
DESIGN OF AUTOMATA
THEORY OF CUBICAL COMPLEXES WITH APPLICATIONS

TO DIAGNOSIS AND ALGORITHMIC DESCRIPTION

SHSS23

by J. Paul Roth

FINAL REPORT

For research sponsored in part by the Jet Propulsion Laboratory,
California Institute of Technology with the support, under Contract
NAS 7-100, of the National Aeronautics and Space Administration.

JPL CONTRACT NO. 9 5 2 7 0 9

IBM Research Report No. RC 3814

April II, 1972

International Business Machines Corporation
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

DESIGN OF AUTOMATA
THEORY OF CUBICAL COMPLEXES WITH APPLICATIONS
TO DIAGNOSIS AND ALGORITHMIC DESCRIPTION

by

J. Paul Roth

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT: This investigation has been concerned with the following
problems: (1) methods for development of logic design together with
algorithms such that it is possible by means of these algorithms to
compute a test for any failure in the logic design, if such a test exists;
it is also concerned with developing algorithms and heuristics for the
purpose of minimizing the computation for tests. (2) a method of design
of logic for ultra LSI (Large Scale Integration) which seems to make
LSI technologically feasible (failures may exist on the chip with correct
operations still taking place) This method of design, called the Universal
Function Schema, allows for instant Engineering Changes EC's as well
as for complete functional changes in milliseconds of time. In addition
this scheme provides a "universal card" which solves the so-called "stocking
problem" as well as reduces the cost of production. (One must pay the
penalty of about a 10 times increase in circuit count) (3) It has been
discovered that the so-called quantum calculus can be extended to render
it possible: 1) to describe the functional behavior of a mechanism component-
by-component and 2) to compute tests for failures, in the mechanism,
using the Diagnosis algorithm. In view of the large amount of extant
electro-mechanical gear, this result may be of basic importance. (4)
One of the original motivations for this investigation was the development
of an algorithm for the multi-output 2-level minimization problem. A
program MIN 360 (its new name) has been written for this algorithm. MIN 360
has options of mode (exact minimum or various approximations), cost function,
cost bound, etc., providing flexibility. MIN 360 has been applied to
some of the Jet Propulsion Laboratory's problems; its solutions seem
already to have been incorporated into some of JPL's hardware.

This work has been sponsored in part by the Jet Propulsion Laboratory,
California Institute of Technology with the support, under Contract
NAS 7-100, of the National Aeronautics and Space Administration.

RC 3814 (#17297)
April 11, 1972
Computer Sciences
Mathematics

Section 1. Diagnosible Design Form and the D-algorithm

If one designs random asynchronous logic and attempts to develop

tests for failures in this logic design, one is doomed to failure if

the circuit is at all large. The reason for this is as follows: The

D-algorithm (as with all the others of which we know) when confronted

with asynchronous cyclic designs attempts to cut certain feedback loops

in an adroit manner, so that the cuts appear to be the natural places

in which to insert unit delays for all the cuts. One then generates

tests for this simplified model of the original circuit, simplified

in the sense of its timing behavior. Does the test for failure in the

model also represent a test in the original more realistic design?

In order to find out, one runs simulators which locate races and hazards.

If the test, which in general is a sequence of patterns to the primary

inputs of the circuit, has a race then it must be discarded and another

attempt to compute a test for another failure. As the size of the

circuit increases the frequency with which a "potential test" harbors

races increases. The method of design, called Diagnosible Design Form,

described in this section, is a procedure for the the design of logic

in which it possible to realize any function; furthermore, one can

prove that the D-algorithm (extended to these sequential circuits) will

always compute a test for a failure if such exists.

System/360 model 40 and the system/370 Model 195 both used

almost exclusively diagnosible design form.

Diagnosible Design Form may be described with reference to the

figure below. The basic configuration consists of a bank of latches

- call them registers - Rl which are gated at time Tl. This Rl feeds

acyclic logic LI (hence combinational logic) which is followed by a

bank of registers R2 gated at time T2. Feedback is allowed from R2

to Rl. R2 in turn is followed by a section of acyclic logic L2, followed

by registers R3 gated at time T3 with feedback allowed from R3 to R2

or Rl. The difference T2 - Tl is chosen large enough so that all

changes in the acyclic logic have taken place from Tl gating Rl before

T2 is activated etc. Thus all races hazards are, by design, eliminated.

