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ABSTRACT

3
The rotational relaxation of the He_(3p Tig) state is examined by optically

pumping a flowing helium afterglow with a tuneable dye laser. The population of

the J = 8 rotational state is enhanced by optically saturating the R7 component

of the transition connecting this state with the metastable He9(2s E ) molecular

state. From the lifetime and yield of the Q7 component, the rate coefficient for

the rotational relaxati6n via .the forbidden AJ = 1 channel is determined to be of

-11 3the order of 2 x 10 cm /sec. It is found that this represents about half of

the total rate of rotational relaxation in this state.



INTRODUCTION

The previous paper describes a system and technique of fluorescent

spectroscopy which is suitable for the study of excitation quenching reactions

of species with lifetimes in the nanosecond range. In that system use is made

of a two-step excitation process in which a tuneable laser optically pumps a

stationary population of metastable species in a flowing afterglow. Because

of the narrow spectral width of the continuously tuneable laser output, such

a system offers the possibility of enhancing the population of single rotational

levels of excited molecular states. From such a selectively excited afterglow,

direct information about the rate of rotational relaxation can be obtained from

subsequent examination of the resulting fluorescence.

This paper reports the results of the use of this fast-transient fluorescence

technique in the examination of rotational relaxation caused by collisions

with neutral helium atoms of the He~(3p Ilg) state. Although overall rates of

2
rotational relaxation are well-known for ground state molecules , there is little

corresponding information for such electronically excited states. While the

gross rates for de-excitation are expected to be similar, it is conceivable

that selection rules on particular reaction channels for rotational relaxation

might be less rigorous as a consequence of the greater abundance of diabatic

states for the higher levels.

In these experiments, particular emphasis was placed upon the AJ = 1

relaxation channel which is forbidden for homonuclear molecules in first order

3
theory . In contrast to that theory, it is reported here that for this parti-

cular electronic state the AJ = 1 channel was found to account for about half

of the total relaxation rate.



METHODS

A. Production and Detection of Reacting Species

3
The enhanced population of the 3p Ilg state of molecular helium was produced

by optically pumping the primary population of He2(2s E ) metastable state

according to the scheme

He(2s3E+) + hv(nom. 4650A*) -» He(3p3ng) . (1)

Figure 1 shows a diagram of the corresponding energy levels for the equilibrium

internuclear separation of the molecular states involved in this experiment.

Energies are shown in cm relative to the lowest rotational level of the mole-

cular metastable state. Integers denote the rotational quantum number, J. Only

the rotational levels of the vibrationless state of each of the two electronic

configurations are shown as the vibrationally excited states are only weakly

populated in the flowing helium afterglow serving as the source of primary species.

Channels for the rotational relaxation through collisions involving the

transfer of an odd number of rotational quanta can be readily isolated from those

requiring change of an even number by making use of the natural spectral separa-

tion of the P, Q and R branches of the radiative transition connecting the levels

3 + 3of two electronic states. Since excitation of the 2s I •* .3p Ilg transition is

forbidden for branches having even J-numbered rotational levels in the lower

state, optical pumping of the spectrally isolated R-branch serves to produce

only even-numbered rotational levels of the upper state. Figure 2 illustrates

o
this isolation showing a schematic representation of the dispersed 4560A band
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3 + 3 •(2s I -»• 3p Hg) . Optical pumping of the R7 line was selected in this experiment

o
in order to allow about 20A separation between the laser wavelength and the first

component which could spuriously populate an odd-J rotational level of the upper

state. This represents about an order of magnitude larger separation than any

anomalous system effects due to linewidth or jitter of the pumping wavelength.

In practice however, such effects did provide some excitation of the R,- and R_

components which effectively obscured observation of rotational relaxation in

the AJ = 2 channel.

The lifetime of the enhanced population of the upper state was conveniently

monitored by observation of the transient fluorescence of the PQ component of

o
the same transition. In this way 55A separation could be obtained between the

wavelength of the Pq transition and any non-resonant scattering of the R7 pumping

light from imperfections in the optical windows. This proved more than sufficient

to insure that such scattered light was completely rejected by the tandem mono-

chromator used in the detecting system. Figure 1 summarizes the relation of

these spectral components on the energy scale.

As can be seen in Figure 1, the enhancement of radiation of the Q7 component

can only occur as a consequence of rotational relaxation from some even-J level.

