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ABSTRACT

An empirical method is developed for predicting the modal damp-
ing of a combined parallel-stage Shuttle model by means of damping
measurements performed on the individual substructures. Correlations
are first determined for each component in terms of damping energy as
a function of peak kinetic energy and modal amplitude. The results are
then used to predict component damping energies corresponding to the
respective kinetic energies and amplitudes that occur for the new modes
of the combined System. Modal characteristics for the System, other
than damping, are obtained by a real eigenvalue solution of dynamic
equations developed by Hurty's procedure of substructures. System equa-
tions, which include component modal damping, are also solved by a
complex eigenvalue approach for comparison with results of the empirical
method.

The experimental model consists of two beam-like substructures,
each of which contains a series of discrete rigid masses, and can be
joined into a single system through three pin-joints. Variable damping
is provided by means of multiple paddles acting in oil reservoirs. Joint
damping is also provided by means of a magnetic loop which is modulated
by an active feedback circuit. Components are tested in pin-slip and
free-free support conditions, and the System is tested in the free-free
condition. A variety of damping and mass configurations are included.
The empirical method is found to provide damping predictions within
10% to 20% error, while the complex eigenvalue results deviate by as
much as 300% ! Recommendations are given for application of the
empirical method to a four-component, more representative Shuttle
configuration.
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PRINCIPAL NOTATION

A Area

[d] Coordinate transformation matrix

[|3] System coupling matrix

[<3 ] Damping matrix

G Shear modulus

[YJ Eigenvector matrix

De Damping energy dissipated per cycle

6 Link length, etc. (see Figure 4)

E Modulus of elasticity

{^} Column vector of generalized forces

f Frequency (Hz)

C Critical damping ratio

I, =5 Moment of inertia

[I] Identity matrix

[K], [k] Stiffness matrices

[K] Generalized stiffness matrix

H Element length or reference length

[M], [m] Mass matrices

[fll] Generalized mass matrix

N Denotes normal mode elastic quantities

V Poisson's ratio

{p} Column vector of nodal forces

{pj Column vector of generalized coordinates

{Q} Column vector of generalized applied forces

{q} Column vector of displacements or generalized
coordinates

R Denotes radius or rigid-body quantities

T Kinetic energy

t Tube thickness or time
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PRINCIPAL NOTATION (Cont'd. )

U Internal energy

{u} Column vector of nodal displacements .

[0], [CP] Modal displacement matrices

X 0 Peak modal amplitude for steady- state sinusoidal
vibration

x, z, 9 Longitudinal, lateral, and rotational displacements,
respectively, at the node points.

¥ Phase angle

fi. Ratio of forcing frequency to j-th natural frequency

UJ Circular frequency

("") Denotes quantities are with respect to coordinate
system where all nodes are interior nodes. Also
denotes normalized quantity.

( ) Denotes quantities are with respect to coordinate
system where some nodes are on boundary and the
rest are interior nodes

Vlll



I. INTRODUCTION

Prediction of damping in complex structures is recognized to be
extremely difficult because of the presence of various damping mechanisms
and the current lack of knowledge in synthesizing even the most elementary
mathematical models into combined structural systems. As a result, in
initial design procedures in the past, damping characteristics of aerospace
systems have usually been predicted at the modal level by empirical methods
based on data derived from previous vehicles* ' , and when possible, ulti-
mately verified by actual measurements of modal damping in full-scale
dynamic tests. Needless to say, such full-scale testing of large systems is
extremely difficult and expensive at best, and has been deemed unfeasible
for the Space Shuttle, which will be the largest and most complex aerospace
structural system yet attempted.

In order to provide information necessary for predicting dynamic
response for Space Shuttle, it is recognized that some new procedure must
be developed for this multi - component system. As a reasonable approach,
full-scale testing of the Booster, Orbiter, and any other major components
appeared possible, but a requirement then exists for synthesizing this in-
formation into a prediction of response for the combined System. Substruc-
turing methods are available^', and are presently being further developed^)
for handling prediction of dynamic characteristics of undamped structures.
However, no accurate method has been derived for including damping in
such structural synthesis procedures. Therefore, the purpose of this report
is to present the development of a method which shows great promise for
accomplishing this objective. The philosophy followed in the research pro-
gram leading to these results has been to perform dynamic tests on individual
substructures of a two-component, parallel-stage, rather simple Space
Shuttle model, develop a mathematical model for the components, combine
all of the information into a mathematical model for the combined System,
and compare predicted dynamic characteristics with those obtained from
further tests of the combined System.

At the outset of this program it was recognized that enormous ef-
forts have been exerted in the past^ ' ' to develop mathematical models of
various elementary damping mechanisms, and this work will continue be-
cause of the great uncertainty present in the current state-of-the-art in
combining these mechanisms in complex structures. It was also recognized

Superscript numbers in parentheses denote references on page 92
of this report.



that the most reliable methods currently available for measurment of
typically light damping in complex structures having reasonable modal
separation, are those which determine an overall modal damping at
resonance or free decay from resonance conditions. The beauty of the
concept of modal damping, of course, is that it results in a single
number that represents a reasonable approximation to the aggregate
contributions of a multitude of complex damping mechanisms internal
to the overall structure. Once it is determined, and some form of relatively
simple' ' equivalent mathematical model is matched with the modal values
of mass, stiffness, and damping, prediction of dynamic response for that
component will be satisfactory, at all intermediate frequencies, since
damping forces dominate only in the vicinity of resonances. Nonlinearity
of damping with amplitude, and inevitable relatively wide scatter in
damping measurements are two unfortunate dilemmas which must often
be faced with this otherwise reasonable approach to the dynamic predic-
tion problem.

In view of the success of modal concepts for synthesis in the past,
it appeared reasonable to consider their use for Space Shuttle predictions
also, although it is recognized that considerable complications result
because of the combination of the substructures into an even more complex
System. System natural modes can be expected to occur at frequencies
•which are intermediate to those for the individual components, and as a
result, damping forces which were insignificant in the dynamic response
at the intermediate frequencies for the individual structures, now become
dominant for the new modes and frequencies. Therefore, the prediction
method outlined herein, is based on determination of modal damping
energy for each component from its own resonance tests, extrapolation
of the contribution of each respective component to the total modal damp-
ing energy at the new frequencies, and summation of the results for all
components. Results for the method will be shown to be far superior to
others that were considered. Limitations will be discussed, along with
additional work recommended for further verification. We begin by pro-
viding a description of the physical model used in the study, proceed with
derivation of mathematical models of the System, continue with a detailed
development of the damping synthesis method, and finally compare results
for a multitude of tests and predictions for modal damping and dynamic
response of a variety of damping and mass configurations.



II. DESCRIPTION OF PHYSICAL, MODEL

A. Configurations

A conceptual drawing of the Space Shuttle model is shown in
Figure 1. It consists basically of Booster and Orbiter model joined
together with a pin-joint near the top, and two pin-joints at the end of
a rigid link near the bottom. The lower joint simulates a slip-joint for
all practical purposes. Each component was made of a 2024 aluminum
tube of 1-inch O. D. and 0. 035-inch wall. Multiple rigid masses were
positioned on each to represent the two different mass configurations
indicated in Figure 1. Approximate locations of the masses can be
scaled from the figure. These masses were made of split disks of 1/2-inch
thick mild steel and all were nominally 6-inch diameter and weighed
approximately 3-3/4-lb each. Those masses attached to connecting joints
included cutouts where necessary to accommodate the joints. These
pin-joints were provided through the use of 1/4-inch diameter, Bendix
Type 5008-600 flexure pivot bearings, that are designed to have ex-
tremely low inherent damping.

A list of the numerous configurations to be considered is given
in Table I(a), while an explanation of the notation is given in Table I(b).
It can be seen that two mass configurations were included for several
different damping configurations which will be explained momentarily.
Both pin-slip and free-free boundary conditions were investigated for
the components in order to determine what effect this would have on pre-
dictions for the System. (This consideration would also help indicate
the type of support structures required for full-scale component testing. )
Pin-slip component tests were conducted by mounting the substructure
directly to a rigid wall through the upper pin and lower slip-joint. Free-
free component tests were conducted by hanging the substructure from a
low frequency suspension which was attached to eye-bolts at each side of
the second-from-the-top mass (this point was estimated to be a node for
most of the lateral bending modes). Finally, System tests were conducted
by having the two components attached together with a pin-joint near the
top and simulated slip-joint near the bottom, while the entire System was
supported on a low frequency suspension attached to a rigid knife-edge
nearly under the upper pin-joint. Thus, a simulated overall free-free
suspension was employed. A photograph of the model in this configura-
tion is shown in Figure 2.
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TABLE I(a)

TEST CONFIGURATIONS

Pin-Slip Components

1. B-P-L1-DO-M1 6. O-P-L1-DO-M1

2. B-P-L1-D1-M1 7. O-P-L1-D1-M1

3. B-P-L1-D2-M1 8. O-P-L1-D2-M1

4. B-P-L1-D3-M1 9. O-P-L1-D3-M1

5. B-P-L1-D2-M2 10. O-P-L1-D2-M2

Free-Free Components

11. O-F-LO-DO-M1 16. B-F-LO-DO-M1

12. O-F-LO-D2-M1 (RB Incl.) 17. B-F-LO-D2-M1 (RB Incl.)

13. 0-F-LO-D3-M1 (RB Incl.) 18. B-F-LO-D3-M1 (RB Incl.)

14. O-F-LO-D1-M1 (RB Only) 19. B-F-LO-D1-M1 (RB Only)

15. O-F-LO-D2-M2 (RB Only) 20. B-F-LO-D2-M2 (RB Only)

Additional Connecting Link Damping Included

21. LI 23. L3

22. L2 24. L4

Combined System

25. S-F-L1-DO-M1 30. S-F-L1-D2/D3-M1

26. S-F-L1-D2-M1 31. S-F-L2-D2/D3-M1

27. S-F-L2-D2-M1 32. S-F-L3-D2/D3-M1

28. S-F-L3-D2-M1 33. S-F-L4-D2/D3-M1

29. S-F-L4-D2-M1

34. S-F-L1-D3-M1

35. S-F-L1-D1-M1

36. S-F-L1-D2-M2



TABLE I(b)

CONFIGURATION NOMENCLATURE

Vehicle Identification

B - Booster

O - Orbiter

S - Combined System

Support

P - Upper Support Pinned, Lower Support Slip
or Double Pin

F - Components are Free-Free, System has
Free-Free Support but components are
joined together as with P-Support

Connecting Links

LO - No Connection

LI - Very Low Damping (Three Flexure Pins)

L2 - 0. 5% Critical Damping for System in Air
First Mode

L3 - 1. 0% Critical Damping for System in Air
First Mode

L4 - 2. 0% Critical Damping for System in Air
First Mode

Overall Structural Damping (Fluid Average Viscosities in cp)

Booster Orbiter

DO In Air In Air

Dl 230 600

D2 1070 1080

D3 4330 4900

Mass Distribution

See Figure 1



Figure 2. Photograph of Space Shuttle Apparatus



B. Damping Mechanisms

It was desirable to use several levels of damping for the overall
structure, as well as provide joint damping in the System. Since re-
peated tests were contemplated, it was necessary to provide damping in
a form that could be controlled as accurately as possible, and be as
repeatable and reliable as possible. The actual mechanism whereby
damping was provided was arbitrary, so long as it had the above charac-
teristics, and preferably provided damping forces which were linear with
amplitude for the sake of increasing measurement reliability. After
consideration of several mechanisms for structural damping, a series
of wipers acting in oil reservoirs was selected, and the solid structure,
including pin-joints, was designed to have as low inherent damping as
possible.

Angle-shaped wipers were attached to the masses indicated in
Figure 1. Oil reservoirs supported in their gantry-like structure can
be seen in Figure 2. Thus, the model itself was suspended from the
laboratory ceiling, and the dampers touched only the oil in its space-
fixed reservoirs. Oil viscosity was monitored along with its tempera-
ture to allow small corrections to damping values where appropriate,
as will be explained later. Average values of these viscosities are
shown in Table I(b). The Dl and D2 damping was provided by standard
motor oils, while the D3 damping fluid consisted of a mixture of heavy
motor oil and STP oil additive.