Our only remaining task is to show that the D-algorithm slightly

modified may be easily adapted to computing tests (a deterministic test)

for a given testable failure Fl. In the first place, it may be noted that

the obvious place to cut the feedback loops is from one bank of registers

to another, thus there is no complicated choice which must be made.

It was stated that it could be guaranteed that the D-algorithm

would compute a "deterministic" test for a given failure if one existed.

By deterministic is meant that the tests, in general of sequences of

input patterns, do not depend upon the signal in the feedback loops

(state variables) at the time of application of the tests. One would

have also to compute "D-sequences" and "singular cube sequences" for the

latches, a trivial one-shot computation, and make sure that only such tests

were used in the generation of a test.

Ul '

t »

The D-algorithm for the DDF will be termed DALG5.

Section 2. Heuristics for DALG

The computation for a "covering" ensemble for tests for very

large circuits (say the order of 10,000 devices) become significant.

The following two heuristics are offered with the purpose of reducing

the computation. The first step in the procedure to compute an ensemble

of tests to detect any failure of a given category in a logic design

is to select a failure out of this given category. The first heuristic

is a method for making such a selection. The procedure starts as follows:

a failure for a primary input for the circuit is first chosen (we do

not have a criterion for selecting among the primary input failures).

One then uses the D-algorithm (or some variant or equivalent thereof)

to compute a test for this failure. One then uses TESTDETECT to ascertain

all failures detected by this test (in general a sequence of input patterns),

One would wish to maximize the number of failures detected by a given

test for this tends towards minimizing the total number of tests computed

and hence minimizing the total computation. Thinking of the D-algorithm

in terms of the D-chains developed in generating the tests, for a failure

originating in the primary input (a PDCF) this chain drives through the

entire logic and it can be shown that any line on this D-chain will be

tested in one mode or another by this particular test being generated:

for this choice the D-chain tends to be as large as possible since

it is generated for a primary input. Next one selects some primary input

failure not yet tested if such exists, and repeats the same procedure.

If no such primary input failure untested by the tests computed to date

exists, one next selects a device fed by primary inputs and goes through

the same procedure etc., until an ensemble of tests has been computed which

covers all failures of the category agreed upon in advance.

It is estimated that the number of tests required by this mode

of computation as opposed to the "counter strategy" of starting with

the primary output failures and proceeding backwards to the primary input

failures would be about 1 to 2.

The second strategy is a simple one which in complicated control

circuits might be extremely helpful. For some of these circuits a sequence

of reset input patterns is originally applied in order to render the

design into a known and desired state. The strategy followed is thus

to first apply the sequence of reset inputs which is known, and then to

derive the D-chain emanating from the failing device in the usual way:

this imposes a constraint on the development of the D-chain. It is

likely that the D-algorithm even with this constraint will compute a test

if it exists for the failure. Indeed it may be that it is necessary

to apply the reset input sequence before one is able to get a test; the

D-algorithm would not know this in advance and thus might take a great

deal of time in generating the test if indeed it had enough computation

time so to do. It is expected that this short-cut will substantially

speed up computation time. The exact algorithm would then be followed

by this and used only if the heuristic did not yield a test.

Section 3. Cyclic TESTDETECT

In the computation of an ensemble of tests to detect any failure

of a given category in a logic design the procedure is usually as follows:

(1) select a failure from a given category of failures and compute a

test for it (e.g. by the D-algorithm) (2) use a simulator to determine

all failures of the given category which are detected by this test.

This procedure is continued until a test ensemble has been obtained

which detects all the prescribed failures (or one has reached a certain

modicum of completeness or "coverage", say 85%).

The bulk of computation time is in the simulation, perhaps

by a ratio of at least 100 to 1.

TESTDETECT was developed as a "1-pass" simulator to determine

all failures detected by a given test. It was designed originally for

acyclic (combinational) logic. It had not been seen how to the generalize

TESTDETECT to the general cyclic circuit case. A study of the Diagnosible

Design Form, however, shows that if the logic design is clocked by a

clock having at least two phases then it is rather simple to extend

TESTDETECT to cover DDF-logic.

