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ABSTRACT

A research program into three aspects of space satellite dynamics
has been carried out.

First, a four-dimensional space-time formulatioa of Newtonian
mechanics is developed. This theory allows a new physical interpretation of
the conservation theorems of mechanics first derived rigorously by Noether.
The formulation has turned out to be similar to that in a forgotten 1923 paper
by E. Cartan. However, the work presented here offers much greater
physical insight into the underlying mathematical structure of Newtonian
mechanics than that of Cartan.

Second, a new concept for estimating the three argles which specify
the orientation in space of a rigid body is presented. Two separate methods
for implementing this concept are discussed, one based an direction cosines,
the other on quaternions. Two examples are discussed: constant orientation
in space, and constant rate of change of the three angles with time. The

"behavior of each method in the absence of noise is discussed. Fokker-Planck

equations are derived for the aposteriori probability density functions for
estimation error in the presence of noise. Steady state srror statistics for
the case of constant rate of change of the three angles with time for a
quaternion implementation are explicitly derived.

Third, two synchronous equatorial orbit communication satellite
designs which use sunlight pressure to control their attitude are analyzed.
Each design is equipped with large reflecting surfaces, wmalled solar sails,
which can be canted in different directions to generate torques to correct
pointing errors. The total equations of motion for each fiesign are derived,
and then linearized about a nominal trajectory; a theoretical analysis of the
linearized equations is carried out. A specific control lzw is discussed.
Disturbance torques are shown to be negligible compared to attitude control
torques. Computer simulation of the total equations of motion verified the
theoretical analysis of the linearized equations.



New directions in space satellite dynamics resea~ch are sketched.
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Chapter One

Introduction

1.1. Introductory Remarks

In 1958 the first communication satellite (‘SCORE) was placed in earth
orbit. Since that time, dozens of communication satellites have been launched
into space and are currently being used for commercial and governmental
communication between points scattered across the face of the earth.

One fundamental problem in communication satellite design is control
of satellite orientation. This report de scribes the results of a three fold
research program into space satellite dynamics. The first and second phases
deal with aspects of deterministic and stochastic rigid body mechanics,
respectively. The third phase builds on the first two, and involves the analysis
of two specific satellite designs which use sunlight pressure for attitude control.

1.2. Scope of the Research Program

1.2.1., Theoretical Rigid Body Mechanics

The first phase of the research program was devoted to applications of
diffei’eﬁtial geometry, tensor algebra and calculus, and Lie groups and Lie
algebras to problems vin space satellite dynamics. The main result was the
development of a four-dimensional space-time formulation of Newtonian
mechanics. This theory is a complete self-consistent set of ten equations;
four of the equations deal with linear momentum, while the other six are con-
cerned with angular momentum. Many mechanics treatises often ignore three

of the angular momentum equations; this is not surprising, since information

-
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contained in these three equations is also contained in the linear momentum
equations, making these equkations to a certain extent redundant, However,
by including these three additional equations, a new physical interpretation
of the ten conservation theorems of mechanics due to Noether arises in a very
natural simple manner. Noether's approach to the conservation theorems
was based on a Lagrangian formulation of mechanics plus some subtle varia-
tional arguments; the same theorems follow quite naturally and simply by
formulating Newtonian mechanics in space-time. No attempt is made to
achieve mathematical rigor in developing this theory of mechanics; rather,
the emphasis is on physical insight and intuitive arguments, coupled with the
requirement the theory be consistent with experimental observations.

1.2,2, Estimation Theory

The second phase of the research program touched on a problem in
estimation theory: given noisy measurements of the orientation in space of a
rigid body, estimate the three angles which define this orientation,

Is attitude estimation really a problem in space satellite dynamics?
Yes, in fact in many present day satellites, attitude estimation is the chief
limitation in controlling the spatial orientation of these designs; the reader
should consult the bibliography for specific examples. One approach to attitude
estimation is to linearize the equations of motion about a nominal trajectory,
and then apply linear filtering theory to the linearized equations of motion.
The actual implementation of thi:s approach can be very complex. In addition,
this approach ignores the structure implicit in the equations of motion which

. describe how orientations in space change with time.
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The method presented here is analogous to a phase-locked loop, in that
it estimates the three angles defining the spatial orientation of a rigid body’
using an estimation procedure resembling that of a phase-locked loop. This
method takes advantage of the structure implicit in the equations of motion;
and for the two examples considered here (constant orientation in space, and
constant rate of change of the angles with time) is quite simple to implement
compared to an approach based on linearization of the equations about a nominal
trajectory.

The chief question left unanswered is what is the optimal or best method
for processing noisy sensor measurements in order to estimate spatial orien-
tation. The method presented here works well for the two examples considered;
however, it is still not clear how well the optimal estimation procedure would
perform compared to the method discussed in this report, and what if anything
is lost using the method described here or a methoa based on Kalman filtering.

1.2.3., Solar Pressure Attitude Control

The attitude control dynamics of two specific satellites which use sun-
light pressure to generate attitude control torques are analyzed in the last
phase of the research program.

Why use sunlight pressure for attitude control? At synchronous altitude
the largest disturbance torque on many present day communication satellites is

~
due to sunlight pressure (NASA(63)); since it is such a nuisance, perhaps it can

be used to aid rather than hinder attitude control. By canting large reflecting

surfaces, called solar sails here, in specified directions, it appears to be
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possibie to control the orientation of two specific designs with as great an
)
accuracy as any other presently existing method. ’

All of these statements are based on paper-and-pencil analysis plus
extensive computer simulation of each design. Clearly, this is no substitute
for an actual test in space of these ideas. Some attempt was made to include
technological constraints into the designs described here, and all computer
simulations were carried out with hopefully realistic numbers for all param-
eters; however, many engineering problems were ignored, on the grounds
that they did not critically affect the attitude control dynamics of each design.
Thus, the research program has merely indicated that solar pressure attitude
control of synchronous orbit communication satellites might be feasible, but

the question still deserves more discussion,

1.3. Background

The reader is referred to the bibliography for material that was found
to be especially helpful in one or more aspects of the px;e sent research progré.m.
In par.ticular, Goldstein(10) provides sufficient background in classical
rigid :bOdY mechanics, while Abraham(l) provides a much more modern treat-
ment of meghanics. Nelson(20), Flanders(7), Greub(ll), and Warner(27)
provide sufficient background material in tensor algebra, as it is used in the
first part of this research program. .
Van Trees(47), Viterbi(48) and Jazwinski{39) are excellent references
in estimation theory and phase-locked-loop techniques. A1t0(36) and McKean(41, 44)

provide a more modern and mathematically rigorous approach to the character-

ization of noisy measurements of spztial orientation.
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To gain some idea of present day attitude control techniques that are
used, the reader is referred to Likins(58), Fleischer(55) and Much et al(62).
The NASA publication on radiation pressure torques, including both sunlight
pressure torques as well as thermal torques, is a good introduction to the

practical aspects of solar pressure attitude control disturbances(NASA(63)).
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Chapter Two

Four-Dimensional Space-Time Newtonian Mechanics

2.1 Introduction

In this chapter, a novel, simple and elegant space-time formulation
of Newtonian mechanics is developed. The main mathematical tool used to
develop this theory is the exterior product, a generalization of the cross
product between two vectors from 3 to 4 dimensions. Using this téol, a
complete and self-consistent set of equations of motion for a single particle
are developed; four equations deal with time derivatives of linear momentum,
while the other six are time derivatives of angular momentum. The first
four, Newton's laws, are the fundamental equations of motion; the six angular
momentum equations follow as a natural consequence of the four linear
momentum equations.

The formulation presented here offers a new simple physical interpre-
tation of the ten conservation theorems of mechanics, theorems dealing with

‘ten quantities that do not change with time when no forces are present. These
theorem§ were shown by Noether(él) to be the only possible conservation
theorems; however, her arguments, based/on a Lagrangian formulation of
mechanics, involve some subtle variational techniques viz.a.viz. the ten
independent parameters governing transformations from one space-time
coordinate frame to another. On the other hand, these ten theorems follow
quite directly and simply from the ten equations to be presented here.

The theory is complete and self-consistent, in that no more equations

of motion can be found than those presented here, provided the only
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mathematical operations allowed are the exterior product and differentiation
with respect to time. Many treatises on mechanics hav lv overlooked three
of the angular momentum equations to be presented here, and concentrated
”

on the four fundalgnental linear momentum equations, often leaving the im-
pression these three angular momentum equations do not even exist. After
this work had been completed, the author searched the literature and was
able to find only one forgotten paper by Cartan(3) which even intimated there
might be ten equations of motion for Newtonian mechanics (see Appendix).
However, Cartan's work is very different in spirit from that found here. In
this chapter, a series of intuitive and physical arguments are presented to
develop a natural and correct approach to Newtonian mechanics, at the
expense of mathematical rig01:. Cartan's treatment contains more mathe-
matical rigor, but is missing much of the physical flavor found in the argu-
ments here; moreover, he is extremely terse on why there should be ten
equations of motion for Newtonian mechanics. Since the three forgotten
angular mon;entum equations contain no new information than that found in
the four linear momentum equations, itis perhaps not surprising they have
been forgotten.

It is straightforward to extend these equations to include effects due

to special relativity in a natural manner, unlike other relativistic theories

of mechanics known to the author; this issue will be dealt with elsewhere.
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2.2, Kinematics of a Single Particle

This section is concerned with describing the position of a single
particle, in space and time with respect to a reference coordinate. Space
and time together make up the arené in which the dynamics of the single
particle can take place. The particle is assumed to have positive mass M,
but occupies such an infinitesimal volume of space at any instant of time that
it can be considered a point in space-time with mass, or a point mass.

Four independent numbers are needed to describe the position in space and
time of the particle: three to specify its position, in space, and one to
describe the instant of time the parti.cle is at that position.

An interesting question now arises: given the space-time coordinates
of a particle in a reference coordinate frame, called frame A (arbitrarily),
how do these coordinates relate to the particle's coordinates in a different
reference frame, labeled frame B (again arbitrarily)? It is assumed both
frames have a standard orthonormal rectangular right-handed set of basis
vectors for the three space coordinates; the unit vector associated with time
is assumed orthogonal to the three space basis vectors. The relationship

between the particle's coordinates in frames A and B is (Goldstein(10)):

. XB d11 d12 d13 Vo IDxA rx.o
’B by d da Yy YA Yo
‘B dyy  dyp 433 v, “A ' %6
‘s 0 0 0 1 ty 3

- «d . -t L - - -



22,

where (x ) and (x

lt b4 1 d i
A YA Za A tB) are the coordinates of the point

BB’ “B
mass in space-time in frames A and B respectively.
The physical interpretation of the various parameters in this coordinate
transformation is now discussed:
i » ’ Jt - h = ’ = ’
i) (xo Y, 2%, o) when (xA 0 Ya 0

zAz 0, tA= 0), then (szxo, szyo,

= , t_o =t ), wh Y »2 ,t
zB zo B o) where (xo yo Zo 0)

are all assumed constant. Thus, the
space-time origin of frame B is displaced
from the space-time origin of frame A by

’ » ,t
(xO y-O zO O)

=0,yA=0,z =0,

A

ii) (Vx, VY’ vz)--when (xA

t :tA),then(xB=xo+vxt +

A A’ VBT Yo

vth, ZB = z0 + vztz’ tB = tA + to). This
means the spatial part of the space-time
origin of frame B.is displaced from the
spatial component of the space-time of

frame A by the sum of (x ,y ,z ) and
o’’0’ "0

(v t

,v t
:-:AV

y A’vztB)' The first term is

part of the displacement discussed in i);
the second term is called a translation.
The time components tA and tB are re-

lated by a displacement in time, to
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Unlike (x ,y ,z ,t ), (v ,v ,v ) are assumed
o’’o o x' 'y 'z

(o]

to be functions of time.

iii) (dll,dlz,d13,d21,dzz,d23,d32,d33)--ﬂlese nine

parameters have six constraints associated with

them:
dir 92 943 Y T 10 0.1
dyy  dyp 95 dj, dy, dpf o 10
__d31 d;,  d3; dj3  dy3 dis o 0 1__

2 2 2 .~ o™
dy; ¥4, +dy5 = 1 djydpy vy, 4, +d5dyy = 0
a2 +a%+d? -1 d.d _ +d._d_+d_d_ = o0bsix

217 T22 7 %23 T 11 31 12 32 "13 33 ( X

constraints

al+a%+a? -1 d..d _ +d._d_+ d.. = 0

31 32 33 © 21 31 22 32 423 33 7 J

where durepresents the projection of a unit vector directed along frame A's

.X-axis onto frame B's x—axis,d12 the projection of a unitf vector directed along
frame A's y-axis onto frame B's x—axis;and so on. Since there are a total of
nine parémeters with six constraints, there are only three independent
parameters asso;:iated the dij's,i,j =1,2,3. Tq emphasize that there are
only three independent parameters, the matrix of dij' sij=1,2,31is decom-

posed into the product of three matrices, each parameterized by one independent

variable, each representing a rotation in space about some axis:
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21 22 23| = expla L)) expla, L) exp(az L) L¥L, L %L,
1931 932 933
0 0 0 [0 0 1 0 -1 0]
LjLyLyef{L L L} L o=]00 -] L =000 L =1 00
0 1 9 -1t 0 0 |0 O 0

where Exp(akLk) k =1,2,3 is defined as a matrix exponential.

Thus, the ten independent variables, a_,a,,a_,v ,v ,v ,x ,y ,z ,t
2 X 'y z o o0

1 3 o o

completely describe the relationship between space-time coordinates in
frame B with respect to those of frame A.

2.3, Exterior Algebra

In order to discuss Newtonian mechanics in four dimensions, the
notion of a cross product between two vectors must be extended from three
to four dimensions. This extension is called an exterior product. The treat-
‘ ment here will concentrate on the algebraic properties of the exterior
product; for much more detailed discussions of exterior algebra, the reader
should COns{llt Flanders(7 ), Warner(27), Nelson(20) or Greub(1l1l). Exterior
products will be defined in very general terms with respect to a finite dimen-
sional vector space; the special case of a four dimensional vector space,
space-time, will be used as a concrete non-trivial illustration of these general
properties.