Connecting link damping was provided on the Booster side of the
lower slip-joint according to the approximate values given in Table I(b).
Figure 3 shows the mechanism which was found to be most reliable. It
consists of a permanent magnet whose flux path is split by a small gap.
Part of the magnet is attached to the rigid link while the other part is
attached to the connecting rigid mass of the Booster. Relative motion
between the two parts of the System is measured by accelerometers A^
and A2, whose output is converted to relative velocity and fed back as a
voltage into a coil which proportionately modulated the flux path. The
low pass filter was necessary to avoid high frequency instabilities in the
feedback loop. Although only one such damper was used, similar dampers
could have been employed at the other two pin-joints, and the methods to
be developed and results obtained would still be valid.
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A.

III. DEVELOPMENT OF ANALYTICAL MODELS

Coordinate System

The coordinate system used to describe the motion of the compo-
nent Booster and component Orbiter acting as individual substructures,
as well as the motion of the combined System, is shown in Figure 4.
Specific values for masses, lengths, etc. , are given for various con-
figurations in Appendix A. At the i-th interior node point, which is
located at the center-of-mass of the i-th concentrated mass, three
planar degrees-of-freedom (xt, zt, 9t) are permitted with the positive
directions taken as indicated. Rigid body coordinates are referred to
a node located at the center-of-mass of the component or System. In
addition to these nodes we define a set of boundary nodes denoted by PI
and P2 at the pin-joint interface and by SI and S2 at the slip-joint
interface, respectively. Three planar degrees-of-freedom are also per-
mitted at these nodes, until boundary constraints are applied later.
Selection of boundary nodes in this manner facilitates the solution of the
component eigenvalue problem since the boundary conditions may be speci-
fied at these nodes. Likewise, when deriving the transformation matrices
which couple the components together it is again convenient to specify
displacement interface continuity in the appropriate directions at these
nodes.

Assuming zero compliance between, say, nodes 2 and PI on
the Orbiter, the relationship between the boundary displacements
(node PI) and the interior displacements (node 2) is given by

(1)

(2)

(3)

or in matrix form

1,1

"l

0

0

0

1

0

6!~

0

1 9

(4)

Similar relationships apply at the node pairs (5, SI), (8, P2), and (11, S2),
respectively. The additional coordinates introduced at the boundary nodes
are not independent but are related to the interior coordinates by relation-
ships of the type given by Equation (4). Therefore, for free-free
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components, the total number of Booster degrees-of-freedom is 7X3 = 21
and the number of Orbiter degrees-of-freedom is 6x3 = 18.

In order to formulate the equations of motion for the substructures
it is necessary to establish some basic relationships which will be used
throughout the remainder of this report unless otherwise noted. Let each
triplet of independent coordinates (x t, z t, 9j) corresponding to the in-
terior nodes be denoted by a matrix vector of the form

(a.) = (5)
e.

For either the Booster or the Orbiter the complete displacement vector
may then be written as

u

(6)

where m = 7 for the Booster and m = 6 for the Orbiter.

In general, the total displacement at a node will be the sum of
three displacements:^ '

(a) A displacement component corresponding to a rigid-body
rotation and rigid-body translations

(b) A displacement component corresponding to constraint
modes in the case where redundant constraints are present

(c) A displacement component corresponding to the natural
or normal elastic modes of the structure.

Since the constraints for our Booster and Orbiter models are statically
determinant for both the pin-slip and free-free cases, modes associated
with redundant constraints are not applicable. Therefore, the total dis-
placement at a node is comprised solely of rigid-body and/or elastic
normal mode displacements. In light of this, Equations (5) and (6) may
be written as

(7)
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and

1;
•

U B

1 = '

V

•

- Ru
D

' + 4

- N \

- N

•

- N
U D

(8)

or

where

(9){53 = {UR} + {UN}

R denotes rigid-body displacement

N denotes normal elastic mode displacement

The displacements on the right-hand side of Equation (9) may be
defined in terms of a set of normalized displacement functions or modes
and a set of generalized displacements. Thus

{UR} = [0R] {P
R3

{UN} = [0N] {P
N3

where the element 0tJ in the modal matrices is the displacement at
point i in the j-th mode. If these equations are substituted into
Equation (9), the total displacement column may be written as

(10a)

(10b)

(u) = [0R] [pR] + [0N] {P
N3 = [0] {p}

where

and

[0] = [ 0 R J 0 N ]

(U)

(12)

£P) = -- (13)

From Equation (4) we note that for our model the boundary dis-
placements may be expressed in terms of the interior displacements at
a given node. Conversely, if we select the boundary displacements as
the independent variables then we may write
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"l 0 ^"

0 1 0

_0 0 1_

" hz
•

(14)

or

Cu23 = [o^J {Ul>1}

At the other boundary nodes we have similarly the relationships

(15)

{ u j = f & l i u } ( 1 6 a )

£"s 5 = Pi.a] t"i,2} (I6b)

£"n} = [a2>8] C52>2} (I6c)

where [a2>1], . . . [oc2>3] may be determined from the kinematic constraints
between the nodes. Using Equations (15) and (l6a,b, c) and the node-point
designations in Figure 4, we may write the following relationship for the
Orbiter

a.•2,1

(17)

or similar to Equation (9)

C u 3 0 = [ a ] 0 {u}0 = [a]0 ( {u R } 0 + Cu N } 0 ) (18)

Also for the Booster we have

"7

"8

"9

"10

"11

"13

"13
n M

=

B

a2,8

0

B

"7

"9

"10

"2,2

"18

(19)

1 = 3 X 3 identity matrix
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or again similar to Equation (9)

= [a], (UR}B + {uN3B) (20)

The matrices {u}8 and {uJ0 now include displacements at the two
boundary nodes as well as at the n-2 interior nodes (n = number of
interior nodes for the component).

Equations (18) and (20) can be expressed as one equation with the
understanding that subscript B applies to the Booster only and that sub-
script O applies to the Orbiter only. Hence,

(2D

For both the Booster and Orbiter these displacements can also be ex-
pressed in terms of a set of normalized displacement functions and a set
of generalized displacements. Thus

{UR} = [0R] {pR} (22)

OT = [0N] {pN} (23)

For either the Booster or Orbiter we then have from Equation (20):

.o Cpl,0 (24)

where again as in Equations (12) and (13)

M,0 = [£R ! 0NL,0 (25)
and

(Pi,. = --- (26)

For the free-free eigenvalue problem it is simpler to use the {u} coordi
nate system and for the pin-slip eigenvalue problem the {u} coordinate
system. A development of the component eigenvalue problems follows.
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B. Component Eigenvalue Problems

1. Pin- Slip Configurations. A finite element approach was used
in deriving the stiffness matrix for each component. The component was
discretized into 6 elements for the Booster and 5 elements for the Orbiter
with the length of each element taken as the distance between the interior
nodes as shown in Figure 4. A derivation of the element stiffness matrix
for an arbitrary element with length & l t i is given in Appendix B.
Assembly of the element stiffness matrices results in the global stiffness
matrix [K] for the component. The concentrated masses and moments
of inertia as well as the distributed mass of the tube are lumped at the
interior nodes. This results in a global mass matrix [M] for the compo-
nent. Since these stiffness and mass matrices are expressed solely in
terms of the interior coordinate system we now include the boundary nodes
by equating the internal and kinetic energies of the components in the two
systems [Equations (11) and (24)]. For either component and mass con-
figuration, equating strain energies in the two systems gives

UB,0 = * KLo [KLo Cu3b,o = H5Je,o [Kl.o ^,o (27)

Substituting Equation (21) into the right-hand side of Equation (27) gives

,o [Kl,0 [al,0 {u3B,0 (28)

from which we obtain the relationship

[Kl,o= [<o [KJe.o [c*i,o (29)

Similarly by equating the kinetic energies in the two systems we have

C a i o 00)

For both the Booster and Orbiter component pin- slip configurations
the boundary conditions at the joints (boundary nodes) are as follows:

Booster: x1>3 = z1>2 = 0 at pin -joint (31a)

Zgo = 0 at slip- joint (31b)

Orbiter: x1A = z l )X = 0 at pin -joint (32a)

z2>l = 0 at slip- joint (32b)

The stiffness and mass matrices are now partitioned into the following
submatrices:
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Kff i K
i fo

(33a)

B»0

M f f j M f c
(33b)

aB,0

The elements in the displacement matrix {u}B>0 are also partitioned so
that the elements corresponding to the constrained boundary displace-
ments [Equations (31a, b) and (32a, b)] form one submatrix and the free
displacements form another submatrix. Thus

(34)

8,0

where

f denotes the free displacements

c denotes the constrained displacements

—> means replaced by.

The equations of motion for the undamped component undergoing free
vibration are therefore given by

M ff

; M O O
3,0 B,0

ff I K t c
I ___

Kof I Kco
B,0 B,0

(35)

B,0

Noting now that the submatrices {qc^,0 and {q0^,0 are zero
due to the boundary conditions, it follows from Equation (35) that

(36a)

(36b)

Equation (36b) gives the boundary reaction forces once the displacements
at the free coordinates are known. Assuming simple harmonic motion of
the form
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iUJt
(37)

and substituting into Equation (36a) we obtain the standard eigenvalue
problem for the pin-slip boundary conditions

[I] - [D] = 0

where

-l
[D]= [M,f]B,0 [K f f]B ,

(38)

(39)

A modified Jacobi method was used to obtain the eigenvalues and mode
shapes corresponding to Equation (38). The mode shapes are normalized
to unity displacement at the maximum displacement in each mode and are
coupled in the axial and transverse directions due to the pin-slip boundary
conditions. Only the transverse displacements are given in this report,
a detailed description of which is given in Section V. Since all rigid-body
degrees-of-freedom have been suppressed, the modes obtained are the
elastic natural modes of the component.

The generalized stiffness and mass matrices may now be written as

B,0 8,0

K t11 K fc

= 0
8,0

(40)

•»0

where

AN
[0C] = 0

is a matrix of normalized modal displacements for
the unconstrained coordinates

is a null matrix since the displacements are zero
at the constrained coordinates.

and

8,0 8,0

M tt

B,0
: =

(41)

8,0

2. Free-Free Configurations. The component free-free con-
figuration eigenvalue problem can be set up in two different ways which
we denote as the direct method and the transformation method. Both
methods are required for subsequent combined System analysis, and
will be included here to provide an indication of numerical accuracy in
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component analysis. The transformation method requires a knowledge
of the pin-slip modes in order to determine the free-free modes. Since
in the pin-slip configurations the rigid-body modes have been suppressed,
we must now synthesize these modes into the equations of motion. This
is necessary for both the component case and for the System case where
pin-slip modes are used as generalized displacements.

a. Direct Method. In the direct method the stiffness and
mass matrices [K] and [M] are obtained in the same manner as out-
lined in Section B. 1 for the pin-slip configurations. These matrices are
written in the {u} coordinate system with the displacements defined at
the component interior nodes. Since there are no boundary constraints
for the free-free configurations the component undamped equations of
free motion are

(42)

(43)

and substituting into Equation (42) we obtain the standard eigenvalue pro-
blem for the free-free boundary conditions

,0 [u}B,0+ [K]B,0 {u}B,0 = {0}

Assuming simple harmonic motion of the form

- [D] = 0

where

[K]B,0

(44)

(45)

A modified Jacobi method was used to obtain the eigenvalues and mode
shapes corresponding to Equation (45). The mode shapes are normalized
to unity displacement at the maximum displacement in each mode and are
uncoupled in the axial and transverse directions. Since we have con-
sidered only planar motion in this study, we obtain three rigid-body modes
in addition to the elastic natural modes of the component. A detailed des-
cription of the free-free component natural modes and frequencies is given
in Section V.

The generalized stiffness and mass matrices for free-free compo-
nents may now be written as

[X] =
B,0

o : o
-

" 0 " "

j N
[K] [0" i

8,0
0 B 5

*N]
8,0

(46)

and
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B,0

hRR 0

B,0
. 0M

[M] [ 0 R | 0 N ]
8,0 B,0

B,0

(47)

where

[0R] is the matrix of normalized rigid-body displacements

[0 ] is the matrix of normalized elastic modal displacements

and both are synonomous with the modal functions defined in Equations
(lOa, b). It should be noted that all submatrices in the generalized stiff-
ness matrix associated with rigid-body displacements are null since no
internal work is done during a rigid-body displacement.

b. Transformation Method. In the transformation method
we attempt to obtain the free-free component eigenvalues and mode shapes
by using our analytically derived pin-slip modes and by appropriately in-
cluding rigid-body motion in the equations of motion. Recall that in
Section IIL B. 1 we obtained the pin-slip modal matrix

^..