In order to describe cyclic TESTDETECT we will first review

how it works for acyclic logic. Assume that we have a test consisting

of a single wave of patterns applied to the primary inputs of the circuit.

First one computes the signal on each line (device) in the logic design.

Let us now look at the primary output. If a given output has a "0" assigned

to it for this input pattern, then clearly it is tested for stuck-at-1.

Likewise if it has a 1, then it is tested for stuck-at-0. Assume that

a given primary output is a 2-input OR with inputs 1 and 0 respectively.

It is clear that the line with input 1 is tested for stuck at 0 whereas

the input with value 0 will not be tested by this input pattern. We

proceed in this way from the primary outputs ascertaining whether or

not the line (device) is detected in its failure by this test, passing

through the entire circuit to the primary input. This is thus a 1-

pass-type of simulator. TESTDETECT for the acyclic case has been programmed

in APL and run extensively. (Roth, Bouricius § Schneider, 1967)

TESTDETECT takes the order of n steps for a piece of logic having

n devices. A simulator requires n steps: for each failure one must

determine the signal on each line of the circuit: n failures multiplied
2

by n devices equals n .

Now we will outline the procedure for the case of the cyclic

circuit and use the figure 2 as an illustration. Initially we assume

that all lines have a signal which is unknown - let this condition by

represented by the symbol x. In the case of cyclic logic the test

will in general be a sequence. Assume that we apply the first input

pattern to the primary inputs with all other lines being x. In general,

some lines will be determined immediately by this primary input pattern.

On the other hand there will be some for which this is not the case,

for example, suppose that a given line is the output of an OR with two

inputs, one having the value x and other, the value 0. Figure 2 shows a

cyclic circuit (the registers required for DDF are omitted for simplicity).

Figure 3 shows cyclic TESTDETECT operating for the first input pattern

tl. Figure 4 shows it for the second t2.

The general procedure is as follows:

(1) The resulting signal 1 or 0, on each line if determined by tl

is computed; if not determined, it is assigned to value x. Clearly

the input pattern can test no line assigned x.

(2) One then reasons backwards from the primary Output lines (here

only line-10): if the-test pattern causes a signal a, a = 0 or 1, on the

PO line, then clearly this line is tested for the failure stuck-at-a.

(3) Having determined failure detection for the PO lines, we next

examine the lines £ feeding PO blocks (lines). If the PO block is an

OR or NOR then £ is tested only if the signals on all other inputs to the

block is 0; if an AND or a NAND, then all other lines feeding the block

must be 1. If such a line is testable then it is tested for a if t induces

a signal a on £.

(4) This procedure is pushed level by level. If a line fans out to

more than one block then one must, as with acyclic TESTDETECT, proceed

forward from the line to the point(s) of reconvergence. Nevertheless

the process is very rapid.

(5) Having made the determination for the signals 1, 0 or x which

the first input pattern causes, plus the ensemble of failures detected

by tl, one similarly applies the second input pattern t2 to determine,

together with the signals established on the feedback loops by tl, the

signals induced on the lines, together with as above, the failure detected

by t2-preceeded-by-tl.

(6) One continues similarly through the entire given sequence of test

patterns, tl, t2,..., to determine all failures detected by this test.

10

4
•v

^ A
»-s
CC jj

a? (̂i1*
n i

O

J IT
u!

y~l
iM k<n

I
K

1

u.

11

O

*̂»
> rZ

Q
O

v/
£

0
OIQ

H-J ^
b

O

O

*.

12

Ja

vfl

5
4£

1 A

1

S

U.

13

Section 4. The Universal Function Schema

What follows is a report on the Universal Function Schema,

previously unpublished.

