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ABSTRACT 

A research program into three aspects of space satellite dynamics 
has been carr ied out. 

F i r s t ,  a four-dimensional space-time formulatiox of Newtonian 
mechanics is developed. This theory allows a new physiual interpretation of 
the conservation theorems of mechanics first derived rigorously by Noether. 
The formulation has  turned out to be similar to that in a hrgot ten  1923 paper 
by E. Cartan. However, the work presented he re  offers much greater  
physical insight into the underlying mathematical structure of Newtonian 
mechanics than that of Cartan. 

Second, a new concept for estimating the three axgles which specify 
the orientation in space of a rigid body is presented. 
for implementing this concept a r e  discussed, one based sn direction cosines, 
the other on quaternions. Two examples, a r e  discussed: constant orientation 
in space, and constant rate of change of the three angleswith time. 
behavior of each method in the absence of noise is discussed. 
equations a re  derived for the aposteriori probability deIljity Iunctions fur 
estimation e r r o r  in the presence of noise. 
the case' of constant rate of change of the three angles with time for a 
quaternion implementation a r e  explicitly derived. 

Tua separate methods 

??le 
Fokker-Planck 

Steady state -frror statistics for 

Third , two s ynch r onou s e qua to r ia l  o r bit communication satellite 
designs which use sunlight pressure to control their attiinde a r e  analyzed. 
Each design i s  equipped with large reflecting surfaces,  called solar sai ls ,  
which can be canted in different directions to generate tocques to cor rec t  
pointing e r r o r s .  The total equations of motion for each &sign a r e  derived, 
and then linearized about a nominal trajectory; a theoretical analysis of the 
linearized equations is carr ied out. 
Disturbance torques a r e  shown to  be negligible compared to attitude control 
torques. 
theoretical analysis of the linearized equations. 

A specific control lzsv is discussed. 

Computer simulation of the total equations of motion verified the 



New directions in space satellite dynamics research are sketched. 
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Chapter One 

Introduction 

1.1. Introductory Remarks 

In 1958 the f i r s t  communication satellite (SCORE) was placed in earth 

orbit. Since that t ime,  dozens of communication satellites have been launched 

into space and a r e  currently being used for commercial and governmental 

communication between points scattered ac ross  the face of the earth.  

One fundamental problem in communication satellite design i s  control 

of satellite orientation. This report  describes the results  of a three fold 

research program into space satellite dynamics. The f i r s t  and second phases 

deal with aspects of deterministic and stochastic rigid body mechanics, 

respectively. The third phase builds on the f i r s t  two, and involves the analysis 

of two specific satellite designs which use sunlight pressure  for attitude control. 

1.2. Scope of the Research Program 

1.2.1.. Theoretical Rigid Body Mechanics 

The f i r s t  phase of the research program was devoted to applications of 

differential geometry, tensor algebra and calculus, and Lie  groups and Lie 

algebras to problems in space satellite dynamics. The main result  was the 

development of a four -dimensional space-time formulation of Newtonian 

mechanics. This theory i s  a complete self-consistent s e t  of ten equations; 

four of the equations deal with linear momentum, while the other six a r e  con- 

cerned with angular momentum, Many mechanics t rea t i ses  often ignore three 

of the angular momentum equations; this i s  not surprising,  since information 



contained in  these three equations i s  also contained in the linear momentum 

equations, making these equations to a certain extent redundant, However, 

by including these three additional equations, a new physical interpretation 

of the ten conservation theorems of mechanics due to Noether a r i ses  in a very 

natural simple manner. Noether's approach to the conservation theorems 

was based on a Lagrangian formulation of mechanics plus some subtle varia-  

tional arguments; the same theorems follow quite naturally and simply by 

formulating Newtonian mechanics in space-time. No attempt i s  made to 

achieve mathematical rigor in developing this theory of mechanics; ra ther ,  

the emphasis i s  on physical insight and intuitive arguments, coupled with the 

requirement the theory be consistent with experimental observations. 

1.2.2. E stimation Theory 

The second phase of the research program touched on a problem in 

estimation theory: given noisy measurements of the orientation in space of a 

rigid body, est imate the three angles which define this orientation. 

I s  attitude estimation really a problem in space satellite dynamics? 

Yes, in fact  in  many present  day satellites,  attitude estimation i s  the chief 

limitation i n  controlling the spatial orientation of these designs; the reader 

should consult the bibliography for  specific examples. One approach to attitude 

estimation is to linearize the equations of m0ti0h about a nominal trajectory, 

and then apply l inear filtering theory to the linearized equations of motion. 

The actual implementation of this approach can be very complex. In addition, 

this approach ignores the structure implicit i n  the equations of motion which 

describe how orientations in space change with time. 

II # 1 4 * "3 
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The method presented h e r e  i s  analogous to a phase-locked loop, in  that 

it es t imates  the three  angles defining the spatial orientation of a rigid body 

using an  estimation procedure resembling tha t  of a phase-locked loop. This 

method takes advantage of the s t ructure implicit  in the equations of motion, 

and fo r  the two examples considered h e r e  (constant orientation in space,  and 

constant r a t e  of change of the angles with t ime) i s  quite simple to implement 

compared to an approach based on linearization of the equations about a nominal 

t ra jec tory .  

The chief question left  unanswered is what i s  the optimal o r  bes t  method 

for processing noisy sensor  measurements  in o rde r  to es t imate  spatial or ien-  

tation. The method presented he re  works well  for the two examples considered; 

however,  it i s  sti l l  not c lear  how well the optimal estimation procedure would 

per form compared to the method discussed in this report ,  and what if anything 

i s  lo s t  using the method described h e r e  o r  a method based on Kalman fil tering. 

1 . 2 . 3 .  Solar P r e s s u r e  Attitude Control 

The attitude control dynamics of two specific satell i tes which use sun- 

light p r e s s u r e  to generate  attitude control torques a r e  analyzed in the l a s t  

phase of the r e s e a r c h  p rogram.  

Why use sunlight p r e s s u r e  for attitude control? At synchronous altitude 

the l a r g e s t  disturbance torque on many present  day communication satel l i tes  is 
'-. 

due to sunlight p ressu re  (NASA(63) ); since i t  i s  such a nuisance, perhaps it can 

be used to a id  r a the r  than hinder attitude control. By canting l a r g e  reflecting 

su r faces ,  called solar  sa i l s  h e r e ,  i n  specified direct ions,  i t  appea r s  to be 



possible to control the orientation of two specific designs with a s  g rea t  an 

accuracy a s  any other present ly existing method. 

All of these statements a r e  based on paper-and-pencil analysis plus 

extensive computer simulation of each design. Clearly,  this i s  no substitute 

for  an  actual t e s t  in space of these ideas .  Some attempt was made to include 

technological constraints  into the designs described h e r e ,  and al l  computer 

simulations were  ca r r i ed  out with hopefully rea l i s t ic  numbers for al l  pa ram-  

e t e r s ;  however,  many engineering problems were  ignored, on the grounds 

that they did not crit ically affect the attitude control dynamics of each design. 

Thus, the r e sea rch  p rogram has  mere ly  indicated that solar p r e s s u r e  attitude 

control of synchronous orbi t  communication satell i tes might be feasible,  but 

the question sti l l  deserves  more  discussion. 

1 . 3 .  Background 

The reader  i s  r e fe r red  to the bibliography for mater ia l  that was found 

to be especially helpful in  one o r  m o r e  aspects  of the present  r e s e a r c h  p rogram.  

In par t icu lar ,  Goldstein! 10) provides sufficient background in classical  

rigid body m e  chdnic s , while Abraham(1) provides a much more  modern t r ea t -  

ment  of mechanics .  Nelson(20), Flanders(?)  , Greub(l1)  , and Warner(27)  

provide sufficient background mater ia l  in tensor  a lgebra ,  as it is used in  the 

f i r s t  pa r t  of this re sea rch  program.  
\ 

Van Trees(47) ,  Viterbi(48) and Jazwinski(39) a r e  excellent re ferences  

i n  estimation theory and phase-locked-loop techniques. Ito(36) and McKean(41,44) 

provide a m o r e  modern and matllelnatically r igoro~rs  appl-oach to the cha rac te r -  

ization of noisy measurements  of .;palial c)ricntatjo'n. 



To gain some idea of present day attitude control techniques that a r e  

used,  the reader  i s  re fe r red  to Likins(58), Fleischer(55) and Much e t  al(62). 

The NASA publication on radiation pressure  torques , including both sunlight 

pressure  torques a s  well a s  thermal torques, i s  a good introduction to the 

practical aspects  of solar pressure  attitude control disturbances(NASA(63) ) .  
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Chapter Two 

Four-Dimensional Space -Time Newtonian Mechanics 

2 . 1  Introduction 

In this chapter, a novel, simple and elegant space-time formulation 

of Newtonian mechanics is developed. The main mathematical tool used to 

I develop this theory is the exterior product, a generalization of the c ross  

product between two vectors f rom 3 to 4 dimensions. Using this tool, a 

complete and self-consistent set of equations of motion for  a single particle 

a r e  developed; four equations deal with time derivatives of l inear momentum, 

while the other six a r e  time derivatives of angular momentum. The f i r s t  

four ,  Newton's laws,  a r e  the fundamental equations of motion; the six angular 

momentum equations follow as  a natural consequence of the four linear 

momentum equations. 

The formulation presented here  offers a new simple physical interpre- 

tation of the ten conservation theorems of mechanics, theorems dealing with 

ten quantities that do not change with time when no farces  a r e  present.  

theorems were shown by Noether(21) to be the only possible conservation 

These 

theorems; however, he r  arguments, based on a Lagrangian formulation of 
f 

mechanics, involve some subtle variational techniques viz. a .  viz . the ten 

independent parameters  governing transformations from one space-time 

coordinate frame to another. On the other hand, these ten theorems follow 

quite directly and simply from the ten equations to be presented here .  

The theory i s  complete and self-consistent, in that no more equations 

of motion can be found than those presented he re ,  provided the only 



20.  

mathematical operations allowed a r e  the exterior product and differentiation 
I 

I with respect to time. Many treatises on mechanics hav overlooked three 

of the angular momentum equations to be presented here ,  and concentrated 

on the four fundamental linear momentum equations, often leaving the im- 
e 

pression these three angular momentum equations do not even exist. After 

I this work had been completed, the author searched the literature and was 

able to find only one forgotten paper by Cartan(3) which even intimated there 

might be ten equations of motion for  Newtonian mechanics (see Appendix). 

However, Cartan's work i s  very different in spirit from that found here .  In 

this chapter, a ser ies  of intuitive and physical arguments a re  presented to 

develop a natural and correct approach to Newtonian mechanics, a t  the 

expense of mathematical r igor.  Cartan's treatment contains more mathe- 

matical r igor ,  but i s  missing much of the physical flavor found in the argu- 

ments here ;  moreover,  he i s  extremely te rse  on why there should be ten 

equations of motion for Newtonian mechanics. 

angular momentum equations contain no new information than that found i n  

Since the three forgotten 

the four l inear momentum equations, it i s  perhaps not surprising they have 

been forgotten. 