Let V be a real n-dimensional vector space, with an orthonormal set

of basis vectors {dxl, “ees dxn}with respect to some coordinate frame.
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Associated with this vector space is a space of zero-dimensional vectors,
H

the space of all real scalar functions of the n coordinate; {usually these func-
tions are assumed to be continuous and infinitely differentiable, but these
properties will not be needed here). This zero-dimensional vector space is

o, . .
denoted A (\7), and has a basis vector {I}. Next, there exists an n-dimensional

[ ]
vector space, with the same basis as V, denoted AW) . Third, there exists
1 . . . d
an 3 n(n - 1) dimensional vector space associated with V, denoted A N),
- - a

consisting of all vectors ‘feA (v) of the form

n n
2.4) e 2 S vy (Jx;Adx;)) v’;‘-eE

where ""A'" is the exterior product. The exterior product must obey the

following four constraints:

U (evitegvi) Aus ¢ (v, A%) 4o, (G A0)
'biv) VA (dl‘u."" AJ “J)z é‘ (‘rAuA"’d; (‘TA“;)
W) VAV =0

€) VAME WAV =0

S s l 2 v ag v, r-em‘ ’J?,izl..n
vz .‘,‘é‘ \r;dx'\ 3 f' = :32‘ “: dx:) ‘ra': 5 : K| R A
n : v . n a ' a 1 -
U= ‘2 u}dx' y W= .é‘ ‘U) dx‘-’ T 32‘ u,‘-’ d&d u} e 'Qd eﬁ V(”Az"-“
& d 3

a
Thus, a basis for A (\D is {dXiAde ;i,j = 1,..n} subject to the constraints of

1 . . . Y
exterior multiplication; there are B n(n-1) vectors in this basis forMVj.
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P,
By induction, the above rules can be extended to vector spaces A ('\7),

where 2 <p =n. Each vector vin A?(V) can be written as

: non w
2.5) = é Z 2 Vi g er;Adlch'"AdKl

1= a3t L= " ————
\’—N
P SUMS p PRodueTS

Vectors in AP(‘\I) are subject to the following conditions
1) (av+bw) AV, A= AVLE (v A A AY)) 4 h((Ar,/\---Arp)

A (@b AV A Ay QAT AT A AG) + B(TACAG A ATH)
Vi AV A A A (av+bu)= AV, A=AV AV ) + b (A A Vo Aw)

W) V,A-Avy20 iF FOR SOME PAR oF wDIteS i4j, (7-_\/') FOR {,j>1P

LiD) VA Avp  CHMANGES SN F FOR SOME PAR OF ADTACENT ¥i's,
ARE N TERINANGED

where W, ¥, Vi, -,V € A‘(.\]) Qb € P'

As an example, consider the four dimensional space-time vector space
discussed earlier, with an orthonormal rectangular set of basis vectors,
{d;c,dy, dz,dt}. Associated with this vector space are a total of five vector

" spaces, defined according to the exterior multiplication rules of exterior

algebra:

Vector Space Basis Vectors

R X A S
A gt

o AV ' dyAds, dyck ‘dm;. ;;Ad—a.d-uég, de Aty

TR T iyt by, gl

— . — . n . — o — am e e i e o v o av—— —— — c—
—

Al{ (.‘]) ox Adj Ad)/\d‘b
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2.4,

i)

1)

iii)

iv)

V)
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~~tarpretation of these basis vectors is of interest:
A'(‘ﬂ)«-{l} is a scalar real number, with ndither
magnitude nor direction in space-time
At(‘\]) --{ax, dy,dz, dt} are basis vectors with both
magnitude and direction, e.g., dx has a ''one-
dimensional magnitude' of +1 in the +x-direction
NlV) -- {ayAdz.dzAdx, dxAdy, dtAdx, dt Ady, dtAdz )}
have both magnitude and direction, e.g., dyA dz has
a '"two-dimensional magnitude' of +1 in the "y-wedge-z"
direction, while dt dx has a 'two-dimensional mé.gnitude”
of +1 in the ''t-wedge-x'" direction, where "'wedge'' denotes
exterior product and not the ordinary three dimensional
vector cross product
AS(V) --{dyA dzA dt,dzA dxA dt, dxA dyA dt, dvA dyAdz } have
both magnitude and direction, e.g., dy Adz Adt has a
"thre;e-dimensiona.l magnitude' of +1 in the '"y-wedge z-
wedge-t" dix;ection, while dxAdyAdz has a 'three-dimen-
sional magnitude' of +1 in the "x-wedge-y-wedge-z"
direction
A‘(v) --{&xAdyAdz Adt } has a "four dimensional magnitude"

of +1 in the '"x-wedge-y-wedge-z-wedge-t" direction.

Newtonian Space-Time Mechanics of a Single Particle

This section derives the ten space-time equations of motion of a

single particle the space-time coordinates of the particle are
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2.6) = space-time coordinates of a single particle

The velocity of the particle is defined to be the derivative with respect to

time of the space-time coordinates:

- -
x u
o x
y u
2.7) 4 ° é Y = velocity of a single particle
: dt z_ - u_ - ty gle p
t 1

The linear momentum of the particle is defined to be its mass in times its

velocity:
- - - - ..
x mu_ P
y mu p
2.8) m g? ° = y A ¥ = linear momentum of a single
z, mu P, particle
t m m
o
b nd S — = o

Newton postulated that the time rate of change of the linear momentum of a

single particle equals the forces acting on the particle:

- - r -
Px Fx
P F
d y y
2.9) 3t =
P, F_
m_} 0
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Where (Fx,Fy,FZ,O) are forces acting on *the x-,y-,2z- and t- components of
the linear momentum, respectively, and these equa.tion,: assume the linear
momentum and forces are computed in a special ¢ . .rdinate frame, an
inertial frame, which is defined (albeit circularly: as a coordinate frame in
which the linear momentum equations of motion can be written in the form
above.

The moment about the space-time origin of the linear momentum can
be found using the exterior product:

(x,dxwa, d%* aod} vty dt) A (pxdx + P‘)dﬂ *P) dr wdt) =
2.10) (YoPy-YoPy) Sy Ady + (3opy-Xopy) daAda+ (%opy -Yofu) Ix Ady +

(tPx ~™M&) dt At + (o Py- Myo) i Ay 4 Mi’r‘“go) dt/ld}
The first three terms, along ;lyAdz,dz/\dx and dxAdy, are called here space-
like angular momentum components, because they arise from purely spatial
exterior products. The final three terms, along dtAdx, dtA dy,dtAdz are
called here time-like angular momentum components, because they arise
from a mixh;re of space-time exterior products. All six terms together
make up what is called here the total angular momentum of the particle.

| Using the four equations of motion for linear momentum, the time

rates of change of the six angular momentum components are:
201 SelgoPyBohg) =y (g )y (may) + Yoy 3oFy 2 YoFy -3 Fy
2.12)  du CioPxToRy) = uy (e)-ugComig)e goFy - xaFy > ofy- koFy
2.13) Loty goP) = wir (g Y-ty () + XoBy <y, Fyx xoFy - goFyx

2.14) j—;; (toha - W) = toFy ¢ (M) - (muy) -(?_w)x°= 1o Fy

€t
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i

dwy
2.15) :‘.;(‘ho)’u' "“ao) to F3 v W \l‘a) ~("“3) - ( ey )30 - tDF}

2.16)  gelbofy ~M30)

toFb + (MW,)-(\MHb) - (3%)10’ to:}

Next, all possible exterior products of (xo dx + Y, dy + 2 dz + to dt)
and (pxdx + Py dy + P, dz + m dt) taken three at a time are computed, and
all eight such products are found to be zero. Thus, there are no further
quantities than the four components of linear momentum and six components
of angular momentum in mechanics, given all that is computed are exterior
products of space-time vectors describing position and linear momentum,
and their time derivatives.

What if no forces act on the p?.rticle? if Fx = Fy = Fz = 0, then all
components of the linear and angular momentum are constant. Note that
while it is obvioug from these ten equations that quantities such as p_or
(yo P, - 2, Py) are now constant, it is also obvious that (to P, - mxo) is
constant; the first two constants appear in many texts on mechanics, but the

last one is mentioned rarely.

Noether(21) derived these ten conserved quantities from the Lagrangian

_L of the particle, assuming no forces act on the particle, where
L:% m(ui+u§+ui)
through an argument based on techniques used in calculus of variations,
Recall that four number specify the position of a particle in space-time; if
this position is perturbed slightly, the new position will be a function of the

old position as well as the ten independent parameters defining the transfor-

mation from the old to the new position, This transformation is



x .] i 1 - Aa Aa Av } [x~ [ Ax |
o z v x o
A 1 -A
Y, + 2 a_ AvY Y, Ay
2.17) z = - Aa Aa 1 Av z + | Az
o y x z o
t 0 0 0 1 t At
1d
| o|new | ] L o- o L ]

assuming
[ dxlel, 1dyl<<i |b}\¢‘l, 144 (<<
P Doyl est, 130y} <, \Aq)l <\
{ Buglesl lb\l%\t‘-\) (b\f“t‘l

Associated with each independent parameter, according to Noether, there

is a conserved quantity

Parameter . Conserved Quantity
Ax Px
A ’
A; '?)
U S
day "o?b' 3Py
sy YoPx—*oPy
LAy o YoMy -
vy toPx ~WMXo
Avy Lofy-wyo
Af, -t..?rﬂbo

where E is the kinetic energy of the particle,

E=L= 8_&\ [pxiq- ?‘0‘*.9)‘] = 3LW\ (\li +\{; -H(;)
Note that since px,py,pz and E are constant, m must be constant. Note
further that E equals the Lagrangian L; Noether demanded that the ten inde-
pendent parameters not perturb the Liagrangian, but due to the fact that the
kinetic energy and Lagrangian are identical here, perhaps missed a more
fundamental observation: m is cc?nstant, a fact that arises quite naturally

from a space-time formulation of mechanics.
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2.5. Space-Time Equations of Motion of a Single Rigid Body

This chapter concludes with a derivation of the ten space-time equa-
tions of motion for a single rigid body. A single rigid body may be viewed
as finite collection of small bodies, each occupying a small but finite volume
of space at any instant of time, and fixed rigidly with respect to all the other
small bodies comprising the rigid body. ''Small’ in this context means the
volume occupied by each body comprises many thousands of atoms of what-
sver substance the rigid body is made of, while at the same time this volume
- is much less than total volume of the rigid body. The sketch below shows

a typical rigid body decomposed into N small bodies.

Figure 2.1

A single rigid body
broken down into
N rigid bodies

. . . . . th
The space-time coordinates, in an inertial frame, of the k— mass are

(xk,yk,zk, tk). The equations of motion for this mass, assuming it is a

point mass, are:

2.18) ft e Xk

1)

.r-,

™m
+
M &
o

Qe

N
' E I ..
2.19) i Pye = F»" + 2 F ¢*



d
oo Rt Fpt S T e
d -
2.21) & e °
N
2.22)  2(4ePye- B Pye) = fz w It 5‘ ‘3= 9” ) Si
d E E 5 J
2.23) R('bk!’xa‘?‘u?bn): ('QKF“‘X:P") + 2, (‘;kFK-x;F )5
JZ
¢ (x P - )— ( FE FE s J l)
2.24) d Vet detxed = (xg yv = de xr-)* .E‘XKF - 9¢ F")Sdg
2.25) i (‘bk ka-thg.)J ‘{ Fx + g‘ FO d‘ }
4
g 4
2.26) u("t?ak ‘“*3“)‘ ta {Fger 2 ngs‘k's
| >
N
2.27) @(t ?bk"w‘kb&)- ‘tk{F + Z— a; ‘;}
>
where
- - -
K Pac
yk Pyk
228) n'lk.E Zk :‘ka k=1 N
" M
and )
e ) ka, ka =Xy, and z-components, respectively, of

external forces acting on mass k
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F;]ck’ Fka’ szk = x%-, y-, and z- components, respectively, of

constraint or reaction force of mass j acting

mass k

1 if mass k is adjacent to mass j

8, .=
kj 0 if mass k is not adjacent to mass j

If all equations for the x¢component of the linear momentum are added,

eh.(Zsz = (ZF )+ (ZZFd sa‘)

P k= k2 g

defining

)

x>

N € E
2.29) P2 3 p 2.30 F - é Fe
k>

and realizing the reaction force of mass k on mass j is egqual and opposite to
the reaction force of mass j on mass k,

K

2.31) FKJ‘ S x")

S0

2.32) 2 2 F‘ Sk = 0

LS
This equation can be written simply as

2.33) 4 P =F

By adding up all the other equations for the linear momestum, component by

components, it is easy to see
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E ) e E » g FE
2.3 di'; P3: F » P3= g‘ p%x ) F‘a = it ak
N
N . E & E
£ A = 2 F
2.35) di'b ?3-’- F} Pb; S' Pb‘ ) F’ kst bk
N
. w
2.36) },‘M = 0 A 3, ¥

To proceed further, it is useful to define the center-of-mass of the body.

This is a set of coordinates, (x ;Y ), where

s 2 ,t
cm “cm cm cm
2.37)

{
}
2.38) ‘&mg‘ E {

Ny
2.39) ,)wé j,[ i g‘ “‘«bui
N
4
2.40) tn = j,i é‘ "“‘k*"4= t j2t N

Note that time is assumed identical through the body, at all space-time
coordinates. It is also useful to define coordinates with respect to the center

of mass:

2.41)  Ry/fm X ~Xeu

2.42)  Yprem ° kT dom
B~ Bem
£, ~bem > O

1]

2.43)  Qutem

W

2.44) Telem
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Then in terms of center-of-mass coordinates, the linear momentum equa-

tions of motion become:

2.45a) i(?x)z Fi 2.450) %= Mi(xu‘)
d

2.46a) Ji (?.3); F§ 2.46b) Py M 5 (You)

2.47a) 2 (Py): FE} 2.470) Py Mf—ﬁ,(}m) |

2.48 4 M=0

48) o

Adding up the angular momentum equations of motion, component by

component, it is straightforward to show

E
2.49) :’;(tcup -MXM‘)ztm Fx

E
2.50) i(tm P‘é‘ M 15«4\73 Sem F«a

&
2.51) }t(tm P}-M ‘zud: tem Fa

N N
2.52) ;i{ g‘ [13.‘ Pay~ Mau] i = 3. ['3“ F;K ~ A F;“]

fio-

2.53)

N
{ g [').‘Px..,“&F’;]S: 2 [bFFXEK - X F;K]

K=t Lol

(34

N L, et gt
2.54) i{é[’(z%,“'&?’“]‘}z Z["t ug'.,‘ ke

These ten equations, (2.45)%(2.54) are the ten space-time equations of motion

for a single rigid body. Note that the time-like component of the angular
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momentum is a function of center-of-mass variables alone, as is the linear
1
momentum, while the space-like component of the anguw.ar momentum depends
both on center-of-mass variables and coordinates with respect to the center
of mass.
The. equations of motion decouple into two sets of equations, one
describing motion of the center of mass (equations (2.45)-2.51))., the other

motion about the center of mass (equations (2.52), (2.53), (2.54)). Since

the motion of the center of mass in space can be described by six first order

differential equations, three of the equations (in (2.45) - (2.51)) are redundant;

typically, equations (2.49), (2.50), (2.51) are ignored, since they contain no
more information about how external forces act on the center of mass than

equations (2.45a), (2.46a), (2.47a). In fact, the motion of the center of mass

is completely described by

2.450)  § Xew = }J&. x

2.46) Sy M Ny
2.47b) ﬁ Yem ﬁ p)
2.452) :; Py = Fi oR 2. 49) ;‘%({,,P&-wa); Lo P°
2. 46a) d"% Py p; oR 2.50) ::l;(thg'M‘jmk tem F;
2.47a) 51& Pb; F; oR ¢sh 8 (tm?’a M‘l“‘] tou F y
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APPENDIX

After the work described in Chapter II was completed, a thorough
literature search was undertaken to see whether a similar four-dimensional
space-time formulation of Newtonian mechanics had been presented elsewhere.
To the best of the author's knowledge, there is only one earlier work that is

similar to the theory presented in Chapter II:

"Sur les Variétés ) Connexion Affine et 1a Théorie de la
Relativité Généralisée," E. Cartan, Annales

Scientifiques de 1'Ecole Normale Superieure, Series
3, Volume 40, 1923

Since this paper has apparently been forgotten, the three pages of the article

relevant to the work described in Chapter II are included here so that the

reader may compare the two developments for himself.
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VARIETES A CONNENION AFFINE. THEORIE BE LA RELATIVITE GENERALISEE.

clles sontidentiquement verifiées s"il n'v a pas de pression; dans le
cas général elles donnent

P — =

Pr:—P:zr—0,

Prs—Pry=0.