14

A UNIVERSAL FUNCTIONAL OBJECT

b y ,

J. Paul Roth

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT: This paper presents a scheme for realizing any function, combinational
or sequential, in a single universal function scheme, termed the universal
function object UF. This universal functional scheme is addressed to
the problem of the proliferation of the number of parts (cards, chips)
necessary for conventional implementation in an LSI technology of a computer
system (terminal, or peripheral systems). A UF implementation would
use only one or a few, the various specializations being effected by
insertion of the appropriate "connection vector". To use the universal
functional scheme of implementation, the designer would proceed in conventional
manner to produce a conventional design; a simple program would then
faithfully translate this into a UF design. The UF implementation will
use about ten times more circuits than a conventional implementation,
regardless of the size of the design. However, there will be only one
(or a few) distinct cards to form, so that actual manufacturing and stocking
costs should be drastically reduced. Another feature of the UF approach
is the following. Suppose that a particular circuit in the UF has failed,
which fact we would have detected and diagnosed by precomputed and stored
tests [4]. Then we have "general-purpose spares" and, by means of a
new connection vector cv, logically disconnect the failing circuit, appropriately
a connect spare properly biased by cv, thus substituting for the failing
circuit. This procedure could be used both at manufacture, to increase
the yields, as well as in the field, to achieve automatic repair. This
work was supported in part by the Jet Propulsion Laboratory, California
Institute of Technology, under the National Aeronautics and Space Administration
Contract NAS-7-100.

15

In a recent disclosure I showed [1] how to realize any (finite)

function, sequential or combinational, by means of a single type

of primitive functional object, essentially by appropriately assigning

values to strategically placed memory elements which constitute a

part of this primitive, called a universal functional element UF.

For combinational functions, this type of implementation utilized,

however, only two levels of logic, at least in its most literal

interpretation. For some functions, such as the parity-check function

of any substantial number of variables, this might be a prohibitively

costly method of implementation, although a way around this particular

function, the parity-check, was given in [1].

This first extension given here removes the limitation to two

levels to the UF; it allows, just as does ordinary "fixed-logic"

implementation, many levels of logic in any given form of implementation.

It extends directly to the sequential case, in which case loops (controlled)

are introduced.

It appears at this stage in the development of these ideas

that actual large-scale logical design using UF's will most expeditiously

be done by having a variety of UF's, of differing size and complexity,

in spite of the fact that any one sufficiently large UF type would

suffice for any job - it is a matter of efficiency.

16

The second extension in this note addresses itself to the repairability

of the universal functional object UF. We shall consider first the

combinational case implemented in two levels the general scheme is

shown in Figures 1 and 2.

It is also clear how Engineering Changes ED's, corrections or

improvements to the design, can be effected merely by a change to the

connection vector: no hardware scapping, the ED's simply effected and

tested out.

17

a °~ 0
- o—na lyj

O r-^

"n E
O r-

£|

A

N

t>

Here the individual circles

represent bits of memory, possibly

arranged in shift-register style:

if for a given input a., it is

desired that a. be ANDed in this

universal AND, then the corres-

ponding memory element feeding

the OR-block, which a. also

feeds, is made equal to 0. If

not, then the contacts of this memory

element is made equal to 1, suppressing

thereby the a.. Similarly one

treats the complementary variable

a.. If it is desired that neither

a. nor a., feed this AND then

the memory bits of each is set

equal to 1.

Figure 1. The Universal AND block UA

18

Let us take a few examples to see how we would design logic in this two-

level or, as we prefer to call it, one-stage method.

a

1

0

b

0

1

A '

1

1

a

1

X

1

b

0

X

1

c

1

0

X

d

X

0

1
exclusive-or

0 0 1 1

B

1

1

X

X

c

X

1

1

X

D

1

1

1

1

some other function

Figure 2. Tabular or cubical description of two functions.

In Fig. 2, the function on the left is the exclusive-or, with inputs a,

b and output A.

19

That on the right is a 4-input 3-output function. The symbol

x on the left means that with the other variables at the specified values,

the output described on the right will be maintained regardless of the

values assigned to the input variables having the value x. On the right

of the vertical line, the output side, an x means that that term is not

to feed that particular output [2]. IBM System 360 Program MOM exists

to minimize the number of these rows (cubes) for any given (multiple-

input, multiple-output) function [3].

Automatic-Repair on the Universal Function Object

Before we describe the case when the function is sequential (hence

has memory) we describe a simple means of using the UF so as to be

able in effect to remove or disconnect failing logic elements of the

UF and to codify spare general-purpose elements on the UF and to

connect it, again by purely logical means, so that it performs

precisely the function formerly done by the failing element.

The exclusive-or is implemented for the universal element as

shown in Figure 3.

20

Figure 3. UF Implementation of exclusive-or.

21

Tests to detect and diagnose failures can be computed by the

D-algorithm with particular ease because of the great control over

each logical element.