[*") = (48)

where mode j is specified in column j of this modal matrix and includes
displacements at the boundary nodes as well as at the interior nodes. We
now have to include rigid-body motion with the pin-slip modes. Let us
therefore define in the {u} system three rigid-body modes in the axial-a,
lateral-4, and rotational-r, directions, respectively, such that the rigid-
body displacements are related to the modes and generalized displacements
by the following relationships:

1
0

= C0.3 Pa =

0
(49a)

1
0
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0
1
0
0~
1

0
1

V 0 '

o \

[ u r } = { 0 r } p r = ) l f£_

o

(49b)

(49c)

where pa, p^, and pr are the respective generalized coordinates. In
Equation (49c) a normalized rotational mode is selected such that a
rotation of 9 = 1/4 about the component center-of-gravity produces a
unit displacement at the tip of the component and 4 is the distance be-
tween the eg and the tip node. Thus, z* is the displacement in the
lateral direction at interior node j due to a rotation about the compo-
nent eg equal to 6 = For both the Booster and Orbiter, z* was
equal to 1 at the bottom node,
so that

Equations (49a, b, c) may be combined

P -= [0R] (50)

From Equation (21) we had that

tu}B,0 = [a]Bf0 Cu}B,0

If we multiply both sides of Equation (50) by

(21)

we have

{P
R3 (51)
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or

= [0R] £p"} (52)

which conforms with Equation (22). Equation (52) now gives the rigid-body
displacements in the {u} coordinate system. Similar to the normal mode
matrix [0 N ]
(48) so that

the elements in [0R] are arranged as indicated by Equation

[0R]
I "c

(53)

where again

means replaced by.

Combining Equations (48) and (53) into one equation we have for
both the Booster and the Orbiter

and

(54a)

(54b)

Equation (54b) now gives the displacement at a point on the component as
a linear combination of pin-slip modes and rigid-body displacements. The
kinetic energy in the free-free configuration may be written as

{u}B,

B,O (55)

from which we define the mass matrix

A BO I A Q

mRR i mR

i _ .
*NR ' -

mNR , IK NN
(56)

6,0

Note here that the matrix [W?N N] is already available from the pin-slip
analysis and is given by Equation (41). The matrix [mRR] represents
the rigid-body masses while the matrices [mR ] and [m ] represent
the coupling masses. Using the stiffness matrix derived in Equation (40)
we may now write the equations of motion for the undamped free-free
components as
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A DO '

mRR i
i
i

mNR i
^*

mRN"

jnm
— •

(PR|
/ -\ j.\ — / +

IP"/B>0 V 'B,0

0

0
-

o"

j(m

• B>0 B»0

or

[m]..o CP)B,O + [*]B.o WB.O = Co) (57)

Assuming simple harmonic motion the eigenvalues and mode shapes
corresponding to Equation (57) were determined by a modified Jacobi
method for the Booster component using the first six (6) pin-slip modes
and three (3) rigid-body modes as generalized displacements. Eigen-
value results of the analysis are presented in Table II and compared
with the results obtained by the direct method.

TABLE II. COMPARISON OF NATURAL FREQUENCIES
OBTAINED BY DIRECT AND TRANSFORMATION METHODS

Mode
No.

1

2

3

4

5

6

Natural Frequency
Direct Method

8.53

24. 08

45.72

75.25

106. 12

203.39

Natural Frequency
Transformation Method

8.54

24.13

45.60

75.32

106.29

%A*

+ 0. 12

+ 0.21

- 0.26

+ 0.09

+ 0. 16

Based on direct method.

Eigenvector results can also be used to define the following
generalized stiffness and mass matrices

[*} =
8,0 Lcp"J

A

[k]
A „ . A ,

B,0

8.0

and

B,0

cp'

ucp
[m]

8,0

8,0

8,0

A.I A .

8,0

(58a)

(58b)
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where

[<p R ] is the matrix of normalized rigid-body displacements

r A N T[cp ] is the matrix of normalized elastic modal displacements.

Now since the same component is represented in both the direct and
transformation methods of analysis we must have

O (59a)

o (59b)

Use of these equations allows a check on the numerical accuracy in the
problem, and is particularly useful for checking whether a sufficient
number of elastic modes have been used in the analysis.

As can be seen from Table II, the natural frequencies obtained
by the transformation method are in excellent agreement with those ob-
tained by the direct method through the fifth mode. Inspection of the
mode shapes also showed excellent agreement although they are not
presented here. Inclusion of rigid-body modes in the pin- slip compo-
nent mode synthesis for the combined System follows the same procedure
as outlined in the transformation method. The results obtained from this
example provided a good qualitative and quantitative indication of results
to be expected in the System analysis which is discussed in Section III. D.

C. Component Forced Response

The component forced response analysis was based on the well-
known assumption of modal damping properties which is valid for systems
having light damping and well separated modes. That is, at resonance,
the response is due principally to a single mode. More will be said on
this matter in a later section. For the present discussion, however, we
take the damping to be viscous and proportional to the linear critical
damping for each component mode. From damping measurements made
in the laboratory on each component we obtain a diagonal matrix of damp-
ing coefficients which represent the percentage of critical damping for
each elastic mode. In addition to the modal damping we also measure the
damping obtained during rigid-body motion at very low frequencies, since
in the free-free configurations this damping will be present due to the
damping mechanism employed in the experiments. Note that for a real
vehicle this rigid-body damping might correspond to low frequency aero-
dynamic damping.

Assuming linear superposition of the modal displacements in the
form
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u)B,0 = [0 N ] B , o£p N 3 B , o pin-slip case

C5JB ,0 .= [0" ! 0 N ] B , 0 <---> free-free case

(60)

(61)

6,0

we may, by orthogonality of the normal modes, write the equations of
motion for forced response as

#TR j 0
4 .__

0 ' ftlm

- i

fp"

B>0 B,0

C-RR I 0

c-o 1 -NN
I B,0 B,0

B,0 8,0

sin cut (62)

8,0

which holds for both the pin-slip and free-free cases so long as the
appropriate matrix elements are utilized. Further, all the square
matrices on the left side of Equation (62) are diagonal and the damping
matrix is given by

C-RR i 0
_ i. _

0 I C-
•

8,0

i
ff( i 0

— — — L — —

o \ iKm
B,0

"u)R R ! o"i

. o ! «>NN. 8,0

"CRR Q

_ o £NN_
(63)

JB,O

where

CURR I 0

0 cu

square diagonal matrix of rigid-body and ., .
elastic modal natural frequencies (note that

B'° [OJ R R ] is null).

square diagonal matrix of rigid-body and
elastic modal critical damping ratios

JB,O

vector matrix of applied generalized
forces (64c)

6,0

Equation (62) represents a set of m+3(m=number of elastic modes)
uncoupled equations in the generalized p coordinates which is applicable
to both the free-free and pin-slip component configurations provided that
the submatrices #?R R , C-" , and ^ are set equal to zero for the pin-slip
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configurations. The j-th uncoupled equation of motion in the generalized
coordinate corresponding to the j-th elastic mode may be written as

N
P- + ZG < P + <N

 P; = * sin $ tw™ (65)
For steady- state excitation a particular solution to Equation (65) is given
by

p/ = A," sin (03 1- Y/) (66)

where U) is the forcing frequency. If we define ftj = (U/UU and substi-
tute Equation (66) into Equation (65) we obtain for A and Y.N

(67)

* . " = a r c t a n a . (68)3 V i - c

The j-th uncoupled equation of motion in the generalized coordinate
corresponding to the j-th rigid-body mode may be written as

= V* sin u5tA/R (69)

For steady- state excitation a particular solution to Equation (69) is
given by

PJ
R = A^R sin (out- 1,R) (70)

Substituting Equation (70) into Equation (69) we obtain for AjR and Yj"

Y^" = arc tan ( -2C/ R ) (72)

Once the generalized coordinates have been obtained substitution into
either Equation (60) or Equation (61) gives the desired displacements at
the node points. Results of the component forced response analysis are
presented in Section V for each configuration.
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D. System Equations

The procedure used to develop the System modes from the Booster
and Orbiter component modes essentially follows that of Hurty(^). The
component modes, as considered by Hurty, fall into three categories:
rigid-body modes in which the component is displaced without deformation,
modes which exist only if the system of constraints on the component is
indeterminate (called "constraint modes"), and normal modes that define
displacements relative to the constraint system.

In the first category, three rigid-body modes are considered for
each component which consist of two rigid-body translations and a small
rotation. Since the system of constraints on our model is determinate,
the modes in the second category do not exist. In the third category we
have normal modes that define displacements relative to a constrained
system (pin-slip modes) and normal modes that are obtained with no con-
straints present (free-free modes).

1. Component Matrices. Since the procedure used to develop
the System analysis is identical for both the pin-slip mode synthesis and
the free-free mode synthesis, we will not repeat the procedure separately
for each case in this report. We would, however, like to make the
following distinction between the two cases which should be observed in the
development of the System equations: (1) For System synthesis utilizing
pin-slip modes the component mass matrix is given by

[m]B,0

mRR

NR

mRN

NN
m "l B,0

(73)

where the submatrices mRR, mRN, and mNR are given by

[mRR]e,o = [ £ R ] B , O [M]B,o [0"]6,o (74a)

[mRN]8,0 = [0R]B
T ,0 [M]8f0 [0N]B,o (74b)

and

[mNR]8,o = [0N]B
T,o [M]B,0 [0«]B,0 (74c)

These submatrices were obtained by using the transformation procedure
outlined in Section III. B.2.b. Note again that the submatrix [#!NN] is
already available from the pin-slip modal analysis. (2) For System syn-
thesis utilizing free-free modes the component generalized mass matrix
is given by
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6,0 (75)

8,0

where both the submatrices [#J R R ] and [^N N ] are available from the
free-free modal analysis [Equation (47)]. With this distinction in mind,
we proceed to develop the System equations.

For the Booster we may write the equations of motion with equiva-
lent viscous damping as

- (76)

(77)

where for pin-slip mode synthesis the mass matrix is given by Equation
(73) and the stiffness matrix is given by

and likewise for the Orbiter

i 0
i

0 \Km
(78)

and the [JfNN] submatrix is defined in Equation (40). For the free-free
mode synthesis the mass matrix is given by Equation (47) or (75) and the
stiffness matrix by Equation (46). The damping matrix is a. diagonal
matrix of the form given by Equation (63). Equations (76) and (77) may be
combined in the following uncoupled form:

(79)

where

(80a)

(80b)

(80c)

(80d)
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and

(80e)

Equation (79) now represents two matrix equations of motion for the
unconnected Booster and Orbiter. The process of connecting the compo-
nents by requiring that the displacements at their points of mutual attach-
ment be equal is now discussed.

2. Coupling Matrices. At the pin-joint attachment point we have
the following displacement compatibility requirements

and 1,1 (81a)

while at the slip-joint we have the displacement compatibility requirement
that

z_ , - zSri = 0 (81b)

Using the pin-slip component modes and the component rigid-body modes,
the xx>1 displacement may be written as follows:

m
(82a)

where

1, la = normalized displacement of
axial mode

in rigid-body

0* r = normalized displacement of X I>JL in rigid-body
rotational mode

0^^. = normalized displacement of x1>x in the j-th
elastic mode

Pa>Pr'P° = generalized coordinates on Orbiter corresponding
to the axial, rotational, and j-th elastic modes,
respectively.

Similarly, the remaining displacements may be written as
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m

n

(82d>

m
(82e)

n

3 = 1

where

0, .jg = normalized displacement of z t>1 in rigid-body
lateral mode

pB,,p. = generalized coordinates on Booster and Orbiter
corresponding to the rigid-body lateral modes

p B , p ° = generalized coordinate on Booster corresponding
to the j-th elastic mode

etc.