[1. On peut représenter les risultats précédents au moven d'une
notation vectoriclle simple. Désignons par les lettres

G, 6, 6.. 6;

les quatre vecteurs d'Univers qui ont respectivement pour compo-
santes

t, o, o, O;

o 1, o, 0}

o, o, 1. o;

0, 0, «u, 1.

Les quatre derniers sont des vecteurs d’espace. Avec ces notations
la « quantit¢ de mouvement-masse » d’un point matériel de masse m
est représentée par
dr dy s )

“ e )

m 4+ e @ - 0, e
(e.. dt 7' ode TP dt

Si nous convenons encore de désigner par une lettre m un point
d'Univers (¢, ©, v, =), la dérivée - de ce point par rapport au temps
est le vecteur d’Univers de composantes

' duo dy d:. '
> ode’ df’ dp’ -
on voit que la « quantité de mouvement-masse » d'un point matériel
‘est representée par la notation
m ——-
dt

Les points et les veeteurs (libres) sont des: formes geometriques du
premier degré. On peut considérer aussi des formes géométriques du
second degré, qui représentent des systémes de vecteurs glissants.
On désigne par [mm | le vécteur glissant qui a pour origine le point
d'Univers m et pour extrémité le point d'Univers m’. Ce vecteur
glissant a dix coordonnées plickériennes qui sont les déterminants
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E. CARTAN.

du deuxicme ordre formes avee le Tableau

on a evidemment
imm|=- [mm|.

De meme on designera par jme | le vecteur glissant obtenu en por-
tant i partir du point I'Univers m un veeteur équipollent i un veeteur
donne e; les dix coordonnées pluckeriennes e ve veeteuar glissant
sont formees avee te Tablean

l’l]':.
o v I 1 I,

oit fizurent duns la seconde Ligne les composantes du veeteur e. Enfin
la notation Jee’| désignera le bivectenr dont les dix coordonnees sont
formées aver le Tableau '

o 7 I 1 I
I A v .
o ¥ o4 T

des composantes des deux vectenrs libres e et e,

Dans chacun des cas precedents le veetenr glissant ou e bivecteur
considére peut étee regardé comme le produit (extérieur) des deux
facteurs, qui sont des formes géométriques du premier degre (point
ou vecteur libre). Le produit de deux formes geometriques queleon-
gues du premier degre satisfit ala loi disteibutive, mais change de
signe avee Pordre des facteurs.

12, Le veetear ghissant qui a pour ovigine le pomnt d'Univers m i
represente un point matectel donne o un instast donue, et qu'on
obtient en portant a partiv de ce point sa « quanfité de mouvement-
IMASSE », @ POUT eXpression :

_dm
m lm —d—l-J-,

oy dm]i)
I—Ihml WV\“‘FL

et Péquation

ou F représente le vecteur ghissant « foree », contient, en méme temps
que le principe fondamental de L Dyvnamique. le théorime des
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VARIETES A CONNEXION AFFINE. THEORIE DE LA RFLATIVITE GENERALISEE.

moments cinétiques: elle condense en effet les dix équations

dm

e "

)=\

()=

% (l\m :%: ) =17.

"1 { mt g_: —— m:\ —=t7.
d

13. Revenons a la Mécanique des milieux continus. Désignons
par G le vecteur glissant qui représente élement a trois dimensions
de « quantité de mouvement-niasse » et par F le vecteur glissant qui
représente la force de volume ¢lementaire. Les fquations de la Méca-
nique sont condcnsces dans la formule

(6) . G = [d'F].
On a du reste ici
G =[me, ]Il -~ [me, |11, + [me.]l, - [me, |N.,
F={me, |\ drdyd: - [me.]Y dedvds:+ [me,|Zdrdyvds.
Le calcul de G’ peut se faire en tenant compte de I'équation

dm —e,dt + e,dr + e,dy + @,ds;
il donne
G'=|me,|Il'+[(me, ]Il +[me,]H, -+ [me, ]l
+ 0,8, )[dell, — L ll] = [e,0 ][N, — Iy ] — [e,0,] [T, — d:H
+[e,0,][dy . — sl ] + [e;0,][dzll, — drll.] - jo,0,][dr ], —dilI1,].

Ana. Ec. Norm., (3), XL. — Noviusas 19:3, R _r._"
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Chapter III

Attitude Estimation

A new concept for estimating the three angles which specify the
orientation in space of a rigid body is now presented. The estimation pro-
cedure is aﬁalogous to phase-locked loop phase estimation: an observed
function of the unknown angles is modulated by a function of the estimated
angles, the resultant function is filtered by a linear time-invariant system,
and the system outputs are the angle estimates. Two separate methods for
implementing this concept are discussed, one based on direction cosines,
the other on quaternions. No atj;empt is made to show that the particular
estimation method presented here is an optimum method, in the sense of
minimizing an error criteria .' The aim of this chapter is to present a work-
ing technique that offers potential savings in hardware, in certain cases,
ox.rer, for example, methods based on Kalman filtering (see Jazwinski(31)).

Before beginning the actual description of the attitude estimation
procedure de.veloped in this research program it is perhaps instructive to
survey those features common to any estimation problem. Those features
are three in number: 1) a parameter space, a space on which the parameters
to be estimated are well defined, 2) an observation space, where functions of
the parameters, corrupted by noise, can be observed, and 3) two mappings,
one from the parameter space to the observation space which defines the

functions to be observed in terms of the parameters and noise, and one from

the observation space to the parameter space, which defines an estimation
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procedure, a method for processing observations in order to estimate the
desired parameters. For the problems to be discussed}here, the parameter
space is a real three dimensional Euclidean vector space in which three
angles take on their values. The observation space is a real Euclidean vector
space. i’he mapping from the parameter space to the observation space can
be done in many ways, but only two will be discussed here, a direction cosine
mapping and a quaternion mapping; each of these mappings may be viewed as
an exponential mapping of the three angles from the parameter space to the
observation space, loosely speaking. For both mappings, observations are
functions of sines and cosines of the unknown angles, as well as noise. The
estimation procedure, the mapping from the observation space back to the
parameter space, is the subje-ct of this chapter.

In order to assess the wdrth of the estimation procedure, one approach
would be to define an error criteria, a measure of how mﬁch the actual
parameters differ from their estimates. The error criteria considered in
this chapter,. often implicitly, is the difference between the actual value of
an actual value of an angle and its estimate. An optimum estimation procedure
rninimizes the error criteria to its smallest possible value, assuming the
error criteria actué.lly has a minimum and that an optimum estimation rule
actually exists; £he question of optimum estimation will not be addreséed in

this chapter.

3.1. Attitude Characterization

This section discusses two methods for specifying the spatial orienta-

tion of a rigid body, direction cosines and quaternions. The material presented
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here is largely tutorial; Goldstein(10) is an excellent reference for material
3

on direction cosines, while Whittaker(28) is fine for qusternions.

3.1.1., Direction Cosines

Consider two right handed cartesian coordinate frames in R3 with
the same origin labeled A and B. Assume that when frame A is rotated
about some axis, eventually it will coincide with frame B (see Euler's
Theorem-Whittaker, p.2). If an arbitrary vector has coordinates

Tpa=x

A A’YA’ZA) in frame A, and Ig = (xB,yB,zB) in frame B, then it is

well known

i P [ 7]
"13-1 d1 912 61; A
3D Ivg| = %1 %2 d3) |Yal, Ip BRI,
B d;;  d3;,  djg Za
L — -~ . p— JL ——

where P_ is the direction cosine matrix from frame A to frame B. The

physical interpretation of the elements in D is simple; e.g., d,, is the projec-

13

tion of a unit vector along the z-axis in frame A onto the x-axis in frame B.

The elements in D are constrained by

3.20. DD =p'D-=1

: T . . . . .
where D™ is the transpose of D. Since there are six constraints in this

matrix equation,

2 2
djy + dyp + 95 =1 dpp a1t dy, d+dy5 dy5=0
2 2 2
dyy + dy, +dyy =1 dyy d3ptdy, d3, 44,5 dy =0
a% + a% + a2 =1 d.. d . +d.. d_+d_. 4 _ =
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while D contains nine parameters total, D can be characterized by three
independent parameters. These three parameters are angles, denoted by a

three- tuple a=s (al,az,a3), represent rotations about x,y, or z axes:

3.3) D= explael,) exploly) ExPlagly) -W4Qe$T  k=1,3,3 bt by, bl
Biybaly € il‘x' “"3""’)3

[0 0 o 0 0 1] 6 -1 o
L =10 0 -1 L = 0 0 0} L =11 0 O
—x -y —Z
0 1 0 -1 0 0 0
i ) | _ d _0 0 )|
In all cases, D is specified by the three independent angles a,,a,,2,.

However if either
i) L,= 1.3 And Q= WK €= 0,21 22,...
or i) bbby M = Jeln L2000

then D can be shown to be composed of sines and cosines of (a +a3) or sines

1

and cosines of (al-a3), depending on the exact choice of L . and L _ in terms

1 3
o 'I:x' EY’ E% In this case D is "singular," in that specifying only two

independent parameters, a, and either (al+a3) or (31—33) uniquely determines

D.

If coordinate frame A is rotating relative to frame B, then the direc-
tion cosines from A to B change with time. The derivative of D with respect
to time is

° qh‘-' . .q !.‘ N . -‘

d-"' >re L Qy= -
d . L, . -qL, q Lol , -q -
;—ck-‘ w .§. 3 Wbk te 7 gl S 1“55‘3" lh"q‘h
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r i - -
0 -w w w
A y x
W= w 0 -Ww w = w
— 4 X ~ v
-W w 0 w
‘ y x i z

where W is called the angular velocity of frame B with respect to frame A.

3.1.2. Quaternions

A second way of characterizing a rotation in space is by a quaternion.
A quaternion q may be viewed as a four-tuple (with one constraint)

3,5) %=a1+bj*c3+dci)

A A '
where i, j, k and 1 are unit quaternions, which multiply according to the

rules of quaternion multiplication:

a A AA A A A A
ij=-ji=k li'—-Ji‘l:’; J§.2=_]2=k2=ol
A A A A A A A A 2
jk=-kj=1i 1j=31=j 1°=1

A A A4 A Y A A A

ki=-ik=j lk=k1=k

The conjugate of a quaternion q, denoted q+, is defined to be

: + A A A
3.6) q = -ai -bj -e¢k + d(1)

The four parameters of a quaternion are constrained:

3.7) qq+=q+q=a2+b2+c2+dz=l

Since any rotation in space is a rotation about some axis, a quaternion may

be viewed with respect to a reference coordinate frame as
. Q A A 4
3.8)  g- wo )+ M(;)[cw«+)wﬂ+ kod ¥ ]
where at any instant of time the rotation is about a unit length vector, called

the instantaneous axis of rotation, and
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t

projection of instantaneous axis of rotation
1]

cos &

onto x-axis of reference frame

i

projection of instantaneous axis of rotation

COSP

cosx

onto y-axis of reference frame

1]

projection of instantaneous axis of rotation
onto z-axis of reference frame
w = amount of rotation {in radians) about instan-

taneous axis of rotation

Using the power series definition of an exponential plus the rules of quaternion

multiplication, this can be rewritten as

wr 4 A 4
3.9) g= exP{ S[veos s Jemafy uual]}
Ifws= w°+2n n, physically this represents a rotation of W radians about the

instantaneous axis of rotation. Note that

3= () + e () ﬁwwjmfh fem 31§
3.100 g (-ﬂ“{ 2 5+ [ D) ey § eoa Bt ¢ g J} = 0" %o

“‘_*F‘?E 3',,=- w(?)'r M‘%)[%m.u 3“"/6* Eu ¥]

that is, both 9, (if n is even) and -q (if n is odd) represent the same rotation
in space. This fact is reflected in how quaternions transform vectors in
frame A to vectors in frame B. If an arbitrary vector has coordinates

r, = (x

Ia Ay zA) in frame A, and Ig* (xB. YB,zB) in frame B, where

frame A and B are related by a rotation about some axis, then

+
3‘11) _I..B_Q.EAQ
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Since this can also be written as

_ +
3.12) rg=(-azr, (-q)

a quaternion is a point on a sphere in Euclidean four-space, but the rotation

that quaternion represents must be considered as two antipodal points

(a,b,c,d) and (-a, -b, -c,-d)’on that sphere.

If coordinate frame A rotates relative to frame B, then the quaternion

relating those two frames changes with time; it can be shown (Whittaker(28),

p. 16)

a 0 -w w
z u
b wz 0 -—Wx

1

3.13) 4 ==
dt c 2 -W w 0

vy x

d ~-w -W -w
I N X Yy Yy

where w is the angular velocity of B with respect to A.

3.2. Attitude Estimation With Direction Cosines

3.2.1. Deterministic Attitude Estimation

3.2.1.1. Model

|€
1
g

A block diagram for a system which estimates the three angles which

specify the orientation of a rigid body from direction cosine measurements

is shown below (without any noise sources):

LINEAR

5, =h?¢ _F:=1)P:D_T MEMORYLESS
- SUSTEM

(723

\

NopLWEAR

==( MEMORVLESS
sesTEM

FiRE 3.
DIRECTION COSE ATTTODE ESTIMATON
CONSTANT ORENTATION (N SPAKE
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It is assumed:
1) all components of QR' the received direction cosine
matrix, are observable
A - - - -
2) ER and D, the received and estimated direction
cosine matrices, respectively, are each described

by three roll-pitch-yaw angles, a_ and a, respec-

R
tively
3.14) ER = exp (le.a_x) exp (YRL"Y) exp (le_._z) ag= (xR'YR’zR)
A A A A ~ A A
. = L L L = ’ 4
3.15)  D=exp @L ) exp (YL ) exp (3L ) a=(xy,z)
where
o 0 o0 [0 o 1] 0 -1 0]
L = O o0 -1 L =1 0o o oj.L = |1 0 0
—x Y —y : ) =2
0 1 0 -1 0 O 0 0 ©0
L - L J n -
A
E results from postmultiplying QR by D", the transpose (denoted with
A
a "T')of D. |,
E11 EIZ E13
AT
3.16) E __QRE = E21 E22 E23
_E31 E32 E3§_

If each of the six angles is small compared to one, then E can be approximated:

3.17)

im

e

p-

1

(5;3)

“hep

-0y
i

(x,-%)

49|
- (%,-%)

1

i lec]
l‘jr‘“ )

l},lu-\

[X)ae )
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The 3 x 1 error vector @ may be defined as

4,02 By (My) - Ej3 (1-M)) 0% M,".‘d
3.18) by = Ey (My) - Ej (1-My) 0< Mysi
4z EM (Mb) - kg (\-sz osulsl

Each error component may be chosen in many ways; it is not obvious that
one choice is better than any other choice. Only two will be considered

here, to provide a concrete example for discussion, and to simplify algebraic

manipulation:
= By U = —Ey
319 4= Eao 3,200 *° “Ea
G Ey = ~Ey

The error vector e is used as-an input to a linear time-invariant system which

. A
generates angle estimates, a,

[ J

3=A%¥+Be Tt)=%

- - - - 0O -0
3.21 4:-c3

—

, . A
where A,B, and C are 3 x 3 matrices, Eand a are 3 x 1 vectors. For the two

|t

examples to be considered, A = 0, so this system is a pure integrator.
The ‘aﬁgle estimates are then used to generate QT, closing the loop
The intuitive operation of the loop is simple: postmultiplying P—R by QT
undoes the rotation represented by RR; the negative feedback of the loop
eventually zeroes e, eventually making E the identity matrix and fa; =ap-
For future reference the off diagonal elements of E are now explicitly spelled

out:
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3.22a) g, = sly,) “br'i) sc:?)s@) —sqr-%) elyy) eLx) etﬁ) - 5lyp) sn?)eLQ)
3.22b) Ey= -tlYe) e(;,—%) cci)stg‘)- elye) ;(5,-3)56) ) ed) )
3.220) By = el§){sAsigsed) ve sy ] - s ey st
3.22d)  Egp= -e@)aty) {5y, )50 a3 ¢ etxd sz § - st ey o) ety)
+ )] eypeged) -san) stydsg,-Hj

3.223) Ea'

eld ) { $08) 53p-3) - 5140 etur) e03rR)Y + elked elye) ()

3.22f1) € s(x) xts\ {scx,) 5(3,.-3) -ily,) clxr) czz,,.{;)} ¥13)) clg) cu,')eln,.)
rei) | stye) oty) a(3,-3) +5ix) 23]
where sine and cosine have been abreviated to s and c, respectively. To

carry the analysis further, two examples are now examined in detail.