Imagine then that we have n active Universal AND blocks and

along with these general-purpose spares "floating", i.e. not

contributing to the outputs; see Figure 5.

• t

Figure 5. UF with general-purpose spares

22

Originally the r general-purpose spares are switched off, which

condition can be achieved, for example, by setting the memory elements

for the output contact equal to 0.

Suppose then that one of the original working elements is found

to be malfunctioning, e.g. by application of a complete set of tests

("complete" means giving 100% coverage).

First, this element must be switched out which is done, as above,

by setting all of its memory elements for its outputs to 0.

Second the connection vector which this universal and

block had, i.e. the pattern of its memory bits controlling its input

configuration, must be impressed into the similar memory bits for the

spare selected for this replacement operation. Likewise the pattern of

the memory output connections must similarly be duplicated.

Clearly this replacement scheme can be continued until all the

spares are used up. It is worth noting that this procedure could be

used in the manufacturing process, so that a given part need not be

prefect - only a sufficient number of them. This would raise the

yield.

Suppose that we call the output variables from the first stage

(two levels of logic) B. Then if, as we shall discuss shortly, the

B variables were used as inputs to subsequent stages of logic precisely

23

the same replacement scheme could be to "repair" any faulty "B-logic".

We show this by the following diagram and argument.

Figure 6. Illustration of operation of replacement of one of the outputs
of the first stage.

24

We refer to the figure: If Bl should fail, then it would be logically

disconnected and spare 1 would be invoked to serve as its substitute,

with the outputs from the first stage made the same for the spare as for

the line Bl which it is replacing.

Note: if in the second stage (and similarly for later stages)

it were desired that B"T, the complement of Bl, be an input to some vertex

function, say an AND, this could easily be achieved by including a negation

element with Bl as an input. It could also be achieved, however, by

observing that, if the outputs to Bl are denoted as b.. ,. .. ,b, , then

Bl = bj v b2v...vbk, so that Bl = (t>1.
b
2» • • • >

b\J' tnus if a NAND function

is provided, Bl can be easily provided, and independently from the formation

of Bl.

Note: a failure in the memory cell could equally well be considered

as a failure in the appropriate logic block and treated, by replacement,

in the same manner as any failure of the logic block.

Take now a function which is implemented in n levels

b = B (a)

C = B(b,a)

d = D(c,b,a) (a,b,c,...,z all binary vectors)
•
•
•

z = Z(y,...,a)

25

We would then have z stages in the Universal Functional Object UF

appropriately biased; note that there may be several levels of logic

within each stage. In the interest of simplicity rather than draw a

general circuit for the above functional expression, we will give two

detailed examples of UF - implementation, namely a four-bit parity check

circuit and an adder of two two-bit numbers.

It is clear how these schemes must be extended to account for larger

numbers of inputs for the same functions.

Figure 7. UF -Implementation of a 4-bit parity check circuit.

26

oo o
O O I
0 I 0
0 I I
1 0 O
f O I

(/ O
/ / /

o o
/ o
/ 0
0 I

1 0
O I

0 I

Figure 8. Function table for a 2-bit adder.

27

Fig. 9 is a straight-forward implementation of a two-bit adder. It

may be seen that this implementation uses three exclusive-or's and two

AMD's both of which we have given UF implementations.

A <* h &

i __

Figure 9. Standard implementation of a 2-bit adder.

28

We have seen how to implement each of these functions, AND and XOR

are implemented on a UF ; for the sake of completeness, however, we shall

make an explicit UF -implementation.

aa

Figure 10. Translation of adder implementation of Fig. 9 into a UF -implementation.

29

In this picture not all of the memory cells and other lines are

shown: only enough so as to exhibit the scheme clearly.

The scheme for having memory or feedback is very simple. Imagine

a line y emanating from say the first stage of implementation and that

it is desired, possibly upon appropriate delay or arrival of a timing pulse,

to feed this signal back to the input of this stage. Then y is fed into an

AND block together with a memory element, say m. If it is desired that y

be fed back and hence its value "remembered" then m is set to 1; otherwise

0. Then the output of this AND - call it y* - is then fed into an OR whose

other input is a primary input p. When y = 0 then clearly p is transmitted

through the OR-block so that with respect to this line at least the circuit

is behaving combinationally. When, however, m = 1 then p is set t.o C and

y comes through the OR. This is the basic scheme as described in [1].