Note, however, that for the pin-slip case the elastic modal displacements
at the boundary nodes were zero in the appropriate directions [Equations
(31a, b) and (32a, b)]. Therefore, all the modal displacements in the
summation in Equations (82a) through (82f) are zero since they correspond
to these constrained displacements. From the compatibility requirements
given by Equations (81a, b) we obtain three equations of displacement com-
patibility in m + n + 6 generalized p coordinates where m = number of
Orbiter elastic modes and n = number of Booster elastic modes used in
the analysis. These equations may be written in matrix form as
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PB"
(83)

where

0

0 -*»'*,

(84a)

0

0

(84b)

and

Pa

Pi

Due to the fact that there exist three equations of compatibility the com-
ponents in the [p } vector are not independent. Recall that if there are
^ variables and there exists k equations of constraint between them,
there will be i = &- k independent variables or degrees-of-freedom.
In our case we have m+n + 6 variables and three equations of constraint
so that the number of degrees-of-freedom is m + n + 3. It is entirely
arbitrary as to which variables are selected as the dependent variables
but in this study we choose the Booster generalized coordinates

R
pr . Equation (83) may be written as p^

i A] = 0 (85)

from which
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[ 0 J ] {p^} + [A] {q} = 0 (86)

where {q} is now a column vector of independent generalized coordi-
nates. The dependent coordinates may now be obtained from Equation
(86) as

{p B
R } = -til]"1 [A] (q} (87)

From this we derive an equation which relates the complete {p} vector
to the independent {q} sub -vector

[A]
Cq3 (88)

The rectangular matrix in this equation is of order (m'+n +6) X (m + n + 3)
and [I] is an identity matrix of order m + n+3 . Equation (88) may be
written briefly as

(p3 = [P] p Cq} (89)

where [3] is a coupling matrix analogous to the one defined by Hurty^ '
with the subscript p indicating that the pin-slip component modes were
used for this analysis.

For the synthesis of the free-free-component modes recall that
all the displacements are referenced with respect to the interior nodes.
Therefore, due to this and the fact that boundary nodes in the free-free
component configurations have non-zero displacements we must first
determine the boundary displacements in terms of the free-free rigid-
body and elastic modes. Note that for this case the elastic components
are not all zero as was the case for the pin-slip configurations. The
displacement compatibility Equations (81a,b) still apply here but we must
make the following additional requirements in order to transform the dis-
placements at the interior nodes to the boundary nodes

xi,l = «a+ 6i ea (90a)

*i,a = *s - 6i 9s (90b)

Z X , 1 = Z 2 » Z1,3 = Z8» ZS,l = ZB> ZS,S = Zll (90C)

The displacements x2 , 92 , xa, and 98 may be written as
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m

03,jPj° (9 U)

e o m e
(91b)

n
X 8 = 8*aPaB + £ 08X,jPj8 (9 1C)

fl M e B - • e
t>o = 0= _r>.8 = 08,rPr + 08,3Pj (9 Id)

where 02,a is the normalized displacement of x2 due to rigid-body axial
modes, etc. Similarly, the displacements given by Equation (90c) may be
written as a combination of rigid-body and elastic modal displacements.
Using Equations (91a,b, c, d) and Equations (90a, b, c) and substituting into
Equations (81a, b) we arrive at a coupling matrix for the free-free compo-
nent analysis which again relates the complete [p] vector to the indepen-
dent [qj sub-vector by

(p) = [3], M (92)

with the subscript f indicating that the free -free component modes are
used in this analysis. Having obtained the coupling matrices which enable
us to connect the Booster and Orbiter components to form the System we
now proceed to the System eigenvalue problem.

3. Eigenvalue Problem. As stated in the previous section, the
coupling matrix [3] relates the complete {p} vector to the independent
sub-vector iq} which enables us to obtain the coupled System equations.
Substituting either Equation (89) or Equation (92) (depending on whether
we are synthesizing with the pin- slip component modes or the free -free
component modes) into Equation (79), and then premultiplying by the
transpose of the appropriate coupling matrix, we obtain the System
equations of motion

= £Q(t)}8 (93)

where
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(94a)

(94b)

(94c)

[Q(t)]s = [p]T [?(t)3 (94d)

Equation (93) is an (m + n + 3 ) X ( m + n + 3 ) matrix equation where again
m = number of Orbiter component modes and n = number of Booster compo-
nent modes used in the analysis. To determine the frequencies and mode
shapes for the System we solve [using Equation (93)] the undamped eigen-
value problem

ui)8 [I] - [D] = 0 (95)

where

(96)

A modified Jacobi method was used to obtain the eigenvalues and
eigenvectors of Equation (95). The eigenvectors are normalized and may
be written as an m + n+ 3 square matrix in the following form

[Y] = [{YiJ, (Ys}, ....{Ym+n+3}] (97)

These eigenvectors may be used to relate the generalized coordinate
vector {q} to a new vector {"p} which expresses displacements in a.
system of normal coordinates:

Cq} - [Y] [TI] (98)

At this point, however, we do not solve for the forced responses in the
[i~\] coordinate system. It is more useful to make a transformation back
to our original coordinate system l u j . The reason for this transforma-
tion at this point is twofold. First, it permits us to compare directly the
analytically predicted mode shapes and forced responses with the re-
sponses measured in the laboratory. Second, and most importantly, it
permits us to apply a newly- developed method for synthesizing the compo-
nent damping which appears to be extremely promising in terms of the
accuracy obtained. This method of damping synthesis is discussed in
detail in Section VI of this report. At this point we will only say that the
method permits us to obtain System modal damping which results in a
diagonal System damping matrix. This causes the equations of motion
to be uncoupled and permits rapid solution of the forced responses.
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For our 39 coordinate model (21 for the Booster and 18 for the
Orbiter) we may obtain the System normalized mode shapes in the {u)
coordinate system from the following equation

0n ' C

, .r [ y ] P , f (99)
0oJ p , f

where again the subscript p denotes the pin-slip case and f denotes
the free-free case. The System normalized modes are obtained by
dividing each column of the resulting matrix product given in the above
equation by an appropriate constant. The submatrices [0B ] and [00]
are the component Booster and Orbiter modes used in the analysis,
[3] is the coupling matrix, and [Y] is the eigenvector matrix given by
Equation (97). The sizes of the matrices at this point are as follows:

[0], : 39 X (n + m+3)

39 X (n + m + 6 )

[3] : (n + m+6) X (n + m+3)

[Y] : (n + m+3) X (n + m+3)

Note that the System mode shapes [0]3 are given in the [u] coordinate
system which includes displacements at both interior and interface point
positions. For convenience, we finally transform these mode shapes to
the {u} or interior coordinates by means of Equation (21). That is,
for the j-th column or mode shape we have

{0,}s = [a] {0^

The displacements (x l f zt, 6j) at node i may now be expressed as a
summation of system modes and system generalized coordinates, i. e. ,

Xl =

n+m
0*>rPr + £

k=l

n+m

^i.rPr + Y.
k=l

' 9 8 9 n + m
i,apf + *>i,m + *i,,ri + E

k=l
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or letting

r x .
I

= < z (101)

we may write Equations (lOOa, b, c) in matrix form as

(102)

For all the nodes on both the Booster and the Orbiter we may
combine and arrange the displacements in the following manner

(103)

where

and

u

(104)

which are synonomous with Equation (8). Likewise, Equation (102) may
be written to include all the nodes as follows:

f u } , = (105)

where the first 21 rows of the modal matrix correspond to Booster modal
diaplacements and the next 18 rows correspond to Orbiter modal displace-
ments with each mode in the matrix arranged column-wise. The general-
ized System mass and stiffness matrices may now be written as

i

55

"MB

0

0

i 0
L

M0_

0

K O _

"^

"*:
0«

0B
N"

~'~_ ~

1 a

"t

(106a)

(106b)
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where the tilde (~») indicates that these quantities are with respect to
the System normal modes.

4. Solution of Coupled Equations. Equation (93) represents the
System equations of motion in matrix form and at this point is highly
coupled. Solution of this system of coupled, damped equations would
appear to be a straightforward possible method of damping prediction
for the System. It was decided to pursue this possibility by solving for
System modal damping. A check on the damping matrix was first per-
formed by solving the damped eigenvalue problem. A solution to the
undamped eigenvalue problem showed very good agreement with the
natural frequencies and mode shapes obtained on the model in the labora-
tory. A method for solving equations of motion for a damped linear system
was developed by Foss(^). The procedure is fairly lengthy and only the
salient features of the method will be discussed here.

For a damped system having n equations of motion, the eigen-
value and eigenvectors are complex for a system that is less than criti-
cally damped. This means that 2n equations are required since two
items of information (magnitude and phase angle) are required to deter-
mine each mode. Following Foss1 method we write the following matrix
identity

U J - U3 - (107)

where [^l]s is the mass matrix shown in Equation (93). This equation
is combined with Equation (93) which is repeated here

R]s Cq} + [£]s £q)

The two equations are then combined as follows:

[S] ( y } + [T]

where

[S]

[T]

= fai t )3 ( 93)

(108)

" 0

^3

X

0

i *- ]
' e».
ij. —i
i ^ s .

(109a)

(109b)

(109c)
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(109d)

The solution to the homogeneous part of Equation (108) is obtained by
setting the right-hand side equal to zero and may be expressed in the
exponential form, e pt. Therefore, we have the following relationship:

{y} = p ( y } (110)

which when substituted into Equation (108) gives

p[S] (y) = -[T] {y} (111)

Equation (111) is an eigenvalue problem that yields a set of 2n eigen-
values and a set of 2n eigenvectors. The imaginary parts of the eigen-
values give the frequencies of the free vibrations and the real parts give
a measure of the rate of exponential decay of the amplitudes of free
vibration. The eigenvalues may be written as follows:

where U)* is the damped natural frequency for the j-th mode and Cj is
the damping factor for the j-th mode which can be determined by dividing
the real part of p^ by cu* . It should be noted that Gj, as determined from

the complex eigenvalue procedure, is identical to that which should be expected
to result if the coupled forced response were solved directly, and Cj were
determined from a ^-bandwidth procedure applied at each resonant frequency.

Comparison of the damping factors obtained by solving the above
eigenvalue problem with those obtained on the model showed the results
to be extremely poor with the majority of errors being in the neighborhood
of 100-325 percent, as will be shown in Section VII. B. As a result of the
poor agreement, solution of the nonhomogeneous equations would have pro-
duced equally poor results especially at the System natural frequencies,
since here the responses are damping controlled. Anticipating this fact
at the outset of this program, we studied various other ways by which the
System damping could be synthesized from the component damping with
favorable results. A new method for damping synthesis was developed
which produced extremely good results, at least for our present fairly
simple model. Details of this method will be given in Section VI. How-
ever, we first conclude the theoretical development by indicating how
predicted modal damping is to be used for predicting forced response.
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5. System Forced Response Using Predicted Modal Damping.

Using the modal mass and stiffness matrices^given by Equations (106a, b),
we now introduce a modal damping matrix [<2-]s which is obtained from
the procedures outlined in Section VI of this report. This damping matrix

"*s .*/

is diagonal with the j-th element given by C^ = 2#|j (jUj Cj where DUj is
the j-th natural frequency obtained from the eigenvalue problem given
by Equation (95) and £j is the predicted damping factor for the j-th
System mode. The uncoupled equations of motion are now written in
matrix form as

where {Q(t)}s is a vector of generalized applied forces. Procedures
for obtaining the System forced responses are the same as for the compo-
nent forced responses which were given in Section III. C. It should be noted
that the damping factors used in the System forced response analyses are
the predicted ones and not those obtained experimentally, although a com-
parison of the two is given in a later section. Once the generalized [pj
coordinates are known, the displacements may be obtained by substituting
into Equation (105).
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IV. EXPERIMENTAL PROCEDURES

A. Background Discussion

In order to utilize damping results from component tests for
prediction of System behavior, it was recognized that some form of
correlation of component results would first have to be established.
Several methods of doing so were investigated. The method finally
found to work best is based on a modification of a damping energy
correlation which was presented in Reference 1. However, we now
will show that the present modification is necessary in order for the
correlation to be valid.

A straightforward dimensional analysis of the component damp-
ing results can be performed by considering the following variables:

DO = Damping energy dissipated per cycle

M = Modal mass

U) = Natural frequency of a given mode

XQ = Peak modal amplitude for steady-state sinusoidal
vibration

& = Some characteristic length

A dimensional analysis results in the nondimensional equation

Mur or

where T0 = t?M(JU3x0
2 is the peak steady state kinetic energy at ampli-

tude xc. This equation can be written in dimensional form as

(114)

This result shows that damping energy is a function of two independent
variables, not just kinetic energy alone, as was originally assumed in
Reference 1.