It is straightforward to extend these equations to include eifects due 

to special relativity in a natural manner, unlike other relativistic theories 

of mechanics known to the author; this issue will be dealt with elsewhere. 
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I 

I 

I 

I 

I 
I 
I 
I 

I 
I 
I 

I 

I 

I 
I 

2 . 2 .  Kinematics of a Single Particle 

This section is  concerned with describing the position of a single 

particle,  in space and time with respect to a reference coordinate. Space 

and time together make up the arena in which the dynamics of the single 

particle can take place. 

but occupie s such a n  infinitesimal volume of space at  any instant of time that 

it can be considered a point in space-time with mass ,  o r  a point mass .  

Four independent numbers a re  needed to describe the position in  space and 

time of the particle: 

describe the instant of time the particle is  a t  that position. 

The particle is  assumed to  have positive mass  M, 

three to specify its position, in space, and one to 

An interesting question now arises: given the space-time coordinates 

of a particle in a reference coordinate frame, called frame A (arbi t rar i ly) ,  

how do these coordinates relate to the particle's coordinates in a different 

reference f r a m e ,  labeled frame B (again arbitrari ly)? It i s  assumed both 

frames have a standard orthonormal rectangular right-handed se t  of basis 

vectors for thc three space coordinates; the unit vector associated with time 

is assumed orthogonal to  the three space basis vectors. The relationship 

be&een the particle 's  coordinates 

B X 

yB 

B 

R 

z 

t 

.. 

dl 1 d l Z  

2 1  d2 2 d 

d3 1 d32 

0 0 

dl 3 

d23 

d33 

0 

in frames A and B i s  (Goldstein( 10) ): 

V 

V 

. -  
A X 

YA 

%A 

h 
t 
. .  

+ 
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t ) a re  the coordinates of the point B ’ Y B ~ ~ B ’  B t ) and (x A ~ Y A ~ ~ A ’  A where (x 

mass  in space-time in f r ames  A and B respectively. I 

The physical interpretation of the various parameters in this coordinate 

transformation i s  now discus sed: 

i )  (Xo,yo,zo,to)--when (x A = 0,  yA = 0, 

z = 0 ,  t = 0 ) ,  then (x = x , yB - y o ,  

ZB = zo, tg = t ), where (x ,y , z  , t  ) 

a r e  all assumed constant. 

- 
A A B o  

0 0 0 0 0  

Thus, the 

space-time origin of frame B is  displaced 

from the space-time origin of frame A by 

( X O ~ Y O ~ Z  0 0  , t  1 

ii) (vx,v ,vz)--when (xA = 0 ,  yA - - 0, zA = 0 ,  
Y 

= t 1, then (x = x t vx tA, yB = y o  + tA A B o  

v t  = z  t v  t , t  = t  t t  j .  This 
y B ’ Z B  o z z B  A o 

means the spatial part  of the space-time 

origin of frame B i s  displaced from the 

spatial component of the space-time of 

f rame A by the sum of (x .y , z ) and 

(vxtA,v t v t ). The f i rs t  t e rm is 

par t  of the displacement discussed in i ) ;  

0 0 0  

y A ’  z B  

the second t e r m  i s  called a translation. 

The time components t and t a r e  r e -  A B 

lated by a displacernent i i i  L i r n c ,  t . 
0 
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iii) 

- 
dl 1 

d21 

d3 1 

Unlike (X ,y z , t  ) ,  (vx,v , v  ) a r e  assumed 
Y Z  0 0 ' 0  0 

to be functions of time. 

(dl dlZ, dl  3, dZ1 d22, d23, d32, d33)--these nine 

parameters  have s ix  constraints associated with 

them: 

dl 2 dl 3 

d2 2 d23 

d3 2 d33 

2 2 2 
d l l  t d12 t d13 = 1 

2 2 2 
dZ1 + d 2 2 +  dZ3 = 1 

2 2 2 
dgl + d 3 2 +  d33 = 1 

dl 1 d2 1 d3 1 

dl 2 d22 d32 

dl 3 d2 3 d3 3 

d l l  d21 d12 d22 + 5 3  d23 = 0 1  

d l l  djl + dlZ  d32 t dI3 d33 = 0 
six 
constraints t 

= o ]  
d21 d31 d22 d32 + 5 3  d33 

where d represents  the projection of a unit vector directed along frame A ' s  11 

.x-axis  onto frame B's x-axis, d 

frame A's y-axis onto frame B's x-axis,and so on. 

nine parameters  with six constraints, there a r e  only three independent 

parameters  associated the d . . ' s , i , j  = 1 , 2 , 3 .  

only three independent parameters ,  the matr ix  of d. ' s  i j = 1,2,3 is decom- 

posed into the product of three matrices,  each parameterized by one independent 

variable, each representing a rotation in space about some axis: 

the projection of a unirt vector directed along 12 

Since there a r e  a total of 

To emphasize that there a r e  
1J 

1j 
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d l  

d2 1 

d31 
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- r < a l , a 2 , a 3 S x  

= exp(a L ) exp(a L ) exp(a L ) 
1-1 2 -2 3-3 L19 429&,2+L3 

* 

0 0 0 1  

. ]  %=[. - 1  0 0 ] 0 

0 

where Exp(a L ) k = 1,3-,3 is  defined as  a matrix exponential. k k  

Thus , t he  ten independent variables, a l ,  a 2 ,  a v , v , v ,x ,yo, zo, to 3 ’ x  y z 0 

completely describe the relationship between space -time coordinates in  

frame B with respect to those of frame A .  

2.3. Exterior Algebra 

In order  to discuss Newtonian mechanics in four dimensions, the 

notion of a c ross  product between two vectors must be extended from three 

to four dimensions. 

ment h e r e  will concentrate on the algebraic properties of the exterior 

product; for much more detailed discussions of exterior algebra, the reader  

should consult Flanders( 7 ), Warner(27), Nelson(20) o r  Greub(l1).  Exterior 

products will be defined in very general terms with respect to a finite dimen- 

sional vector space; the special case of a four dimensional vector space, 

space-time, will be used a s  a concrete non-trivial illustration of these general 

properties . 

This extension is  called an  exterior product. The t reat-  

Let V be a real  n-dimensional vector space, with an orthonormal set 

of basis vectors (dx . . . , dx }wi th  respect to some coordinate frame. 1’ n 
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Associated with this vector space is a space of zero-dimensional vectors,  

the space of all real  scalar functions of the n coordinate j (usually these func- 

tions a r e  assumed to be continuous and infinitely differentiable, but these 

1 

properties will not be needed here) .  

denoted A {v), and has a basis vector (1). Next, there exists an n-dimensional 

vector space, with the same basis a s  V, denoted A p). Third, there exists 

1 a an - n(n - 1) dimensional vector space associated with V ,  denoted A w), 
2 

consisting of all vectors veh (V) of the form 

This zero-dimensional vector space i s  
0 

t 

a 

where f f ~ f '  is the exterior product. The exterior product must obey the 

following four constraints: 

Thus, a basis for ha(@ i s  (dx.Adx. ; i , j  = 1, ... n} subject to the constraints of 

1 exterior multiplication; there a re  - n(n-  1) vectors i n  this basis forA[% 
1 J  

2 b 
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By induction, the above rules can be extended to vector spaces A'[V), 
I where 2 I p I n .  Each vector v in  h'(v] can be written a s  

? W , w S  

Vectors in A'(v) a r e  subject to the following conditions I 

A s  an example, consider the four dimensional space-time vector space 

discussed ea r l i e r ,  with an orthonormal rectangular set of basis vectors, 

(dx, dy, dz, at}. Associated with this vector space a r e  a total of five vector 

spaces, defined according to the exterior multiplication rules of exterior 

algebra: 
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The physic; .-tsrpretation of these basis vectors is of interest: 

i) A'k)--{l} is  a scalar  real  number, with nitither 

magnitude nor direction in space-time 

h'N) - -  (dx, dy, dz, dt) a r e  basis vectors with both 

magnitude and direction, e.g. ,  dx has a "one- 

dimensional magnitude" of t1 in the tx-direction 

ii) 

iii) A'(V) - -  (dyhdz, dzAdx, d d d y ,  dtAdx, dt Ady, dtAdz} 

have both magnitude and direction, e .  g . , dyA dz has  

a "two-dimensional magnitude'' of + 1 in the l'y-wedge-2'' 

direction, while dt dx has  a "two-dimensional magnitude'' 

of t1 in the "t-wedge-x" direction, where "wedge" denotes 

exterior product k i d  not the ordinary three dimensional 

vector c ross  product 

iv) - - {dyA dzAdt ,dzAdxA dt, dxA dyAdt , dm dyAdz } have 

both magnitude and direction, e.g. ,  dy AdzAdt has  a 

''three-dimensional magnitude" of +1 in  the "y-wedge z- 

wedge-t" direction, while d x & y l d z  has  a "three-dimen- 

sional magnitude" of + 1 i n  the "x-wedge -y-wedge - z" 

dire c tion 

v) &V) - - (&A *Adz Adt } has  a "four dimensional magnitude" 

of 4-1 in the "x-wedge-y-wedge-z-wedge-t" direction. 

2 .4 .  Newtonian Space - Time Mechanics of a Single Par t ic le  

This section derives the ten space-time equations of motion of a 

single particle the space-time coordinates of the particle a r e  
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2.6) = space-time coordinates of a single particle 

The velocity of the particle is defined to be the derivative with respect to 

time of the space- time coordinates: 

d 2 . 7 )  - dt = velocity of a single particle 

The l inear  momentum of the particle i s  defined to be i t s  mass in  t imes its 

velocity : 

d 2 .8 )  m- dt 

X 
0 

z 
0 

t 
0 

mu 

mu 

mu 

m 

X 

Y 

z 

- 
Newton postulated that the time 

pY 

pz 

m 

= l inear momentum of a single 
par t  i cle 

rate of change of the l inear momentum of a 

single particle equals the for.ces acting on the particle: 

d 2.9)  xt 
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Where (Fx, F , F , 0 )  a r e  forces acting OF the x-, y- , z -  and t- components of 
Y Z  

the l inear momentum, respectively, and these eq-iation : assume the linear 

momentum and forces a r e  computed in a special L . ,rdinate f rame,  an 

inertial f rame,  which is defined (albeit circularly( a s  a coordinate frame in  

which the l inear momentum equations of motion can be written in the form 

above. 

The moment about the space-time origin of the linear momentum can 

be found using the exterior product: 

The first three t e rms ,  along dyAdz,dzAdx and dx/\dy, a r e  called here  space- 

like angular momentum components, because they a r i se  f rom purely spatial 

eGterior products. The final three terms,  along dtAdx, dtA dy, dtAdz a r e  

called here  time-like angular momentum components, because they a r i se  

from a mixture of space-time exterior products. All six t e rms  together 

make up what is called he re  the total angular momentum of the particle. 

Using the four equations of motion for linear momentum, the time 

rates of change of the six angular momentum components are:  
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Next ,  all possible exterior products of (x dx t y dy + z dz + t dt) 
0 0 0 0 

and (p dx + p 

all eight such products a r e  found to be zero. 

dy + p dz t m dt) taken three a t  a time a re  computed, and 
X Y z 

Thus, there a re  no further 

quantities than the four components of linear momentum and six components 

of angular momentum in mechanics, given all that i s  computed a r e  exterior 

products of space-time vectors describing position and linear momentum, 

and their time derivatives . 
What  i f  no forces act  on the particle? If F = F = F = 0,  then all X Y  z 

components of the l inear and angular momentum a r e  constant. Note that 

while it is obvioug from these ten equations that quantities such a s  p o r  

- m x  ) is  

X 

- z p ) a r e  now constant, it is also obvious that (t p 
(yo pz 0 y o x  0 

constant; the first two constants appear in many texts on mechanics, but the 

last one is mentioned rarely.  