If input lines to the AMD's in the first stage are at a premium, one

might use the following selection scheme.

Figure 11.

30

Here we indicate a particular input line to the Universal AND block and here

any of the inputs a,b,...,c may be selected, in general exactly one of them,

by appropriate selection of its characteristic value: 1 0,...0 or 0 1 0,

...0,..., or 0,... 0 1.

This device can mitigate against the building up of an excessive number

of inputs to the UA's.

In general each stage would have a suitable number of designated output

lines which could be feedback lines. Selections could be made among these

along the following lines,

Fig. 12. Selection for feedback among the outputs of a given stage with the

memory contents being 1 0...0 or 0 1 0...0... or 0...01.

31

It would probably be infeasible to have one or more output lines

going from each stage i back to stage i - 1 and one could easily cascade

back stage-by-stage although for fast applications this might be inacceptable.

REMARK: it is clear than an Engineering Change can be effected

by changing the connection vector for the affected UF ; this will greatly

reduce the cost effecting engineering changes.

Remark: It is quite straightforward to transform any simplex or

ordinary logic design into a UF -design which is "isomorphic" to the

simplex design in the sense that when the connection vector is appropriately

assigned the various levels and gates of the original design can be seen in

the UF -design and vice versa. In face one could write a program to effect

such a transformation.

32

BIBLIOGRAPHY

[1] J. P. Roth, "The Universal Functional Element", IBM Research

Disclosure # YO 870392, August 12, 1971

[2] , RC 2007, February 6, 1968.

[3] Roth, Wagner and Junker, "An algorithm and a System/360 program (MOM)

for the minimization the cost of multiple-output functions implemented

in two levels), To appear.

[4] Algorithms for the Mechanization of Design I. Diagnosis, RC 1294,

Oct. 1964.

[5] H. Fleisher, A. Weinberger, V. Winkler, "The Writable

Personalized Chip", Computer Design, .Tune, 1970, 59-66.

33

Section 5. MIN360

One of the first problems encountered by designers of switching

systems was that which is called today minimization of two-level

realizations. In its original form it was concerned with the minimization

of contacts in "strict series-parallel" form. Manual procedures were

developed, by Karnaugh, Quine and McCluskey, the latter being adapted to

digital computation, for small problems at least. In their original

formulation the problem was for a single output function, that is to

say, the minimization in normal form of a single output function.

Concrete problems, however, usually have many outputs. A typical problem

would be a two-level circuit transforming from one code to another.

This inherently is a multiple output problem. A geometric method,

designed for digital computation, was described in RC-11. This was

programmed in a series called MINI through MIN6 over the period

1958 to 1961. It was adapted early using a scheme due to Muller for

multiple outputs. It could not be guaranteed the multiple output form,

however, to obtain a minimum solution. Various approximations were

incorporated into the program, for example MAP, standing for Minimum

Approximate. This program proved to be highly useful on problems out

of the range of the strict minimization procedure. The MIN system

of programs received extensive usage within IBM. (RC 1425).

In 1966, the Jet Propulsion Laboratory, in response to its needs

for two-level realizations made a search, which the aid of IBM, for

a decent minimization program. MIN 6 was tried and as a result of

34

experiments modified so as to be more convenient for JPL usage. As

a result of this renewed interest in minimization, we became interested

again in the two-level multiple-output minimization problem, and using

a different representation for cubes - singular cubes - we were able

to extend the extraction algorithm to the multiple output case. (RC

2007, 2280) This algorithm was first programmed in APL and proved out

very small problems. It was then reprogrammed by Leroy Junker in PL/1

with assembler language subroutines and run on the Model IBM System/360

Model 91.

In addition new approximate procedures and options were developed.

For example, for Functional Memory the appropriate cost function is not

the classical one, the number of input lines, plus the number of output

lines, but rather the total number of cubes in the cover - this would

correspond to the number of words in the Functional Memory realization

of the function.

We will now describe how the program may be used in its various

options; for simplicity we will call MIN360 by the abbreviated name

MIN.