In view of Equation (114), single-curve correlation will result
only if -X.JSL is held constant, and a family of curves is obtained, one
for each amplitude. Sample results for one Booster configuration are
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shown in Figure 5, plotted in the form of Equation (114). Strictly
speaking, the most general procedure for obtaining.such data is to
measure input energy at each of the component resonances, while
holding the amplitude constant. Kinetic energy is computed from
measured frequencies and theoretical modal mass. However, for
a system with many resonances, it is extremely difficult to obtain
accurate measurements at low frequencies, for those amplitudes
which are appropriate at higher modes. On the other hand, if the
damping forces are found to vary essentially linearly with ampli-
tude x0, and damping energy linearly with x0

2, then measurements
can be made at any convenient amplitude, and adjusted to the values
corresponding to a given value of xo/^. Further, if this condition
does exist, then it is also possible to measure a modal damping ratio
£ by means of conventional free decay or half-bandwidth techniques,
and the damping energy can be calculated from

Dc = 4TTT0C

The latter procedure was utilized in reducing the majority of the data
in the present program. However, it should be noted emphatically,
that data such as that shown in Figure 5 can be generated for any form
of damping process (including one nonlinear with amplitude), so long
as damping energy is measured directly, and amplitudes are either
held constant, or values are extrapolated by some suitable procedure.

There is another extremely important point which must be
recognized with regard to the form of plot displayed in Figure 5. That
is, the points represent measurements made only at resonant conditions
for a given component. When a curve is drawn through these points,
we automatically imply that damping energy can be obtained at inter-
mediate, off-resonant kinetic energies as well from these curves. In
other words, since we have a system with light damping and reasonably
separated modes, Figure 5 is not only a plot of modal damping energy
versus peak modal kinetic energy, but it can be hypothesized to be a
plot of total damping energy versus total peak kinetic energy as well,
since at resonance, only one mode dominates. The latter statement
must hold true regardless of the vibrational form of the component.
It would be appropriate to consider measurements at off-resonant con-
ditions to obtain further data to support this assertion, since it will be
a fundamental hypothesis to be used in the later development of our
method for prediction of System modal damping. However, measure-
ments at such conditions are usually highly inaccurate, and other further
evidence which confirms this hypothesis will be given near the end of
the report.
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B. General Procedures

It is recognized that the primary emphasis of this program is to
develop a method for prediction of System damping. However, in order
to do so, use of other dynamic modal properties of the components and
the System must be included. It is logical that natural frequencies and
mode shapes must be considered as part of the comparison of results
from analytical and experimental models. Likewise, comparison of
results for steady-state forced response are also desirable in addition
to values for modal damping. Therefore, we will include data to show
the effects of a variety of parameters on component behavior, and in
many cases will also include predicted values for the components for
comparison. These results will establish a confidence in the accuracy
of the component mathematical models. We subsequently will then dis-
cuss results for the System.

The approximate order of conducting the experiments has been
indicated in Table I(a). Once the apparatus for a given configuration was
set up, natural frequencies and mode shapes were measured first. Exci-
tation was provided by a very light electrodynamic exciter which was
located at Mass 10 on the Booster and at Mass 4 on the Orbiter. For
System configurations part of the data were obtained by driving on each
component. Mode shapes were measured in the lateral directions only
by means of multiple piezoelectric accelerometers which were mounted
to various masses. Most of the accelerometer cables were removed for
subsequent damping measurements, since it was found that motion in
these cables could cause damping of the same order as the very light
structural damping exhibited by the components when tested in air.

Damping measurements were performed by the 1/2-bandwidth
technique at first. Only slight nonlinearity with amplitude was usually
encountered. However, those configurations involving the lightest
damping could best be tested using the free decay method. Most of the
data were subsequently obtained using this method, since a permanent
record resulted, and the results were commensurate with those obtained
from 1/2-bandwidth measurements.

During this entire program, careful measures were taken to en-
sure the reliability of the results. Oil temperatures and viscosities were
monitored several times daily. Independent calibration of the force
exciter and accelerometers were repeated on several occasions. Correc-
tions to damping values to allow for viscosity changes were based on
day-to-day plots of the data. Tests on various modes were repeated at
later times when possible in order to provide cross-checks in the data.
Sample data were often taken at various amplitudes to spot any significant
nonlinearity. After all these measures, it is estimated that the worst
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error for modal damping measurements is ±15%, although most of the
data is much less. This is not bad, however, as damping measurements
on typical structures are usually much worse. It is also surmized that
only the very first few test configurations experienced much of the worst
error, as improvements in procedures were incorporated as time pro-
gressed and behavior of the apparatus was better established.

Tests for properties in rigid-body modes were necessary to pro-
vide data for System damping prediction. This was a consequence solely
of our particular design of providing damping; that is, damping relative
to the fixed ground. Axial and lateral tests were conducted by measuring
decay rates at the low frequencies (about 1 Hz) of the models on the
simulated free-free suspension system. Rotational tests were conducted
at about the same frequency by supporting the models on a knife-edge at
their CG, and stabilizing the model with a small lateral spring. In all
cases, the same oil levels were maintained as for the tests for elastic
modes.

C. Link Damper Calibration

The link damping mechanism described in Figure 3 evolved from
a series of other mechanisms which proved to be far more unreliable.
It would have been desirable to have calibrated this device with a com-
pletely independent apparatus. However, in order to save time, it was
decided to calibrate it directly in place on the combined System. It must
be emphasized that this in no way deters from the validity of the results
that followed.

For calibration, the link damper was installed on the combined
System, while it was supported in air (i. e., in the DO condition with no
oil in the reservoirs). Relative velocity across the link was monitored
at a steady-state forced response for each mode, first in the LI condition
(with no feedback in the damper). Measurement of the input energy thus
allows establishing a small damping energy reference level associated
with the internal structural stresses and the motion of the flexure pins.
This level was usually less than 0. 1% critical in any mode. Then, the
energy level with feedback on was also measured at the same input
amplitude. The difference of the two energy levels was that added by
the link damper, and was reduced to an equivalent viscous damping
coefficient, since the measured relative velocity across the link was
available in all cases. This procedure resulted in the damping coeffi-
cients listed in Table III. A further check during these procedures showed
that no significant nonlinearity or change in mode shapes occurred for the
various levels of damping employed. This was somewhat surprising, since
at the largest damping level (L/4), the joint provided more than 30 times
the damping energy absorbed in the rest of the structure when it was
supported in air.
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TABLE III. LINK DAMPING COEFFICIENTS FOR L2, L3, L4

Mode No.

1

2

3

4

5

6

7

8

9

10

c">

93. 05

108.80

122.98

77. 59

123. 13

113. 20

91.92

— — «

c<»)

185.83

212. 78

235.47

161. 71

270. 94

178. 73

270.94

_ « —

C(B)

354.63

523.43

434.07

374.49

509. 25

431. 23

...

187. 24

— — _

(1) L2 Link Damping

(2) L3 Link Damping

(3) L4 Link Damping

Units for C are newton-sec/meter
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V. COMPONENT RESULTS

A. Pin-Slip Configuration

1. Natural Modes. The experimental and predicted normalized
mode shapes for the Booster in the Ml and M2 mass configurations are
shown in Figures 6a and 6b, respectively. Only the lateral direction is
presented although longitudinal and rotational motions were also present
through coupling. Six mode shapes were determined experimentally for
each mass configuration. For the Orbiter in the Ml and M2 mass con-
figurations, the normalized mode shapes are shown in Figures 7a and 7b,
respectively. All the experimental mode shapes are shown in the D2
damping condition. Due to the slight difference in densities of the various
oils used to produce the damping, it was surmised that there might be a
change in mode shapes between damping conditions. Comparison of the
mode shapes among the various damping conditions showed, however, that
any changes were insignificant. The experimental and theoretical natural
frequencies and modal masses are presented in Table IV(a) for the Booster
and in Table IV(b) for the Orbiter. Results are presented for various
damping conditions to show the effect of the various oil densities on the
natural frequencies of the component. The theoretical frequencies given
were obtained for the D2 oil density condition.

It was discovered during the course of experimentation that there
was a small amount of translational compliance at the pin-joints. This
seemed to affect particularly both the Booster and Orbiter fourth modes,
with the difference in theoretical and experimental frequencies being about
7 to 8 percent. The percent difference is based on experimental fre-
quencies. This difference was not considered exceptionally bad, and it
was further surmised that this discrepancy would not influence damping
results. Therefore, no modifications were made to the pin-joints.

2. Damping. Experimental damping energy per cycle versus
kinetic energy curves are shown in Figures 8a and 8b for the Booster
and Orbiter substructures, respectively. The curves were obtained by
fairing through the experimental data points given by the symbols, as
has already been discussed in Section IV. A. A least squares fit would
have been appropriate but was not considered here. Results are shown
for the DO, D2, and D3 damping conditions in the Ml mass configuration
and for the D2 damping condition in the M2 mass configuration. It
should be noted that both the Ml and M2 mass configuration energy curves
appear to be the same (at least within the scatter of the data) for the D2
condition. This result was particularly encouraging since it seems to
indicate that for different mass-configured substructures with similar
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O PREDICTED

EXPERIMENTAL

- 1 0 + 1 - 1 0 + 1 - 1 0 + 1

MODE 2

-1 0 +1

MODE 4 MODE 5 MODE 6

Figure 6. Booster Mode Shapes for Pin-Slip Configurations
(a) Ml Mass Condition
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O PREDICTED

EXPERIMENTAL

- 1 0 + 1 - 1 0 + 1 - 1 0 + 1

MODE 1 MODE 2

- 1 0 + 1 - 1 0 + 1 - 1 0 + 1

O

d

MODE 4 MODE 5 MODE 6

Figure 6. Booster Mode Shapes for Pin-Slip Configurations
(b) M2 Mass Condition
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- 1 0 + 1 - 1 0 + 1

MODE 1 MODE 2 MODE 3

- 1 0 + 1 - 1 0 + 1

MODE 4 MODE 5

Figure 7. Orbiter Mode Shapes for Pin-Slip Configurations
(a) Ml Mass Condition
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O PREDICTED

EXPERIMENTAL

- 1 0 + 1 - 1 0 + 1 - 1 0 + 1

MODE 1 MODE 2 MODE 3

- 1 0 + 1 - 1 0 + 1

MODE 4 MODE 5

Figure 7. Orbiter Mode Shapes for Pin-Slip Configurations
(b) M2 Mass Condition
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TABLE IV (a). COMPONENT NATURAL FREQUENCIES AND
MODAL MASS FOR PIN-SLIP SUPPORT

( Booster )

Configuration

B-P-L1-D1-M1

*
Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

1

6. 18

6.31

-2.06

2

13. 12

13. 12

0.00

3

33.09

33.43

-1.02

4

50.68

47.00

+ 7.83

5

59.96

58.00

+ 3.38

6

94. 14

91.40

+ 3.00

B-P-L1-D2-M1

«j«

Theoretical frequency '(Hz)

Experimental frequency (Hz)

Percent difference

1

6. 18

6.26

-1.28

2

13. 12

13.09

+0.23

3

33.09

33.20

-0.33

4

50.68

46.90

+8.06

5

59.96

57.80

+ 3.74

6

94.14

90.90

+3.56

B-P-L1-D3-M1

i*<

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

1

6. 18

6.20

-0. 30

2

13. 12

13.06

+0.46

3

33.09

33. 15

-0. 18

4

50.68

46.80

+8.29

5

59.96

57.90

+ 3.56

6

94. 14

91.00

+ 3.45

B-P-L1-D2-M2

5*<

Theoretical frequency '(Hz)

Experimental frequency (Hz)

Percent difference

1

6.57

6.64

-1.05

2

13. 28

13.75

-3.42

3

35.48

35.62

-0.39

4

52.37

48.20

+8.65

5

69.09

66.20

+4.36

6

150.06

122. 90

+22. 10

Normalized Modal Mass

Ml mass configuration (Kgs)

M2 mass configuration (Kgs)