* Noether(21) derived these ten conserved quantities f r o m  the Lagrangian 

L of the par t ic le ,  assuming no forces act on the particle,  where 

1 2 2 2  
X Y Z  

L = z  m(u + u  + u )  

through an argument based on techniques used in calculus of variations. 

Recall that four number specify the position of a particle in space-time; if 

this position is perturbed slightly, the new position will be a function of the 

old position a s  well a s  the ten independent parameters defining the t ransfor-  

mation f rom the old to the n e w  position, This transformation is 
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i s  a conserved quantity 

Note that since p , p  , p  and E a r e  constant, m must be constant. Note 

further that E equals the Lagrangian  L ;  Noether demanded that the ten inde- 

X Y Z  

pendent parameters  not perturb the Lagrangian, but due to  the fact that the 

kinetic energy and Lagrangian a r e  identical he re ,  perhaps missed a more 

fundamental observation: m is constant, a fact  that ar ises  quite naturally 

f rom a space-time formulation of mechanics. 
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2 . 5 .  Space- Time Equations of Motion of a Single Rigid Body 

This chapter concludes with a derivation of the ten space-time equa- 

tions of motion for a single rigid body. 

as finite collection of small bodies, each occupying a small but finite volume 

of space at any instant of t ime, and fixed rigidly with respect to all  the other 

small bodies comprising the rigid body. "Small" in this context means the 

volume occupied by each body comprises many thousands of atoms of what- 

;-/er substance the rigid body is made of, while a t  the same time this volume 

is much less than total volume of the rigid body. 

a typical rigid body decomposed into N small  bodies. 

A single rigid body may be viewed 

The sketch below shows 

Figure 2 . 1  

A single rigid body 
broken down into 
N rigid bodies 

th 
T h e  space-time coordinates, in an inertial frame, of the mass  a r e  

(\,yk,zk, tk). The equations of motion for this mass ,  assuming it i s  a 

point mass, are: 



3 3 .  

2.20) 

2.21) 

2.22) 

2.23) 

2.24) 

2.25) 

2.26) 

2: 27) 

where 

d 2.28) y o  
t 

and 

xk 
'k 

k 

k 

z 

t 
- 

k =  1...N 

# FE FE = x - , y - ,  and z-components, respectively, of 
xk' yk' zk 

external forces acting on mass k 
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j , F j F J = x- ,  y-, and z -  components, respectively, of 
Fxk yk' zk 

constraint o r  reaction force of mass j acting 

mass  k 

1 

0 

if mass  k is adjacent to mass  j 
S 

if mass  k i s  not adjacent to mass j 

If all equations for the x-component of the linear momentum a r e  added, 

defining 

and realizing the reaction force of mass k on mass j i s  equal and opposite to 

the reaction force of mass  j on mass k, 

a i 
2.31) F a - F  

X k  

so 

This equation can be written simply a s  

E d 
dt  x X 

P = F  2.33) - 

By adding up all the other equations for the linear momentum, component by 

components, it  is easy to see 
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2.35) 

2.36) 

35. 

i 

&= I 

To proceed fur ther ,  it is useful to define the center-of-mass of the body. 

This is a set  of coordinates, (x , z  , t  ), where cm’Ycm cm cm 

2.40) 

Note that time i s  assumed identical through the body, a t  all space-time 

coordinates. It is also useful to define coordinates with respect to the center 



Then i n  t e r m s  of center-of-mass coordinates, the linear momentum equa- 

tions of motion be come : 

d 
2.45a) (P,)= FE, 

Adding up the angular momentum equations of motion, component by 

component, i t  is straightforward to  show 

These ten equations, (2.45)+(2.54) a re  the ten space-time equations of motion 

for a single rigid body. Note that the time-like compo2ent of the angular 
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momentum is a function of center-of-mass variables alone, a s  is the l inear 
1 

momentum, while the space-like component of the angular momentum depends 

both on center-of-mass variables and coordinates with respect to the center 

of mass .  

The equations of motion decouple into two sets of equations, one 

describing motion of the center of mass (equations (2.45)-2.51) ) ,  the other 

motion about the center of mass  (equations (2.52), (2.53), (2.54) ). Since 

the motion of the center of mass  in space can be described by six first order  

differential equations, three of the equations (in (2.45) - (2.51) ) a re  redundant; 

typically, equations (2.491, (2.  S O ) ,  (2.5 1) a r e  ignored, since they contain no 

more information about how external forces act  on the center of mass  than 

equations (2.45a1, (2.46a), (2.47a). In fact, the motion of the center of mass  

is completely described by 

2.45b) 

2.46b) 

- . 2.47b) 

2.45a) 

2.46a) 

2.47a) 

oe 
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APPENDIX 

After the work described in Chapter I1 was completed, a thorough 

l i terature  search was undertaken to see  whether a similar four-dimensional 

space-time formulation of Newtonian mechanics had been presented elsewhere. 

To the best  of the author 's  knowledge, there is only one ear l ier  work that is 

similar to the theory presented in Chapter 1I: 

"Sur l e s  Vari6t6s h Connexion Affine et l a  Th'eorie de la 
Relativitg Gih6ralis6e , I 1  k. Cartan, Annales 
Scientifipue s de 1'E cole Normale Superieure , Series 
3, Volume 40, 1923 

Since this paper has  apparently been forgotten, the three pages of the ar t ic le  

relevant to  the work described in Chapter I1 a r e  included here  so that the 

reader may compare the two developments for himself. 
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VARICTkS A CttXXESlOX AFFISE. TIIEORIT. I k I :  1.A WUTIVITt :  c;ESEMl.lSEE. 

elles swt iiiviitiqui!mc*iit vttrifiees s'il ti'!- a pas de pression : dans le 
cas g e n i ~ d  ellw clonni*nt 

p;.. - 
pc: - p a  = 0, 

P , r - P q  = 0- 

= 1). 

I 1. 0 1 1  peut rtyw&wter Ics riwillats pri*c+clcnts au nioFen ci'unc 
iiotation vectorielie 4 i i tp lc ' .  L)Csigiions par les iettrcs 

%, 81, 8 2 .  8 s  

les quatrc vccteurs d'l-nivcw qui ont respcctiwment pour compo- 
santes 

' 9  0, 0 ,  0 ;  

0, 1, 0. 0 ;  

0, 0. 1. 0 ;  

0, 0 ,  0, 1. . 
Lcs quatre derniers sont des vecteurs d'espace. - h e c  ccs notations 

la u quantite tlv niouvt.nient-iiiass~~ B d'uii point uiatcriel de masse m 

Si nous coin-enons eiicortl tic tlesignrr par une lettre m on point 
d'Univcrs (t,  .r, -v, z 1. la deriviv 2 de c.e point par rapport au  t e m p  
est le vectcur dl-nivcrs dc c*ouipc)siantes 
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e .  I 3HTAS.  
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Chapter ILI 

Attitude Estimation 

A new concept for estimating the three angles which specify the 

orientation in space of a rigid body i s  now presented. 

cedure is analogous to phase-locked loop phase estimation: an observed 

function of the unknown angles is modulated by a function of the estimated 

angles, the resultant function is filtered by a l inear time-invariant system, 

and the system outputs a r e  the angle estimates. Two separate methods for 

implementing this concept a r e  discussed, one based on direction cosines, 

the other on quaternions. No attempt i s  made to show that the particular 

estimation method presented here  i s  a n  optimum method, i n  the sense of 

minimizing an e r r o r  cr i ter ia .  

ing technique that offers potential savings in hardware,  in certain cases ,  

over,  for example, methods based on Kalman filtering (see Jazwinski( 31) ).  

The estimation pro- 

The a i m  of this chapter i s  to present a work- 

Before beginning the actual description of the attitude estimation 

procedure developed in this research program it i s  perhaps instructive to  

survey those features common to any estimation problem. 

a r e  three in  number: 1) a parameter space, a space on which the parameters  

to be estimated a r e  well defined, 2 )  an  observation space, where functions of 

the parameters ,  corrupted by noise, can be observed, and 3)  two mappings, 

Those features 

one from the parameter 

functions to be observed 

the observation space to 

space to the observation space which defines the 

in t e rms  of the parameters  and noise, and one f r o m  

the parameter space, which defines an estimation 



43. 

procedure,  a method for processing observations i n  order to estimate the 

desired parameters .  
t 

For the problems to be discussed here ,  the parameter 

space is a real  three dimensional Euclidean vector space in which three 

angles take on their values. The observation space is a rea l  Euclidean vector 

space. The mapping from the parameter space to the observation space can 

be done in many ways, but only two will be discussed here,  a direction cosine 

mapping and a quaternion mapping; each of these mappings may be viewed a s  

an exponential mapping of the three angles from the parameter space to the 

observation space, loosely speaking. For both mappings, observations a r e  

functions of sines and cosines of the unknown angles, as  well a s  noise. The 

estimation procedure, the mapping from the observation space back to the 

parameter  space, i s  the subject of this chapter. 

In order to a s ses s  the worth of the estimation procedure, one approach 

w6uld be to define an e r r o r  cr i ter ia ,  a measure of how much the actual 

parameters  differ f rom their estimates. The e r r o r  cri teria considered in  

this chapter, often implicitly, is the difference between the actual value of 

an actual value of an angle and its estimate. An optimum estimation procedure 

minimizes the e r r o r  cri teria to i t s  smallest possible value, assuming the 

e r r o r  cr i ter ia  actually has a minimum and that an optimum estimation rule 

actually exists;  the question of optimum estimation will not be addressed in 

this chapter. 

3.1. Attitude Characterization 

This section discusses kvo methods for specify 

tion of a rigid body, direction cosines and quaternions 

ng the spatial orienta- 

The material  presented 
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here  is largely tutorial; Goldstein( 10) is an  excellent reference for material  
t 

on direction cosines, while Whittaker(28) is fine for  qurternions. 

3.1.1. Direction Cosines 

3 Consider two right handed Cartesian coordinate f rames in  R with 

the same origin labeled A and B. Assume that when frame A is rotated 

about some axis,  eventually it will coincide with frame B (see Euler’s  

Theorem-Whittaker, p. 2) .  If an arbi t rary vector has  coordinates 

z ) in frame A. and r = (xB,yB, z ) in frame B, then it is + A =  (xA’YA* A -B 

well known 

where - D is the direction cosine matr ix  from frame A to frame B. 

physical interpretation of the elements in  - D i s  simple; e .g. ,  

The 

i s  the projec- dl 3 

tion of a unit vector along the z-axis i n  frame A onto the x-axis in  f rame B. 

The elements in - D a r e  constrained by 
. 

