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PREFACE

Our knowledge of the ionosphere and its interactions with the
aneutral atmosphere has increased rapidly in the past decade due to the
availability of a greater wealth of better observational data combined
with the capability of advanced computer systems to handle complicated
numerical problems,

Complex theoretical models and their numerical solutions on large
computer systems are a requisite to the further advancement of our
knowledge. This document contains a collection of papers describing
theoretical modelling activities and numerical solutions obtained using
the models by personnel of Mississippi State University. It is hoped
that the document will provide readers a concept of the complexity of
modelling a three~fluid plasma,
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CHAPTER I

NUMERTICAL SOLUTION FOR PROPAGATION OF COUPLED LONGITUDINAL
AND TRANSVERSE WAVES NORMAL TO THE APPLIED MAGNETIC

FIELD IN A THREE~FLUID MEDIUM

by

Ronald W, McClendon and David L. Murphree

NOTE: Figures, references, and equations begin a new sequence in each Chapter.
Also, the Appendices are lettered consecutively by Chapter, and
each Chapter includes its own List of Symbols.
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LIST OF SYMBOLS

Magnitude of Electric Charge
Velocity of Light in a Vacuum
Specific Heat Ratio
Hydrodynamic Derivative
Effective Collision Frequency of Type a with Type b Particles
Vb + Vae? Total Collision Frequency
Electric Field Strength
Magnetic Field Strength
Fluid Velocity of Electrons, Ions, or Neutral Particles
Number Density of Electrons, Ions, or Neutral Particles
Mass Density of Electrons, Ioms, or Neutral Particles
Partial Pressure of Electrons, Ions, or Neutral Particles
Electron or Ion Plasma Frequency
Applied Frequency of the Wave
Electron Cyclotron Frequency
Ion Cyclotron Frequency
s 1

[wz + (wi/Z)2 + wzwi]é - 1/2wi
woy * W
wi(wiwi)%/(wi + wiwi)%

1
[ + 3?17

Cyclotron Frequency of the Electrons, Associated with
Either the Transverse or Longitudinal Components of Ho

Complex Wave Number
Real Part of the Wave Number
Imaginary Part of the Wave Number

ke/w, Index of Refraction
vii



m, /m_, Mass Ratio of Ions to Electroms

Acoustic Velocity of Electron, Ion, or Neutral Particle
Species

1
[Y(Pe + Pi)/(pe + pi)]é’ Acoustic Velocity of the Electron-
Ion Gas Mixture

)
HO/[41r(pe +p; F pn)]é, Alfven Velocity

1
Hq/[4w(pe + pi)]é, Alfven Velocity in a Mixture of Just
Charged Particle Fluids

/-1

Y
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Introduction

A three-fluid theory, using Maxwell's equations together with a
set of coupled hydrodynamic equations for an interacting mixture of
electrons, ions, and neutral molecules, has been employed by Tanenbaum
and Mintzer1 to examine small~amplitude oscillations in an infinite,
homogeneous, partly ionized gas with a uniform external magnetic field.
Plots of phase velocity versus frequency were obtained for the case of
negligible collisional damping for wave propagation along and normal
to the applied magnetic field. A set of approximate solutions £o the
dispersion relation was employed to yield the phase velocities for various
frequency bands.

An investigation by Dahl and Murphree2 yielded a solution to the
complete three~fluid dispersion relation governing the propagation of
longitudinal waves parallel to the applied magnetic field. Some differences
were noticed between their phase velocity plot and the approximate solution
given by Tanenbaum and Mintzer. In making a comparison, Dahl and Murphree
were able to substantiate their results by requiring continuity in both
phase velocity and e-~folding distance curves with frequency change.
Tanenbaum and Mintzer were limited in that their solution was just for
the phase velocity and it was wvalid énly in various frequency bands.
Comnecting the curves between the frequency bands was a possible -source
of error.

This paper will present a numerical solution to the complete three-
fluid dispersion relation governing wave propagation normal to the magnetic
field. Solutions have been determined for the complex wave numbers for a

typical ionospheric condition without making any approximations to the
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dispersion relation. Obtaining the solution without making any approxi-
mations was made possible only.by the use of a computer method to carri\\_\
out the extremely large number of algebraic manipulatig?s involved. These
operations, accomplished by the PL/I-FORMAC interpreter in an IBM 360-40,
could not have been performed manually. Plots of the phase velocity and
damping characteristics of the resulting wave modes are presented for the
frequency range 10--5 < w< 109.

The phase wvelocity plot is compared to the approximate results of
Tanenbaum and Mintzer. Although Tanenbaum and Mintzer had obtained phase
velocity results for various frequency bands, a thorough investigation
of the damping characteristics of the wave modes had not previously been
performed. The purpose.of the work described in this paper was to
solve for the damping characteristics of the wave modes in additiom to
obtaining a complete numerical solution to the phase velocity over the

entire frequency range. The resulting method allows for the complete

solution of any wave propagation problem in a three-fluid medium.

Theory

A. General Dispersion Relation

The derivation of the general dispersion relation which governs
wave propagation of small perturbations in a partially ionized gas with
an applied magnetic field present will be outlined. This derivation
is presented in Reference 1.

The following model is employed:

(1) The degree of ionization is fixed

(2) Each gas obeys the perfect gas law

(3) Damping caused by the frictional forces of each gas allows
for the conservation of total momentum of the system

(4) No heat flow exists within the gases.



The set of equations given below describes the three-fluid mixture.

(1) Maxwell's equations:

7. 10
VxE = c at
= _ 4me = 1 EE
Vel = == NGV - NGV + 35t
(2) The continuity equation for each gas:
D - _ .
Dt Pe,i,n _ ~ Pe,i,n v Ve,i,n
(3) The momentum equation for each gas:

D e ~ Vé x H VPe _ _
pe V) = o =) m 5 7 Ve Ve = V) = Ve (Vg = V)
o e — V., xH VP _ _
pE 9 = E+—2) - o, Vie(y = Vo) = vV - V)
D VPn _ _

Dt (Vn) = - pn - vne(vn - Ve) - vni(vn - Vi)

(4) The adiabatic condition for each gas:
P N—Y = constant
e,i,n e,i,n stan

To facilitate the solution a 3-D cartesian coordinate system is
chosen with x in the direction of wave propagation and z perpendicular
to the plane formed by x and the applied magnetic field. The applied
(Hox’ Hoy’ 0).

The above plasma equations may be linearized by perturbing the quantities

magnetic field vector can therefore be written ﬁ;

H, V E, N and P_

, B, with small periodic oscillations of
e,i,n e,i,n n

o1,

frequency w. For example,
N =N +n ei(kx - wt)
e o e

where No is the undisturbed electron density, n, the amplitude of the



perturbation, and Ne the resulting electron number density at any
position x for any time t. The perturbation is considered-to propagate
only in the x-direction, i.e., one-dimensional propagation. The perturbed
quantities are then substituted into the plasma equations yielding
twenty-one equations and, twenty-one unknowns. These equations can then

be manipulated by substitution to yield a vector equation for the three

components of the electron velocity.

[~ T 7.
A1 412 443 Vex
Ar1 Byp B3 Vey =0
Agy  Bgy Ay Vez &
L o I Bl
where
A = (C./m) - (C.C./C.) + (wlw®_/mC.)
11 1 3¥s5’%1 /M
A = A = - 2 /mC
12 © f21 T T 9 L/,
A, = (C,/m) - (C,C,/C.) + w'w? /mC
22 2 476’2 L/™2
Ayy = ~Ay, = - (1ww /C) [C, - (C6/m)]
wo L Byp = duegl(Cy/mGy) 7= (Ch/Cy) ]
_ 22
A33 = A22 + (v w T/mCl)
and
2 . 2
C1 = w, - iwv . + w (venvni/YZ)
2 ) 2
C2 = w, 1-n ) = dwv + w (venvnl/yl)
_L2 2 2.2
C3 = - k U1 + 1wv + w (vln nl/YZ)
2 2 2.-1 . . 2
C,=u - 1(l -n°) "+ 1wy, + w (Vinvni/Yl)
2 _ 2 2.2 . 2
C5 =uw -, - k Ue + iwv, + w (venvne/yz)
2 2 2.-1 . 2
Co = v - we(l - n%) 7+ dwv, + w (v v ne/Yl)



where

2 _ 40
Y =W + imvn wT,L = eHT,L/m c
- 2.2 - %
Y2 =7 ~kT Ue,i,n (YPe,i,n/pe,i,n)
2 L =
we,i (4me No/mé,i) n = ke/w

B. Dispersion Relation for a Wave Propagating Normal to the Magnetic
Field '

Examining waves propagating normal to the maénetic.field,.the longi~
tudinal component of ﬁ; will be zero. It follows that the longitudinal
component of the electron cyclotron frequency, mL; will also be zero.

Applying this condition to Equation (1) we obtain

vV _+

A11 ex A13Vez =0,

BypVey = 05

A31Vex + A33Vez = 0. 2
From the second of these equations we see that a transverse wave
can propagate provided that A22 as previously defined is zero. This
solution is not examined in this analysis.
The first and third equation of Equations (2) form a set of linear
homogeneous equations. The determinant of the matrix of coefficients
must vanish in order that a nontrivial solution can exist. The dis-

persion relation for the case of a wave propagating normal to a magnetic

field therefore takes the form

AjjAq3 ~ Ajg8g; =0 (3

Examining Equation (3) it is obvious that this dispersion relation

is an .extremely complicated equation in expanded form. The number of

terms in this equation would make its use infeasible when working by hand.



This problem is considered later in the Dis-~ussion.

A computer method for carrying out the necessary algebra in order
to obtain the dispersion relation k(w) was then required. The PL/I-FORMAC
Symbolic Mathematics Interpreter3 has the capability of symbolic manipula-
tion of mathematical exﬁressions. The expressions can contain variables,
user-defined functions, constants up to 2295 digits, and symbolic comstants,
as well as functions such as SIN, COS, EXP, etc. A factored algeEraic_
equation can be expanded and the coefficients of the various powers of any
of the variables can be collected. This was especially useful in our
solution for the coefficients of the dispersion relation.

Having this facility available, the terms C,, £=1,2,. . .,6

were substituted into the appropriate A,, terms of Equation (3). This

i3

procedure yielded a twelfth degree equation in k, the wave number.

12 10 8 6 4 2 _
Alk + A2k + A3k + A4k + A5k + A6k + A7 =0 (4)

C. Newton-Raphson Iterative Solution

The dispersion relation could also be written in the form

6 5 4 3 2 _
Alx + A2x + A3x + A4x + A5x + A6x + A7 =0 (5

where x = kz and the coefficients are complex numbers. A Newton-Raphson
iterative procedure as shown below was chosen to solve for the roots of

this equation.

f(xn)

*n+l " *n T f'(xn)

or
6 5 4 3 2
. - . Alxn + A2xn + A3xn + A4xn + A5xn + A6xn + A7
n+l  “n 5 4 3 2
6Alxn + 5A2xn + 4A3xn + 3A4xn + 2A5xn + A6

An initial estimate was made and the iteration was performed until a root



of the sixth degree équation was found. This root was then factored out
of the equation by complex synthetic division. For example let x = o

be a root found from the previous equation. Now by synthetic division

Al A2 A3 A4 A5 A6 A7 a
aAl aBZ aB3 aB4 aBs aB6
A1 B2 B3 B4 B5 36 0
where B2 = A2 + aAl, etc. then,
C(x - a)(Alx5 + Bzx4 + B3x3 + B4x2 + Bsx + 36) =0

Again the Newton-Raphson iterative procedure can be used to
solve for a root of the resulting fifth degree equation. Let this root

be x = B, therefore we have | .

(x - &) (x - B)(Alx4 +C x3 + C x2 +C

2 3 4¥ +C5) =0

By continuing this approach, the six roots to this sixth degree poly-
nomial can be found. It is important to choose realistic values for
the initial estimates in the iterative solution. If the estimate

1s too far removed from the actual root, the iterative procedure will

not be successful.
Discussion

The computer solution for the wave number k, which describes the
characteristics of the wave, can be divided into two processes:
(1) substitution and expansion of the general dispersion'relation
for the specific case of a wave propagating normal to a

magnetic field

(2) solution of the dispersioﬁ relation for the complex wave
number.



The first process was performed largely by using the PL/I-FOFMAC
Symbolic Mathematics_Inte;preter. The main feature of the FORMAC intef—
preter as applied to our problem was its ability to carry outlélgebraié
manipulations. Tﬁé process of expénding the dispersion relation given
in Equation (3) would be essentially impossible to accomplish by hand
without assigning numerical values to the variables. This method would
not be acceptable because a new dispersion relation would have to be
derived manually for each change in the conditions and applied frequency.

A FORMAC program was written for the IBM 360 model 40 at Mississippi
State University to carry out this operation. A simplified flow chart
of this program is given in Appendix A. The input to this program consists
of the applied frequency, magnetic field strength, and collision frequen-
cies, plasma frequencies, acoustic velocities, number densities, and
masses of the three species for the desired atmospheric condition.

Due to the size ofzsome of the quantities exceeding the limitations
of the computer, it was necessary to change the units of length and time
to avoid an underflow or overflow condition. The length and time dimen-
sion waé also included in the input, and the velocity and frequency terms
were converted accordingly.

The dispersion relation given below was obtained from Equation (3)

by substituting the expressions for Aij'

2.2 2 2 2 2 2
01C2 + 2w wTClC2 - mcchC6 - mC2_C3C5 + m C3C4C506
222 44 22 ~
-nw wTC3C4 + w Wp = W wTC cC, =0 (6)

576

If the expressions for the C's;as previously defined were substituted
into this equation by hand without assigning numerical values to the
variables, the dispersion relation would be composed of several thousand

terms. This process was initially attempted, but the complexity involved

in expanding this equation by hand ruled this method impracticable.



Furthermore, after expansion the terms would have to be collected to form
the real and imaginary components of the coefficients of the various
powers of k. Equation (6) is the form of the dispersion relation before
any substitutions or manipulations are performed in the FORMAC computer
program. Since the available storage was not sufficient to hold the
entire dispersioﬁ relation in expanded form, values for the applied
frequency, cyclotron frequency, collision frequencies, plasma frequencies,
and acoustic velocities were_ﬁubstituted. The dispersion relation was
then expanded, evaluated, éhdhﬁhe coefficients of the twelfth degree
polynomial were colleéféd and punched out on cards.JrThis approach
gives a dispersion relation for each of the chosen points on the
frequency range.

To check the validity of the algebraic manipulations as performed
by FORMAC, a test case was:formulated. The expfession A + iB)n was
expanded for each of the values n =1, 2, 3, ..., 10. For example,

3 3

a+ iB)3 = A" - 3B2A + i3BA2 - iB .

These ten expansions were then performed manually and the results of
the FORMAC program were shown to be correct. Our use of FORMAC was
similar to this example since complex expressions were raised to powers
and multiplied by other complex expressions.

It had been hoped that for our problem, the coefficients of the
wave number in the dispersion relation could remain in algebraic form.
Storage problems forced the assignment of numerical values to the plasma
parameters, consequently the coefficients of the various powers of k
" in.the final dispersion relation were numerical constants for the given
conditions. Algebraic manipulations were still required since the wave
number k was included in the expressions that had to be multiplied and
raised to powers. To demonstrate this need, the test case can be used
again by holding A as a variable and assigning B a value of two, This

corresponds to holding k as a variable and assigning numerical values to
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the oﬁher parameters in the problem considered in this paper. The resulting

expression would be

A3+ a%61) - a(12) - 81 .

The real and imaginary coefficients of the powers of A could then
be collected. This is the process in extremely simplifiéd form of the work
performed by FORMAC to obtain the coefficients of the final dispersion
relation. The analytical FORMAC compiler facilitated the analysis even
when numerical values were substituted for th; parameters because the
requirement of manually rearranging the complex quantities in powers of
k was eliminated.

The problem was now reduced to the solution of a sixth degree poly-
nomial in k2 with complex coefficients. The difficulty lay in the various
sizes of the coefficients. A range of lOzo'in the sizes of coefficients
was not uncommon.

A digital computer program was written for the UNIVAC 1106 at
Mississippi State University to solve for the roots of a polynomial equa-
tion with complex coefficients. The simplified flow chart for this program
is given in Appendix C. The input to this program consists of the applied
frequency, the length and time dimension, and the coefficients of the poly-
nomial, Since we were working with a polynomial equal to zero (Eq. 5) it
is permissible to multiply all the coefficients by some constant.

Due to the size of the coefficients it was necessary to do this to
avoid an overflow or underflow condition. The quantity by which the
coefficients were multiplied was also included in the input to the poly-
nomial roots program. The roots of the polynomial equation are found by
a Newton-Raphson iteration coupled with a synthetic division operatiom.

The six roots to this sixth degree polynomial are equal to k2. The square
root of a complex number must now be taken to yield the wave number, k.

The square root operation was performed by the subroutine XPOCPX



11

using the equation

(a + ib)l/n_u ( aZ + b2)1/n {coség—iigzgo + 1sin@® +£2ﬂK)}

where

K=1, 2, ..., n -1, and ¢ is the argument of the complex number.
Taking the square root of the six complex numbers, we obtain ﬁwelve

solutions for the wave number. Restricting our analysis to waves propa-

gating in the positive x direction, we will have six wave numbers.

kj = kR + ikI j=1, 2, ..., 6
k| ]
The other six will be same waves propagating in the negative x direction.
Previously, the length and time units were changed from meters and

seconds respectively to avoid an underflow or overflow condition. The wave
number's dimension is 1l/length so it must be converted back to l/meters.
The phase velocity for each wave is w/k where w is the applied frequenc&.
The' damping characteristics of the wave is contained in the imaginary

part of the wave number, kI
Results

The solution was obtained using field parameters of a typical iono-
spheric condition at an altitude of 320 kilometers at 459 North latitude

and 90° West longitude.

v, = 1.1202 x 1074 coll/sec o = 2.8806 x 10’ rad/sec
Voo = 2,2541 x 10-l coll/sec mi = 1.5731 x 105 rad/sec
v =1.3072 x 10} coll/sec u = 8.5097 x 10° m/sec
en * f,i,n

Vey = 5,7883 x 10l coll/sec Ue = 2,8158 x 105 m/sec

Perturbation frequencies ranging from~10—5 to 109 radians/second

were examined. As mentioned previously, there are six values of k which
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represeqt waves propagating in the positive-g direction, i.e. kR positive
where k = kR + ikI. Not all of the six mathematiéglly poésible solutions
“would necessarily ;epresent physically possible wave mo&es. A value of

k with a negative imaginary component would allow for aniexpénentially
increasing amplitude of the perturbation with increasing distance from
the source. A phase velocity plot of the approximated solqtions of
Tanenbaum and Mintzer'(Fig; 4 of Reference 1) is presented as Fig. 1.
This plot was obtained by Tanenbaum and Mintzer from a set of approximaté'
solutiqns to the complete dispersion relation, each approximate solution
valid in a given frequency range. From that analysis it appeared that
there should be four physically possible solutioné.

At rela?ively high frequencies there‘yere, in fact, four physically
possible solutions and two that were not physically possible. At low
frequencies, however, there was a repeated root to the dispersion relation.
This repeated root corresponded to a physically possible solution, leaving
only one solution that was not physically possible.

The phase velocities and corresponding e-folding distances of the
wave modes which exhibit decreasing amplitude with increasing distance
from the source are plotted in Figs. 2 and 3 respectively. The waves
which exhibit increasing amplitﬁde with increasing distance from the
source are plotted similarly in Figs, 4 and 5. In these four figures,
both the horizontal and vertical axes are ﬁlotted on logarithmic scales.

Some difficulty was encountered in constructing smooth curves for
these solutions due to the fact that we were limited in the number of
points. As described earlier, the complexity of the problem prevented
us from obtaining a single dispersion relation valid for all frequencies.
Since the applied frequency was included in the input along with the
atomospheric parameters, the FORMAC progrém solved for a dispersion relation

good only for that particular frequency.
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Phase Velocities

As seen in Figs. 2 and 3 at low frequencies, w = Voie only three of

the four possible wave solutions have relatively large e-folding distances.
The fourth wave mode has an e-folding distance less than 10_2 meters;
therefore, at low frequencies it does not propagagg. Mode 3, one of the
three wave modes which is not damped out, has an extremely small phase
vélocity. Consequently, it appears that at low frequencies only two

of the four possible wave solutions will propagate. Mode 1 has a phase
velocity of Un’ the acoustic veiocity in the neutral gas, and mode 2vhas

a lower phase velocity. In the numerical calculations, Un and the acoustic

N

velocity in the ion gas, Ui’ were taken to be the same.

For Vg €W < vy, wave modes 2 and 3 increase in phase velocity

i

with increasing frequency. Wave mode 1 which propagates at Un for

w =V continues to propagate at this constant value for higher applied

ni

frequencies. In this range the fourth wave mode continues to propagate
at a constant phase velocity less than Un'

As w increases in range v n <w < w,, wave mode 2 increases to

i

V;, the Alfveén velocity in a medium composed of a mixture of just the

charged particle fluids, and then decreases to Un as w approaches W, .

The phase velocity of wave mode 3 increases to a value well above the

speed of light, c, as the applied frequency passes w As w nears

g
Wy the phase velocity of this mode decreases abruptly and approaches

a phase velocity of U . 1In the‘range vV, < w < w_the e-folding distance
e e

in
for this solution is small and this wave mode does not propagate. 1In
this frequency range wave mode 1 continues to propagate at a phase
veloclity of Un as the frequency increases. The fourth wave mode starts
to increase in phase velocity in this frequency range and has a phase

velocity near ¢ as w passes w The phase velocity of this mode increases

e

past c in the range wy < W< w, and then starts to decrease and approaches
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c as w appro;ches Wye However, as shown in Fig. 3, for the frequency
range v . < 0 < W, this fourth wave mode has an e-folding distance
less than 10-2 meters; therefore; for this mode there is no propagation
of ~the disturbance.

For w > Wy mode 4 has a phase ﬁeiocity of the speed of ligﬁt,-'
mode 3 propagates at the acoustic velocity in the electron gas Ué,
and wave modes 1 and 2 have a phase velocity Un' However, wave mode.

1 has an e-folding distance less than 10“2 meters, and therefore does
not propagate,

These results will now be compared with the approximate solutions
of Tanenb;um and Mintzer given in Fig. 4 of Reference 1 and presented
as Fig. 1 of this paper. The points Wo1r Yoo and wy3 on the frequency
‘axis in the results by Tanenbaum and Mintzer were added to Fig. 2 to
aid iﬁ this discussion. The wave mode, which increases to a phase
velocity ofIUn, i.e. mode 1, and continues to propagate at that velocity
for increasing frequency, compares quite well with a solution found by
Tanenbaum and Mintzer.

Wave mode 2, in which the phase velocity increases to V; then
decreases, has the same shape as a solution of Tanenbaum and Mintzer
for w > Vin? since Un and Ui are assumed to be equal. In the range

Vig S0 < W, the approximate solution shows the phase velocity first

in
increasing to V; and then at Wo3 decreasing to UP before finally de-

creasing to Ui at w, . As shown in Fig. 2, the distance between Wo3

and w, for our calculations is quite small as compared to the distance

i

between v and w.,, also the value of U, is near,U_. Even with the
in 03 P n

very small region involved, mode 2 does appear to decrease to Uf at

and then approach Un at w, . Since we have taken U, and Un to be

“o3 i

equal, our result for w < w, agrees well with the approximate solutions

of Tanenbaum and Mintzer.
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In the region w < v the approximate solution has a wave mode with

in
a phase velocity of Va, the Alfvén velocity, before it starts to increase

to V; at v, . Our solution does not agree with this result in this region.

in
The phase vélocity for our corresponding wave mode, i.e. mode 2 as shown
in Fig. 2 is much lower than the Alfven velocity.

Tanenbaum and Mintzer show two other approximate solutions in the
frequency range near W, . One solution decreases at Wy s to a phase velocity
of ¢ and at Qo, it begins to decrease again to a value of Ue' The other
curve decreases at Woo to ¢ and the phase velocity remains constant for
higher frequencies.

From Fig. 2 we see that for our case Wy and w, are for practical
purposes the same point and Wo1 and Wy, are extremely close. Considering
the very narrow frequency range involved, Tanenbaum's result compares
quite well with modes 3 and 4 of Fig. 2. At Wo1 both mode 3 and 4 have
phase velocities well above c. At Wo1 mode 3 first decreases abruptly
and then has a slight tendency to level as the, phase velocity passes c.

As the frequency increases the phase velocity decreases again before
reaching a constant value of er The phase velocity of mode 4 begins

its decrease slightly after mode 3 and it approaches a constant value

of ¢ for higher frequencies.

e-folding Distances

The e-folding distance is defined as the distance from the source
of the perturbation at which the amplitude of the wave is damped to 1l/e
of its initial amplitude, where e is the exponential factor. The solution
for the e~folding distance to describe the damping characteristics of
each wave mode was not obtained by Tanenbaum and Mintzer. Each of the
e-folding solutions corresponds to one of the phase velocity solutiomns,
since both quantities are taken from the imaginary and real components,

respectively, of the same wave number, k. Note that corresponding
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solutions are symbolized in the same manner on each graph. Fig. 3 presents
the plot of e-folding distance versus applied frequency.

The e~folding distance, corresponding to wave mode 1 in which the
wave propagates at Un’ did not form a continuous curve. The points
indicate a curve in the geperal shape as shown, but a smooth curve could
not be drawn. It appears that for u < vin mode 1 is essentially undamped.
The e-folding distance of this mode decreases with increasing frequency
for w > Vi

Wave mode 2, in which the phase velocity increases to V; and then
decreases to Un’ has an e-folding distance that at low frequencies first
decreases with increasing frequency. At a point between Vos and Yin

the e-folding distance starts to increase and reaches a maximum as the

phase velocity approaches V;. At w_. when the phase velocity starts

03
to decrease ;he points on the e-folding distance plot become scattered.
No attempt was made to draw a curve through these points.

Wave mode 4 has an e-folding distance less than 10_2 meters for
the range w < W, At Wy the e-folding distance increases abruptly
indicating that for this mode a disturbance does not propagate except
for frequencies above wg

The remaining wave mode, mode 3, has a high e-folding distance
for frequencies below Vogs but the phase velocity in this range is
very low. The e-folding distance decreases and the phase velocity
increases as the frequency is increased. At 93 the e-folding distance
increases to 10 meters and remains at this value until the frequency
nears . At this point the e-folding distance increases to a significant
value and the wave mode is essentially undamped for frequencies w > Wy

Both of these latter wave modes, mode 3 and mode 4, have frequency ranges

in which the phase velocity increases above the speed of light. However,
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in these ranges the corresponding e-folding distances are small and the

two waves are damped out.

Exponentially Growing Wave Modes

Figs. 4 and 5 contain the phase velocity and e—folding‘distance plots
of tﬁe wave modes which exhibit increasing amplitude with increasing
disiance from the source. At low frequencies theré is only one-mode with
a negative e—folding distance. The phase velocify for this mode increases
with incréasing frequency from a value below Un at the lower end of the
frequency spectrum until it approaches the speed of light. The phase
velocity then remains constant at the speed of light for increasing
frequency. The e~folding distance for this mode starts decreasing in
magnitude from a large negative value at low frequencies. Near Vin the
e-folding distance begins to increase in magnitude and continues to increase
with increasing frequency. Near an applied frequency of 10 radians/second
another mode appears with a negative e-folding distance. This wave mode
has a constant phase velocity of Un for increasing frequency. The e-folding
distance for this wave mode when plotted did not form a smooth curve and

was not included in Fig. 5.
Cenzlusion

Complete solutions were obtained for the dispersion relation, based
on the three-fluid plasma model, which governs the propagation of small
perturbations normal to the applied magnetic field. The waves investigated
were coupled longitudinal and transverse waves. A pure transverse wave
can propagate normal to an applied magnetic field, but this case was not
considered in this analysis. The solution for the complete dispersion
relation governing coupled longitudinal and transverse wave propagation
with no approximations made is advantageous because it gives the complete

description of the wave propagation across the entire frequency spectrum
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considered. The resulting wave numbers consist of both real and imaginary
parts which describe both the phase velocity and damping characteristics
of each solution.

Obtaining“the solution without making any approximations was made
possible by use of a computer method to carry out the extremely large
number of algebraic manipulations involved. These operations, accomplished
by the PL/I-FORMAC interpreter in an IBM 360-40, could not have been per-
formed manually.

The approximated phase velocity predictions made by Tanenbaum and
Mintzer agree in most of the frequency ranges with our solution considering
the limited number of points on the frequency range. Although Tanenbaum
and Mintzer obtained approximated phase velocity results, they did not
solve for the e~folding distances of the wave modes. Besides obtaining
a complete numerical solution to the phase velocity over the entire
frequency range, this paper presented an analysis of the damping charac-
teristics in the form of the e-folding distance. Atmospheric conditions
were chosen in this analysis but now that the method has been shown to
be valid, any three-fluid problem of coupled longitudinal and transverse

wave propagation normal to the applied magnetic field could be solved

by using this approach.
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APPENDIX A

SIMPLIFIED FLOW CHART OF FORMAC COMPUTER PROGRAM



START

PLASMA PARAMETERS
APPLIED FREQUENCY
LENGTH AND TIME

DIMENSION

v

CONVERT UNITS ON FREQUENCY
AND VELOCITY TERMS ACCORDING

TO LENGTH AND TIME DIMENSION

FORM EXPRESSIONS FOR

C TERMS

l

SUBSTITUTE C'S INTO

DISPERSION RELATION AND

EVALUATE PARAMETERS

o

EXPAND AND COLLECT COEFFICILENTS

OF POWERS OF k

PRINT AND PUNCH
COEFFICIENTS

( sTop )

25.
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APPENDIX B

LISTING OF FORMAC COMPUTER PROGRAM
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eXGT
VAP 0017-01/13-14:36
START=0104€3» PROG SIZ2E(I/C)=3919/2170

READ: GET DATA:; . , ..

/7% RCUTINE TO CHANGE T1C APPROFRIATE UNITS OF TIME AND LENGTH. #/
IF FACTIME=0 THEN GC TC SAME?} :

IF FACTIME=1 THEN GO TG DESI:

IF FACTINE=2 THEN GO TC CENTI:

JIF FACTINE=3 THEN GO TC MILLI:

JIF FACTINEZ=4 THEN GO TC NMINUSY}

JIF FACTIME=S THEN GO TC MIKUSS:

IF FACTIME=6 THEN G6C TC¢ WMICRO’

IF FACTINME=7 TFEN GO TG NMINUS?;

1F FACTINE=8 THEN 60 TC MINUSE:

OESI! REWSREW*1.0E-13 WwES#E*1.UE-1i wIzwI*l.0E-1} VEISVEI*i.0E-1;
VENSVEN®L1e(E=17 VINZVIN*1¢0E=15 VNISVNI¥*1.0E=17 UESUE#*1.0E~1}$
UISUI*1e0E~13 UNSUN*1.0E=13 CL=CL#1.0E=1;

GC TO SAME; .

CENTIZREWSREW#1e(E=27 wEZWE*1.0E=2; wI=aI*1.0€=23 VEI=VEI*1.0E=2}
VENSVEN*1eE~27 VINTVIN®1e0E=2F VNISVNI*1,0E=2% UESUE*1,0E~2}
CISUI*1e0E-27 UN=UR¥1.0E=25 CL=CL*1e0E=2;

GC TO SAME; )

MILLI: REW=REW*1.0E~3} WEZWE*10E=37 WISwl*1.0E=3; VEIIVEI*1.0E=3}
VENSVEN*1e(CE=37 VINZVIN®1,0E=37 VNISVNI*1.0E=3% -UESUE*1.0E=3}
GISUI*1.0E~37 UNS(N*1e0E=37 CL=CL*1e0E=33

GC TO SAME: : :

VINUSH: REWSREW*1e0E~43 WESWE*1e0E-4; wWIiz=WI*1,0E=4; VEI=VEI*1.0E=43}
VENSVEN*1eCE=43 VINSVIN#¥1e0E=47 VNISVNI*®1,0E=~43 UESUE*1.0E=4}
LISUI*1e0E~U7 UNSUN*1.0E=47 CL=CL*1e0E~4i}

GC TC SAME:

NINUSS: REWSREW*1 ¢0FE=5; WESWE*1+0E~5; WI=WI*1.0E=S; VEI=VEI*1.0E=53
VENSVEN*1e(UE=57 VINZVIN*1e0E~57 VNISVAI*1,0E=5% UESUE*1.0E=5}
LIZUI*1.0E~-5%  UN=UN*1.0E=5¢ CL=CL*1+0E=5}

GC TO SAME: .

MNICRO: REWSREW#1.0E=€3 WEZWE*1e¢(E=67 WISWI*1,0E~63 VEIZVEI*1.0E~6}
VENSVEN*¥1o(GE=67 VINSVIN®kLl.0E=67i VNISVNI*1.0E~6} UESUE*1.0E-6}
LISUI#*1e0E~€Ei UNSLN*¥1.0E=6F CL=CL*1e0E=63}

GC 1C SANE;

MINUS7: REWZREwW*) e 0E=7¢ WEZWE*140E=73 wisWI*1.0E=73 VEIZVEI*1.0E-7%
VENTVEN*#140E~7: VINSVIN®1.0E=7Fi VNISVNI*¥1le0E=7i UESUE*1.0E-7/
UI=UL1*1.0E=7; UNZUN*1 e JE=T% CL=CL*1.0E=73}

GC TC SAME;

MINUSE: REWSZREW*]1e0E=8; WEZWE*1.0E~8; WI=WI*1.0g=8; VEI=VEI*1.0E=~8}
VERZVEN*1.0E=&; VINSVIN®¥1.0E=87 VNISVNI*1e0E=-8F LESUE*1.0E-8}
UI=ULI*1.0E=6} LNSUN%*1+0E-8} CL=CL=*1.0E=8}

GC TG SANE:
SANE: IF FACLEIN=0 TKEN GC TO OKAY:
IF FACLEN=1 TFEN GC TO M10:
IF FACLEir=2 TFEN CGC TC M100;
IF FACLEN=Z TFEN 50 TC KWM$
IF FACLENR=Y  Theh GC TO NM1OTCYH:
IF FACLEI.=E TFrEN GC TO M10TOS:
1F FACLEI.=€ Then GC TC MEGAG
IF FACLEI.==1 Thth GC TC CECINV ;
IF FACLEN.==2 TREN GG TC CENTINV
IF FACLEI ==3 TREN GC TC MILLING
IF FACLEI.==4 THER &C TO NEGUS : .
NEGL S UVESULE*i.OE+y 3 LISUI*140E+4 i UNSUN*1.0E+4 ¢ CL=CL*1.0E+4 3
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GC TC OKAY : )
MILLINZ UESUE*1,0E+2 ;5 LISUI*1.0E+3 ; UNSUN*1,0E+3 & CL=CL*1.0E+3 3
" GG TC CKAY 3 -
CENTINS UES= UE#1 0E+2 & L}:UI*I-OE+2 : UNSUN*1,0E+2 3 CL=CL*1.0E+2 3

GC TC OKAY ; ' _ N
DECIM: UE= UE*1+0E+1 & UL = UI*1.0E+13 UNSUN*1.0E+1 § CL2CL*1.0E+1
“GC TC OKAY i :

~10: UE=QE#1.0E-1: UIZUI*1,0E~1; UNSUN*1+0E=13 CL=CL*1.0E~1}

6C TO CKAY; .

N100: UESUE*1.0E~27 UI=UI*1.0E=~2} UNSUN*1e0E=2; CL=CL*1.0E~2}

GC TC OKAY;

KM3 UESUE*1.0E=3; LIZUI*140E~37 UNSUN*1e0E«3; CL=CL*1.0E~3}

‘GC Y0 OKAY;

M10TCH4: UEZUE*1,0E=4; L1I=UI*1e0E~4i UNSUN*1e0E=43 CL=CL*1.0E=~4}
~ GC TO QKAY; .
M10TCS: UESUE*1.0E=5; LISUI*1.0E~5; UNZUN*1eUE-S; CL=CL*1.0E~53

GC 10 OKAY; :

MEGA: UESUE*1.0E~63 UI=UI*1,0E=67 UN=UN*1+0FE=63 CL=CL*1.0E~6}
OKAY: /* CHANGING PL/1 VARIABLES TO FORMAC VARIABLES . x/

LETU WES'RE " sWISYWIvUNSYUNYFUISYLIYSUESYUEYS REw = 'REW' &
VENSOVEN SVEIS e VEIPSVINS'VINYSYNIZSPUNIY;
NES'NEYINISINIVIHS'HYCES'CEYsCL='CL;

NESYNE T iNNS AN LIMITS'LIMITY) G
/* PBASIC EGUATICNS NEELEC TO RUN PROGRAM EFFICIENTLY %/

LET( NI = Ne# v=VI/NMES
VIE S(\EIxNE)/(M*N]1) VNE =(VEN=®NE)/(N®NN) 3
VE SVE +VEN} VI=VIE+VIN' VUNSVNE+TVNIG
LESGSLE *#23 LISG=UI**23 UNSQIUN**2;

WESQG=wt %23 WISC=WI**27 . CLSG=CL*%2}
VSGSM#¥x 24 MCLSY*%x3; WTSG=wT*x2¢
WTGUZWTSG*#23  wiSC=wL**2; wLGUZWLSG**23
WSCSw*x 23 WCLEw®xSQs WQUAC=wSQA*x%x2;
WaViT2= wSG*WTSG
Wa2wl2 - wSG * ZLSG 4
WaWTY = wW2wT2%32¢
wawly = wWo2wL2**27
WaWTLZ = WGUAD*WISG*wlSQ)
VIE = ARITH(VIE):
VNE = ARITH(vI.E) s
NI = ARITH(NI)?
/* FRINT QUT EASIC FIELD PARAMETERS ANO INPUT CATA  »/
FUT LIST('COMPLETE THREL=FLUIL THEORY DISPERSION EQUATION')PAGE:
PUT ECIT('MAGNETIC FIELL STRENGTH = 'eHe' WEHERS PER SQe METER')
(SKIP(E) rhrE(1205)0A):

FUT ELIT('PLASNA FREGUENCY CF ELECTRONS = 'rWE) (SKIP(1)rArE(12+5))3

PUT ELIT('PLASV, FREGUENCY CGF ICNS = YowI) (SKIP(1)rArE(12:5)):

PUT ECIT('COLLISICN FREGLENCY CF ELECTRONS WITH ICNS = Y9VEI)
(SKIP(1)vAWE(12,5))¢ :

PUT ECITU'CCLLIS:ION FREGUENCY OF ELECTRONS WITH NEUTRALS = '»VEN)
(SKIF(1:9ArE(12+8))3
FUT ECITO'CCLLIS ON FREGLENCY OF IONS hITH ELECTRCNS = Y%y VIE)

“(SKIP(1:rAPE(L1205))
PUT EC1T('COLL SICN FHLGLENCY CF IONS wITh NEUTRALS = tyVIN)
(SKIF(l:2AsE(L12,E))

"FUT ECIT(ICGLLIS{ON FRESLEACY OF NEUTRALS. wITH ELECTRCNS = *oVRE)
(SKIP(L) 2R rE(12+5))5
PUT ECITC('COLLISICN FREGLENCY CF NEUTRALS wITh IONS = 'yVNI)
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(SKIP(1) rAsE(12,5)) 8
PUT ECIT('ELECTRON SOUND VELOCITY
(SKIP(1)7ArE(12+5)7A) 3
PUT ECIT(*ION SOUND VELOCITY
(SKIP(1)sArE(12+5) 1A);
PUT ECIT('NEUTRAL SOUND VELOCITY
© (SKIP(1)rA/E(12)5)1A);
PUT ECIT('ELECTRON NUMBER CENSITY
. ASKIP(1)+ArEL12+5) 1A);
PUT EDIT(*ION NUMBER DENSITY-
(SKIP(1)rArE(12+5)0A)} -
PU. . TUINEUTRAL NUNBER DENSITY
(SKIP(1) rAPE(12+5)rA)

/% RELATIONS TO SHORTEN RUN
LET( SUB1 = WISG*VN3} suB2 =
SUB3 = VE + VN3 sug4 =
SUB5 = (VE*VN)=(VEN*VNE)
SUB6 = (VI*VN)=(VIN#®VNI)
SUB7 = (VEI*VN)+(VEN®VNI
SUBB = wCL*CLSG 7 SuB

/% CBTAIN EQUATIONS FCR «UST ThE
SINCE THE DENONMINATCR WILL BE
FINAL DISPERSION RELATIONs T
IS AS FOLLOwS:

C(I) = A(I)*K**4 + B(Il)
LETC A(1l) = 0.0 7

A(2) = 04013

Al3) = UISG*UNSQ}

A{4) = 0.0

AL{S) = UESG*UNSQ:

A(E) = 040+

B(1) = =(wESE*UNSG) + (H

B(2) = ~(SAE*CLSG*SUB7)

= YoUEs* METERS/SECCND')

= *,UIs* METERS/SECOND?)

= *9UNe' METERS/SECOND')

=*/NEs *NUMBER PER CLBIC METER?)
='yNI+ *NUMBER PER CUBIC METER!)
=TyNN» *NUMBER PER CUBIC METER®) -

TIME */
WESQ*VN}
VI + Vi
}

H

) @

S = WQUAD*CLSQ )i
NUMERATORS OF THE C'S
MULTIPLIED OUT IN THE

HE FORM OF THE EQUATION

*Kxx2 + D(I) */

I*WhVEI*UNSQ)
+ (HI*wCU*CLS@*VEI)

BL3)=(WISG*UNSG)=hSG* (LNSQ+UISA) =(RI*W)* (VN*UISQ+VI*UNSQ) S

Bl4) = (wSG*CLSG*SUBG) -~

SUB9)=(HI*SUBB*SUB4L) §

B(S)S(WESQ*UNSG) ~hSA* (UNSGHUESQ) = (HI*W) * (VN*LESQ+VE*UNSQ) §

Bl6e) = (wWSE*CLSQ*SUES)=(
(1) = WSG*{WESGSUBT7)+
C(2) = wScx C(1) &

SUBG)=(HI*SUBB*SUB3)
HIx*( w*suea-wcu*VEI ) @

Cl3)=wGUAL-WSA* (WISQISUBE)+ HI* (WCUXSUBU-W*WISQ*VN) ]}

C(y4) = wsSe * C(3)

B(5)SWQUAC-WSQE* (WESQ+SUBS)I+ HI# (WCU*SUB3-W*xWESQ*VN)$

Cle) = wSG * C(5F )i

/% CENONINATORS FCR C'S */
LET( CDEM(1) = (~UNSGxK**2) + (WSQ+HI*W*VN)
COEMI2)=(=uS@*CLSG= ﬂI#htCLSG*VN)*K**E + (NGUAD*HI*WCU*VN)!

CoEM(3) = COENM(L: 4
CDEM(4) = CCENM(2:
CCEM(S) = COEN(L: i

CCEN(6) COEN(2: ):

/% EGUATIONS FOR C*S WITH wUST ThE NUMERATOR */

EGS: CC I=1 70 6 BY 1 ;

LET(I=%1%);

LETU C{I) = A(D)#K**4 + B(I)*Kx*2 + C(I) )}

ATONIZEC ALT): BUI): CHI) )i
ENC EGS:

/7% FREPARING TC C2TAIN EACH TERM CF CISFERSICN RELATION
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AS FUNCTION OF WowTe8& WL

In
LET! CISG
cusa
.C1C2
C3C5

C205G@ = CDEM(2)*#2i-

COLLECTING LIKE GUANTITIES

H TERVM TO NAKE PROCRAM NMCRE EFFICIENT.