1

2.50

2.21

2

3.55

3.47

3

4.85

3. 15

4

9.60

12.96

5

4.32

2.73

6

3.52

2.78

Undamped eigenvalue results



TABLE IV (b). COMPONENT NATURAL FREQUENCIES AND
MODAL MASS FOR PIN-SLIP SUPPORT

( Orbiter )

52

Configuration

0-P-L1-D1-M1
•Jf*•(*

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

1

10.52

10.62

-0.94

2

18.58

18.40

+0.98

3

37.22

36.73

+ 1.33

4

57. 34

53.30

+7.58

5

93.86

92. 10

+ 1.91

6

— — —
_ _ _

0-P-L1-D2-M1

*
Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

1

10.52

10.67

-1.40

2

18.58

18.35

+ 1.25

3

37.22

36.67

+ 1.50

4

57.34

53. 10

+7.98

5

93.86

92.00

+2.02

6

— — —

_ — —

O-P-L1-D3-M1

*
Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

1

10.52

10.58

-0.57

2

18.58

18.30

+ 1.53

3

37.22

36.62

+ 1.64

4

57. 34

53. 10

+ 7.98

5

93.86

92.20

+ 1.80

6

— _ _

_ _ _

O-P-L1-D2-M2

•j,

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

1

10.71

10.73

-0. 19

2

18.61

18.40

+ 1. 14

3

39.28

38.55

+ 1.89

4

57.07

53.60

+6.47

5

114.05

106.80

+6.69

6

_ _ —

_ _ —

Normalized Modal Mass

Ml mass configuration (Kgs)

M2 mass configuration (Kgs)

1

5.57

5.29

2

3. 17

3. 06

3

5.99

3.96

4

8.90

6.71

5

3. 38

2. 61

6

_ _ _

Undamped eigenvalue results
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type damping mechanisms, the damping energy curves are congruent.
Modal damping ratios in terms of critical damping are given
in Table V for both the Booster and Orbiter for various mass and
damping conditions. Values for the DO (in air) conditions are also given
to indicate that most of the damping was provided by the discrete oil
dampers. The DO values for the Orbiter tend to be somewhat high,
and are attributed to extraneous damping of accelerometer cables which
was eliminated in subsequent tests.

3. Forced Response. To obtain forced responses, the Booster
was excited with a .constant force at Mass 10 in the lateral (z) direction
and the Orbiter at Mass 4. Response measurements were also made at
these locations in the lateral direction by means of an accelerometer
attached to the component. Figures 9a and 9b show the experimental
and predicted forced responses for the Booster and Orbiter, respectively,
in the form of response in DB versus frequency. The responses are
given in terms of velocity per unit force, with the response in the first
mode taken as the reference. Therefore,

DB = 20 log

where V is the velocity at frequency f and Vx is the velocity in the
first mode, while the force F is held constant. These forced responses
serve as an indication of the accuracy of~the analytical prediction proce-
dure.

B. Free-Free Configuration

1. Natural Modes. The experimental and predicted normalized
mode shapes for the Booster and Orbiter in the Ml mass configuration
are shown in Figures 10 and 11, respectively. Here again, as for the
pin-slip configuration, these mode shapes are presented for the D2 damp-
ing condition. The experimental and theoretical frequencies and modal
masses are presented in Table VI. Included are the three frequencies
associated with the suspension system natural frequencies and denoted by
A = axial, L, = lateral, and R = rotational rigid-body motions, respectively.
As noted from Table VI, agreement between experiment and theory is very
good for the six Booster and five Orbiter modes. The percent difference
between experimental and predicted natural frequencies is again based on
the experimentally measured frequencies.

2. Damping. Experimental damping energy per cycle versus
kinetic energy curves are shown in Figures 12a and 12b for the Booster
and Orbiter substructures, respectively. The curves were obtained by
fairing through the experimental data points given by the symbols, and



TABLE V. COMPONENT DAMPING FOR PIN-SLIP SUPPORT

( Booster and Orbiter )

56

Configuration

B-P-L1-DO-M1

O-P-L1-DO-M1

Mode Number

1

.0008

.0024

2

.0010

.0016

3

.0011

.0032

4

.0012

.0024

5

.0014

.0020

6

.0016

B-P-L1-D1-M1

O-P-L1-D1-M1

.0092

.0079

.0057

.0085

. 0047

.0074

. 0034

.0038

. 0046

.0045

. 0032

B-P-L1-D2-M1

O-P-L1-D2-M1

.0164

.0121

.0101

.0117

.0066

.0096

.0056

.0053

. 0087

.0058

.0051

B-P-L1-D3-M1

O-P-L1-D3-M1

.0365

.0244

.0200

.0223

.0119

.0142

.0071

.0070

.0191

.0087

.0080

B-P-L1-DO-M2

O-P-L1-DO-M2

.0013

.0020

.0025

.0015

.0019

.0037

.0026

.0028

.0022

.0017

.0033

B-P-L1-D2-M2

O-P-L1-D2-M2

.0158

.0121

.0112

.0128

.0074

.0086

.0063

.0047

.0101

.0075

.0116
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0 DB IS RESPONSE OF FIRST MODE
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Figure 9a. Booster Component Response at Mass 10
for B-P-L1-D2-M1 Configuration
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Figure 9b. Orbiter Component Response at Mass 4
for O-P-L1-D2-M1 Configuration
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Figure 10. Booster Mode Shapes for Free-Free Configurations-
Ml Mass Condition
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Figure 11. Orbiter Mode Shapes for Free-Free Configurations-
Ml Mass Condition



TABLE VI. COMPONENT NATURAL FREQUENCIES AND
MODAL MASS FOR FREE-FREE CONDITION

( Booster and Orbiter )

60

Configuration

B-F-LO-D2-M1

Theoretical frequency~(Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

A

0.60

L

_ , _

3. 15

R

3. 16

1

8.53

8.66

-1.50

2

24.08

24.41

-1.35

3

45.72

46.20

-1. 04

4

75. 25

76.20

-1. 25

5

106. 10

109.20

-2.84

6

203.40

196. 10

+ 3. 72

O-F-LO-D2-M1

Theoretical frequency*(Hz)

Experimental frequency (Hz)

Percent difference

A

...

0.77

L

...

3.57

R

...

3.75

1

11. 61

11. 72

-0.94

2

33. 11

33. 19

-0.24

3

64.56

64.60

-0.06

4

98.81

100. 70

-1.88

5

203. 90

200. 10

+ 1.90

6

...

B-F-LO-D3-M1

Experimental frequency (Hz)

Percent difference

A

...

0.60

L

...

3. 15

R

...

3. 16

1

8.53

8.62

-1.04

2

24.08

24.50

-1.71

3

45.72

46. 10

-0. 82

4

75.25

76. 30

-1.38

5

106. 10

109. 10

-2.75

6

203.40

196.20

+ 3.67

O-F-LO-D3-M1
*

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

A

0.72

L

- - -

3.58

-.'.

R

3.23

1

11.61

11.68

-0.60

2

33. 11

33.20

-0.27

3

64.56

64.60

-0.06

4

98.81

101.00

-2. 17

5

203.90

201.50

+ 1. 19

6

—

Normalized Modal Mass

Booster
Ml mass configuration (Kss)

Orbiter
Ml mass configuration (Kgs)

A

12.26

10.44

L

12.26

10. 44

Rt

4.74

5. 72

1

6.46

6.62

2

6.65

7.37

3

6. 30

4.69

4

7.22

5. 71

5

4.69

10.24

6

9. 18

A = Axial rigid body L = Lateral rigid body R = Rotational rigid body

Undamped eigenvalue results

' I/Za (t = distance from eg to bottom of component)
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results are shown for the DO, D2, and D3 damping conditions in the Ml
mass configuration. In additon to the damping values associated with
the natural modes, damping values are plotted for the rigid-body motions
associated with the axial, lateral, and rotational suspension system
natural frequencies. Recall that due to the nature of the damping
mechanism employed in the experiments, damping in rigid-body modes
is also present at the non-resonant frequencies of the component. It
was then assumed for the purpose of analysis that the damping associated
with rigid-body motion corresponded to the damping obtained at the sus-
pension system natural frequencies. Experimentally determined elastic
mode damping ratios as well as rigid-body damping ratios are given
in Table VII for the Booster and Orbiter substructures. -

3. Forced Response. To obtain forced responses, the Booster
was excited with a constant force at Mass 10 in the lateral (z) direction
and the Orbiter at Mass 4. Response measurements were also made at
these locations in the lateral direction by means of an accelerometer
attached to the component. Figures 13a and 13b show the experimental
and predicted forced responses for the Booster and Orbiter, respectively,
in the form of response in DB versus frequency. As for the pin-slip
configuration, the responses are given in terms of velocity per unit force,
with the response in the first elastic mode taken as the reference value.
As with the pin-slip configurations, these responses serve only as an
indication of the accuracy of the analytical model, and offer nothing new
in dynamic analysis. New findings will be presented for the System
results.
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0 DB IS RESPONSE OF FIRST MODE
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Figure 13a. Booster Component Response at Mass 10
for B-F-LO-D2-M1 Configuration
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Figure 13b. Orbiter Component Response at Mass 4
for O-F-LO-D2-M1 Configuration
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VI. SYNTHESIS OF SYSTEM DAMPING

The comments in Section IV. A provide the basis for our method
of damping synthesis. In particular, we hypothesize that the curves in
Figures 8a, b and 12a, b provide a means of selecting an appropriate value
of damping energy for each component, once we establish its peak kinetic
energy of vibration at a given frequency and amplitude, regardless of the
spatial shape it may sustain. In view of this hypothesis, we are now in
position to predict the damping values for the combined System. We
first perform an ordinary modal analysis of the undamped System. This
provides the natural frequencies, mode shapes, and kinetic energies for
a given modal amplitude x0. Let TQS , ToB, and TQO be the kinetic
energies for the System, Booster, and Orbiter, respectively, in a given
System mode. We note that either the Booster or Orbiter will have an
amplitude xo while the other component will have some smaller maxi-
mum amplitude in that mode. Since the energy curves (Figures 8a, b and
12a, b) are plotted with constant amplitude x0 , the peak displacement of
the component having the smaller displacement is scaled so that its peak
displacement is now XQ . (This is equivalent to selecting the damping
energy from the curve of lower constant amplitude, were such a curve
available. ) The scale factor is obtained by dividing XQ by x' where
x <. XQ , and is the maximum amplitude in a given mode on the component
having the smaller amplitude. The scale factor may then be written

Sf = x0/x'> 1

For the component having amplitude x 0 we enter the appropriate energy
curve and read the damping energy, D0, corresponding to the kinetic energy
T0 = ~s Muu2x0

2 . For the component having an amplitude x' we first multiply
the kinetic energy by the scale factor squared so that T0' = jj?M(JUsx'2 Sf

2.
We then enter the appropriate energy curve and read a damping energy, Dc'.
This damping energy, however, is based on an amplitude XQ. To obtain
the actual damping energy we simply divide D0' by the scale factor squared
to obtain actual damping energy, DC. Once the De values are determined
for each component the System damping can then be predicted from

4TTTO S

The damping ratios obtained using this method are presented in Section
VII. B for several system configurations. It should also be pointed out that
the above scaling procedure is necessary, since Figures 8 and 12 indicate
that damping energy is a nonlinear function of peak kinetic energy.
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Allowance for joint damping is accomplished by adding the damping
energy of the joint which is calculated from the calibrated properties of the
joint damper (see Section IV. C) and the relative velocity across the joint
as given by the theoretical mode shape. The damping ratio for both the
link and structure is then obtained by

•0 8
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VII. SYSTEM RESULTS

A. Natural Modes

System natural frequencies and mode shapes were obtained from
synthesis of both the component pin-slip and component free-free modes.
For the Ml and M2 mass configurations the first six pin-slip Booster
and first five pin-slip Orbiter modes were used in the synthesis. The
first five Booster free-free modes and the first four Orbiter free-free
modes were used in the synthesis for the Ml mass configuration only.
Inspection of Ml mass configuration System modes and frequencies
showed that the pin-slip component mode synthesis produced much better
results at higher frequencies than did the free-free component mode
synthesis. Therefore, only the pin-slip component modes were used in
the M2 mass configuration System synthesis.