T 
where D is the transpose of - D. Since there a r e  six constraints in this - 
matrix equation, 

2 2 2 
d l l  + d12 t d13 = 1 dll  d21t  d12 d 2 2 + d 1 3  d23 = 0 

2 2 2 
d21 + d22 t d23 = 1 d l l  d31 d12 d32+  d13 d33 = 

2 2 2 
dgl + d32 t d33 = d t d  d21 3 1  22 d37,+ dm d33 = O 1 
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while - D contains nine parameters  total, - D can be characterized by three 

independent parameters .  

three-tuple - a = (a l , a Z , a 3 ) ,  represent 

These three parameters a r e  angles, denoted by a 

rotations about x ,y ,  or  z axes: 

- 
0 0  0 0 1  

- X  L =I ; -3 ..=lo 0 1 -2 L = 

- 1  0 0 

- 
0 - 1  0 

1 0 0  

0 0 0  . 
In all cases ,  - D is specified by the three independent angles a 9 a2 ,  a3 

However i f  either 

then D can be shown to be composed of sines and cosines of (a +a ) or  sines 1 3  - 
and cosines of (a -a ), depending on the exact choice of L and L in t e rms  

o ~ L  , L , L \ In this case - D is  "singular," in  that specifying only two 

1 3  -1 -3 

-x -y --e 

independent parameters ,  a and either (a +a ) or  (a -a ) uniquely determines 

D. 

2 1 3  1 3  

- 
If coordinate f rame A i s  rotating relative to frame B, then the direc- 

tion cosines f rom A to B change with time. The derivative of D with respect - 
to time i s  
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w =  - 
W 

X 

W 
Y 

W I .  z 

where - w is called the angular velocity of frame B with respect to frame A. 

3. I .  2. Quaternions 

A second way of characterizing a rotation in space i s  by a quaternion. 

A quaternion q may be viewed a s  a four-tuple (with one constraint) 

4 3 4  where I, J ,  k and 1 a r e  unit quaternions, which multiply according to the 

rules  of quaternion multiplication: 

? ?  t 2 - Z  4 A  
l J = - J l -  l i = i l = i  

j k = - k j = i  l j = j l = j  
4 4  4 4  4 A 4  4 
k i =  - i k =  j l k = k l = k  

4 2 1 = 1  A 4  A 4  4 4  A 

t 
The conjugate of a quaternion q ,  denoted q , is defined to be - - 

+ 4 4 4  
9 = -ai -bj -ck t d(1) 
I 

3 . 6 )  

The four parameters  of a quaternion are constrained: 

2 2 2  
9 9  + = s _ g -  3- - a 2 + b  + c  t d  = I  
c -  

3.7) 

Since any rotation in  space is a rotation about some axis, a quaternion may 

be viewed with respect to a. reference coordinate f rame a s  

where a t  any instant of time the rotation is about a unit length vector,  called 

the instantaneous axis of rotation, and 
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cos d = projection of instantaneous axis of rotation 
I 

onto x-axis of reference frame 

cos f = projection of instantaneous axis of rotation 

onto y-axis of reference frame 

cos 1 = projection of instantaneous axis of rotation 

onto z-axis of reference frame 

W = amount of rotation (in radians) about instan- 

taneous axis of rotation 

Using the power se r i e s  definition of an exponential plus the rules  of quaternion 

multiplication, this can be rewritten as 

3.9)  E X P I  f I : h . r + - j E M P +  :wda1] 

If w = w t 2 n n ,  physically this represents a rotation of w 

instantaneous axis of rotation. 

radians about the 
0 0 

Note that 

p: a($) + L ( $ ) [ : m e + j ~ P )  :-aJf 
r( 

3.10) 8: (-1) { W + ( ~ ) + & ( ~ ) ~ * l c a ) d + ~ ( 4 6 ~ +  ~~~~] = [ - I ) '  % O  

that is ,  both 9 

i n  space. 

(if n is even) and -9 ( i f  n is odd) represent the same rotation 
0 0 

This fact  is reflected in how quaternions transform vectors in  

frame A to vectors i n  frame B .  If an arbi t rary vector has  coordinates 

) in frame A,  and r = (xB, yB,zB) in f rame B,  where -A = (xA,yA9 'A -B 

frame A and B a r e  related by a rotation about some axis,  then 
I 
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Since this can also be written a s  

a quaternion is a point on a sphere in Euclidean four-space, but the rotation 

that quaternion represents  must be considered as two antipodal points 

( a ,b ,  c ,  d) and (-a,  -b, -c,  -d) on that sphere. 8 

If coordinate f rame A rotates relative to frame B,  then the quaternion 

relating those two f r ames  changes with time; it can be shown (Whittaker(28), 

d 
3.13) - dt 

a 

1 
2 

- -  - 

- 
U w l  X 

0 -w 
z 

W 0 -w w 
z X Y  

O -W W Y X 

"_I -w -w -w 
X Y Y 

where w is the angular velocity of B with respect to A.  

3.2. 

- 
Attitude Estimation With Direction Cosines 

3.2.1. Deterministic Attitude Estimation 

3.2.1.1. Model 

A block diagram for a system which estimates the three angles which 

specify the orientation of a rigid body from direction cosine measurements 

is shown below (without any noise sources): 



It is assumed: 
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3.14) 

3.15) 

where 

L =  
-X 

1) al l  components of D the received direction cosine 
-R' 

matrix, a r e  observable 

A 2) D and D, the received and estimated direction -R - 
cosine matrices  , respectively, a r e  each described 

by three roll-pitch-yaw angles, a and a,  respec- 

tively 

- -R 

D = ~ X P  ( x R L )  exp (y L 1 e q  (Z L ) a = (xR,yR7 z )  
-R R - Y  

D = exp C ~ : L  I exp (;L 

R-z -R 
h 

Ir A A  exp (:L - a = &7yJz) 
1+ -Y -Z 

- 

- E resul ts  f rom postmultiplying 

0 0 1  

0 0 0  

-1 0 0 - - 
A T  

D bYD 7 -R - 

L =  > -z 

0 - 1  0 1 1 1  - 
the transpose (denoted with 

If each of the six angles is small  compared to one, then E can be approximated: - 

3.17) 
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one choice i s  better than any other choice. Only two will be considered 

he re ,  to provide a concrete example for discussion, and to simplify algebraic 

manipulation : 

The e r r o r  vector e is used as-an input to  a l inear  time-invariant system which - 
A generates angle estimates,  - a ,  

N N a ( t ) = a  
0 -0 z = A % + B e  - -- -- - 

Y 
3.21 $ = C a  - -- 

* A 
where A,B, and C a r e  3 x 3 matrices,  a and a a r e  3 x 1 vectors. Fo r  the two 

- L  - - - 
examples to be considered, A = 0,  so  this system is a pure integrator. - -  

T 
The -angle estimates a r e  then used to  generate D , closing the loop 

The intuitive operation of the loop is simple: postmultiplying D 

undoes the rotation represented by D - the negative feedback of the loop 

- 
T 

by -R 

-R 
eventually zeroes e ,  eventually making E the identity mat r ix  and E. a = a 

--Re - - - 

. For  future reference the off diagonal elements of E a r e  now explicitly spelled - 

out: 
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where sine and cosine have been abreviated to s and c ,  respectively. To 

car ry  the analysis further,  two examples a r e  now examined i n  detail. 

3.2.1.2. Example 1 --Constant Orientation in Space 

Throughout this section a is assumed constant but unknown. If -R 

' If (3.19) is used for - e ,  these three equations can be written out 
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The figure below shows a sampled-input, discrete-t ime approximation to 

these equations 

The figures on the following page show the resul ts  of a computer simulation 

of the equations above using the discrete time filter (Figure 3 . 3  

a = 0 ,  aR = (60°, 45O,  30 ); Figure 3 . 4 a o  = 0, aR = ( -60  , -45 , -30 ) ) 

with A t  = 0 .1  seconds in each case,  and B 

h 0 0 0 h 0 

-0 

= B = B = 1. 
X Y  z 

The next step i s  a linearized analysis of these equations. If a = 
-r - 

0 . (60°, 45O, 30 ), and if i t  is assumed 
L 
x = CO0*6X 1 6 & 4  
A 

3 . 2 5 )  

then using the approximations sin a 9 a ,  cos a 9 1 for  I q f d e i ,  and keeping 

t e rms  to f i r s t  order  only ,  it can be shown that 
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Note that estimation e r r o r s  can be nulled out fas ter  than in  Figure 3 . 4  (where 

B = B = B = 1) by choosing B ,> 1, B >> 1, B >> 1. A word of caution is 
X Y  z X Y Z 

in order:  str ictly speaking, this linearized analysis is valid only for 1 6 x / q ,  

)&jiaj ,  l d a + l  while Figure 3 . 4  shows that near t = 0 there approximations 

a r e  not valid. As long a s  estimation e r r o r s  a r e  l e s s  than 10 0 .  , i . e . ,  t> 6 

seconds i n  Figure 3 . 4 ,  the l inearized analysis provides good agreement with 

simulation resul ts  . 
If instead of equation (3.19), equation (3.20) is chosen for e , the - 

results of both the computer simulations and linearized analysis a r e  identical 

to  those ju s t  discussed. 

The stable states of equation ( 3 . 2 3 )  were investigated next. 

First, the steady state solutions to ( 3 . 2 3 )  were  found; i f  (3.19) i s  

used for e ,  the steady state solutions are - 
1 t-xt +QU x =  Xk S Q R  

where (a ,  b, c) a r e  integers,  while i f  (3.17) is used for e ,  the steady state - 
A solutions are 
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As a check on these solutions, a -R was held fixed, and the M.I.T. 
1 

Computation Center Fortran I V  Subroutine " N O h i I N "  was used to solve 

A A a )  = 0, with a grid of initial tr ial  solutions for a.  No more solutions - - e kF+ - 
were found in  this way than those above: clearly, this i s  no guarantee all the 

steady state solutions a r e  known. 

To il lustrate this point, a different choice of e was made: - 
e, = a (  L E  31-  

3 . 2 9 )  

" 3  = I( Ea, kJ 
A paper-and-pencil solution to e = 0 yielded results similar to those in 

equations ( 3 . 2 7 )  and ( 3 . 2 8 ) .  

a = 4 5  , a 

a = 209.75 , a = 3 9 . 1 3  , a s  well a s  at the expected solutions. 

- -  

However, using this e ,  when a = 60°, 
, rx - 

0 0 = 30 , "NONLIN" showed that e = 0 when *a = 188.88O, 
X - -  r Y  rz 

Y z 
A O A  0 

The stable states can be found by linearizing the equations of motion 

about the steady state solutions above, and then perturbing the equations 

away from the steady state solutions to see i f  solutions to the linearized 

equations a r e  stable o r  unstable. To  be more explicit, denote a steady state 

solution a s  (x ,z 1 ,  and assume the estimates a r e  perturbed slightly ss'yss s s  

from this solution: 

3 . 3 0 )  

1 ,  ignoring second and higher 
s s  ''ssp z s s  

Expand e i n  a Taylor series about (x - 
order terms:  
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Then in  t e r m s  of perturbed variables (Jx 4 6 ) ,  equation (3.10) becomes 
1 !dl 3 

A 4 ) = 0 and "ss"  means "evaluated at x = x , y = yss,  s s J y 8 s ~ z s s  - ss 
where e (x 

A z = z 

- 

.'I Note that the eigenvalues of the linearized system can be deter-  
s s  

mined by the steady state solutions. For example, i f  ( 3 . 1 9 )  is used for 2, 

one se t  of steady state solutions is 

It can be shown that i f  x - = z = 0, none of these steady state solutions 
r - 'r r 

a r e  stable,  but i f  x 

exists for a , b , c  all  odd. 