C(1)*x2;
Cly)=x2;
Clr)xC(2)3
Ct3)xc(s)i
Cly)*C(8):
= CuCexx2;
C2SG**2;

€256 = C(2)**23
€ésae . =
C3Cy

Cle) %23
= C(3)»C(w)3
C3C6 = C(3)%C(6)}
CuCe = C(y)*C(6);
C5C6 = Cc(5)*Cle);
C1lpC2D = CDEM(1)*CDEN(2)}
€10C20cuU = Clhc2C*C2DSa

C1C20s@ = CiCC2L**2: C2DQUAD = C2Cs@**2 )3
/#% INCIVICUAL TERNS CF DISFERSION RELATION =#/
CPTSET{NCEXPND) 3
LET(TERM(1) = (C15G*C2%¢ ¢
TERM(2) = C1LC2042.0%KSG*NTSG*C1C2
TERM(3) = ~M*C1SG*CuUC6 i
TERM(4) = -M*C25G6*C2C5
TERM(8) = MSG*C3Cy*CSCE 3
TERM{B) = ~C1DC20*VNSG*WSQ+*wTSE*C3Cy 4
TERNA(7) = ClC2CSE*nGUAD*WIQU 3
TERM(8) = ~C10C2C*wSG*WTSG*C5Ce )i
/% ATCVIZING VARIABLES NC LONGER NEECEC. */
ATCMIZE(CL1SGiC25QiC4SQICESAICIC2iC3CHIC3ICSiC3CHICHCEICUCET

Cu4CeSeiC3Ce;C26L+CICC2D3C20563C1DC2DCLICIC205G

C2CQUAL )¢
OPTSET(EXPND) ¢
REWT = (CE*h)}/(NE)
/% TRE FOLLOWING CHANGES REWT TO CORRECT
"IF FACTINE=0 THEN REWT=REWT:
ELSE IF FACTINE=1 THEN FEWTSREWT*1.0E-1
ELSE IF FACTINE=2 THEN HEWTZREWT*1.0g=2
ELSE IF FACTINE=3 THEN FEWT=REWT*1.0€-3
ELSE IF FACTIME=UL THEMN REWTSREwWT*1.0E-4
ELSE IF FACTIME=E THEN REwTS=REwWT*1.0€E-5
ELSE IF FACTINiE=6é THEN KEWTZREwT*1.0E=6
ELSE IF FACTINEZT7 ThHEN FEWTZREWT*1.0g~7
ELSE IF FACTIMEZE THEN FEWT=REwT*1,0E-8
LET(REWT="REWT);
OF1SET(NCEXFEWD!}

UNITS OF T1IME */

we Wa We W W We W W

TERVMSS CO I=1 7TCc & By 1 ¢ LET(I=*Iv);
LET(FTERM(I) = REFLACEITERV(I)+WT+REnTewsREW))}
ENC TERMS 3

LET(CISPER=0,0)}
CPTSET(EXPNC) ¢
DO I=1 7O 8 8Y 1 ¢ LET(I=*1v):
LET(CISPER=LISFER+FTERNM(I))}
ENC3

LET( FACTINE = FACLEN =

*FACTINE®

‘FACLEN® ) 3}

/7* NCn GET COEFFICIENTS OF K IN FORVM TC BE PUNCHED OLT */

LET( 2 = RIGHPCWI(CISFER(K) i
X = LCwPCW(CISFLEReK) )i
KCCEF: LCO 1 = 2 TC 12 BY 2i LET(I=tLv)i

LET( COEFK(]) = CCEFF(CISPERsK**I) i
CCEFKI(1) = CCEFF(CCEFK(I)enI) i
CCEFKK(I} = CCEFK(]) = ﬂItCQEFKl(I)
ENG KCOEF S

/*

)¢

FLUT IN CONSTANT TENWM CF CISPERSIOA RcLATth AS CCEFK{0)
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LETC L = 0.0 3
COEFK{0) = REPLACE(DISPERe¢KeL) 3

COEFKI(0) = CCEFF(COEFK(0)eHI) 3
COEFKR(0) = COEFK(0) = HI#COEFKI(0) )3
/% PUNCh OUT ALL REAL ARC IMAGINARY COEFFFICIENTS OF EACH
PCWER CF Ks STARTING wITH HIGHEST POWERe */
XPUNChS  CO I= 12 BY -2 TO 0% LET(IZ'I*)}
LET( COER=CCEFKR(I)} -
COEI= COEFKI(I) )i
PLCOER= ARITH(COER)
FLCOEI= ARITH(COEI);
PUT FILE(SYSPNCH)EGIT(PLCCER) (SKIP(1)sE(13¢5))3
PUT FILE (SYSPNCH)EDIT(PLCOEI) (SKIP(1)+£(13¢5));
ENC XPUNCH3
/% CISPERSICN RELATICW FOR THE GIVEN VALUES OF
INFUT VARIABLES,WTeAND W #/ '
REW=10.0*RE\- " 3
LET(REWS'RER") i
IF REWSS LINIT THEN 63 TO TERMSS
6C TC REACS
GLIT: PUT LIST(* SE CTHER SIDE?);
END DISRELS



32

APPENDIX C

SIMPLIFIED FLOW CHART OF POLYNOMIAL

ROOTS COMPUTER PROGRAM



READ
‘COEFFICIENTS OF DISPERSION
" RELATION, APLIED FREQUENCY,-

LENGTH AND TIME DIMENSION, FACTOR

s R
| TR
COEFFICIENTS * FACTOR

y
| DEGREE OF EQUATION = 6 |

- -

© >

no

=T

NEWTON-RAPHSON
ITERATION TO SOLVE FOR ONE ROOT

OF THIS DEGREE EQUATION IN k2

¥

CALL XPOCPX

FOR V k2

A
PHASE VEL. = w/kR

e~FOLDING DIST. = l/kI

y
\WRITE RESULT?/

®
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CALL SYNTH
:FACTOR ROOT FROM EQUATION

BY COMPLEX SYNTHETIC DIVISION

A

W
DEGREE = DEGREE -1




APPENDIX D

LISTING OF POLYNOMIAL ROOTS COMPUTER PROGRAM
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EXGT
VAP 00
START=

4000
201

129
420

113

20
197
166

167
€7

S50
951
952
953
954
955

956
S60

17-01/13-11:20
010463» PROG SIZE(I/y)=3919/2170

CIVENSION A.(20) . _
CCLELE PREC.SIGN A(Z0)oFREPFIMIFPREsFPIM¢XRE»XIMr X2RE ¢ X2IM e X3RE o
1 XEIN'XQREOKQINDXSHE'XSIMvX6RE¢X61MlBRE'BIMORUMREpNUMIFoDENDHr )
2 XBRErXB8IN» s7RE1XT71NrERROREPERROGINYX(20) s TEMPIFRT(35) oFIT(3S) »
3 FPRT(35) sFirIT(35) e Xx&TR(10) ¢ XBTI(10) ¢ X7TR(10) #X7TI(10) 2 X6TR(10)»
4 RR(S) eKRE(S) »KI(S)  KIMIS) v PHSVE(S) yEFOLE(S) 9FACT .
REAC(Sr106) WeLENSTYMNEPFAC

IF(LENJEQ.S3) GC TC 200

REAL(S59201) FACT

FCRVATI(LB8,.1)

CC 420 I=1,14

REAL (5e129) A(I)

FCRVNAT(LC16.+5)

CCNTINUE

WRITE(6,10%) hrFACoLENvTYME

LC 20 I=1,7

WRITE(6e11Z) A(2%I«1:eA(2%])

FORMAT(2E1Z,5)

CCNTINUE

CO 197 I=1v14

ACLIZFACT*A(I)

CCNTINUE

WRITE(6r16€) FACT

FCRMAT (20"t ACCUSTED COEFFICIENTS FACTCR='+D8.1)
CC €7 I=1+7

WRITE(6rl6~) A(2%I=112A(2%])

FCRVAT(2E1: ,9)

CCNTINUE

K=¢€

REAL(89101; BREesEIN

IF(BRE ¢EG ¢ 9599.00:ADBINER.99999,10) GO TO 300
WRITE(6r10:) ERESBIN

N = 1

IF(K.EQs8) GC TC St5¢

IF(KeEG.7) GC TC 941

IF(KeEGs€) GO TC S5z

IF(KeEG+B) GG TC €52

IF(KeEGeld4) GC TC 954

IF(KeEG+3) 4C TC 95%

IF(KeEGe2) GC TC 956

CALL E1ChTH(EREsBEIN A2 FRT2»FIT FPRTFRITeNIL)

GC T0 960

CALL SEVEN(BRE,BPINeArFRTeFIT+FPRT)FPITeNIL)

GC 10 960

CALL SIXTH{(BREsBINs£sFRTPFITrFPRT¢FPITeNM,L)

GO TO 560

CALL FIFTR(BREIBINfFRTIFITFPRTFPLTeNeL)

GC TO 960

CALL FOURT~(ERErBIN:A'FRTIFITeFPRTIFRITrivelL)

GC 10 g9¢€0

CALL THIRC(cRE BINe . 2FRTPEITFPRTIFPLITINV L)

GC T0 9¢0

CALL SECCNL(LRE'BIV-ArFRTIFITIFFRTeFEITrep o)

FKE= D0

FIN= QO



15

16

17
280

90

7060
957

£C 15 I=1,¥

FRE = FRE+4FRT(I)

FINV = FIMHFIT(I)

CCATINUE

FPRE= 0.0

FFINZ 0.0

CC 16 I=1,L

FFRE = FPRE+FFRT(I)

FFIV = FPIV4FPIT(I)

CONTINUE .

NUMRE = (FRE*FPRE) + (FIN»FPINM)

NURIV = (FINVXFPRE) = (FRE*FPIM)

IF (NUNRE+EGe0eL0sANL «NUMIM«EQ«O.CO0) GO TO 4
IF(FPRECEGe0QsLCOsORFPINJEQ«0+D0) CENM= (FPRE#12)+(FPIM112)
IF(FPREWEG«0eC0«ORFPINEQ«0«.DO) GO TO 6 -

CEV = (FPRE#%*2)%(1.LO+(FPIN/FPRE)%%2) :
IF(FPRECEG«0+D0sANDFPIMeEG«0.00) wRITE(ﬁoloz)
IF(FPRE+EG«0+C0.ANL.FPIMeEG40+D0) GO TO 2

FRE = NUMRE/CEWM
FIV = NUMIV/DEWV
ERE = BRE=FRE
BIV = BIM=FIV

N .= N+1

IF(NeGT«300) GO TC 4

IF(K+EQe8) GC TC 950

IF(K.EGes7) GO TC 951

IF(KeEQGe6) GO TO 942

IF(KeEGeS) GO TO 952

IF(K<EGel4) GO TC SS5u

IF(K+EGe3) GC TO 95%

IF(KeEGe2) GO TC 95¢

ERRCRE = 0.0 ’

ERRCIN = 0.0

CO 17 I=1,¥

ERRCRE = EHRCRE+FRT(I)

ERRCIVM = EARCINHFIT(I)

CCANTINUE

WRITE(6+103) BRE.BINeERRORE,ERROINMIN
CALL XPCCFX(1¢2+3RE+BINMsKReKI)
CO 90 I=1,2

KRE(I) = KR{I)#(10.%*(=LEN))/FAC
KIN(I) = KI(I)*(10.+%(~LENJ))/FAC
FRSVE(I) = w/KRE(I)

EFCLD(I) = 1.0/KINMC(])
WRITE(61110) KR(I)onhICI)
WRITE(60112) KRE(I) KI¥(I)»PHSVE(I)»EFOLG(I)
CCNTINUE

K = K=1

IF(K+EQel) GO TC 957

IFIKeEQ@«D) GO TG 40L0

CALL SYNDV(A+BRE BINIK).

Ku=K+2

CG 7000 I=1eKu

WRITE(H2115) A(2%I=-1)rA(2%])
CCNTINUE

GC TO0 2

A(L) = A(2)
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A{2) = A(2) '
AL3) = AL3) + (BRE#A(1)=-BIN2A(2))
Al4d) = Aly) + (BIV#A(1)+ERE*A(2))

BRE ==(A(1)xA(2)+A(2)%A(4))/(A(1)5%2+A(2)%32)
BIV X (A(2)%A(2)=A(1)*A(4)) /(A1) 2%2+4A(2)2%2)
ERRCRE=0.0
ERRCIN=0.0
[ 1
GC T0 280
100 FORNMAT(EL13,6)
101 FCRNMAT(2D15,7)
102 FCRMAT(?' *#x*%x DERIVATIVE CF F(X)=0 #%»*x%x )
103 FGRNAT(0", ROOT = 'ozola.eo' _ERROR = v,2D014.,6
- NUNBER CF ITERATIONS PERFORMED S %,13)
104 FORNAT(t=1,1 INITIAL ESTIMATE = *,2D14.6)
105 FCRMAT(? 1"'ROCTS OF THE DISPERSION RELATION BY A NEHTON-RAPHSON
é %TgﬁATéOA TECKNIGUE WITH SYNTH DIVISION'/'0ve*APPLIED FREQUENCY
-3 ) 2. [}
2 LENGTH DINVENSICN S'sF3e19'%x10%%%9I2¢' NETERS'y
1 TIME CIMENSICN = 10%*=?12,* SECONDS'/»
1 *0'y? CISPERSION RELATICON COEFFICIENTS )
106 FORNMAT(D15.7¢212+F3,.1)

110 FCRNAT('0%, = ' » 2D14e€)
112 FORNAT('0%yv WwWAVE NUVMBER = '92C14+6¢' 1/METERS /%0,
1 YPHASE VELCCITY = '"+Dlye6e? E FOLCING DISTANCE = 1
115 FCRMAT(2E13.¢€)
300 STCF
ENC

SUBRQUTINE ATWLTF(NsX)
USEC TO ARRANGE TERMS OF EGUATION IN ASCENDING ORDER.

DCLELE PRECISICh X(50)TEMP
€0 20 I=1.n
IP1 = I+1
EC 20 J=1lP1sN
IF(CABS(X(I))LE.CAES(X(J))}) GO TQ 20
TENP = X(I) '
X(1) = xXJ)
X(u) = TEMP

20 CCANTIMUE
RETURN
ENC

SULERQUTINE XFCCPX(NeNeAPEsXR?XM)

THIS SUBRCUTINE CALCULATES THE N/NTH ROOTS OF A COMPLEX
NUMEBER OF ThE FCRNM tC = A + I=xBy,

CCLELE PRECISICN Ar B¢ BARe BETAs COEFr Ke PIe RM» RNe
1 XK(25)s ALFAs Te xMN(25)

CCLLLE PRECISION AA,EB

AA=CABS(A)

EB=CAES(B)

RV = ¥

RN = N

Fl 3.14159265358679324C0
IF(AAEGe0eUeCRIEBEG:0e00) BARZCSGRT(A#%2+4B%%2)
IF(RAGEG0sCLeQRIELELEG.04C0) GO TC 101



BAR=DABS (A)»( SGRT(I.D(+(P/A)**2)
IF(BsLEel.C~32) GC TO 101

IF(LAbS(DLCGLO(AA)-LL(GIO(BB))oLE.“.bO)BAR-DSGRT(At*Z*

1 Uex2)

101 CCEF = BAR#*#{RN/RN)

100

100

T = DATAN2(L:+A)

IF (B oLTe 0.0C0) T = 240D0%PI = DABS(T)
K = 0.0C0

CC 100 I=1.N

BETA = T + k*2,000%¢1
ALFAZBETA*RN “RN

XR(1) = CCEF*LCGS(ALF#)
AMLI) = CCEF*DSIN(ALFE)
K=K+ 1.0

RETURN

ENL

SUERCUTINE SYNLV(ASERE +BINIK)
CCLELE PRECISICKN A(Z0)»BRECBIM
o 2 2% (K+1)+2

U0 106 1I=3e.:2

A(1) = A(1)
Al2) = A(2)
A(I) = ACY) + (BRE*A(1=2)-BIM*A(]«}))

ACI+1) = A(It1) + (pIM*A(I=2)+BRE*A(I=1))
CCANTINUE

RETULRN

ENC

SUERQUTINE SECCND(BKE. EIH.A.FRT.FIToFPR PIT
COLELE PRECISICN ERE(EIN-AL20)9FRT(20) ¢ (20

FRT(1) = A(1 *(BRE*»22)~-A(1)%(BINM*%2)
FRT(2) = =A(.)#2.02:RE*BIV

FRT(3) = A(2 *ERE

FRT(4) = =A()#B]IV

FRT(5) = A(S5i

FIT(1) = A(1l %z, 0%pRE*3I¥

F17(2) = A(z2 *(CRE**2: =A(2)+(BIVM*%2)
FIT(3) = A(3 *£]IN

FIT(4) = A(4 *i-RE

FIT(S) = A(g:

FFRT(1) = 2,7*p(1)*»ERE

FFET(2) = =2.0vA(2)2B1¥

FPRT(3) = A(.4)

FFIT(1) = 2,u%2 ()% Ib

FPIT(2) = 2.,u8(2)»:RE

FFIT(3) = A(u)

CALL ATWLTF (HeFRT)
CALL ATWLTF(LeFIT)
vy =5

L =3

RETULRA

ENC

SUERCLTINE IHIPC(EhtoLIp'A'FRT-FIToFsRT-FPI
CCLELE FPRECIHLICN Enpot IN2,A(20) eFRT(20U)PFIT(20
FRT(1) = A{1!*(ERE=»3i=A(1)x(BIV*%x2)*ERE

0)r

F

oL
) eF

L)
RT{20) FPIT(20)

FRT(ZO)oFPlT(ZO)
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FRT(2)
FRT(3)

FRY (4)
FRT(5)
FRY(6)
FRT(7)
FIT(D)
RIT(2)
FIT(3)
FIT(4)
FIT(5)
FIT(6)
FIT(?)

PRT (1)

'PRT(2)

gaw(s)

RT(4)
FPRT(S5)
FPIT(1)
FPIT(2)
FPIT(3)
FPIT(4)
FPIT(5)

A(2)%(BPE*%3) -
A(3)% 2, U*BRE*BIV _
ACL)» (BIE*#2) - A(4)*(BIV*%*2)
A(5)e 3Tt

Al6)* IRE

Alg)

3,07 (A{1)*(BRE*#2)=A(1)#(BINM*%*2))
~6e0+A{2)*BRE>BIM

2.042(7)*ERE

-2.0tAiL4)%BIN

A(S:

607 A()%ERE*-IM

3.0 (A 2)¢(ER1*ta)-A(a)*(BINttg))
2.028(2)*g1IM

2.0x A (i ) %ERE

A6}

CALL ATWLTIF(7/+FRY)
CALL ATWLTIF(7:.71.)
CALL ATwWLTF(5:<P..T)
CALL ATWLTF{(5:FF.T)

N =7
L=5
RETLRN
ENG

SUBROUTINE FOLRT':(BRE*B:N+ArFRTIFIT+FPRTeFP
PRECISION ERE:BIA.A(ZO):FRT(ZO)oFIT(

CCOUELE.
FRT (1)
FRT(2)
FRT{(3):
FRT(4)
FRT(S)
FRT(8)
FRT(7)
FRT(8)
FRT(9)
FRT(10)
FRT(11)
FRT(12)
FRT(13)
FRT (14)
FIT(1)
FI1T(2)
FIT(3)
FIT(4)
FIT(S)
FIT(6)
FIT(7)
FIT(8)
F17(9)

e nn

nnunuuyrnn

A(1)= (E<Exx4)

Al1l): (Biv*x*y)

=6¢07 A( 1) * (BRE «%2) % (BINV%%x2)
A(2) Ao )xERE* (HWIN*XT)

-4 ,0  A(2)*EIN* (BRE**3)
A(3)2 (BRE*%3)

3,05 A(2)%BRE*(BINV%%2)
ACglt(BIV*%3)
«3,0xA(:) % IV*({BRE**2)

A(SI®(3RE#**2) = A(S5)*(BIMx*2)
=2+LxA(c)=BRE¥BIV

A(7*BiE

=AlE)* 1IN

A(S,

ek (1)%BIM* (BRE*2J)

o 0xA(1)*ERE*(BIN®*3)
A(2): (BRE*x*Y4)

Af2)2 (BIV#xy)

6. 0% A(2)* (BRE**2) 2 (BIN%%2)
3.0%/ (Z)*xZIM* (RE**2)
=A(3 I x{BIv**3)

Aly)> (BHE*%J)
=2,0°A(u)*RE*(BIN*#%2)

~A(2)%3. 0¢BIN#IBRht*2) + A(2)%(BIM%s3)
A(J)t(ﬁﬁE*#Z) - 3)x(BIN*x2) :
~A(4) 42, O*BRE*EIN

A{5)*BRE '

“A(6)+BIN

A(7)

ACL)*3.04BIM* (HRE*%2) = A(L)*(BIMx#3)
A(2) %3, 0%BRE*{BIM*%2)

IT
20

T(ZO)oFPIT(ZO)



FIT(12)
FIT(13)
FIT(14)
FPRT(1)
FPRT(2)
FPRT(3)
FPRT (4)
FPRT(5)
FPRT(6)
FPRT(7)
FPRT(8)
FPRT(9)

FPRT(10)

FPIT(1)
FFIT(2)
FPIT{(3)
FPIT(4)
FPIT(S)
FEIT(7)
FPIT(8)
FPIT(9)
FFIT(10

)

2.0*A(5)*ERE*BIV

A(6)* (BRE*#*2) = A(6)*(BIM%xx2)
A(7)=B1IM

A(B)*BRE

A(10)

4,0%A(1)*(BRE**3)
=12.0%A(L)*BRE* (BIM*%2)
4,0*xA(2)x(BINV%%3)
=12.0*A(2)*BIM* (BRE**%2)
3.0*A(3) % (BRE*%2)
“~3¢JxA{3) 2 (BIM%%2)
~6e0%A(Y4) *BRE*BIN
2.,0%A(5)%ERE
=2.0%A(E)xBIV

= A(7)
=4e0%A (1) % (BIM%%3)
12.0%A(1)*BIN*(BRE**2)
4,0%A(2)%x{BRE*%*3)
=12.0*%A(2)*BRE*(BIM%x%2)
€.0%A{3)*ERE=*BIV
~30xA (4% (BIM**2)
2.0%A(5) 1IN
2.0*%A(6)*ERE

= A(8)

CALL ATWLTF(14,FRT)
CALL ATWLTF (14,FIT)
CALL ATWLTF (10.FPRT)
CALL ATWLTF(10+FPIT)

Vo= 14
L =10
RETURN
ENC

SUEROULTINE FIFTH(RRE'BIMrA'FRT/FIT FPRTeFPIT,M/L)
ECISICN BRE(EIMIA(20) eFRT(20)¢F1T(20)¢FPRT(20)FPIT(20)

CCLELE
FRT{1;
FRT(2)
FRT(3)
FRT (4)
FRT(S)
FRT (&)
FRT(7)
FRT(8)
FRT(3)
FRT{(10)
FRT(11)
FRT(12)
FR7(13)
FRT(14)
FRT(15)
FRT(16)
FRT(17)
FRT(18)
FRT(19)
FRT{20)
F17(1)
FIT(2)

P

[ LR U U (OO (A (R L

R

N

A(1)*(BRE*45)
A(1)*5,0%2KE* (BINM%®*Yy)
~10<0%A(1)* (BRE**3)*(BIN**2)
=A(Z)* (BIV**%E)
=A(E)#5,0%E IN* (BRE%*Y)
10, 0*¥A(2)* (ERE**3) * (BIN*»2)
A(2I* (BERE**4)
A(Z)*x(BIVX%xY4)
6 URA(Z) A (BRE*#*2) ¥ (BIV*%2)
4,0%A(4)*ERE*{BIN2%3)
=4 .0*xA(y)*xBIV* {BRE**J)
A(D)*x (ERE**2)
~2,0%A(5)*BRE*(BIN*%2)
Alan) = (RIvx%x2)
=%.0*A(6)*xEIV* (BRE#**2)
A(7)*(BRE*%*Z) = A(T7)%(3INM%%x2)
=2,0%A(Q)*BrE*BIV
A(73)*BKRE
~A(1C)+*EN
A(Ll)
ALL)*C(EIN*25)
A(1)%5,02x2IV* (BRE**4)
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-
{ o]
-
-~
o
-
Hpnuan

FI1T(9)
FIT(10)
FIT(11)
FIT(12)
FIT(13)
FIT(14)
FIT(15)
FIT(16)
FIT(17)
FIT(18)
FIT(19)
FIT(20)

FPRT(1)

FPRT (2}
FPRT(3)
FPRT (4)
FPRT(5)
FPRT(6)
FERT(7)
FFRT(8)
FPRT (9)
FFRT(10)
EPRT(11)
FPRT(12)
FPRT(13)
FERT(14)
FPRT(15)
FFIT(1)
FPIT(2)
FEIT(3)
FFIT(4)
FPIT(5)
FPIT(6)
FPIT(7)
FPIT(8)
FFIT(9)
FFIT(10)
FPIT(11)
FPIT(12)
FPIT(13)
FPIT(14)
FPIT(15)

ittt un

=10:0%A(1) % (BRE#**2)*(BIM%%3)
A(2}*(BRE*»5)
S«0%A(2)%BRE* (BIM*AY)
=100%A(2)» (BRE**3)x(BIM%%2)
4.0%A(3)sBIM* (BRE*%J)
=y ,0*A{3)2ERE*(BIN*%3)
A(g)*(BRE#*24)
AlU)*(BINx*l)
-A{4) > (BRE*#2) % (BIN%®%2)
~A(S)*(BIN*%*3)
J.0*A(5) *p INX (BRE**2)
A(6)*(BRE»*3)
~3¢0%xA(6)*BRE*(BIN®%2)
2.0%A(7)*pRE*BIM
A(B)x((BRE**2)=(BIM%%2))
£(9)%xB1INV
A(10)*BRE
A(l12)
€E.0xA(1)x(BRE**»y)
EJ0*xA{1)#(BIN%ExY)
~30.0%A(1)*(BRE**2)*(BIM%xx2)
Z0e0%A(2)*3RE*(BINVN%%])
~20.,0%A(2)*BIM* (BRE*%3)
4,05A(3) % (BRE*%3)
-12.,0*%A(3)*BRE*(BIM*%2)
LO0#A(Y) % (3IN%®2T)
-12.0%A(4) *BIN* (BRE**2)
3.0%A(5) » (BRE®*2)
«3.0%A(5) x(BIvxs2)
~6.0*%A(c) *BRE*BIV
2¢0%A(7)*iRE
-2.0%A(8)*BIM
IXCH .
20.0%A(1)»BIV* (BRE®%3)
-20.0%A(1)*BRE*(BINVN*%]3)
E,0*A(2)x (IRE**4)
CL0xA(2) x (BIN**Y)
=30.0%A(2)+ (BRE#*#*2)*(BIN%*2)
=4exA(3) % RINM*%3)
12¢0%A(3)*:IVN* (BRE**2)
4, 0xA(y)* (BURE**3)
=12.,0*%A(4)=BRE*(BIM*%2)
beOxA(S)si:RE*BIM
3e#A(6)x BRE*%2)
«3.0%A(6)>(BINV*¥2)
2¢0%A(T7) 2L IN
2+0%A(8)xi:RE
A(10)

CALL ATWLTF(2GoFRT)
CALL ATWLTF(20+FIT)
CALL ATWLTF(15¢FPRT)
CALL ATwLTF (15FPIT) ——

vV =20
L =15
RETURN
ENC



RT(30)sFPIT(30)

SUBROUTINE SIXTH(BRE+BIMrAIFRT¢FITeFPRTIFPIT,
COULLE PRECISION BRE*BIMrA(20) vFRT(30)+FIT(30
FRT(l) S A{1)»(BRE**6)

FRT(2) = =A(1)*(BIN%%*6)

FRT(3) = 15,0*A(1)=(BREx#2) % (BIM%sy)
FRT(4) = =15. 0#A(1)#(BRE#14)*(BIM##2)
FeT(5) = =6,0%A(2)*BRE* (BIN*%5)

FRT(6) = =6,0%A(2)*EIN* (BRE#**5)

FRT(7) = 20,0*A(2) % (BRE##3)*(BIMx»3)
FRT(8) = A(3)*(BREx*5)

FRT(9) = S5,0%A(3)*BRE*(3IM*%x4)

FRT(10) = «10.0%A(2)*(BRE**3)*(BIN*%2)
FRT(11) = =a(u)*(RIN**5)

FRT(12) = =5.C*xA(4)*BIN*x(BRE**Y4)
FRT(13) = 10eCxA(4)x(BRE**2)*(BIN*%3)
FRT(14) = A(S)»(BRE**4)

FRT(15) = A(5:*(BINVM**Y4)

FRT(16) = =6¢C#A(5)%x({BR *%2)*(BIM%*2)
FRT(17) = 4,02A(6)*BRE*{BIN*%3)
FRT(18) = «4+(*A(6)*BIN*(BRE**3)
FRT(16) = A(7)*(BRE**3)

FRT(20) = «=3.C#A(7)%xBRE«(BIN%%2)
FRT(21) = A(B)x{3INVN*%3)

FRT(22) = =3.(#A(8)*BIV+(BRE**2)
FRT(23) = A(9)*((BRE**2)=(BIM*%2)})}=2,0%A(10)*BRE*BIM
FRT(24) = (A(21)+BRE) = (A(12)=*B]INn)
FRT(25) = A(12)

FIT(1) = Ge0D*L(1)%ERE*(3INM*%5)

FIT(2) = 640%L (1) %3 IM* (3RE*%S5)

FIT(3) = «20+0%A{1)*{BRE**3) % (BIN¥%3)
FIT(4) = A(2)2 (ERE%*%6)

FIT(S) = =p(2)x(iiIv=x*6)

FIT(8) = 15,0*A(2)#(BRE=*2) % (BIM*»y)
FIT(7) = ~15e(*xA(2)%(BR:I*¥*4)%x(BIN**2)
FIT(8) = A(3)»(BIV*x%5)

FIT(Q) = Se0*2(2)xgIM¥ (SRE**4)

FIT(10) = =10.0%A(3) % (BRE+42) *(BIN%%])
FIT(11) = A(4)*(BRE**S)

FIT(12) = S.,04A(4)*BRE*x (BIV**xy)
FIT(13) = =30.0*A(4)*(BRE**3)*(BIN*%2)
FIT(18) = 4,0xA(S)*EIv*{BRE%*%3)
FIT(1S) = =4+C*xA(S)*BRE+(BIN%*3)
FIT(16) = A(6)*(BRE**4)

FIT(17) = A(6)x(BIN®*4)

F1T(18) = =gelxA(g)x(BRE**2) % (BIN%22)
FIT(19) = =A(?)*(8In**3)

FIT(20) = 3,0+A(7)»EIN% {BRE*%2)
FIT(21) = A(B)*(IRE**3)

FIT(22) = «3,0%A(8)*BRE«(BIN%%2)
FIT(23) = (2+0*A(S)*BRE*BIN) + A{10)*{(BRE*#2)=(EBIM**2))
FIT(24) = (AC11)+RIN) + (A(IZ)#BRE)
F1T(25) = A(14)

FPRT(1) = 6.0xA(1)#(ERE**5)

FPRT{2) = 30¢0*A{1)*BRE*(BRIN**Y)
FFRT(3) = =60.0%A(L)*(BRE#*3)*(BIN%»2)
FPFRT(4) = =gel(ixA(2)#(BI:i%25)

FFRT(5) = =30.0%A(2)*BlY*(3RE**»y)
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FPRT{6) = 60+0+A(2) % (BRE**2)*(BIN#»%x3)
FPRT{7) = 5,0%A(3)»(BRE**y4) :
FPRT{(8) = 5,03n(3)%(BIM*xy)

FPRT(9) = =3041%A(3) % (BRE#52) % (BIN%¥2)
FPRT:110) = 20e0%A(4)%=BRE* (L IM*%3)
FPRT{11) = =20.0%A(4)*BINM*x(BRE**3)
FPRT(12) = 4+0:A(S)a(BRE*%3)

FPRT{13) = =~12.0:A(5)*BRE*{BIM%*2)
FPRT (1) = 4e0:A{6)%(BIMN*x])

FPRT(15) = «12,0::A(e)*B V% {BRE**2)
FPRTI118) = 3.0:A17)%(BRF*%2)

FPRT(17) = <3.21%A(7)%(B. Mx::2)

FPRT(18) = «6.0%1(8)*BRI #BiN

FPRT(1G) = 2.0*(A(9)*BRF=A{10)*BIN)
FPRT{20) = A(11)

FPIT{1) = 6,0%a(: )% (BINM-%5)

FPIT(2) = 3000+A{1)*BIN- (BRE*%4)
FPIT(3) = =6043%:(1)%(BEE*+2)*(BIM*%3)
FPIT(4) = 6,0%A(Z)*(BRE> %5}

FRPIT(S) = 30.0+¢A(2)*BRE= (BIN%%xY)
FPIT(6) = =60.0%2(2)%x(BHE**3)*(BINM*¥2)
FPIT(7) = 20+0¢A{2)*BINVN> (ERE%**3)
FPIT(8) = =20,3*%A(3)*BRI*(BIM*%3)
FPIT(S) = 5,0%A(u)x(BRE~*4)

FPIT(10) = SeC*A{4)*(Bli*%x4)

FPIT(11) = =30.0A(4)*(i’RE4%2)%(BIM**2)
FPIT(12) = =Q,0%:(5)*x (B N%%3)

FPIT(132) = 12.3%5(S)*BLi *(3RE**2)
FPIT(18) = 4eC*A16)x(BR: . %x%j)

FRIT(15) = «1Z.0vA(e)*BEx{BIM%%2)
FPIT(16) = 6+C*A{7)*ERE BI¥

FPIT(17) = Je(sA{B)x((B Ext2)=(BIN%%2))
FPIT(18) = 2«(*A{S)*BIV

FFIT(12) = 24(%A10)*ER

FPIT(20) = A(:2)

CALL ATWLTF(2f,F2T)

CALL ATWLTF (2t oFLT)

CALL ATWLTF(2( ¢F~RT)
CALL ATWLTF(2( ¢F :1IT)
v = 25

L =20

RETURN

END

SUBFOUTINE SEVEN(PRE'BIYrArFRTPFITIFPRTIFPIToNrL)
COULLLE PRECIS'ON BRE(EBINIAL(20) vFRT(3S5) PFIT(3S)sFPRT(30)FPIT(30)

FRT{1) = A(1)> (BRE**7)

FRT(2) = «7.,0-A(L)*pRE*(BIN**6)
FRTA3) = =221 %¥A{1) % (BR-%*x5)%(BIN%%2)
FRT(4) = 35,0A(1)#(BRE «*x2) % {BIjvxxy)
FRT!S) = A(2): (EIV*x7)

FRT16) = «7,0:A(2)*%INV¥ (BRE**6)
FRTI7) = «21¢ii%A(2)x{(BRZ*32)*(BINM%k%S)
FRTi8) = 35,0“A(2)%(BRE+*4)*(BIN*%3)
FRT(Q) = A(3) - (ERE**6)

FRT{10} = =al )= (BIv**€)
FRT:11) = 15 #A(3) 4 (BFE*xx2) % (BIVx2xYy)
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FR{(13)
FrRi(iu)
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Frv<1?)
Fri€10)
Fir7(19)
FRri(20)
FRi(21)
Fii2(22)
Fiitad)
Fai(2g)
FrT(25)
FRT(25)
FR7(27)
FRT(28)
FRT(29)
FRT(30)
FRT(31)
FRT(32)
FRT(33)
FRY(34)
FIT(1)

FIT(2)

FIT(3)

FIT(4)

FIT(S)

FIT(6)

FIT(7)

F17(8)

FIT(9)

FIT(10)
F17(11)
FiT(12)
FIT(13)
F17(1y4)
FIT(15)
FIT(16)
FIT(17)
FIT(18)
FIT(19)
FIT(20)
FI1T(21)
FIT(22)
FIT(23)
FIT(21)
FIT(25)
FIT(26)
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F1i(28)
FI1T(29)
FIT(30)
F1T7¢31)
FIT(32)
FIT(33)
FIT34)
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=15+0%A(2 )*(BRF**H)*(BIN**Z)
~Ce0xA (Y  HOREX(BINMXRE)

#0e0FA( )L IBRE= 1Y (BINMEET)
- o OuAL LB A (GRIG)

A S)x (BRI #3%75)

5 OxACS): gL "= (DTfnn)

= 0o 0=A(E ) iBNEx2F Y (BIMNKR2)
= (6)x(BiN=15)

=S e0xA(6  %B ik (BRTx)

11 0 0A{G & (M NEZxZ (B IM%%3)
A 7)Y (BRI &%)

A:T7){BT. %)

=ce0%A(7 # (I RE=x2)E(DIM*%2)
4,0%A(8): BRE#(BINM%%3)
-L:.oU*A(B *B N*(Bl‘\E'- 3)
A(S)%(BR" #%7)

=36 0%A(9 =EREX{(BIMHH2)
A10)%(R Mxs3)
=ZeCA{L YD IM% (BRE#%2)
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=ce0xA(L: )%EREABIM
(AC13)%BIE) = (A(14)Y%BINV)
A(15)
~A(L)E(BIr%E%7)
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=2 {4)*(Biv%%6)
=15e0%A(+ )+ (BRE*%4) % (BIN*%2)
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S5.0%A(6)7ERSx(BINVXY)
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A(B)X(BI %%:!}

-~to0#A(E. x(ZRE®L> 2)t(BIM**2)
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FFRT(1)
FFRT(2)

FFRT(3)
FPRT (4)
FPRT(5)
FPRT(6)
FPRT(7)
FPRT(8)
FPRT(9)
FPRT(10)
FFRY(11)
FFRT(12)
FFRT(13)
FFRT(14)
FPRT(15)
FPRT(16)
FPR1(17)
FPRT(18)
FPRT(19)
FPRT(20)
FPRT(21)
FPRT(22)
FPRT(23)
FPRT(24)
FPRT (25)
FPRT(26)
FPIT(1)
FPIT(2)
FPIT(3)
FPIT(4)
FFIT(S)
FP1T(6)
FPIT(7)
FPIT(8)
FPIT(S)
FPIT(10)
FPIT(11)
FPIT(12)
FPIT(13)
FPIT(14)
FPIT(15)
FPIT(16)
FPIT(17)
FPIT(18)
FPIT(19)
FPIT(20)
FPIT(21)
FPIT(22)
FPIT(23)
FPIT(24)
FPIT(25)
FPIT(26)

7.,0%A(1)%(BRE*#6)
-7-0tn(1)t(EIM**o)
-105.0*A(1)*(BRE**Q)*(BIN**2)
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~y2.0%A(Z)*BINM* (BRE*%5)
140.,0%A(2) * (BRE*#3) * (BIN#%3)
=42.0%A(2)*BRE* (BIM%%5)
6.0%A(3)*x (BRE*%*5)
=60+ 0%A(3)* (PRE**3)*(BIN*%*2)
30.0%A(3) *BRE* (BIM*%Y)
=Eo0*xA(4)*x (EIMX*5)
«20,0%A(4)*BINx(ERE**Y4)
6GeQ*A(4)* (BRE**2) % (BIN*%x3)
Se0%A(S)* (BRE**Y)
Se0%A(5)x (BIM*%Y4)
«Z0s0%kA(8) ¥ (BRE*#2) % (BIM#*%*2)
=2060%A () *BIN* (BRE*%*3)
20.0*A(6)*BRE*(BIM*%3)
4e0%A(7)* (BRE*%*3)
=12.0%A(7)*BRE*x(BIM*%2)
4. 0xA(8)*(BIM*%xT)
~12,0%A(E)*RIV* (BRE**2)
3-0%¥A(S)% ((BRE**2)=(BIN**2))
- e 0*¥A(10)*BRE*BIM
2:0x({A(11)*BRE)=(A(12)%BIM))
A 13)
42 - 0%A(1)*BRIx(BIM*%5)
=1:0e0%A(1)* (BRE*%3) % (B IN**3)
42-0*A(1)*BI /> (BRE**5)
7. %A (2)* (BRE**§)
-7 0%A(2)%x(BIM**6)
«115«0%A(2)* (BRE#%4) % (BIM*#2)
105« 0*A(2) % (3RE**2) ¥ (BIN**4)
6 NRA{Z) % (BIV%xS)
30-0%A(3)*BIV*x(BRE**Y4)
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6+0%A(4)* (ERE*%5)
30 0kA(L)* (BRE**3) % (BIM**2)
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20«C*A(5)*E IM* (BRE**3)
«200%A(S)*BREXx(BIM*%3)
S5:0%A(6)x (ERE=*4)
S:0%ALE)* (EIM%%4)
=30e0%ACE)* (BRE**2) % (BIMX*2)
o OKA(T)*:iBINEXT)
12.C%A(7)*EIM= (BRE**2)
4s0+A(8)x (PRE*%3)
=12.0%A(p)*BRE*x(BIM*%3)
€+0%A(9)2BRE*BIM
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CALL ATWLTF (34,FRT)
CALL ATWLTF(34:FIT)
CALL ATWLTF(26:FPRT)
CALL ATWLTF(26:FPIT)

¥ = 34



L =26
RETURN
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CHAPTER IT

NUMERICAL SOLUTION FOR PROPAGATION OF LONGITUDINAL
WAVES ALONG THE APPLTED MAGNETIC FIELD IN A

THREE-FLUID PARTIALLY TONIZED GAS

by

THomas L. Dahl and David L, Murphree

NOTE: %%gureg references and e?uations begin a new sequence in each Chapter,
so, the fAppendices are lettered consecutively by Chapter, and

each Chapter includes its own list of symbols.






LIST OF SYMBOLS

Magnitude of Electric Charge

Velocity of Light in a Vacuum

Specific Heat Ratio

Hydrodynamic Derivative

Effective Collision Frequency of Type a with Type b Particles
Vabtvges Total Collision Frequency

Electric Field Strength

Magnetic Field Strength

Fluid Velocity of Electrons, Ions, or Neutral Particles
Number Density of Electrons, Ions, or Neutral Particles
Mass Densgity of Electrons, Ions, or Neutral Particles
Partial Pressure of Electron, Ion, or Neutral Particles
Electron or Ion Plasma Frequency

Applied Frequency of the Wave

Cyclotron Frequency of the Electrons, Associated with Either
the Transverse or Longitudinal Components of H,

Complex Wave Number

Real Part of the Wave Number

Imaginary Part of the Wave Number

ke/w, Index of Refraction

my /mg, Mass Ratio of Ions to Electroms

Acoustic Velocity of Electron, Ion, or Neutral Particle Species
[y(P1+Pe+Pn)/(p1+pe+pn)]%, Acoustic Velocity of the Entire Gas

[y(Pe+Pi)/(pe+pi)]%, Acoustic Velocity of the Electron-Ion Gas
Mixture

ey
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I. - INTRODUCTION

A three-fluid theory, usiﬂg Maxwell's equations together with a set of
coﬁpled hydrodynamic equations for an interacting mixture of electrons, ions,
and neutral molecules, has been employed .by Tanenbaum and Mintzerl to examine
small-amplitude oscillations in an infinjite, homogenous, partly ionizéd gas
with a ﬁniform external magnetic field. Pibts of phase velociéy versus
frequency were obtained for the case of negligible collisional damping for
wave ﬁropagation along and normal to the.applied magnetic field. A set of
approximate solutions to the dispersion relation was employed to yield the
phase velocities for various frequency bands. Employing the same physical
model, Tanenbaum and Meskan2 later presented the complete dispersion
equation with no. approximations for propagation of longitudinal waves along
the magnetic field. | ‘

This paper will present a numerical solution to the complete dispersion
relation derived by Tanenbaum and Meskan2 governing the propagation of longi-
tudinal waves along the magnetic field. Solutions have been determined for
the complex wave number for a . typical ionospheric condition. Plots of the phase
velocity and damping characteristics of the three resu;ting wave modes are
presented for the frequency range 1o-§ << 108 radians/second._ Since the
. governing equations are linear, the longitudinal perturbation is &escribed
By superimposing the three wave solutions determined from the solution of"

the dispersion relation.