The System mode shapes obtained from pin-slip component modes
and free-free component modes are shown in Figure 14a for the Ml mass
configuration. It can be seen that the agreement between the experimental
and predicted values is very good to excellent for the pin-slip case up to
the tenth mode. It should be noted that the seventh and eighth System modes
could not be determined experimentally, because of the location of the
exciter. However, since the pin-slip component modes produced good re-
sults up to the tenth mode it was surmised that modes 7 and 8 would con-
form to the pin-slip analysis and are so indicated. Figure 14b shows the
mode shapes obtained for the M2 mass configuration, and they also agree
quite well with the experimental results.

Table VIII(a) shows the System natural frequencies and modal
masses obtained from synthesis of the pin-slip component modes for the
Ml and M2 mass configurations. It should be noted that three eigen-
value results are presented for the Ml mass configuration. These re-
sults correspond to 1) an analysis assuming zero damping, 2) an
analysis using the D2 component damping results, and 3) an analysis
using the D3 component damping results. These results were obtained
from a complex eigenvalue analysis in which we tried to determine if
System damping could be obtained by synthesizing the component damping
matrices as outlined in Section III. D. 4. The differences in predicted
frequencies for the undamped and the damped cases are, of course, very
small and are presented here only for comparison. To assess the con-
vergence properties inherent in assuming a finite number of component
modes for synthesis, two other cases are presented in Table VIII(a), in
which we synthesized three Booster and three Orbiter modes and then
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Figure 14. Combined System Mode Shapes
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Figure 14. (Cont'd. ) Combined System Mode Shapes
(b) M2 Mass Condition
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TABLE VIII(a)

SYSTEM NATURAL, FREQUENCIES AND MODAL MASS
FROM SYNTHESIS OF PIN-SLIP COMPONENT MODES
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Ml Mass Configuration

Booster Modes 1 through 6 used.

Orbiter Modes 1 through 5 used.

Theoretical frequency (Hz)

Theoretical frequency (Hz)

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

1

7.31

7.30

7.29

7.35

-0.54

2

11.02

11.01

11.01

11. 13

-0.99

3

16.25

16.25

16.24

16.34

-0.55

4

27.38

27.37

27.33

26.79

+2.20

5

35.74

35. 73

35.69

34.56

+ 3.41

6

49.63

49.63

49.62

49.73

-0.20

7

55.87

55.86

55.83

56.00

-0.23

8

74.92

74.91

74.91

76.00

-1.42

9

85.67

85.67

85.65

87.07

-1.61

10

108.81

108.79

108.72

108.64

+0. 16

Ml Mass Configuration

Booster Modes 1 through 3 used.

Orbiter Modes 1 through 3 used.

Theoretical frequency (Hz)

Percent difference

Mode Number

1

7.31

7. 35

-0.54

2

11.02

11. 13

-0.99

3

16. 37

16. 34

+0. 18

4

27.78

26.79

+ 3.69

5

36.06

34.56

+4.34

6

55.05

49.73

+ 10. 70

7 8

...

9

—

10

...

Ml Mass Configuration

Booster Modes 1 through 2 used.

Orbiter Mode 1 used.

Theoretical frequency1 (Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

1

7.65

7.35

+4.08

2

11.20

11. 13

+0.63

3

16.37

16.34

+0. 18

4 5 6 7 8 9 10

M2 Mass Configuration

Booster Modes 1 through 6 used.

Orbiter Modes 1 through 5 used.

Theoretical frequency (Hz)

Experimental frequency (Hz)

Percent difference

Mode Number

1

7.68
7.75

-0.90

2

11.23

11. 33

-0.88

3

16.22

16.48

-1. 58

4

26.41

26. 19

+0.84

5

38. 30

38. 50

-0.52

6

50. 18

50.60

-0.83

7

56. 35

54.60

+ 3.20

8

88.53

86.80

+ 1.99

9

96.89

96.60
+0. 30

10

161.65

147.80

+9.37

Normalized Modal Mass

Ml mass configuration (Kgs)

M2 mass configuration (Kgs)

1

4. 36

3.68

2

5.33

5.50

3

4.81

4.45

4

13.05

12.84

5

5.46

3.38

6

4.80

5.66

7

17.05

20. 17

8

9.98

6.88

9

6.24

3.99

10

9.69

6.85

1 Undamped eigenvalue results.
2 O2 damping: damped eigenvalue results.
3 D3 damping: damped engenvalue results.
4 Based on experimental frequency compared with undamped eigenvalue results.
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two Booster modes and only one Orbiter mode. The convergence of the
predicted frequencies is evident as we proceed from the lower to the
higher number of modes used in the analysis.

Table VIII(b) shows the natural frequencies and modal masses
obtained for the free-free component synthesis for the Ml mass con-
figuration. The highest frequency which could be predicted was for the
sixth mode with poor results thereafter. This is also evident in the
mode shapes obtained as shown in Figure 14a. Similar results were
anticipated for the M2 mass configuration, and thus, an analysis for
this configuration using free-free component modes was not made.

B. Damping

The System damping used to predict System responses was de-
rived from the method outlined in Section VI. In addition to the damping
values obtained by our method, we also considered damping values which
were obtained from a complex eigenvalue solution as discussed in
Section III. D. 4. These values give an indication of the amount of error
which could be expected if a straightforward synthesis of damping through
the coupling matrices was done. Table DC gives the System modal damp-
ing factors obtained by our method and those obtained from the eigen-
value results. These are presented for the LI link condition only. As
pointed out in Section V, component damping energy was obtained ex-
perimentally for both the pin-slip and free-free configurations. Our
damping prediction method was applied to both sets of curves, and the
results are presented in Table DC. Related data in terms of damping

energy per cycle is presented in Figure 15 for the free-free synthesis
method. Although the predicted results are shown as smooth curves, the
individual predicted points deviated from the curve by about the same order
of error as the experimental points did in the original component curves
(Figures 8 and 12).

In general, it appears that the System damping factors obtained
from the free-free damping energy curves agree with the experimental
factors somewhat better than those obtained from the pin-slip energy
curves. The average percent difference is of the order of ±15 percent
for the damping factors synthesized from the free-free curves and is
slightly higher for the pin-slip synthesis. This range of error is similar
to that present in the original component data (Figures 8 and 12), and is
an extreme improvement over those values obtained directly from the
eigenvalue results, where the difference between predicted damping and
experimental damping varies somewhere between 100 and 325 percent.

To obtain the additional modal damping for the various link dampers
(L2, L3, L4), we simply add the predicted energy dissipated by the link
damper to the predicted energy dissipated by the remaining structure.
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TABLE IX. SYSTEM DAMPING
(For LI Cases only)
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S-F-L1-D1-M1

Energy Prediction

Experimental Results

Mode Number

1

' .0071

. 0070

2

.0089

. 0074

3

.0065

.0047

4

.0050

. 0046

5

.0049

.0039

6

. 0042

.0037

7

...

8

...

9

.0038

.0028

10

.0035

.0032

S-F-L1-D2-M1

Energy Prediction

Energy Prediction

Eigenvalue Results

Experimental Results

: 1

Mode Number f

1

.0143

.0138

.0243

.0143

2

.0128

.0100

.0135

.0102

3

.0103

.0088

.0147

.0079

4

.0066

.0061

. 0277

.0071

5

. 0075

.0060

.0102

.0067

6

.0066

.0053

. 0099

. 0053

7

.0082

8

.0133

9

.0057

.0046

.0069

.0043

10 j
I

. 0049 1

. 0040 !

.0103 j

. 0049 •

S-F-L1-D3-M1

Energy Prediction

Energy Prediction

Eigenvalue Results

Experimental Results

Mode Number

1

. .0296

.0330 .

.0562

.0332

2

.0237

.0226

.0278

.0232

3

.0196

.0190

. 0311

.0172

4

. 0130

.0113

.0607

.0143

5

.0133

. 0120

.0189

.0115

6

.0112

.0103

.0166

.0105

7

.0133

8

.0256

9

. 0087

.0080

.0118

.0080

10

. 0078

. 0069

. 0193

.0086

S-F-L1-D2/D3-M1 •

Energy Prediction

Energy Prediction

Experimental Results

-• " •'
Mode Number

1

.0169

.0159

.0169

2

.0238

.0208

.0230

3

.0136

.0113

.0106

4

.0102

.0099

.0106

5

.0088

.0074

. 0073

6

.0071

.0060

.0065

7

...

8 9

.0067

.0059

.0057

10

.0052

.0047

. 0054

S-F-L1-D2-M2

Energy Prediction

Experimental Results

Mode Number
,

.0124

.0137

2

.0091

.0106

3

.0080

.0071

4

.0058

.0071

5

.0054

. 0050

6

.0053

.0056

7 8

.0041

.0067

9

. 0044

.0056

10

1 Using pin-slip modes

2 Using free-free mode a
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The predicted link damping energy is given by DcJg = TT C0^eluu, where the
link damping coefficients C are given in Table III and 0rel are theo-
retical mode shape values. Thus, the damping factor for both the struc-
ture and link damper is the sum of the individual damping factors as
given by Equation (116). This also provides a further cross-check of
data by comparing the sum of measured damping factors for the link
acting alone and oil acting alone, to measured values obtained when both
act simultaneously. Table X gives the damping factors for the various
structure damping configurations in combination with the various link
dampers.

C. Forced Response

Forced response measurements were made on the Booster at
node 10 and on the Orbiter at node 4 for a constant input force level at
node 10 in the lateral (z) direction. Figures 16, 17, and 18 show the
experimental and predicted forced responses in the form of response in
DB versus frequency, similar to the procedures outlined for the compo-
nent response. They are based on the use of Equation (62), with
System natural modes obtained from pin-slip synthesis and modal damp-
ing given by Tables IX and X. Pin-slip, rather than free-free synthesis
eigenvectors were used in the expansion of forced response, since less
pin-slip synthesis System eigenvectors are required for sufficient
accuracy above the sixth mode, as has been indicated in Figure 14.

The measurements were made on the S-F-L1-D2-M1 and
S-F-L1-D3-M1 configurations to determine the accuracy of the mathe-
matical model and damping prediction for two different structural damp-
ing conditions that did not include link damping. These are Figures 16
and 17, respectively. In addition, Figure 18 shows the results obtained
whereby we added the additional L3 link damping to the S-F-L1-D2-M1
configuration. It should be noted in this figure that the predicted re-
sponses seem to be consistently higher than the measured responses.
We suspect that this was a result of a change in the calibration of the
force link used to drive the structure, but have not verified this. A
comparison of the predicted responses and the measured responses from
the above figures indicates that the agreement is very good to excellent
over the entire frequency range and in particular at the peaks, where
damping is the dominant factor.

It must be emphasized that in all forced response predictions, the
predicted damping factors were used, not the experimental ones. Assum-
ing that the mathematical model exactly duplicated the dynamic modal
mass and stiffness behavior of the Shuttle model, then the only difference
between predicted and experimental responses would come as a result of
the differences in predicted and experimental damping. Our mathematical
model, as is the case with all mathematical models, does not exactly
duplicate the dynamic behavior of the Shuttle model, although judging by
the frequencies and mode shapes obtained, it is a fairly good one.
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Figure 16. System Response for S-F-L1-D2-M1 Configuration
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Figure 17. System Response for S-F-L1-D3-M1 Configuration
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Figure 18. System Response for S-F-L.3-D2-M1 Configuration
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Nevertheless, the differences we obtain between predicted and experi-
mental responses arise now due to the differences in predicted and
experimental damping, plus the differences in the mathematical and
real-life Shuttle models. Considering these two factors in combination,
it is believed that the System forced response results obtained in this
study indicate the feasibility of substructure testing with subsequent
synthesis of the component results.

D. Verification of Damping Synthesis Hypothesis

It has been pointed out in Section VII, that a necessary part of our
damping synthesis method includes the hypothesis that experimentally-
determined curves of the form given in Figures 8 and 12 can be used to
obtain appropriate damping energies for the components at kinetic energies
that correspond to points intermediate to the original components. We
now consider a verification of this hypothesis through the use of System
damping data.