= T , y, = z 
I: r 

= 0 ,  then a stable steady state solution 

The figure on the next page shows the resu l t  of a 

computer simulation of equation (3 .24 )  with B = B = B = 1, and 
X Y  z 

4 x, 3 oo x, t \aoo 

Clearly the stable steady- state solution to this simulation i s  
A 

=. - boo z Y p  + (-AI It 
$ z 7 5 O  = - l v +  (ml 
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I 

I 

I 

3 . 2 . 1 . 3 .  Constant Rate of Change of Roll-Pitch-Yaw Angles 
I 

Throughout this section, a and *a a r e  assumed -0 be of the form - -r  

where f = (f ,f , f  ) a r e  known and constant, Q 

and constant, and % =  (9  , q  ,(e ) a r e  estimates of (I = ( 9  , 9 , 9 ) .  The 

= ( q  , (4 ) a r e  unknown Or rx r y  r z  
A 4 4  - " Y ;  

X Y Z  -r rx r y  r z  

reader i s  cautioned not to confuse this set of circumstances with a constant 
I 

angular velocity; f rom Goldstein( 10) angular velocity in t e rms  of roll-pitch- 

I 

~ 

yaw angles can be shown to be 

1 

0 [ 0 
1 

0 +*  [ 0 
0 

cos a 

sin a 

r x  

rx 

0 

cos a rx 

sin a rx 

0 

cos a 

- s in  a 

cos a 

rx 

0 

roso.=y 1 js,, ary 0 cos a 

I 

Only under special circumstances (e .g .  f = f = 0) does constant rate of 

change of roll-pitch-yaw angles reduce to constant angular velocity. 
X Y  

I 
I The system block diagram is slightly modified to take this into account: 1 
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The only change f rom the ear l ie r  system is a processor which demodulates 

3 )  . I f  e is given by (3.16),  then I f i  

and f i l ters  - e ( $  - 8  9 rId1 4 3;) to give g($,, - 
a possible processor  is: 

Each low p a s s  filter is assumed ideal, passing signals a t  zero frequency 

without attenuation, but perfectly blocking signals outside this band from 

pas sing. 

The demodulated and low pass filtered e r r o r ,  e ' ,  is used as the input - 
to the l inear  time invariant system: 

0 
N N 'v 

y (&A= 5, 
3 . 3 3 )  A I =  a d  c; 

For the example above, - e '  i s  

The l inearized analysis of these 'equations is  straightforward: 

then - d = -9 
i f  9 = 2, r 

4 4 
and if ~ ~ J ~ ~ ~ , ~ ~ $ & I ,  i'!jlal, t5en to first order  in  9 
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If 

That is ,  for small initial e r r o r s  this system wil l  estimate the correct  phases.  

The steady state solutions can be discussed for this example just as i n  the 

previous example. No computer simulation of the equations of motion was 

carr ied out. 

3.2.2. Stochastic Attitude Estimation 

3.2.2.1. Model 

A block diagram which includes noise sources i s  shown below, virtually 

identical with that in Figure 3.1: 
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Two noise sources a r e  evident: 

1) a, noise generated by sensor measurements, 

assumed added to the true angles a 

2) - n ,  noise generated by modulation and amplifica- 

-S 

tion of sensor measurements. 

The received direction cosines are: 

3.35) D = e x p [ ( s  + n ' ) L ] e x p [ ( >  t n ' ) L  ] e x p [ ( %  t n ' ) L  ] -R x x -  Y Y -Y z z - 2  

i .e .  , products of exponentials of random processes.  Ito ( 3 6 )  and McKean (41) 

have done some preliminary work i n  characterizing this particular process.  

However, the problem considered here ,  finding the aposteriori probability 

density of $, is apparently still  unsolved. From he re  on, a is assumed - 0,  
-n - 

while n i s  assumed to the only source of uncertainty in estimating a 

D 

problem analytically tractable. 

given 
-S - 

This is an ad hoc assumption, done only in the hope of making the new --R' 

3 . 2 . 2 . 2 .  Fokker - Planck Analysis 

For  example one, including amplifier noise n but not sensor noise a 
-n' - 

( 3 . 2 3 )  becomes 

N O 0  A A 
x =  B e. ( a , a  = a ) +  n x x --r -s X ;= A B e &,a  = a ) t n E(1) =O,E[z( t )n  T (SI]= z g  1 (t-s[: 2 :] 

y y --r -s Y 
i A z = B  e ( a , a  = a ) t n  

z z - -r -s 2 z 

where n i s  assumed to a zero-mean white Gauss-Markov random process ,  

uncorrelated between axes.  
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It is straightforward to derive the Fokker-Planck equation for the 
I 

aposteriori  density function of $(t) ,  given e t n f r o m  an initial time t 

present time t (see Viterbi (48) ) :  

to the 
0 - -  - 

This equation has an initial condition, in that a ( t  A ) is known: p&(t ) ) = 5 (g- A a ). 
0 0 -0 - 

Since e is periodic in each component, p has  a boundary condition: - 
A A p(a(t) I e,", [t , t)  1 = p(a(t) t (a Z I I  , b2+ , C ~ X  )I e ,G, [t , t) a ,  b ,  c integers  - 0 )  - 0 

This boundary condition suggests a possible approach to either solving 

the Fokker-Planck equation o r  approximating a solution is to expand the 

probability density in a Fourigr series for each of the three estimated angles; 

this approach was never seriously investigated. 

Either equation (3.19) or (3 .20)  can be used for e ;  in neither case was - 

i t  possible to solve the Fokker Planck equation explicitly. 

For ekample two, again including amplifier noise n but ignoring sensor - 

noise a , (3.33) becomes (B.1) n 
- A  
9 = 2s(d -d -d  )-2s(d -d t d  ) ts(d t d  ) t2s (d  t d  ) t2s (d  -d ) t n  
e x  Y X Z  Y X Z  X Y  x z  x z  x 
A 

3 . 3 8 )  $ = -s(d t d  ) -s(d -d ) t n  
* Y  Y Z  Y =  Y 
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. The Fokker-Planck equation i s  identical in form to that in  equation 

Again, i t  
I 

( 3 . 3 7 ) ,  with identical boundary conditions and initial cc iditions . 
was impossible to solve this equation explicitly for the aposteriori  probability 

density function of - a .  

3.2.2.3. Angle Estimate Skipping 

Recall that without noise present many steady-state solutions exist  

for the two examples discussed. With noise present,  i t  is possible for the 

systems discussed here  to skip from one steady-state solution to another, 

with the skip caused by a burst  of noise; computer simulations were car r ied  

out to observe this skipping, and showed i t  indeed does occur.. 

There a r e  two ways for the estimated angles to skip: first, any esti- - 
mated angle may increase by a multiple of 2n radians; second, all the angle 

estimates may hop from one type of steady-state solution to an entirely dif- 

fe'rent one (cf. the three different types of steady-state solutions in equations 

(3.27) - (3.28) ). The f i r s t  case corresponds to a rotation in space about 

some axis by a multiple of 2 n  radians; physically, this corresponds to no 

change in the es.timate of orientation i n  space. The second case does co r re -  
.I, 

spond to a change in  the estimate of spatial orientation. The only approach 

known for investigating these two cases i s  to check the stability of steady- 

state solutions in the absence of noise, a s  was discussed in sections 3.2.1.2-3. 

Bounds on how frequently an angle estimate might skip a r e  not known at the 

present time. 
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3.3. Attitude Estimation With Quaternions 

3.3.1. Deterministic Attitude Estimation 

Because of algebraic complexity encountered in using direction cosines, 

as well a s  the inability t o  solve the Fokker-Planck equation for the aposteriori  

statistics of a,  the same attitude estimation method was implemented with - 
quaternions rather than direction cosines. This implementation is now 

di s cus sed .  

3.3.1.1. Model 

A block diagram for  a system which estimates three roll-pitch-yaw 

angles which specify the orientation of a rigid body from quaternion measure-  

ments is shown below (without any noise sources):  

It is assumed: 

1) all components of 9 , the received quaternion, a r e  
r 

I 

observable 

A 2) 9, and 9. the receiired and  estimated quaternions, r e -  

spectively, a r e  each described by three roll-pitch-yaw 

angles,  a and a ,  respectively. 
4 - -r 
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A E 
3.40) = [c(e/2) t  i s($/2)] [c($/2)+: s ( f /2) ]  [c($/2)t1 s(z*/2)] 

A A A  
where (1 , i , j , k) a r e  unit quaternions which multiply according to the rules of 

is postmultiplied by g+ , the quaternion con- 4 r  quaternion multiplication. 

jugate of 9 (denoted with a l l t l r )  , which produces an e r ro r  quaternion, 9 e 
A L A =s,s+= e i t ?  j + e  k t e  

X 2 W 
3-41] 9, 

If each of the estimated angles as well  a s  the actual angles has magnitude 

much l e s s  than unity, g can be approximated e 
4 A U A A 

3.42) e z (x - x) /2 ,  e J (yr - y)/2 ~ e b" ( z  - 2) /2  e 1 
X r Y 2 r W 

Unlike thedirection cosine case,  e can be chosen here  in only one way, 

l 

e = (e , e  ,e ). 

e = (e  , e  , e  ) is used a s  an input to a linear time-invariant system which . 
X Y Z  

X Y Z  

- 
- 
generates - a: 

Ir N 3.43) a =  C a  
A - a is then used to generate gtJ closing the loop. 

quaternion phase-locked-loop is identical to that of a direction cosine 

phase-locked-loop: postmdtiplying 9 by 9 undoes the rotation represented r 

by 9,; the loop negative feedback action nulls - e to zero,  eventually making 

A = a .  =e -r - 
stated: 

The intuitive operation of a 

4 JI 

t 8 6 

= 1 and a For future reference the components of e are explicitly - 
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A A 
3.44b) 

3 . 4 4 ~ )  

e = c ( s  /2 )s (d  /Z)c(d / Z ) - s ( d  / 2 )c ( s  /2)s(d /2 )  

e = c(s /2)c(s  /2)s(d /2)+s(s /2 )s (d  /2)c(dZ/2) 

s = yr + y 

s = zr + z 

dy = yr -y  

d = z -2 
X Y 2 Y Y X Y Z 

z X Y Z X Y Z Z r 
A 

To proceed further,  the two examples discussed in the direction cosine case 

are re-examined. 

3. 3.1.2. E x a m d e  1 --Constant Orientation i n  %ace 

Throughout this section, a i s  assumed constant but unknown. If -r 

then equations (3.43) and (3.44) can be combined: 

A x = {s(d /2)c(d /2)c(d /2)+c(d / ~ ) s ( s  /2 )s (d  /2)JBx . Y X Y Z X 

3.45) f = b(s /2 ) s (d  /2)c(d /2) -s (d  / ~ ) c ( s  / 2 ) s (d  /2)IBy 
X Y Z X Y Z 

i z = @(s / 2 )c ( s  /2 )s (d  / 2 ) t s f s  /2)s(d /2)c(d  /2)]BZ 
X Y Z X Y Z 

x(to) = x 

y(to) = yo 

z(to) = z 

Z 0 

0 

This discrete-t ime sampled-input approximation i n  Figure 3. 2 was 

used to approximate these equations; the figures on the next page a r e  the 

0 0 
results of two computer simulations (Figure 3. 10, x = 60 9 yr = 45 , r 

0 0 0 0 z = 30°, a = 0 

w i t h h t  = 0.2 seconds and B = B = B = 1 .  