Representing the effective reaction connecting the input and output channel, this

can be written,

followed by

He2(3p3IIg, J=8) + He -*• He2(3p3IIg, J=7) + He , (2)

He2(3p
3ng, J=7) -> He2(2s

3Eu
+, J=7) + hv(Q?) . (3)



In this case the yield of photons in reaction (3) is a direct measure of the

effective rate at which reaction (2) proceeds, recognizing that the actual

reaction path may involve intermediate states. However, since only even-

numbered J states can be directly or spuriously excited in the upper state

when pumping in the R-branch, any assumed intermediate paths must involve an

odd change in J which is as forbidden as the direct reaction (2), itself.

Consequently, indication of a large effective rate for (2) implies a break-

down of the selection rule requiring AJ be even.

B. Analytical Method

While the total collisional loss rate of the enhanced population can be

obtained from the partial derivative of destruction frequency with respect to

neutral particle concentration, as was done in part I, the yield of photons

in the product channel also give an estimate of the rate coefficient connecting

initial and final channels of the reaction. Denoting the enhanced populations

3of the initial level of the 3p Hg electronic state by N. and the population of

the final level by Nf and assuming both populations are far from equilibrium

values,

dN

dN

dT ' SNi-LfNf , (5)

where L. and Lf denote the total loss rates exclusive of the reaction connecting
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the initial and final levels, respectively, and S represents the rate of that

reaction connecting the levels. Assuming the initial conditions

N±(0) = N and Nf(0) =0 , (6)

representing an instantaneous increase of initial-state population to N at time

t = 0, corresponding to the laser pulse, and solving for the populations gives

expressions which can be written in terms of fluorescent intensities through

the following substitutions,

,00

C, = fe.bA, Sb (2J. + I)"1 N.dt , (7)
i i i j i j i

o

fCO

Cf = fef
bAf Sb (2jf + D^JNjdt (8)

o

In these expressions C represents the total number of photoelectrons counted

during the fluorescent period following a single laser pulse and corresponds

to the intensity radiated from the respective population, f represents the

collected geometric factors, e, the photoelectric counting efficiency, A, the

part of the spontaneous transition probability not including rotational effects,

S the Honl-London line strength . Subscripted J's denote the rotational quantum

number of the level having population N and the superscripted b represents the

spectral branch designation, P, Q, or R. Collecting the solutions of (4) and

(5) and substituting (7) and (8) gives finally

. C, eb A. (2J, + 1) Sj.
si,;1 = — 4 ~ — ir • (.9)

C E° A (2J + 1) Sj ' ' '
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Measurement of Lf can be made directly from the lifetime of the decay of the

fluorescence from the final state, provided this is comparable to the lifetime

of the initial state, and C. and C,. can be determined from the total number of

photons collected at wavelengths characteristic of the monitoring transitions

from the initial and final states respectively. Direct knowledge of A. and A,.

is not necessary if those transitions occur between the same electronic

configurations. In this case, since the monitoring transition of the initial

3 3 +state population is in the P branch of the 3p Ilg -*• 2s I system, while that of

the final state transition is in the Q branch of the same system, A. = Af and

that ratio cancels.

RESULTS

The use of -4- methylcoumarin in the dye laser system produced a pumping

flux of the order of 10 photons/A/sec in the 4650A region. The linewidth was

o
held to the order of 5A through the use of an iris in the resonant cavity in

addition to the grating described in the previous paper . Unlike the particular

experiment described there, pumping the metastable population with the relatively

high flux available at this wavelength was sufficient to saturate the particular

transition involved. Power densities were such that, depending upon the particular

details of the mode structure in the laser, cooperative phenomena in the fluo-

rescence from the pumped transition had been expected to affect radiative life-

times. Some evidence of this is seen in Figure 3 in the spiking behavior

of the afterglow fluorescence observed at the highest power densities. In

Figure 3 the number of photoelectrons counted during the fluorescent period
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are plotted to the right as functions of the delay time following initiation

of the laser pulse and to the front as functions of useable energy per pulse

in the absorption linewidth. The curves at the two larger energies represent -

the accumulation of counts from 100 repetitions each, the lower energy curve

represents the accumulation for 500 repetitions divided by a scale factor of

five. As can be seen, the early lifetime of the fluorescence depends strongly

upon the peak power in the optical pumping pulse. To avoid this effect pulse

energies not in excess of 2.3 yj were used in the course of the actual measurements.