I1. THEORY

A. Diapersion Relation

The derivation of the dispersion relation which governs wave propagation

of small 1ongitudinal perturbations along a magnetic field in a partially
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ionized gas composed of interacting electrons, ions, and neutral particles
will be outlined. This derivation is presented in References 1 and 2.
Assume that:
(1) The degree of ionization is fixed
(2) Each gas obeys the perfect gas law

. (3) Damping caused by the frictional forces of each gas allows for the
conservation of total momentum of the system

(4) No heat flow exists within the gases
Therefore, the following set of equations describe the three-fluid mixture.
(1) Maxwell's equations:

VXE = -

ol=
QJIQJ
et

g = A4rne V.-N V 19
VxH — <N1V1 Neve) +.E

%

(2) The continuity equation for each gas:

D -
Dt Pe,i,n = “Pe,i,n V * Ve,i,n

- (3) The momentum equation for each gas:

D o = e [ + V Xﬁ _ VPe _ v _v

Dt (Ve) - EE(E ec ) Pe vei(ve vi) en(ve vn)
D_ (¥ e (- + Vyxi) . vp V.=V V.-V
2 (Vs) = & (E i - YL - v, (Vi=V.) = vi (V4-V
e ( 1) g __??.) B;f. ije‘\'1i e) in( 1 n)
D 5 VP

5t (o) = - pnn = Vpe (Vn=Ve) = v (Vo=V3)

(4) The adiabatic condition for each gas:

~Y

P N e,i,n

e,i,n = constant

The coordinate system is aligned such that the applied magnetic field

vector H

o = (H

ox, Hoy, 0). The above plasma equations may be linearized by
perturbing the quantities f, Ve yi,ms | E, Ne,i, ﬁ and Pe 1 n with small

periodic oscillations of frequency w. For example,



Ne = No + neei(kx-mt)
where N, is the undisﬁurbed electron density, ne the amplitude of the
perturbation, and Ng the resultipg electron number density at any position

x at any time t. The perturbation is considered to ﬁropagate only in the
x~direction, i.e., one-dimensional propagation. The wave number, k(w), is

one ‘of the allowed set of wave numbers whose value, as a function of frequency,
we wish to determine. The resulting twenty-one equatidns (with twenty-bne
unknowns) may be maniphlated\by substitution until all the variables, except

Ge, are eliminated. The resulting expressions for ﬁe may be written most

conveniently as

A1y A2 A3 Vex
A21 A2 A23 Vey =0
| A31 A32 A33 Vez (1)

where
2 2
Ayp = Ay = ~w?epuy/mCy
A1z = twwp[(C3/C1) - (Cg/mCp)]
Az = (C2/m) - (C4C6/C2) + wlu?y/mCy
Ayy = -A3p = -(iwlecz)[C4-(q6/m)]
A3y = iwwp[(C5/mCy) - (C4/C2)]
A3y = Ay + (ulu’y/mCy)”
and _
C; = w? ~twvay + w2 (Vanvni/Yo)
1 e el enVni/Y2
Cp = mze(l--nz)_1 —luvgy + mz(ven“ni/Yl)
Cy = wz-wzi-kzuzi + iwvy + wz(vinvnilyz)

-1
C, = wz-mzi(l—nz) + iwvy + wz(“in“ni/Yl)
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C5* = wz_wze-kzqze + i_-wve + "‘-’2 (en¥ne/v2)
C6 = w2_w2e (l—nz)_1 + :I.m\)e + mz'(venvne/yl) |
where . . ' o

w® + fwv | wp L eH 'I‘,L/'mec

Y1

Y2
wy 4 = (AwezNé/me;i);’ ' n = kc/w

: 2,2 o : ik
Yy - KU, Ue,i,n = (YPe,i,n/pe,i,n)
e,

Therefore, the dispersion relation which governs the perturbation in the elec-
tron velocity may be determined by expanding the matrix expression, Equation (1).
Restricting attention to propagation qf longitudinal waves along the mag-

netic field, i.e., wp = 0, we obtain
Aj1Vex = 0 .
For V., to exist

Az

= ( ' N '
which when written completely yields the dispersion rélation governing the

propagation of longitudinal waves along the applied magnetic field

k6+Ak4+Bk2+C=O . (2)
where
-iw r VeitVen 4 Vietvin + Vni""\’ne
| U2, Usy U
- 1 [ 422 _2
B E}_—UT W= (veivni"'vei\’ne"'venvniil
e n *
+ 52%1-2— [ “‘4‘“’2“’21""2 ("ie\’ni"'\’ne\’in""’ne\’ie)]
n .
1 C 4 2.2 2. 2 .
* vZu2, 0 ~w” (0 gty )~ <"in"en""’ie"en""’in"ei)]
+ 4 -m3(v +v_ v g+ )-ww2 (Vp3Htvne)
vZ uZ. ei”Ven"Vni"Vne e‘’ni"Vne
e'“n L

* 5Tz | @ OintVietvngtine)-wwe (Vo tipe) g_:_]
ke .
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+ ﬁ—z_i_ll_zz [ w3 (\’ei'*")en"'\’in'*"’ie)"wwze (vnitvne) _g%]

C= -+ wA(wzi + wze) + m4[(veivni + VgiVne * Ven¥ni)

R

+ (VieVne * VieVni * VinVne) * (VeiVin + VenVin + VenVie)l
+ 1 [~w3(vitvetvn) + w3wlevy (1 + pe/pj + pn/oi)]
UZiUzeUzri

Equation (2) is the relationship between the complex wave number, k, and

the wave frequency, w, of the proﬁagating wave. Solution of this dispersion
relationship will détermine the value of the longitudinal perturbations at
any position x and any time t. Note that the dispersion relation is actually
a cubic equation in kz, and will be solved algebraically using Cardan's
solution for cubics.3 This set éf answers will then be exacted using the

4 method of iteration. This dispersion relation does not hold

Newton—-Raphson
for high frequencies, i.e., w>>wg. In this case, some of the waves described
by the dispersion relation have wave lengths comparable to or less than the

mean free paths of the heavy particles and the Debye length of the electrons.

B. Cardan's Solution of Cubics3
We seek solution to the dispersion relation, Equation (2), of the form
x3 4+ Ax2 + Bx + C =0
where the coefficients are complex numbers previouély defined and x = k2.
To remove the quadratic term, define the transforming equation
x=1y - A/3 | (3)
and obtain the reduced cubic equation,
y3+py+q=0

where

= (B - A%/3)

o
|

(2A3 - 9AB + 27C)/27

a
]
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In order to solve the reduced cubic, tramsform again by letting

y=z-k %)

and obtain

z6 + qz3 - p3/27 =0 .

3 with the roots

which iq a quadratic in 2z
23 = [-q ¢ (¢% + wp3/2D)%)/2 5)
By choosing either the plus or the minus sign, equation (5) may be solved
for three values of z. Then by combining (3) and (4), obtain
x =2z -pf3z - A/3 s
into which the three values of z may be substituted in order to yield the
three roots of the cubic. The Cardan's method is strictly algebraic and
presents the advantage of an ordered extraction of the robts. However, the

computer operations produced enough error that the Newton—-Raphson method is

required to exact the solution.

C. Newton-Raphson Method4
Using each of the roots found by Cardan's method as an approximation,

substitute into the iterative process
- _ E(xg)
X+l *n ?77;57 ’
or
x3n + szn + Bx +C
3x%, + 2Ax, + B

X4+l = % —

Care must be taken to insure that the approximations do not fall in regions
that iterate to misleading results, such as two equal roots otlthé interchange

in order of extraction.

ITI. DISCUSSION
The objective is to find the complex wave number, k, which is a function

of the applied frequency, w. That is, solve
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x3 +Ax2 +Bx+ C=0

where x = k2 and the complex coefficients are functions of wave frequency,
colligsion frequencies, plasma frequéncies, and acoustic velocities of all
species. Digital computer programs were written for the IBM 360 Model 40
at Misgissippi State University and the Univac 1108 at The NASA-Slidell
Computer Facility at Slidell, Louisiana. The simplified flow chart in
Appendix A may be helpful in the discussion of the program procedure which
follows.

After the plasma properties have been determined, and the coefficilents
of the dispersion relation calculated, Cardan's method of solution of cubiec
equations is employed. Note that after obtaining the reduced cubic

(z3)2 + qz3 - p3/27 = 0 ,
the Newton-Raphson iteration is performed to insure the proper choice of
z3. The three resulting values of z are substituted into tﬁe following
relation to yield a set of roots to the cubic dispersion relation.

xy = z4 - p/3z; - A/3, i=1,3
Since the value of x; is usually small, the terms on the right of the above
equation are of such magnitudes as to cancel each other, instead of summing
to the proper x. Consequently, considerable accuracy is lost during the
complex subtraction and division in the above expression. Therefore, these
roots are treated only as approximations, and again the Newton-Raphson
iteration is perfdrmed on the cubic

£(x) = x3 + Ax? + Bx + C .
The resulting reots are checked first by comparing the value of the cubic
to zero and second by comparing the sum of the roots to -A, i.e.,
X1 +.x2 + xq = -A. Finall&, the six wave numbers, k, are found by taking
the square roots of X4 i=1,3.

The values of kj = kRj + kIj, j = 1,6 and the corresponding w, complétely
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describe the nature of the wave propagation at any position x and any time

t, i.e.
eFf.(kx—mt)

[
]

Yo+ y
kix i (kpx-wt)

Y, + ye
where Y is some field quantity, Y, the undisturbed value, and y the amplitude
of the perturbation at the source. The phase velocity is defined Uj= w/kRj,
and the wave damping is determined by ky. Only the three positive values of
k, which represent waves propagating in the positive x direction will be
discussed, since the three negative values represent the same wave form in

the negative x direction.

Because of the wide separation in the magnitude of the real and imaginary
components of the coefficients and resulting Cardan terms, the complex opera-
tions were reduced so that all calculations take place in real arithmetic.
This allows the greatest use of the double precision features of the Fortran
language. Special care must be taken in all operations to obtain maximum
accuracy. Whenever possible, expressions were written in their lowest power
form where addition and multiplication are the dominant operations. For
instance, A2 - B2 was written as V (A+B) (A-B) . Special sub-
programs were written to perform the complex operations of division, multi-
plication, squaring, cubing, square and cube root extraction, and Newton-
Raphson iteration.

Only the subroutines performing square and cube root extraction con-
verted the complex numbers into polar form. These operations were performed

in the XPOCPX subroutine by the expression

(a+ib)]'/n = ('\/ a%+b?2 ) /n {cos (__'5+r21'”K) + i sin (——ﬁﬁ“K )}

where K= 1, «+, n-1 and ¢ is the argument of the complex number. All other

functions merely manipulated on the coefficients of the-operating complex

numbers.
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Consequently, the product and the square of complex numbers, i.e. the
CPROD and CDSQ subroutines, were taken simply and accurately since
(at+ib) (e+id) = (ac-bd) + 1i(bctad)
A similar approach was taken to the division operation, the CDDIV

subroutine, since

atib _ atib , c-id _ actbd+i(be-ad)
ctid ctid c~id cl+d?

and also the cubing operation, CDCB subroutine, because

(a+ib)3 = (a2-b2+2abi) (a+ib)
= a(at V3 b)la~-V 3 b) +ib® 3 atb)(v/ 3 a-b) .
By exercising the caution discussed above and utilizing the jiterations
described previously, roots of the highest possible accuracy are obtained

from the dispersion relation.

IV. RESULTS
The program was tested for a plasma with the following parameters,
whicli were calculated as a typical ionospheric condition at an altitude

of 320 kilometers at 45° North latitude and 90° West longitude.

Vpi = 1.1202 x 10~%4 coll./sec. Wa = 2.8806 x 107 rad./sec.
Vin = 2.2541 x 101 coll./sec. wg = 1.5731 x 10° rad./sec.
Vep = 1.3072 x 101 coll./sec. Ug,i,n = 8.5097 x 102 m./sec.
Vei = 5.7883 x 101 coll./sec. Ue = 2.8158 x 10° m./sec.

A complete solution to the dispersion relation was determined for applied

frequencies ranging from 10™5 to 108 radians/second. The mathematically
possible solutions for the phase velocities and corresponding e~folding dis~

tances are plotted in Figures 1 and 2, respectively. In these two figures,

both the horizontal and vertical axes are plotted on logarithmic scales. The
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propagating and damping characteristics of each solution for w =1 radian/

second are plotted in Figure 3.

Phase Velocities
As seen in Figure 1, the phase velocity prediétions.égree in.many

respects with the approximated solutions of Tanenbaum and Mintzer, which are

presented in Figure 1 of Reference 1.

1. At low frequencies, w = vy < vy, only two of the possible three wave
solutions propagate through the plasma, one at the acoustic velocity of
the entire fluid, Ug = (YP/p)% and the other at a much lower velocity.

In the numerical calculations, Ug, Uj, and U, were taken as the same.
The third wave mode has a phase velocity greater than the speed of light
for w < we+ However, as shown in Figure 2, the e-folding distance for the

2 meters for this frequency range; therefore,

third solution is less than 10~
there is no propagation for this mode of the disturbance.

2, When w = vpy{ < Vip, one of the propagating wave modes increases exponen-
tially in phase velocity with increasing frequency until w = vin. The
other propagating mode propagates at the constant phase velocity Us.

3. When vy, < w < wj, the wave mode which was propagating with exponentially

increasing phase velocity with increasing frequency now propagates at the

acoustic velocity of the electron-ion gas mixture

L
U. = [Y(Pe"'Pi)]
p —————
pe + ri

4, When wj < w < wg, the two existing wave modes propagate at the ion and
neutral acoustic velocity, Uj and Uj.
5. When w > wg, the third wave mode now has a finite e-folding distance

and propagates at the electron acoustic velocity.

The phase velocity plot presented as Figure 1 of Reference 1 was obtained
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from a set of approximate solutions to the complete dispersion relation,
each approximate solution valid in a given frequency range. That analysis
indicated that the w#ve mode which propagates at the phase velocity Up in
the range vijp < w < wy was the same mode which propagates at Ug for low
frequencies, w < vin. The present analysis which considers the complete
dispersion relation for longitudinal oscillations along the magnetic field
shows that this is not the case. The wave solution with an exponentially
increasing phase velocity with increasing frequency for w < vi{n is the wave
mode which propagates at a phase velocity Up for vi, < w < wy.

Both the real and the imaginary components of the wave number, kg
and ky, are interdependent during all mathematical operations performed to
‘obtain the solutions of the complete dispersion relation for continuously
increasing frequency. Consequently, both components of the wave number
are calculated simultaneously at each frequency during a continuous transfer
across the frequency spectrum considered. Therefore, information on obtaining
the continuous curve describing the phase velocity behavior of a given wave
mode with increasing frequency is contained in requiring continuity of both
kg and ky with frequency change. The qualitative plots presented in Figure 1
of Reference 1 could not reveal the correct smooth transition of the phase
velocity of a given wave mode with frequency since the phase velocity was
calculated in several discrete frequency ranges and the ky solutions were

not considered.

E-Folding Distances

The e-folding distance is defined as the distance from the source of
the perturbation at which the amplitude of the wave is damped to 1l/e of
its initial amplitude, where e is the exponential factor. Each of the e-

folding solutions corresponds to one of the phase velocity solutions, since
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both quantities are taken from the imaginary and real components, respec-

tively, of the same wave number, k. Note that corresponding solutions are

symbolized in the same manner on each graph. Some interesting facts are.

observed in Figure 2, the plot of e-folding distance versus wave frequency.

1.

When w < vj,, the wave mode which propagates at a phase velocity of

Ug 1is essentially undamped. The e-folding distance for this wave mode
decreases exponentially to a comnstant value when w = vijn. This solution
shows very little damping throughout the frequency spectrum considered.
When w < v4ip, the wave mode which propagates with an exponentially
increasing phase velocity has a decreasing e-folding distance with
increasing frequency until w = vip. The e-folding distance for this
wave mode then remains constant with increasing frequency until w = wj.
The phase velocity of this wave mode is Up for vijp < w < wj. At 0 = wi,
the e-folding distance for this wave mode decreases to a new constant
value. The phase velocity of this wave also decreases to a new constant
value at w = wj.

For w < wg, the third wave solution shows almost instantaneous damping
near the source of the disturbance, i.e. an e-folding distance of less
than 10~2 meters. The corresponding phase velocity for this wave mode
was greater than the speed of light. A slight increase in the e-folding
distance for this third mode of wave propagation occurs at w = wi.

At 0 = wa, the e-folding distance for this wave mode increases almost

immediately to the e-folding value of the second solution.

Propagation

Figufe 3 shows the propagation described completely by the three complex

wave numbers at w = 1 radian/second. The influence of the different kg and

kg on the wave length and attenuation of the possible wave solutions can be



seen. The wave configurations in Figure 3 occurred at the time when the
wave with the slowest phase velocity had traversed a distance twice the
maximum wave length given by the three solutions. The actual perturbation
of the electron velocity along the magnetic field would propagate as the
superposition of the three solutions since the governing equations were
linearized by small perturbation theory. For illustrative purposes, the
initial perturbatioﬁ was taken as Vexo for all solutions. The superposition
is shown as a solid line, while the other solutions are symbolized as before.
The solution which is damped almost immediately at the source of the dis-

turbance is shown as a point on the vertical axis at x = O.

V. CONCLUSION

Complete solutions were obtained for the dispersion relation based on
the three-fluid plasma model which governs the propagation of small longi-
tudinal perturbations along the magnetic field. The complete solution for
the dispersion relation is advantageous because it gives the complete
description of the wave propagation. The resulting wave numbers consist
of both real and imaginary parts which describe both the velocity and damping
characteristics of each solution. Since the governing equations are linear-
ized, the complete perturbation can be described by superimposing the wave
solutions for the three-fluid plasma model.

An iteration procedure was necessary for accurate results because the
magnitudes of some important terms in Cardan's method are such that the terms
cannot be subtracted or added effectively by the computer. Numerically, the
roots of the cubic dispersion relation are very accurate except at the high
frequencies above w,. Here, although the roots can still be trusted numer-
ically, their magnitudes are not as precise as the roots of lower frequencies.

The complex phase velocity solutions closely agree with the approximated
predictions made by Tanenbaum and Mintzer in the various frequency ranges.

However, the order of extraction of the solutions over the considered
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frequency range does not agree. The approximate solution could not reveal
the correct order since it did not continuously transfer across the entire
frequency spectrum nor was the information contained in requiring continuity

in the imaginary part of the wave number utilized.
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Appendix A. Simplified Flow Chart of Computer Program.

Basic
Plasma
Parameters

1

w= 1x107°

r

Co~
efficients
A,B,C(w,v,U)

p = B-A2/3

q = (2A3-94B + C) /27

z3 = 1/2(-q iW/ a2+ 4p3)
27

\

Call NWTZCB
Newton-Raphson's Method for

(23)24q(23)-p3/27=0

Call
XPOCPX
for




x(1) = z(I)—P/3z(I) ~ A/3

A

Call NWIXRT
 Newton—-Raphson's Method for

x3 + AX2+Bx4C = 0

L

Call XPOCPX

\fx_ak

U(J) = w/kr(D

xe (J) = 1/k1(J)

71
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Tests for Accuracy

x(1) + x(2) + x(3) = 0
x3+Ax2 +Bx+C=0

|

Write
Results

NO

END
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Appendix B. Computer Program.

FEFRFREEREXFRERCOMPUTATION OF IONDSPHERIC PARAMETERS ®%&k¥kadkidkkik
ME = ELECTRON MASS

MI = ION NASS

XMW = MOLECULAR WEIGHT

r = ELECTRON CHARGE

K = BOLTZMAN CONSTANT

DN = DIAMETER OF NEUTRAL ATOM

DIAMETER OF NEUTRAL PARTICLE AND ION IS 3.GE-10 METERS
GAMMA = SPECIFIC HEAT RATIO FOR COMPOSITE GAS

AL = ALTITUDE IN KILGMETERS

B = MAGNETIC FIELD STRENGTH. IN WEBERS PER SQUARE METER

ALL NO. DENSITIES ARE IN NO. PER CUBIC METER EXCEPT FOR NEC

-3 e -mrE AW Ll s

NO = NO. DENSITY FOR ATOMIC OXYGEN

N E== NOe. DENSITY FOR HELIUM

NO2 = NOe. DENSITY FOR MOLECULAR OXYGEN
NN2 = NO. DENSITY FOR MOLECULAR NITROGEN

NN = NEUTRAL NUMBER DENSITY IN 1/METERS CUBED

NI = ICN NUMBER DENSITY IN 1/METERS CUBED

NE = ELECTRON NUMBER DENSITY IN 1/METERS CUBED

NEC = ELECTRON NUMBER DENSITY IN 1/CENTIMETERS CUBED
TI = ION TEMPERATURE IN DEGREES KELVIN

TE = ELECTRON TEMPERATURE IN DEGREES KELVIN

F = DEGREE UOF NON-IONIZATION

Wi CYCLOTRCON FREQUENCY OF IONS

WE CYCLOTRGN FREQUENCY CF ELECTRONS

PFI = PLASMA FREQUENCY OF IONS

PFE = PLASMA FREQUENCY OF ELECTRONS :

UI,UN = IGON AND NEUTRAL SOUND VELOCITY, RESPECTIVELY
UE = ELECTRON SOUND VELOCITY

UF = ACOUSTIC VELOCITY FOR THE ENTIRE FLUID

QIN = COLLISION CROSS SECTION OF IONS WITH NEUTRALS

QEN = COLLISICON CROSS SECTION CF ELECTRONS WITH NEUTRALS
VEI ‘= COLLISICN FREQUENCY OF ELECTRONS WITH IONS

VEN = COLLISICON FREQUENCY COF ELECTRONS WITH NEUTRALS

VIN=COLLISION FREQUENCY FCR ICNS PASSING THRU NEUTRAL GAS

VNI=COLLISION FREGQUENCY FCR MEUTRALS PASSING THRU ION. GAS

CI = MEAN THERMAL SPEED OF IONS IN METERS PER SECOND

CE = MEAN THERMAL SPEED OF ELECTRONS. IN METERS PER SECOND

TAUE = TIME BETWEEN COLLISIONS OF ELECTRONS WITH HEAVY PARTICLES

TAUIN = TIME BETWEEN COLLISICNS OF IONS WITH NEUTRALS

REAL NHESLAM13LAMZ2,K1NECoKR19KR2,KI1oKI2

DOUBLE PRECISION UE,UIUN, VEI1VEN,VINQNE1NI,NNvNEvMI'NN,RHOE'RHOI.
1 RHON,VNIPFEsPFIyaNGCyNO24NN2

AL=320,0

Cl=1.6E-18

DN=3.E~-10

Kl=1.38E-23

81=5.1E-5

IF(AL-300.) 152,2
1 NE = (EXP(0.CCO9*(AL—-300.)))*3,E11
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2C

21

22

GO T0 3
NE = EXP(C.0069%(300.~AL))*3,E11l
NI = NE :

NEC = NE#*]1.E-6

NN = 1Ce*¥(18.0-((AL~120e)1/18,6)*%(.5)

F = 1.C~NE/NN

TI = 1000.=65C.*EXP(0ei35%(120.~AL))

TE = TI+2C0042200,*SIN{(0.00523*%(AL~10C,))
IF{AL-2754) 44545

XMW = 27, 7-0.C457*(AL-~1UC.)
G0 TO 6

XMW = 19,4-0,0222%(AL-275.)
MN = XMW%*1,66E-27

MI = MN

ME = 9,11£~-31

Al= 9442 + 1.5%ALOG(TE) - O.5%ALOG(NEC)
VEI = NEC*A1/(0.38%(TE*%1,5))
QEN = 3,14%(DN%%*2)/4.C

CE = (8.%K1*TE/(3,14%ME))*%0.5
VEN = CE#QEN#NN

VE=VEI+VEN

TAUE = 1o/(VEN+VET)

QIN = 3.14%DN*DN

CJ = (Be*KISTI/(3.14%M]))*%*0,5
VIN = (2.%%0,5)*CJ*QIN*NN

VNI = (2.%%0,5)%CJ*QIN®NI
TAUIN = 1./VIN

WI =C1#B1/MI

WEC=C1#*B1/ME

SIGMA = NE*C1*Cl/ (ME*(VEN4VEI))
B20 = WEC*TAUE

B10 = F*NEC*TAUE*WI*TAUIN
RO=MN*NN+MI*NI

DELTA = (12,5E-T)*SIGMA

AX =B1/(RO%*12.56E-T)#%C.5

IF (AL-165.) 20,21,21
ALX=AL-120.

NO = 10.%*({1648-04(222%ALX)

NHE = 10.**(13.5-0,0083*ALX)
NO2 = 10e*¥{16.8-0.0356*%ALX)
NN2 = 10.#%¥{17.5-C,C334%ALX)
GO TO 22

ALX = AL - 165.

NO = 10,%*%(15.8-0.00827%ALX)

NHE = 10,%%({13,1-C.00184*ALX)

NO2 = 1C.**(15.1-(,0145%ALX)

NN2 = 10,*%{16,0-0e00129%ALX)

XMl = (166*NC+4,*NHE)/ (NC+NHE)

XM2 = (28e%NN2 + 32.*N0O2)/(NN2 +NC2)

XP = (NC2+NN2)/ {NC2+NG+NN2+NHE)



23

GAM1 = 1.67

IF {(TI-5504123424424
GAM2 = 1.40

GO TO 25

24 GAM2 = 1.39
25 GAMMA = (GAM1*XM2/XM1 + XP*GAHZ*(GAMI-I.)I(l.-XP’I(GAM2~1.)3/

12

1 (XM2/XM1 + XP/(1l.—XP)*(GAMl~-14)/({GAM2-1.))

8e31E3/ XMW
1.48E7 :
(GAMMAXRI*TI)**0,.5
(GAM1*RE*TE)**0,5

=~
m
nun

UE
UF=UI

EPS=8485E~-12
PFI=(NI*C1*C1/MI/EPS)*%0.5
PFE=(NE*C1*C1/ME/EPS)**0.5
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THIS STACK OF CARDS CONVERTS ALL QUANTITIES TO GAUSSIAN UNITS

C1=C1#3.E9
B1=B1*1.E4
NE=NE*1.D-6
NI=NI#*1.,D-6
NN=NN#¥1.D-6
MI=MI*1.D3
MN=MN*1,D3
ME=ME#*1.D3
QEN=QEN*1.E4
CE=CE*1.E2
QIN=QIN*1.E4
CJ=CJU*1.E2
SIGMA=SIGMA*9.E9
RO=RO#*1.£-3

DELTA=DELTA®9.E16 B

AX=AX#1.E2
NO=ND*1.E~6
NHE=NHEZ12E~6
ND2=N02%1.E-6
RI=RI#*1,E~-3
NN2=NN2%1.E-6
RE=RE*1.E-3
UI=UI%1.D2
UN=UI
UE=UE*1.D2
UF=UF#1.D2
CONT INUE
RHOE=NE*ME
RHOI=NI*MI -
RHON=NNZHMN

CALL TRHVLG(PFE'PFI'RHOE’RHDI'RHON,VEIgVEN,VIN.VNI,UIgUE,UN)

sTop
END
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SUBROUTINE TRVWVLGIWEsWIsRHOEsRHDI sRHONsVEIsVENsVIN, VNI sUIyUE4UN)

DOUBLE PRECISION KRA(3),KIA(3)sBDKR(3)sBDXR(3)¢BDXI(3)yBX2R(3},
1 BX21(3)yBX3R(3)4BX31(3)sBCX2R{3)4BCX21(3)4BCNR{3)+BCNI(3),

2 BCXR{3)sBCXI(3) .

DOUBLE PRECISION UEsUIsUNsVEIyVENSVIN,RHOE,RHOIy
1RHON S VIE VNI gy VNE s HI s WESHWI2oVEo VI VNsUPR2,
2 HE2y W29 W3y MGy W5, W6

DOUBLE PRECISION A3, A2, ASQR, ASQl, ACBR, ACBIs B3, B2, ATMSBR,

1 ATMSBIs P1lRy PlI, PRy PIM, QRy QI, QSQR, QSQIs PSQRs PSQI, PCBR,
2 PCBIy AMADR, AMADIs RADR(Z), RADI(2), ZCBRy ZCBI, '
3 ZR(3)9ZI(3)+BETRI3)IsBETI(3) 9y XZR(Z)4XZ1E3)

DOUBLE PRECISION XSQR(3);XSQI(3)4XCBRI3)yXCBI(3),AXSQR(3)5AXSQI(3) .
1+8XR{3)sBXI(3)9yCRDNRI(3),CRDNI(3) ¢XTSKRI3) 4 XTSKI(3),XRRTO(3),
3XIRTO(3)

DOUBLE PRECISION NUMRsNUMIZATSTRyATSTIRTAR,RTAI»A{10),B(10),
1W UE29UT29UN29DRoPRD3PID39KRE2) oKIL2)sUC2) 2 XE(2)9C35C24XRE3)

DIMENSION PHVY(4,250)

PROGRAM USES CARDAN®S METHOD TO SOLVE CUBIC EQUATIONS
OF THE FORM *X*%3 + AX*%x2 + BX + C = 0%,

W SAPPLIED FREQUENCY
WE :PLASMA FREQUENCY OF ELECTRONS
WI SPLASMA FREQUENCY OF IONS
RHOI s MASS DENSITY CF IONS
RHOE:MASS DENSITY CF ELECTRONS
RHON:MASS DENSITY OF NEUTRALS
VAB :EFFECTIVE CCLLISION FREQUENCY
OF *A* WITH '8B*

UI sACOUSTIC VELOCITY OF IONS
UE 3ACOUSTIC VELOCITY OF ELECTRONS
UN SACOUSTIC VELOCITY OF NEUTRALS
VIE= RHOEZVEI1/RHOI
VNE=RHOE*VEN/RHON
HI2=WI*%*2
WE2=UHE%**2
UI2=UI%**2
UE2=UE**2
UN2=URN*2
VE=VEI+VEN
VI=VIE+VIN
VN=VNE+VNI
UPR2 = {(UIRUNZUE)**(~-2 )
UTOT=UI*UN*UE

Aol B ook e Ak Aok ok ok ok ok
H=1.D8
JJ=0

1000 HWRITE (3,104) W

104 FORMAT (//° =%41PD11.4)
Jd=JdJ+1



L=J

WHhE2

B0t

Wit

WEHS -

H6 = Wk%6 A
A3=(WE/JUE)*#2¢(W1/UI ) 252-((H/UEYS#24 (W/UL ) E224( HIZUNDER2)

T
N
Wnn e

A2= —WA(VEX(UIRUNDA®2 +VIR(UESUNILAR2 $YNS(UELUI )22 ) 2UPR2

83 =  (WG*(UN2+UI24UE2)~ W2 (UE2*(VNIXVIE +VNEXVIN +VNE%XVIE) .+
LUIZ2H{VEI*VNICVETIXVNE +VENTUNT) +UM2R(VIN®VENS> VIESVEN + VINZVEI)+
2HE2%UN2 +WI24UN2 +WE22UI2 +WI2%UE2) ) »UPPR2

B2 = {(H32{ UN2*(VEI+VEN4VINSVIE}HUI2X(VEI+VEN+VNI4VNE JEVE2E(VINS
1 VIE+VNI®VNE)) —WAHUE2%( (VNISUNEI:(UN2%ZRHON2UEZ2ENHOE)/RHDT -+
1 (VNISVNE)®UIZ2))=UPR2

C3={H4*(VEIXVYNI #VEIZVNE <¢VEMNZVME <tVNIXVIE +VNEXVIMN +VNEXVIE
1+VIN2YEN +VIE*VEN +VINZVEL 4HI2 <HE2)-H6 )*TUPR2

C2 ={—-WS*(VIN#VIE4VEI<VENSVNI+VYNE JoHBZHE 2% (VN+{ (RHOE+RHON) *VN/
1 RHOI)})*UPR2

CALL CDSQUA3,AZ,ASQR,ASOI}
CALL CDCBUA3,A2,ACBRyACDIE)
CALL CPROD(A3,A2,B34B2,ATHEDR,ATMSBI)

DEFINE P'S AND Q'S.

P1R ASQR/3.0DG

P11 ASQI/3.0D0

PR = B3 - PIR

PIM = B2 - P11

PRD3=PR/3.D0

PID3=PIM/3.D0

QR= 2.DC*ACBR/27.D0 — ATMSBR/3.D0 +C3
QI= 2.DO*ACB1/27.D0 — ATMSBI/3.,D0 +C2

DEFINE Q%**2, P*%x3 AND AMAD.

CALL CDSQ{QR,QI,QSQR,QSQI)

CALL CDSQ(PR,PIM,PSQR,PSQI)

CALL CDCB{(PRsPIM,PCBR,PCBI)

AMADR = QSQR + 4,0D0*PLBR/27.0D00

AMADI = QSQI + 4.CDO*PCBI/27.0DO

CALL XPOCPX({1,2,AMADR, AMADI,RADRyRADI)
ZCBR = 0.5D0*(-QR + RADR(1)) '

ZCBI = 0.5D0%*(—-QI + RADI(1))
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CALh:NHTZCB(ICBR'ZCBIsQRiin!PCBRIZIbDD)iIEGBIIZ?-DOIiZCBR.‘

-1ZCBIgsNUMRyNUMI)

222

223
145

301

302

15

CALL XPOCPX(153,2CBRyZCBIyZRyZ1}

DO 9. I=1,3

XZR(I) '= 3,0D0*ZR(I}

XZICI) = 3,0D0%ZI(I) .

CALL CDDIV (PR,PIMsXZR(I)sXZICI),BETR(I};yBETICI))
XR(I)=ZR{F)=BETR(1)=A3/3.D0
XI(1)=Z1(I)-BETI(1)-A2/3.D0

CONTINUE

ATSTR=XR{1)4XR(2)+XR(3)

ATSTI=XI(1)4XI(2)4XI(3)

RTAR=-ATSTR/A3

RTAI=-ATSTI/A2 |
IF(RTAR<EQe1.D0.ANDoRTAI<EQe1.D0) GO TO 301

DO 145 I=1,3 |

IFIDABS(XR(I)/ZR{I}) oLE.1.D~13) XR(1)=0.D0
IF(DABS(XI{I}/ZI(I})4LEs1eD~13) XICI)=0,D0
WRITE(35222) XR{IDoXI(I}

FORMAT(* XR=%,023,16,° XI=?,023.16)}

CALL NWTXRTUXR(I)+XI(I)yA3,A29B3,B2,C39C29 XR(I)yXICI),NUMR,NUMI)
WRITE(3,223) XROI),XI(I)sNUMR,NUMI

FORMAT (¢ XR="4D23.165" XI=*3D23.164" ZERO=',2D14.6)
CONTINUE

ATSTR=XR{1)4XR(2)+XR(3)

ATSTI=XI(1)+XI(2)+XI(3)

RTAR=-ATSTR/A3

RTAI=-ATSTI/A2

CONT INUE

DO 302 I=1,3

CALL CDSQIXRUI)oXI{I)yXSQRIID,XSQICI))

CALL CDGB(XR(I)sXI(1)oXCBR(IDoXCBI(I))

CALL CPROD{A34A2,XSQR{I) s XSQI(I)AXSQOR(I)oAXSQI(I})
CALL CPROD(B3,B2,XR{I)sXI(I)sBXR{I),BXIEI)})

CRDNR (1)=XCBR (I)+AXSQR(I)+BXR(1)+C3
CRONI(I}=XCBI(I}+AXSQI(I)+BXI(I}+C2

CONT INUE

NOTE: K = DSQRT(XR)y UU = W/K AND XE = 1/KI.
NOTE: EACH °*CALL® GIVES TWO K'S.

PHVY (45 JJ) =W
DO 10 I=1,3

CALL XPOCPX{192sXR(I),XI{I)oKRyKI)
PKREI)=KR{1)

PKICI)=KI{1)

DO 15 J=1,2

UlJ) = WZKR(J)

XE(J) = .1.000/KI(J)

PHVY (1, JJ)=DLOG10{DABS{U{1)))*10.
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WRITE (3.155)'XR(l).XIll)'KR(IDiKI(l)iU(1)6XE(1Y¢KR(Z)§KI(Z)iU(Z)o

1 XE(2)
155 FORMAT(® XR="DZ3.16" Xl='g023.16,' KR =%,D13,69" KI ='g
1 013.6,2X.'U -'.DIB.G,ZX,'XE ='.013.6155X.'KR “'1013.6' KI'*"

2 D13.692X9"U =*3D134642Xy"XE =99,D13,6)
10 CONTINUE
WRITE(3,158) ATSTRyATSTISRTARSRTAI -
158 FORMAT(® AR='3D23.169"% AI="4D23.169" TEST=?,2D23,16)

DO 33 I=1,3
HRITE(S,IS&’XR(I)1XI(I)1XCBR(I)gXCBl(l)’XSQR(I)'XSQ!(I)v
lCRDNR(I),CRDNI(I) '
156 FORMAT(® %y 'X='92D14.65" X3=992D14e69" X2='52014.69" CRDN=',2D14.6
1) ' : o
33 CONTINUE
DR=1,D12
IF{W.GE.,DR) GG TO 9000
iF (H'QGEp 1000 S oAlNDe W olLTe 140023) W = W ¥ 1,00 1
IF (W «GEs 1,00 8 ANDe W ¢LTe 100 9) W = ¥ + 1,00 8
IF (W +GEe 10D 7 +ANDe W oLTe 1.0D 8) H = W %+ 1.,0D 7
IF (W oGEe 10D 6 oANDe W oLTe 1.0D 7) ¥ = W + 1.0D 6
IF (W o4GEe 140D 5 <ANDe H oLTe 10D 6) H = W + 1.,0D &
IF (W o¢GEs 10D 4 oANDe W oLTe 1.0D S) W = W ¢+ 1,0D 4
IF (W oGEe 140D 3 JANDse W .LTe 10D 4) H =¥ + 1,0D 3
IF (W oGEe 1e0D 2 oANDos H oLTe 10D 3) W = W + 1,0D 2
IF (W «GEe 1eGCD 1 oANDes W oLTse 10D 2) ¥ =¥ ¢+ 1,00 1
IF (H oeGEe 140D 0O oANDe W «LTe 1,00 1) W = W +1,0D O
IF (WeGEs 1.0D-1 LAND, olTe 10D 0) W =W + IOOD-I
IF (W «GEe 1e0D~2 oANDe W oLTe 1,00-1) W = W+ 1,0D-2
IF (W 4GEe 1e0D-3 oANDe W oiTe 140D-2) W = W + 1.0D0-3
IF (# oCEe 160D=4% ,ANDe W LT, 1,00~3) W = W + 1.,0D~4
IF (N oGEe 1a0D=5 <ANDa W oLTe 140D-4) ¥ = W + 1.,0D-5
IF (W ¢GEe 1e0D—6 +ANDe W oL Te 1e0D-5) W = ¥ + 1.0D-6
IF (W oGEs 1e0D=T7 LANDe W oLTe 1+0D-6) W = W + 1.0D-7

GO 7O 1000

9000 RETURN
DEBUG UNIT(3),SUBCHK
"END

SUBROUTINE CDSQ(A9B9SQ145Q2)
DOUBLE PRECISION Ay By SQl, SQ2
SQl=(A-B)*(A+B) '
SQ2 = 2.0D0*A*8

RETURN

DEBUG UNIT(3),SUBCHK

END
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SUBROUTINE XPOCPX(MsNyAygBsXRyeXM)
THIS SUBROUTINE CALCULATES THE M/NTH ROOTS OF A CUMPLEX NUMBER

OF THE FORM 'C = A + IxB?,

DOUBLE PRECISION A, B, BAR, BETA, COEF, Ky PI, RM; RNy, T, XM(25),
XR €25) 5 ALFA = -

DOUBLE PRECISION AA,BB

AA=DABS (A)

BB=DABS(B)

RM = M

RN = N

PI = 3.14159265358979324D0 .

IF(AAEQe0eD0eOR.BBoEQeCeDC) BAR=DSQRT (A*%2+B4%2)

IF{AA.EQe0.D0.0R.BBsEQ.0.D0) GO TO 1010

BAR=DABS{A)*DSQRT (1. DC+(B/A}**%2)

IF{BeLE.1+D~32) 60 TO 1010

IF(DABS{DLOG10(AA)-DLOG10(BB) } o LE<4e DO)BAR=DSQRT (AXE2+B%%2)

1010 COEF = BAR**TRM/RN)

100

iolg0

T = DATAN2(B,A)

IF (B +1LTe. 0.0D0) T
K = 0.0D0

DO 100 I=1,N

BETA =T + K*2,0D0%P]
ALFA=BETA*RM/RN

XR(I) = COEF*DCOS (ALFA)
XM(I) = COEF*DSIN(ALFA)
K=K+ 1.000

RETURN

DEBUG UNIT(3),SUBCHK
END

2.0D0C*PI —~ DABS(T)

SUBROUTINE CDDIV(A;BsCeDyeE,F)

DOUBLE PRECISION AyBoCyeDeEsFoDEM

DOUBLE PRECISION CC,DD

CC=DABS{C)

DD=DABSI(D)

IF{CCoEQo0eD0s0RaDDeEQe0e D0} DEM=CXE2L4DXT2
IF{CCoFEQeUeD0,ORaDD.EQeD.D0) GO TO 1010
DEM=(C¥%2)}% (1. D0+ (D/C)%%2)

IF{D.lLEL1.D-32) GO TO 1010
IFIDABS{DLOG1C(CC)-DLOGLOADD) ). LE.4.DO)DEF—(C**2*D**2)
E=(ALC+B*D)/DEM

F=(B%*C-C*A)/DEM

RETURN

DEBUG UNIT(3),SUBCHK

END
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SUBROUTINE NHTXRTE{XRsXIoAR AR ,BReBI»CRyCIs XNEWR,XNEWI,
DOUBLE PRECISION XNsXIyAR9AI¢sBReyBIsCRoCI ¢XMEHRe XNEHI,

1 XCBR,XCBI,XSQR.XSQIgAXSQR,AXSQI,AXRgAXI.BXR,BXI,
2 NUMRyNUMI¢DEMRDEMIyDLTRHOLTI

-~ eaemmaw -

DOUBLE PRECISION TESTR,TESTI -

N=0

CONT INUE

N=N+1

IF(N.GT.200) GO TO 15

CALL CDCB{XRyXTIoXCBRyXCBI)

CALL CDSQ(XReXIgXSQR,XSQI)

CALL CPROD(ARJAI s XSQR$XSQI,AXSQR 4 AXSQI)

CALL CPRODUIAR;AIXPReXIAXReAXI])

CALL CPRUD(BRsBI¢XRyXIsBXRyBXI)

NUMR=XC BR+AXSQR+BXR+CR

NUMI=XCBItAXSQI+BXI+CI
DEMR=3.DO%*XSQR+2.D0*AXR+BR
DEMI=3,D02XSQI+2,D0*AXI+BI]

IF(DEMRLEQaOeD0L AND «DEMIEQe0+D0) WRITE(3,101)
IF(DEMREQeQuaDULAND +DEMILEQ.0.D0) GO TO 15
IF(NUMRoEQeOe DO ANDo NUMILEQLO0.D0) GO TO 15
CALL CDDIV(NUMR NUMI yDEMRDEMIZDLTR,DLTI)
XNEHR=XR~DLTR

XNEWI=XI-DLTI]

TESTR=DABS{XR/DLTR)

TESTI=DABS{(X1/DLTI)
IF{TESTReLY014D~15,ANDeTESTI4LTeleD-15) GO TO 15
XR=XNEHR

XI=}NEHI

GO TO 5

RETURNM

FORMAT{® %%k THE DERIVATIVE OF F{X£*%3)=0 **&Xk?)
DELUS UNMIT(3) ,SUBCHX

END
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SUBROUTINE NWTZCBUXRsXIsQRsQI¢SRySIyXNEWRe XNENWT » NUMR ¢ NUNE )

DOUBLE PRECISION XR9XIyQRyQI ¢SRySIeXNEHRsXNEHIy

1 XSQR,XSQIsQTMSXRoQTMSXT 9 NUMR,NUMTsDEMR,

2 DEMI,DLTR,OLTI

DOUBLE PRECISION TESTR,TESTI

N=0
5 CONTINUE

N=N+1 _

IF(N.GT.100) GO TO 15

CALL CDSQ{XRsXI¢XSQRsXSQI)

CALL CPROD{XR,XI,QR,QI,QTMSXR,QTMSXI)

NUMR=XSQR + QTMSXR - SR

NUMI=XSQI + QTMSXI — SI

DEMR=2.D0*XR + QR

DEMI=2.DO*XI + QI

IF(DEMReEQeOeDO.AND «DEMIoEQe0.D0) WRITE(3,101)

IF(DEMReEQe0eD0. AND oDEMIoEQ.04DO0) GO TO 15

IF (NUMRe EQe 0« DO« AND. NUMI.EQ.0.D0) GO TO 15

CALL CDDIV(NUMR,NUMI ¢DEMR¢DEMIoDLTR,DLTI)

XNEHR=XR-DLTR

XNEHI=XI~DLTI -

TESTR=DABS (XR/DLTR)

TESTI=DABS(XI/DLTI) :

IF(TESTReLTe1aD-15.ANDeTESTIoLToe1leD~-15) GO TO 15

XR=XNEWR

XI=XNEWI

G0 TO S

15 RETURN
101 FORMAT(' *#%* THE DERIVATIVE OF F{Z#¥%3)=0 *%%x9)
END

SUBROUTINE CPROD(A,B+CsDyPRODRyPRODI)
DOUBLE PRECISION A, By Cy Dy PRODR, PRODI

PRODR = A%C - B*D
PRODI = B*C + A*D
RETURN

END

SUBROUTINE CDCB(X9YyX3,Y3)
DOUBLE PRECISION X,Y9X3,Y3,C
DOUBLE PRECISION CY,CX
C=DSQRT(3,D0)

CY=C*Y

CX=C*X

X3=X*{X+CVY)*{X-CY)
Y3=Y*{CX+Y)*(CX-Y)

RETURN

END
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CHAPTER III

EXPANSION AND NUMERICAL SOLUTION OF THE GENERAL
DISPERSION RELATION FOR SMALL AMPLITUDE

PERTURBATIONS IN A THREE-FLUID PLASMA

by

Raymond L, Brown and David L. Murphree

NOTE: Figures, references and equations begin a new sequence in each Chapter,
Also, the Appendices are lettered consecutively by Chapter, and
each Chapter includes its own List of Symbols.
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LIST OF SYMBOLS

Velocity of Light in a Vacuum
Specific Heat at Constant Pressure
Specific Heat at Constant Volume
Charge of Electron

Electrical Field Strength

Magnetic Field Strength

Steady Applied Magnetic Field Strength
Perturbation Magnetic Field Strength
V-1

Wave Number (Kr = real part; K, = imaginary part)

i
Mass of Electron, lIon, and Neutral Particle
Mass Ratio of Ions to Electrons

Index of Refraction

Number Density of Electrons, Ions, and Neutral Particles

Partial Pressures of the Electron, Ion, or Neutral Particle

Gas

Acoustic Velocity of Electron, Ion, or Neutral Particle
Species

Acoustic Velocity of the Entire Gas

Acoustic Velociﬁy of the Electron-Ion Gas Mixture
Alfven Velocity of Entire Gas

Alfven Velocity for Charged Particle Fluids

Angle Between Direction of Wave Propagation and Applied
Magnetic Field

Mass Density of Electrons, Ions, or Neutral Gas
Applied Frequency of Wave

Electron or Ion Plasma Frequency
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wo

wo1

wo2

Wp3

Cyclotron Frequency of Electron

Cyclotron Frequency of Electrons Associated with Transverse
or Longitudinal Component of H

Effective Collision Frequency of Electrons with Ions
Effective Collision Frequency of Electrons with Neutrals
Total Collision Frequency of Electrons O Vo)
Effective Collision Frequency of Ions with Electrons
Effective Collision Frequency of Ions with Neutrals
Total Collision Frequency of Ions (vie + Vin)
Effective Collision Frequency of Neutrals with Electrons
Effective Collision Frequency of Neutrals with Ioas
Total Collision Frequency of Neutrals (v_ + v__)
ne ni
Specific Heat Ratio
2 ey21%
[wl + (w)?]
2 e 2 e 1.% _ L e
[we + (wc/2) + wcwc] N
e
[wo 1 + wc]

e ik 2 e ik
w, (W w WS + ww
i( c c) /< i c c)
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Introduction

Tanenbaum and Mintzer,l and Tanenbaum and Meskan2 have conducted an
intensive study of wave propagation modes employing the three~fluid theory
for a partly ionized gas. Their study of small amplitude oscillations
in an infinite, homogeneous, partly ionized gas with a uniform external
magnetic field employed Maxwell's equations together with a set of
coupled hydrodynamic equations for an interacting mixture of electrons,
ions, and neutral molecules to obtain the dispersion relations for wave
propagation perpendicular and parallel to the magnetic field. All the
work done by Tanenbaum, Mintzer, and Meskan used approximate equations
to obtain the possible wave modes for propagétion of longitudinal waves
parallel to the field and for propagation of coupled longitudinal and
transverse waves perpendicular to the field. No attempt, not even approxi-
mate, was made to obtain the general dispersion relation for propagation
at any angle relative to the magnetic field.