The linearized analysis,  assuming a 

and Figure 3.11, x = 60°, y, = 45 , z = -30 , a = 0 ) r .  -0  - r r -0 - 

X Y  z 
0 0 0  4 

= (60 ,45 ,30 ), and 9 = -r 
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The steady state solutions to e = (e , e  , e  ) = 0 a r e  - x y z  - 
x = x  + % a  x = x  t a q  r r 

y = y r t  a b  a , b , c  even; y = -yr + bx a , b , c  odd 

z = z  t n c  z = z  + c q  r r 

Again, an analysis similar to that in Section (3 .2  -1.2) must be carr ied 

out to determine which states a r e  stable and which a r e  not. For  example, a 

I comDuter simulation of these eoi ia t innn WE 

A 0 z = o  
0 

z = 90° r 

and the results were similar to those i n  Figure 3.6, with the steady state 

(demoted ss)  angle estimates being 

A 0 
x = -60 x t a x  

*SS = 7 5 O  z-y, t bT 
A 
z = -90° =. z + c n  

ss r 
4 

a ,b , c  odd 

s s  r 

3 . 3 . 1 . 3 .  Example 2--Constant Rate of Change of 
Roll-Pitch-Yaw Angles 

4 
= f t t g r ,  a n d a  = f t t Q , where f is known and In this section a - - -  -r - 

A 
constant, (0 is unknown and constant, a n d 9  is estimate of 9 . The block 

diagram of the attitude estimation system becomes 

r -I- 
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e 

are a lso  the stable solutions, are 
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3 . 3 . 2 .  Stochastic Attitude Estimation 

3.3.2.1. Model 

A block diagram which includes noise sources is shown below, 

where a a r i s e s  f rom sensor measurements,  - n from amplification and modu- 
-n 

lation as in the direction cosine case.  

The received quaternion is: 

A 
[c(s Z -k n' Z / 2 )  + k s ( s z  + n Z / 2 ) ]  

Again, no methods a r e  known for handling a ; from this point on it will be -n 
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assumed a 

uncorrelated from one component to the next. 

= 0, while n is a zero-mean white Gaussian random process ,  - -n - 
1 

3.3.2.2. Fokker-Planck Analysis 

F o r  example one, including n i n  equation (3.35) shows - 
v 
4 

0 
X 

x = B h f d  /2) c(d /2) c(d /2) t c(d /2) s ( s  /2) s (d  /2)3 t n 
d x  Y Z X Y z 

y = B {c(s /2) s (d  /2) c(d / 2 )  - s (d  /2) c ( s  /2) s(d /2)) t n 
Y Y X Y z X Y z 

z = B b ( s  / 2 )  c ( s  /2) s(d / 2 )  t s(s /2) s(d /2) c(dz/2)]  t n 
z X Y Z X Y Z 

A 
3.49) 

A 

where 

N 
Y 

The Fokker-Planck equation is straightforward to derive: 

The initial condition and boundary conditions a r e  

Three assumptions a r e  made 

i) a = a = 0 ,  the actual angles a a r e  all zero 
-r - s  - -r 

ii) N = N = N = N , the noise covariance is identical 
X Y Z  

in all three axes,  

iii) B = B = B = B, identical gain in all  three e r r o r  
X Y  Z 

amplifiers 
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then the steady-state Fokker-Planck equation can be written quite simply: 

If the solution is assumed to be p where 1' 

C = normalization constant 

then the first and third t e rms  in (3.52) are zero, but not the second. On he 

C = normalization 
constant 

then the second t e r m  in (3.52) i s  zero,  but not the f i r s t  o r  third. Even 

though the solution (3.52) seems within reach, no solution was found. 

Fo r  example two, including amplifier noise n, (3.47) now becomes - 
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The Fokker-Planck equation is identical in  form to (3 .50 ) .  Again, assume 

= 0,  N = N = N = N, a n d B  = B = B = B y  so that the steady state 
r -  X Y  z * Y =  

Fokker-Planck equation becomes: 

3 . 5 6 )  O =  2' a 4 2 [ + 6 p s d & d @  o d $ d l  * A%L$ 33 + 

-t 6ti&Ja) oL41h~15l4j1313 

The solution to this equation i s  

where C is a normalization constant, chosen such that 

which appears  Gaussian with variance ( N / 2  8). 

To keep the steady-state e r r o r  variance small, B should be chosen such that 

\%a] Lc 1 
Recall that i n  the linearized analysis of the model, B corresponds to bandwidth. 

Speaking intuitively. the la rger  the bandwidth B the smaller the steady- state 
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e r r o r  variance; this i s  analogous to the situation in an angle modulation com- 

munications system, where by increasing the system bandwidth noise effects 

a r e  suppressed. 

At this point, the steady- state Fokker-Planck equation has  been ex- 

plicitly solved for a special set  of circumstances, a quaternion implementa- 

tion of a particular estimation procedure. 

cosine implementation of this estimation process and solve the steady- state 

Fokker-Planck equation under the same s e t  of circumstances a s  was just  done? 

Why not return to  the direction 

In fact, this was attempted, but the attempt was unsuccessful. The 

reason for this failure is apparently fundamental, based on the observation 

that the observation spaces for direction cosines and quaternions a r e  essen- 

tially different vector spaces. 

estimation procedures is a r ea l  Euclidean three-dimensional vector space. 

However, the direction cosine observation space and the quaternion observa- 

tion space a re  real Euclidean vector spaces, of dimension nine and four,  r e -  

spectively. 

Recall the underlying parameter space for both 

Next, elements in the observed direction cosine matrix and 

components of the observed quaternion a r e  functions of sines and cosines of 

the three angles .to be estimated; the explicit relationship between each observed 

quaternion component and the elements in the observed direction cosine matrix,  

o r  between each element in the observed direction cosine matr ix  and the 

observed quaternion components i s  straightforward to work out but algebraically 

complex (this relationship reflects the fact that, loosely speaking, a quaternion 

when squared becomes a direction cosine). Finally, since the observation 
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spaces are different in  each case,  the actual details of the estimation proce- 

dure a r e  different; for the particular example considered he re ,  the demodu- 
' 

l a tors  differ for the direction cosine case from those in the quaternion case.  

If i t  could be shown that each estimation procedure was an optimum procedure, 

then perhaps it could be shown that the two estimation procedures were 

equivalent; however, the rule for estimating angles discussed he re  is a 

heurist ic one, and it is not a t  all clear what the optimum estimation procedure 

should be ,  so it is not surprising that the t w o  demodulators a r e  different. 

In summary, while it was fortuitous that the Fokker-Planck equation 

could be solved under a special set  of circumstances in  the quaternion case ,  

it is not at all clear why this good fortune should ca r ry  over under the same 

special set of circumstances to  the direction cosine case. 

,3.3.2.3. Angle Estimate Skipping 

The next page shows the results of a computer simulation of example 

0 one with amplifier noise included (equation 3.49), with a = (6Oo,O0, - 6 0  ) .  - r  

Note that two of the estimates of these angles a r e  initially close to the correct  

estimate,  and then skip by 27( radians, while the third estimate always remains 

close to the correct  angle. 

estimates of angles skipping have been discussed ear l ie r  ( 3 . 2 . 2 . 3 ) ,  and will 

not be repeated here .  No bounds on how frequently the est imates  might skip 

are known a t  the present t ime.  

Some of the qualitative issues associated with 
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3.4.  Summary 

This chapter developed a new method for estimating the three angles 

which specify the spatial orientation of a rigid body, given noisy sensor 

measurements.  Two ways to implement this method, one based on direction 

cosines, the other on quaternions , were discussed for two specific examples , 

fixed orientation i n  space and constant rate of change of the three angles. The 

theoretical deterministic performance limits of each implementation were 

covered: first,  an analysis of the dynamics of each implementation (assuming 

s a d 1  estimation e r r o r s )  was carr ied out, and second, the steady state and 

stable equilibrium points of each method were discussed. 

included in  each implementation , the theoretical stochastic performance limits 

were quite difficult to  pin down; in particular, while Fokker-Planck equations 

When noise was 

could be derived f o r  angle estimation e r ro r  a posteriori  probability density 

functions under certain simplifying assumptions about the nature of the observa- 

tion noise , these equations could rarely be solved. However , for a special 

set  of simplifying assumptions, with a quaternion based method for estimating 

the unknown phases of the three angles which change a t  a constant known rate 

with time, the Fokker -Planck equation was explicitly solved for the steady 

state e r r o r  probability density function. 
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Chapter Four 

Solar P res su re  Attitude Control 

4.1. Introduction 

A brief overall description of kvo possible synchronous orbit communi- 

cation satellites is now presented, before proceeding to a detailed description 

of the attitude control dynamics of each design. Both satellites orient them- 

selves in space using torques generated from solar or  sunlight pressure .  

The sketches on the next two pages show two possible designs for an 

a i r  traffic control satellite that would be in synchronous orbit over the North 

Atlantic. Each design has two sets of solar cell panels and a central 

antenna-electronics body, with three solar sails attached to each solar panel 

for attitude control. In both designs the antenna rotates about its central 

shaft every twenty four hours,  minus a factor due to the ear th ' s  annual motion 

about the sun; in  Design I the solar panels rotate about their shafts once each 

year ,  while in Design II the panels wobble from plus 23.5 degrees (with 

respect to the antenna shaft) to minus 2 3 . 5  degrees and back again once each 

year.  The attitude control problem i s  to point the antenna earthward and the 

solar panels sunward, aligning two prescribed body axes which i s  equivalent 

to three axis control of the solar panels and a prescribed motion of the 

antenna with respect to the panels. 

The technological constraints involved in these designs a r e  now 

sketched extremely quickly. 

solar cell power plant since nominally only  one surface faces the sun. 

Second, Design I involves a set of bearings for  each panel which must  rotate 

F i r s t ,  thermal design i s  simplified for the 
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FIGURE 4.2 
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extremely slowly in  space while passing DC electric power from the solar 

cells to the antenna electronics; Design 11 circumventsthis potential problem, 

because its solar panel need only be a spring capable of plus-minus 23.5 

degree motion. Third, the power systems for both designs contain solar 

cells and batteries (for use when the satellite is in earth shadow--seventy 

two minutes is the longest shadow duration, twice a year (Goddard (56)) .  

Fourth, structural  problems a r e  complicated by possible sail flexing and 

bending. For  a much more thorough coverage of these and other techno- 

logical problems,  the reader is referred to the bibliography (Abel ( 5 3 ) .  

F'leischer (55). Goddard ( 5 7 ) ,  Likins (58) MacLellan ( 5 9 ) .  M.I. T.  (60)).  

This r epor t  will concentrate on the attitude control dynamics of Designs I 

and 11 from here  on, not on the systems engineering aspects of communica- 

tions satell i tes . 