First let us describe the input format, which is the same as

the output format. Suppose that we have a function of r binary inputs

and s binary outputs. The cubical cover is a description of the

input-output relations for this particular function. One mode of

35

description, for example, would be to list all 2 input patterns with

their corresponding outputs if any. For r large this may not be

practically possible. For functions of large numbers of variables,

it is most often the case that relatively few combinations of the input

will determine the output. Suppose for example that the first p of

the inputs, if all 1, will cause each output to be 1. This would be

represented as a string of p 1's followed a string of r-p x's followed

by a vertical slash followed by s 1's. The minimization algorithm MIN360

is a function of the care conditions the don't-care conditions the

mode, which will be explained, the cost function, a cost bound and

truncation number. Thus we may write the solution s = MIN360 (c,d,

mode, bound, truncation)

The care conditions c, don't-care conditions d, have already

been described. The mode may be EXACT, meaning that a minimum will

be obtained; PSEUDO meaning that a simplification of the algorithm will

be used; in PSEUDO, after an extremal is computed it is thrown entirely

into the developing solution s, whereas in the exact solution only that

portion thereof which contains distinguished vertices may be thrown

in. This procedure hastens the computation of a solution. After a solution

is obtained, redundant outputs are removed. This is similar to the

MIN6 mode for multiple outputs. Although it is in general faster than

EXACT, the solution cannot be guaranteed to be a minimum. We ran a

JPL problem for 2 hours in the EXACT and the PSEUDOmode; the EXACT

mode obtained a solution of cost 409, whereas for the PSEUDOmode, the

36

cost was about 427.

As indicated the cost function varies from one technology to

another; the classical cost function counts the number of 1's and O's

in the input part of the cube in the solution and the number of 1's

in the output. If one were to design a two-level AND-OR realization

this would be the appropriate cost.

With the costbound option, cbound, if one assigns a costbound

k to the developing solution, as soon as k is exceeded that part of

the search is terminated. Under the truncation option, one assigns

a number t and as soon as the branching level exceeds t, the computation

ceases: one uses whatever solution or solutions of those computed up

to that point.

The mode may take on the values EXACT, PSEUDO and APPROX. We

will now explain APPROX. First a word, however, about the exact

minimization procedures. For very large problems it is frequently

the case that "branching" occurs. This means that a decision tree

must be examined, each node of which involves, in general, considerable

computation. Thus, as the size and complexity of the problem to be solved

increases, the running time for the program correspondingly increases.

Since we are interested in solving quite large problems - the data

format for the program allows problems having up to 32 inputs and 32

outputs - it is important to have an APPROXimation which will get an

37

answer hopefully close to a minimum, and in a reasonable, perferably

very short, amount of time.

The APPROXimate procedure starts, as all MIN options, with a cover

C of all input conditions for which an output should be 1: this is referred

to as the ON-array; also either a cover of the DON'T-CARE's, i.e. input

conditions together with those corresponding output conditions for which

one does not care or is indifferent to the corresponding output or else

a cover of the OFF-array i.e. a cover of input conditions or patterns

for which some outputs are zero. For example, for 3 inputs and 2 outputs

one might have

C, ON-array =

inputs

1 x 0

x 1 1

000

outputs input

1 x 101

output

1 1

x 1

1 1

= D, don't
-care array

1. The first step of the algorithm is to take the first cube

of the ON-array, in our example 1 x 0 | 1 x and a coface of the first

coordinate, i.e. change the first coordinate to an x if it is not already

x. Then one "sharps" away the cubes of the cover; the #-product is a

procedure for finding, for a and b cubes, a cover of the set of all vertices

of a that are not contained in b. If C is a set of cubes then a # C is

an iterated product of a with all cubes of C. See RC 2008 for details

and an explanation.

38

If the #-product of the cofaced cube a of the initial cover and

the initial cover C and D is empty, then changing this coordinate to an

x is a valid step and a is replaced by the larger cube (in general covering

more) and the procedure is repeated for each input coordinate of a which

is not x. After this is completed, each output coordinate which is x

is changed provisionally to a 1 and again the ^-product of the cube modified,

with the original covers C and D is used to ascertain whether or not

this change is valid; this modification is done again for each output

coordinate, one after the other. This cofacing operation is done for

each cube of C: call the result E.

2. The second step ascertains if any cubes of E are redundant.

This is done by performing for each cube e of E the test

e # ((E - e) v D.)