Dahl and Murphree3 considered the case of longitudinal waves pro-
pagating parallel to the magnetic field, but this study also used some
approximations.

McClendon and Murphree4 conducted a study considering the propagation
of coupled longitudinal and transverse waves with a transverse magnetic
field. This study involved ng approximations, and the wave modes obtained
were the exact solutions to the dispersion relation for the case of
coupled longitudinal and transverse waves with an applied transverse
magnetic field.

This paper will present the complete solution of the general dis-
persion relation using numerical techniques. The solutions of the general

dispersion relation, which are the complex wave numbers, are plotted in
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terms of phase velocity and e-folding distance versus disturbance fre-

quency for the frequency range, 107 S w < 1077 rad/sec. Comparisons
with the previous works are included, and also, all discrepancies are

noted.

Theory

The main objective of this wave propagation study is the deter-
mination of the phase velocities and e-folding distances for all possible
wave modes versus the disturbance frequency.

The approach used in this study consisted of the small perturbation
theory applied to a three~fluid partly ionized gas with the three fluids
being electron, ion, and neutral gases.

The assumptions were made as follows:

Fixed degree of ionization

Adiabatic

All gases obey Ideal Gas Law

The frictional forces between the gases,
which cause damping effects, allow for the
conservation of momentum of the total system.

W

These assumptions are reasonable for any plasma which is near equilibrium
and not too dense.1

The plasma can now be described completely by using Maxwell's
equations, the conservation of mass, momentum, and energy equations for
each species of gas (electron, ion, and neutral), and the equations of
state for each gas.

(1) Maxwell's Equations,

> 1 oH
VE = - < a-

—
V}iﬁ—i’c{-‘i (Nif'\i —Neir‘e) +_(1;if.



(2) Continuity Equation for each gas,

EEE;EAB = - V.V
Dt pe,i,n e,i,n

(3) Momentum Equation for each gas,

Y] Vid ove

e e — e e - JL . Y
Dt m, & + c ) - Po - vei(ve Vi) - ven(ve-vn)
- .
N, e @ v v N o s
Dt E; (E+—2 ) - oy - vie( i—ve) - vin(vi_vn)
ﬁ# VP
Dt P - vne(vn_ve) - vni(vnqvi)

(4) Adiabatic Condition (Ideal Gas),

P N Y, = CONSTANT
e,i,n e,i,n

where, Yy = Cp/Cv

To obtain the dispersion relation, a small periodic oscillation of
frequency w is applied to the plasma, and the co-ordinate system is
aligned such that propagation is in the X-direction and the applied
magnetic field is given by ﬁo = (Hz, Hg, 0). To include the periodic

oscillations applied to the plasma, the variables are put in the form,

E,t) = B ot (k% - vt

B(z,t) = B° + h et (k¥ — wt)

V. @t =V . ol(kx - wt)
e,i,n e,i,n

Ne’i(?,t) =N +n oL Gex = wt)

N_(F,t) = N, +n Si(kx = wt)

Pe,i(-;’t) =P P, oL (kx ~ wt)

= _ i(kx - wt)
Pn(r,t) = Pl + P,
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Now, substituting successively each equation into the othef; the twenty-
one equations with twenty-one unknowns can be reduced to three equations
with three unknowns. For the present study, the variables retained are
V.,V ,and V . The resulting equations are given below, and

ex’ ey ez _
Appendix A contains the substitution procedure followed in obtaining

these final three equations which were derived previously by Tanenbaum

and Mintzer.1

A1 A2 A3 Vex
Bry Ay By Vey | =0
A3y Ay Agg Vez
where,
= - 2
A, (cl/m) (c cq 5/c ) + (WP p/me,)
Ay = Ay = - wlegu /me,
A13 = iwa[(CS/cl) - (c6/mc2)]
= - 2,.2
A22 (czlm) (c4 c6/c2) + (w wL/mcz)
A23 = -A32 = - (iwwL/cz) [c4 - (c6/m)]
A31 = iwa[(CS/mcl) - (c4/c2)]
= 2,2
A33 A22 + (w wT/mcl)
and the c's are given by,
= w2 - 3 2
¢, = wg 1wy + w (venvnl/yz)
2.-1
= 2 — - : 2
c, we(l n) iwv . + w (ven nl/yl)
c. = w? - w? - K2U2 + diwv, + 02, v _./v,)
3 i i i inni’’'2
e, = w2 - w2(1 - n2) -1 + iwv, + w?(v Ay)
4 i i in n1 1
c. = w2 - w? - K2U2 + iov + w?(v /v,)
5 e e e en ne’ '2



93

= 2 - w2(1 - a2yl 2
Ce = W we(l n’) T+ imve + (venvne/yl)

where,

= @ o
Yy = + twv O L e Ht,L/mec

_ 2.2 _ %
Y2571 K Un Ue,i,n (YPe,i,n/pe,i,n)

4ne2No 1
we,i = ( - ) n = Ke/w
e,i

For a non-trivial solution to exist for the matrix equation,

A Ve =0 ¢D)

o~

the determinant of the coefficients must be zero.
la]l =0 (2)
Expansion of the determinant |A| yields the following dispersion relation

in terms of the c's (See Appendix B for expansion procedure of |A[.),

o2 2 23 e o2 - mch - pnc2e o + micle2
€2€3%4%5% €3C4C5C ~ MCyC3C5 = €MC1CyCsC¢ €1%4%
2 4 22 3 _ 0292 2.2 _ .20 05 2
+ clc2 + 2w chlc2 w ch2c5c6 + mw ch4c5c m w ch2c3c4
_ 2.2 320 2 2222 o9 22
me UJTC1C204C6 + mw U)TC3C4C6 + Zw chlcz (] (.ULC1C6
_ 209 922 2.2 2 2,2 2 320 2
mwwre, ¢, 2mw Wy cyCqCy + mw Wy C4CsCe + mw Wy C,C5Cy
+ 2(1)4(1)%0)].2_“C1C2 - mwl*w%mlz‘CACS - mw‘*w%wﬁc3c6 + wl*w,lf,cg - mwl*mfl*,clice
+ wl*w”‘c2 - mwtwle.c. = 0 (3)
L1 L™375

When fully expanded, by putting in the equations for the c¢'s, the
full dispersion relation would contain thousands of terms, and therefore,
it is impractical, and probably impossible, to write out in full. But
examination of the equations for the c¢'s and the dispersion relation shows

that it is an eight-ordered equation in K-square, and therefore, theoretically
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eight wave solutions are possible.

‘The general dispersion relation which has been obtained is a relation
for the wave number (K) in terms of the disturbance frequency (w) for a
given set of field conditions and for propagation at some given angle
relative to the magnetic field direction. By solving for K as a function
of w, the phase velocity (m/Kr) and e~folding distance (1/Ki) can be
obtained for all possible modes of propagation at any angle relative to
the magnetic field.

The direction of propagation can be controlled by the longitudinal
and transverse components of the cyclotron frequency. This is accomplished
by varying the angle © between the direction of propagation and the

direction of the applied magnetic field.

-
VPh
. §
HO
e H°
YT T m v, = wcCOS(e)

e
Once the dispersion relation has been solved, the fluctuations

-
in Ve are known for given time and position by using the following

relations,
—iKix
v =V ) e COS(K x - wt)
ex ex’o T
—iKix
V =V ) e COS(K x - wt)
ey ey’ o r
-iKix
Vv =V ) e COS(K x - wt)
ez ez’o r

Where, V.) , V_) , and V__) are initial values.
ex’o’ ‘ey’o ez’o

Appendix C contains the equations relating the other parameters

e,i,n’ Vix’ Viy’ Viz’ an, Vny’ Vnz) to the known solutions of
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Discussion

A, Problems Involved

Referring to the dispersion relation (3), it can be seen that two major
problems will be encountered when an attempt is made to obtain the wave
~ number (K) in terms of the disturbance frequency (w) for given field condi-
tioﬁs. The first obstacle is the expansion of the equation, which up until
the present has been considered almost impossible, and the second obstacle
is the solution of the eighth-ordered equation once the expansion has been
accomplished.

From a cursory observation of the equation this would not seem to
be as complex as might have been indicated above, but a closer observance
shows that it is a totally impossible problem to approach by hand or with
conventional computer techniques.

To explain why the afore mentioned approach cannot be used, consider

the first term of the general dispersion relation,

zm2 2
€,C3€,C5Cc .

Since ¢, contains eight separate terms containing several different
variables, then ci

cj and Cg contain thirteen terms a piece, and cy and Cg each contain

will contain at least thirty-six separate terms. Also,

twelve terms. Allowing for the fact that a few of the terms in the
different c's might be the same, a conservative estimate of the number
of terms that would be present if the above expression was completely
expanded is one hundred thousand (100,000) terms. Consider also that
there are sixteen different variables present, and any one term of the
100,000 terms could contain one or more of these variables. This should
be satisfactory in explaining why the general diééersion relation was

never obtained, or for that matter, could_ever be obtained by a person
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writing it out by hand. While the immensity of the equation is still
being considered, it can be seen by careful observation that even computers
with the most advance high speed printers would take at least ten hours

and fifteen thousand sheets of paper to print out the equation in its
entirety. An equation of this magnitude could only serve to obscure any
information which might be beneficial, and therefore, the total dispersion
relation will never be printed out in the expanded form.

Since the total dispersion relation containing the sixteen different
variables cannot be written out completely as at first considered, the
next approach to be considered was to put in all values for the field
parameters except w, W and W . This allows for the formation of a
dispersion relation for a given set of field conditions, while retaining
the ability to vary the disturbance frequency and direction of propagation
relative to the magnetic field direction.

Still the final dispersion relation would contaln too many terms to
consider expansion by hand or by use of conventional computer programming
languages which require that all variables be assigned a numerical value.
The problem of how to expand the dispersion while retaining some of the
variables was solved when the PL/1 FORMAC SYMBOLIC MATH FORMULA-MANIPULATION
INTERPRETER was obtained from IBM Corporation. The capabilities of this
system can best be explained by use of a direct quote from the FORMAC
language manuals:

The PL/1-FORMAC interpreter is an extension of the

0S/360 PL/1 (F) Compiler. It consists of two modules

of assembled routines, each module having about 70K

bytes, which are added to a Systems Subroutine

Library. FORMAC provides for the symbolic manipulation

of mathematical expressions; e.g., the expression SIN(X),

can be differentiated resulting in the expression COS(X).
Expressions can contain variables, user-defined functions,
constants to 2295 digits, and symbolic constants representing

pi, e, and i- (the square root of -1), as well as functions
such as SIN, COS, EXP, etc. Expressions can be differentiated,
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evaluated, replaced, compared, and parsed. Since FORMAC

is a superset of PL/1l, the facilities of PL/1 are available
for program structure, loop control, I/0, etec. FORMAC can

be used to obtain symbolic solutions in problem areas which
heretofore could only be approached numerically.

B, FORMAC Program for Expanding Dispersion Relation

As explained in the qﬁote from the FORMAC manual, the use of FORMAC
4is confined to the 0S/360 IBM Computer, and PL/1l facilities are used for
input-output and all loop control and program structure.

The IBM 0S/360-40 at Mississippi State University was.used for
all FORMAC runs, Due to the limited storage sﬁace at this facility the
program was not the most efficient program, as far as time was concerned.

The complete print-out of DISREL, the dispersion relation expanding
program, is given in Appendix D, and a brief outline of the program

follows.

DISREL (FORMAC EXPANSION PROGRAM)

(1) Read in all field parameters except cyclotron frequency
and disturbance frequency as PL/l variables.

(2) Multiply by length and time factors to obtain minimum
range for coefficients K*'s in the dispersion relation.

(3) Transfer all PL/1 variables to FORMAC variables.

(4) Define as variables all repeated multiplicatidné, etc.,
to make program more efficient.

(5) Obtain equations for numerators of the ec's.

(6) Obtain equations for denominators of the c¢'s.

(7) Define additional repeated terms to make program
more efficient.

(8) Obtain each of the twenty-five terms of the dispersion
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relation. w, W and w, are still undefined
numerically.

(9) Atomize all variables which are not needed for further
computation to release the storage space which they
occupy in the computer.

(10) Obtain cyclotron frequency and multiply by time factor.

(11) Obtain W and wy for given angle of propagation with
respect to magnetic field direction.

(12) Obtain each of the twenty-five terms of the dispersion
relation with all variables now having numerical wvalues
and sum to glve total dispersion relation.

(13) Arrange coefficients of dispersion relation in descending

order of powers of K.

(14) Punch out the coefficients to be used in program ROOTS.

The units used for expressing field parameters were MKS, but
leaving the variables in terms of meters and seconds usually gave a
very large range for the coefficients of the K"'s. For the frequencies

=9 to 10_2 and 106 to 109, the range from the smallest to the largest

10
coefficient was of the order 1060, and of course, this would present
quite a problem when trying to solve for the roots of the equation. With
careful selection of time and length multiplication factors, the range
of the coefficients was decreased down to the order of lO14 to 1028,
depending on disturbance frequency.

The equations for the numerator and denominator of each of the e¢'s
was obtained separately since the final dispersion relation was to be

multiplied through by a common denominator to eliminate all denominator

terms.



Each of the twenty-five terms of the general dispersion relation

was then obtained in expanded form, but w, Wrs and wy were not defined
numerically. Then for each given w over the frequency range lO~§ to 109,
the angle of propagation relative to the magnetic field, O, was varied

from 0° to 90°. w, and w, were then determined since they are dependent

T L

on the angle of propagation. With the.defining of w, Wy and wy over

the ranges given above, each of the twenty-five terms of the general
dispersion relation was obtained with all numerical values except K,

the wave number for whose value the dispersion relation is to be solved.
An example term is given below in both forms to show the importance of
the FORMAC capabilities.

TERM(13) = -.115E~09 #I WLZ K% -.171E-04 WL® K® +5.17 #1 wLZ

+767985. WLZ kK* +964280. #I wr? k® -1112279. wi? x©

~1396589. #I WL? K® +100037. wiZ k® +505672. #I wn? k10

+438393. wi? k10 _.792 #1 wi? k1% -1s58732. w2 k12

+.638E-21 #I WL> +.948E-16 WL2
FTERM(13) = -.924E-04 #I K* +4158831. #I K

8 4.068+11 #1 k10 -637647. #1 K2 -13.7 K% +6.2E+11

6 +8.048+10 kX8 +3.528+411 K10 -1.27E+11

4 6

+7.75E+11 #I K -1.12E+1

#fI K

4

K* -8.94E+11 K

K32 4.513E-15 #I  +.762E-10

With the summation of the terms, the dispersion relation for a
given set of field conditions at a given angle to the magnetic field is
obtained for some given disturbance frequency. For example, consider

the dispersion relation for propagation parallel to the magnetic field
) .

for the case w = 107,

99

2
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2 4 6

+4.26E+08 #I K
0

DISPER = 22161, #I K

-K8 ~5.42E+18 #I K1

+3.8E+18 #I
14

+1.04E+14 #1 K

+1.96E+18 #I K*2 +1.22E+12 #I K

6 2 4 6

+274263. #I K'© 49496042, K* +2.55E+12 K% +4.49E+16 K

8 10 12 4

+6.668+21 K®  ~9.468+21 K10 +3.498+21 K1Y +2.17E+15 K*

+4.88E+08 K1® +.0017 #I +261.112

This equation can be treated as an eighth-ordered polynomial in terms
of K-square when extracting the roots, instead of a sixteenth-ordered

equation in K.

C. ROOTS, Program Used to Solve Dispersion Relation

Having expanded the dispersion relation and obtained an eighth-
ordered equation in terms of K-square, the only remaining step is to
solve for the roots of the equation.

In selecting a method for solution of the dispersion relation and
in using computer defined functions, the large range of the coefficients
becomes the dominating feature. Taking into account this large and
variable range, and also considering that the dispersion relation has
both complex coefficients and roots, the method of solution chosen was
the Newton-Raphson Iteration Technique.6 Since both overflow and under-
flow occurred after only a few iterations, no computer defined functioms
were used, and all work was done in the double precision mode.

The entire program with all the subroutines is given in Appendix E,

and the main program ROOTS can be explained briefly as follows:

ROOTS (Root Extracting Program)
(1) Read in all coefficients of dispersion relation.
(2) Read in time and length factors to be used to change
units back to meters and seconds once the root has

been found.



(3)
(4)

(5)

(6)

o)
(8)

(9

(10)

(11)
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Read in first root estimate.
Call subroutine for £(x) and f£'(x), depending on order
of equation. (x = K2)
Using the f(x) and £'(x), a new estimate is obtained
using the Newton-Raphson formula,

£(x,)

x 17 E (%)

i+1 © *

The above iteration is continued until the relative
error is less than or equal to 10-20.

Call square-root program to obtain solution to K2.
Multiply by appropriate length factor so that Kr and
Ki will have meters as unit of length.

Obtain phase velocity (m/Kr) and e-folding distance
/x,). |

Call synthetic division subroutine and divide out root.

Repeat above procedure starting with step (3) until

all eight roots have been obtained.

There are ten subroutlnes used in association with the main program

and the function of each is as follows:

1.

2.

ATWLTF - Arranges terms in ascending order. This allows for
the retaining of as many significant digits as possible
and is therefore very beneficial due to the large and
varied ranges of values obtained from the dispersion
relation.

XPOCPX - Calculates the square-root of a complex number. It

1 2
obtained by Newton-Raphson method.

is used to obtain K, and K, once K-square has been



102

3. SYNDV - Synthetic division subroutine used to divide out
each root as it is obtained. This reduces the
order of the equation and assures that the Newton-
Raphson iteration will not continue to iterate
back to the same root.

4, SECOND, THIRD, FQURTH, FIFTH, SIXTH, SEVENTH, EIGHTH -
Subroutines used to obtain f(x) and f'(x)
depending on the order of the equation being

solved.

Results

The expansion and solution of the general dispersion relation was
accomplished by employing the IBM 360~40 Computer for the FORMAC program
(DISREL) and the UNIVAC 1106 Computer for the program ROOTS.

The ionospheric field conditions considered for this study were,

vni = 1,1202 x 10-4 coll/sec we = 2,8806 x 107 rad/sec

v = 1.9375 x 10”7 coll/sec w, = 1.5731 x 10° rad/sec

vy, = 2.2541 x 1071 coll/sec wi = 8.968 x 10° rad/sec
-3 > -5 2

vie = 1.7263 x 10 coll/sec H= 5.1 x 10 -~ webers/m
i 2

v , = 5,7783 x 10" coll/sec U, = 8,5097 x 10° m/sec

ei i,n

v = 1.3072 x 101 coll/sec U_ = 2.8158 x 10° m/sec

These are the same conditions employed by Dahl and Murphree3 and
McClendon and Murphree4, but they do not coincide with the field conditions
used in Tanenbaum and Mintzer'sl and Tanenbaum and Meskan's2 qualitative
and approximate analysis.

Before a strict analysis is made of the results of this study, a

brief explanation is needed in regards to the plots shown in Figures 1
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through 14, The curves in these figures are shown to be relatively
smooth, but at some angles, especially at © = 0°, there were several
e-folding distance points which were considerably different, and the
bhase velocity curves had one or two points that varied from the curves
shown for @ = 30° and 45°. The wave solutions whose phase velocities
and e~folding distances varied from the curves shown were usuall& the
sixth, seventh, or eighth root extracted from the dispersion relation,
but in some cases the roots which were extracted third or fourth gave
an erroneous e-folding distance. Since all numbers involved are quite
large and varied, and since only five digits were retained from the
FORMAC expansion program, it is possible that the error build-up in
the program ROOTS is too extensive. The possibility that the points
thought to be erroneous could be correct also exists since most occurred
near significant points, such as collision frequencies, cyclotron fre-
quencies, and electron or ion plasma frequency. So to make a statement
concerning these points which do not coincide with the curves shown
would require that additional dispersion relations be obtained for both
the ionospheric field conditions used in this study aﬁd for other
different ionospheric field conditioms.

Another point to be made before discussing the results is that
all roots which yielded.a'negative Ki and a positive Kr were omitted.
The reason being that this represents a wave with increasing amplitude,
and since our system assumed constant energy, this result is not physi-
cally possible. Only the physically possible wave modes are shown,
and in all cases, the three or four roots which resulted in physically
impossible wave modes\were complex conjugate of the acceptable modes of

propagation shown in Figures 1 through 14,
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A. Propagation Parallel to Magnetic Field Direction (0 = 0%)

The wave solutions presented consist of both the pure longitudinal
and the pure transverse wave modes with an applied longitudinal magnetic
field. The term dominant wave mode refers to the modes of propagation
whose e—foldiné distances are much greater than the e-folding distances
of the other wave modes. Figures 1 and 2 present the solutions.

w = Viet There are five possible wave éolutions in this range,
and Mode I can be neglected since it has an extremely small e-folding
distance and phase velocity. The other four solutions are really two
double roots, with Mode II increasing up to the phase velocity of Ui,n'
Mode III, the other double root, increases up to the phase velocity

equal to the acoustic velocity of the electron-ion gas mixture (Up).

Vig Sw SVt Five solutions exist, and Mode I, the single root

solution, can still be neglected due to small e~folding distance. The
double root solution, Mode II, with phase velocity equal to Ui,n is
now the dominart wave mode since the e—~folding distance for Mode III
has decreased significantly. Mode III is a double root solution and

the phase velocity has increased from Up up to V;.

Vo S < wgd Only four possible wave modes exist within this

range. Mode I, the solution neglected in the* previous ranges, can
still be neglected due to small e-folding distance. Mode II, the
double root solution with phase velocity Ui,n’ is just a single root
in this range, and it is the dominant wave mode. Mode III, the other
double root solution, has now split into two separate solutions, but
neither wave solution is significant due to small e-folding distances.
These are Mode III and Mode IV.

w; < W< W s Again five wave solutions exist, and although the

phase velocity has increased tremendously for Mode I, it can still be
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neglected since the e-folding distance is small. Mode II, the double

root solution with phase velocity U , exists, but one wave solution

i,n
has a very small e-folding distance and can be neglected. The other
two roots which exist comnsist of Mode III, whose phase velocity levels
off at the speed of light, and Mode 1V, whose phase velocity approaches
the speed of light. Mode IV can be negleéted due to small e-folding
distance.

w > Wyt Mode I, the dominant wave mode for this range, is
propagating at the acoustic electron velocity (Ue). Mode III and Mode
IV have phase velocities equal to the speed of light. Moﬁe I1, a dogble

root solution with phase velocity Ui n’ also exists, and one wave can
b

be neglected due to small e-folding distance.

B. Propagation at Acute Angle to Magnetic Field Direction (0° < @ < 90%)

All of the modes of propagation for the angles shown in Figures 3

through 12 are quite similar, and therefore, only one case need be

discussed. The case to be considered is 6 = 45°.

w < vt Five wave solutions exist. Mode I, a single root solution,

can be neglected due to extremely small phase velocity and e-folding
distance. Mode II, one double root solution, levels off at phase velocity
Ui a’ while Mode III, the other double root solution, increases in phase

3

velocity to Up.

Vie < w < ven: Same set of solutions exist as in previous range.

Mode I, the single root solution, can still be neglected. Mode II, the
double root solution with phase velocity Ui,n’ is the dominant mode of
propagation. Mode III, the other double root solution, has an increase
in phase velocity from Up to V; and a decrease in e~-folding distance.

Yen < w < wi: Four wave solutions exist, and Mode I, the single




106

root solution, can.still be neglected due to small e-folding distance.

Mode II, the double root solution with phése velocity U , has become

i,n
a single root solution and Has a large decrease in e~folding disfance;
Mode III, the double root solution starting wifh phase #elocity V;, has
.split into two separate solutions which have small e-folding distances.
These are Mode III and IV. 0
W < w < Wt Four wave solutions exist, and Mode I, the single
root solution which has been neglected in all previous ranges, is still
negligible due to small e~-folding distance. Mode II, the single root

solution with phase velocity U s 1s also negligible. Mode IV, the

i,n
solution with phase velocity greater than the speed of light, is also
damped out. Mode III, the only solution that is not damped out, levels
off at phase velocity equal to the speed of light.

w > W Four solutions exist, and Mode I, the single root solution
neglected for w < w,» has leveled off at a phase velocity of Ue' The

Mode II wave with phase velocity of U is damped out. Mode III and

i,n
Mode IV exist with phase velocity equal to the speed of light.

C. Propagation Perpendicular to the Magnetic Field Direction (O = 900)

The wave mode solutions for the case of an applied transverse magnetic
field consist of both the pure transverse wave and the coupled longitudinal
and transverse wave. Figures 13 and 14 present the solutionms.

w = Vit Seven possible wave solutions exist, and si3 of these
are given by three sets of double roots. Mode I, the single root solution,
can be neglected since both the phase velocity and e-folding distance
are small. Mode II, the double root solution which levels off at phase
velocity Ui n? is the most dominant wave mode. The other two sets of

double root solutions, Mode IIT and Mode IV, have-increasing phase velocity
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and decreasing e-folding distance as w increases.

Via < w < Vin? Seven wave solutions exist, and Mode I, the single

root solution, can be neglected in this range. Mode II, the double

root solution with phase velocity U » 18 still the dominant wave mode.

i,n
Mode III, the double root solution which increases in phase velocity
to Up, is also a prominent mode of propagation in this range. Mode IV,
the third double root solution, can be neglected since the e-folding

distance has become quite small.

Vin < w < Vit Only six solutions ekist, and as in the previous

ranges, Mode I is negligible. Mode II, the wave solution with phase
velocity Ui,n’ is a single root solution i~ this range. Mode III, a
double root solution, has an increase in phase velocity from Up to
greater than V;. Mode IV, a double root solution, is still negligible.

Vap S0 < wy Five possible wave mode solutions exist, and Mode I,

the single root solution, is still negligible. Mode IV is the only
double root solution which still exists, but it is negligible. Mode II,
the wave solution with phase velocity Ui,n’ and Mode III, the wave
solution with phase velocity greater than the speed of light, will both
be damped out. But they are more dominant than the other wave modes.

Wy <w <oz Six wave solutions are possible. The Mode II wave

propagating at velocity U becomes a double root solution, but one

i,n

wave can be neglected due to small e-folding distance. Mode I and

Mode IV, the single and double root solutions neglected previously, can

still be neglected due to small e-folding distances. Mode III is dominant.
w >Ame: Five solutions exist. Mode II is the only double root

solution, and one wave solution can be neglected since it is only a

standing wave. Mode II has phase velocity of Ui o’ Mode III, the
H]

solution with phase velocity equal to the speed of light, still exists.
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Mode IV, the double root solution neglected previously, is now a single
root solution with phase velocity equal to the speed of light. Mode I,
the solution which has been neglecfed for all w < Wos exists and has

phase velocity of Ue'

D. Comparison of Results Obtained by Others and the Present Study

Figures 15 through 20 show the phase velocities of the wave solutions
which exist. All other modes of propagation have been neglected due to
extreme damping or some other condition, such as increasing wave ampli-~
tude in constant energy system.

Referring to Figures 15, 16, and 17, a comparison of the results
for the case of longitudinal waves propagating parallel to the magnetic
field can be made. Figure 15 shows the physically possible wave modes
which are not damped out as found by Tanenbaum and Mintzer,l and Tanenbaum
and Meskan.2 Figure 16 shows the results obtained by Dahl and Murphree,3
and Figure 17 shows the results of this study.

for all
n

w = vin: Mode I has phase velocity increasing up to U

i,
three studies. Mode II has phase velocity increasing up to Up for
Tanenbaum's, et al.,l’2 study and Dahl's, et al.,3 study, but increases

to a velocity slightly greater than Up for the present study.

Vip <@ < uys Mode I for all three studies has phase velocity

remaining at Ui 0 Mode II phase velocity remains at Up for Tanenbaum's,
3

et al.,l’2 study and Dahl's, et al.,3 study, but increases up té6 U > Ue
for the present study.

w o Mode I exists in all three studies and the phase velocity

is equal to Ui 0 Mode II exists only in the solution by Dahl, et al.,3

and the phase veloclty 1s still equal to Up'

wy < w < Wyt Mode II phase velocity decreases down to Ui 0’ which
—_— s
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is the same phase velocity as Mode I which still exists. This is true
for all three studies.
w > we: Mode I and Mode II exist for all three studies and have

phase velocity equal to U Also, Mode III exists for all three studies

i,n’
and has phase velocity decreasing down to and leveling off at Ue’ the
acoustic velocity of the electron gas.

Referring to Figures 18, 19, and 20, a comparison can be made of
the results obtained by Tanenbaum and Mintzer,1 McClendon and Murphree,4
and the present study for the case of coupled longitudinal and transverse
waves propagating perpendicular to the magnetic field.

w £ Vint Mode I exists for all three studies and has phase velocity
which increases up to and levels off at U‘,n' Mode II also exists in
all three studies and for Tanenbaum's, et al.,l study the phase velocity
increases from V; up to V;.- For McClendon's, et al.,4 study and the
present study the phase velocity increases up to a value less than Ui 0

v < W< uwg Mode I has phase velocity of U

for all three
in n

i,

studies. Mode II for Tanenbaum's, et al.,1 study has phase velocity

of V;. For McClendon's, et al.,4 study the phase velocity also increases
up to and levels off at V;. For the present study the phase velocity
increases up to V;, but for w; > w > 10, this mode of propagation is
damped out.

W W Mode I still has phase velocity of Ui,n for all three
studies. Mode II phase velocity decreases down to Ui,n for all three
studies.

w, < W< oWz Mode I and Mode II exist for all three studies and

have phase velocity of U Mode III exists only for the present study

i,n’

and has phase velocity which decreases down to and levels off at the

speed of light.
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w > wg* Modes I and II for all three studies still haye phase
velocity of Ui,n' Mode III has phase velocity equal to the speed of
light for the present study. For'Tanenbaum's, et al.,l study and
McClendon's, et al.,4 study, Mode III has phase velocity decreasing
down to and leveling off at the speed of light. Mode IV for all three

studies has phase velocity decreasing down to and leveling off at Ue.
Conclusion

The significance of this study is that the general dispersion
relation considering small amplitude oscillations in a three-fluid
medium has been expanded and solved without any approximations being
made. Prior to this study, no solution, approximate or otherwise, had
been obtained for the general dispersion relation.

With this capability of being able to solve equations of extreme
algebraic complexity, the only obstacle which remains in the way of
adding additional conditions to the original continuity, momentum, and
energy equations is the tedious subsFitution procedure needed to
eliminate all variables until only three equations with three unknowns
remain. Any of the variables could be retained, and in this study, the
three variables were the components of the electron fluid velocity.

With the solution of the general dispersion relation for the
complex wave number, the modes of wave propagation are known for any
condition desired. The real and imaginary parts of the wave number
provide a complete description of the wave propagation by giving the
velocity and damping characteristics of each wave solutionmn.

Round-off error, due to the sources mentionedypreviously, exists
in the results of this study, but most of these inaccuracies can be

eliminated by use of more efficient and accurate computer techniques.
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Figures 15 through 20 show there is very good agreement between the
results of this study and the work done previously by Tanenbaum, et al.,l’2
Dahl, et al.,3 and McClendon, et al.,4 for the solutions which exist and
have large e-folding distances. Exact agreement was not expected since
there was error build-up in the method employed in this study and in
McClendon's, et al.,4 work. Although no error build-up should occur for
the methods employed by Tanenbaum, et al.,1’2 and by Dahl, et al.,3 the
dispersion relation which they solved was an approximation. The equation
used by Dahl, et al.,3 and by Tanenbaum, et al.,l’2 is a third ordered
equation in K-square. The exact dispersion relation is a fourth ordered
equation in K-square and has quite a number of terms more than those
1,2

shown in the dispersion relation used by both Tanenbaum, et al.,

and Dahl, et al.>
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APPENDIX A

The substitution procedure employed in the derivation of the. deter-

minant of the coefficients of V., V_, and V__,
ex’ ey ez

Maxwell's Equations, A
= 1 3H
VXE Y
4 > o 13E
e
VXH c (Nivi - Neve) + ¢c dt
Continuity Equations,
Dp >
——56%45- P i,n v e,i,n
Momentum Equations,
DY Txa v
et BeEy_ 2, F -T)
Dt n c o) el e i
e e
. N Y
- en(ve - Vn)
v ?bxéi VP
bV H A
i_ e ,= i i >
Dt m (£ + c o} - vie(vi - Ve)
i i
N N
VitV - V)
DV VP -~ N S N
Dt =T p - ne(vn e) - Vni(vn - Vi)
Ideal Gas Law,
P N Y, = CONSTANT
e,i,n e,i,n
Now consider small perturbation,
Y Yy N - PN
E = E' H=H +h
T T P OP +
e,i,n e,i,n e,i o Pe,i
Nn = Nl + n, Pn = Pl + P,
N ,1 - No + ne,i



133

also, -8—--—-—=0

Now, Maxwell's Equations,

- _ ._\' _ }__ _3_ Y 2
VXE = VXE' = e 3t (H° + h)
> 1 2h
T - = °-
. VXE c 5t
aEzA 3E_ 13 . .
(- e 5 + —sz k) = - T (hxi + hyj + hzk)
(1) ahx - o
at
1 dh aEz
(2) T3t x
1 th 9E
(3 -Tw "=
S Y _ ﬂg —>' _ A'
vx(no + h) = 2 {(No + ni)vi (No + ne)ve]
1 3E
PN
4meN =
- 0 LT 1 3E’'
(VXES c (vi Ve) + c ot
ahZA oh_ 41TeNo R
- — __z.k = LI 4 | T _ oy
( X + ox ) c [(Vix Vex)i + (Viy Vey)

~ ~ 1 3 ~ ~ ~
' - ' = rs 1 1
j+ (viz Vez)k] + 2 at[Exl + EyJ + Ezk]

\}
(4) 4meN_(Vi - V1) + %}zﬁ =0
3E' oh
(5) 41TeNo(Viy - Véy) + 3'2}1 + c’a'x_z =0
3E' 3h
(6) 41reN0 (V:;.z - V:az) + Ft—i - ca_xz =0

Continuity Equations,
3 T . -
ot [m (N + ne)] + V. ¢ V[m (¥ + ne)]
-
~-m (N +n)v V'
e o e e

- N (V. V")
n =T WSVt Ve
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on
—& . _ .
ot No(V Ve)
ani N
—— T — L '
ot No(V Vi)
ann A
———— NS == ] v
at Nl(v Vn)
)
7 Bne N 8Vex
ot o 9X
L4
@ M YVix
ot o X
1
@ o
ot 13X
Momentum Equations,
vt ~ _. s V' X#H +h
st Ve Wemg [EB'+S—2—1
e
V(Po + pe) A > S
-——— e . r _ - - ]
m (N +n) vei(ve Vi) en(ve vn)
e o e
_;' A' -
v > V.XH Vp N S Y B
e = —& ] e o} - e _ T gty - [ 1 ]
e o
3_ v 3 v 3 ' = - & 12 12 v
o [Vexi + Veyj + vezfc] n [(Exl + Eyj + Ezﬁ)
(Vé H z vézHo ) . (V'zHox B VéxHoz) 2
+ y © y i+ e j
c c
' -yt
+ (VexHoy VeyHox)r] _ l;_ape H
c h p_ o
e
- [T Y B Tyt VY v v L
Voi [(vex Vix)i + (vey Viy)J + (vez V_iz)k]
- T _ oy )E r _ yg' V3 1 _ v' Yo
Ven [(Vex an)i + (Vey an)j + (vez Vnz)k]
av! op
€X & oy 1. I 1 e
(10) 5t T m, [Ex + c(veyHoz VezHoy)] + meNo aX
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t ot [ ¢4 } =
+ veicvex Vix) + ven(vex an) 0

?
(11) —91+§—[E}',+1(V'H - V' H )]
e

at c ez ox ex oz
] - ' ' - ' =
+ vei(Vey Viy) + \)en(Vey Vny) 0
: 1
ez . e rpv Loy -y
(12) at + m, [Ez + c(vexHoy VeyHoz)]
] -— * ' - ! =
+ vei(vez Viz) + ven(vez Vnz) 0
Likewise,
v} ap
ix e ' gy -y I S
(13) ot m, [Ex + c(vinoz VizHoy)] + m,N 93X
io
r T _ oyt =
+ vie(vix Vex) + vin(vix an) 0
aviz e 1
— —_— 1 et - 1 1 - ]
(14) ot m, [Ey + c(vizHox vixHoz)] + vie(viy Yey)
] - ] =
+ \)in(Viy vny) 0
BViz e 1
- — ' =(v! - v! L 7 4 |
(15) ot m, [Ez + c(vixHoy Vinox)] + vie(viz Vez)
1 _ oyt =
+ vin(viz Vnz) 0
av;nx 1 apn
. r _u! | ' =
(16) ot- + man oX + Vne(vnx Vex) + vni(vnx Vix) 0
av;
! 1 - L L — \ =
(17) 5T + vne(Vny Vey) + vni(Vny Viy) 0
' N .
nz v _ gt v =
(18) ot + vne(vnz Vez) + vni(vnz Viz) 0

Using the relationship,
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And considering the form of the solution to be,

The eighteen equations now have the form,-

(1)

(3)
(5
(6)
(7)

(10)

(11)
(12)

(13)

(14)
(15)
(16)

an

(18)

h =0
X
h = nE
z y
4reN i
E = 2
v w(1l-n2)
bueN i
E = 2
z w(1-n2)
kN
o
n =—
e w o ex
(v - 1w)Vex
iUinek
+ N 0
o
v - 1w)Vey
(v - 1w)Vez
(v. - 1w)Vix
iUgnik
+ N =0
o
(vi 1w)Vi
(\)i 1w)Viz
(vn 1w)an
(v - 1w)Vny

(v

éi(KX - wt)

(8)

v ,V,
ei ix

v .V,
ei' iy
v .V,
el iz

v, V
l1e eXxX

v, V
ie ey
v, V
ie ez
v V
ne ex
v V
ne ey

v _V
ne ez

(2) h = -nEz
hﬂeNoi
(4) = __Zr——-(vex - Vix)
kN
n, =—2vy 9) n
i ix n
wV  + > E
en nx T ez me X
eE
vV w. V +—L =0
en ny L ez m,
eEz
v _V wV - wV + —
en nz T ex Ley m
) ek
v, V Ly, =X
in nx m iz m,
i
wL ek
v, V —v, -—L=0
in ny m iz mi
WLV, w. V., eE
v, V T ix + Liy _ z
in nz m m m,
i
iUﬁnnk
v .,V = 0
.V, N
ni ix 1
v_ .V, 0
ni iy
v_.V, 0
ni'iz



Now, put in the

obtain,

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

values of E (Eqs. 4,5,&6) and n, 4 (Eqs. 7,8,&9) and
14 .

1U§k2 1w§
( +— 4+ v - iw)V -v vV
w w e ex en nx
iwi
- (vei + w )Vix wTvez =0
imz iw?

-v VvV w, V = 0
en ny L ez
iwz iwg
(v 1w + (1 n2)) ez (vei w(l—nz)) iz venvnz
+ mTVex - mLVey =0
iv2k2 iw? iw?
(——+—2 4+ v, —d0)V, -6, +—)V
w w i ix w ’ ex
w
- v,V + -E'V. =0
in nx m iz
iw? iw?
¢ L + v iw)V, - ( = YV
w(1-n2) i i ie w(l-n2)‘ ey
w
—v, V. _-=Lv =0
in ny m iz
iw% 1mi
(w(l—nz) LA 1w)v1 - (vle w(l—nz))vez
w w
—v, V. -—Lvy _+-2y _=0
in nz m ix m iy
1U§k2
( +v 4wV =-v V_ -V V, =
w nx ne ex ni ix
(v - iw)V - v Vv - V. =0
ny ~ ne ey ni'iy
(v —1iw)V ~-v V =-v .V, =0
n nz ni iz

ne ez

Now solve equation (16) for an, equation (17) for vny’ and equation

(18) for Vnz’

(16a)

Vo =22

137
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(17a) V == (_V__+v .V )

1w
(18a) v, = Y (vneVez + vniviz)

Put equation (16a) into equation (10) and solve for Vi, w2

v
U2k2 - w2 + @2 - —SB ne
~-iw € e Y2 .
v = T ( 1
ix w venvni w
w? - iwv +
e ei Y2
+ v )Ve wTvez]
c 1ww,
(10a) Vv, =->V _+—V
x c; ex <y ez
Put equation (17a) into equation (11) and solve for V_ ,
iy
- -iw (
iy - w? 2 A v o
e en ni fwy
(1-n%) Yy ei
1m§ iwvenvne ©
+ w(l-n ) Y )Vey Lvez}
c iww
(1) V= - ?6- v, - Ly
y 2 y D)
Put equation (18a) into equation (12) and solve for Viz’
—-iw
Viz Tl w? wév v, wTVex wLVey
e + enni _ .
(1-n°) Y, ei
w2 w2v v
e en ne 2
ey
+ (v + 1 (1-n?) Y1 )y v
w ez
c6 iww 1ww
(12a) Viz = - C—— Ve2 - i X + Y
2 € © 2 %Y
Put equations (10a), (16a), and (12a) into equation (13),
iwi iUzikz ce fwe
(v, ~iw+——+——) (-—V__ + vV )
i w w c, ex cy ez

1



1w? w c fww iww
-, +—Dy _+L(-Lby Iy
ie w ex m c, ez c, ex ey
c iww,
-v 1 v v oty -2V _+—Ev )b =0
in | v ne ex ni c, ex c, ez
[ 2,2 2
CgCy  Cy wwn wéwp W,
(13a) T e '+'§_ + me ex  mc e
1 2 2 y
L.
[ fwwc iww,c
+ T°3 _ mT 6 v .- 0
¢y c, e
L.
Put equations (1lla), (12a), and (17a) into equation (14),
iw2 _ c iww
y - dw+—Et—) -2V - —Ev )
w(1-n2) 2 ¥ %
iw? w c iww, ivw
- (vie + - ) Ve - EE - Eé'v z . Vex t . )
w(1-02) y 5 © c, ex 2 ey
imvne iwv o e iww
-V (- — - vl =0
in Yi ey Y1 c, ey c, ez
2 2,2
wew_ 0 c c,c wew
(148) (__LT.)V +(_._2__6_4+__L.)V
mc, ex m c, me, ey
iww, ¢
+—L L -cHv =0
c, m 4 ez

{w?2 c iww iow
(vi - de 4 : ) (- Eg Vez T e . Vei + - - Ve
w(1-n?) 2 2 2 &
10?2 w, c iww,
- (vie + : ) Vez - E;' - Ei Vex + . Vez)
w(1-n?) 1 1
w, c iww iwv_ v
L L i
H R ) - e,
2 y 2 Y1
iwv, v c 1w iww,
in ni (- _6 v - T v o+ Ly )y =0
Y1 c, ez ¢y ex c, ey
N c5 c4 ime c6
15a 1w —— - —) V + -—) Vv
( ) ( W (mcl cz) ex ( c,y ) (c4 m ) ey
2,2 2,2
c c.c wew wew
+ 2.8ty Ly Ty oo

m Cz mc2 mcl ez
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The original set of eiéhteen equations containing eighteen unknowns
has now been combined into three equations with three unknowns. Equatiomns
(13a), (14a), and (lSa) are three coupled equations for Vex’ Vey’ anq;

V _. In matrix form these equations are given by,

ez
Al A Agp Vex
By By Ay Vey | =0
A1 Ay Ay Vez
Where, -
¢ cge;  wluf
All =2 " e YTmc
1 2
2
A = LT
12 me,
c c
3 6
A, = iow, (- —)
13 T cl mc2
2
N e |
21 me,
2,.2
¢, e wiul
A22 - m ¢ + mc
2 2
10w c
- L __6
A23 - c (C4 )
2
c c
5 4
A, = luw, —— - —)
31 T me, <y
A _ 1 W (c _ f_6_
32 c, 4 m
2,.2 2,2
c c,C wWow. W™ w,
A, =(2-26,_ L, T

33 m <, mc, mey
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APPENDIX B

The dispersion relation in terms of the C's is obtained by
expanding the determinant derived in Appendix A. This is the deter-
minant of the coefficients of V., V , and V_ ., and to have a non-

ex’ ‘ey ez

trivial solution the value of the determinant must be zero.