3.2.1.2. Example 1--Constant Orientation in Space

Throughout this section ap is assumed constant but unknown. If

-

0 0 O ’g,x 0 0] 1 o o]
_é = 0 ' 0 0 E = 0 B.z 0 E - 0 1 0
{o o o o o By o 0 1
3.23) %._:E-E (—R’fa-) :a-(to) ::a.o
If (3.19) is used for e, these three equations can be written out
explicitly:
A a ,
X= Bx{ S(!‘) 5(‘3[8(xr‘$(}r‘3)"5("¢) C(X¢)0(}r-‘3‘]— SCX)Q(“‘) GLXr)O(’r)
A A A
3.24) + oMLty e se-P 7 sxel3,- 1]

= Yyl-ctyr) ol o 509D - ey dacg, P sch) « s(yr)e(x)e(})]
= Bﬁ e () [s0er)s04r) olyr4) + e ) 8(31-'%)] - scx,)c(c;r)s(%)s

v)b- Lt e
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The figure below shows a sampled-input, discrete-time approximation to

these equations

efa.m)aw]

i&(kbﬂ} *ﬁ: D= - f&“‘mg

k=02, £ ey =ds ¥201,3.-.

FlgoRE 3.2
SAAPLED - T SY5TEM - - DSCRETE - TIME ADPRDY(MATION
TO IDEA. CONTIWUNS-TINE INTEQRATION

The figures on the following page show the results of a computer simulation

of the equations above using the discrete time filter (Figure 3.3

A [o]

o o ) A o o
= - . 4 = = - -
a 0, ap (607, 45, 30 ); Figure 3. a, 0, ap (-60, -45

, -30°%))

with At = 0.1 seconds in each case, and Bx = BY = Bz =1.

The next step is a linearized analysis of these equations. Ifa =

I
- 60°, 45°, 30°), and if it is assumed
y
X = 0%+ 3x Joxlee 1
A Q
3.25) Y= UE iy 13ylec 1
A

- 0
)= 304 83 |Sylec 4
then using the approximations sin a ® a, cos a® 1 for |al¢eil, and keeping

terms to first order only, it can be shown that
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Sx = -8
3.26) 5y 2 -3y
5 3 -
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Note that estimation errors can be nulled out faster than in Figure 3.4 (where

B =B = Bz = 1) by choosing Bx>> 1, By>> 1, Bz>> 1. A word of caution is

x Yy

in order: strictly speaking, this linearized analysis is valid only for f&g]«l)

‘s‘al“i) ‘53'«1 while Figure 3.4 shows that near t = 0 there approximations

. . . o .
are not valid. As long as estimation errors are less than 10, i.e., t>» 6

seconds in Figure 3.4, the linearized analysis provides good agreement with

simulation results.

If instead of equation (3.19), equation (3.20) is chosen for e , the

results of both the computer simulations and linearized analysis are identical

to those just discussed.

The stable states of equation (3.23) were investigated next.

First, the steady state solutions to {(3.23) were found; if (3.19) is

used for e, the steady state solutions are

A
b gven A b od)
A b even A o
3.27)  YF Yprbu Y= Yr+ b7 A oL
T ¢ BYEN \ ¢ odd A ¢ odd
A -
3= Jrten 3% Jpvem b‘ Jr¥en

where (a,b,c) are integers, while if (3.17) is used for e, the steady state

solutions are

A
Xz X, + 0T {2 —%a X= - + QW
' b gVEN b on
A beven ¢ Ly Lbg =9 +bn
N CEVEN 3 = jp+ oF




55.
As a check on these solutions, iR was held fixed, and the M.I.T.
Computation Center Fortran IV Subroutine '""NONLIN'" was used to solve

e (a ,_3_) = 0, with a grid of initial trial solutions for %. No more solutions

—R
were found in this way than those above; clearly, this is no guarantee all the

steady state solutions are known.,

To illustrate this point, a different choice of e was made:

e, = 30 Ey-Eyy)

Y]

3.29) ty 1(Eg=Ey)

‘} s Ja‘,( Eli i E.n)

A paper-and-pencil solution to e = 0 yielded results similar to those in

equations (3.27) and (3.28). However, using this e, when a .= 600,

o (o] A (o]

a =45, a = 30, "NONLIN" showed that e = 0 whena = 188.88,
ry Tz - = x

QY = 209.750, gz = 39, 130, as well as at the expected solutions.

The stable states can be found by linearizing the equations of motion
about the steady state solutions above, and then perturbing the equations
away from the steady state solutions to see if solutions to the linearized
equations are stable or unstable. To be more explicit, denote a steady state
solution as (xss’yss'zss)’ and assume the estimates are perturbed slightly

from this solution:

Y x + O 18x«1 2 &
z ¥ &

B+ &Y | §ylee
-')‘5 + S" . 153)“]

3.30)

({}
te
L

a*® af> x>
QB SE > X

Expand e in a Taylor series about (xss,yss, Zss)’ ignoring second and higher

order terms:



-‘x(:‘*%"p T oy (g Yas, Bes) t —59—“& t

syl ¥ oy (esguiged ¢+ 9] 5 ¢
de

L«b()ﬁ;ﬂ,‘b) g 2-, 11551’“(5“)* aa_?L.éX + 35%3]“83 ¥ .;_8}}66;3

56.

Iy | aﬁt

de ]
RSN

3ay’
Byt Gl

A 44

Then in terms of perturbed variables (Jx)&b'&’ ), equation (3.10) becomes

. -Sx- Paag"x a%lx 33?,5’5! [8x]
3 3 3 .
3.32) i sy | = ‘:13 aa-ge, 23"‘8 ;'3
8 <L
. bJ | “ ‘4 “ 3_3%_ ss L 3_

A
) = 0 and ""ss'" means ''evaluated at X = x

where e (x z
el ss’Vss’%ss ss

A -
4 YSS’
% = Z '”

ss Note that the eigenvalues of the linearized system can be deter-

mined by the steady state solutions. For example, if (3.19) is used for e,

one set of steady state solutions is

i: Xy, + 0T
A
§= -Yp+ bw b odd, ¢ odD
A
’ba zr + o
It can be shown that if x =y =z = 0, none of these steady state solutions

are stable, but if x = w, y, =z, = 0, then a stable steady state solution

exists for a,b,c all odd. The figure on the next page shows the result of a

computeéer simulation of equation (3.24) with Bx = BY = Bz =1, and
% = 0° Xp = 30°
(‘tb s o° Yy = 105°
A 0
B 0° = 0

Clearly the stable steady-state solution to this simulation is

L= -60° = ¥.t+ 6w
ﬁ: 158° = -4+ (D7
%: -9 = 3+ (U7
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3.2.1.3. Constant Rate of Change of Roll-Pitch-Yaw Angles

1

Throughout this section, a_ and g are assumed .o be of the form

A
Qpy = &Xt + ‘er ax = &"ﬁ? ‘9;
er = &’t + QV‘" Q, = f‘t)# ‘Q;d A
- A - @ Fu+ !

Qrz Sbt + Qr} 0) = f}t‘ + ‘tz

where f = (f ,f ,f ) are known and constant, f =("9 , @ , ¢ } are unknown
- x z r rx’ ry’ rz
A

A A 4 R
and constant, and ‘g_z (@, ¢ ,‘e ) are estimates ofg = (Q , ¢ s ¢ ). The
x Yy z r rx ry rz
reader is cautioned not to confuse this set of circumstances with a constant
angular velocity; from Goldstein(10), angular velocity in terms of roll-pitch-

yaw angles can be shown to be

— — o — g— — —

w 1 0 0 cos a 0 sina 0o ]
x . ry ry
W = 0 cosa -sin a 0 1 0 0
v rx rx
w 0 sina cos a -sin a 0 cosa -a
L z | rx rx Ty T | Tz
10 o | T of i
rx | .
+ 0 cosa -sin a -a + 0
. X X ry
L0 sin arx cos arx__ L 0— L.O R

Only under special circumstances (e.g., fx = fy = 0) does constant rate of

change of roll-pitch-yaw angles reduce to constant angular velocity.

The system block diagram is slightly modified to take this into account:

DEMOhATORS
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The only change from the earlier system is a processor which demodulates
h .
and filters g(g,gw&ﬁ) to give g_’(gn @_) . If e is given by (3.16), then

a possible processor is:

T-AKS
¥-AxS AT
o~ 10EAL LOW Ly (? pag FUTER| O
¥ 1 pass euTER
S8 o(d, )
FilguRE 3.7

DOECTON CSNE ATTITONE  ESTUMATON
DEADDOLATORS AND LOLY PASS FILTERS
CODSTANT RATE 0P CHANGE OF BPou-PTeH~tAwl ANGLES

Each low pass filter is assumed ideal, passing signals at zero frequency
without attenuation, but perfectly blocking signals outside this band from
passing.

The demodulated and low pass filtered error, e', is used as the input

to the linear time invariant system:

&2

!

(o) =

S

~
S

f
{3
(S

+ B¢
- 3.33)

(6>
0

1

(82

For the example above, e' is
= gl-as(dy-dudy)-35(dy-dedy) 45(eys 43) + 3504y ds) « 35 (dx-ty) ]
ag= B0 stqv &) 45ty ] dx""rx“il e 4
4= gLs( hytd) + s(dy=d ] dy= -y ¥
The linearized analysis of these equations is straightforward: if ~£r =0,

A A
then d = -‘-_!, and if M,ka,!@*l«n, M’lu‘l s then to first order in _‘!
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y 7 3l 34
A
Y ¢ -3lay)
If
(8/9 -6 o
B=8B 0 -4 0| ,A=0,C=1
L 0 0 4]
then . A o A =Bt-ty)
@ = -84, By (K) ¥ @ 0
A A A o A “Blt-ty) t3¢
3.34) f’% B -8y Ge) ¥ 0y "
.A ~ A A ~ A *nt‘b"bo)

3

That is, for small initial errors this system will estimate the correct phases.

The steady state solutions can be discussed for this example just as in the

previous example. No computer simulation of the equations of motion was

carried out,

3.2.2. Stochastic Attitude Estimation

3.2.2.1. Model

A block diagram which includes noise sources is shown below, virtually

identical with that in Figure 3.1:

$a NONLINEAR , ] wEAe ]
3‘.LBY MEAMDBRLELS _QQ E'.@gaT MEMORNLESS |-»
SYSTEM SUTEM |

T

NONUNEAR
MEMORKLESS
SYITEAM

(————— lv)
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Two noise sources are evident:
1) E—n’ noise generated by sensor measurements,
assumed added to the true angles a_
2) n, noise generated by modulation and amplifica-
tion of sensor measurements.
The received direction cosines are:
3.35) D, = exp| (§x + n;() _I_J_x] exp| ('éy + n;r) ;.._y] exp| (%’z + n'z) Ez]
i.e., products of exponentials of random processes. Ito (36) and McKean (41)
have done some preliminary work in charactefizing this particular process.
However, the problem considered here, finding the aposteriori probability
density of é, is apparently still unsolved. From here on, a is assumed 0,
while n is assurned to the only source of uncertainty in estimating a, given
BR This is an ad hoc assumption, done only in the hope of making the new
problem analytically tractable.

3.2.2.2. Fokker-Planck Analysis

For example one, including amplifier noise n but not sensor noise a_,
- -n

(3.23) becomes

X=B e (a,a_=a)+n ‘ rN 0

" X r hant -1 X X

A T 1

=B e (A,a =a)+n E(@=0,E[nt)n (s)]==§t-s)J o N

v=Bye (s, m2) v n Bl - 0.Enen (1] 35 ,

A A

z=B e (a, =a })+n 0 0
Z z -r S z -

where n is assumed to a zero-mean white Gauss-Markov random process,

uncorrelated between axes.
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"It is straightforward to derive the Fokker-Planck equation for the

aposteriori density function of é(t), given e + n from an ’nitial time to to the

present time t (see Viterbi (48)):

20 -5 (B~ ey~ AP 12 Bt

3 g

al
4]
4 93

e

3.37)

p= p(R] & 1, Lio,¥))

This equation has an initial condition, in that é(to) is known: pé(to)) = s(é-% )
Since e is periodic in each component, p has a boundary condition:
p(é‘._(t)‘ E’E’[to’t)) = P(g(t) +(a2t, b2%,c2% )i g,g,[to,t) ))a,b,cintegers

This boundary condition suggests a possible approach to either solving
the Fokker-Planck equation or approximating a solution is to expand the
probability density in a Fourier series for each of the three estimated angles;
this approach was never seriously investigated.

Either equation (3.19) or (3.20) can be used for e; in. neither case was
it possible to solve the Fokker Planck equation explicitly.

For e'xaml-)le two, again including amplifier noise n but ignoring sensor

noise a , (3.33) becomes (3?1)

a_
"% = 2s(d -4 -d )-2s(d -d +d )+s(d +d JH2s(d +d )J+2s(d -d )Jn
. X Y X zZ Y x Z X Y x z X A X
A
3.38) § = -s(d +d )-s{(d -4 )+n
Ty vy oz oy zy
A .
d 5= s(dz+dx)+s(dz-dx)+nz i
N 0 o |
En)=0 E(ntn (s)) =<4 (t-s) .
n) =0 2 s)r =70 18 0 N 0
: y
0 0 N
L z]
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- The Fokker-Planck equation is identical in form to that in equation
(3.37), with identical boundary conditions and initial ccl}ditions . Again, if
was impossible to solve this equation explicitly for the aposteriori probability

density function of a.

3.2.2.3. Angle Estimate Skipping

Recall that without noise present many steady-state solutions exist
for the two examples discussed. With noise present, it is possible for the
systems discussed here to skip from one steady-state solution to another,
with the skip caused by a burst of noise; computer simulations were carried
out to observe this skipping, and showed it indeed does occur..

There are two ways for the estimated angles to skip: first, any esti-
mated angle may increase by ;1. multiple of 2n radians; second, all the angle
estimates may hop from one type of steady-state solution to an entirely dif-
ferent one (cf. the three different types of steady-state solutions in equations
(3.27) - (3.28) ).‘ The first case corresponds to a rotation in space about
some axis by.r a multiple of 2w radians; physically, this corresponds to no
change 1n the estimate of orientation in space. The second case does corre-
spoﬁd to a change in the estimate of spatial orientation. The only approach
known for investigating these two cases is to check the stability of steady-
state solutions iﬁ the absence of noise, as was discussed in sections 3.2.1.2-3,
Bounds on how frequently an angle estimate might skip are not known at the

present time.
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3.3. Attitude Estimation With Quaternions

3.3.1. Deterministic Attitude Estimation

Because of algebraic complexity encountered in using direction cosines,
as well as the inability to solve the Fokker-Planck equation for the aposteriori
statistics of a, the same attitude estimation method was implemented with
quaternions rather than direction cosines. This implementation is now
discussed.