4.2.  Derivation of Equations of Motion 

Assume the solar  panels and antenna (in Designs I and 11) a r e  ideal 

rigid bodies with mass less  interconnecting shafts and solar sai ls ,  and the 

solar panels a r e  identical and rotate in unison about thecr respective shafts. 

Fix a n  inertial  right-handed coordinate f rame a t  the center of the sun, with 

its z-axis normal to the ecliptic and its x-axis pointing a t  the center of mass 

of the ear th  once a year ,  a t  the winter solstice. 

sion on Newtonian mechanics, the dynamical equations of motion for the 

center of m a s s  of either design a re  

F r o m  the previous discus- 
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d d 4.1) zt ,P = F - M = O  - d t  

d 
4.2) dt ( t P - M R  ) =  t F  - c m  - 

where - P =  momentum of center of mass in inertial coordinates 

M = total satellite mass 

F = external forces acting on center of mass in inertial coordinates - 
The center of mass  kinematical equations of motion for either design a r e  

= v  d 
dt -cm -cm 4.3) - R 

where R = position of center of mass in inertial coordinates 
-cm 

V = velocity of center of mass in inertial coordinates 
-cm 

Quite an  extensive body of l i terature exists for these equations, i n  classical 

celestial mechanics as well as  modern guidance and control theory. It was 

felt any work done here would not be a significant contribution to this a rea .  

From this point on, solar pressure attitude dynamics will be the main con- 

ce in ,  with center of m a s s  dynamics left for future work. 

The angular momentum equations of motion for either solar cell 

panel a re :  

where I = solar panel inertia tensor i n  body-fixed coordinates 
T 
W = panel angular velocity with respect to inertial coordinates 
-P 
N = sail  torque on panel due to attached sails  -sails 

N -ant +panel = antenna reaction torque on panel 
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Similarly,  the angular momentum equations of motion for the antenna a re :  

where I = antenna inertia tensor in body-fixed coordinates 
a b  

w 
*ab 

N - p a n e l s  --c ant 

= antenna angular velocity in body-fixed coordinates 

= total panel reaction torque 

Adding these two equations, and us ing  the fact reaction torques a r e  equal and 

opposite, the total angular momentum equation of motion i s  found to be 

where N = total sail  torque generated by all six sails -sail s 

A final kinematical equation is needed to describe how the direction cosines 

f r o m  body-fixed coordinates to inertial coordinates evolve with time: 

r -w 
z I 

d b b b  0 -  
dt -I -i -i -i 

4 .7 )  - D. = D. W 

W 
X 

b 
-i 

where D = 3 x 3 direction cosine matr ix  f rom body-fixed 

coordinates to inertial coordinates 

Equations 4 .6 )  and 4.7)  completely specify the attitude dynamics of Designs I 

and 11. 

of all  coordinate f rames and coordinate transformations a r e  detailed in 

separate appendices. 

The inertia tensors of each design a s  well a s  a precise explanation 
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4 . 3  Linearization of Equations of Motion 

When the direction cosines are perturbed slightly from their nominal 

values, it can be shown (Goldstein( 10)  ) - 
e -e 

e 
z Y 
0 

0 

X z D. b D (I-tE) E = 4 * 9 )  - 4  - j -  - n o m  

2n 
-nom - + =  +(t-to) t + = - 365 rad/day 

L o  
- where D - 

n o m  

4 

nominal direction cosine matrix f rom body-fixed 

coordinates to inertial coordinates 

- 1 = 3 x 3  identity matrix 

rotational e r r o r s  about actual x,y and z body-fixed 

axes,  respectively with respect to each nominal 

(body - fixed) axis 

Using th i s ,  it i s  easy to show the actual angular velocity of the body-fixed frame 

with respect to an inertial f rame;  and i t s  corresponding angular velocity, can be 

written a s  

4.10) w W + D  k -pz-nom -nom- 
ma 

4.11) - p S - n o m  w G t w  -nom X D  -nom- 5 t D  -nom - e 
4 

where 

e =  - 

e 

e 

e 

X 

Y 

z 

- W - 
-nom 

0 

0 

-4 
I -  
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Sail torque can be expanded in a se r ies ,  including only the nominal sail 

torque and a f i r s t  order  perturbation: 
I 

Z N  t D  N - n o m  -nom -body 4.12) N -sail s 

where N = nominal sail torque (hopefully zero,  a s  will be shown) -nom 

= sail torque beyond nominal torque, i n  body-fixed axes 
Ebody 

Substituting 4.9) - 4.12) into the total equations of motion, including only 

terms to first order in  linearized variables, and equating nominal trajectory 

variables to each other and perturbational variables to each other,  the 

l inearized equations of motion a r e  found to be: 

4 
x D  t t D  e )  t 2(W I -I w I D  e -nom - - n o m - p m  - p m  -nom --nom- 

a# 1 ( w  -sat -nom - n o m -  - .  
-b a b  a b  -b - n o m -  e +  w X I  D d + D  *e x ( 2 1  W t -pm n o m  -nom - s a t - n o m -  - n o m  - 4 . 1 3 )  t ( W a  I - I W a )  D 

a 
I ‘w, t D N a b  n o m  -body 

where I = I  t 2 1  
-sat a b  -P 

W -: I] 
0 0  

w a  = 
- b  

o w  -W az 

-W 0 az 

. ay 
W -W ax 

W 

W 
az 

and I and I are inertia tensors defined in  an appendix. 

Two simplifying assumptions can now be made: 

T m  a b  

se 
e >> I (W x D  g)  + 2(W I - I  W ) D  e -sat -nom --nom- -nom-pm -pm - n o m  - n o m -  -sat -nom - i) I D 

e 0 
e %nom X I  -sat -nom D - e - 2 1  w x D  -p-nom - n o m -  
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o r ,  in words ,  the gyroscopic coupling of the satellite angular momentum 

vector with the angular momentum due to the annual rotation of the solar 

panels about their  shafts, i s  neglected. 

side of the inequality has  a 365 day periodic component, while hopefully the 

Note each te rm on the right hand 

term on the left hand side has  most of i ts  energy a t  much higher frequencies. 

a 
k t D  $ X I  + w  1 .) a 

e ’’ l a b  - l a b  ) Enom - -nom- - a b ( W b  -nom -sat -nom - ii) I D 

o r  i n  words ,  the gyroscopic coupling of the satellite angular momentum 

vector with the angular momentum due to the daily rotation of the antenna 

about its shaft, is neglected. Each term on the right hand side of the 

inequality has  a 24 hour periodic component, while hopefully the t e r m  on the 

left hand side h a s  most  of its energy at much higher frequencies. 

Both statements can be summarized: it is assumed the sail torques 

can co r rec t  gyroscopic disturbance torques caused by antenna rotation about 

its shaft once a day,+solar panel rotation about their shafts. 

tions will  be checked l a t e r .  

These assump- 

The approximate equations of motion for the linearized variables a re :  .. e Z D  
-nom 2body 4.14) I D -sat -nom - 

4.4. Sensor Measurements 

4.4.1. Linearized Sensor Measurements 

Provided all pointing e r r o r s  are small ,  earth sensors and sun 

sensors  detect the center of the earth and sun, respectively, in body-fixed 

coordinates. 

axes with respect to nominally sun-pointing coordinates, the components of 

Since e is defined a s  the pointing e r r o r  of actual body-fixed - 

- e have the following physical significance 
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i) e - -  rotation about the body-fixed x-axis,  rota- 
X 

tion about the sun line 

ii) e - - rotation about the body-fixed y-axis,  moving 

up-down with respect to the center of the sun 
Y 

iii) e -- rotation about the body-fixed z-axis, moving 
2 

right-left with respect to the center of the 

sun 

assuming le  1 << 1 ,  le 1 <( 1,  1e,1 << 1. Sun sensors measures  e and e 
X Y Y Z 

directly, but provide no information about e . 
Earth sensors must be used t o  find e 

X 

indirectly. Consider the direc- 
X 

tion cosines f rom the nominally earth pointing coordinate frame to antenna 

d P  where (:I , e '  , e l )  = rotation e r r o r s  of actual antenna principal 
x - Y  

axes with respect to  nominal earth-pointing 

axes 

I << 1, 1gf21 << 1 is assumed. Using standard Euler and I << 1, 
X Y 
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angles to go from antenna principal axes to body-fixed axes (see Appendix), 

it can be shown: 

e = gl (sin + cosS + cos q,cose sin*) - s i n e  s inq  
X z Y 

Y Z Y 

2 Z Y 

J 
4 . 1 6 )  e = e '  (sin + s i n e  + cos 4 cos0  cos4  ) -g' s i n e  c o s 4  

# Y 
e = e' cos + sin9 - e '  c o s 0  

/J N 
Since e' and e' a r e  observable using earth sensors ,  they can be used to  Y z 

calculate e 

e and e measurements,  and vice versa.  These statements a r e  valid 

provided the trigonometric weighting t e rms  in 4 . 1 6 )  a re  not zero.  

; a s  a bonus, earth sensor measurements provide a check on 
X 

Y z 

Two effects complicate sensor measurements. F i r s t ,  both sensor 

noise and additive Gaussian amplifier noise corrupts the measurements.  

Second, since solar pressure  dynamics a r e  extremely slow, it is  probably 

unnecessary to continuously monitor satellite attitude, but rather to sample 

it at a ra te  much faster than that of any.disturbances. Equation 4.14) is a 

continuous time differential equation; in order to approximate it by a discrete 

time difference equation, the following state variables a r e  defined 

4 . 1 7 a )  . e (kT)  = - e(kT) -1 

where k = 1 , 2 , 3 , .  . . 
T = sampling period 

and i t  i s  implicitly assumed the samples a r e  taken a t  equally spaced time 

intervals.  If  it i s  assumed the sails exert  no torque along the nominal 
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t ra jectory,  then e (kT) is approximately constant, and the difference equa- 

tion approximation to 4.14) can be written a s  

-3 

where 0 = 3 x 3 al l  zero matr ix  - 
- I = 3 x 3 identity matr ix  

The sensor noise i s  assumed zero (as in Chapter Three) ,  while the amplifier 

noise adds to the observations: 

4.19j yIkTi = [ L  2 21 e (kT1 t - n(kT) [%::::I 
where n(kT) = samples of (amplifier noise) stationary Gaussian random - 

process  sample function 

y(kT) =' sensor measurements corrupted by amplifier noise 

If a minimum mean square e r r o r  estimate of each of the state variables 

is desired,  given noisy observations y(kT),  a discrete  time Kalman filter can 

be used. 

One approach to suboptimal estimation of e (kT) and e (kT) i s  to -1 -2 
assume the solar pressure  dynamics, since they a r e  extremely low frequency, 

will effectively low pass  fi l ter  the noise; this is equivalent to ignoring the 

sensor noise entirely, and using for estimates of e (kT) and e (kT) equations 

(4.17a, b) .  

-1 -2 

Other examples of practical attitude estimation schemes can be 

found i n  MacLellan(59),. Much(62), and Trudeau(68). 
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An Alternate Approach to  Attitude E stiniation 4.4.2. 

One major difficulty in using sun and earth sensors is that neither the 
1 

roll-pitch-yaw angles, nor direction cosines or quater'iions, a r e  directly 

observable. 

then the direction cosines o r  quaternions a re  directly observable, and the 

results of Chapter III can be applied. 