Ajp Ay Ay
Ay Ay Al L
Azp A3y Ay
2 2
Ayphog(Aay=hyg) + Ajy (A)1AgsmAgAg,) + AjaArs = Agghyy = 0

1st TERM,
c c c c
5 4 3 6
(A,,-A..) = iww, [—-———]— 1 ww [————]
31 713 T me, ¢y T ¢y me,
c c c c
- L, [L _6___4___3]
me; me, ¢, ¢
—w?-wTwL ~iww, ce
A12A23 = ( me ) ( c ) (c4 - ;1—)
2 2
c c
= 3,2 4 _ "6
(1w w LwT) [m > 5 ]
c; mc;
3 2 €4 6
A ghy3(Agy-Ay9) = (Lewp) (Hw w? wr) [ 7" 232 ]
me m e
2 2
I
me, me, ¢, ¢
c,c c,c c c.c
o a2 2 475 46 "4 374
= -wietply [ 2 2T 23
m“c;e, m'e; me; me,c)
2
c.c c c,c c.c
_%% % %% 3%
m3c c2 m3c3 mzc3 m2c c2
172 2 2 172
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2
c c.c 2¢,c
- 4 2 2 6 576 476
w Wy [3 3t 3 3 23
mc2 mclcz 02

2
c,C c,C (o4 c,C
4557%3% . ©4 3%
t—m—  t—3 ¢+ 2 ]
m Clcz mc2 mclcz

2nd TERM,
- 2,.2 2,2 2,2
¢y c3c5 Wy <, %6 wwp Wy
A11A33 m c + mc m ¢ + me + mc
R 1 2 2 2 1
r 2,.2 2,.2 2.2
o) €1¢4% c wwsy . wwy, ¢,CaCg Wy
= +
2 mc 2 2 mc 2
B 2 m c2 m 1 m
2,2 L, 2,2 L oL
€3€,C5C¢ CqCswiwy C5Csw wy ) C,CW WT N w* wpwr . wwy
°1°2 mclc2 mc2 mc2 m2c2 mc,c
1 2 2 172
c c c c
3 6 5 4
-A__A =2 - (iow,,) [————:, (1ww.,) [—-—-—]
13731 T cy me, T mc, ¢,y
- 43¢y ¢3¢, CsCe c4c6
= 0w - - +
T 2 clc2 2 2
mey mc,c, me,
2 2,.2
(A.A A A) = c3c4c5c6 w ch3c4 N c1c2+2w Wy
11733 713731 c,cC 2
172 m
2,2 L 2 .2 2,72
) C,CaCc ) €1¢,4C6 . wurey . wrwzwr _ w ch3c5
me me 2 22 mc, ¢
1 2 mc mc 172
2 2
b 42 2
0w ch5c6
+
m2c c
172
2,, 022 2,2 y 2 2
o h ok A = c1c2+2w ch2+2w chl N 3w WL
22711733 13731 3 3
_ m mc,
2 .2 4 b_, 2 2 4oL 6.4 2
) w ch3c4 . w wT w ch5c6 . w chl . w meT ) 2clc4c6
me, m3c m3c3 m3c3 m2
1 2 2
- 2,2 2,2
. 2w W C4C5=CyCaCy 2w w3, Ce ) 2w Wyey¢,Ce
m2 m2c 2 2
¢y 2 mc,
6, by 2, b2, 2 4,2 2 2 2
. WO wpwr=w wTchsc6 ) wlugwre, co N ¢1¢4%6
3 2 m2 3 2
m ¢, ¢, <, me,
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2,2 2_ 4 b o b4
w ch4c5c6 w mTc4c6 w ch3c5 . 2c3c4c5c6
<

+
mzc1 mey
2,2 202 2,2, 2, _ 2 2
. 2w WFC4C,CeCew WRWI CaCy . WEWFC4C, Ce=CaC, CeCe
2 2
me, ¢, ¢y
3rd TERM, _— 9
2 €1 C3% WY 2| % S
A11A23 [m cl + mc, (iwwL) c, me,
2.2 2 2
- ) 2) 1 C4Cq . wewq Eﬁ._ 2c4c6 . Ce
i R ™ c, | me, 2" 2 T 22
2 ) 2
2.2, 2 y 2 2 2 2,2
} ] w ch1c6 ) w meLc6 . 2w mLc1c4c6
32 33 2 2
m~c, m c, m"c,
b 2 2 2 2 2 2.2 2
. 2w wLch4c6 N w ch3c5c6 ) wiwre,c,
23 S 2 2 2
m”c, m”e,c, mc,
4 2 2 2 2 2 2.2 2
) ) wTch4 _ 2w Wy €4C,CaCe N wiwre,c,ce ]
3 2 2
me, me, c, c ¢y
4th TERM,
'2 c2 c4c6 wzwi mzw% —wzmeL 2
-A33A12 N N + me + me. ( me )
2 2 1 2
whww? wbuwHw?  whwHw? wwwle, ¢
S Dt Al i e s ARG 4 A S
mc m c3 m3c c2 mzc3
2 2 172 2

Combine all terms and multiply by (m3 ¢y cg),

DISPERSION RELATION

2m2 2 c _ .3, 2 - m -
€yC3C4C5Cc ~ M C4C,CaCc CyCqCs

222 2 2 2 32 2 2 2
- 2mw ch2c3c5 + mw mLc3c5c6 f m W ch3c4c5 + 2w Wl €465
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APPENDIX C

Once the wave number k has been obtained for given w, then the

values for Vex’ V. ., and Vez are known for any given time and position.

ey

To determine the values for the other parameters (hx, hy, h_, Ex‘ Ey,

Ez, Ne,i,n’ Vix’ Viy’ viz' Voo vny’ Vnz)’ the following relations
are used,
-kix
v =V e CoS (k_x~-wt)
ex ex o r
—kix
Vey = Vey o © COS(er—mt)
—kix
Vez = Vez o © COS(er—wt)
c5 iwa
Vixs—c_ ex+ c ez
1l 1
c 1ww.
Vi = Eg Ve - c - Vez
y 2 y )
c iww iww
Viz = -2 Vez * ¢ =V, - c v x
c, e 2 ey 2 e
vo=de [ 55, LM ]
nx Yy Yne = ex ey ezJ
.o T c 1w ]
v =_'-59. (Y __.é.v — LV
ny Yy . ne ¢, ey cy ez
" i 06 iwwL iwa
V. =22 Iy -DvVv _ + - v
nz Y, L ne cy ez ¢, ey ¢, ex
i4neNo
E = w -V,)
X m(l—nz) ex ix
i4ﬂeNo
E = w -V,)
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APPENDIX D

LISTING OF FORMAC EXPANSION PROGRAM
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DISREL: PROC OPTIONS(MAIN)}
FORMACZOPTIONS

OPTSET(PRINT) }
OPTSET(EXPND: LINELENGTH=120) 3
DCL SYSPNCH QUTPUT STREAM FILES
DCLAL)ME»MIoNErNNeNIeMeMSQeMCU) FLOAT DECIMALG
ON ENDFILE(SYSIN) GO TO QUIT;
READS GET DATA
/%*ROUTINE TO CHANGE TO APPROPRIATE UNITS OF TIME AND LENGTH*/
IF FACTIME=0 THEN GO TO SAME}
IF FACTIME=1 THEN 60 TO DESI?
IF FACTIME=2 THEN GO TO CENTI:
IF FACTIME=3 THEN GO TOQO MILLI:;
IF FACTIME=4 THEN GO TO MINUSHY;
IF FACTIME=5 THEN GO TO MINUSS5;
IF FACTIME=6 THEN GO TO MICRO}
IF FACTIME=7 THEN GO TO MINUS7:
IF FACTIME=8 THEN GO TO MINUSS;
IF FACTIME=9 THEN GO TO MINUS9;
IF FACTIME=10 THEN GO TO MINUS10:#

DESI: WSw*1le0E=1li WESWE*1.0E~1; WI=wWIx1,0E-13
VEISVEI#*1.0E=1% VEN=VEN*1+0E=1; VINS=VIN*1.0E-1}
VNISVNI*140E=1% UE=UE*1.0E=13 UI=UI*1.0E~1% UNSUN*1.0E=-1}
CL=CL*1.0E=1;

GO TO SAME:

CENTIS W=w*1e0E=2; WE=WE*1.0E=2; WI=WI%1,0E=2i}
VEISVEI*1+.0E~2¢ VENSVEN*1.0E=2; VIN=VIN*1.0E=-2 i
VNISVNI*Le0E=2# UESUE*140E=2; UISUI*1.0E~2: UNZ=UN*1.Q0E=2}
CL=CL*1.,0E=2}

GO0 TO SAME;

MILLIS W=W*1e0E~3; WE=WE*1.0E=33 WI=WI*1,0E-37}
VEIZSVEIx140E=3¢ VENSVEN*1.0E=3; VIN=VIN*1.0E=3;
UNISVNI*1e0E=33 UE=UE*1e0E=3} UISUI*1.0E=3; UNZUN*1.0E=3}
CL=CL*1.0E~3}

GO TO SAME:

MINUSY :W=W*1e0E=~4; WE=WEX*1+0E=4} WI=WIx1,0E-47
VEISVEI*1le0FE~43 VEN=VEN*1e0E~4; VIN=VIN*leOE=4}
VNISVNI*1e0E=4% UESUE*1eOE=43 UISUI*Lle0E=4: UNZUN*1e0E~4#
CL=CL*1,0E=43 :

GO TO SAME;

MINUSS:W=w*1e0E=5; WE=WE*1,0E=5; WI=WI*1.,0E=5}
VEISVEI*1.0E=5¢ VEN=VEN*1.0E=5; VIN=VIN*1.0E~5;
VNISVNI*1e0E=5¢ UESUE*140E=57 UISUI*1.0E=5¢ UNZUN*1.0E-5}?
CL=CL*1,0E=5;

GO TO SAME;

MICRO: W=W*1.0E=6; WE=WE*1.0E=6; WI=WIx1l,0E=6}
VEISVEI*1.0E=6% VEN=VEN*1.0E=6; VIN=VIN*1.0E-67
VNISVNI*1.0E~6% UEZUE*1.0E=~63 UISUI*1.0E=67 UN=UN*1.0E=67
CL=CL*1.0E~6}

GO TO SAME:;
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MINUS7: wW=WX1.0E-73 WESWE*1.0E=7; WISWI*1.0E-73
VEISVEI*1.0E~77 VENSVEN*1e0E=7; VINSVIN*1,0E=73
VNISVNI*140E=7% UEZUE*1.0E=7; UI=UL*].,0E<7; UNSUN*1«QE=~73
CL=CL*1.,0E-~7}

GO TO SAME;:
MINUSB: W=W*1l.0E-87 WE=WE*1-OE-8= WI=WIxl.0E~-8}
© VEISVEI*1.0E~8% VENSVEN*1.0E=~8; VIN=VIN*1.0E-83; .
VNISVNI*1e0E~8) UESUE*1.0E=8;7 UI=UI*1,0E=8; UNZ=UN*1e.0E=83
CL=CL#»1.,0E-8}
GO TO SAME;

MINUSY9: W=W*1e0E-9F WESWE*1.0E~9; WI=WIx*1.0E=9;}
VEISVEI*1.0E=9F VEN=VEN*1.0E=9; VINSVIN*1,0E=-O;
VNIZSVNI*1.0E=9i UESUE*1,0E=-93 UI=UI*1,0E=9; UN=UN*].0E-9i
CL=CL*1.,0E~9}

GO TO SAME:

MINUS10: W=W*1le0E=10} WE=WE*1,0E-10/ WI=wI*1.0E~10;
VEISVEI*1.E~10/ VENSVEN*1+0E=1(¢i VIN=VIN*1,0E=10;
VNISVUNI*1.0E10¢ UEZUE*1.,0E=-10; UI=UIx1,0E~10;
UN=UN%*1,0E-~10; CL=CL#*1,0E~10;

SAME IF FACLEN=0 THEN GO TO OKAYi
IF FACLEN==1 THEN GO TO P10
IF FACLEN==2 THEN GO TO P1003
IF FACLEN=~3 THEN GO TO P100O0?
IF FACLEN=1 THEN GO TO M103
IF FACLEN=2 THEN GO TO M1003%
IF FACLEN=3 THEN GO TO KM
IF FACLEN=4 THEN GO TO M10TO4:
IF FACLEN=5 THEN GO TO M10TO5:
IF FACLEN=6 THEN GO TO MEGAF

P10: UESUE*1,0£01; UI=UI*1.0EQ01; UNSUN%1.0£013%
CL=CL*1.,0E01
GO TO OKAY:?

P1002 UESUE*1.0c£02 UISUI*1.0E02¢ UNzZUN*®1.0E023
CL=CL*1.,0E02;

GO TO OKAY;

P1000: UE=UE*1+,0E03% UI=UI*1+0E037 UN=UN*1,0E03}%

CL=CL*1.0E03; '

GO TO OKAY:
Mi0: UEZUE*1e0E=17 UIZUI*1+s0£-17 UNSUN*1,0E~173
CL=CL*1.0E=17 :
GO TO OKAY: : "
M1i002 UESUE*1e(E=23 UISUI¥1¢0E=2} UN=UN*1.0E=2}
CL=CL*1,0E=2:}
GO TO OKAY}

KM? UESUE*L1QE=37 UIZUI*1e0E=~37 UN=UN*®1l.0E~3}
CL=CL*1.,0E-~3} :
G0 TO OKAY:

M1O0TOL4: UE=ZUE*1+0E=43 UISUIX1e0E=4i UNSUNX1,0E=-47
CL=CL*1.0E=-47+
GO TO OKAY;
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M10TO5: UESUE*1+0E=~5¢

UI=UI*1+0E
CL=CL*1,0E=-5%
GO TO OKAY; .
. MEGA: UESUE*1.0E-6¢% UI=UI*1.0F

CL=CL*1.0E-6/ _
OKAY: /% CHANGING PL/1 VARIABL
LET( WESHWEmiWI=nwWIn;UN=RUNHN
VEN=uVENR 3 VEI=SRVEIR; VIN
ME=oMERIMIZAMIRi H=oHR; C
NESHNER s NNSRNNR) §

BASIC EQUATIONS NEEDED 7O R

LET( NI = Ng# M=MI/ME}

VIE =(VEIXNE)/ (M*NI)?}
VE =VEI+VEN: VI=VIE+VI
UESQzUE**27 UISQSUI*x2
WESQSWE*%23} WISQ=WIxx%
MSQ=M*%2;  MCUSM%x3i
WTQU=WTSQ*x*2¢ WLSCO=WL*
WSQTWk*2} WCUSWxWSG s
W2WT2= WSQ*WTSQ:
wewL2 WSQ * wlLSQ
WUWTH WeWT2%%x23
wiwbLy WaWL2%%2}
WAWTL2 = WQUAD*WTSQ*WLS

VIE ARITH(VIE) }

VNE ARITH(VNE) ;

NI = ARITH{(NI)#

/* PRINT OUT BASIC FIELD PARAM

/*

-53 UNSUN*1.0E=-5}

-6 UNSUN*1,.0E=-6}

£S TO FORMAC VARIABLES x/

jUI=snUIR; UESHUER s W=nwn 3

SHVINR; YNI=RYNIRG

E=rCeEn;CL=nCLA;

UN PROGRAM EFFICIENTLY =x/
VNE = (VEN*NE)/ (M*NN) 3

N?  VN=VNE+VNI;

P UNSQ=UN*X2:

29 CLSQ=CLx%*2;
WTSQ=WT*%x24

*¥23  WLQU=WLSQ**23
WQUAD=WSQ* %2}

Q)

ETERS AND INPUT DATA %/

PUT LIST('COMPLETE THREE-=FLUID THEOQRY DISPERSION EQUATION')

PAGE

PUT EDIT(YMAGNETIC FIELD STRENGTH=t»H» 'WEBERS PER SQ. METER?)

(SKIP(B)rAPE(L12e5)0A) 4
PUT EDIT('PLASMA FREQUENCY OF
E(12:5))
PUT EDIT('PLASMA FREQUENCY OF
E(12¢5))3
PUT EDIT('COLLISION FREQUENCY
(SKIP(1l)rAeE(12¢5))i
PUT EDIT('COLLISION FREQUENCY
VEN) (SKIP(1)rA»E(12,5))3
PUT EDIT('COLLISION FREQUENCY
(SKIP(1)rAsE(12:5))4
EDIT('COLLISION FREQUENCY
(SKIP(1)rAsE(L12¢B))
EDIT('COLLISION FREQUENCY
VNE) (SKIP(1)rArE(12,5)):
EDIT('COLLISION FREQUENCY
(SKIP(1)rArE(12,5))3%
EDIT('ELECTRON SOUND VELOCITY
(SKIP(1)rAvE(L12,5)eA)i

ELE
Ion
OF
OF
OF
PUT OF
PUT OF
PUT OF

PUT

CTRONS = 'oWE) (SKIP(1l)sA»
5 = tyWI) (SKIP(1)»A»
CLECTRONS WITH IONS=,VEI)

ELECTRONS WITH NEUTRALS =ve
1ONS WITH ELECTRONS=*»VIE)
IONS WITH NEUTRALS Z0eVIND
NEUTRALS WITH ELECTRONS =1»

NEUTRALS WITH IONS =0eVNI)

"yUEs»» METERS/SECOND®)
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PUT EDIT('ION SOUND VELOCITY = 'yUIs* METERS/SECOND?)
(SKIP(1)rAvE(12¢5)0A)3
PUT EDIT(*NEUTRAL SOUND VELOCITY = *eUNet METERS/SECOND')
(SKIP(1)rA'E(12¢5)0A) :
PUT EDIT('ELECTRON NUMBER DENSITY =*+NE» *NUMBER PER CUBIC
METER') (SKIP(1)rAeE(L12:5)9A) i _
PUT EDIT(*ION NUMBER DENSITY=t**NI,*NUMBER PER CUBIC METER?)
(SKIP(L)rArE(12¢5)sA)}
PUT EDIT('NEUTRAL NUMBER DENSITY =% NNy '*NUMBER PER CuBIC
METER?') (SKIP(1)eArE(12,5)rA)}
/% RELATIONS TO SHORTEN RUN TIME %/
LET( SUBL1 = WISQ*VN: SUB2 = WESQ*VNS
SUB3 = VE + VN3 SUBy = VI + VyNi?

SuUBS = (VE*VN)=(VEN*VNE) 3
SUB6 = (VI®*YN)=(VIN%VNI) 3
SUB7 = (VEIxVN)+(VEN*VNI)
SUB8. = WCU*CLSQ SuUZ9 = WQUAD*CLSQ )3

/% OBTAIN EQUATIONS FOR JUST THE NUMERATORS OF THE C'S
SINCE THE DENOMINATOR WILL Bg MULTIPLIED OUT IN THE
FINAL DISPERSION RELATIONe THE FORM OF THE EQUATION
IS AS FOLLOWS:

C(I) = A(I)*K**4 + B(I)*K**x2 + D(I) */
LETC¢ A(L) = 0.0 3
A(2) = 0.0%
A(3) = UISQ*UNSQO
AlY4) = 0,07
A(S5) = UESQ*UNSQ3?
Al6) = 0.0
B(1l) = ~(WESQ*UNSQ) *+ (HI*WxVEIxUNSQ) L
B(2) = =(wSQ*CLS@*SUB7) + (HIxwCU*CLSQ*VEI) ¥
B(3)=(WISQ*UNSQ) =WSQx (UNSQ+UISQ)~(HI*W)* (VN*UISQ+
VI*UNSQ) i
Bl4) = (WSQ*CLSQ*SUB6)=(SUB9)=(HI*xSUB8*SUBY) }
B(5)=(WESQ*UNSQ) ~WSQ* {UNSQ+UESQ) = (HI*W) * (VNXUESQ+
VE*UNSQ) ¢

B(6) = (WSQ@*CLSQ*SUBS)=(SUB9)=(H#I*SUB8*SUB3)
p(1) WSA* (WESQ+SUB7T)+ #HI*x(wWxSUB2-WCU*VEI) 3
D(2) = wsa* D(1)
D(3)=WAUAD=WSA*x (WISQ+SUBs)+ #Ix
(WCU*SUB4=WkWISQ*VN) 3
D(4) = WSQ * D(3)
D(5)=WQUAD-WSA*x (WESQ+SUBs )+ HIx
(WCUXSUB3=WXWESQ*VN) $
D(6) = WS@ * D(5) )}
/% DENOMINATORS FOR C'S %/
LET( CDEM(1) = (=UNSQ*K*%2) + (WSQ+HI*W*YN) 3}
COEM(2) =(~WSQ*CLSQ-HI*WACLSQ*VN) xK#%2 +
(WGUAD+HI*WCUXVN) ;
CDEM(3) = CDEM(1)
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EQS:

/%

LETH(

ATOMIZE(
END

/*k

CDEM(4)
CDEM(5)
CDEM(6)

EQUATIONS FOR C'S WITH uUST THE NUMERATOR
DO I=1- TO 6 BY 1 ;
ACI)*Kx%:; + 8(I)xK**¥2 + DAI)
gli)s

ciI)
ACI);

EQS:

CDEM(2)

CDEM(1) 3

CLDEM(2) )3

*/

i LET{I=nIn); :
)3

o) )i

PREPARING TO OBTAIN EACH TERM OF DISPERSION RELATION
AS FUNCTION OF WewTreg wh.

COLLECTING LIKE QUANTITIES

In EACH TtRM TO MAKE PROGRAM MQRE EFFICIENT. *,
LET( C1SQ = C(1)**2; C25Q = C(2) x%23
CU4SQ = C(4) %23 C65Q = Clo) x%k2}
ClC2 = C(1L)xC(2)7 C3Cy = C(3)xCc(y);
C3C5 = C(3)xC(5): C3C6 = C(3)xC(B)}
C4CH = C(4)*C(B)3 CUHCd = C(u)*C(n);
' cucas@ = CY4Coxx2} ChCod = C(51%Cle)i
C2QU = C25Q%%23 CiLCed = CDEmM(L1) *CLEM(2)
C20SQ = CDEM(2)*%2; C1DC2DCyY = CLDC2D*C2DsQ
CiC2Dsaq = C1DC2D*#*23 C2DGUAD = C205@*%2 )i
/% INDIVIDUAL TERMS OF DISPEKSION RELATION %/
LET( TERM(1) = 2.0xMSQ*C2S@*xC3CHxCuCe #
TERM(2) = MCUxC3C5*%C4Ceos50
TERM(3) = M*C2QU*C3C5
TERM(4) = 2.0%xM*C15Q*C250*CyCe ¢
TERM(5) = MSQO*CLlSQ*CHCHSA
TERM(6) = C15@*C2aU
TERM(7) = 2.,0*%W2WT2%C1C2*xC25@xC10C2D0
TERM(8) = W2WT2*xC2SQ*C5¢6*xC1DCc2p  #
TERM(9) = MxW2WT2%C4Ce6*C5CH6*CL1DC2D
TERM(1G) = MSU*W2WT2*C25Q*%C3CyxCibDc2l 3
TERM(11) = 2+0*%M*W2wT2%C1C2%CyCa*CIDC2D
TERM(12) = MCUkW2WT2*C3Cu4*xCuCe*Cc1DC20
TERM{L1Z) = 2+0xW2WL2*C15a0*C25@*C2DSQ  #
TERM(14) = W2wWL2*ClSU*Cu5Q*C2DSqQ  #
TERM(L1E) = MSQ*W2wL2*C1s5a*xCuSaxc20sq@)
LET( TERM(1le) = 20*Mxw2al2%C250%C3CHxC205Q ¢
TERM(17) = M*W2WL2*C3CHxCO6SQ*CeDSQ  +#
TERM(18) = MCU*W2WL2*C3C4*CHCs5*C2DSQ ¥
TERM{19) = 2.0*%W4WTL2%CiC2*ClpC2DCU ¢
TERM(20) = M*WuwWTL24C4Cs*C1DC2DCU
TERM(21) = M*W4WTL2%C3Cp*xClDC2DCU 3
TERM(22) = W4WT4*C25Q*C1C20sQ
TERM(23) = M*WuWTu4*C4CexC1lC2D5q +
TERM(24) = W4wL4*xClsQxC20QUAD
TERM(25) = M*wWywLuxC3C5xC2DQUAD )

/% ATOMIZING VARIABLES NO LONGER NEEDED.

*/

ATOMIZE(C15Q7C2S@iIC4SQ#CeSAiC1C2iCACHICICSiCICHICUHCSICUCH?
CuCcoese;CuCe;C20UsCIDC2DC2DSE; CADC2DCY ClCEDSGv

C20QUAD) ¢
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/% DETERMINING CYCLOTRON FREQUENCY OF ELECTRON FOR USE IN
VARYING PROPAGATION DIRECTION RELATIVE TO MAGNETIC

FIELD, */
WC = (CE*H)/ME

/% THE FOLLOWING CHANGES WC' TO CORRECT UNITS OF TIME

IF FACTIME=0 THEN
ELSE IF FACTIME=1
ELSE IF FACTIME=2
ELSE IF FACTIME=3
ELSE IF FACTIME=H
ELSE IF FACTIME=5
ELSE IF FACTIME=®
ELSE IF FACTIME=?
ELSE IF FACTIME=8
ELSE IF FACTIME=9

}

WC=W
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

/% H IN WEBERS PER SQ. METER

Cs
WC=WC*1.,0E=1}
WC=WC*1.0E=2}
WC=WC*1,0E-33
WCZWC*1.0E~U4}
WC=WC*1,0E=5}
WC=WC*1,0E=6;
WCSWC*1,0E~73
WCSWC*1l.0E=83
WCZWC*1,0E-93

ELSE IF FACTIME=10 THEN WC=wCx1.0E=-103

LET( WC=mwCu):

/% PUTTING IN VALUES FOR WT AND WL AND OBTAINING
DISPERSION RELATION. ALSO, OBTAIN COEFFICIENTS OF
POWERS OF K TO BE PUNCHED OUT FOR USE IN ROOTS

PROGRAM. */

"CYCLOTRON: DO J= 0 TO 90 BY 15 3 LET(Jz=mym)}

PUT SKIP(6)

PUT LIST('ANGLE BETWEEN DIRECTION OF PROPAGATION AND

MAGNETIC FIELD')}

PUT EDIT(*IS EQUAL TO 'rJe' DEGREES') (AsF(5¢2)9A)3
IF J= 0!J= 90 THEN GO TO NAT;
IF J=15 THEN GO TO FIFTEENS
IF. J= 30 THEN GO TO THIRTY}
IF J=45 THEN GO TO ANGLE4S5}
IF J= 60 THEN GO TO SIXTY}#

IF J=75 THEN GO
FIFTEEN? LET( REWT
REWL
GO0 70 DIS/
THIRTY: LET( REWT =
REwL =
GO TO DIS3
ANGLEL4S: LET( REWT
REWL
GO 70 D1Ss
SIXTY: LET( REWT
REWL
. GO TO DIst
ANGLE75: LET( REWT
REWL

GO 70 DISq

TO
=W
=W

WCx*
WCx

= WC
= WC

= WC
= WC

ANGLE753
Cx0.25882 i
C*0.96593 )i

SIND(J) ;
0.86603 )3

*0,70711
*0,70711 )3

%0+96593
x0,25882

1)
-

NAT S LET( REWT = WCxSIND(J) 3
REWL = WC*COSD(J) )3

DIS: LET( DISPER =

0.0

)i

x/ .
*/
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TERMS: 00 I= 1 TO 25 BY 1 ¢ LET(I=nlun);
LET(FTERM(I) = REPLACE(TERM(]) owToReprwLoREWL) )3
LET( DISPER = DISPER +FTERM(I) )
ATOMIZE(FTERM(I)); : _
END TERMS: /% Now HAVE DISPERSION RELATION
" FOR GIVEN VALUE OF WTr WLe & We %/
/% NOW GET COEFFICIENTS OF K IN FORM TQo BE PUNCHED ouT %/
LET( 2 = HIGHPOW(DISPER¢K) i
X = LOWPOW(DISPER!K) )3
KCOEF: DO I = 2 TO 16 BY 2¢ LET(I=nIim);
LET( COEFK(I) = COEFF(DISPER,K**]I) ;
COEFKI(I) = COEFF(COEFK(I)eHl) ;
COEFKR(I) = COEFK(I) = aI*COEFKI(I) )3
. END KCOQEF:
/7*PUT IN CONSTANT TERM OF DISPERSION RELATION AS COEFK(O0)x/
LETC L = 0.0 3
COEFK(() = REPLACE(DISPERsKeL) 3
COEFKI(0) = COEFF(COEFK{(O)+HI)
COEFKR(0) = COEFK(0) = HI*COEFKI(O0) )3
/* PUNCH OUT ALL REAL AND IMAGINARY COEFFFICIENTS OF EACH:
POWER OF Ky STARTING WITH HIGHEST POWERe */_
XPUNCH DO 1= 16 BY =2 TO 0; LET(I=nIn)}
LET( COER=COLFKR(I)}
COEI= COEFKI(I) )i
PLCOER= ARITH(COER):
PLCOEI= ARITH(COEI);
PUT FILE (SYSPNCH)EDIT(PLCOER) (SKIP(1)/+E(13¢5));
PUT FILE(SYSPNCHIEDIT(PLCOEI) (SKIP(1)sE(13¢5)):
END XPUNCH:
END CYCLOTRON:
6O TO READ:
PUT SKIP(1):
QUIT: PUT LIST('THAT»S ALL FOLKS');
END DISRELG
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APPENDIX E

LISTING OF PROGRAM ROOTS
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DIMENSION A1(20)
DOUBLE PRECISION A(20) ¢FREsFIMsFPREFPIMyXRE» XIMe X2RE»

IX2IMeX3IRE s X3IMe XURE » X4 IMo XSRE» XS5IMe X6RE » XGIMeBRE 1 BIMy
2NUMRE ¢+ NUMIM»DEMoWe XBRE ¢ XB8IM9s X7TRE » X7IMeERROREERROIM»
3X(20) +» TEMP+FRT (35) o FIT(35) s FPRT(35) ¢y FPIT(35) » XBTR(10) »
4X8TI(10)9X7TR(10)OX7TI(10)oXbTR(IO)vKR(S)OKRE(S)DKI(S)O
SKIM(S) e PHSVE(S) e EFOLD(S)
4000 READ(59106) WrLENeTYME»FAC
0 1000 I=1,18
READ(59100) AL1(I)
A(I) = Al1(I)
1000 CONTINUE
WRITE(6+105) wWeFACILEN,TYME
DO 20 I=1,9
WRITE(60115) A(2%I=1),A(2%])
20 CONTINUE
K =8
2 READ(50101) BRE!BIM
IF (BRE+EQ+99999.D0« ANDeBIM¢ER+99999.D0) GO TO 300
WRITE(60104) BRE(BIM
N =1
IF(K.EQe.8) GO TO 950
IF(KeEQe7) GO TO 951
IF(K.EQeb) GO TO 952
IF(KeEQsD) GO TO 953
IF(KeEQel4) 6O TO 954
IF(K+EQe3) GO TO 955
IF(K+EQ@s2) GO TO 956
950 CALL EIGHTH(BRE'BIMIA'FRT'FITeFPRT»FPIToMr L)
GO 7O 960
951 CALL SEVEN(BRE'BIMrA'FRTFIT)FPRTeFPIT?MsL)
60 TO 960
952 CALL SIXTH(GREBIMrA'FRT»FIT,FPRT'FPITeMyL)
GO0 TO 960
953 CALL FIFTH(BRE!BIMrAI'FRTFIT»FPRT'FPITeMeL)
G0 TO 960
954 CALL FOURTH(BRE'BIMeA'FRT'FIT/FPRTIFPITeMeL)
GO 10 960
955 CALL THIRD(BRE!BIM!A FRTIFIT»FPRTFPITeMeL)
GO TO 960
956 CALL SECOND(BRE'BIMeA'FRTPFITeFPRTeFPITIMeL)
960 FRE= 0.0
FIM= 0.0
DO 15 I=1eM
FRE = FRE+FRT(I1)
FIM = FIM+FIT(I)
15 CONTINUE
FPRE= 0.0
FPIm= 0,0
DO 16 I=1,i



16

17
280

90

7000

FPRE = FPRE+FPRT(I)
FPIM = FPIM+FPIT(I)

CONTINUE

NUMRE = (FRE*FPRE) + (FIM*FPIM)

NUMIM = (FIp*FPRE) = (FRE*FPIM) .
IF(NUMRE+EQe0+DOANDNUMINSEQeU«DO) 60 TO 4

IF (FPRE«EQGepeDDeORFPIMEQe+D0) DEM= (FPRE*%2)+
L(FPIM%x%2)

IF(FPREEQeQeDD+ORFPIMIEG.0,00) GO TO 6

DEM = (FPRE**%2)%(1l.DO+(FPIM/FPRE)*%2)
IF(FPREEQe0eD0«ANDFPIMEQs0«D0) WRITE(62102)
IF(FPREEQe U eDDeANDFPIMeEQeeD0) GO TO 2 :

FRE = NUMRE/DEM
FIM = NUMIM/DEM
BRE = BRE=FRE
BIM = BIM=FIM

N = N+1

IF(NeGT.300) GO TO 4

IF(K«EQ.8) GO TO 950

IF(K«EQse7) GO TO 951

IF(KsEQeb) GO TO 952

IF(KeEQe5) GO TO 953

IF(KeEQed) GO TO 954

IF(KeEQe3) 6O TO 955

IF(K.EQe.2) GO TO 956

ERRORE = 040

ERROIM = 0.0

DO 17 I=1.,M

ERRORE = ERRORE+FRT(I1)

ERROIM = ERROIM+FIT(I)

CONTINUE

WRITE(60103) BRE'BIM?ERRORE »£RROIMN
CALL XPOCPX(1+,2¢BREsBIMsKReKI)
DO 90 I=1.2

KRE(I) = KR(I»*(10.*%*x(=LEN))/FAC
KIM(I) = KICI)*(10.xx(=LEN))/FAC
PHSVE(1) = w/KRE(I)

EFOLD(I) = 140/KIM(I)
WRITE(69110) KR(I)»KI(I) : _
WRITE(60112) KRE(I)sKIM(I) »PHSVE(I)sEFOLDI])
CONTINUE

K = K=1

IF(K«EQel) GO TO 957

IF(K<EQe0) 6O TO 4000

CALL SYNDV(AsBRE!BIMsK)

KJ=K+2

DO 7000 I=1,KJ

WRITE(60115) A(2%I=1)A(2%*])
CONTINUE

GO 7O 2

157
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957 A(1) = A(1)
A(2) = A(2) o
A(3) = A(3) + (BRE*A(1)=pIMxa(2))
AC4) = Alg) + (BIM*A(1)+3RE*A(2))

BRE —-(A(1)*A(3)+A(2)*A(4))/(A(l)**2+A(2)**2)
BIM = (A(2)%A(3)=A(1)xA(4) )/ (ACL)*x2+A(2) *%x2)
‘ERRURE=0.0
ERRQIM = 0.0
N =1
GO TO 280
100 FORMAT(E13.6)
101 FORMAT(2D15.7)
102 FORMAT(' *#**%*x DERIVATIVE OF F(X)ZQ %¥%kkx *)
103 FORMAT("0¢ ROOT = tv2014,60" ERROR = *+2D14,60
3 NUMBER OF ITERATIONS PERFORMED = '¢[3) '
104 FORMAT('=1t)? INITIAL ESTIMATE = %9 2014.6)
105 FORMAT(*1*»*RO0TS OF THE DISPERSION RELATION BY A
INEWTON=RAPHSON ITERATION TECHNIQUE */70°,' APPLIED
2 FREQUENCY = *»D12.6¢" LENGTH DIMENSION =t ¢F3elet#
310%%x%y 12+t METERS',
1 TIME DIMENSION = 10*%~1,12,' GSECONUS'/»
1 "0%¢ ! DISPERSION RELATION COEFFICIENTS *)
106 FORMAT(L15+70212¢F3,1)
110 FORMAT('0t»? K= ' » 2014.6) ' :
112 FORMAT(*0'»? WAVE NUMBER = 192D14.60"' 1/METERS */00*,
1 *PHASE VELOCITY = '¢D14.6," £ FOLDING
2 DISTANCE = ¥,
1 D14.6)
115 FORMAT(2E13.6)
300 STOP
END

SUBROUTINE ATWLTF(NeX)
C USED TO ARRANGE TERMS OF EQUATION IN ASCENDING ORDER.
DOUBLE PRECISION X(50),TEMP
0O 20 I=1,N
IP1 = I+41
DO 20 J=IP1,N
IF (DABS(X(I)).LE.DABS(X(J))) GO TO 20

TEMP = X(I)
X(I) = X(J)
X(J) = TEMP
20 CONTIWKUE
RETURN

END
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SUBROUTINE XPOCPX(MsNrAsB?XR¢XM)

THIS SUBROUTINE CALCULATES THE M/NTH ROOTS OF A
COMPLEX NUMBER OF THE FORM tC = A + I1xB°,

DOUBLE PRECISION A» Br BAR» BETAr COEFe K¢ PI¢» RM? RN»
1 XR(25)r ALFA» Te XM(25)

DOUBLE PRECISION AA.BB

AA=DABS(A)

BB=DABS(B)

RM = M

RN N

Pl 3 1415926535897932400
IF(AAEQ:0+D0+.0OR«BB+EQs0,D0) BAR-DSQRT(A**2+B**2)
IF(AAEQeQ+s[0«ORBB.EQ.0.D0) GO TO 101

BAR=DABS (A) xDSGRT(1.D0+(B/7A) %%2)

IF(Bs.LEs1.0-32) GO TO 101

IF (DABS(DLOGLO(AA)=DLOGL0O{BB) ) ¢LE+4.D0)BAR=DSQRT (A%%2+
1 Bxx2)

101 COEF = BAR*x*{(RM/RN)

100

100

T = DATAN2(BrA)

IF (B «LT. 0+0D0) T = 2.000%PI = DABSI(T)
K = 0.0D0

DO 100 I=1len

BETA = T + K*2.0D0%PI
ALFA=BETA*RM/RN ‘
XR(1) = COEF*DCOS(ALFA)
XM(1) = COEF*DSIN(ALFA)
K=K+ 1.0D00

RETURN

END

SUBROUTINE SYNDV(A/BRE!BIM»K)

DOUBLE PRECISION A(20)BRE,BIM

J = 2x(K+1)+42

DO 100 I=3srur2

A(l) = A(}1)

Al2) = A(2)

A(I) = A(I) + (BRE*A(I=2)-BIM*A(I~-1))
AlI+1) = A(I+1) + (BIM¥A(I-2)+BRE*A(I-1))
CONTINUE

RETURN

END

SUBROUTINE SECOND(BRE*BIM?AYFRTYFITIFPRT¢FPITIMoL)
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.DOUBLE PRECISION BRE#BIM:A(ZO)vFRT(ZO)DFIT(ZO)oFPRT(ZO)o

1FPIT(20)
FRT(1)
FRT(2)
FRT(3)
FRT(4)
FRT(5)
FIT(1)
FIT(2)
FIT(3)
FIT(4)
FIT(5)
FPRT(1)
FPRT(2)
FPRT(3)
FPIT(1)
FPIT(2)
FPIT(3)

A(l)*((BRE+BIM)*(BRE-BIM))
=A(2)*2,0%BRE*BIM
A(3)*BRE .

‘=A(4)*BIM

mtununun

A(5)
A(1)*2.,0%BRE*BIM
A(2)*((BRE+BIM) x (BRE=BIM))
A(3)*BIM
A(4)*BRE

Alg)
2,0%A(1)*BRE
=-2:0%A(2)*BIM
A(3)
2.0%xA(1)*BIM
2.0*%A(2)*BRE
Al4)

CALL ATWLTF(5+FRT)
CALL ATWLTF(5.FIT)

M=5
L=3
RETURN
END

SUBROUTINE THIRD(BREBIMsArFRTeFITsFPRTeFPIToIMoL)
DOUBLE PRECISION BRErBIMsA(20) rFRT(20)eFIT(20),
*FPRT(20) »FPIT(20)
FRT(l)—(A(l)*BRE)*((BRE+DSQRT(300)*BIM)*(BRE-DSQRT(3 0)

1xBIm))

FRT(2)=(A(2)*BIM) *((BIM+DSQRT(3+0) *BRE) * (BIM=DSQRT (3.0)

1xBRE))
FRT(3)
FRT(4)
FRT(5)
FRT(6)
FRT(T)

A(3)*((BRE+BIM)x(BRE=BIM))
=A(4)*2.0%xBRE*BIM
A(5)*BRE

-A(6)*BIM

A(7)

FIT(l)-(A(l)*BIM)*((DSQRT(3 0) *BRE+BIM) *(DSQRT(3.0) *

1BRE=~BIM)

)

FIT(2)=(A(2)*BRE) * ((BRE+DSQRT(3.0)*BIM) *(BRE=-DSQRT(3.0)

1xBIM))
FIT(3)
FIT(4)
FIT(S)
FIT(6)

A(3) %2+ 0%BRE*BIM

Aty )% ((BRE+BIM) % (BRE-BIM))
A(5)*BIM

A(e) *BRE

Alg)
(3.,0%A(1))*((BRE*BIn)*(BRE=-BIM))
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—600%A(2) *BRE*RIM

FPRT(2) =
FPRT(3) = 2,0%A(3)*BRE
FPRT(4) = =2,0%A(4)*BIM
FPRT(5) = A(S)
FPIT(1) = 6.,0%xA(1)*BRE*BIM
CFPIT(Z2) = (30%A(2))*((BRE+B[M)*(BRE=-BIM))
FPIT(3) = 2,0%A(3)*BIM
FPIT(4) = 2,0%A(4)*BRE
FPIT(5) = A(6)

CALL ATWLTF (7»FRT)
CALL ATWLTF(7+FIT)
CALL ATWLTF (5¢FPRT)
CALL ATWLTF(5¢FPIT)
M= 7

L=5

RETURN

END

SUBROQUTINE FOURTH{(BRE»BIMPArFRTeFITeFPRTeFPIToMsL)
DOUBLE PRECISION BRE:BIM:A(ZU)oFRT(au)vFPRT(ao)oFIT(zo)o
1IFPIT(20)
FRT(l)-(A(l)*dRE**Z)*((BRE+USQRT(6.U)*BIM)*(Bke-DSQRT
1(6.0)%BIM))

FRT(2) = A(L)*(BIM*xxy)

FRT(2)= (4.0*%A(2)*BRE*BIM)*( (BIM+BRE)*(BIM=BRE)) _
FRT(4)S(A(3) *BRE) * ((BRE+DSQRT(30) *BIM) * (BRE=DSQRT(3.0)
1*xBIM))
FRT(S)=(A(4)*BIM)* ((BIM+DSQART (30) *BRE) *(BIM=DSQRT(3.0)

1*BRE))

FRT(6) = A(5)*( (BRE+BIM)*x(BRE=~BIM))
FRT(7) = =Zze0*xA(6)*BRE*BIM

FRT(8) = A(7)*BRE

FRT(g) = =aA(8)*BIM

FRT(10) = A(9)

FIT(1)={4,0%A(1)*BRE*BIM)*( (GRE+BIM) x (BRE~BIM))

FIT(2)={A(2)*BRE**2) * ( (BRE+DSGRT (6. 0)*BIM)*(URE*DSQRT
1(6.0)*BIM))
CFIT(3)=(A(3)*#BIM) * ((DSQRT (3,0)*BRE+BIM) *DSQRT(3.0) %
1BRE=BIM)}

FIT(4) = A(2) % (BIM*kxy) .