3.3.1.1. Model

A block diagram for a system which estimates three roll-pitch-yaw

angles which specify the orientation of a rigid body from quaternion measure-

ments is shown below (without any noise sources):

A LEAR ~ A
L B ot remostiessie o oGl B
§ PITEM '
A4
& T NONLNEAR
MEMORTLESS

SNSTBM

Fieobs 39
QUATERNON ATHTRE ESUNATON
LONETAOT OREATATON 1N SPALE

It is assumed:
1) all components Ofﬂr' the received quaternion, are
observable l
2) g, and Tc_;_, the received and estimated quatgrnions, re-

spectively, are each described by three roll-pitch-yaw

A -
angles, grand a, respectively.
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3 ¢ 2)] [ely /243 s(y./2)][c(z /2)+ 1 2

3.39) - q_= [c(xr/2)+1 sty _/2)] [ely /2)+js(y,/ )] c(z [2)tks(z_/ )]
A A A A
3.40) q = [c@/20+is/2)] [e(y/2)4]s(/2)] [c(B/2)+ s(2/2)]
AAA
where (l,i,_‘j\,k) are unit quaternions which multiply according to the rules of
quaternion multiplication. 4. is postmultiplied by 3‘*’ , the quaternion con-
jugate of g (denoted with a '+'"), which produces an error quaternion, g,
=q gt=e 1te, jte K

3.41) Se 9. g e_ 1+eY J+ez k+eW
If each of the estimated angles as well as the actual angles has magnitude
much less than unity, g, can be approximated
3.42) Tx_ -%/2, e Sy -V, e 8 (z_-2/2 e 1

: °x= ¥r » 57T Yp T YME, €, 12, w

Unlike the direction cosine case, e can be chosen here in only one way,

|®

=(e_,e_,e ). .
x 'y z

e = (e ,ey,e ) is used as an input to a linear time-invariant system which

- x z

generates a:

3=A3+Be
3.43) 2=-c%
A

a is then used to generate 3"', closing the loop. The intuitive operation of a
quaternion"phasé —locked—loop‘is identical to that of a di_rection cosine
.phase-locked—loop‘: postmultiplying q. by _q+ undoes the rotation represented
by q. the loop negative feedback action nulls e to zero, eventually making
q9.°* 1 and a_= g. For future reference the components of e are explicitly

stated:
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3.44a) e =s(d /2)c(d /2)c(d /2)+c(d /2)s(s /2)s{d /2) s =x +%x d =x
x x y z x v z x r x

3.44b) e = c(s_/2)s(d /2)c(d /2)-s(d [2)c(s /2)s(d /2) s =y +% d =y
vy x Yy z x y z v T vy

3.44c¢) e =c(s /2)e(s [/2)s(d [2)+s(s [/2)s(d /2)c(d f2) s =2z + 2 d =2z
z x y z x y z z z

To proceed further, the two examples discussed in the direction cosine case
are re-examined.

3.3.1.2. Example 1--Constant Orientation in Space

Throughout this section, a_ is assumed constant but unknown. If

o 0 O 8, 0 0 [\ 0 o]
A- lo 0 o B=1o By o Czlo 1t ©
_ B 0 0 1

° ° 2 R I I

then equations (3.43) and (3.44) can be combined:

b

= {s(d_/2)c(d_/2)c(d /2)+c(d_/2)s(s [/2)s(d /2)}B x(t )= x
X y z x vy z x

"
<

3.45) y = {c(sX/Z)S(dyl2)c(dz/2)—s(dx/Z)c(sylZ)s(dZIZ)}By yit )
A
Z

= {c(sX/Z)c(sy/2)s(dz/2)+s(sx/'2)s(dy/Z)C(dZ/Z)}Bz z(to) =z

This discrete-time sampled-input approximation in Figure 3.2 was
. used to approximate these equations; the figures on the next page are the

results of two computer simulations (Figure 3.10, x_= 60°, y = 45°,

z =300,a =0° and Figure 3.11, x =60o,y :45°,z =-30,a =0
o o -0 - r T T -0 -

withAt = 0.2 secondsand B =B =B =1,
) X y z

. . . . o] (o] o A
The linearized analysis, assuming a_= (607,45 ,30 ), and Q=

(xr+5 x,y_+ §v. zr+8 z ) with ,Sx]al)\&b\‘&\)\ﬁdq)to first order in 8))8%)55 shows
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A';c x B, [-gax~-§8-,] dxiw) = éx,
* . . -hbylben) 13
3.46) 8y = 8.3 C-44y] Syte) & e 840 2t

& = %[—&s,-gsﬂ dyi) ¥ fg&’wtﬂ §%o

The steady state solutions to e = (ex,ey,ez) = 0 are

x=x + ®a x=x +ag

T r
Y='Yr+ ®b  a,b,c even; Y=-Yr+blt a,b,c odd
z=zr+ flc z:zr+c7|’

Again, an analysis similar to that in Section(3.2.1.2) must be carried
out to determine which states are stable and which are not. For example, a

computer simulation of these equations was carried out for

£ -0° x =120°
[e] Tr
A (o] [o]
yo-O yr-105
2 =0° z =90°
(o] r

and the results were similar to those in Figure 3.6, with the steady state

(denoted ss) angle estimates being

A o

X o= -60" = X + ayx

A o

Vg = 75 = -y, + by a,b,c odd
% = -90° +

3.3.1.3. Example 2--Constant Rate of Change of
Roll-Pitch-Yaw Angles

e>

In this section ir =ft+ Yr, anda = ft+§ , where f is known and
: A

constant, Q - is unknown and constant, and _‘_l_ is estimate of _‘er. The block

diagram of the attitude estimation system becomes
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' [ Lnese RATORS ~
NORUREAR Dot A
Q.= MEMORYUESS %r %z-_-. MEMIBUESS &‘{;ub 10ud PSS La o/l B A\ i{—t(g:_&g
SYSTEM _ $YSTBM BILTERS "
N NONUNEAR bt -
| MEMDRRLEAS 5
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FEoRE 3.2

QUATERNWON  ATTITODE ESTIMATION -- CONSTANT
RATE OF CHANKE OF Rou-PLTRU -PAn) ARTIES

Ife's= (e;(,e;r,e'z) is the input to the linear time invariant system

FB 0 0—‘

{»
"
=)
(o]
1]
o
o
o
Te)
1}
l""

I
Ebﬂ

A
then the equations for 4 are

A A | A A A A
& = B { o0y -0I8) clldry-ila] olen-6I0)] & )< 4,
o ‘ . h A

3.47) ‘:’1 = By § eltty ¢ @518 (4ry &y)2a] c[(\(,,,-%)/;]} 3.5 (#y) = sz
A

- A A A A A
‘9‘5 = B}f cli¢ ,,+\0x)/;1]c[(\?n31\05)/;] s[cwqdq})b]} 2y ) Q}o
Tl';e linearized analysis of these equations (assuming Qr = 0, and ‘Q)‘l“l) "3"‘“,)
‘\Q‘flcc‘) is identical to that in (3.36). The steady state solutions, which

are also the stable solutions, are
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L)
Qx e er + Q'qu
A .
‘!.\1 oy Qy’ + 47 b Qqh)G MSTEQ-EBJ
3.48) A
Qa 2 Qy-a +J7 e
3.3.2. Stochastic Attitude Estimation
3.3.2.1. Model
A block diagram which includes noise sources is shown below,
84 NORUNEAR uegse |
..8» HERORALEES Eag e 90,3,*':» MEMORILESS [ &
Bt etrtem | SYSTEM
A+

%L____‘

FKt\)EE 3.3

QUATERNION ATTVTWOE ESTWMATAN
W THE PRESEAXE OF AOUWE - -
CORSTANT ORIENTATON (N SPACE

where a n arises from sensor measurements, n from amplification and modu-
lation as in the direction cosine case.

The received quaternion is:

a A
a,.° [c(sx + n;{/Z) + i s(sx + n;{/Z)] [c(sY + n;’/Z) +3j S(SY + n;/Z)]

A ,
[c(sz + n'z/Z) +k s(sz + nz/Z)]

Again, no methods are known for handling a from this point on it will be
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-n
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= 0, while n is a zero-mean white Gaussian random process,

2

uncorrelated from one component to the next.

3.49)

where

3.50)

Ko

N>o dpe

3.3.2.2.

Fokker-Planck Analysis

For example one, including n in equation (3.35) shows

= B}isldx/z) c(dy/Z) c(d_/2) + c(d_/2) s(sy/Z) s(d_/2)} +n_

= BY {c(s,/2) s(dy/Z) c(d_/2) -s(d_/2) c(sy/Z) s(d_/2)} + n

=B fc(s /2)c(s /2)s(d /2)+ s(s /2) s{d /2) c(d /2)}+n
z x y z x y z z

Eln®) n’ (s)]=3 §it-s)

N 0 0
X
N ol E[n®)]=0
v , Eln(®)] =20
0 0 N
L z |

The Fokker-Planck equation is straightforwar.d to derive:
2p._2 2208 )- 2R,

moPp, Ny Pp N L
*i[“’s 95“"" Ex 3{;’* Y s]

p=p[d60) g, 8] ]

The initial condition and boundary conditions are

3.51)  platnl= §(3-9,) 3

?[ébﬂ)l?,,,[tmt)]: p [ a v (4w dzb,dz0) | g, ,Ctoit) ]
a,bc= O\t,23,. .-

Three assumptions are made

ii) N=N
x

iii) B
x

a_=a

r

[/}

I}

in all three axes,

]

B =B
Y z

amplifiers

= 0, the actual angles a_are all zero

N = Nz’ the noise covariance is identical

= B, identical gain in all three error
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then the steady-state Fokker-Planck equation can be written quite simply:

3.52) 5% = .["?-fwz,p] ¥ 4[“‘3'2* B"g?]* *[4 4*8'393
\N\-—/ \___/v-\z v*‘w

® ® ®

If the solution is assumed to be Py where

3.53) p. = C exp -SFB [e(x/2) c(y/2) c(z/2) - s(x/2) s(y/2) s(z/2)] |

1

C = normalization constant

then the first and third terms in (3.52) are zero, but not the second. On the

other hand, if the solution is assumed to be pz, where

3.54)  p, = Cexp{ 22[clx/2) cly/2) clz/2) + s(x/2) s(y/2) 5(z/2)] §

C = normalization
- constant

then the second term in (3.52) is zero, but not the first or third. Even

though the solution (3.52) seems within reach, no solution was found.

For example two, including amplifier noise n, (3.47) now becomes
=8 350_?“_:‘?1) ci"q"‘%’) c Q—r’b:—Qé-)S -i-ﬂx: B lx'f“x
3.55) ‘.Q - 3116( Wx)s(__t%_“ﬂ) (—Q:-\gb)s 3“2

%: Bbic(‘l":',) (1 :ﬁ (_ﬂll)}ﬂ}:ﬁ);)“}
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The Fokker-Planck equation is identical in form to (3.50). Again, assume

@ =0, N =N =N =N, andB_=B = B = B, so that the steady state
r = x v z x y z

Fokker-Planck equation becomes:
2,. 2k PATY 3 IR
3.56) 0= P 33,[”3% + BPSM,.IJ)G(‘%IQ cN}b)] + 3%[4 31

Bpo(@/)stdy) ety +3%b[$ 335; + Bethils) ol¥ya) s dy)]

P [ \.:é ‘ %r;, ["50)*‘—’”)]

The solution to this equation is

3.57) P L;—‘gl &Y‘) [tblt-’w)) C EXP{ cL‘exla)CN.’ Ly)ta(\'b/-)]]

where C is a normalization constant, chosen such that

27 Y § IR A . A
S SA )A P[ﬁ‘ r Dbafb“”):‘ da! d\D’ dg =
A % ) b
@:=-37 Q.o?--ht .\eb:~n

3.58)

If . [&}[wl) l&ﬁl“"‘) lthb‘“‘)

_ 9B
3.59) pd C ExP{ Yl- ‘PM‘Q \ ‘91, )]

which appears Gaussian with variance (N/Z B}.

To keep the steady-state error variance small, B should be chosen such that
\”/38) «1

Recall that in the linearized analysis of the model, B corresponds to bandwidth.

Speaking intuitively, the larger the bandwidth B the smaller the steady-state
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error variance; this is analogous to the situation in an angle modulation com-
munications system, where by increasing thé system bandwidth noise effects
are suppressed.

At this point, the steady-state Fokker-Planck equation has been ex-
plicitly solved for a special set of circumstances, a quaternion implementa-
tion 6f-a. particular estimation procedure. Why not return to the direction
cosine implementation of this estimation process and solve the ste;ady-state
Fokker-Planck equation under the same set of circumstances as was just done?

In fact, this was attempted, but the attempt was unsuccessful. The
reason for this failure is apparently fundamental, based on the observation
that the observation spaces for direction cosines and quaternions are essen-
tially different vector spaces. Recall the underlying parameter space for both
estimation procedures is a real Euclidean three-dimensional vector space.
However, the direction cosine observation space and the quaternion observa-
tion space are real Euclidean vector spaces, of dimension‘nine and four, re-

‘ spectively. Next, elements in the observed direction cosine matrix and
components of the observed quaternion are functions of sines and cosines of
the three angles to be estimated; £he explicit relationship between each observed
quaternion component and the elements in the observed direction cosine matrix,
or between each element in the observed direction cosine matrix and the
observed quaternion components is straightforward to work out but algebraically
complex (this relationship reflects the fact that, loosely speaking, a quaternion

when squared becomes a direction cosine). Finally, since the observation



75.

spaces are different in each case, the actual details of the estimation proce-
dure are different; for the particular example considered here, the demodu-
lators differ for the direction cosine case from those in the quaternion case.
If it could be shown that each estimation procedure was an optimum procedure,
then perhaps it could be shown that the two estimation procedures were
equivalent; however, the rule for estimating angles discussed here is a
heuristic one, and it is not at all clear what the cptimum estimatioﬁ procedure
-should be, so it is not surprising that the two demodulators are different.

In summary, while it was fortuitous that the Fokker-Planck equation
could be solved under a special set of circumstances in the quaternion case,
it is not at all clear why this good fortune should carry over under the same
special set of circumstances to the direction cosine case.

.3.3.2.3. Angle Estimate Skipping

The next page shows the results of a compufer simulation of example
one with amplifier noise included (equation 3.49), with a_ = (600,00, -600) .
'Note that two of the estimates of these angles are initially close to the correct
estimate, and then skip by 21{ radians, while the third estimate always remains
close to the correct angle. Some of the qualitative issues associatedeith
estimates of angles skipping have been discussed earlier (3.2.2.3), and will
not be repeated here. No bounds on how frequently the estimates might skip

are known at the present time.
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3.4. Summary

This chapter developed a new method for estimating the three angles
which specify the spatial orientation of a rigid body, given noisy sensor
measurements. Two ways to implement this method, one based on direction
cosines, the other on quaternions, were discussed for two specific examples,
fixed orientation in space and constant rate of change of the three angles. The
theoretical deterministic performance limits of each implementation were
covered: first, an analysis of the dynafnics of each implementation (assuming
saml] estimation errors) was carried out, and second, the steady state and
stable equilibrium points of each method were discussed. When noise was
included in each implementation, the theoretical stochastic performance limits
were quite difficult to pin down; in particular, while Fokker-Planck equations

could be derived for angle estimation error a posteriori probability density

functions under certain simplifying assumptions about the nature of the observa-

tion noise, these equations could rarely be solved. However, for a special
sei: of simplifying assumptions, with a quaternion based method for estimating
- the unknown phases of the three angles which change at a constant known rate
with time, the Fokker-Planck equation was explicitly solved for the steady

state error probability density function.
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Chapter Four

Solar Pressure Attitude Control

4.1. Introduction

A brief overall description of two possible synchronous orbit communi-
cation satellites is now presented, before proceeding to a detailed description
of the attitude control dynamics of each design. Both satellites orient them-
selves in space using torques generated from solar or sunlight pressure.