Let us consider for the moment, that our primary intent in this
study was to obtain data that would verify the above hypothesis. We
start with the curves as they appear in Figures 8 and 12, the points
for which have been determined by component resonance tests. As has
been previously mentioned, we do not consider off-resonance testing to
obtain intermediate values, because of the inherent inaccuracy asso-
ciated with such measurements. Therefore, in order to obtain values
at intermediate kinetic energies, and still allow the use of resonance
testing, we must change the boundary conditions on the respective
components. At the same time, we must preserve the essential form
of damping mechanisms in the structure. This is precisely what was
done in combining the components into the System tests. Therefore,
we can consider our measurements of System damping, and use these
data to fill in points on the original component curves. In other words,
we use the data in the inverse form to which it has been considered
previously.

As an example, we consider the free-free component curves in
Figure 12. We wish to use the System damping results from the various
configurations to fill in additional points on these curves (assuming the
data will fall on the respective curves). To do this, we must first note
that the System damping energies must be properly apportioned to the
Booster and Orbiter, for each System mode. This is done on the basis
of the amount of kinetic energy that each component contributes to the
System mode, which is consistent with the conceptual basis for plotting
Figures 8 and 12.

Define average damping energies per cycle as
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DOB = 4TTToeav

= 4TTT"00 C8 (H7b)

where ToB and TOO are the respective Booster and Orbiter kinetic
energies at a maximum modal amplitude of x0, and C is the measured
value of System damping in a given mode. Then note that we can write

. _ T T
= n _°B i n _°°

°8av CB1 Tos "*" c01 Tos

D = D * + D
os

co CB2 o02av T

where D and D Ql>3 are the desired intermediate damping energy
values corresponding to kinetic energies ToB and T Q O , and both are for
maximum modal amplitudes of xo . Further, T00 corresponds with
a maximum modal amplitude of x' (we assume that x '<x0 for a given
System mode here), and Tos is System kinetic energy. Equations 118
provide the desired apportioning of damping energy according to the
respective kinetic energies present in a given system mode, and con-
tain four unknowns. Two more equations can be formulated from
Figures 12a and 12b as

5coi = ki 5CB1

(H9b)

where kj and k2 are the ratios of the curve values at respective
kinetic energies ToB and To 0 .

Equations (118) and (119) can be solved to provide

D' T .

(T1 1o

+ k . T )+ KX -"-oo'

o Tos

(120b)
• O B

Note that if the Booster and Orbiter component curves (Figures 12a, b)
happen to coincide, then kt = k3 = 1, and Equations 120 reduce to
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(121a)

U21b)

Also note that care must be exercised in the use of Equations (120) so
that the appropriate amplitudes x0 and x are assigned in each respec-
tive System mode.

System data for several configurations were used in Equation
(120b) in order to obtain the results shown for the Orbiter in Fig-
ure 19. Except for one or two isolated points, these data confirm con-
clusively the original hypothesis, within the same order of error as was
present throughout the damping measurements. It is particularly note-
worthy that the data for the D2/D3 configuration also fell on the desired
curves, since the Booster and Orbiter damping characteristics are more
significantly different for this configuration. A plot similar to Figure 19
could also have been produced for the Booster, and comparisons with
pin- slip configurations could also be employed. However, Figure 19
should be sufficient to make our point.
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VIII. FINAL DISCUSSION

The results of this study have quite dramatically shown the
successful development of a method for predicting damping in combined
structural systems with accuracy that is commensurate with that of
original measurements made on the substructures, for a relatively
simple parallel-stage Shuttle model. The application of this method
to a more representative model, and for that matter to a prototype,
must still be done with caution, and some comments in this regard
will be given shortly.

It is first appropriate to discuss the significance of the form of
the damping energy results in Figures 8 and 12. In essence, each
curve represents an aggregate or spatial integration of all of the complex
damping processes which occur in the structure. No assumption is made
about the particular form of damping present, except that linearity with
amplitude was found to be present in these experiments. At the same
time nonlinearity with kinetic energy level exists. We note that the curves
for pin-slip configurations in Figures 8a, b are somewhat different than
those for free-free conditions in Figures 12a, b, for corresponding mass
and damping conditions. In effect, this indicates a significant redistri-
bution of the damping processes for the different boundary conditions.
It was determined that this difference results primarily from the pre-
sence of longitudinal motion in all pin-slip modes, and the form of damp-
ing chosen, which provided higher effective damping for motion in that
direction. Of course, this same damping mechanism influenced the
free-free modes only through rotational displacements, since the damp-
ing reservoirs were located off the longitudinal axis of the models, and
only one (Rigid-Body) orthogonal free-free mode includes longitudinal
displacements. At the same time, it appears that the basic component
motions (as far as influence damping) in the System modes are more
like those of the free-free component modes, rather than the pin-slip
modes, since better damping predictions are provided by free-free mode
synthesis. A more careful investigation of various modal displacements
would also shed further light on this behavior.

The separation of results into groups representing a given aggre-
gate damping process may cause complications in the analysis of a more
complex structure. For example, certain kinds of modes may form one
group (or line on a plot) while other modes may form another line. Some
evidence of this possibility is indicated in the SAD-6 data shown in
Figure 20, which is based on results of experiments given in Reference 8.
The data are plotted here for fixed amplitude, and as a result, form a
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considerable rearrangement from the form in which they appeared in
Reference 8. Further, values were obtained by averaging the multiple
results of modal mass obtained from tests with different suspension
systems. Also mode numbers are indicated in order of increasing
natural frequency. We recognize that caution must be exercised in
interpreting the results as presented here. However, it appears that
two basic curves are formed at the same modal amplitude, one corre-
sponding to overall bending modes, and the other to dominantly tank
cluster motion. Such multiple curves may very well occur in the even
more complex Shuttle component configurations, and some means of
handling them will have to be developed. For that matter, some un-
certainty exists as to what degree grouping of the modes will occur.
Only analysis and testing of a more representative model, which will
be accomplished in the extension to the current program, can answer
these important questions.

The matter of damping nonlinearity with response amplitude has
been mentioned in a previous section. The concept of plotting damping
energy per cycle versus peak kinetic energy is entirely amenable to
such a complication. So also is the method of damping prediction
developed herein. However, considerable effort will be required in
additional testing in order to determine its influence, and it appears
that at best, much judgement will have to be exercised to include its
effects in any prototype tests. Such complications may also be the
subject of extended work.

It should finally be recognized that the results of this study form
a far more basic discovery than just prediction of damping in combined
structures. There is the definite implication that damping energy plots
can be used to identify similarities in various different complex struc-
tures. In particular, the slopes, shape, curvature, etc. may eventually
be cataloged to identify damping processes in many structural applica-
tions. Thus, each curve is a plot of some now only empirical damping
law, and the identification of parameters with which these laws can be
described is an important new development in a very old, yet relatively
little understood, subject in dynamics.
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A P P E N D I X A

VALUES FOR ELEMENTS OF DISCRETE MODELS



A-l

Orbiter Mass, Mt (Kgs)

M! =

M2 =

M3 =

M4 =

M5 =

Mg =

1.83

1.72

1.83

1.83

1.40

1.83

Booster Mass, Mt (Kgs)

M7 = 1. 83

M8 = 1.72

M9 = 1.83

M10 = 1.83

Mu = 1.40

M13 = 1. 83

M13 = 1.83

Orbiter Moment of Inertia,
I t (Kgs-cm2)

= 28.78

= 24.84

= 28. 78

= 28.78

= 19. 20

= 28.78

Booster Moment of Inertia,
Ii (Kgs-cm3)

[7 .= 28.78

[8 = 24.84

[9 = 28.78

[10 = 28.78

[u = 19.20

[la = 28.78

[,, = 28.78

Tube thickness, t = 0.089 cm

Tube radius, R = 1.18 cm

Modulus of elasticity, E = 7. 30 X 106 Newton/cm2 (10. 6 X 10s lb/in3)

Poisson's ratio, v = 0.325

\ = 8. 25 cm 6. = 2. 54 cm 63 = 11.43 cm



A-2

Distance Between Nodes, (cm) ~— Ml Configuration

Orbiter

l l ta. = 24.76

48,3... = 25.40

/ a^ . '= 25.40

44,5 = 25.40

lSte = 24.76

Distance Between Nodes, & i t i (cm) —

Orbiter

J6 l f 3 . = 24.76

4S>3 = 15.24

^3)4 = 3 0 . 4 8

>4,5 = 30-48

>eS)6 = 24. 76

Booster

/7,e = 25.40

48,9 = ".40

^a>1Q = 25.40

Xo,u = 25'40

1̂1,12 = 25-40

Ai»A3 = 24' 13

M2 Configuration

Booster

je7>8 = 25.40

^8,9. = 10-16

je9flfl - 30.48

1̂0,11 '= 35'56

jeU(ia = 15.24

12.13 ~ 34. 29



A P P E N D I X B

DERIVATION OF ELEMENT STIFFNESS MATRIX



B-l

The derivation of the stiffness matrix for a beam element of length
j£ is based on Castigliano's First Theorem. If a structure is subjected
to a set of external forces P^, P2, . . . Pn having displacements ui, u2, . ..
un in the direction of these forces, then by the principle of virtual work
the r-th force may be given by

P ~ (B-l)

where U is the strain energy of the structure. If we now take a partial
derivative with respect to displacement ue then the stiffness coefficient
k is given by

T8 5u
(B-2)

To derive the stiffness matrix for the beam element we first ex-
press the strain energy in terms of nodal displacement Uj, u2 , . . . us a
shown in Figure B-l

u.

Node I

• *U.

U e

Node J

Figure B-l. Nodal Displacements of Beam Element I, J

Following the sign convention shown in Figure B-l, we may write the
following shear, moment, and slope relationships:

dV
dx

dM
dx

= 0

= V

(B-3)

(B-4)



B-2

_ _ m c v
dx = E=9 (B'5)

du
(B-6)

dx

where

V = net shearing force on a cross-section

M = net moment on a cross-section

0 = measure of net rotation

E = modulus of elasticity

G = shear modulus

=9 = moment of inertia of tube cross-section

R = mean radius of tube

t = thickness of tube wall

uz = displacement in z-direction

In the axial direction, the displacement ux within the element may
be written

u = a. + a_x (B-7)
X J. ^

The coefficients &i and <X3 may be found by setting ux = u: at x = 0 and
which we obtain

ux = ux + (u4 - ux) j5- (B-8)

ux = u4 at x = j&4 . from which we obtain

The strain energy due to axial displacement is given by

". = ¥ J "fer * <-»
0

where A = 2nRt is the tube cross-section area. Using Equations (B-8)
and (B-9) we obtain the stiffness coefficients from

k = a*7' r = 1 ' 4 (B-" our ous s = l,4

These stiffness coefficients are given in the element stiffness matrix,
Equation (B-24).



B-3

In the lateral direction we assume a displacement uz in the form

uz = a3 + a4x + aex
2 + aex

3 - (B-ll)

The coefficients <X3 , a,4 , ag, and OC6 may be found from the condition that
at x = 0

uz = ug ; duz/dx = -u3 -

and that at x = A

u z = u e ; duz /dx = -u6 -

After some manipulation and using Equations (B-4) and (B-5) we find that
uz can be written as

N1»J N

N i » J

J- \ f* / \ . ft I f\ A . T-\ \l2
3C

(us -u2) + ^ t > J (u3 + us)l
J

x3

where

3E.

12E

The strain energy due to bending is given by

1 • '

TT^ Q rt

Ub = T" J

0

while the strain energy due to shear is given by



B-4

U = cbc (B-19)

where

X = rrRtG

¥ = slope due to shear

Using Equations (B-4), (B-5), and (B-6) we get

V = -E=9 ^-

which we substitute into Equation (B-19) to get

18E2<9S

I
0

The total strain energy due to bending and shear is given by

•"« • 2 *«.

= uv+u e ='bs ~ "b"1" ~e - 2

0

dx

0

(B-20)

(B-21)

(B-22'

From Equation (B-14)we have uz which we use in obtaining Ubs .
stiffness coefficients for bending and shear are now

k = ^Ubs r = 2, 3 ,5 ,6
rs d u r d u a s = 2 , 3 , 5 , 6

The required stiffness matrix may now be written as

The

(B-23)

ANJM 0 0 -^A

0 12 6 Q

6
u - y J+!NI,J u

^- 0 0 ^~

12 6

0 -^ 3-N,,, 0

0

12

6

*i,j

0

12

6
^i,j

0

6

3-N l f J

0

6

3+Ni,,

(B-24)