FIT(S)=(A(4)*BRE)* ( ¢BRE+DSQRT (3+0) *BIM) * (BRE=DSGRT (340)

1%BIM))

FIT(e)= 516)*((BRE+BIM)T(BRE-BIM))
FIT(7) = A(7)*BIM :
FIT(8) = A(8)%*URE

FiT(9) < AQ(1Q)

FIT(10) = 2,0*A(5)*BRE*BIM
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FPRT(1)=(4.0*A(1)*BRE) *( (BRE+DSQRT(3.0)*BIM) *x(BRE=
1DSORT(3.0)*gIM))
FPRT(2)=(4e0*A(2)*BIM) % ((BIM+DSQRT(3.0) *BRE) *(BIM=
1DSQRT(3.0) *BRE) ) '
FPRT(3) (30%A(3))*( (BRE+BIM) *(BRE-BIM))

FPRT(4) = 2.,0%A(5)*BRE

FPRT(5) = =2+0%A(6)*BIM

FPRT(6) = A(7)

FPRT(7) = =6+0%A(4)*BRE*BIM
FPIT(1)=(4.,0%A(1)*BIM)*x((DSQRT(3.,0)*BRE+BIM) *(DSART
1(3.0)*BRE=-BIM))
FPIT(2)=(4+0%A(2)*BRE) *( (BRE+DSQRT(3,0)*BIM) * (BRE=~
IDSORT(3.0)*8IM))

FPIT(3) = (3.0%A(4))*((BRE+BIM)*(BRE-~BIM))
FPIT(4) = 2,0*%A(5)xBIM

FPIT(5) = 6.,0%A(3)*BRE*BIM

FPIT(e) = A(8)

FPIT(7) = 2.,0%A(6) *BRE
CALL ATWLTF(10,FRT)
CALL ATWLTF(10,FIT)
CALL ATWLTF(7»FPRT)
CALL ATWLTF(7,FPIT)

M =10

L =7

RETURN

END

SUBROUTINE FIFTH(BRE'BIMeAvFRTeFIToFPRTPFPITeMoL)
DOUBLE PRECLSION BRE(BIMrA(20) rFRT(20)FIT(20)FPRT(20)

1FPIT(20)
FRT(1)=(A(1)*BRE**3) * ( (BRE4+DSQRT(10,0) *BIM) * (BRE~-
10SQRT(10.0)*BIM))

FRT(2)= (BIM**4)*(5,0%A(1)*BRE~A(2)*BIM)
FRT(3)=(5.0%xA(2) *BIM*BRE**2) *x{ (DSQRT (2+0) *BIM*BRE) %
1(DS@RT(2.0)*BIM=BRE))
FRT(4)=(A(6)*BIM)*((BIM+DSQRT(3+0) *BRE) * (BIM=DSQRT

1(3.0)*BRE))
FRT(5)=(A(3) *BRE**2) * ( (BRE+DSQRT (6.0) *BIM) x(BRE-DSQRT

1(6.0)*BIM))
FRT(6)= (4.0*A(4)*BRE*BIM) *x( (BIM+BRE) *(BIM=BRE))
FRT(7)=(A(5)*BRE) *( (BRE+DSQRT(3+0) *BIM) * (BRE~DSQRT
1(3.0)*BIM))

FRT(8) = A(3)*(BIM%xx4)

FRT(9)= A(7)*((BRE+BIM)*(BRE=BIM))

FRT(10) = =2+0%A(8)*BRE*BIM
FRT(11) = A(9)%BRE
FRT(12) = =-A(10)%BIM
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FRT(13) = A(11) _
FITU(1)S(A(2)#BRE*%3) % ( (BRE+DSORT(1040) *BIM) * (BRE=

1DSGRT(10.0)*B1i4))

FIT(2)= (BINMY*4)x(A(1)*BIM+5,0%A(2)%*BRE)
FIT(3)=(5,0%A(1)*#BIM*BRE**2) x ( (BRE+DSQRT(2.0)*BIM) %
* (BRe=DSQRT(2+0)*BIM))

FIT(4)= (44u*A(3)*BRE*BIM) *( (BRE+B]IM) * (BRE-BIM))
FIT(S)= (A(4)*BRE**2)*((BRE+RIM)*(BRE=BIM))

FIT(6) = 2,0*%A(7)*BRE*BIM-
FIT(7)=(A(5)*BIM)* ((DSQRT(3, () *BRE+BIM) *(DSGRT(3.0) %
1BRE=BIM)) '
FIT(8)=(A(6)*BRE)*((BRE+DSQRT(30)*BIM) * (BRE-DSQRT
1(3.,0)%BIM)) '
FIT(9)= A(8)*((BRE+BIM)*(BRE~-LIM))

FIT(10) = A(4)*(BIM*x4)

FIT(11) = A(9)*UIM
FIT(12) = A(10)*3BRE
FIT(13) = A(12)

FPRT(1)=(5.0%A(1)*3RE*%2) * ( (BRE+DSQRT(640) #BIM) ¥
1(BRE-DSQRT(640) *B811))

FPRT(2) = S5,0*%A(1)*{(BIM*x4)
FPRT(3)=(20.,0%A(2) *BRE*BIM) * ( (BIM+BRE) * (BIM=-BRE))
FPRT(W)= (4o 0*A(I)*BRE) * ( (BRE+USORT (3.0) %31 #
L(BRe=DSQRT(3¢0) *51IM))
FPRT(5)=(4e*¥A(4)%3IM) x ((BIM+USART (3.0) *BRE) *
L(BIM=LSAQRT(340)*BRE))

FPRT(6)= (3.0*xA(3))*x((BRE*BIM)*(B3RE~BIM))

FPRT(7) = =6.0*%A(6)*BRE«BIM
FPRT(8) = 2e0%A(7)*BRE
FPRT(Q) = =2.,0*%A(3)*BIM

FPRT(10) = A(9)
FPIT(1)=(20,0%A (1) *BIM*BRE) *x ( (BRE+3IM) * (BRE-BIM))
FPIT(2)=(9.0*A(Z2)*URE**2) * ((BRE+DUSQRT(640)*xBIM) *
L(BRE=DSGRT(60) *8IM))
FPIT(Z)=(4eu*A(3)*BIM) % ((DSQRT(3.0) %*BRE+BIM) *(DSQRT
1(3.0)*BRE=81M))

FPIT(4) = 5,0%A(2)x(BIM*x4)
FPIT(S)=(4.0*A(4)*LBRE) *x ( (BRE+DSQRT(3.0) *3IM) x (BRE=
10SERT(3.0)*3IM))

FPIT(6)= (3,0%A(6))*x( (BRE+BIM)*(BRr=RIM))

FRIT(7) = 2+.0%A(7)%BIM
FPRIT(8) = <c+0%xA(8)*BRE
FRIT(9) = A(10)

FPIT(10) = pe0*A(5)*BRE*BIM

CALL ATWLTIF(13,FRT)

CALL ATWLTF(13.FIT)

CALL ATWLIF(10¢FPRT)
CALL ATWLTF(10+FPIT)
M 13

L 10
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RETURN
END

SUBROUTINE SIXTH(BRE!BIMsAFRTIFIToFPRTIFPITIMsL)
DOUBLE PRECISION BRErBIMyA(20) rFRT(30)+FIT(30)»FPRT(30)
1FPIT(30)
FRT(1)=(A(L)*BIM#*4) % ( (DSQRT(1540) *BRE+BIM) * (DSQRT
1(15.0) *BRE=tIM))
FRT(2)=(A(1)*BRE**4) % ( (BRE+DSQRT (1540) *BIM) * (BRE~
1DSQRT(15.0) #BIM))
FRT(3)=(A(5)*BRE*x*3) % ( (BRE+D5GRT (1040) *BIM) % (BRE=~
1DSQGKT(10.0) *BIM))
FRT(4)S(A(4)*BIM*%x3) *x ( (DSQRT (10+0) *BRE+5IM) *(DSQRT
1(10,0) #BRE=pIM)) .

FRT(5) = =6.0%A(2) %BRE* (BIM*45)

FRT(6) = =6.0%A(2) %xBIM* (BRE*xb)

FRT(7) = 20.0%A(2) x (BRE*#3) % ({5 IM*%3)

FRT(8)=(A(5) *3RE*x*2) % { (BRE+DSURT (640) *BIN) * (BRE~
LDSGKT (6+0) *isIi1) )

FRT(9) = 50%A(3)*BRE* (BIM*x*4)

FRT(10) = (4+0*A(6)*BREXBIM) x ( (EIM+BRE) * (BIM=BRE) )
FRT(11)=(A(7)*BRE) * ((BRE+USURT(340) *3IM) * (BRE~
1DSQKT(3.0) *5IM))

FRT(12) = =5e0%A(4)*BIM* (BRE**4)
FRT(13)=(A(y) *BIM) x ((BIM+DSQKT (3.0) *3RE) * (BIM-DSQRT
1(3.0)*%BRE) )

FRT(14) = A(9)*( (BRE+BIM)* (BKE=BIM))

FRT(19) = A(S)*(BIM**y4)
FRT(16) = =-.0xA(10)*BRE*BIM
FRT(17) = A(11)*BRE

FRT(18) = =A(12)*BiM

FRT(19) = A(13)

FIT(1) = 6UX%A(1)*BRE*(BIM*%5)

FIT(2) = 6+0%A(1)*BIM* (BRE**%5)

FIT(3) = =25¢0%A(1)*x(BRE**3) x(BIM*%3)
FIT(u)=(A(2)*BRE#*4) x ((BRE+DSGRT(15.0)*BIM) *(BRE=
1DSQKRT(15.0) *BIM))
FIT(S5)=(A(2)*3IM*:4) % ((CSAQRT (15 0)#BRE+BIM) * ([ISQRT
1(15,0)*BRE=tsIM))

FIT(OB)=(A(3)*BIM**x3) x((BIM+D5QRT(10.0) *BRE) R (BIM=
1DSQRT(10.0) *BRE))
FIT(7)=(A(4)*CRE**35) *x ( (BRE+DSART(10.0)%B1M)* (BRE~
1DSQKT(10e0) *i31M)) :
FIT(8)=(ho0%A(5)*BRE*BIM) *( (SRE+EIM) %« (BRE~uIM))
FIT(9) = Se0¥A(3)*BIM* (BRE*®x*y)
FIT(lO)'(A(o)*dRE**°)*((dRE+u4QRT(6 0)*81#)*(BRE-
1DSAKT (B 0) g IM))
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FIT(11)=(A(7)*BIM) *((DSQRT(3.0)*BRE+B3IM) * (DSQRT
1(3.0)*BRE-BIM))

FIT(12) = S.0*%A(4)«BRE* (3IM*x4)
FIT(13)=(A(g)*BRE) *( (BRE+DSQRT (3. 0)*BIM)*(BRF-
LDSERT(3.0) %*IM) )

FIT(14) = 2.,0%A(9)*BRE*BIM

FIT(15) = A(LO)*((GRE+BIM) *x(3RE=-BIM))
FIT(16) = A(11)*BIM

FIT(17) = A(6)*(3IMx*y)

FIT(18) = A(12)*BRE

FIT(19) = A(1l4) : ‘

FPRT(1) = 6.0*%A(1)*(BRE*x%bD)

FPRT(2) = 300%A(1)*BRE*(BIM*%xy)
FPRTI(3) T =60.0*%A(1)*(BRE*¥*3)*(BIMx*x2)
FPRT(U4) T =6e0*xA(2) % (BIM%*S5)

FPRT(5) = =30,0*%A(2)*xBIMx(BR:**%Y4)
FPRT(B) = 600%A(2) % (BREx*2)x(BI}M*%3)

FPRT(7)=(85.G*%A(3) *BRE*%2) ¥ ( (BRE+DSWRT(6.0) *BIM) *
1 (BRE=DSQRT(6.0)*B1IM))

FPRT(8) = S,0*xA(3)*x{(BIM*xl4)

FPRT(9)=(20.0%A(4) *BRE*BIM) * ( (BIM+BRE) * (BIM=BRE))
FPRT(10)=(4,0%A(S)*BRE) * ( (BRE+DSURT (340) %EIM) *
1(BRE=DSQRT(340)*BIM))

FPRT(11)=(4, O*A(b)*BIM)*((BIu+DSGRT( « 0 ) xBRE) *
1(BIM=DSGRT(3e0)*BRE))

FPRT(12)= (340*A(7))%x((LRE+B[M)* (BRE=BIM))

FPRT(13) = «6.0*%A(8)*BRE*BIM

FPRT(14) = 2.0%(A(Q)*BRE=A(11)=BIM)
FPRT(15) = A(11)

FPIT(1) = L O0%A(1)%(BIM*%5)

FPIT(2) = 30.0%A(1)*BIM*x(BRE*%Y)
FPIT(3) = =p0.0%A(1)*(BRE**2)*(BIM%%x3)
FPIT(4) = 6,0%A(2)*%(BRE*x%5)

FPIT(5) = 3(.0x=A(2:*%PRE*(BIMx*y)
FPIT(6) = =5040%A(2) % (BRE**3) * (BIMx%2)

FPIT(7)=(20,0%AL3)*BRE*BIM) *( (BRE+BIM) *(BRE=BIM))
FPIT(8)=(5, u*A(u)*uRE**Z)*((bkt+b$uRT(b.0)¢BIM)*
L(BRE=DSART (e 0) *3IM))
FPIT(9)-(4.0)*A(r)*uIM)*((DSQRT(3 0)*BRE+BIM)*(DSQRT
1(3.0)*BRE=31M))

FPIT(10) = 5e0%A(Y4)%(BIME*y)
FPITIL)=(4.,0%A{6)*BRE) * ( {BRL+DSQRT (3, 0)*b1M)*(BRt

1 ~DSART(3,0)*xBIM))

FPRIT(12)= (3.0%A(8) )% ((BRE+B1IM)*(BRE=BIM))

FPIT(13) = ge0xA(T7)*BRE*t1IM
FPIT(14) = 2.0%A(C)*BIM + 2+0*A(10)*BRE
FPIT(1S) = A(l2)

CALL ATWLTF(19¢FRT)
CALL ATWLTF(19.FiT)
CALL ATWLTF (15,FPRRT)
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CALL ATWLTF(15,FPIT)

M= 19
L =15
RETURN
END

SUBROUTINE SEVEN(BREOBIMpAvFRTaFITrFPRToFPIT'MoL)
DOUBLE PRECISION BRErBIMsA(20) vFRT(35)eFIT(35)FPRT(30)»
1FPIT(30)

FRT(1)
FRT(2)
FRT(3)
FRT (4)
FRT(5)
FRT(6)
FRT(7)
FRT(8)
FRT(9)
FRT(10)
FRT(11)
FRT(12)
FRT(13)
FRT(14)
FRT(15)
FRT(16)
FRT(17)
FRT(18)
FRT(19)
FRT(20)
FRT(21)

A(1)*(BRE**7)
~7.0%xA(1)*BRE*x(BIM*x%x6)
=21¢0*%A(1) % (BRE*¥*S) x (BIM*x%x2)
35.0%A (1) x(BRE**3) x (BIM%*y)
AC2)Y*(BIM%x%x7)
-7.0%A(2) *BIM* (BRE**6)
=21e0%A(2) % (BRE**2) x (BIM*%S)
35, 0%A(2) *x (BRE**xU) k (HIN*%3)
A(3) % (BRE**6)

=A(3) % (BIM**6)
15¢0%A(3) % (BRE**2) x (BIM*xy)
=15, 0*%A(3) % (BRE**4 ) * (BIM%%x2)
“6e U*A (4 ) *BRE* (BIM%*5)

20+ 0%A(4) * (BRE**3) ¥ (BIM%*3)
~0e0%A(4)xBIMX {BRE**5)

A(S) *(BRE%X%5)
5.0%A(5) *BRE* (BIM*%4)
=10.,0*%A(5) x(BRE*%3) k(B IM%xx2)
-A{e)*(BIMX%5)
~5¢0%A(6) *BIM* (BRE**4)

100*%A(B) % (BRE**2) x(BIM*%x3)

FRT(22)=(A(7)*BRE**2) * ( {GRE+USGRT (6.0 ) *BIM) * (BRE=~
10SQRT(60) *3IM))

FRT(23) = A(7)*(BIM%*4)

FRT(24)=(4+0*A(8) *BRE*BIM) * ( (BIM+BRE) * (BIM=BRE) )
FRT(ab)-(A(g)*BRE)*((BRt+DSQRT(3 0)*BIM) *x (3RE=-DSQRT
1(3.0)%3IM)) .
FRT(26)=(A(10)*6IM) % ((BIM+DSGRT(3.0) #BRE) *(BIM=DSQRT
1(3.9)*BRE)) '

FRT(27)
FRT(28)
FRT(29)
FRT(30)
FIT(1)
FIT(2)
FIT(3)
FIT(4)
FIT(S)

-
-

A(11)*({BRE+BIM) x (BRE~-BIM))
=2e0%A(12)%BRE*BIM
(A(13)%BRE) = (A(14)*xBIM)
A(l15)
«A(1)*(BIM**7)
Te0*¥A (1) *3IM* (BRE%x*%6)
=350 0%A (1) % (BRE**4) x (BIN*®%x3)
21.0xA (1) *x(BRE*%2) *x (BIM**5)
A(2)* (BRE*%7)



FIT(6)

FIT(7)

FIT(8)

FIT(9)

FIT(10)
FIT(11)
FIT(12)
FIT(13)
FIT(14)
FIT(15)
FIT(16)
FIT(17)
FIT(18)
FIT(19)
FIT(20)
FIT(21)

3
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21.0%A(2) % (BRE+*5) % (BIM%%2)
5.0%A(2) % (BRE*%3) * (3 IM%*y )

7.0%¥A(2)%BRE* (BIM*%6)
dURA(I) *BRE* (BIM*x%y)
=:0s0%A(3) % (BRE*%3)* (BIM%%3)
6.0%A(3)*xBIM* (3KE*%5)
A(H) % (BREx%x6)

=A(4) % (BIM%*5)

=15 0%A(4) *x (BRE**4 ) * (BIM%xx2)
15¢0%A(4) % (BRE#%2) x {BIM*x4y)
A(S)x(BIM*x%x5)

5,0*%A(5)%BIM* (BRE*x4)

=10+ 0%A(5) % (BRE*#2) % (BIMx%3)
A(O) % (BREXXST)
5.0%A(6) *BRE* (3IM*k¢4)
=10.0%A(0) * (BRE*%3) % (DIM%x*%2)

FIT(22)=(4eu*A(7)*BRE*BIM) * ( (BRE+B1M) % (BRE=BIM)) _
FIT(23)=(A(u) *BRE**2) * ((BRE+USQRT (e () *BIM) * (BRE=-DSGRT
1(6.0)%BIM))

FITIt
T & 1 %

LBRE=-BIM)
FIT(25)

)

20)=(A{0) xR
L= 4 SSF W

+0TMYm (0
vilayis ™S

A(8) % (BIM**x4)

FIT(26)=(A(10)*BRE)}* { (BRE*DSyRT(3.0) %iIM)*(BRE=DSGRT
1(3.0)*%BIM))
FIT(27)= A(12) * ((BRE+BIM)x*(5RE-BIM))

FIT(28)
FIT(29)
FIT(30)
FPRT(1)
FPRT(2)
FPRT(3)
FPRT (4)
FPRT(5)
FPRT (&)
FPRT(7)
FPRT(8)
FPRT(9)
FPKT(10)
FPRY (11)
FPRT(12)
FPRT(13)

IR I A I I I PO IO AN DA LA ]

2.0%A(11)*BRE*BIM
(A(13)xBIM) + (A(14)*BRE)
A(le)
7.0%¥A(1) % (BRE**6)
=7¢0%A(1l)%(BIMk*g)
~1050%A(1) % (BRE**4 ) # (BIMk%2)
10560%A(1) *x (BRE**2 ) % (B iMx*xy)
=42+ 0%AL2) *¥BIM* (i3 %%5)

140 0*%A(2) % (BRE**3) * (LIM%x%x3)
=42.0%A(2) *BRE* (B] 1% *5)
6.0%A(3)*(BRE*%5)

=00« O%A(3) % (BRE**3) * (BIM%*2)
30.0%A(3) *BRE* (B[ k%y4)
=6.0%A(4) X (BIM¥%H)
~300%A(4) *¥BIM* (URE**4)

60 0*A(4 )k (BRE*%2) ¥ (BIM%x*3)

FPRT(14)=(5.0%xA(5) *BRE**2) * ( (BRE+DSQRT(6.,0) *BIM) x (BRE~
LDSGKRT(6.0)*5IM))

FPRPT(15)

56 0%A(5) % (BIM**Yy)

FPRT(16)=(20«0*A(6)*BRE*53IM) x ( (BIM+BRE) *(B3IM=BRE))
FPRT(17)=(4,0*A(7)*BRE) *( (BRE+DSOURT(3.0) %BIM) * (BRE=
1DSURT(3.0) *3IM))
FPRT(18)=(4,0*xA(8)*xBIM) * ((BIM+*DSQRT(3.0)*BRE) *(BIM=
1DSART(3.0) *5RE) ) .
FPRT(19)=(3.0%A(Q) )% ((BRE+BIM) * (BRE=BIM))
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FPRT(20) = =~6.0%A{10)*BRE*B1IM

FPRT(21) = g-U*((A(ll)*BRE)-(A(lz)*BIM))
FPRT(22) = A(13)

FPIT(1) = 4200%A(1)*BRE*(BIM%*5)
FPIT(2) = =140.0%A(1)*(BRE**3) % (BIMx*3)
FPIT(3) = 42.0%A(1)*BIM%(BRE**S)
FPIT(L) = 7,0%A(2)*(BRE*%5)

FPIT(S) = =7.0%xA(2)*(BIM%x*6)

FRPIT(6) = =105.,0%xA(2)*x(BRE*x*4)»(BIMX%x2)
FPIT(T) = 105.0%A(2)*(BRE*%2)*(BIM%x%y)
FPIT(8) = 6,0%A(3)*x(BIM*xD)

FPIT(9) = 30¢0%A(3)*BIM* (BRE**Y)
FPIT(10) = ~60+0%A(3)*(BRE*x%x2) % (5IM%%x3)
FPIT(11l) = 6e0%A(4)*x(BRE**5)

FPIT(12) = «60.0%A(4)*(BRE**3)x(BIM%*2)
FPIT(13) = 50.,0%A(4)*xBRE*(BIu**x4)

FPIT(L4)=(20¢0%A(5) *BRE*BIM) * ( (ERE+BIM) * (BRE=BIM) )
FPIT(15)=(5,0%A(6) *BRE**2) % ( (BRE+DSQRT(6,0) *BIM) % (BRE=
LOSUKT (6. 0) %IM))
FPIT(16)=(4,0%A(7)*BIM)*({DSQRT(3+0)xBRE+EIM)*(DSORT
1(3.0)*BRE=B{M))

FPIT(17) = Se0%A(6)*(BIMx*4)

FPIT(18)=(4, U*A(a)*BRE)*(‘BR;+DSGRT(5.0)*BIM’*(RRE-
10SGRT (3e0) *5IM))

FPIT(19)=(3,0%A(10))%x((BRE+BIM)* (BRE=BINM))

FPIT(20) = 0e0%A(9)*BRE*3IM

FRIT(21) = (A(11)*38IM)=(A(12)%*BRE)

FPIT(22) = Aaf1ly)

CALL ATWLTF(30»FRT)

CALL ATWLTF(30+FIT)

CALL ATWLTF(22/,FPRT)

CALL ATWLTF(22/FPIT)

M = 30

L =22

RETURN

END

SUBROUTINE EIGHTH(BRE'BIMrA»FRT'FITeFPRTeFPITIMsL)
D0UsLE PRECISION BRE(BIMeA(20) rFRT(20)FIT(20)¢FPRTL20)
IFPIT(20) o X8TR(10) 1 X8TI(10) »X7TRE10) »X7TLI(10) s X6TRCLO) »
EXBREYy XBIMy XTRE» XT7IMe XORE» XOLiio XORE o XSIMe XURE 2 X4 IMe XIRE »
IX3LMe X2RE P X2IMo XFE» XIM
C TERMS CONTAINING EACH POWER OF K
3 XB8TK(1) = =z28,0%(BIM*x*6)x(BRE*%2)
XBTK(2) = 7Ge0%x(BIM®XY) x (BRE#*4)
XE8TR(3) = =28.0%(BIM*%2) % (BRE**6)
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X8TR(4) = BRE*%x8

X8TR(S) = BIM%x8

X8TI(1) = =80x(B8IM*%7)%*BRE
X8T1(2) = 560% (BIM*%5) * (BRE#*3)
X8TI(3) = =56,0%(BIM*%x3) * (BRE*%5)
X8TL(4) = 8.0%(BIM)*(BRE%x*7)
XTTR(1) = =7.0%x(BIM%%x6)*BRE
X7TTR(2) = 350% (BIMX%kYy )k (BREX*3I)
X7TR(3) = =21.0%(BIM**2) % (BRE*%5)
X7TR(4) = BRE%xx%x7

XTTI(1) = 21e0%(BIM*%S) % (BRE®X*2)
X7TI(R2) = =35,0%(BIM**3) % (BRE**4)
XT72(3) = 7.0«BIM*(BRE**6)
X7TI(4) = =(BIM¥x%x7)

X6TR(1) = 15¢0% (BIMkkY)* (BRE®x*2)
X6TR(2) = =15.0%(BIM*%2) % (BRE*%4 )
X6TR(3) = BRE*%x6

X6TR(4) = =(BIM*%6)

CALL ATWLTF(5:X8TR)

CALL ATWLTF(4sX8TI)

CALL ATWLTF(4»X7TR)

CALL ATWLTF (4»X7TI)

CALL ATWLTF(4»X6TR)

XBRE=0.0

X8In=0.0

X7RE=0+0

X7IM:000

X6RE=0+0

DO 35 1I=1,5

X8RE = X8RE + X8TR(I)

CONTINUE

DO 36 I=1.4

X8IM = X8IM + XB8TI(I)

X7IM = X7IM + X7TI(D)

X6RE = X6RE + X6TR(1)

CONTINUE

X6IM = 64000*%(BIM**5)*BRE = 200D0% (BIM*%3)* (BRE%*3)
2 + 6.0D0% BIM*(BREx*5)

XSRE=5+0% (BIM#*x4 ) ¥*BRE+ (BRE*%3) * ( (BRE+DSQRT(10+0) *BIM) %
1 (BRE=DSQRT(10.0)*BIM))

XSIM=(BIM*x*3) % ( (BIM+DSORT(10,0)*BRE) * (BIM=DSQRT(10.0) *
1BRE) ) +5.0%BIM* (BRE**4)

X4RE= (BIM#%4 )+ (BRE%*2) * ( (BRE+0SQRT (6,0) *BIM) * (BRE~
1DSQRT(6+0) *3IM))

X4 IM= (4 ¢ OXBIM*BRE) * { (BRE+BIM) * (BRE=BIM))

X3RES HBRE*( (BRE+DSQRT(3.0) *81M) * (BRE~DSQRT(3.0)*8IM))

X3IM = BIM*({DSQRT(3+0)*BRE+5IM) % (DSGRT (3 0)*BRE=RIM))
X2RE = (BRE+BIM)*(BRE-~BIM)
X2IM = 2.0D0*BIM*BRE

XRE = BRE
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- XxIM= BIM

C  TERMS OF REAL PART OF F(X)
FRT(1) = A(1)*X8RE
FRT(2) = -A(2)*X8IM
FRT(3) = A(3)*XTRE
FRT(4) = =A(4)*X7IM
FRT(5) = A(5)*X6RE
FRT(6) = =A(6)*X6IM
FRT(7) = A(7)*XSRE
FRT(8) = =A(B)%X5IM
FRT(9) = A(Y)*X4RE
FRT(10)= =A(10)*X4IM

FRT(11)= A(11)*X3RE
FRT(12)= «A(12)*X3IM
FRT(13)= A(i3)*X2RE

FRT(14)= «A(14)*X2IM
FRT(15)= A(15)*XRE

FRT(16)= =A(1e)*XIY

FRT(17)= A(L7) |

C TERMS OF IMAGINARY PART OF F(K)

FIT(1) = A(1)*X8IM
FIT(2) = A(2)*X8RE
FIT(3) = A(s)xXT7IM
FIT(4) = A(4)%XTRE
FIT(5) = A(»)%X6IM
FIT(6) = A(p)*X6RE
FIT(7) = A(7)%X5IM
FIT(8) = A(g)%xX5RE
FIT(9) = A(Q)%xX4]IM

FIT(16)= A(10)*X4RE
FIT(11)= AC(11)*X31IM
FIT(12)= A(12)*X3RE
FIT(13)= A(13)%X2IM
FIT(14)= A(14)%X2Rc
FIT(15)= A(15)*XIM
FIT(16)= A(16) %xXRE
FIT(17) = A(18)
C TERMS OF REAL PART OF F'(K)

FPRT(1) = 8,0%xA(1)*X7RE
FPRT(2) = =5e0%A(2)%XTIM
FPRT(3) = 7.0%A(3)%xX6RE
FPRT(4) = =7.0%A(4)%xX61IM
FPRT{S) = 6.0%A(5)%X5RE
FPRT(6) = =pe0*%A(6)*X5IM
FPRT(7) = 5,0%A(7)%X4RE
FPRK1(8) = =54,0%A(8)*X4IM
FPRT(9) = 4,0*%A(9)*X3RE

FPRT(10}= =4+0%A(10)*X3IM
FPRT(11)= 3,0*%A(11)%X2RE
FPRT(12)= =3.0%A(12)%X21#



C.

FPRT (1
FPRT(I

TERMS OF
FPIT(1)
FPIT(2)
FPIT(3)
FPIT(4)
FPLIT(S)
FPIT( (&)
FRIT(7)
FPIT(u)
FRIT(S)
FPIT(10)
FPRIT(11)=
FFRiT(i2)=
FPIT(l3)=
FPIT(14)=
FPIT(19)=
CALL ATWL
CALL ATWL
CALL ATwL
CALL ATwWL
M < 17
L =15
KETURN

ERND

nHNHBLHITBE BRI NNN

2.0%A(13) *XRE

=2e0xA(14)%xXIM
A
”

{181)
L X )

AGINARY PART OF Fe(g)
8.0%A(1)%xX71IM
8,0%A(2)xX7RE
T.0%A(3) xX6IM
OoO*A(J)*XSIM
6. 0xA{8) *X5RE
Sa0XkA(T)EXYIM
5.0%A(8) *X4RE
4,0%A(Q)xX3IM .
4,0%A(10)%xX3IRE
3.,0%A(11) % 2IM
3.0%A(12) *¥X2RE
CeOXA(L3)%XIN
2.0%A{14)%xXRE
n{le)

TF(17,FRT)

TF(L7»FIT)

TF(15:FPRT)

TF(15,FPIT)
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CHAPTER IV

ANATL,YSTS OF THE MIXED INITIAL-BOUNDARY VALUE PROBLEM

FOR A THREE~FLUID PLASMA WITH A NUMERICAL  EXAMPLE

by

Billy H. Johnson and David L, Murphree

NOTE: Figures, references and equations begin a new sequence in each Chapter,
Also, the Appendices are lettered consecutively by Chapter,
and each Chapter includes its own list of symbols,
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LIST OF SYMBOLS

thermal speed of ions

thermal speed of electrons

thermal speed of neutrals

magnetic field, weber/m?, B;i + B,j + B,k

speed of light, 3 x 108 m/sec

fundamental electronic charge, 1.6 x 10~!9 coulomb
electric field, V/m, Eli + E23 + Esﬁ

current density

Boltzman's constant, 1.38 x 10723 joule/oK
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permittivity of vacuum, 8.85 x 10712 coul? - gec?/m3 - Kg

mass of an argon ion, 6.73 x 10726 Kg
mass of an electron, 9.1 x 103! Kg

mass of a neutral particle, 6.73 x 10~26 gg
ion number density

electron number density

neutral number density

ion pressure

electron pressure

neutral species pressure

ion temperature

electron temperature

neutral species temperature

velocity of ions, m/sec, uif + vij + wiﬁ

velocity of electrons, m/sec, uei + vef + weﬁ



176

-— - ~ ~
v velocity of neutrals, m/sec, u i + v _j + w k
n _ n n n
W(l) finite difference approximation of V(i), i=1,2,---,17
(1) . ' {2 1.2 e
A eigenvalues of [A], i = 1,2,---,17
A(l) finite difference approximation of A(l)
o permeability of vacuum, 47m x 10-7 volt-sec/amp-m
Pi ion mass density
Pea electron mass density
Pl neutral species mass density
Vb effective collision frequency of species a with species b
v;b average collision frequency of species a with species b
cnp intersection of sets C and D
cup union of sets C and D
feg2 f plus its first and second derivatives are continuous

Subscripts

k,L x and t co-ordinates, $ p = ¢ (kax, £At)
’

Notations

1 matrix, either square or column

-

3-D vector
7o column matrix

¢ line segment from point ¢ to point ¢'
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The physical problem of this study is to analyze how introducing
a disturbance, Whigh results in waves propagating, affects a one-
dimensional three-fluid plasma flow. Previous studies of waves in
plasmas have fully explored the use of the linearized governing equations
in terms of finding various velocities ag anctioné of the frequency
In addition, stgdies using a fully ionized two-~fluid model have been
performed using the nonlinear equations. However, in neither case
have the governing equations been actually solved given an initial
equilibrium state and some forced disturbance at a particular point as
a function of time. The purpose of the preéént study is to solve
the governing nonlinear equations of the three-fluid plasma given an
initial equilibrium state and.some forced disturbance at a particular
point as a function of time. The equations are then linearized and
solved using the same initial state and forced disturbance.

A partially ionized gas flowing in the x-direction which is com-
posed of ions, electrons, and neutrals, all of which interact with
each other through collisions, is considered. Thus a three-fluid
mathematical model of the‘gas is chosen, where the three fluids are
the ion, electron and neutral species. As previously stated, two
separate models are considered. First, the nonlinear equations are
used and then the linearized system of equations is considered. This
linear system is_obtained from the nonlinear equations. The ngﬁerical
values of such qpantities as collision frequencies, temperatures, and

initial number densities, for the purpose of later solving a particular
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example, are considered to be those which might exist in an ionized
gas at atmospherié pressure. Additional assumptions are that each
fluid obeys the ideal gas law and viscosity effects are negligible.
As will be seen later, each fluid is also assumed to be iséthermal.

With this model of the plasma the dependent variables, which are
all assumed to be functions of only the two independent variables x
and t, become Wop Uy Uy Vis Vs Vs Wy W, and LA which are the
velocity components of the ions, electrons and neutrals in the x, y,
and z directions; Ni’ Ne and Nn’ which are the number densities of
the ions, electrons and neutrals; and E,, E,, Ey, B, and By, which
are the components of the electric and magnetic fields.

Writing the continuity and momentum equations for the ionms,
electrons and neutrals; Max%gll's equations; and the equations of
state for each fluid, all in scalar form, a system of 17 quasi-
linear first order partial differential equations which can be
written in matrix form as shown, is obtained.

vl + [allu_].= [B]

where

] = 2] and [u] = 52] .

Similarly, a single matrix equation can be formed from the linearized
system of equations. Since it is shown that the eigenvalues of [A]
are all real and the corresponding eigenvectors are linearly inde-
pendent, the system is classified as a hyperbolic one.
A numerical solution of first the nonlinear system of equations
and then the linear system, using the same initial values for the 17
“wvariables listed previously plus a forced disturbance at x = 0, is

o be found. A comparison of these two solutions should then yield
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some insight into the limitations of a linearized approach. The
disturbance imposed, which is the specification of boundary values
for some of the variables, 1s not arbitrary if the existence of a
unique solution is desired.

A finite difference technique is employed to find the numerical
solutions of the two systems of equations fdr a particular example
problem. The original system can be transformed in such a manner
that the matrix [A] becomes a diagonal matrix by performing a trans-
formation of the form

[u] = [T]{v]
where [T] is an orthogonal matrix whose columns are composed of the
unit orthogonal eigenvectors of [A]. It can be seen from this trans-
formed system that the sum. of the time and space derivative in each
equation can be considered to be a time derivative along the charac-
teristic associated with that equation. Two-point forward differences
along the characteristic are then used to replace this time derivative.
It is shown that this difference is the equivalent of the replacement
of the original time derivative by forward differences and the spatial
derivative by either backward or forward differences, depending upon
whether the associated characteristic is positive or negative. The
consisteﬁcy; éonvefgence and stability of the difference equations

are then investigated.
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LITERATURE REVIEW

As previously stated, many studies, especially with the linearized
equations, have been done in the area of plasma waves. Perhaps
Tanenbaum and Mintzerl have presented the best linear analysis by
assuming a partially ionized three-fluid mathematical model of the
plasma. Harmonic plane wave solutions were assumed and expressions
relating wave number and frequency were then obtained. A rather com-
prehensive listing of other studies in this area is included in Ref. 1.

Other authors, among them Adlam and Allenz, Béﬁos and Vernon3,
Montgomery4-and Saffman5’6, have studied nonlinear waves in collision-
free, fully ioniéed plasmas; i.e., the governing equations are not
linearized. The major differences between these studies lie in the
assumed direction of the applied magnetic field and in the neglect
or retention of pressure terms iﬁ the momentum equationé. In all the
nonlinear‘studies encountered the physical situation was that of a
disturbance traveling with a constant speed into an undisturbed plasma.
Thus, the governing equations could be written in the reference frame
of the wave and all time dependence was eliminated.

No work in the literature has been found where the multi-fluid
equations, either linear or nonlinear, describing a plasma flow were
completely solved subject to particular initial values and boundary
conditions. Thus, quite naturally, no comparison of the linear and
nonlinear solutions of such a problem has been possible.

Several authors have studied the mathematical aspects of the

problem considered in the present study. Lax7 has a very good
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discussion on the solution of hyperbolic systems of first order partial
differential equations, as does Jeffrey and TanuitiB. The latter, as
well as Courant, Rees, and Isaacsong, gives a discussion of the develop-
ment of a numerical solution of the pure initial-value problem for
quasi-linear systems. Thoméelo employs a difference scheme to illus-
trate the existence and uniqueness of a solution of the mixed initial-
boundary value problem for quasi-linear systems. - The present study
utilizes this particular scheme, with a discussion on how it is

arrived at, to obtain a solution of an example problem. The conver-
gence analysis given in Ref. 9 is applied to the particular diagomal
system of equations with which the present study is concerned and the

consistency and stability analysis is taken from Isaacson and Kellerll.
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SECTION I

The problem of this study is to determine numerically how a.
disturbance affects a one—-dimensional three~fluid plasma flow. The
mathematical model is formulated using first the three-fluid nonlinear
governing equations and then the corresponding linearized system of
equations. A comparison between the two cases is made for a particular
example to obtain some insight into the limitations of a linearized
approach. In this section the basic governing equations are obtained,
subject to the yarious assumptions imposed upon them. This scalar
system of equations is then cast into a single matrix equation and
classified as to its particular type. A discussion of the mathematical

problem follows.

1. Basic Equations and Assumptions -

In this study the model of the fluid used 1s commonly called a
three~fluid model. In this model the plasma is assumed to be composed
of ions, electrons, and neutral particles which interact with each
other through collisions. The degree of ionization is assumed to be
fixed so that the three-fluid mixture can be described completely by
Maxwell's equations, the transport equations expressing conservation
of mass and momentum for each of the ion, electron and neutral species,
and the equations of state for the three gases. The following assump-
tions are made:

(1) Each gas obeys the ideal gas law.

(2) Collisional effects among the three interacting gases
allow for conservation of the total momentum of the system.
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Each gas is inviscid.

(4) Each gas is isothermal.

The following set of equations1 is therefore used to describe the

plasma.

(D

(2)

(3)

(4)

The Maxwell equations:
—
V+*:B=0
2 oE
-
Vstqu+Kouo-aT
! &
v E=K_(N1—Ne) .
o
= 3B
V x ~ 3t
The mass transport equations:
e +p V-V =0
Dt Pe e
i SIS
Dt Py Vi =
Dp
n >
DL + Pn v Vn =0
The momentum transport equations:
oV vP
e e A > e Y S
Dt m E + Ve ¥ B) o vei(ve - Vl) - ven(ve - Vn)
-
e Ea T a D ke @ -V v, @ - T
Dt 4 1 ¥ 1 T Vie'Vy T e) - vin('i ~ 'n
ﬁ? vp
n_‘_t_l__ —.> _ .L_..;
Dt oy Yne Va Ve) vni(vn vi)
The equations of state:
P = NKT
e e e
P, = N,KT

i

i1
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P = NKT
n n n
where, as stated previously, Te, Ti’ and Tn-are all equal to constants.

The collision frequencies which are used (vei for electron-ion
collisions,_vin_for_ion—neutral collisions, ete.) are effective colli-
sion frequencies for momentum transfer between particles. If v;b is
the average number of collisions per second which each particle of
type a has with particles of type b, then the effective collision fre-
quency foréﬁomentum transfer can be expressed asl

Vab © mbv;b/(ma + mb)
As a consequence of this definition
Pa’ab = PbVba
hence, there is no loss of total momentum in collisions among the
particles in the £fluid.

If the additional assumption is now made that all dependent

variables are functions of only x and t, and if

Zy = In Ni

then the vector equations can be expanded into the scalar system

below.
7y + uicl + u, = 0 (1.1)
t X pis
L2 +tuly +u, = 0- (1.2)
t X X
t3 tuzgy + o= 0 (1.3)

t b 4 X



. |
~ = (B3 + v,B) - u_B3)

+ ven(

E, + c?Bj

X e

+ vei(ui - ue) + Vg,

X

e ' , o
= (Ep + w;By - uiB3) + vie(ve - vi) + vin(vn = vi)

vV =V
n e)

= vni(vi - Vn) + Vne(ve - vn)

e
e + - -
: (Eg u; By ViBl) + vie(we wi)

—W)

in(wn i
ET—(E3 +u,By - v B1) + v (W, - w)
ven(wn - we)
vni(wi - wn) + vne<we - Wn)

Ep + (u, + u)E; = czuoe(ue exply - uy expZs)

2 -
c uoe(ve explsa vy expsy)

2 L
c‘u e(w, expty - w, expl;)

e
“ (B, + VeB3 - weBz)
I CT

vni(ui - un) + vne(ue - un)

. + vei(vi - ve)
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(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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B, —E; =0 | (1.16)
t b 4
B3t +E, =0 (1.17)
X
KT KT KT
where ai = ——i-, aZ = — | a? = — .
m e m n m
i e n

The reason for assuming that each gas is isothermal and then for writing
the equations in terms of the natural log of the number densities will
be discussed in a later section involving the transformation of the
equations into a diagonal form.

