity at

cryogenic temperatures (down to —-423°F) should be developed.
6. The error in locating the source of multiple emissions is well within

the zone which would be inspected using conventional NDI methods in order to

establish the size and orientation of the flaw generating the acoustic emission.
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7. The fabrication characteristics and hydroburst performance of the
2219 alloy is much superior to the 2014 aluminum alloy. However, from an
acoustic--emission-monitoring standpoint, i.e., the ability to detect and
locate flaw propagation, there appears to be no difference between the two
alloys, filler metals (2319 and 4043) or weld processes (TIG and MIG)

investigated.
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Typical Microstructure of 2014-T651 Aluminum
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Figure 2. Typical Microstructure of 7075-T73 Aluminum
Alloy 0.3-in. Thick Plate
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Transverse

Etch: Kellers Mag: 150X

Figure 3, Typical Microstructure of 2219-T87 Aluminum
Alloy 0.,3-in.-~Thick Plate Material.
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Etch: Kellers Mag: 8X.

Figure 4. Typical Macrostructure of TIG Welds (4043 Filler Wire)
in 2014-T651 Aluminum Alloy Plate
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Figure 5.

Typical Macrostructure of MIG Weld (4043 Filler Wire)
in 0.3-in. Thick 2014-T651 Aluminum Alloy Plate
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Etch: Kellers Mag: 8X

Figure 6. Typical Macrostructure of TIG Weld (2319 Filler Wire)
in 0.3-in. Thick, 2014-T651 Aluminum Alloy Plate
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Figure 7, Subscale Pressure Vessel Design
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(Room and -320°F Tests)
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Research Inc.
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Model 480-39

C:) Sensor Endevco 2213
(:) Crack Opening Displacement Gage - Aerojet

(:) Strain Gage

Figure 15.
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Figure 16. Effect of Counter Triggering Level on the Plot of SWE-Count
vs Load. 7075-T73 Parent Metal Tested at -320°F
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Figure 17. Effect of Triggering Level on the Plot of SWE-Count vs

Load.

2014-T6 TIG-welded with 4043 Filler Wire and

Tested at -423°F with Three Flaw Sizes
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Figure 18, Pressure Vessel Test Set-up
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a. Truck b. Forward Work Area, TV Display
and Video Tape Recorder.

im

200000 D
'ﬁ'ﬁ‘i_f‘ai"’o" ERY )

c. Rear Work Area and d. Computer, Data Display
Instrument Racks, and Filters.

Figure 19. SWAT Mobile Test Laboratory
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Figure 20. Schematic Diagram - Real Time Acoustic Emission Analysis

and Triangulation System
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NOTE:

OSCILLOGRAM AT 27,3 in. /set,

OSCILLOGRAM AT 2.5 in. /sec.

These photos illustrate typical sensor resonant ring down decay
after receipt of burst type stress wave.

Figure 21. Burst Tvpe Stress Wave Emissions
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- e
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HEAD - AR A R L T - HEAD
! S ] : .
1 IN. i : :
1!IN T 1 PULSER
15 IN.
-———22 IN. e et 22 |N, =t

R\ STRAIN GAGE

(ROOM TEMPERATURE TESTS ONLY)

NOTE: 1. CROSSHATCHING INDICATES AREA MONITORED BY SWAT SYSTEM.

2, BECAUSE OF EXCESSIVE SENSOR DAMAGE DURING THE FIRST —320°F TEST, ONLY SENSORS 1 - 4
WERE USED FOR THE 2219 VESSEL TESTED AT —320°F, ALSO FOR THIS TEST SENSORS 1 AND 3

WERE OFFSET FROM THE WELD BY 8 INCHES AND SENSORS 2 AND 4 OFFSET FROM THE WELD BY
14 INCHES,

Figure 22. Location of Stress Wave Emission Monitoring Sensors, Strain Gage and Area
Surrounding the Vessel Longitudinal Weld Which was Monitored During Hydrotest.
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Figure 24. Pulser Attached to the Pressure Vessel
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Techniques Used for Vessel Hydrotest.
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Figure 26. Precursor of Plane Strain Fracture of 2014-T6 PTC-Tension

Specimen No. 2 Tested at Room Temperature.
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Figure 27. Effect of Trigger Level on SWE Precursor in 2014-T6 Tested at 75°F.
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Tested at 75°F
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Background '"Noise" Levels at the Start and End of PTC Tension

Tests at 75 and -320°F. 2014-T6 Parent Metal with Surface
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Figure 30. Background '"Noise' Levels at the Start and End of PTC Tension
Tests at 75, =320 and 423°F. 2014-T6 TIG Welded with 4043 Wire.
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NEAR START OF LOADING NEAR FAILURE

T43.2  75°F
Td43-4  -320°F
Td3-5 -423°F

Figure 31. Background "Noise' Levels at the Start and End of Tension
Tests at 75, -~320 and -423°F. With no Deliberate Flaws.
2014-T6 TIG Welded with 4043 Wire

115



QUMULATIVE COUNT —=

3 TRIGGER-LEVEL SETTINGS, ROOM TEMPERATURE BURST

2
! U CONTINUOUS

i

i
v

eI |

!

i
ol

't’

FAILURE

R ————

LOAD —™
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Figure 32,
on the Precursor (Room-Temperature Test)
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Figure 33.
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Schematic of the Effect of Trigger-Level Setting on the
Precursor at Cryogenic Temperature.
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Figure 34,

Effect of Trigger Level on Precursor at -320°F. 7075-T73

Unwelded
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Figure 35, SWE Precursor in a 7039-T6l WOL Tension Specimen.
Note the Effect of Trigger Level
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Figure 37. Effect of Delamination-Type Flaws on SWE Count for Tests
at 75°F. 7075-T73 Parent Metal Tested at -320°F.
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Figure 38,

Effect of Tape Playback on Cumulative Count in 2219-T87
Specimen No. 32 Tested at ~320°F,
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Figure 39. Effect of Tape Playback on the RMS-Voltage Precursor
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Figure 46.