The sketches on the next two pages show two possible designs for an
air traffic control satellite that would be in synchronous orbit over the North
Atlantic. Each design has two sets of solar cell panels and a central
antenna-electronics body, with three solar sails attached to each solar panel
for attitude control. In both designs the antenna rotates about its central
shaft every twenty four hours, minus a factor due to the earth's annual motion
about the sun; in Design I the solar panels rotate é.bout their shafts once each
year, while in Design II the panels wobble from plus 23.5 degrees (with
respect to the antenna; shaft) to minus 23.5 degrees and back again once each
year. The attitude control problem is to point the antenna earthward and the
solar panels sunward, aligning two prescribed body axes which is equivalent
to three axis control of the solar panels and a prescribed motion of the
antenna with respect to the panels.

The technological constraints involved in these designs are now
sketched extremely quickly. First, thermal design is simplified for the
solar cell power plant since nominally only one surface faces the sun.

Second, Design I involves a set of bearings for each panel which must rotate
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FIGURE 4.1
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FIGURE 4.2
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extremely slowly in space while passing DC electric power from the solar
cells to the antenna electronics; Design II circumventsthis potential problem,
because its solar panel need only be a spring capable of plus-minus 23.5
degree motion. Third, the power systems for both designs contain solar
cells and batteries (for use when the satellite is in earth shadow--seventy
two minutes is the longe s’; shadow duration, twice a year (Goddard (56)).
Fourth, structural problems are complicated by possible sail flexing and
bending. For a much more thorough coverage of these and other techno-
logical problems, the reader is referred to the bibliography (Abel (53),
Fleischer (55), Goddard (57), Likins (58) MacLellan (59}, M.I.T. {(60)).
This report will concentrate on the attitude control dynamics of Designs I
and II from here on, not on the systems engineering aspects of communica-

tions satellites.

4,2, Derivation of Equations of Motion

Assume the solar panels and antenna (in Designs I and II) are ideal

- rigid bodies with massless interconnecting shafts and solar sails, and the
solar panels are identical and rotate in unison about their respective shafts.
Fix an inertial right-handed coordinate frame at the center of the sun, with
its z-axis normal to the ecliptic and its x-axis pointing at the center of mass
of the earth once a year, at the winter solstice. From the previous discus-
sion on Newtonian mechanics, the dynamical equations of motion for the

center of mass of either design are
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d d
4.1)  P=F = M=0
4.2) g-(tP MR )=tF
d dt = T"=em’ ~

where P= momentum of center of mass in inertial coordinates

M = total satellite mass

F = external forces acting on center of mass in inertial coordinates
The center of mass kinematical equations of motion for either design are

d
- = V
4.3) dt B-cm —cm

where R position of center of mass in inertial coordinates
—cm

\'4
—cm

velocity of center of mass in inertial coordinates
Quite an extensive body of literature exists for these equations, in classical
celestial mechanics as well as modern guidanc'e~ and control theory. It was
felt any work done here would not be a significant contribution to this area.
From this point on, solar pressure attitude dynamics will be the main con-
cern, with center of mass dynamics left for future work.

The angular momentum equations of motion for either solar cell

panel are:

g—t (‘I—p ‘—”p) + *‘zp x (lp Ep) - —I\lsails + Eant —+ panel |
where Lp = solar panel inertia tensor in body-fixed coordinates
Yp = panel angular velocity with respect to inertial coordinates
Esails = sail torque on panel due to attached sails

N = antenna reaction torque on panel
—ant +panel
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Similarly, the angular momentum equations of motion for the antenna are:

d
- I + =N
4.5) dt [ -I-'ab (_v_va + 2'Vp)] + W-px [—ab (Yab y‘p)] —panels —+ant
where I b antenna inertia tensor in body-fixed coordinates
—a
A = antenna angular velocity in body-fixed coordinates
E’panels ~ant = total panel reaction torque

Adding these two equations, and using the fact reaction torques are equal and

opposite, the total angular momentum equation of motion is found to be

4.6) -d—[(I +2I w +1
dt - —ab P P ~—a

\
\Eab]-!-gpx[(}_ab-}— ZI_p,\_ﬁpﬁ-I

b —ab ‘E-ab] = Esa.ils

where Esails = total sail torque generated by all six sails

A final kinematical equation is needed to describe how the direction cosines

from body-fixed coordinates to inertial coordinates evolve with time:

0 -w w w
z y x
4.9 L pPopP wP wl=| Y2 0 Y| o o= |y
dt —1i —i —i -1 ~p .
-w w 0 w
LY x J ! z
~where l_)_i = 3 x 3 direction cosine matrix from body-fixed

coordinates to inertial coordinates
Equations 4.6) and 4.7) completely specify the attitude dynamics of Pesigns 1
and II, The inertia tensors of each design as well as a precise explanation
of all coordinate frames and coordinate transformations are detailed in

separate appendices,
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4.3 Linearization of Equations of Motion

When the direction cosines are perturbed slightly from their nominal

values, it can be shown (Goldstein(10))

q
[ 0 e -e
z y
4.9) Dl.)?_D I+E) E = -e 0 e
—3% “nom — —)— z x
e -e
_JL y x —
rcos ¢ - siny 0
D sin Y os ¢ O -.(tt)-!- V= 2L d/da
—nom = ¢ LA N T v
0 0 1
where D = nominal direction cosine matrix from body-fixed
—nom
| coordinates to inertial coordinates
I
1 =3x3 identity matrix

(ex,ey,ez) rotational errors about actual x,y and z body-fixed

axes, respectively with respect to each nominal
(body-fixed) axis

- Using this, it is easy to show the actual angular velocity of the body-fixed frame

with respect to an inertial frame, and its corresponding angular velocity, can be

written as

4.10) w_ _w + D é
—p ¥ —nom ~—nom —
4.11) w_ % w D ¢+ D %
—p ®-nom —nom -—nom — —nom —
where
- - - - -
e [ o o]
x
e = e w = 0 W = 0
= y ~—nom —nom
L 4
e -y 0
| Z L _
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Sail torque can be expanded in a series, including only the nominal sail

H
torque and a first order perturbation:

= D N
4.12) l\I-sails Enom * —nom =—body
where _I\_Inom = nominal sail torque (hopefully zero, as will be s}mwn)
Ebo dy = sail torque beyond nominal torque, in body-fixed axes

Substituting 4.9) - 4.12) into the total equations of motion, including only
terms to first order in linearized variables, and equating nominal trajectory
variables to each other and perturbational variables to each other, the

linearized equations of motion are found to be:

I (w xD 2D 42w I -1 W )D e
=—sat “nom —mom — —mnom — —nom —pm -—pm —nom —nom —

4.13) 4(W21 . -1 . W*)D e+w xI .D 8+D €x 21 w
—b —ab =ab —b —nom — -nom —sat—mnom— ~nom — ~pm —Tnom

a - ~
*I-ab (Wb + Enom)) = -D—nom 1—\Ibody

where I =1 + 21
—sat —ab -p
i 0 —sIJ 01 ‘ 0 w -w -1 rw 1
az ay ax
a a
W = = - =
—nom b 0 0 w b Vaz 0 Vax b Way
LO 0 o0 w -w 0 w
J _ ay ax o L az

and I and 1 . are inertia tensors defined in an appendix.
—pm —ab

Two simplifying assumptions can now be made:

i) I D SO>I (w x D &)+ 2(W I -1 W )D e
—sat nom—  —sat —nom —nom — ~—nom —pm —pm —hom —nom —
-21 w x D e 4+ w x I D é

—p —nom -—mom — —nom —sat-—mom -
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or, in words, the gyroscopic coupling of the satellite angular momentum
vector with the angular momentum due to the annual rotation of the solar
panels about their shafts, is neglected. Note each term on the right hand
side of the inequality has a 365 day periodic component, while hopefully the
term on the left hand side has most of its energy at much higher frequencies.

(23 ‘a a Py [ a
i1 > (W -
i) I—sat —nD om < (W b —a1 b -I—ab Wb ) —Dnom . -]—)-nom £x -—aI b (Y-’b * w—nom)

or in words, the gyroscopic coupling of the satellite angular momentum
vector with the angular momentum due to the daily rotation of the antenna
about its shaft, is neglected. Each term on the right hand side of the
inequality has a 24 hour periodic component, while hopefully the term on the
left hand side has most of its energy at much higher frequencies.

Both statements can be summarized: it is assumed the sail torques
can correct gyroscopic disturbance torques caused by antenna rotation about
its shaft once a day,¢solar panel rotation about their shafts. These assump-
tions will be checked later.

The approximate equations of motion for the linearized variables are:

4, e = N
14) Lsat —Dnom = —Dnom —body

4.4, Sensor Measurements

4.4.1. Linearized Sensor Measurements

Provided all pointing errors are small, earth sensors and sun
sensors detect the center of the earth and sun, respectively, in body-fixed
coordinates. Since e is defineé as the pointing error of actual body-fixed
axes with respect to nominally sun-pointing coordinates, the components of

e have the following physical significance
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i) e -~ rotation about the body-fixed x-axis, rota-
tion about the sun line
ii) eY - - rotation about the body-fixed y-axis, moving
up-down with respect to the center of the sun
iii) e -- rotation about the body-fixed z-axis, moving
right-left with respect to the center of the
sun
assuming 'exl «1, }eyl «1, Iez] << 1. Sun sensors measures e and e
directly, but provide no information about ex.A
Earth sensors must be used to find e indirectly. Consider the direc-

tion cosines from the nominally earth pointing coordinate frame to antenna

c e
principal axes frame, D
—a

_ -
0 -8 e
z Yy
4.15) D =1 +E' E' =| & -
=a - =y = z x
-e' e 0
y x
s S
where (g;(,%;','é’;) = rotation errors of actual antenna principal

axes with respect to nominal earth-pointing

axes

and e l «1, ’;;r’ «1, ,'é"zl <« 1is assumed. Using standard Euler
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angles to go from antenna principal axes to body-fixed axes (see Appendix),

it can be shown:

e = 3; (sin ¢ cos® + cos ycos® sin¥Q) - é;r sin@® sin@
x
4,16) e = ;'z (sin ¢sinq + cos ¢ cos@ cos§ ) -’é’; sin® cos\®
y
e = ¢ cosy sin® - &' cos®
z z y

Since @' and Aé'z are observable using earth sensors, they can be gsed to
calculate e ;asa bonus, earth sensor measurements provide a check on
eY and e, measurements, and vice versa. These statements are valid
provided the trigonometric weighting terms in 4,16) are not zero.

Two effects complicate sensor measurements. First, both sensor
noise and additive Gaussian amplifier noise corrupts the measurements.
Second, since solar pressure dynamics are extremely slow, it is probably
unnecessary to continuously monitor satellite attitude, but rather to sample
it at a rate much faster than that of any disturbances. Equation 4.14) is a
continuous time differential equation; in order to approximate it by a discrete
time difference equation, the following state variables are defined
4.17a) - e (kT) = e(kT)
4.17b) _e_z(kT) = e(kT) - e [ (k-1)T]

1

- -1 ‘
4.17c) _e_3(kT) = P-norn (kT) I_sat (kT) _Qnom(k'l') Ebo y (kT)

d
where k=1,2,3,...

T = sampling period
and it is implicitly assumed the samples are taken at equaliy spaced time

intervals. If it is assumed the sails exert no torque along the nominal
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trajectory, then E3(kT) is approximately constant, and the difference equa-

tion approximation to 4.14) can be written as

po - 3 ~y p -t
e, (T) L 1 L] [elx-1T]
4.18) | e, kT) | = O I I 32[(k-1)T]
e (kT) e.[(k-1)T]
L_3 - L—_ - - - por 3 il
where 0 = 3 x 3 all zero matrix
I = 3 x 3 identity matrix

The sensor noise is assumed zero (as in Chapter Three), while the amplifier
noise adds to the observations:

r -
e, &T)

4.19) ykT) = [I 0 0] e,(kT) | + n(kT)

e,(KT)

- d

where n(kT) = samples of (amplifier noise) stationary Gaussian random
process sample function
y(kT) = sensor measurements corrupted by amplifier noise

If a minimum mean square error estimate of each of the state variables
is desired, giver.x noisy observations y(kT), a discrete time Kalman filter can
be used.

One approach to suboptimal estimation of El(kT) and __e_2 (kT) is to
assume the solar pressure dynamics, since they are extremely low frequency,
will effectively low pass filter the noise; this is equivalent to ignoring the
sensor noise entirely, and using for estimates of 2, (kT) and SZ(kT) equations

(4.17a,b). Other examples of practical attitude estimation schemes can be

found in MacLellan(59),, Much(éZ){ and Trudeau(68).
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4.4.2. An Alternate Approach to Attitude Estimation

One major difficulty in using sun and earth sensors is that neither the
.
roll-pitch-yaw angles, nor direction cosines or quateruiops, are directly
observable. However, if gyroscopes are used to measure angular velocity,
then the direction cosines or quaternions are directly observable, and the
results of .Chapter III can be applied.
To see this, recall that if direction cosines are used to characterize

orientation in space, then the differential equation which describes how the

direction cosines evolve with time is

41 42 953 0 Y Yy 41 %2 13
g—t- d1 92 9y = Y o0 vy dy1 9 4
Ld31 432 da3f Ve o Yx 0 d3;  d3p  ds3

p— S —d JU —

On the other hand, if quaternions are used to characterize orientation in space,

then the differential equation describing how the quaternion evolves with time is

1 a.- i 0 -w W a

b4
b w -w b

z x

4 1
at c 5 -wy w_ c
d - -w -w d
| ] [ X y | ]

Since (wx,wy,wz) are directly observable using gyroscopes, these equations can

be integrated directly to provide all components of the direction cosine matrix or

each component of the quaternion.

Recall each component of the direction cosine

matrix or quaternion was assumed observable in Chapter III; since that is now the

case, the attitude estimation method developed there can be used to estimate the

roll-pitch-yaw angles, and these angles can be used directly to define errors

with respect to a nominal trajectory, just as with sun and earth sensors.
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4.5. Solar Sail Torques

An appendix derives the exact torque generated by each sail, under
the assumptions of no sail shadowing, no radiation falling on the rear of the
sails, and small attitude pointing errors.

The force acting on a triangular sail such as in Designs I and II can
be represented as a vector acting at a point two-thirds of the distance out
the longitudinal sail axis, and this point is called the sail center of pressure
(the distance from the sail hinge to the center of pressure will be .called the
center of pressure lever arm, or sail lever arm).