The system of equations (1.1 - 1.17) is composed of the full non-
linear governing equations. It is now desired to linearize the system
by replacing each dependent variable by some constant part plus a

fluctuating component; i.e.,
¢p(x,t) = ¢0 + ¢'(X,t)

where the fluctuating component ¢' is assumed to be small enough that
second order terms can be neglected. In -order to have the same form

as the non-linear system, let

L}
gy = Ni/Ni s
o
v 1
Lo = Ne/Ne
o
and
' 1
L3 = Nn/Nn .
o

Thus, the linear system becomes:

g, tu g +ul =0 (1.18)
t 0o X X
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Lo +u zy +u =0 (1.19)
e e
t o X X
' 1 T
g3 + u, gy + u = 0 (1.20)
t o X X
' 2.1 T e - '
ui .+ aizl + uy ui - (E1 + vi B3 wi 32 + E1
t b4 o X i o o o o o

1 ] t
+ v, By + By viomwy B, - B, wi)
o o o

i
o
'
+ vie(ue ~-u, + u ui)
o o
+ vin(u ol u; - ui) (1.21)
() o
2.1 v - _e__ _ '
u o+ ae§2 + u, v, =- = (E, + v, B v, B, +E,
t x o X o o o o o
] L} ]
o o o o
1 1
+ vei(ui - u, + u - u )
o o)
+ ven(un -u, u; - u;) (1.22)
0 o
w +aZg; +u u =y (u, -~u +u -1
n’3 n n ni* i i
t o 'x o o
+ vne(u - u  + u; - u) (1.23)
o o
1 ] e t ] ]
+ u v, o= ;r-(Ez +w, B uy By + E, + Blwi uy Bg
t o 'x i (o} o o
-B,u)+v, (v. -v, +v' -+v")
3 71 ie i e i
o o o
+v, (v -v, + v; - v (1.24)



188

1] e 1 1
v, + u v, =-4 (E2 + v, B, ~u_ B; +E, + Blwe
t 0 X e o] o] 0o o
-u B -Byu')+v (v -v +v =¥
e 3 3 e ei*'i e i e
o o o o
+ - r 1 .
\)en(vn v, + vy ve) (1.25)
o o
) \] = _ L _ L
vn + Yn vn vni(vi v + vi Vo)
t o X o o
+ - L. L .
vne(v v + v~V ) (1.26)
o o
1 [} e 1 1 1 1
W, + u w, = E:'(E3 +u, B, - Blvi + E; +u, B, + B, u, - Blvi)
t o "X i o o o o
L L
+ vle(we - Wy +w - Wi) + vin(w - W,
o o o o
] L
+ v wi) (1.27)
| ] e L} L 1
v, + u, W, = (E3 + u, B, - Blve + E; + u, B, + B, u,
t o X e o o o o o o
L 1 L
Blve) + v, (w w +w w')
o o
+v W -w +w -wh) (1.28)
en' n e n e
o) o)
w' +u w =v.w -w +w -w )
n n ni 1 i
t 0 X o o
+ _ LI .
vne(we w o+ v, Wn) (1.29)
o o
' v 2 ' t
E1 + (ui + u, )E1 c uoe(ue Ni + u, Ni gy + Ni u
t 0 o] X o o)
L L
- Ne u, - ouy Ne g, - N ui) (1.30)
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ol 21‘ = o2 [] ]
E, + c“B; c uoe(ve Ne + A Ne z, + Ne vy
x o o o o o
- Ni v, TV Ni Ci - Ni vi) (1.31)
o o 0o o o
' _ 2'1 = a2 ] [
Eg c“B, c uoe(we Ne + v, Ne L, + Ne w
t x o o o o o
- Ni w, - Wy Ni ;i Ni wi) (1.32)
oo o
1 4 \ ] .
B, -E; =0 - (1.33)
t X o
B, +E, =0 (1.34)
t X

2. Matrix Formulation and Clagsification of the Equations

Equations (1.1 - 1.17) comprise a non-linear scalar system of
seventeen first-order partial differential equations involving the

s B

seventeen unknowns Bys Bos Bgs Ugs U s Uy Voy V3 Voy Woy W, W 13

n

E Ey, By, and B,. B, is a constant and thus is known. The above

29
equations are now cast into a single matrix equation so that they can
be transformed into a diagonal system. It can easily be seen that these

equations may be written as
(v, + [Al[v,] = (8] (1.35)
with
[A] = [A1([U]) and [B] = [B]([U])
where [U] and [B] are column matrices and [A] is a square 17 x 17

matrix, as shown. Here,

fu.]

t t

[u]

and

]

[vl, = ]
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where the t and x of course refer to partial differentiation.

g, (x,t)
&, (x,t)
Z4(x,t)
ui(x,t)
ue(x,t)
un(x,t)
S v, (x,t)
v, (x,t)
[u] = v (x,t)
wi(x,t)
we(x,t)
v (x,t)
El(x,t)
Ez(x,t)
Ej(x,t)
B, (x,t)

Bs(x,t)




[A] =

0 o0
0 0
0 o0
0 o
0 O
0 o0
0 o0
60 o
0 0
0 o0
0 0
u 0
Ou i+ue
0 o
0 o
0 0
0 0

161
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0

4]

0
e/mi(E1 + viB3 - wiBz) + vie(ue,— ui) + \)in(un - ui)
—e/me(E1 + veB3 - weBz) + \)ei(ui - ue) + ven(un - ue)

. . = + u - u
vnl(ul un) vne( e n)

e/mi(E2 + Blwi - uiBs) + v (ve - vi) + v, (v. - Vi)

ie
—e/me(E2 + Blwe - ueB3) + vei(vi -v)y+v (v, -v)

[B] =
vni(vi - vn) + Vne(ve - vn)

e/mi(E3 + ui32 - viBl) + vie(we -w,) +v, (w. -w,)

—e/m.e(E3 + ueB2 - veBl) + \)ei(wi - we) + Ven(wh - we)

, - + v -
vni(Wl wh) ne(we Wn)
2 Cl ;2
e(u e’l - u.e
cu (ue 1 )
2 Zo - 21
c uoe(vee v,e )

2 & - &1
c uoe(wee w.e )

Similarly, the linearized system of equations (1.18 - 1.34) could
also be written as a single matrix equation. A system of equations
such as equation (1.35) is hyperbolic if the coefficient matrix [A]
contains only real eigenvalues and is diagoﬁalizable7; i.e., if one

can find a matrix [T)] such that

[T1-1[a][T] = [D] ,
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where [D] is a real diagonal matrix. Such a [T] can be found if the
eigenvectors of [A] are linearly independent. Setting detf{A - A1] = O,
and solving for the roots of the resulting polynomial, the eigenvalues

of [A] are found to be

Ay = -cC

A, = -c

Ag = u, - ae
Ay = uy - a,
Ag = uw - oa;
Ag = u, + a,
Ag = u, + a,
Ag = u,

Ag = u,

Aio = u

*11 = u,

Ao = u

A13 =u

Alu = u, + u,
Aig = u, + a,
A = ¢

A17 = c

and the corresponding eigenvectors, as obtained from
[a - 2,1](x,] = [0]

where [Xi] is an eigenvector corresponding to the eigenvalue Ai’ are

given on the following page.
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1

%, = (0, 0, 0,0,0,0,0,0,0,00,0,0, -, 0, 0, 1)

X2 = (0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,¢c,1,0)

.i3 = (0’ --a—e_’ 0’ 0’ 1’ o, 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’0)

Xy =(—1

5 1

a—i' 0) 0’ 1’ o’ 0’ o’ 0’ 0’ O’ 0’ 0’ 0! 0! OD ol 0)

Xs = (0, O, - £ 0,0,1,0,0,0,0,0,0,0,0,0,0, 0

Xg = (0, 0, 0,0,0,0,1,0,0,0, 0,0, 0, 0, 0,
X9 = (0, 0, 0, 0, 0,0,0,0,0,1,0,0,0,0,O0,
X0 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0O, O, O, O, O,
Xy, = (0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 1, 0, O, O, O,
X3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, O, O, O, O,
X;3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, O, O, O,

X1y = (0’ o, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 1, 0, O,
1

1
X = (;I: o, o, 1, o0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 0)

X7 = (0, o,-%;, 0, 0,1, 0,0,0,0,0,0,0,0,0,0,0)

0)
0)
0)

0)

0)

0)

0)

Xls = (09 _a_e—’ 0’ O’ l’ 0’ 0’ 0’ 0’ 0’ 0’ O! 09 O’ O, O’ 0)
X1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¢, O, 0, 1)

X,7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, —-c, 1, 0)

Forming a matrix whose columns (or rows) are composed of these eigen-

vectors and then evaluating the determinant of that matrix, one finds

its value is not zero; thus, the eigenvectors above are linearly in-

dependent. Therefore, since the eigenvalues of [A] are real and the

corresponding eigenvectors are linearly independent, the matrix [A]

can be diagonalized to yield a real diagonal matrix, and thus the

system of equations, represented by equation (1.35), is hyperbolic.

3. The Mathematical Problem

It has been stated that the physical problem involved in this
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study is to impose some disturbance upon a plasma initially in equi-~
librium and then determine the effect at later times and spatial
positions. Thus, a mixed initial-boundary value problem is being
considered where values of variables ét t = 0 are known over some

range of x and values of some variables are known at x = 0 as a function
of time. As discussed in Ref. 7, the number of dependent variables
which may be assigned values on the boundary x = 0 is not arbitrary.
This is discussed in more detail in the next chapter after the equations
have been cast in a diagonal form. In summary, the mathematical pro-
blem is to find a solution of

© [v,] + [81[v,] = [5]

given the initial values [U(x,0)] and some of the boundary values
[UCo,t)].

The existence and uniqueness of a solution is discussed in a
later section. In this discussion and in discussions about the solu-
tion technique the nonlinear system will be considered; however, the

same discussion could be applied to the linearized equations.
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SECTION II

The first part of this section is concerned with the transfor-
mation of the matrix [A] into diagonal form. Next the boundary.condi—
tions; i.e., the imposed disturbance, are discussed in general and
then, along with the initial values, for a particular example model.
In the concluding section the conditions which must be met in order

for a unique solution to exist are considered.

1. Tranformation of the System into a Diagonal Form

It is advantageous to transform [A] into diagonal form for several
reasons. First the existence theorem10 (discussed in the last section
of this chapter) applies to such a diagonal system. In addition, a
diagonal form is needed in order to determine what variables, or
relations such that these variables can be calculated, can be speci-
fied on the x = 0 boundary as a function of time.

Previously when the system was classified as being hyperbolic it

was stated that one could find a matrix [T] such that

[T]-*[A][T] = [D] (2.1)

where [D] is a real diagonal matrix. The determination of the trans-
formation matrix [T] proceeds as follows: In Section I the eigenvalues
and corresponding eigenvectors of [A] were listed. The first step in
the formation of [T] is to find the corresponding set of unit orthogonal
eigenvectors; i.e., the set such that

IR, = 1, if i = j
1 J J
0, 1f 1 # § (2.2)
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3ince it has been shown that the eigenvectors of [A] are linearly
independent, the Gram-Schmidt orthpgonalization procedure12 can be
used to find a set of unit orthogonal eigenvectors. In Appendix A
such a procedure is illustrated. Once these are found, [T], which is

shown on the following page, with

1
D= ——
‘ \Zl + ai.
D3=-——];-——,D,+=—'—l—
\/1 + ai \/ 1+ c? R

is formed by letting its columns be composed of these unit orthogonal

D

_ 1
: \/ 1l + aé .

eigenvectors. This method of forming [T] creates an orthogonal matrix;

i.e.,
[T]-} = [T]T (2.3)

which proves to be useful later. In addition, with [T] formed in the
manner explained, [D] is a diagonal matrix containing the eigenvalues
of [A] as its diagonal elements. A discussion of such a similarity
transformation can be found in any book on matrices. With the [T]
matrix having been formed, the discussion of the transformation of
equation (1.35) into a diagonal form can be continued.,
First make the transformation
[u] = [T][V] (2.4)
in equation (1.35), which yields
(1], [v] + [T1[v], + [A1C[T]_[V] + [T][V]) = (8]

or

[T)[v], + [A)[T1[V], = [B] - [],[v] - [Al(T] _[V] .



[T]

(=]

861
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Pre-multiplying the preceding equation by [T]'1 one obtains
vl, + [T1"}[al[T] V], = [T]-%[B] - [T]-![T] (V]
- [T alT) vl .

Then making use of equation (2.1) yields

[vl, + [Dl[v]l_= [c] (2.5)

where
[c] = [T]-1[B] - [T]-'[T] [V] - [T]~![A][T] [V] .

Equation (2.5) is the desired diagonal form of equation (1.35),
except that [C] contains derivatives. However, from an inspection of
[T] it is seen that

[r], = [1], = [0] . 2.6)

Therefore, using this along with the fact that [T] is an orthogonal
matrix yields
[c] = [T1°[8] . 2.7)

Thus, instead of having to find [T]™! in order to obtain [C] one merely
has to take the transpose of [T]. If the basic equations had not been
written in terms of the natural log of the number densities, which
could only be done by assuminé.that each species was isothermal, then
equation (2.6) would not be true. Therefore, the expression for [C]
would have contained derivatives, which would have resulted in a severe
complication.

In conclusion, the original system of equations given by equation
(1.35) has been changed into the diagonal system below

[vl, + [pl[vl, = [c] (2.8)

with, in general,



g

200
[p] = [D](x,t,[V]) and [C] = [C](x,t,[V])

where

[v] = [T]7[v]

and

[c] = (r17[8] .

[v], [c], and [D] are shown in the following along with [U] in terms of

[v].

— —_ — —
M V) (x,t) D,(cB; - E,)
v, (x,t) D,(E; + cB,)
vy (x,t) Dz(ue - aecz)
v, (x,t) Dl(ui - aicl)
Vo (x,t) D3(un - anc3)
Ve (x,t) Dl(?;1 + aiui)
v, (x,t) Dy(gy + anun)
[v] = Vg (x,t) - v,
vy (x,t) W,
Vi (x,t) v,
Vi (x,t) v,
Vi, (x,t) v,
Vls(x,t) W
qu(x,t) El
V,5(x,t) D, (g, + au)
Ve (x,t) D, (cE, + B,)
Vv, (x,t) D, (B, - cE,)

[C] is 2 column matrix with the following as its elements.

a
—
|

= - chzuoe{VloeXp[D?_(Vls - aevg)] - VaexP[Dl(VG - aivq)]}

@]
]

o = Dyc?u elV) exp[D, (V5 - a Vy)] - Voexp[D, (Vg - a,V,)]}

Q
w
|

e
e
[Dl(Vu + aiVe) - D2(V3 + aevls)] + \)en[D3(V5 + anV7)

- Dy (V3 +a vV 9)]}
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e
i
(V3 + aVys) = Dy (W, + a, V)] + vy, [D5(Vg + a,V7) - D,

(v, + a;Ve) ]}

Da{“ni[Dl(Vu + aivs) - D3(V5 + anV7)] + vne[Dz(Va + aevls)

- D3(Vs + a V) ]}

aiCq

anC5
e
;r'[Du(°V1e - Vl) + BVg - DIDL’(V,+ + aiVG)(cV1 + Vle)]

i

+ “1e(V10 - Vg) + “in(VIZ - Vg)

e

o [p,(v, - ev;;) + DD, (V, + aiVG)(cVZ +V,,) - BVg]
1

+ vie(V11 - Vg) + \)in(V13 - Vg)

e
- ;; [D,(eV g = V) + BV, - DD (V, + aevls)(cv1 + Vls)]

+

v ., (V

01 Ve = Vig) * v, (V1p = Vyp)

B[N

D,+(V2 - cV17) + DZD,_}(V3 + aeVIS)(cV2 + V17) - B1V10
e

Vni(V8 - V) + vne(V10 - Vy,)

v (Vg = Vig) + v (Vg = Vig)

exp[D, (Vg - aeV3)]}



C15 = aeC3
C16 = —cC1
017 = —cC2

The diagonal matrix [D], written in terms of the elements of [U] is

-C
=C

u -a
e e

uiay

u_-—a
n n

ui+ai

+a
un n

o} = .

ui+ue

u +a
e e

and
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g, (x,t) DI(VG - aiVH)
g, (x,t) ~ Dy(Vy5 - aV3)
cs(x,t) D3(V7 - anVS)
ui(x,t) Dl(Vq + aiVG)
ue(x,t) D2(V3 + aeV15)
un(x,t) D3(V5 +lanV7)
vi(x,t) Vg
ve(x,t) Vio

[ = v_(x,t) = v,
wi(x,t) Vg
we(x,t) 2%
wn(x,t) Vi3
El(x,t) Vi
E, (x,t) D, (ecV,g - V)
Ea(x,t) Dq(V2 - cV17)
B2(x,t) Du(cV2 + V17)

B Bs(x,t) ] | DL’(cV1 + Vls) ]

2. General Discussion of Boundary Conditions

Previously it was discussed how the physical problem of imposing
a disturbance upon the flow becomes the mathematical problem of finding
a solution of the governing equations given the initial wvalues of the
dependent variables and the values of some variables on the x = 0
boundary, which represents the disturbance. O0f course, instead of
equation (1.35), the problem now is to find a solution of the diagonal
system (2.8) and then return to the original system through the trans—
formation [U] = [T][V]. In conmection with the boundary conditions
it has also been discussed how the number of variables specified, or
he number of relations such that these variables may be calculated,

1s not arbitrary.
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The eigenvalues of [A] (also of [D]) are called characteristics
and may be shown to be equal to dx/dt; thus, they may be sketched
as curves on the x-t plane. Let M! be the number of positive eigen-
values of [A]. Therefore, there will be M! characteristic curves,
corresponding to the positive eigenvalues of [A], which lie to the right

of the origin of the x~t plane as shown below.

When the system was transformed into diagonal form the [T] matrix
was arranged so that these M! characteristics are the last Ml eigen-
values of [D]. Therefore, the following éonditions must be imposed
on [V] along the x = 0 boundary7:

(1) the values of V *y V5 are prescribed

17-(M21)° "
along the x = 0 boundary as functions of time, or

(2) more generally, M! relations among VisVy,°°°,V,, are
given along x = 0 with the stipulation that it is

possible to compute V17—(Mll)""’V17 from these

relations.

3. Formulation of the Example Problem

From an inspedtion of the eigenvalues, or characteristics, as

given on page 18, it is seen that if Uy U, and u are considered to
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be negative at the origin, with Iuil > ag, |un| > a, and |ue| < a,,
then only the last three characteristics lie to the right. Thus, for
this particular case, one must specify Visos Vls’ and V,,, or three
relations such that they can be calculated, on the x = 0 boundary as
functions of time. If these particular restrictions are not forced
upon u,, u_, apd u s then one must specify more variables, depending
upon the new restrictioms.

Now if, on the x = 0 boundary, the assumption is made that

Ni(O,t) = Ne(O,t)

then one can show, from the expressions for the U's in terms of the

- ¥ _ e P = "= a1 .
V's given on page 27, that

a

Dl

V,5(0,t) = 5, {Vg(0,t) - a,V,(0,8)} + a_V,(0,¢)

where V6(0,t), V“(O,t) and V3(O,t) will have been calculated in the
solution technique by the time V,;(0,t) is calculated. In addition,
the assumption is made that the imposed disturbance is that of

forcing the electric and magnetic fields in the y-direction to be

certain functions of time at x = 0; i.e.,

B,(0,t) = g, (t)

where, as will be seen later, g, and g, must satisfy certain condi-
tions in order for one to be assured of a unique solution existing.
With the above, it can be shown from the expressions on page 203 that

11

Vi6(0,8) = c ',

g, (t) + V,(0,8)}

and

V,,(0,t) =-%: g, (t) - cv,(0,t)
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where, as on bottom of previous page, V,(0,t) and V,(0,t) will have

been calculated before V.s(0,t) and v,,00,t).

Instead of E2 and B2

one could have forced E3 and B, or E2 and E3 or B2 and B3 at x =0

and still have been able to solve for V,6(0,t) and V,,(0,t).

Initially it is required that the plasma flow be in equilibrium.

Thus, remembering to satisfy the restrictions previously placed upon

Ui, U, and u plus using number densities that might exist in an

ionized gas at atmospheric pressure, the particular initial values

assumed are

[U]1(x,0) =

z,(x,0)
z, (%,0)
£3(x,0)
ui(x,O)
ue(x,O)
un(x,O)
vi(x,O)
ve(x,O)
vn(x,O)
wi(x,O)
we(x,O)
wn(x,O)
El(x,O)
Ez(x,O)
E3(x,0)
Bz(x,O)
B3(x,0)

1n(1021)
1n(1021)
1n(3.62 x 102%)
-1500 m/sec
-1500 m/sec
~1500 m/sec

© 0O 0o oo oo o o o

In order to find the corresponding initial values of the diagonal

system, the transformation

[v](x,0) = [T]-1[U] (x,0)
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1s used to yield

B Vi (x,O)-_— [ 0 T
v, (x,0)
vy (x,0) D,{~1500 - a_la(10%1)}

v, (x,0) D;{-1500 - a,1n(10%!)}

Vs (x,0) D;3{-1500 - a 1n(3.62 x 102%)}
Ve (x,0) D,{1a(10%1) - 1500 a,}

v, (x,0) D3{1n(3.62 x 102%) - 1500 a }
Vg (x,0)
vy (x,0)
V0 (x,0)
V,;(x,0)
V12(x,0)
V13(x;0)
Vi, (x,0) 0

v, (x,0) D,{In(10%1) - 1500 a_}
Vls(x,O) 0

(V] (x,0) =

© ©O o © o ©

V17(x,0)-J 0

The temperature of each gas 1s taken to be Te = 10,0000K, and Ti =

Tn = 2000°K which yields thermal velocities of a, = 3.9 x 10° n/sec,
a; = 640 m/sec, and a = 640 m/sec. Thus the -1500 m/sec assumed for
the initial value of u;, u,, and u satisfies the restrictions dis-
‘cussed previously.

Values for the collision frequencies encountered in the species
momentum equations are also needed. The effective frequencies can be
calculated, as discussed in Section I to yield the values below.

These calculations require values for the average collision frequencies
which are obtained in Appendix B.

Vie = 3.73 x 105/sec, v, = 2.95 x 108/sec

in
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<
]

. 2.76 x 1010/sec, v = 1.44 x 1011/sec
ei en

0.81 x 10%/sec, Vie = 5.36 x 10%/sec

<
I

ni
In conclusion, particular initial values and boundary conditions
(the imposed disturbance), plus values for the collision frequencies
have been obtained, for which a solution of equation (2.8) is required.
In addition, the linearized system of equations is also diagonalized

and solved using the same values listed above.

4. Compatibility Conditions and the Existence Theorem

In this section the concept of a domain of dependence is

discussed.

.(po

All points within the region bounded by the maximum characteristics

(max Idx/dtl = ¢) drawn from the end points of the initial interval
wo; i.e., ©;, are dependent upon only the initial values of the

variables. For example, values at P, are only dependent upon that
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nortion of the initial interval intersected by the maximum positive
and negative characteristics drawn backward through P;. This inter-
sected portion of wo is called the domain of dependence of E;. All
points of 02 are dependent upon a portion of the initial interval as
well as some of the x = 0 boundary. For example, values at P, are
dependent upon that portion of the initial interval from x = 0 to
where the maximum negative characteristic, drawn backwards through
P,, intersects it as well as that portion of the boundary up to where
the maximum positive characteristic intersects the t-axis. Thus,
if a solution exists it can only be within ©(6 =0,U@,)since points
outside this domain would depend upon initial values which are not
given. Therefore, if the initial interval is wo it makes no sense

to specify boundary conditions for times exceeding to’ where t0 =
x

9
el
Equation (2.8) may be written as
[vl, - [0Vl = [c]s [D,] = -[p]
with
[v] = [£°] on ¥°; [£°] = [£°] () (2.9)
and
V] =[] ony; [£]=[£1VD (2.10)
where [DT][O] N
[Dl] = [0] [D—i] H [Dl] > 0 and [D-ﬂ <0

and [V+] and [V ] correspond to the partitioning of [D ] shown above.
¢° and § are as shown on the previous figure.
Assuming that the closed sets
2= {Gt,[VD[0sxsx,0sts6, [[V]- [£°]] = &}

and
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+
Q" = {6, [VID] 05 t26y, |[[V] - [£°100)] = e}
exist, the following existence theorem taken from Thomée10 can be

stated.

Existence Theorem: If [£°]e£? on ¢°, [C]e2 on @, [D;]et? on @,

and [f Jeg2 on. O, plus if certain compatibility conditions are
satisfied, then there exists a & > 0(§ < §;) such that a solution
eg! exists in-es, where 6% = oN{0 £ t £ §}. 1In addition, the

solution is unique.

The compatibility conditions which must be satisfied in the

hypothesis of the existence theorem are:

+ -
(1) [£770,0£° 1)=[£° 10

(£~ + - + :
(2) aai ] (0,[£° 1¢0) ) +-3%£;% €, [£° 1¢0) Y{[p1]¢0,0,[£°]1¢0) )
. olVv

[ 0+] il
2L 1 (0) + [€"1(0,0,[£°1(@) )} = [071(0,0,[£°1(0) ) 9%5“1 ©
+ [€71(0,0,[£°1(0) )

where-2L§~l is the matrix with columns Qj}LJ_, K=1,2,++-,14,

a[v'] . av;

Condition (1) expresses the continuity of [V] at the origin;
whereas, condition (2) essentially expresses the fact that the
differential equation applies at the origin. It is obtained in the
following manner. With the partitioning of [D;], [V] and [C] pre-

viously illustrated, equation (2.8) may be partitioned as below.

[c*] (2.11)

v, - 31097

and

v, - [Didlv], = [c7] (2.12)

Mow using equation (2,9) it can be seen that applying the equation for
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fv"] above at the origin yields

- O-
AV 1 0,0y = 1071¢0,0,1£°1(0) ) 4L (o) + [€7100,0, %1 0) )
(2.13)

However, equation (2.10) states that [V ] is specified on the x = 0
boundary as a function of time and [V+]. Therefore the time derivative
of the matrix of specified functions must be the same as the time

derivative above. Therefore,

_ - - +
aaz—l (0,0) = a_gi__l (0,0) = igi_l 0,7 1) )

+
+—[LJ]- (o, [£° ](0) ) _g.z_l (0,0) (2.14)
9 V

but,

+
+
Y1 0,0y = [p1¢0,0,[£°1 @ ) L (o)

+ [€71(0,0,[£°1C0) ) . (2.15)

Substituting this into equation (2.14) and then the resulting expression
into equation (2.13) yields the second compatibility condition.
From the previous discussion of the boundary conditions for the

example problem

D
fi Vg (x,0) = 2,7, (x,0} + a_V3(x,0)

- of 1,1
()¢ D = | 3 57 e (0) + V(003 (2.16)
L o (t) - oV, (x,0)
D, 8o o \X,
whereas, ) V15(x,0)‘
[£° 1(x) = Vi6(x,0) | . (2.17)

V17(x,0)
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From the assumed initial values given on page 207 it is seen that
Vy(x,0) = V,(x,0) = Vy(x,0) = V,7(x,0) = 0; thus, using this and

applying condition (1) yields

. . e — —
D
1
7+ {V(0,0) - a,v, (0,00} + a V,(0,0) V,:(0,0)
u2 ~ L 7 e v badnd
11 _
p ’]—): gl(O) = 0 .
1 .
= g,(0) 0
D, 2 . . 7

Making use of the relations between the V's and U's on page 203 it

is seen that

N, (0,0) = N_(0,0)

which is satisfied. Also from the above

g,(0) = 0 and g,(0) =0 . (2.18)

Now, before applying the second condition observe that

0
3[£] oy _ {11 98
e (B D = o5 E .
1 98
D, dt  _

+
Also, since [fo ] consists of the first 14 elements of [V](x,0) and

[£° ] the last three v
d[f°+] d[£°_]
e [0] and = (o]
In addition, from an inspection of the elements of [C] given on

page 200
[0]

[c"1(0,0,[£°1(0) )

and

Il
—
o
—_—
L]

[cT1(0,0,[£°1(0) )
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Thus, applying the second compatibility condition yields

— —_— .
0 O_
11 .iEl (0) = 0
c Du dt N
dg
1 2
o, at © 0
Therefore, at t = 0
dg1
- 0 (2.19)
dg2
rrate 0 . (2.20)

Previously it was stated that gl(t) and g, (t) must satisfy certain
conditions. These are given by (2.18), (2.19) and (2.20). The parti-

cular forms of g, and g, chosen are
g,(t) = Eoz(l - cos 27mwt) (2.21)
g, (t) = ﬁoz(l - cos 27mwt) (2.22)

which, as can easily be seen, satisfy the restrictions listed above.
Thus the boundary conditions for the example, in terms of the trans-

formed variables, are

D
1
Vls(O,t) =-5; {VG(O,t) - aiVu(O,t)} + aeV3(0,t)
Lt s,a 2 + V;(0,t)}
VlG(O,t) == -5: Ego (1 - cos 2mwt) 1(.’t)
1 . )
V17(0,t) = 5:-B02(1 - cos 27nwt) -~ cV2(0,t) .

In conclusion, with the above forms for gl(t) and gz(t); i.e.,
the imposed disturbance, one is assured of satisfying the compatibility

conditions, Thus, it is known from the existence theorem that a
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solution of equation (2.8) subject to the particular initial-values
and boundary conditions assumed does exist-in 66. Once this solution

is found it is a simple matter to return to the original system.
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SECTION III

In this section the finite~-difference scheme used to form the
difference equations from the differential equations is developed.
Once the difference equations are obtained the consistency, stability,

and convergence are analyzed.

1. Development of the Finite-Difference Scheme and the Difference
Equations

When using finite-differences to find a numerical solution,
values of the unknown variables are obtained at a discrete set of
points called net points. A rectangular net of lines, to be super-
imposed on the (x,t) plane such that one family of lines is parallel
to the x—-axis and the other family of lines is parallel to the t-axis,
are chosen. The lines are assumed equi-spaced with x interval Ax and
t interval At, as illustrated below, where Ax and At are not necessarily

equal.

t+At

T x  xtAx
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If the function W(x,t) is defined only at the mnet points (kax,LAt)
in the (x,t) plame, for k,f integers, then the values of W(x,t) at

the points Pi of the previous figure are:

PO: Wix,t)

P,: W(x - Ax,t)
P2: W(x,t + At)
Pg: W(x + Ax,t)

The ¥érward and backward space difference quotients at P, are written

-i—; [W(x + Ax,t) - W(x,t)]
and

%; [Wix,t) - W(x - Ax,t)]
respectively, and both approximate the partial derivative 3V/9x of
the differentiable function V(x,t) whose values coincide with those
of W(x,t) at each net point. Similarly, the forward time difference

quotient at P, is written

W, = i—t [W(x,t + At) - W(x,t)]

and approximates the partial derivative 3V/3t.

Previously the domain of dependence concept was discussed; i.e.,
values at Q', of the following figure, depend upon that portion of the
previous time step intersected by the maximum positive and negative
characteristics drawn backwards through Q'. The time and spatial
steps are.selected such that the tangents to the characteristics at
Q', when traced backwards, intersect the line through P and R at

the points Si; i=1,2,+-+-,17, between P and R.
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t+At | _la’
/1
/
/x
/ S
/ i
/
t P ,’O(i) Q R
7
| 1
X x+4Ax

This assures one of keeping the domain of dependence intact and thus
the finite-difference domain lies within the analytic domain. It is

seen that the condition for the above to be satisfied is
(1) .
At 1 dx _ L, (D
iy < max I;YESJ where 3 = A .
A typical equation of the diagonalized system given by equation

(2.8) is

Vt(:i) + A(i)v}({i) =M,y o1,2,000,17 (3.1)

(1)

However, (Vt + A(l)Vil)) can be considered to be a total time

(1)
derivative along the curve x(i) = x(t) for which dx(i)/dt = A(i)'

thus, equation (3.1) can be written as

(1)
av't @)
T = C (3.2)
along
(1) 1)
x(i) = x(t), where dx = A(i)

dt *
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(i)
Values of V'3 at Q' are written as V(Q') and the discrete valued
(1)

approximation is W(Q'). From the previous figure,

where { is a unit vector in the x-direction and 3 is a unit vector

along the t-axis. It is easily seen that

Si
1) t _ dt 1
tan 6 = = = n
Six dx(i) )\(1)

thus, setting Sit = 1 and Six = x(l) one obtains

T . ,W: 2

Si = X271+ 3

and

A(l) 2 1 o
i i+

i . (3.3)
y1+ a2 ,/1 + ()2

of V(i) in the direction of §, is

W
]

Now, the derivative

i
. (1) A (1) 1 (i)
Si - 9V = Vx + Vt
Jl + 20?2 ,/1 + (D2
or
(1)
) 1 v
‘Si vV =

: (3.4)
dt
‘/1 a2

Now, let the finite-difference approximation to this directional

derivative be

-

@ i)
, W@Q') - W(s.
s -y 1

. (3.5)
i avgz

However, from the previous figure it is seen that

@ = stn o) Tg7
where
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(1) 1

sin B =
\’1-}-)\(1)2
ST - (1@ @ .

Thus, equation (3.5) can be written as

therefore,

COTNSY
¢ o . L WQ") - WS,

i . —
Jl + A (1)? Q

and thus, from equation (3.4)

o il

i WQ") - w(s,)

e (3.6)
QQ'

Then, from equation (3.2) one obtains

(1) (1)

wQ') - w(s)) (1)
— — = c(Q") . (3.7)
QQ'

The points Si will not coincide with the net points (P,R) and thus

W(i)(Si) is undefined since w(l) is defined only at net points. This
(1)
problem is solved by approximating W(Si) by linear interpolation between

the values of W(i)

at the adjacent net points. Clearly, if the gradient
of SiQ' is poéitive, Si will lie between P and Q; whereas, if the grad-
ient is negative, Si will lie between Q and R.

If one assumes that Si lies between P and Q, then using linear

interpolation yields

(1) (1) §,Q (1) s.P
W(s;) = W(R) —=— + W(Q — (3.8)

but,
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“therefore,
(1) (1) 5,Q (1) PQ - 5.Q
W(Si) =WE) — + WQ ——— (3.9)
PQ PQ

Again considering the previous figure, one finds

A SiQ
or .
S$.Q = Atx(i) .
i .
Also
PQ = 0x

therefore, .
SiQ At (iz
— =55 QD

PQ

Substituting the above in equation (3.9) and then using the resulting

(1)
expression for W(Si) in equation (3.7) yields

@ - @ , & 5@ - we _ D
W Q' - W 1 [} W - W(P =0 1
At + A(Q"Y) " c@"
(1) (1) (1)
where A(Q') and C(Q') involve W(Q'), which of course is not known.
(1) (1)
Therefore, one approximates A(Q') and €(Q') by their values at Q;

i.e., the previous time step. One now concludes that if A(i) is positive

the difference equations are

(1) (1) (1) 1) (1) (1)
W(x,t + 22) - W(x,t) ACx,t) W(x,t) - Xix - Ax,t) _ E(x.t)
(3.10)
&)

whereas, if A is negative the difference equations are obtained

similarly as
(1) (1) . (1) (1) ;
W(x,t + At) - W(x,t) + Agi)t) Wix + Ax,t) - W(x,t) _ égi)t)
At : ’ Ax "(5.11)
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Thus, from the preceding equations one sees that for characteristics
with a positive gradient, the spatial derivatives in the corresponding
equations are determined by backward finite—differeﬁée quotients;
whereas, for characteristics with a negative gradient, spatial deriv-
atives are determined by forward finite-difference quotients.

In concluding this section, it should be noted that from an
inspection of equation (3.10), it is seen that when applying the
equation at x = 0, ngix,t) is required, whieh of course is not known.
However, as has been previously stated, thqse variables associated
with positive characteristics must be specified at x = 0 as a function

of time. Thus, equation (3.10) is not applied at x = 0. Keeping this
(1)

in mind, from the preceding difference equations, W(x,t + At) can be

found in terms of quantities calculated at the previous time step.

2. Consistency

When approximating the solution of differential equations by the
solution of difference equations there are three primary considerations:
consistency, stability, and convergence. In this section the consis-
tency of the difference equations is analyzed, while the stability and
convergence are considered in the following sections. .

As previously stated, one can write the equations of the diagonal

system as

(1) 1)
v @) v _ @, ..y
st F AT g =0 1= 1,.e0,17 . (3.12)

The difference equations corresponding to the differential equations
above can be obtained, as illustrated in the previous section, by
replacing the time derivative by a forward finite-difference quotient

and the spatial derivative by a backward finite-difference quotieut,
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assuming A(i) is positive. Now, at the net point (kAx,£At) one can.
write
. 1) (i)
ARSI W X5 Bl Y e (3.19)
3t k,L At *
and
(1) A -V .
v k,£  k-1,£ (1)
e (3.14)

Therefore, substituting these expressions into equation (3.12) yields

(i) ) )
~1,8 | Tfi)+k(1)T§1) - c@ .
(3.15)

(1) (L) (1)
Vi, e41 ~ Yk, 2 N ED) Ve, g =V
At Ax

Thus, 1f the truncation error

MO IO OMNO

approaches zero as At -+ 0 and Ax »+ 0, the difference equations, obtained
in the manner previously discussed, are said to be consistent.

Using Taylor's series with a remainder one can write

(1)

. (i) 2 9 V 1
v v o adl , + 82 (2 :£) (3.16)
B ] 3 ’ ax
where x' is some x between k and k-1, Similarly,
(1)
(1) 2 82V,
151},+1 éif)z +ae G, o+ 8P (S’t ) (3.17)
’ ot

where t' is some t between £+1 and £. Now, using the above along with

equations (3.13) and (3.14) it can be seen that

T§i) = - At (k,t')

and
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Therefore, the total truncation error is

32V(i) azv(i) _
co s PVaeeny @) e YVGL0
2 at2 2 ax2

which is 0(At,Ax) and thus approaches zero as At and Ax + 0. Thus,
the difference equations obtained by replacing the time derivative
by forward differences and the spatial derivative by backward (or

forward) differences are consistent with the differential equations.

3. Stability

In order to perform a stability analysis a typical difference
equation is treated as being linear and the stability of that one
equation is considered. By considering the worst possible case this
then gives some indication of the stability of the nonlinear system.

A typical difference equation, using forward differences for the

spatial derivative, is

- - At - -
feerl = T 7 Moo A Frrr,e ~ i ) T BAEE
+ Atgk L; k = Osl’ *tty (K—‘e) (3.18)

whereas, if backward differences are used to replace the spatial
derivatives, then

_ At : i |
feorr = fie 7 M pax e~ fiep,p) T PALR

+ atgy p3 ko= 1,2, ,(R~0) (3.19)

where K is the number of x-net points at £ = 0, b consists of collision

frequencies and g of course is merely an element of [&] without the

-(bfk Z)‘term. In the stability analysis, instead of Ak p one uses either
3 ?

the maximum or minimum value of Ak £e depending on which yields the
H]
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rost severe restriction on the step sizes, in the preceding equation.
Now, at a particular time step fk,ﬂ takes on a value at each

x-net point; thus, one can write all the values of fk,ﬁ at a particular

time step as a column matrix. Therefore, equation (3.18), as well as

equation (3.19), may be written in the following form:

F1 40 - e P o+ @ . (3.20)

Then the requirement for stability is that the eigenvalue of [M] having
maximum absolute value must be less than 1.

It can be seen that the [M] associated with equation (3.18),

where Ak 2 has been replaced by -c, has the form
’
At At
mij = (1 -c¢c Ax bAt)(«Sij - 6ic) + c Ax ai+l,j

where z = K-&+1 and c is the speed of light. Therefore, it is seen

that f has been taken to be zero although actually it cannot

(K-£+1) ,8+1
be calculated. Similarly the [M] associated with equation (3.19),

where A 2 has been replaced by c, has the form

k,
At At
mij =(1-c¢c A bAt)(Gij - Gil) + ¢ A Gi—l,j .

Here the fact that f is specified instead of calculated is taken

0,4+1
into account. It is easily seen in both cases that [M] is a triangular
matrix and thus its eigenvalues are merely its diagonal elements. In

addition, the eigenvalues of both cases are the same; namely, 0 and

1-c¢ %& ~ bAt). Therefore, for the difference equations to be stable
|1 - ¢4~ pat] <1
Ax
or
At

0 < (bAt +'Z; c) < 2 .
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Therefore,

At < —E— | (3.21)

must be satisfied for the difference equations to be stable.- If one
looks back at the governing equations, it is seen that the largest

possible value for b is

&
b= 1+ a2 (vei + ven 3
thus,
2
At < " . (3.22)
e - c
1 4+ a2 (vel + ven) + Ax
e

In conclusion, it should be remembered that equation (3.22) was

not derived for the non-linear system, but it does provide some guide.

4. Convergence

When the difference between the finite difference solution and
the actual solution of the differential equations approaches zero as a
limit as the time step decreases, convergence is said to be satisfied.
First define the error associated with each variable at the net point

(kAx,2At) as @ _ W(i)

wk’z i,z"'vk"e; i=1,2,"',17 .

Substituting this into equation (3.10) and rearranging yields

At (1) (1)

W _ A ()
a- A px Mk,P%k-1,2

(i)
Oy 241 = ax M, P et
oAt (W) (D) (&)) At (1)
Q- NPY% e T Vi tax Mk

(1) = (1) =
Vieop,e Y AEG TR 1= 1,2,000,17
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Thus, letting E£ = max Iwéfil be a measure of the error, using the

(1,k) (1)
fact that At (1) < 1 in a region where ]W(i) - £° |< K., and using
Ax "k, k,£- 1

the continulty of the solution, as given by the existence theorem,

yields

Ep,; S 2Ep + BjAtE, + B,At

for £ 2 0, E, = 0 and where B, and B, are positive constants. The

0]
measure of the error from this inequality can always be made to satisfy
that given in Ref. 9, for which it is shown that the measure does

indeed approach zero as At -+ 0. In addition, Courant, et al.9 illustrates
that there is a region contained within 66 in which ‘Wéiz - f°(i)| < K;.

Thus, one concludes that the finite difference solution converges to the

solution of the differential equations as the time step approaches zero.
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SECTION IV

When solving difference equétions, using particular initial and
boundary values, problems with stability which are not predicted in a
linearized analysis such as in Section III may appear. In this sec-
tion the investigation of the actual stability by computer exﬁerimen—
tation is discussed and then a stable solution for the example problem

is presented. The computer programs are listed in Appendix C.

1. Analysis of Computer Experimentation for the Example Problem

With the initial conditions previously assumed; i.e.,

— - — —
£1(x,0) 1n(1021)
£z (x,0) 1n(1021)
£3(x,0) In(3.62 x 10%")
ui(x,O) -1500 m/sec
ue(x,O) -1500 m/sec
un(x,O) -1500 m/sec
vi(x,O) 0

[U] (x,0) = Ve (%,0) - 0 (4.1)

vn(x,O) 0
wi(x,O) 0
w, (x,0) 0
wd(x,O) 0
E; (x,0) 0
E, (x,0) 0
E3(x,0) 0

. Bo(x,0) 0 .

| B3(x,0) ] L_ 0 ]

along with the forced boundary conditions at x = 0; i.e.,
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Ni(O,t) = Ne(O,t)
E,(0,t) = Ej,(1 - cos 2mwt)
B2(0,t) = ﬁoz(l - cos 2mwt) (4.2)

a solution of the difference equations for both the nonlinear and
linear systems is desired. In addition, as given previously, Te =

10%0K, T, = T = 20009K and the collision frequencies used are

i n
v, = 3.73 x 10° sec”}, v, = 2.95 x 108 sec”!
ie in
v, =2.76 x 1010 gec”l, v = 1.44 x 10'! sec”!
ei en
Vo = 0.81 x 10° sec™!, Voe = 5.3? x 102 sec™! . (4.3)

With the conditions above, there are still five parameters which must
be assigned values before the difference equations can be solved:

At, Ax, Epo, Bpp and w. The discussion which follows is primarily
for the nonlinear system since the linear equations were stable in
all stable cases of the nonlinear equations.

Experimentation revealed that the x-component of the electron
velocity, u,s had the greatest tendency of all variables to be un-
stable. The solution for this variable was found to be very dependent
upon the amplitude of the imposed magnetic field, Bg,, where in
general the larger Bpp, the greater the tendency to instability. The
amplitude of the imposed electric field had little influence upon the
solution for u, and thus the stability was not influenced significantly.
by this parameter.

With the amplitudes of the imposed magnetic and electric field

disturbances, Byp and Eg,, equal to 0.025 Wb/m? and 100 V/m,
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respectively, at a frequency, w, of 1010 sec”1, the solution was
unstable with a time step of 2 x‘10"13 sec and a spatial step of

2 x 107" m (Fig. 1). This figure only shows the x-component of the
electron velopity, at the first space step away from the location of
the disturbance as a function of time, but all other variables were
divergent from the outset also. Note that the solution is unstable
even though the stabllity criteria developed in Section III are
satisfied. In addition the linear system was also unstable under
these conditions. However, it should be remembered that the linear-
ized stability cri;eria were developed from a consideration of .only
one linearized equation; not the entire system of equations.

With the time step reduced to 5 x 1071% gec and the spatial
step to 2.5 x 105 m, the plot of u, in Fig. 2 indicates a stable
solution when compared to Fig. 1. After 600 time steps in Fig. 2
u, is in stable oscillation; whereas, after an equivalent 150 time
steps in Fig. 1, it has diverged. Figure 2 shows a small fluctuation
in ug s but it should be noted that the scale has been greatly ex-
panded from that in Fig. 1. This fluctuation would be difficult to
detect if ue,.for these conditions, were plotted with a scale such
as that in Fig. 1.

It has been illustrated above that reducing the time and spatial
steps yields a solution which becomes more stable. However, with the
reduced time step, if one wishes to cover a larger portion of the
forced oscillation cycle, w must be increased. The results of in-
creasing w to 101! sec™! are presented in Fig. 3. Fifty time steps

in Fig. 3 correspond to the same point in the forced oscillation
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cycle as do 500 time steps in Fig. 2.. Therefore the plot of u, in
Fig. 3 is much less stable than that in Fig. 2. 1In Fig. 4 w has been
reduced to 4 x 10!0 sec™! and thus 125 time steps in Fig. 4 correspond
to the same point in the forced oscillation cycle as do 500 time

steps in Fig. 2 and 50 time steps in Fig. 3. Therefore, Fig. 4 is
more stable than Fig. 3, but less stable than Fig. 2, as would be
expected since w lies between the values used in Fig. 2 and Fig. 3.

Previously it was stated that the amplitude of the imposed
magnetic field influenced the stability, and from the above it is
obvious that w should be reduced below the value used in Fig. 4. Thus,
with At = 5 x 10™1% sec and Ax = 2.5 x 10~° m, it was decided to
reduce w and ﬁoz to values of 2 x 1010 sec™! and 0.005 Wb/m?, re-
spectively, in the presentation of the plots of Figs. 5 and 6.

Figure 5(a) illustrates that for these conditions the solution is
stable; though, similar to Fig. 2, there is a slight fluctuation.
This fluctuation is present to some extent in all the plots presented
in Fig. 5.

The above discussion illustrates that the boundary values
specified, as well as the time and spatial step sizes, influence the
stability., It can be shown, by setting Ti = Tn = 300°K so that the
equilibrium values of U;s U, and u  may be set equal to -500 m/sec,
that the conditions under which Fig. 1 was obtained yleld a stable

solution. Thus, the particular initial values also have a great

influence on the stability.

2. Presentation of the Solution of the Example Model

As stated above, the plots presented in Figs. 5 and 6 were
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obtained for At = 5 x 10~1% sec, Ax = 2.5 x 10~5 m, w=2zx 1010 sec’l,
8y, = 0.005 Wb/m?, and Eg, = 100 V/m. The initial and forced boundary
conditions are given in equations (4.1), (4.2) and (4.3).

Figures 5(a) - 5(k) are plots. of those variables with significant
changes from their equilibrium values as functions of time after omne
spatial step; whereas, Figs. 6(a) - 6(j) are plots of the variables
versus spatial distance after 100 time steps. Note that for these
latter plots the portion after about 17 spatiai steps'is shown enlarged.
Figure 5(1) is a plot of u, at the origin versus time and Figs. 6(k)
and 6(1) are plots uf ue and E1 versus spatial distance after 150 time
steps. As can be seen from plots of the variables versus spatial dis-
tance, all variables rapidly approach their equilibrium values after
only a few spatial steps. This is the reason for presenting plots
of the variables versus time at or near the origin.

Note that both the linear and non-linear solutions are presented
on each plot. Figures 5(a) and 5(g) illustrate that in the linear
case neither u, nor E;, when plotted versus time, ever change from
their respective initial or equilibrium value. However, from the same
figures this is not the case in the nonlinear solutions since here
u, and E, have a time dependence similar to that illustrated by
the other variables. In a similar manner Figs. 6(a) and 6(f) illus-
trate that when plotted versus the spatial coordinate, once again
the linear solutions of u, and E; show no change; whereas, the corres-
ponding nonlinear solutions do. Note that since the nonlinear solu-
tions approach their equilibrium values after only a few spatial steps

the two cases quickly become identical. The remaining plots in
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Figs. 5 and 6 indicate that the linear and non-linear solutions of
all other variables are essentially the same.