Figures 4 and 5 show the decay of the fluorescence in the initial and

final states respectively. The former monitors the population of the' J = 8
3

level of the 3p Ilg state while the latter follows the decay of the J = 7 level

which cannot be directly excited by pumping from the R branch. Accumulated

photoelectron counts have been converted to counting rates by dividing by the

accumulated dwell time in each of the counting channels.

Considering only the gross loss rate for molecules in the J = 8 level, the

lifetime of approximately 72 nanoseconds obtained from Figure 4 corresponds to

a destruction frequency of 1.4 x 10 sec . If this were entirely attributed

to the collisional relaxation of the rotation at the neutral pressure of 10 Torr

present in the afterglow, the corresponding rate coefficient would be 4.3 x 10

3 - 1cm sec . .

The rate coefficient to the AJ = 1 component channel described by eq. (2)

can be estimated from the measurements collected in Table 1 of the factors

appearing in eq. (9).



Table I. Photon yield factors appearing in equation (9) and necessary to

estimate the rate coefficient of reaction (2).

Level

(J)

8

7

Photoelec

(count

1057

1386

Efficiency (2J SL
-1

9.7

9.7

8.5

4.0 0.62

.-1
The value of Lf can be read from Figure 5 to be approximately 80 nanoseconds,

This gives a rate for reaction (2) of

S = 7.8 x 106 sec"1

a value which at 10 Torr corresponds to a rate coefficient of

-11 3R = 2.4 x 10 cm /sec

(10)

(11)

CONCLUSIONS

The effective reaction path represented by equation (2) connects input and

output channels in which the rotational quantum number of the reacting species

has been reduced by one. Though formally forbidden in first order collision

theory, this reaction has been measured in this work to have an effective rate

— 1 1 3 — 1coefficient of 2.4 x 10 cm sec , a value corresponding to about half of the

3
total rate coefficient for rotational relaxation in the 3p ITg electronic config-

uration of He~. The most probable interpretation of this apparent contradiction

is that this selection rule requiring AJ = 2 is not as rigorous in such a highly
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excited electronic state because of the relatively large number of other states

3
of He- lying within KT of the 3p Jig.

It is interesting to note "that the collection of statistically significant

data is limited at both high and low pumping intensities. In the former case,

the use of an excessively intense correlated source appears to cause progressively

shorter lifetimes of the enhanced population as the intensity is increased beyond

some threshold value. Conversely, the use of a source of insufficient intensity

does not produce statistically significant fluorescent signals in a reasonable

number of laser pulses. The relatively short operational lifetime of the flash-

lamp pumped dye laser systems places a limit of about 1000 pulses on' the duration

of a experimental measurement. It appears that, as nitrogen pumped dye laser

systems are beginning to achieve radiancies.comparable to those quoted here for

the flashlamp system^ those devices may eventually offer considerable improvement

to such fast reaction studies since their mean time to instability is substantially

greater.
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CAPTIONS

Figure 1: Diagram of the energy levels for the equilibrium internuclear

separation of the molecular states of He- involved in this

experiment. Energies are shown relative to the lowest level

3 +of the metastable 2s Z state and integers represent rota-

tional quantum numbers. Arrows indicate the R7 component used

in optical pumping, the Pg component used to monitor the pumped

population, and the Qq component radiated from the population

resulting from reaction (2).

o
Figure 2: Schematic representation of the He- band at 4650A from the transition

3 3 +(3p Kg -> 2s E ). Typical intensities observed in emission are

plotted as functions of wavelength. The R7, PQ, and Q7 components

are indicated. ' .

Figure 3: A plot of the number of photoelectrons counted as a function, to

the right, of time into the fluorescent period following the laser

pulse. Logarithmic coordinates increasing to the front indicate

the energy per laser pulse within the absorption linewidth of the

3 +He_(2s E ) metastable molecules.

Figure 4: Logarithmic plot of the decay as a function of time of the enhanced

3
J = 8 population of the 3p Eg state of He- as evidenced by the

detected counting rate of the radiation from the P- component of

the transition indicated. Also shown are error limits corresponding

to + one standard deviation of the counting rate. The exponential

fit to the decay corresponds to a lifetime of 72 nanoseconds.
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Figure 5: Logarithmic plot of the decay as a function of time of the enhanced

3
J = 7 population of the 3p Ilg state of He_ resulting from reaction

(2). Ordinates -give the detected counting rate of the radiation

from the Q7 component of the indicated transition from this state.

Also shown are error limits corresponding to + one standard devia-

tion of the counting rate. The exponential fit to the decay

corresponds to a lifetime of 80 nanoseconds.
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