Solar pressure has three distinct components:

i) Reflected solar pressure, largest of the three, directed normal
to the surface which sunlight strikes
ii) Absorbed solar pressure, nextlargest of the three, directed
along the sun line
iii) Reradiated or thermal solar pressure, smailest of the three,
directed normal to the surface which sunlight strikes
Three simplifying assumptions are now made:

i) Reflected solar pressure is the only contributor to sail torque

ii) sin bk='bk cos bk > 1 k=1,2,...6
_ . . _ - 150
where bk sail k pitch angle +bo,bo, or O‘i (bo 150)
iii) (mes)= (n e s) = (n. e s) k,j=1,2,...6
where n = sail k normal, in body-fixed coordinates
8 = sun vector in body-fixed coordinates
n = abbreviation for n

—k
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or in other words, the projection of each sail's normal along the sun line is

roughly the same. Using these assumptions, from the appendix it follows:

4.21)

where

2
= - - -b,) ¢
y—body Al ES) (21/c) (nes) {(b1 b3 + b4 b6) s cos {a) .
0 0 0
+ (b1+b3+b4+b6) ls sin (a) 1 - (b2+b5) ls sin (a) o1+
0 1
sin ¢ 0
(b1+b3-b4-b6) T cos + (b3+b6-b1-b4) 0 + (bz‘bs)
0 . v

z+h-lscosa+2rsin(a)

0
- r cosa

A = area of sail (all sails assumed identical

Es = emissivity of surface of sail

I = sunlight pressure constant = 1380 watts/meter

c = speed of light in vacuum
a = sail cant anglg = 450 degrees

ls = distance from sail hinge on s-olar panel to center

of pressure of sail

r = radius of gyration of solar panel (see Appendix)
h = distance from antenna center of mass to solar panel

center of mass (see Appendix)
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y half length of solar panel (see Appendix)

z half width of solar panel (see Appendix)
and all vectors are measured in body-fixed coordinates. Three cases of

interest now arise:

a) b1=-b3:b4=-b6=bo,b2=b5=0
1 0
2 .
4.22a) N2 . =~ A(1-E )(2I/c) (ns s)" {4b £ cos(a) {0} -4b v {0
. —body s - = o s o
0 1
1
. . 0
4+ 2r sin(a) sin ¢ }
0
b) b1=b3=b4=b6=bo,b2=b5=0
0
4.22Db) Nb = A(1-E )(2I/c)(n s)2{4b £ sinf(a) 1] + 2r sin(a) siny
—body s - = o s
0
c) bl=b3=b4=b6=0, b2=b5=—bo
0
. 4.22c) NC = A(1-E )(2I/c)(n e s)Z{Zb f sin(a) 0] + 2r sin(a) sin
—body s - = os :
1
1
-2b z 10 }
0

If the sails are designed such that

!s <:os(a),1s sin{(a) > r sina, v,z .

then x,y, and z torques can be generated in body-fixed axes, by cases

a),b), and c) respectively. Sails 1,3,4 and 6 produce either x or y torques
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at any instant, but not both simultaneously; sails 2 and 5 generate z torques.

If -I-sat is assumed diagonal, then 4.14) become

- .
- 2 -1 2 -1 _-1 .
I cos +1I sin 21 -I ") sin ycos ¢ 0
xxX v Yy v xx vy
- - - - 2
4.23) © = 2(1 ! -1 1)sin ycos Y I sin2 g+ 1 ! cos 0
- XX yy xx Yy N body
0 0 -1
- ZzZ
i
where
> ~
I 0 0
xx
I . 0 I 0 (see Appendix for correct
—sat = vy expression for I )
*P —sat
i 0 0 _ Izz_1

Note that if an x torque is generated in body-fixed axes, the off-diagonal

entries in the gain matrix for Eb above will couple this torque into the

ody

y axis. Cross coupling torques between x and y axes are unavoidable,

because of the coordinate transformations between inertial and body-fixed
axes. To rmninimize their effect, I and IYY must be chosen comparable to

one another.

4.6. Solar Sail Control Law

At this point the analysis of the linearized equations of motion has
been reduced to a previously solved problem. Two standard control laws
will now be discussed (for more details, see Athans (54) and Flugge-Lotz (56)).

Cross coupling torques will be assumed negligible from here on.
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If it were possible to generate simultaneously three independent

torques, the attitude error and its first derivative could be used in 2 control

law

a . . b . ) c . ®
4.24) Ebody = Ebody 51gn(ex+kxex) *Ebody s1gn(ey+kyey) *Ebody sign (ez+kzez)
where

sign (x) = }+1 x =20
-1 x < 0
Since x and y torques cannot simultaneously be generated, one possible

modification to the above control law is

If |e +k e IE le +k e | generate x torque
4.25) x X X y y vy

If I e + kxex l < Iey + ky eY I generate y torque

Finally, if a deadband is included in the control law for each axis, every
""sign'' function is replaced with a dbz

sign(x) [x] =2 db

dbz(x) = db = deadband
0 [x] < ab

Equations 4.24) and 4.25) with deadbands completely specify a possible
control law for either Designs I or II. The gains kx’ky’kz allow the designer
to trade ringing and overshoot in the system transient response for the
period of a limit cycle when the satellite is in its nominal trajectory (see

Fligge-Lotz (56)). Another possible control law is the time optimal control

law; a simple single axis control law is discussed in Athans (54).
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4.7. Disturbance Torques

Five sources of disturbance torques, in addition to the cross-axis
coupling torques already ‘mentioned, can drive Designs I and II away from
nominal attitude. The largest disturbance is due to the earth's gravitational
field trying to align the satellite's longest axis along a line pointing to the
earth's center of mass. The next largest disturbance is caused by sunlight
reflecting, absorbing, and reradiating from the antenna. Third 1érgest is
caused by the satellite center of mass being misaligned. Fourth is micro-
meteoroid impact torques. Finally, the smallest disturbance torques are
due to the satellite interacting with the earth's magnetic field; these magnetic
torques are assumed negligible,

Gravitational torques on an arbitrary rigid body, or gravity gradient
torques as they are referred to in the literature, are straightforward to

calculate (see Nidney (65)). It can be shown

0
e 2
- 4.26) —gravity gradient 3Wo ’Ixz
I
L XY
where w0 = orbital frequency of satellite = (2 7/24) radians/hour
I_,I = off diagonal elements in satellite inertia tensor
Xy Xz

computed in earth-pointing coordinates

e
—gravity gradient = satellite gravity gradient torques in

earth-pointing coordinates



97.

’—seat = satellite inertia tensor in earth-pointing coordinates
2
€ b e e b T ;.""1
= A A A = A = A"
—sat —_— 'I—sat ‘—b ____b 2e L.
_A_: = direction cosines from body-fixed axes to earth

pointing axes in body-fixed axes,
These forques can be written
4.27) Et;ravity gradient = é}e) —I:I-Zravity gradient
and are plotted for Design I, in body-fixed axes, in Figure 4.3 under the
assumption the satellite is moving in its nominal trajectory.
Sunlight pressure torques due to the antenna-electronics body are
calculated explicitly in an appendix. The reflected and absorbed sunlight
pressure torques are plotted in body-fixed axes in Figures 4.4 and 4.5;

more information must be known before the reradiated torque can be calculated

.

explicitly.
The calculation of center of mass misalignment torques, torques due
to the center of mass of the satellite not coinciding with the center of mass

of the antenna, is straightforward (Goddard (57)):

[2R

4.28) N
—a/cm

= R ’ g
—cm —a/cm * -Ijsails * Msat x (Y’-pxgcm) + B-a/cmx(i'zaxg_c )]

where

H

Nom center of mass misalignment torques in body-fixed axes

1]

R vector from antenna center of mass to actual satellite
—a/cm : .

center of mass
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\_x_rp = satellite angular acceleration in body-fixed axes

w_ = antenna angular acceleration in body-fixed axes
a

A typical magnitude for -Iia/cm is one quarter inch (Goddard (56)).
Since sail torque is proportional to the sail center of pressure lever arm,
sin (a)
4.29) N . ¢ ls A(I-Es)(ZI/c)

—sails cos (a)

The sails must be designed such that the sail torque is much greater than

the center of mass misalignment torque, that is,

cos (a) 2

1_A(1-E)) (21/c) > M_ . 'Ea/cm‘ [2!2v_pl+ ]\_y_al]
sin (a)

£_ cos (a) >>|5_a/cm! and  f_sin (a) » Iga/cml

An analysis has been carried out to verify that if the sail cant and pitch
angles are offset slightly from their nominal values, the resulting disturbance
A torques are negligible compared to the attitude correcting torques.

Finally, the largest expected micrometeoroid torques appears to be
two orders ;af magnitude less than the attitude correcting torques and hence
is negligible (Goddard (57), NASA — Naumann(64').

4.8. Computer Simulation Results

As a check on the foregoing analysis, a computer program was
written to simulate the dynamics and kinematics of either Designs I or II.
Figures 4.6 through 4.12 show the results of a simulation of Design I

recovering from an initial pointing error. The initial error was due to the
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satellite being rotated away from its nominal attitude by three successive
rotations of ten degrees each, first about the z axis, thc"n the y axis, and
finally the x axis. Sun and earth sensor measurements are corrupted by
additive Gaussian noise, and a sensor sampling rate of once each minute is
used to determine the pointing error and its derivative (see 4.20)). The
attitude control law described in 4.22) with a deadband is used to pitch the
sails. Gravity gradient torques, antenna reflected and absorbed sunlight
torques, and center of mass misalignment torques are included. Table 4.1
- summarizes the numbers used for these simulations.

The simulation results lend credibility to the previous assumptions
that gyroscopic coupling torques and cross-axis coupling torques are negligible
compared to the sail attitude control torques. Note that for the example just
discussed, the harmonic content of the error and its derivative is in the
neighborhood of ten degrees per hour; this rate is much higher than the
angular velocity of the solar panels about their shafts, but it is comparable
to the angular velocity of the antenna about its shaft, roughly fifteen degrees
per hour. Hence, there is some coupling between the angular momentum of
the 's.a.tellite and the angular momentum of the antenna, but the attitude control
law is able to compensate for it.

The results presented here are representative of over fifty different
simulations of the attitude control equations for both Designs I and II.
Satellite transient response to peinting errors such as those just described

were cl-'xe»cked at eight equally spaced times of year (starting with December 21),
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and at different initial times of day (midnight, six a.m., noon, and six p.m.).
Finally, most runs were made with the sails misaligned in cant and pitch,
the satellite center of mass misaligned, gravity gradient disturbance torques
present, antenna sunlight pressure disturbance torques present, and sensor
measurements corrupted by Gaussian noise. These simulation results
verified the results of a theoretical analysis: When the satellite design
parametefs are perturbed slightly from their nominal values, anci when dis-
turbance torques act on the satellite.the attitude control torques are sufficient
to keep the satellite aligned along its nominal orientation to within attitude

sensor noise limitations.
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Figure 4.13

Design 1 -- Simulation Parameters

Inertia Tensor Components
A. Antenna Principal Axis Inertia Tensor Components
2
I 300 kg-meter
axx
I 225 kg—:.’nei:erz
ayy
I 225 kg—tneter2
azz
B. Solar Cell Body-fixed Axes Inertia Tensor Components
2
I 964 kg-meter
xx

1 482 kg meter2
Yy

1 482 kg-rneter2
zz

Sail Parameters
Sail area 3 rneterZ
ls- Center -of -pressure to sail hinge 5 meters
Es 0.05 (dimensionless)
Control Law Parameters
x-axis deadband (same for all three axes) 0.1 degree
Kx = KY =30 (ra.dians/min)-l ; Kz =.40 (radians/rnin)-l
sen.sor noise (same for all three axes)
mean 0 degrees standard deviation 0.03 degrees

Cant angles
ak=45 degrees k=1,2,...6

Pitch angles

bk:: 15 degrees k=1,2,...6
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IV. Dimensions -

Center of mass misalignment

( )

= . . < = = =
Ia/cm xa/cm Ya/cm za/cm afcm Ya/c:rn z:s./t:rn
10 centimeters
Antenna (distance from center of mass to surfaces)
T = 0.725 meters r =0.5meters 1 = 0.725 meters
ax ay az
Antenna surface areas

2 2
Al ~A6-2.05 meter AZ-A3—A4—A5— 1.45 meters

Solar panel

il

r 0.25 meter

0.25 meter S 4

h = 1.0 meter z = 0,10 meter

V. Weight Breakdown (Goddard (57), M.I.T. (60))

A. Antenna-electronics B. Solar cells panels
Antenna 25 1bs Bearing drive 15 1bs
Power control 23 1bs Solar cells 45 1bs
Batteries 50 1bs Electronics .10 1bs
Electronics 80 1bs Cables 8 1bs
Attitude control 25 1bs Structure 25 1bs
Structure 25 lbs Contingency 19 1bs
Contingency 19 1bs

Total 247 1bs Total 122 1lbs



107.
APPENDIX A

Coordinate Frames and Coordinate Transformations

Five different coordinate frames are useful in discussing the attitude
control dynamics of Designs I and II. Each of the following four coordinate
frames have their origin at the satellite center of mass:

Xe-Ye-Ze-;nominally earth-pointing coordinate frames, with
the Xe-—axis aimed at the center of mass of the
earth, the Ye-axis perpendicular to Xe and in the
orbital plane, and the Ze—axig parallel to the‘
earth's axis of rotation

Xa-Ya-Za~-the antenna-electronics principal axes frame,
nominally coincident with Xe—Ye-Ze

XS-YS-ZS--nominally sun-pointing coordinate frame, with the
Xs-axis aimed at the center of the sun, the Ys-axis
perpendicular to Xs and parallel to the ecliptic, and
Zs-axis normal to the ecliptic

Xb-Yb-Zb--the body-fixed axes frarne, parallel to the solar cell

B panel principal axes frame and nominally coincident

with xs-Ys-Z,s
The fifth coordinate frame has its origin at the center of mass of the kth
solar panel (see Figures | ‘and 2):
ka-YPk—Zpk--ﬂle principal axes frame for solar cell panel k,

nominally parallel to XS-YS—Zs
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ljirecf:ion cosines from one coordinate frame to another are differentiated by
a combination of mnemonic subscripts and superscripte. For example, the
direction cosines from xa-Ya-Za toX -Y -Z are denoted by

b b b

_1_)_: - with the superscript ''a'' denoting antenna axes, the
subscript '"b" denoting body-fixed axes

The direction cosines from earth-pointing coordinates to sun-pointing

coordinates can be expressed in terms of Euler angles:

B cos Y sin ¢ 0- 1 0 0 ) r—cos ‘( sin ‘e ()--1
2: = -siny cosy O 0O cos6 -sin®f -sin‘? cosl( 0
0 0 1 0 sin 6 cos 6 0 0 1
e - » _J = _
where

daily orbital position of satellite

~

6 = angle of earth's axis of rotation with ecliptic
. ¢ = annual orbital position of satellite
or
= %(t-fo) +y y= 27/(365¢24) radians/hour
= 23.5°

¢« .
Q(t-to) + QO)Q = 27/24 radians/hour

5'<x> €
"

to = initial time of day (midnight)
\!o = initial position in orbit (side of earth away from sun)
¢° = initial time of year (December 21)

where all initial times are nominal times taken for convenience in the com-

puter simulation of Designs I and II, and easily changed to other values.
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1f the antenna follows a preprogrammed drive with respect to the solar panels,
then it is straightforward to find the angular velocity of the antenna in

sun-pointing coordinates:

i cosy sinyg O 1 0 0 r.0 0
W= |-sin g cosy O 0 cosH -sinb (.J + |0
0 0 1] lo sine coso] |¥ ¢

)
'b’"“:\ L

\

s

Figure A.1

Euler Angles From X -Y -Z to X -Y -Z
e e e s s s

-
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APPENDIX B

Inertia Tensors

In X -Y -Za the antenna-electronics inertia tensor is:
a a

1 0 0]
axx
1 = 0 I 0
“aa ayy
0 0 T
azz

In body-fixed axes X, -Y -Z this becomes:

R
a b a_,b-1_,bT
Lap=2y L. 4, Ay = A=A

In sol_ar panel principal axes, ka_ka-Zpk' the kth solar panel inertia

tensor is:

I 0 0
pxx
_ I 0
Ik = 0 PYY
0 0 I
= d p z z—d

In body-fixed axes Xb-Yb—Zb, for Design I, either solar panel inertia takes

the form:
I =1 . + 1
P Pm ~Pk
I-1
1 = m
~pm P “nom —1 =nom
rhz_ 0 -rh
2 2
;-I = 0 r +h 0 mp = solar cell panel mass
-rh 0 rZJ
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~cos" -sin\" 0
—er;om sin‘y sin\y 0
L 0 0 1-J

In body-fixed axes for Design II either solar panel inertia takes the form:

I =1 + 1
P Pm  ~pk
IT II-1

I =m I
—pm P —nom -1I —nom

h2 0 0

2

LII - 0 h 0

0 0 0

e —cos“ 0 sin r
-Q'rle)m = 0 1 0 sin‘ = sing sin‘y
. L—-sin’Y 0 cos_1

——

Finally, the satellite inertia tensor becomes, in Xb-Yb-Zb:

-I-sat = I—ab * sz
This'is graphed as a function of time for Design I, starting at midnight,

December 21, and cohtinuing for twenty four hours, on the following page.