Flaws in the Tension Specimens of Figure
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Figure 47. Cumulative SWE Count vs Load for Three Flaws. 2014-T6
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Tested at 75°F



Figure 48.

Flaws in the Tension Specimens of Figure 47
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Figure 49, Effect of Flaw Size on SWE Count. 2014-T6 TIG Welded
with 2319 Wire
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Figure 50.

Flaws in the Tension Specimens of Figure 49
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Figure 52. Summation of Acoustic Emission as a Function of
Stress-Intensity Factor - 7075-T6 Aluminum in
Air (Dunegan)
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Figure 56. Correlation Between Crack-Opening-Displacement Measurement
and Acoustic Emission in a SEN-Tension Test of 2014-T651
(see Table XI).
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Figure 58.

Flaws in the Tension Specimens of Figure 57
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Figure 59, Effect of Temperature on SWE Count. 2014-T6 TIG Welded

with 4043 Wire; Nearly Identical Flaws
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Figure 60. Flaws in the Tension Specimens of Figure 59
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Figure 61. First Load Cycle for 2219 Specimen I at -320°F (32.5 Kips maximum

load, 500,000 counts).
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Cycles, the count at 32.5 kips was 55,000 and 5,000, respectively.
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Figure 66. Flaws in the Tension Specimens of Figure 65
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Figure 67. Cumulative Count at -320°F With Sensor Mounted on a Wave Guide.
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2014-T6 Aluminum Vessel Hydroburst at Room Temperature
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Figure 73.

Close~up Views of the Failure Origin of the 2014-T6 Aluminum
Vessel Hydroburst at Room Temperature
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Figure 74. Strain Gage Data (Hoop Orientation) for Final Pressure Cycle of the
2014-T6 Aluminum Vessel Tested at Room Temperature. Note Elastic
Behavior of the Parent Metal Cylinder Section Where the Gage was Mounted.
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Longitudinal Weld Fracture Faces -2014-T6 Aluminum Vessel Hydroburst at Room Temperature.

Note Repair Weld Area from which Failure Occurred and Other Weld Defects Indicated by Arrows.
(Striations on Surface are Due to Weld Head Oscillation).
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Vessel Burst at Room Temperature. Figure 78: shows the
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Figure 82.

2219-T87 Aluminum Vessel Hydroburst at Room Temperature.
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Figure 83.

Close-up View of 2219-T87 Aluminum Vessel Fracture After Hydroburst
at Room Temperature.
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Figure 86. Cumulative Stress Wave Emission vs Pressure for the 2219-T87 Aluminum Vessel
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Figure 96.

2014-T6 Aluminum Vessel after Burst at -320°F
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Figure 98. Fracture Surfaces in the Cylinder Section Near the
Longitudinal Weld. 2014-T6 Vessel Tested at -320°F.

185



CUMULATIVE STRESS WAVE EMISSION COUNT, 104

10 | I
I
g8 H
MULTIPLE
6 H RESETS
e
4 N UNLOAD AT
Y~ s = 530 PSI
2 H
0 ] ! | 1 |
0 150 300 450 600 750
PRESSURE, PSI
Figure 99. Cumulative Stress Wave Emission vs Pressure for the 2014-T6

Vessel Tested at -320°F. Cycle No. 1l of a Two Cycle Test Series
(Page 1 of 2)
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Figure 102.

Longitudinal Weld Fracture Faces -2014-T6 Aluminum Vessel Hydroburst at -320°F.
Note Preflaw (arrow) and that the Fracture Did Not Propagate Through
This Defect. (Striations on Surface are Due to Welding Head Oscillation)




(1)

(2)

(3)

Figure 103. Areas of Longitudinal Weld Non-Fusion, Inclusions
and Porosity on the Fracture Surface of the 2014-T6
Aluminum Vessel Burst at —-320°F. Figure 102 shows the
location area "A" of these defects in the longitudinal
weld. ©Note - the end of the PTC flaw in (3) and that
the fracture surface did not propagate through this
defect. (Magnification approximately 4X)
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(2)

(3)

Figure 104.

Areas (other than primary fracture Area A) of
longitudinal weld non-fusion, inclusions and porosity
on the fracture surface of the 2014-T6 aluminum vessel

tested at -320°F. Figure 102 shows the location ("B") of
these defects in the longitudinal weld.
(Magnification approximately 4X)
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Figure 105.

Fractured 2219-T87 Aluminum Chamber in Test Cell After
Testing at -320°F.
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Figure 106.

e 19rI 2901

Fracture Cylinder Section and Close-up View of the Longitudinal Weld
PTC Flaw for the 2219-T87 Aluminum Vessel Hydroburst at -320°F,
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Figure 107.

PREFLAW |

Longitudinal Weld Fracture Faces -2219-T87 Aluminum Vessel Hydroburst at -320°F.
Note Preflaw - Failure Originated from this Defect. (Striations on Surfaces are
due to Weld Head Oscillation).
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Figure 109. Location of SWE Sources Detected When Pressurizing (3rd Cvcle)

the 2219-TR7 Aluminum Vessel to 1000 psi at -320°F.

Preflaw Location also Shown.
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Figure 110. Location of SWE Sources Detected When Pressurizing (4th Cycle)
the 2219-T87 Aluminum Vessel to 1000 psi at -320°F. Weld
Preflaw Location also Shown.
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Shown.
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