If the product is <j> then e is redundant; e is then removed from

E. This procedure is applied to every cube of E: this process produces

a cover F which is irredundant, i.e. no cube can be deleted and still

remain a correct expression of the original function.

3. The third step is to ascertain if any output coordinates

of cubes of F are redundant. This is done by changing, in a given cube

with respect to a given output coordinate which is 1 for this cube, all

other output coordinates, which are 1, to an x and forming from that

the #-product with all other cubes of the cover F plus the Don't-care

39

cover D. If this product is <j> (empty) then this particular output coordinate

is redundant and may be removed, i.e. changed to an x. The process is

performed for every output coordinate whose value is 1 for every (singular)

cube of F. The resulting cover, G, is an irredundant prime-cube cover

and, experiment by computer shows, gives covers whose cost, being the

number of cubes in G in many applications, is remarkably near to a minimum.

In fact for large problems, say in excess of 12 inputs and 12

outputs, we will inevitably use this APPROX made. The previous quarterly

report gave running times for the computation on IBM System 360/91 of

minimum covers, for approximate minimum covers, for a fairly wide range

of problems, several of them being problems originating with M. Perlman

at JPL. A manual for MIN360 is under preparation and will be sent to

JPL upon its completion.

40

Section 6. Diagnosis of Failures in Mechanisms

Consider any component of a mechanism M. Assume that its "state" -

position, velocity, pressure, tension, ... - can be characterized by a

quantum number, assumed with no loss of generality to be in binary form,

of bounded length. The state of a component c is a function of the

"output states" of certain other components of M which directly affect

it, plus possibly its own "previous" state. For simple c this function

may be expressed as a function-table or function-ensemble of function-

pairs. The component function-tables constitute a computable

characterization of the function or behavior of M. Essentially M is

treated as a physical, mathematical interconnection of its components.

A "failure" of a component c is any change which modifies the function

it performs; a failure of M is a failure of any of its components. Primary

Inputs PI of M are those output states or variables of mechanisms outside

of .M which determine the functioning of M given its structure. Primary .

Outputs PO are those output states of M which are measureable and

perceptible outside of M and are the result of M's functioning.

A test T for failure F of M is a (sequence of) Primary Input

patterns such that the corresponding PO pattern differs depending upon

whether or not F has occurred. Problem: given a failure in M, find a test

to detect it. It does not appear difficult in principle to adapt the

D-calculus (quantum calculus) to this model of the functioning behavior

and failure diagnosis of mechanisms. The hard part is to provide this

functional description of a mechanism whose design may be recorded at

best by conventional drawings, further to be able to do this in a

Design-Automation mode. Also there is the problem of characterizing

and describing the behavior of components subject to a particular

failure.

Nevertheless it seems an approach novel to mechanical

diagnostics is being pursued actively.

42

Bibliography

June, 1957, J. P. Roth, "Combinational Topological Methods in the

Synthesis of Switching Circuits", IBM Research Center, Poughkeepsie,

New York, RC-11

January, 1959, Ann E. Randlev, "The Use of the 704 Program for Finding

Minimum Two Level OR-AND Circuits", IBM Research Center, Yorktown

Heights, New York, RC-90.

September, 1961, Ann C. Ewing, J. Paul Roth, Eric G. Wagner, "Algorithms

for Logical Design", AIEE Communications and Electronics.

October, 1964, J. Paul Roth, "Algorithms for the Mechanization of Design

I Diagnosis", IBM Research Center, Yorktown Heights, New York, RC-1294.

June, 1965, J. P. Roth, "Systematic Design of Automata", IBM Research

Center, Yorktown Heights, New York, RC-1425.

October, 1968, J. P. Roth, IBM Research Center, Yorktown Heights, New

York, and M. Perlman, Jet Propulsion Laboratory, Pasadena, California,

"Space Applications of a Minimization Algorithm", RC-2235.

June, 1970, H. Fleisher, A. Weinberger, V. Winkler, "The Writable

Personalized Chip", Computer Design.

43

January, 1972, J. Paul Roth, IBM Research Center, Yorktown Heights,

New York, "Theory of Cubical Complexes with Applications to Diagnosis

and Algorithmic Description", RC-3675. Quarterly Report.