Numbers to do the graph are taken from Table 4.1.
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APPENDIX C

Sail Torques

Sunlight pressure striking a surface generates a force with three
physically distinct components:
Esunlight = Ereﬂected + Eabsorbed * Ererad:iéted

Only the reflected component will be dealt with here

2
Ereﬂected - A(LES) (2l/c) (nes) (-n)
where
A = surface area
E = surface emissivity

I = sunlight pressure constant = 1380 watts/rneter2

¢ = speed of light in vacuum = 3 x 108 meters/sec
S8 = unit vector pointed at sun
n = unit vector normal outward from surface
The unit normal vectors for each sail in Xb-Yb—Zb are:
r— —— . “Smy
cosak cc'sbk F cosa.k cosbk
Bk = s1nak cosbk k=1,4 Bk = -sma.k cosbk
sinb | sinb
L ko L ko
i cosa cosb T cosa cosb
2 2 5 5
32 = 51nb2 | BS = | 51nb5
slna2 51nb2 ) —sma5 c:osbs-.J
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where

2

Py

cant angle with respect to X axis of sail k

"

pitch angle about longitudinal axis of sail k
The vectors from the satellite center of mass to the center of pressure of

each sail are:

Wr . Ay r. ] Ay
-rcos -1 ¢ sina rcos\y -1 e sina
s 1 'S 4
—1 i rsin“/ +1 ¢ cosa, + —4 ) -rsin\y 41 v cosa, +
s 1 y s 4 y
P-rcos‘(’ -1 o sina 1 .-rcos{’ -1 e sina_ ]°
s 2 s 5
I, = ‘ rsixi‘(/ . _1'_5 = -rsin\{/
L h+tz +ls * cosa, J ;h-z -1l - cosa,
-rcos\v -1 sina ’ rcos\y -1 +« sina
s 3 s 6
r, = rsm‘{/ -1s cosa, -y Ty * rs1n‘¥ -1S « cosa,
i h A - e h ~

The torque generated by sail k is (in body-fixed .‘a.xes):E

) ) , ‘
T 5 xE s AUE) QO 97 xr) ket
1'\-Ibody = —Tl + Iz + ..?3 + .?.4 + '_1‘5 + '-'1-‘6 = total sa1ﬁl torque

and where the dot product of the sun pointing unit vector with each sail normal

is carried out assuming all vectors are expressed in body-fixed axes.
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APPENDIX D

Antenna Sunlight Disturbance Torguf:_g

A. Reflected Sunlight Pressure Torques

In antenna principal axes, vectors from the satellite center of mass

to the surface of the antenna are:

I~
[S2]
1]
]
CLH
"
o
a]
o~
t
)
J:x
1]
t
-
|
¢
H
1
o

L 0~. L 0... L._raz

The reflected sunlight force on each face of the antenna is

2
E.= A0-E_ @/ (sen) (-n) k=1,...,6

where

surface area of facek, k=1,...,6

>

=
"

emissivity of surface k

AP

unit normal vector outward from surface k in Xa-Ya-Z

8 = sun-pointing vector in antenna principal axes

The reflected sunlight torque due to each face is (in Xa-Ya-Za)

T r

2
Ika - -I:,k xEka - Ak(l—Esk) (2l/c) (s 12]() (Ek xz-k)
The total reflected sunlight torque due to the antenna in body-fixed axes

Xb-Yb—Zb is then

r _ ,a _r r _ T r r T r r
T =&, T total T =T +T. +T, +T, + T, +T
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B. Absorbed Sunlight Pressure Torques

Sunlight being absorbed by a surface it strikes rauses a force to be

generated,
Eabsorbed = AB(l/c) (se n)(-5)
where
A = surface area of surface
B = absorptivity of surface
1 = solar pressure constant = 1380 wa.t:i:s/rnet:erf2
¢ = speed of light in vacuum = 3 x 108 meters/sec

s = unit vector pointed at sun
n = unit normal vector outward from surface
The absorbed sunlight pressure force on each face of the antenna in antenna

principal axes is then:

° a

Fra= A By I/c) (s9n) (-3)
where
Bk = absorptivity of surface k

The absorbed sunlight torque due to surface k in antenna axes is:

The total absorbed sunlight torque due to the anterna is the vector sum of the

individual surface torques.
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C. Reradiated Sunlight Pressure Torques
Sunlight being reradiated by a surface it strikes generates a force:
—E:reradiated =4 (IR/C) (-n)

where

>
"

Surface area of surface
I, = intensity of reradiated sunlight

c = speed of light in vacuum = 3 x 108 meters/sec

n unit normal vector outward from surface

To find IR’ the temperature on the surface must be found as a function of

time, then the Stefan-Boltzmann formula must be used to find IR:

i

Es T4(t) (¢

g

Es = emissivity of
¢* = Stefan-Boltzmann constant
T = surface temperature

Final Note: When sunlight does not strike a surface, there is no
reflected or absorbed force. Each of the forces in sections A and B for a
. given surface are multiplied by a function which is one when the surface is
struck by sunlight and zero when it is not; this shadowing factor was included
in the graphs of the reflected and absorbed antenna sunlight torques

(Figures 4.4 and 4.5).
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Chapter Five

Summary and New Directions

5.1. Summary

The principal theme of this research program has been rigid body
mechanics, as applied to space satellites. The study was broken down into
three sections.

The first section developed a four-dimensional space-time formulation -
of Newtonian mechanics. The equations of motion for a particle, a point with

mass m, were found to be:

d% ™ = FX ﬁ(‘&o% "'30*‘0’ %OFB-&)F\J é(%?x-ﬂko-)t 3 I!x.

ihsh

o = d . d

s S L N 5 (iopy ol oy

-SSR

: o )= %oFy oF At -

:—B mzD ot x"ﬂ“é"b‘  Xo ‘)*do X oC tb?)"“'ﬁb)“t\ppz
where (xo,yo,zo) are the spatial coordinates of the particle, (px,py,pz,m) is
the linear momentum of the particle, and (Fx’Fy'Fz) are the forces acting on
the particle, with all variables measured in a right-handed Cartesian inertial
coordinate frame at the same instant of time to. The first four equations
describe how the time rate of change of the linear momentum is related to
forces, while the last six describe how the time rate of change of the total
angular momentum of the particle, the moment about the space-time origin of
th e linear momentum, is related to forces. When no forces act on the particle,

the four components of the linear momentum and the six components of the totai

angular momentum are all constant. Noether(21) showed through a Lagrangian
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formulation of mechanics as well as a calculus of variations argument that
these are the only ten quantities conserved when no forces act on the point
mass; the formulation of mechanics presented here complements this view-
point, and is perhaps more straightforward and offers greater physical insight
into the nature of the conservation laws.

The second section developed a2 new method for estimating the three
angles which specify the spatial orientation of a rigid body, from ol.)servations
of direction cosines and quaternions. The method presented is analogous to
phase-locked-loop phase estimation, but is a generalization to three dimensions
of phase-lock techniques, and is not simply three '"one-dimensional' phase-
locked loops. Two ways to implement this methed, one based on direction
cosines, the other on quaternions, were discussed for two specific examples,
fixed orientation to space and constant rate of change of the three angles. The
theoretical deterministic performance limits of eaéh implementation were
addressed: first, an analysis of the dynamics of each implementation for
‘small estimation errors was carried out, and second, the steady state and
stable equilibrium points of each scheme were discussed. When noise was
included in each implementation the theoretical stochastic performance limits
were quite difficult to pin down; in particular, Fokker-Planck equations could
be derived for each example under certain simplifying assumptions about the
nature of the noise, but they could not be solved. However, for a special set
of conditions, with a quaternion based method for estimating the unknown

phases of the three angles as the angles change at a constant known rate with
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time, the Fokker-Planck equation was solved explicitly for the steady state
error probability density., All theoretical analyses, both deterministic and
stochastic, were backed up by extensive computer simulation.

The third section was concerned with the attitude control dynamics of
two specific communication satellites, each using sunlight pressure to generate
attitude control torques. Large reflecting surfaces, called solar sails, were
attached to each satellite; by canting the sails in different directions, sunlight
pressure torques were produced which corrected pointing errors. The equa-
tions of motion for each design were derived, and then linearized about a
nominal trajectory, and the linearized equations were analyzed using standard
linear .system theory techniques. The attitude of each design was determined
from sun and earth seﬂsor measurements. A heuristic bang-bang control law
which governed when and how to cant the sails was developed. Five types of
disturba.nce‘torques were identified, the largest of lwhich is due to the earth's
gravitational field, and were shown to be much smaller than sunlight pressure
attitude control torques. Extensiye computer simulation of the total equations
of motion for each design, typically with a small initial pointing erfor, con-
firmed the theoretical analysis of the linearized equations of motion.

5.2. New Directions

Several topics fof further research are now outlined. These topics
are grouped into the same three areas discussed in the main body of this
report, in keeping with the central theme of developing a greater understanding
into space satellite dynamics with applications to sunlight pressure attitude

control.
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1. Deterministic Rigid Body Mechanics

At the present time a mathematically rigorous theory of finite-dimen- -
sional linear systems exists, which has found wide application to many practi-
cal problems (e.g., problems arising in engineering and physics). At the
s ame time, a mathematically rigorous theory of rigid body mechanics does
not yet exist, but it would be useful in the design of practical attitude control
systems for space satellites. Just as linear system theory has botlll qualita-
tive and quantitative aspects, so would a theory for rigid body mechanics.

A qualitative theory of rigid body mechanics would presumably draw on
differential- geometry and differentiable manifold theory, Lie algebras and Lie
groups, as well as geometry and topology, in addressing such issues as con-
trollability and observability of a space satellite, as well as questions of
stability. One example in which such a theory might prove of immediate use
is the design of control laws for despinning space satellites from high spin
rates just after injection ir.1to earth orbit down to much lower spin rates. A
‘second example where this type of theory might find immediate application is
in the question of the stability of a'dual—spin space satellite.

A quantifative theory of rigid body mechanics would be concerned with
at least two areas. The first is the application of digital computers and
numerical techniques to questions such as numerical integration of rigid body
equations of ;'notion and optimal control laws for arbitrary space satellites.
The second area is complex variable analysis. Elliptic functions and action

angle variables play a key role in classical quantitative rigid body mechanics:
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Hua(35) and Klein and Sommerfeld(16) have indicated this role might be more
significant than previously expected. Many problems in complex variable
theory are analytically intractable, and perhaps can be solved numerically.

Finally, how these threads of both qualitative and quar-tl‘t;tétive rigid
body mechanics can be knotted together into a unified theory of rigid body
mechanics, which would complement and lend insight to each other, remains
to be seen.

2. Stochastic Rigid Body Mechanics

A natural extension of a deterministic theory of rigid body mechanics
is to allow position, linear and angular momentum, and forces to be character-
ized aé random processes. One example of thié was discussed in the section
on attitude estimation, where it was observed that both direction cosines and
quaternions could be considered as matrix exponentials of random processes.
Three broad areas for further research into randorh processes and rigid body
mechanics are now outlined:

i) Several extensions of the work presented here, estimating

the three angles which specify the orientation in space of a
rigid body, come to mind. First, can _the method presented
here be extended to estimate the three angles if, for example
the angular velocity is an arbitrary function of time, rather
than the two specific examples discussed. Second, can that
branch of information theory known as rate distortion theory
be used to provide ultimate performance limitations for esti-

" mating the three angles in the two specific examples already



ii)

124.

discussed, much as this theory has been used to point out
)

performance limitations in phase-locked-locp phase esti-
mation (see Van Trees(47)). Third, how do quantization
of observations (either direction cosines or quaternions)
affect performance. Fourth, how is performance affected
by sampling the observations at discrete instants of time,
as compared to continuously observing spatial attitude.
A precise mathematical characterization of random
processes found in rigid body mechanics is needed; since
the problems encountered in mechanics are frequently
nonlinear, mathematical rigor should aid in this charac-
terization. Ito(36). and McKean(41l) have carried out some
preliminary work in £his area. To be of practical use,
their work must be related to observations made by actual
attitude sensors; the section on solar pressure attitude con-
tt"ol discussed sun aqd earth sensors, which are not yet
adequately theoretically characterized, and which are not
covered by Ito's or McKean's work. Another question of
practical interest is how a force, which is a random
process (e.g., disturbance torques in a gyroscope based

attitude sensing scheme) influences attitude estimation

(e.g., the three roll-pitch-yaw angles discussed earlier).
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iii) A large body of mathematical literature exists on partial
differential equations and properties of their solutions,
both qualitative and quantitative. In particular, the
Fokker-Planck equation has been extensively studied, as
has abstract harmonic analysis, and the relationship of
solutions of partial differential equations to representa-
tions of those Lie groups and Lie algebras associated with
spatial orientations. How this literature might help answer
the question of what the optimal attitude estimation procedure
is for processing noisy observations of space satellite orien-
tation remains to be seen (see Evans(30)).

3. Sunlight Pressure Attitude Control

The intent of the third section of this report was to demonstrate the
feasibility of a particular example of three-axis attitude controi which used
sunlight pressure to generate attitude control torques. Two specific designs
were discussed, but perhaps there are other designs than those presented
here which take better advantage of the technological constraints associated
with space satellite design. The question of whether or not light weight rigid
solar sails with the correct surface properties can actually be built has never
been adequately answered; an adequate answer would be to actually construct
and test in space a satellite which used torques generated by sunlight striking
solar sails to control its attitude, and to the best of the author's knowledge,

this has not been done for any earth orbiting space satellite. In pérticular,
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one question that must be answered is how serious is sail flexing and bending
apt to be and how much might this inference with attitud,; control dynamcis.
Finally, can the same sails used for attitude control be used to station a

synchronous equatorial orbit satellite over one spot on the earth's equator,

in spite of irregularities in the earth's gravitational field.
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