If one inspects the linear equations it is obvious that with an
initial equilibrium state the equations which involve the x~components
of the vector quantities are uncoupled from those involving the y and
z components. Thus, when forcing boundary values of only variables
in these directions, the variables in the x-direction can never change
from their equilibrium values. It is readily seen that this uncoupling
does not occur in the nonlinear equations. Thus, one would expect
the linear and nonlinear solutions of the x-components of the electron

velocity and electric field, u, and E;, to differ to some extent.
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CONCLUSIONS

The effect of forcing a disturbance upon a flowing three-fluid
plasma initially in equilibrium has been investigated. Thus it was
necessary to solve.;he nonlinear equations governing the effect of
forcing a disturbance at a point, as a function of time, upon a three-
fluid plasma initially in equilibrium. ¥For an example problem the
solution was obtained using first the nonlinear and then the linearized
equations.

A diagonalization of the system of equations was required in
order to have them in a workable form. This resulted in the assump-
tion that the temperature of each fluid is a constant in order to
prevent extra derivatives from appearing. In order to be assured of
the existence of a unique solution, the boundary values of only cer-
‘tain variables could be prescribed as the disturbance. These boundary
values, wh' :h are functions of time, had to satisfy certain compati-
bility conditions at the origin of the x-t plane. The time and spatial
steps used in the difference equations were restricted to be extremely
small by the speed of light and the magnitude of the collision fre-
quencies. This was requifed in order for a stable solution which was
a good approximation to the solution of the differential equations to
exist, The number of field points which could be stored in the com~
puter then determined the region in which the finite difference solu-
tion could be obtained. This'storage problem is a very real one for
a system which contains 17 field variables, even though values were

stored for at most two time steps.
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A particular example for which a unique solution was shown to
exist was formulated. A numerical solution of this example, for both
the linear and nonlinear cases, which converged to the actual solution
of the differential equations was obtained from the consisteﬁt set
of difference equations developed. Computer experimentation revealed
that though the stability criteria developed for one linearized equa-
tion were satisfied, a stable solution was not necessarily obtained.
In addition to the reduction of the step sizes, care had to be taken
in the specification of the frequency and amplitude of the forced
oscillation of the magnetic field in the y-direction at x = 0. From
the solution of this example, it was found that all variables approach
their equilibrium values in a very few spatial steps upstfeam of what
is considered to be the disturbance. Absolutely nothing about the
downstream section can be said. In fact, initial conditions cannot
even be specified there since if they were, variables could not be
prescribed as functions of time at the point considered to be x = 0.

A goal of this study was to compare the solutions corresponding
to the-linear and nonlinear equations for the example formulated.
With this example it was found that the x-components of the electron
velocity and the electric field had different values for the linear
and nonlinear solutions. However, even for these variables the
solutions became the same within a very few spatial steps. Thus, a
short disfance from the disturbance the linearized equations gave

solutions as accurate as those obtained using the nonlinear difference

equations.
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APPENDIX A: GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE

Given the set of 17 linearly independent eigenvectors of [A],

it is desired to find a corresponding set of unit orthogonal eigenvectors.

The Gram-Schmidt orthogonalization procedure12 is used for this purpose.

First, let
N X — - =%
&1 = &) where £(X31) = (X;,X))
Then, let
2-2 = i-Z - clél
and thus,

(é],,_g?_) = (a]_,iz) - cl(él’él) .

Now, since an orthogonal set is desired, (el.Eé) = 0.
from the above, c¢; = (&;,X;) and thus
& = Xp - (81,%2)e;
and —
E2

ey = ITEZT- .

Therefore,

1f this procedure is continued, 1t is seen that in general

1-1
=% - ) GEDE 51 =2,3,,1

i=1

3
éj =2—(€3T 3 3 = 2,3,---,17

yields the unit orthogonal set required.

and then
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APPENDIX B: CALCULATION OF AVERAGE COLLISION FREQUENCIES

The expressions for the average collision frequencies below are

taken from Murphree and Yamada.13 Thus,

L
v 41 (2")’5 _e._N.___ ln(}\ g
el 3 (4nK )2 (KT )3/
where
\ (KOKTe)%
N el
e
and
eZ
r

¢~ 67K KT
(o] e

Using Ne = 1015/cm3 and I, = 10% °k, Vai is calculated to be 2,76 x

1010/sec. Now

ven = Ce nQen
where
e ‘mm
e
and
rd?
Qen A :

Thus, using d = 2.87 x 10”8 cm as the diameter of an argon atom and

Nn = 3.62 x 1018/cm3, Ven is calculated to be 1.44 x 1011/sec. Also,

Vin = ¢NaQp
where
8KTi 1
2
¢ = ( m, )
1

Using T, = 2000°K, v,y 1is calculated to be 5.9 x 108/sec. With these
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average collision frequencies and the expressions from Ref. 1, the

effective collision frequencies given in Section 11 may be -obtained.
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APPENDIX C: COMPUTER PROGRAMS
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DOUBLE PRECISION ZETA1(301'2)rZETAZ(“Olv?)'ZFTAW(SOl,
12)'V1(30192)'V2(301'2)rV3(301v2)pV4(30192)'V5(*0 e 2}
2:V6(301e2) 9y V7(301r2)oV8(301¢2)eva(301:2),v10(301,2),
3V11(301¢2)9V12(301e2)eV13(30192),vV1G4(301,2),pV25 201,
42)rV16(301¢2),V17(301¢2)eD1eD2eD3eDUrNI{30L92)oNF(301
592) pNN(30102) pUT(30102) pUE(30102) pUN(302.02)pVIt30Lr2)
6VEI30192) o Vin(30192) v WI(301v2) e WE(301r2)»wN(30102)

DOUBLE PRECISION E1(301,2)9E2(301¢2) rE3(Z01,2)e32(301

102)083(301¢2)+BLeCrALeA29A3¢CL2C2¢C39CUICSeCOPTT70C8Be
2C90C10oC119C120C13'C14-C159C161C170E MIpErtNe Y e To(F12

‘3.CF13:CF21:CF23eCF31:CF32eMUDSQRTeNTIONEQeNNCDCOS,

WY Sm T Y WV e Y WY wem T Wl W [AVE 3 Fpwit A

HE02+,B02¢OMEGA»GL(2) 1 G2(2)

€ oo s oot oK ok XK o o o oK e o o ook 3 ok o 3k ok sk K ok oK ok o o sk ok sk K koK ok ok o o stk ok ok ok stk e

COOOCONC OGO O00OO00000N0O0000OO0000O0

GIVEN THE INITIAL VALUES OF THE ELECTROMAGNETIC AND
FLUID FIELD VARIABLESe PLUS BOUNDARY VALUES FOR SOM
VARIABLESy THIS PROGRAM USES AN EXPLICIT PFINITE -
DIFFERENCE SCHEME TO SOLVE THE NONLINEAR EQUATIONS.
THE VARIABLES ARE PRINTED AT A PARTICULAR TIME STEP
VERSUS THE SPACE STEPS.

THE FOLLOWING DEFINES THE SYMBOLS USEDe
NIPNE»NN=NUMBER DENSITIES OF IONS(ELECTRONSy AND
NEUTRALS RESreCTIVELY.

ZETALYZETA2/» ZETA3ZSNATURAL LOG OF THE ION,ELECTRONsAMD
NEUTRAL NUMGER DENSITIES RESPECTIVELY.
UIPUEPUNSVELOCITY IN X DIRECTION OF TONS,ELECTRONS
AND NEUTRALS o

VI'VE)VN=VELOCITY IN Y DIRECTION OF IONS,ELECTRONS.AND
NEUTRALS '
WIeWE»WNSVELOCITY IN Z DIRECTION OF IONS,ELECTRONS:
ANDG NEUTRALS :

EY E2/E3=ELECTRIC FIELD COMPOMENTS i THE XoYeZ

DIRECTIONS :

BlrB2ebB3=MAGNETIC FIELD COMPONENTS IN THE XeYeZ
DIRECTIUNS

ALPA2¢ AB=THERMAL VELOCITIES OF THE IONSeeLECTROMNS» AND

NEUTRALS ASSUMING EACH FLUID IS ISOTHERMAL
MIPME » MNEMASS OF AN ION(+ELECTRON(.OR NEUTRAL

X T=THE STEP SIZES IN THE SPATIAL AnD TIME COORDIMATES
C=SPEED OF LIGHT

MUSPERMEABILITY OF A VACUUM

KO=PERMITTIVITY OF A VACUUM

Ter2-T3=TEMPERATURE OF THE IONS»ELECTRONSY AND NEUTRAL
RC=BOLTZMANNYS CONSTANT

E=ELECTRONIC CHARGE

V1eV2r eoer VIT=THE ELEMENTS OF THE COLLUM MATRIX V » IN
THE TRANSFORMATION UZTVa.

*opok kR ok koERokkkkk STATEMENT OF THE PROBLE: #oxtolsrscrkkkk

THE PROBLEM IS SUCH THAT AT X=U WE FORCE E2 AND D2 TO
BE CERTAIN FUNCTIONS OF TIME» PLUS: WE ALSO SPECTIY
THAT MEZNI AT X=0e THER IF WE ASSUME THAT UI»UE»AND UM
ARE ALL IN THE NEGATIVE X DIRECTION AND THAT UI .6T.
Ale UE JLT. 420 AND UN .GTe A3 WE MUST CALCULATE allL
OTHER VARIAGLES AT X=0. OF COURSE WE ALSe CALCULATE
Al OTHER VARIABLES AT LATER TIMES AND DIFFERENY
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c SPATIAL LOCATIONS. INSTEAD OF E2 AND B2 uf COULD HAVE
c SPECIFIED D2 AND B3 OR E2 AND E3 COR E3 AND B3
C 40k 316 abe e K oA ¥R 3ok s ok 3K st T e ok bt st ok ok st il e sl gk e ek et st itttk
- NIO=1,0D21

NEO=1.0D021

NNO=3,62D24

X=2.5D=5

PI=3.1415927D0

E=1.60D-19

Bl=l.0D~4

C=3.0D8

MI=0.673D=25

ME=24110-31

MN=MI

MU=12.56D-7

BC=1.38D=23

T1=2000.CDO

T2=1.0D4

T3=2000.0D0

CF12=3.73D5

CF13=2.95D8

CF2i=2,76D10

CF23=1.44D11

CF31=0,8615D5

CF32=5.36D2

E£02=100.,0D0

F02=0.005D0

OMEGA=2.0D10

ALZDSGRT(BC%xT1/MI)

A2=D5QART(BC*T2/ME)

A3ZDSQART (BC*T3/MN)

G1=1.000/7050rT(1.0D0+ALxxE)

D2=1,000/DSURT (1.0D0+A2E%2)

03=1.000/DSURT (1. GO0+AI*%2)

- DI=1.0D0/DSART (1. 0D0+C*%2)

C THIS READS in THE INITIAL VALUES,THE ORIGIN 1S TAKEW
C TO BE (101)

DO B6C K=Lle301

L=1

NIGKPL)=NIQ
NECKL)ZNEOQ
NN(K L) =NNO
UI(KeL)==1500,0D0
UEKLL)==1500,000
UN(KsL)=~1500,000
VI(KLI=0.0D0
VE(KL)=0,000
UNIK»L)Z0,00D0
WICKoL)=G,000
WEAK-L)=0,010
WNIKel)=0,0D0
EL(KeL)=0,000
E2{KelL)Z0.000
E3(KeL)=0,000
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B2(K»,L)=0,0D0

B3(K»L)=0,0D00
ZETAL(K L) =0LOGINI(KsL)) .

ZETA2 (KoL) =pLOG(NE(KsL))

ZETAZ (KoL) =DLOGI(NN(KeL))
VI1(KeL)=D4*(CxB3(KoL)=E2(KoL))
V2{KrL)=DU4* (E3 (KoL) +C*kE2(KoL))
V3(KeL)ZD2% (UE(K L) =A2%ZETA2(KreL))
VEIKyL)=DIx (UT(KsL)=AL1XZETAL(KeL))
VHIKoL)=D3* (UNCK e L) =A3*ZETAZ(KeL))
VO(KeL)=D1*(ZETAL(KeL)+ALXUI(KoL))
V7LKrL)=D3% (ZETAZ (K L) +A3®UN(K L))
VBIKeL)=VI(KeL)

VIO(K L)=WI(KrL)

VI0(KsL)=VE(K,L)

V1Ilu.|l:mrlu-|\

P A RAN A Bl [ RV WA 3 W)

VI2IKoL)SUN(K L)

VI3(KeL)=WN(KeL)

Vid(KoLI=EL (KoL)
VIS(KL)ZD2* (ZETAZ (K e L) +A2*UE (K L))
V16(KoL)=D“*(c*E2(K:L)+B3(K0L))

VI7(K L) =Dk (32(KrL)=CRE3(KeL))

CONT INUE

THE INITIAL VALUES HAVE NOW BEEN READ IN AND HAVE
UMDER GOME THE TRANSFORMATION V=(T IWVERSE) (W)

Ml=1

J=301-M1

T=5.0D0~14

M2=100

DO 54 K=1,J
Cl==~DU4*Cx*2xMU*Ex (V10 (KoL) *DEXP(D2% (V15(KeL)=A2%
IV3(KPL) ) ) =VB (K e L) *DEXP(D1* (VO K/ L)=a1*VU(KrL))))
C2=DUHCH*2xMUEx (V11 (KoL) *DEXP(D2* (VIS(K,L)-A2%V3
LKLL)) ) =VIO(K L) *¥DEXP(DI*(VE(KrL)=ALXVU(K,L))))
C3=D2*(=(E/ME)* (V14 (KoL) +VIO0(Ke L) *Du*x (Chky1{(K,L)+V1E
LKLL)) =VI1(KeL)*DH(CAV2(KrL)FVIT7T(KeIL)))4CF21% (D1 %
SV (KoL) +AL*Va (KoL) ) =D2% (VI (KeL)+A2%Y15(KeL)))+CF23%
S(DI* (VS (KoL) +A3*VT(KrL) ) =D2%x (VI(KrL)+A2KY15(KeL))))
CUHU=DLI*((E/MI)#(VIG (Ko L)+VBIK L) %DUXx (CHVI(KrL)+V16

LKLL)) =VOU Ko L) DU X (CxV2 (KoL) +VI7(Ke L) I)+CF12%x (D2 %

QIVI(K L) +A2%V1S(K L)) =D1x (VU (KrL)+AL1*VHE(KeL) ) I +CF13%
S(O3*(VS(KeL) +A3¥VT(KeL) ) =DLIx (VU (KoL) +ALXYE(KPL) ) ))

CS5=D3*(CF31*x (DL (VU (KeL)+AL*XVOE(KyL) ) =D3I*k (VS (KrL)+A3Z%
IVTK L) I )+CF32%x (D2% (VI3 (KoL) +A2% VIS5 (K L)) =D3% (VS5 (KoL) +
SAIXNVT (KL )))

Co=Al*CYL

C7=A3*CH

CB=(E/MI)* (DU (CxVIO(K L) =VI(KPL) ) +31%VI(KrL)=D1xDl*
LAVB (KoL) +ALRVE (KoL) )k (CHVL (KoL) +VI6(KeL) ) ) +CF12%
2(VI0(KrL)=V3 (KoL) IHCFI3%(VI2(KrL)=VE(KrL))

COZ(E/MIN & (DU (V2 IKrL)=CHxVIT (KoL) ) +H1*DUx (V4 (KoL) +AL1X
VALK L)) *(CxV2 (KoL) +VIT(KeL) ) =B14VE(KrL))+CF12% (V11
2(KeL)=VO(KrL)I+CFLI* (VI3 (KrL)=VI(KrL))

CLO=(=E/ME) * (DU (C*xVIB(KoL)=V1(K,L))+Bl*v11(KrL)=D2%
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1DUR (VI (KLY +A2%Y DU L) ) % (CHYA (K L) +V16 (KoL) ) Y 4CFRL%
2(VB(KoL)=V10(KrL)I+CF23x(VI2(Ko ) =V10(r)))
C1l1==(E/MEY = (DU (V2 (KoL) =CkV17(Kel.) ) +D2EDUX (VI (Kol ) +
1TA2*VIS (KoL) ) (CHV2UKo L) +VI7(KrL) )=BLXVIO(KP L)) 4CF2L %
2(VI(KoL)=VAL(KrL))+CF23x (VI3 (Kel)=V11(iKoL))
Cl2=CF31x(VBIK L) =V1I2(KsL) ) +CFI32x (V10 (KoL) =V12(K,L.))
CLl3=CF31: (VI (Kl )~VI3(KeL)I+CF32% (VLL{Ko L) =V13(Kol.))
CLA=CHk2EMUAEXR (D2F (VI(Ko L) +A2%EVIS (KoL) ) 2DEXP(D1x (V6
LK L) =ALxVO (Kol )) ) =D 1 (VY (Ko L) +ALXVE (KoL) ) *DEXP (D2
2(VIS5(KeL)=A2%y3(KrL))))

C15=A2%C3.

Cl6=~CxC1

Cl17==C%C2
VIKeL+1)=VI(KeL)YH(T/X) RCx(VI(K+1Lp L) ~VLi(KoL))+T%C1

V2 KoL +1)V2 (Ko LI H(T/X) RCHE(V2 (K41 o L) =V2 (Ko L) )2 T%C2
V3(KoL+1)=VIIKo L) =(T/X) *(D2%(VI(KeLY+A2EYLIS(Krl.) ) —A2) *
LVI(K+1 L) =V3(KrL))+T%C3

V(Ko L+1) Ve (KoL) =(T/X) R (DIX(VEIKpLY+ALEYE (KoL) ) ~AL) %
I(VU(K+196)=va (KoL) )+T*CH
VS(KrL+1)ZVEIKL) = (T/X) 2 (D3I VS (KoL) +A3*y7 (KoL) )=A3) *
LIVO(K+1 L) =VS(KeiL))+T*C5

VO(KeL+1)=Vo (KoL) =(T/X) X (DL1H (VU (KoL) +ALXY6 (KoL) Y +A1) %
L(VO(K+1rL)=VE(KeL))+T*CH

VZKeL+1) V7 (KoL) =(T/X) R (D3* (VS (KoL) +A3Xy 7 (KoL) )+AZ) %
I(VT(K+1 L) =V7(KeL)I+T*C7
VB(KrL+1)=VB(K L) =(T/X) % (DIX(VE(KeL)+ALEYE (KoL) ) ) %
1(VB(K+1rL)=V8(KeL))+T=C8

VOIK L+1)=VILK L) =(T/X) = (D1x (VB (Ko L) +AL Y6 (KoL) ) ) %
LVIO(K+L1oL)=vI(Kel))+T%CO
VIO(KeL+1)=v20 (KoL) =(T/X) R (D2X (VI (KolL)+A2XVIS (KoL) ) ) %
1(VIO(K+1eL)~V10(KeL))+T%C10

VIL(Ko L4+ =V (KoL) =(T/X) % (D22 (VB (KpLL)+A2EVIS(KeL)) ) %
T(VIL(K+1oL)=V11 (KoL) ) +T2CLL
VI2(KeL+1)=VI2(Ke L) =(T/X) % (D3X (VS (KLY +AIXVT(KeL) ) ) %
1(VI2(K+1oL)=V12(KsL))+T%C12

VI3(KoL+1)=VIZ (KoL) =(T/X) (D3 {V5 (KoL) +AZRKVT (KoL) ) 1 %
1(VI3(K+1eL)=VI3(KeL))I+T*C13

VG (Ko L+2)=vig (KoL) =(T/X) % (D1 (V4 (KeL)+A1%VE (KoL) ) +D2%
LOV3(KoL)+A2%VIS (KoL) ) )2 (VIS (K+1 oL )=y 10 (KoL) ) +T2C1Y
IF(K.EQs1)GO TO 53

VIS(KeL+1)=V15(K, L)=(T/X)*#(D2* (V3 (KoL) +A22V1I5(KeL) ) +
1A2) % (V15(KeL)=V1IS(K=1pL))+T*C15

VIO(KeL+1)=VI6 (KoL) =(T/X)=CH (VA6 (K e L) =VI6(K~10l.) ) +T*
1cie
VI7(KeL#1)=y17(Koel)=(T/X)RCH (VLT (KoL) =V17(K=10pl))+T*
1C17

GO TO 18
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53

Gl AND G2 ARE THE VALUES OF E2 AND 32 AT X=0 AS A
FUNCTION OF TIME
GL(L+1)=E02x{1.000=DCOS(2.0D0%PIxOMEGAXM%T))
G2(L+1)=B02%(1.000=DCOS(2.0D0%P I *OMEGA%:ML%T))
VI5(1eL+1)=(D1/702) = (VO (1oL +1)=A1xVE (1oL +1) ) +A2*V3 (1oL +
11)
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V16(19L+1)=(1,000/7C) % ((1.,0D0/D4) %G1 (L+1)4+V1(1rsL+1))
Vi7(1,L+1)=(1, ODO/D“)*GZ(L+1)°C*V2(19L+1)
IF(M1.EQ.M2)GO TO 17

G0 TO 54

ZETAL(Ke2)=D1x(V6(Kr2)=AL1%*V4(Kr2))
ZETA2(K»2)=D2%(V15(Ke2)=A2%V3(Ke2))
ZETAZ(Ke2)=03% (V7 (Ke2)=A3%V5(Ke2))
NI(Kr2)=DEXP(ZETAL1(K»2))

NE(Ke2)ZDEXR(ZETA2 (K2 2))

NN(K»2)ZDEXP(ZETA3(K»2))
UI(Ke2)=D1%(VU(Ke2)+ALXVE(Kr2))

UE(Kr2) =022 (V3(Ke2) +A2%V15(Ke2))

UNC(K?»2) D32 (VS(Ke2) +A3XVT7{(Kr2))

VI(Ke2)=VB(Ke2)

VE(Ke2)=V10(Ks2)

VN(Kr2)=V12(Ke2)

WI(Ke2)=VO(Ke2)

WE(Ke2)ZV11(Ks2)

WN(Kr2)=V13(Ke2)

EL1(Kr2)=VI1U4(Ke2)

E2(Ke2)=DU*(CxV1E6(Ke2)~V1(Kr2))
E3(Ke2)=DUx(V2(Kr2)=CxV17(Ke2))
B2(Kr2)=DUx(CxV2(Ke2)+V17(Ke2))
B3I(Ke2)=DU4x(CxV1I(Ke2)+V16(Kr2)) .
WRITE(6062) KeMLoNI(Ke2) sKeMLINE(K?2) rKeMLPNN(K»2)
WRITE(6264) KeMLoUI(Ke2) pKerMLrUE(K22) vKeMIPUN(K»2)
WRITE(6066) KeMLloVI(Ke2) e KeMLIVE(K?2) pKeMleYN(K»2)
WRITE(6¢68) KeMLleWI(Ke2) pKeMLIWE(Ke2) rKeMLlrWN(Ke2)
WRITE(6e70) KyMLIEL(Ke2) yKeMLIE2(Kr2) o KoMLPE3(Ke2)
WRITE(6072) KoMLeB2(Ke2) rKeMLeB3(K»2)

CONTINUE

IN ORDER TO NOT OVERLOAD THE STORAGE CAPACITY OF THE
COMPUTER I AM RENAMING THE VARIABLES AFTER EVERY
TIME STEP

DO 82 K=1,J

VI1(Ke1)=V1(Ke2)

V2(Krl)=V2(Kr2)

V3{Ke1)=V3I(Ke2)

VUG(Ke1)=VU(Ke2)

VS Kel1)=V5(Kr2)

Ve Kerl)=V6(Ke2)

V7(Ke1)=V7(Kr2)

VBIKe1)=VE(Ke2)

VO(Kr1)=VO(K»2)

V10(Ke1)=V10(Kr2)

Vil(Ke1)=V11(Kr2)

Vi2{Ks1)=V12(Kr2)

V13(Kel)=V13(Kr2)

V14{(Kr1)=V14(Kr2)

V1IS(Kr1)=V1IS(Ke2)

Vi6{Ke1)=V16(Ke2)

V17(Ko» l)"V17(Kv2)

CONTINUE

mMi=M1l+l
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70

62
64
66
68
72

IF(ML.LE.M2)GO TO 22 : : :
FORMATC(*DY»'EL1( 21329 9I39%) S99yD22.1695X0'E2(1913,?
10901300%) =19D22e16¢5XeE3( 19130029130 ") ='9D22.16)
FORMAT ('Ot e "NICY»I3r 9" ¢I3¢") ='9D22.1606X2'NE(YI3,7,
191I3,1) ='0D22016l5X0,NN("I3"t"IS")_:'0022016)
FORMAT(tO*»tUT("eI30 "+ 2I30") =1)D22.16¢5XP'UE(* I3,
L10991I32%) Sv,D22:16eSXetUN('2I32%9%'9I30%) =%9D22.16)
FORMAT( 0ot VIC("9I3009%eI391) =0 yD22,16085X09VE(89T30 "
1reI30) =2,022.16e5Xe*VNEY2I329 0130 %) =99eDN22,16)
FORMAT( 0 s *WICY2I300"»I30%) =09D22.1Go 5N " WE(Y, I3,
Lotel3et) =99122416e5Xe 'WN(PeI3e®p?oI70%) ='9D22,16)
FORMAT(*0'»'B32( 02130t 0pI30"%) S0,D22.,50e5Xe'B3(,13,°
Leel3e®) =',022.16)

STOP

END



273

DOUBLE PRECISION ZETA1(301¢2)ZETA2(301¢2)eZETA3 (301
12)rV1(301,2)9v2(30102)9V3(30192),Vv4(301,2)rV5(301+2)

2:V6(301,2)»v7(30102)9V8(301¢2)+VO(301¢2),v10(30192)
Avi1iian1.2) -\119(101 22) -\I‘I'!('%ﬂ'l -?).\Iill.("“'H 9) .\I1‘§l'§n1 .

WV RS ST BV S w e v = LR A Y L N =

42)'V16(30102)oV17(30192)'DloDZDDSoDuoNI(301'2)vNE(SOl
502) o NN(30102)sUT(30192)UE(30192) 2 UN(301,2) »\I(30192)
O6VE(301¢2) e VN(301¢2) rWIC(30102)eWE(30192)rWN(301,2)
DOUBLE PRECISION E1(301¢2)¢E2(30192)E3(30192)982(301
102)92B3(301902)¢B1eCeALPA2¢A3eCL2C21C32CU2C59CE1CTC8
2C9rC109¢C1l19C129C13¢C1U4»C15sC16¢CLTrE'MI/MErMNeXsTrCF12

R _rArCA12..7CD8 _ A2 rDRY _ rEXN M _ NCADT i TA_MPEAAAMN - NANC .
R Ao R A0 S R0 Rl SO e B A0 e Pg 2LAVE BT o] 'l\lJ-U'NI,"_UVNNVPLJL.UD'

4EO2eBO02:OMEGALGL(2) vG2(2) 2 UIOYUEQPUNO

ok oo Aok Ao ok Ao oK o ok oo A K K o oK o KRR oo o ok R o ks ok ook s ok o o

OO0 OOOOO0OO0O00

GIVEN THE INITIAL VALUES OF THE ELECTROMAGNETIC AND
FLUID FIELD VARIABLESs PLUS BOUNDARY VALUES FOR SOME
VARIABLES» THIS PROGRAM USES AN EXPLICIT FINITE = _
DIFFERENCE SCHEME TO SOLVE THE LINEARIZED FQUATIONS.
THE VARIABLES ARE PRINTED AT A PARTICULAR SPACE STEP
VERSUS THE TIME STEPS

THE FOLLOWING DEFINES THE SYMBOLS USED.

NIANE » NN=NUMBER DENSITIES OF IONSrELECTRONS» AND
NEUTRALS RESPECTIVELY,

ZETAL1,2ETAR29»ZETA3=RATIO OF FLUCTUATION IN NUMBER
DENSITY TO THE EQUILIBRIUM VALUE FOR IONSs»ELECTRONS
AND NEUTRALS

UI'UEsUNSVELOCITY IN X DIRECTION OF IONS,ELECTRONS»

AMﬁ M:'I ITD l\l C
[al}\] [A 1 =4

VIeVE, VN VELOCITY IN Y DIRECTION OF IONS,ELECTRONSeAND
NEUTRALS

WIPWE »WN=VELOCITY IN Z DIRECTION OF IONS,ELECTRONS»
AND NEUTRALS :
ELPE2/E3=ELECTRIC FIELD COMPONENTS IN THE XoYeZ
DIRECTIONS

B10B2/B3=MAGNETIC FIELD COMPONENTS IN THE XeYeZ
DIRECTIONS

Al?A2+/A3=THERMAL VELOCITIES OF THE IONS+:ELECTRONS»AND
NEUTRALS ASSUMING EACH FLUID IS ISOTHERMAL
MIe#ME,MN=MASS OF AN ION/ELECTRONsOR NEUTRAL

XeT=THE STEP SIZES IN THE SPATIAL AND TIME COORDINATES
C=SPEED OF LIGHT
MU=PERMEABILITY OF A VACUUM
KO=PERMITTIVITY OF A VACUUM
T1eT29TI=TEMPERATURE OF THE IONS(ELECTRONSrAND NEUTRAL
BC=BOLTZMANN'S CONSTANT
E=ELECTRONIC CHARGE
V1eV2reaerVI7=THE ELEMENTS OF THE COLLUM MATRIX V » IN
THE TRANSFORMATION U=TV.

Ak koiokkkkkkkk STATEMENT OF THE PROBLEM kskkkksxdkokokokk

THE PROBLEM IS SUCH THAT AT X=0 WE FORCE E2 AND B2 TO
BE CERTAIN FUNCTIONS OF TIMEr PLUS» WE ALSO SPECIFY

THAT NE=NI AT X=0. THEN IF WE ASSUME THAT UI,UE,AND UN
ARE ALL IN THE NEGATIVE X DIRECTION AND THAT UI .GT.
Ale UE +LT. A2¢ AND UN +GTs A3 WE MUST CALCULATE ALL
OTHER VARIABLES AT X=0. OF COURSE WE ALSO CALCULATE
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c ALL OTHER VARIABLES AT LATER TIMES AND DIFFERENT
c SPATIAL LOCATIONS. INSTEAD OF E2 AND B2 WE COULD HAVE
C SPECIFIED B2 AND B3 OR E2 AND E3 OR: E3 AND B3.
C 3 3 o e 2 6 o 200 o 2 e o o 3 e 380 e o o o o b o 3 o ol a8 e ok o s o ok e o 3k ol ok ofe 38 ke e ke sk ok ok ofe o o % o o ofe ok e ek

NIO=1.0D21 -

NEO=1,0D21 o

NNO=3.62D24

UI0=-1500.0D0

UEO==-1500,000

UNO=-1500,0D0

X=2.SD-5

PI=3,1415927D0

E=1.60D~19

B1=1.,00~4

C=3.0D8

MI=0,673D=25

ME=9.,11D-31

MN=MI

MU=12,56D=7

BC=1,38D~-23

T1=2000.,0D0

T2=1,0D4

T3=2000.0D0

CF12=3,73D5

CF13=2.95D8

CF21=2.76D10

CF23=1.44D11

CF31=0.815D5

CF32=5,.36D2

E025100.000

OMEGA=2.,0D10

B02=0.005D0

ALl=DSERT(BCxT1/MI)

A2=DSQRT(BC*T2/ME)

A3=DSQRT(BC*T3/MN)

D1=1.000/DSQRT(1.0D0+A1%x2)

D2=1.0D0/DSQRT(1.0D0+A2%x2)

D3=1.0D0/DSQRT(1,0D0+A3*%x2)

D4=1.0D0/DSQART(1.,0D0+C**2)

C THIS READS IN THE INITIAL VALUES,THE ORIGIN IS TAKEMN
c TO BE (1.1)

DO 80 K=1,301

L=1

NI(KeL)=0.,0D0
NE(K»L)=0,0D0
NN(KrL)=0,00D0
UI(KeL)=0,000
UE(K»L)=0,.,0D0
UN(K!L)=0.000
VI(KeL)=0,0D0
VE(K,L)=0,0D0
VN(K»L)=0,000
WICK,L)=0,0D0
WE(K,L)=0,0D0
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WN(K,L)=0,0D0

E1(KeL)=0,0D0

E2(KrL)=0.0D0

E3(KeL)=0,0D0

B2(KsL)=0.,0D0

B3(KeL)=0.0D0

ZETAL(KeL)=NI(KrL)/NIO

ZETA2(KoL)=NE(KrL)/NEO

ZETA3(KeL)=NN(KeL)/NNO
VI(KeL)=D4x(CxB3 (KoL) =E2(KrL))

V2 Ko L)=D4* (E3(KoL)+CxB2(KoL))
V3(KeL)=D2% (UE (KoL) =A2%ZETA2(KrL))
VA{KoL)=D1%(UI (KoL) =AL*ZETAL(KrL))
VS(KeL)ZD3% (UN(K o L) =A3XZETA3(KrL))
VE(KeL)=D1*(ZETAL(KsL)+ALXUI(KeL))
V7(KoL)=D3%(ZETAZ (KoL) +A3*UN(KrL))
VBIK»L)SVI(KrL)

VIO(KeL)ZWI(KeL)

VIO(KsL)=VE(KeL)

VIL(KeL)=WE(K,L)

VI2(KoL)IZVN(KoL)

VI3{KeL)ZWN(K,L)

Vi (KsL)=E1(K,L)

V15(KvL)—02*(ZETA2(K L)+A2%UE(KoL))

V16 (KoL) =DUx (C*E2(KsL)+B3(KeL))
VI7T(KoL)=DU4x (B2 (KrL)=C*E3(KrL))

CONT INUE

THE INITIAL VALUES HAVE NOW BEEN READ IN AMND HAVE
UNDER GONE THE TRANSFORMATION V=(T INVERSE) (U)
M1=1

J=301=-M1

T=5. 00-1“

DO 54 K=1,J
Cl==DY*Cxk2xMU*Ex (NEOXVIO (KoL) =NIO*xV8(Kot ))
C2=DY*Chk2kMURE* (NEOHVIL (KoL) =NIOX*VI(KrelL))
C3=D2*(=(E/ME)*V14 (KoL) +CF21% (D1 % (V4 {Ke L) +ALXVE6 (KoL) )=
1D2%(VI(KeL)+A2%VIS (KoL) ) )4CF2I% (D3 % (VS5 (K, L)*A3*V7
2{KrL))=D2% (VI (KrL)+A2%XVIS(KrL))))
CU4=DiL*((E/MI)*xV14(KeL)+CF12%(D2%x (V3 (KrL)+A2:xV15(KeL) )=

S ADIR (VA (KoL) +A1%VE(KeL) ) ) +CFL13% (D3* (VO (KoL) +A3%XVT

2(KoL) )=D1x (VA (KsL)+ALXVE(KoL))))

C5D3* (CF31x(D1* (VA (KoL) +ALRVE (KoL) ) =D3% (VS (KoL) +A3%
IV7IKeL) )V +CF32x (D2 (V3K L) +A2%V1I5 (KoL) ) =DI3%(VS(KoL )+
2A3XVT(KeL))))

C6=A1%CH4 ‘

C7=A3*C5

CB=(E/MI)* (DU (CxVI16(KrL)=V1(KeL))I+51%VI(KrL ) =UTOXDY*
1(CAVLI(KeL)+V16 (KoL) ) I+CFL12% (VIO (KoL) ~VB(K2 L)) +CF1 3%
2(V12(KrL)=VE8(K2L)}

CO=(E/MI) % (D4% (V2 (KrL)=CHVI7(KrL) Y +UYO¥Duyx (CxV2(KoL )+
1V17(K1L))-Bl*VB(KrL))+CF12*(V11(K0L)-V9(K9L))+CF13*
2(V13(KrL)=VI(KeL))

ClO0==(E/ME) % (D4* (CxVI6(KoL)=V1(KoL))+B1xy11(KeL)=UEO*
1D4%(CHVLI (KoL) +V16(KPL) ) ) +CF21%x(VBIK L) =V10(Kel))+CF23%
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2(V12(KsL)=~V10(KrL))
Cl1==(E/ME) #(DU4x (V2(K2L)=CxV1T7 (KoL) )+UEOxDU* (Cx
1V2(KoL)+V17(K.L))-Bl*VlO(KrL))+CF21*(V9(K9L)-V11(KrLE
2)+CF23% (V13(K,L)=V11(KoL))
Cl2=CF31x(VB8(KsL)=VI12(KrL)I+CF3I2x(VIO(KrL)=V12(K,L))
Cl3=CF31x(VI(KeL)=VI3(KeL))H+CFI2x (V11K L) =VI3(K,L))
Cl4=Cxx2xMUKE* (UEQORNTO*ZETAL (K2 L) =UTOXNEQ*ZETA2(K L) +
INIO*D2% (V3 (KoL) +A2*%VIS(KsL) ) =NEO*D1* (V4 (KeL)+A1%
2Ve(KstL)))

C15=A2xC3

C16==-Cx*C1

Cl7==C%*C2 ,

VI(KoL+1)=VI (KoL) H(T/XI*CH(VI(K+1oL)=VI(KeL) ) +T%C1

V2 Ko L+1)zV2 (KoL) +(T/X)RCR(V2(K+1oL)=V2(KeL) ) +T*C2
V3(KeL+1)=V3 (KoL) =(T/X) % (UEO=A2) * (VI(K+1,L)=V3(K,L))+
1T*C3

V(Ko L+1)=Va (KoL) =(T/X)*(UIO=AL) * (V4 (K+1,L)=V4(K,L))+
1T*C4
VS(KrL+1)=VS(KeL)=(T/X) % (UNO=A3) % (VS (K+1,L)=VS(K,L))+
1T*CS
VOE(KeL+1)=VE(K L) =(T/X) % (UIO+AL) (Ve (K+1,L)=VE(KoL) )+
1T*C6

V7 KoL) V7 K L) =(T/X) 2 (UNO+AZ) % (V7 (K+1,L)=V7(K L))+
1T*C7

VBIKoL+1)=VB(KeL)=(T/X)*UIO* (VB(K+1,L)=Va(KyL))+T*C8
VOUKeL+1)=VI(KeL)=(T/X)*UIO* (VIO (K+1,L)=VO(K»L))+T*C9
VI0(KoL+1)=v10(Ke L) =(T/X)*UEO*{V10(K+1oL)=~VI0(KoL))+Tx
1c10

VIL(KoL+1)=y11 (Kel)=(T/X)*UEO*R (V1L (K+1rL)=VI11(KoL))+T*
1c11 ,
V12(KoL+1)=y12 (KoL) =(T/X) *UNOX (V12 (K+1rL)=V12(KoL) ) +T*
1C12
VI3(KoL+L)=VIZ (KoL) =(T/X)RUNOKR(VIZ(K+1rL)~VI3(KoL))+T*
1C13

VI4(KoL+1)=V14 (K L)-(T/X)*(UIO+UFO)*(V14(K+1vL)-
IVI4(KIL))+TxC14

IF(KJEQs1)GCG TO 53
VIS(KeL+1)=VIS(KeL)=(T/X) * (UEO+A2) % (V1IS(KeL)~VIS (K~
11,L))+T*C15
VI6(KeL+1)=v16 (KoL) =(T/X)*Ck(V16(KoL)=Via(K=1rL))+T*
iC16

VIT(KoL+1) =y 17 (KoL) =(T/X)*C*¥ (V17 (KoL) =Vi7(K=1rL))+T*

-1C17

GO TO 54

C ok o A oK K oo koK o o Kok ok K K K ok ok o K R Ak K o oK o ok Kok ok ok ok KR oK e o ok ok ok ok
C

Gl AND 62 ARE THE VALUES OF E2 AND #2 AT X=0 AS A
FUNCTION OF TIME
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53 Gl{(L+1)=E02%(1.0D0=DCOS(2+.0D0%PI*OMEGA*M1%T))

G2(L+1)=B02%(1.,0D0-DCOS(2.0D0*PI*OMEGA*M1*T))
V1S5(1eL+1)=(D1/D2) % (Ve (1oL +1)=A1%Va(1rL+1))+A2%V3(1,L+
11)

VI6(1eL+1)=(1,0D0/C)*x((1.0D0/D4) %G1 (L+1)+Vi(1rL+1))
V17(1eL+1)=(1,000/D48) *G2(L+1)=C*V2(1sL+1)
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S4 CONTINUE

M2=2 : .
ZETAL{MZ2e2)=Dik{VvO{M2e2)=AL%ViE{M292))
ZETA2(M2,2)=D2%(V15(M2e2)=A2%VI(M2+2))
ZETA3I(M2+2)=D3% (V7 (M292)=A3%V5(M2¢2))
NI(M2,2)=ZETAL1(M2,2)%NIO
NE(M2,2)=ZETA2(M292) %NFO
NN(M2,2)=ZETA3 (M2¢2) *NNO
UI(M2,2)=D1x(v4(M2e2)+A1%xV6(M292))
UE(M292)=D2% (V3 (M2r2) +A2%V15(M2,2))
UN(M2:2)=D3%x(YS5(M2¢2) +A3%XVT(M2,2))
VI(M2,2)=V8(M2¢2)

VE(M2,2)=V10(M29r2)

VN(M2+2)=V12(M2e2)

WIIM2,2)=VI9(M2+2)

WE(M2s2)=V11i(M22)

WN{M2,2)=V13(M202)

E1(M2,2)=V14(M2,2)

E2(M2,2)=D4* (CxkV16(M292)=V1(M2r2))

E3{M2,2)=DU* (V2(M222)=CxV1T7(M202))
B2(M2,2)=D4*(C*xV2{M2e2)+V1T7(M2:2))
B3(M292)=DU4*x(CkVLI(M202)+V16(M202))
NI(M2¢,2)=NI(M202)+NIO

NE{(M2s2)=NE(M292) +NEO

NN(M2,2) =NN(M2¢2) +NNO

UL{M2,2)=UI (M2s2)+UI0

UE(M292)=UE(M2:2)+UEO

UN(M2»2)=UN(M2¢2)+UNO

WRITE(6062) M2/MLINI(M2¢2) e M2¢M1rNE(M2902) e M29M1»
INN(M2,2)

WRITE(6r64) M2eM1oUTI(M2¢2) sM2/M1oUE(M2e2) e M2,M1»
1UN(M2,2)

WRITE(6:66) M2eMI12VIIM202) e M2/ MLy VE(M2r2)rM2)M1»
1VN(M2,2)

WRITE(6068) M2:MLeWI(M2¢2) e M2/MLIWE(M2¢2) 9 M2¢M1»
1WN(M202)

WRITE(6070) MZ2yMLPEL(M2,2) M2/ ML1rE2(M2¢2)9sM2¢M1,

-1E3(M2,2)

WRITE(6072) M2oM19B2(M222) s M2/M1,BI(M2r2)

IN ORDER TO NOT OVERLOAD THE STORAGE CAPACITY OF THE
COMPUTER I AM RENAMING THE VARIABLES AFTER EVERY TIME
STEP

DO 82 K=1l,J

VI{Ke1)=V1{Ke2)

V2(Krl)=V2(Ke2)

VI(Ke1)=V3(Kr2)

V4(Ke1)=VU(Kr2)

VS(Ke1)=VS(Ke2)

VO(Ke1)=VE(K»2)

V7(Ke1l)=VT7(K»2)

VB8(Kel1l)=V8(Ks2)

VO{Kr1)=VIO(Ke2)

VIO(Ke1)=V10(Ke2)

V11(Kel)=V11i(Ke2)
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82

70
62
o4
66
68
72

Vi2(Kel1)=V12(Ke2)
V13(Kr1)=V13(Kr2)
V1iG4(Ke1)=V14(Ke2)
V15(K»1)=V1S5(Ke2)
V16(Kel)=Vio(Ke2)

V1i7(Ks1)= V17(K!2)
CONTINUE
MI=M1+1

IF(M1,LE.270)G0 TO 22

FORMAT(Y0%)tE1( 913092 13,") “'rD22o16'5X"F2('rI30
100030 0) =t yD2241600XeE3(19I39 %99 139") ='9D22.16)
FORMAT(YO ' o YINIC o I30 0 'eI30') = pD22.16¢8X0'NE(*9I30 "y
10eI30*) =t 9221625 Xe ' NN(" IS0 st pI3r") ='eD22.16)
FORMATC(0Y 2 UT (2130 %e'9I39') Z'9D22,16eSX2UE(Y,13)"
1r001300) SV 122,16 BX0'UN(YpT30 %9 »13s") ='yD22.16)
FORMATULYO Y » ' WI(eTI3r e pI39?) =v,0D22:10¢eSXr'VE( 913y
120139 %) St 4022.1605X 0 WN('2I329'2130%) ='yD22,16)
FORMAT (O Y *WI(YpI30 % »I39") =9 pD22.1695Xr " WE(2,13,"
Lot0I30%) =022 1695X0*WN("2I30 9 'eI3s?) =%,D22,16)
FORMAT('0'»*B2( s I3e 00?930} ='yD22,16e8X2'B3(%,13,"
Letel3p?) =,(;22416)

STOP

END
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