However, i f  gyroscopes a re  used to measure angular velocity, 

To see this, recall that i f  direction cosines a re  used to  characterize 

orientation in space, then the differential equation which describes how the 

direction cosines evolve with time i s  

d 
dt 
- 

d12 

d2 2 

d32 

- 
0 -w W 

W 0 -w 

z Y 

Z X 

-W W 0 
X - Y 

dl 1 d12 d13 

dZ 1 d22 d2 3 

d31 d3 2 d33 

On the other hand, if quaternions a r e  used to  characterize orientation in space,  

then the differential equation describing how the quaternion evolves with time is 

d 
dt 
7 I; . 

1 
- 2  
- -  

-W W W 
z Y X 1:E -W -W -W -w; :] 

z - X Y 

Since (w , w  , w  ) a r e  directly observable using gyroscopes, these equations can 

be integrated directly to provide all components of the direction cosine mat r ix  o r  

each component of the quaternion. Recall each component of the direction cosine 

matrix o r  quaternion was assumed observable in Chapter III; since that i s  now the 

case,  the attitude estimation method developed there can be used to estimate the 

roll-pitch-yaw angles, and these angles can he used directly to define e r r o r s  

with respect to a nominal trajectory,  just as with-sun and earth sensors .  

X Y Z  
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4 . 5 .  Solar Sail Torques 

An appendix derives the exact torque generated by each sail, under 

the assumptions of no sail shadowing, no radiation falling on the r e a r  of the 

sai ls ,  and small  attitude pointing e r r o r s .  

The force acting on a triangular sail such a s  i n  Designs I and II can 

be represented a s  a vector acting a t  a point two-thirds of the distance out 

the longitudinal sail  axis,  and this point is called the sail center of pressure  

(the distance from the sail hinge to the center of pressure will be called the 

center of pressure  lever a r m ,  or sail lever a r m ) .  

i) 

ii) 

iii) 

Solar pressure  has  three distinct components: 

Reflected solar p re s su re ,  largest of the three ,  directed normal 

to the surface which sunlight strikes 

Absorbed solar pressure ,  next largest  of the three,  directed 

along the sun line 

Reradiated o r  thermal solar pressure,  smallest  of the three ,  

directed normal to the surface which sunlight strikes 

Three simplifying assumptions a r e  now made: 

i) Reflected solar pressure  i s  the only contributor to sail  torque 

cos b E f k Z 1 , 2 , .  . .6 k 
ii) sin bk S bk 

whe re 

iii) (2 2) (n w E )  2 (n. s )  k , j  = L,2 , .  . . 6  

bk = sail k pitch angle +bo,bo, o r  01 (bo = 15O) 

-k 7 -  

where n+ = sail  k normal,  in body-fixed coordinates 

s 

n = abbreviation for n 

= sun vector i n  body-fixed coordinates 

-k 
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o r  in other words,  the projection of each sail 's  normal along the sun line is 

roughly the same. Using these assumptions, f rom the appendix it follows: 

2 
E A ( l - E  ) ( 2 I / c )  (n 5) { (bl-b3 t b 

S 
N 
-body 

t (b tb tb tb ) P sin (a) 
1 3 4 6 s  

4.21) 

where 

(bltb3-b4-b6) r [:I t (b 3 6 1 4  tb -b -b ) [:] t (bz-b5) 

z t h - P cos a t 2 r  sin (a) ' I  S 

0 

- r cos a 

A = a rea  of sail (all sails assumed identical 

E = emissivity of surface of sail 

I = sunlight pressure  constant = 1380 watts/meter 

S 

2 

c = speed of light i n  vacuum 

a = sail cant angle = 450 degrees 

1 = distance from sail hinge on solar panel to center 

of p re s su re  of sail 

8 

r = radius of gyration of solar panel (see Appendix) 

h = distance from antenna center of m a s s  to solar  panel 

center of mass  (see Appendix) 



~ 
~ ~~ 

~~ ~ I 
i 
I 
I 
I 9 3 .  

y = half length of solar panel (see Appendix) 

z = half width of solar panel (see Appendix) 

and all vectors are measured in body-fixed coordinates. Three cases  of 

a z A(l-E )(2I/c) (na s)  2 (4b P cos(a) 
o s  - -  s 4*22a)  zbody 

13 + 2 r  s in (a )  sin 4 

-4boY 

bl = b3 = b4 = b = 0, b2 = b5 = -h 
6 0 

c) 

ZA(1-E )(2I/c)(n s )  2 (2b 1 sin(a) 
O S  - -  4 . 2 2 ~ )  NC 

-body S 

-2b 0 z 11 } 

If the sails  are designed such that 

I cos(a) , l  sin(a) >> r sin a,  y , z  
S S 

then x,y,  and z torques can be generated in body-fixed axes,  by cases  

a ) , b ) ,  and c )  respectively. Sails 1,3,4 and 6 produce either x or  y torques 
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at any instant, but not both simultaneously; sails  2 and 5 generate z torques. 
1 

If I is assumed diagonal, then 4.14) become -sat 

h 
4.23)  - e = 

where 

I '  -sat = 

2 
' S  9 

-1 
YY 

- I  

0 

t I-1 
YY 

) sin 

1 -1 
= w  2(1- -I sin + c o s  + 

-1 2 1 2 
xx w sin ++ I- cos + I 

0 

xx I 

0 i 0 0 

I 
YY 

- I :I zz 

I 

(see Appendix for correct 
expression for 1 ) -sat 

N - body 

Z Z  

Note that i f  an x torque is generated i n  body-fixed axes, the off-diagonal 

entr ies  in the gain matrix for N 

y axis. 

above will couple this torque into the -body 

Cross  coupling torques between x and y axes a r e  unavoidable, 

because of the coordinate transformations between inertial and body-fixed 

axes. To minimize their  effect, I and I must be chosen comparable to  

one. another . 
xx YY 

4.6. Solar Sail Control Law 

At this point the analysis of the linearized equations of motion has 

been reduced to a previously solved problem. Two standard control laws 

will now be discussed (for more details, see Athans ( 5 4 )  and Flugge-Lot2 ( 5 6 ) ) .  

Cross coupling torques will be assumed negligible f rom here  on. 
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If i t  were possible to generate simultaneously three independent 

torques,  the attitude e r r o r  and i t s  f i rs t  derivative could be used in  a control 

law I 

C 
sign(e t k  t ) +N sign (ez+kzzz) 

a b = N  sign(e t k  ) t N  
x x x -body Y Y Y -body 

4.24) N -body -body 

where 

$1 x 2 0 

- 1  x < o  

Since x and y torques cannot simultaneously be generated, one possible 

modification to the above control law i s  

If I e t k  e 1 2 [ e  t k  e 1 genera tex torque  
X x x  Y Y Y  4.25)  

If I e 4- k e I < l e  t k e I generate y torque 
X x x  Y Y Y  

Finally, if a deadband is  included in  the control law for each axis ,  every 

"signl( function i s  replaced with a dbz 

sign(x) 1x1 L db I. 1x1 < db 
db = deadband dbz(x) = 

Equations 4.24)  and 4 . 2 5 )  with deadbands completely specify a possible 

control law for either Designs I o r  II. The gains k ,k ,k allow the designer 

to trade ringing and overshoot in the system transient response for the 
X Y Z  

period of a l imit  cycle when the satellite is in  its nominal t ra jectory ( see  

FlUgge-Lotz (56)). Another possible control law is  the time optimal control 

law; a simple single axis control law is discussed in  Athans (54). 
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4.7 .  Disturbance Torques 

Five sources of disturbance torques, i n  addition to the cross-axis . 

coupling torques already mentioned, can drive Designs I and 11 away from 

nominal attitude. The la rges t  disturbance is due to the ear th ' s  gravitational 

field trying to align the satellite's longest axis along a line pointing to the 

ear th ' s  center of m a s s .  The next largest  disturbance is  caused by sunlight 

reflecting , absorbing , and reradiating f rom the antenna. Third la rges t  is 

caused by the satellite center of mass being misaligned. Fourth is micro-  

meteoroid impact torques. Finally, the smallest  disturbance torques a r e  

&e to  the satellite interacting with the ear th 's  magnetic field; these magnetic 

torcpes a r e  assumed negligible. 

Gravitational torques on an arbitrary rigid body , o r  gravity gradient 

torques as they a r e  re fer red  to  in the l i terature , a r e  straightforward to  

calculate (see Nidney (65)). It can be shown 

2 = 3w 
0 

4.26) N e  -gravity gradient 

where w = orbital frequency of satellite = (2 n/24) radians/hour 
0 .  

I ,I = off diagonal elements in satellite inertia tensor 
x y . x z  . 

computed i n  earth-pointing coordinates 

N e  -gravity gradient = satellite gravity gradient torques in  

earth -pointing coordinate s 
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I e  -sat 
= satellite inertia tensor in earth-pointing coordinates 

Ie = Ab I Ae -sat -e -sat -b 
b T .;’, - 1 

Ae = A = A -  
-b -e -e 

Ab -e 
= direction cosines from body-fixed axes to earth 

pointing axes in body-fixed axes.  

These torques can be written 

4.27) Nb E! A e Ne 
-gravity gradient - b -gravity gradient 

and are plotted for Design I, in body-fixed axes,  in Figure 4.3 under the 

assumption the satellite is moving in  its nominal trajectory.  

Sunlight pressure  torques due to the antenna-electronics body a r e  

The reflected and absorbed sunlight calculated explicitly in  an  appendix. 

p ressure  torques a r e  plotted in body-fixed axes in Figures  4.4 and 4.5; 

more information must be known before the reradiated torque can be calculated 

explicitly. 

The calculation of center of mass misalignment torques,  torques due 

to the center of mass  of the satellite not coinciding with the center of m a s s  

of the antenna, is straightforward (Goddard (5 7)): 

4.28) -cm N = R  - a / c m  x F  -sails Msat L25a/cm x ( w  -p x R  -cm ) t R  -a/cm x ( w  a x R  -cm > I  
where 

N = center of mass  misalignment torques in  body-fixed axes -cm 

R - a / c m  
= vector f rom antenna center of mass to actual satellite 

center of mass  
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. .  

w 
-P 

= satellite angular acceleration in body-fixed axes 

w -a 
= antenna angular acceleration in  body-fixed axes 

A typical magnitude for R is one quarter  inch (Goddard ( 5 6 ) ) .  

Since sail torque is proportional to the sail center of pressure  lever  a r m ,  

-a/cm 

a I A(1-E ) ( ~ I / c )  
S S 

* e 2 9 )  --sails N 

The sails must be designed such that the sail torque is much grea te r  than 

the center of m a s s  misalignment torque, that i s ,  

ts COS (a) >> I R I and I sin (a) >> I R I -a/cm s -/cm 

An analysis has  been car r ied  out to verify that i f  the sail cant and pitch 

angles are offset slightly f rom their nominal values, the resulting disturbance 

torques are negligible compared to the attitude correcting torques.  

Finally, the la rges t  expected micrometeoroid torques appears to be 

two orde r s  of magnitude l e s s  than the attitude correcting torques and hence 

is negligible (Goddard ( 5 3 ,  NASA - Naumann(64’ ) . 
4.8. Computer Simulation Results 

As a check on the foregoing analysis, a computer program was 

written to simulate the dynamics and kinematics of either Designs I o r  11. 

Figures 4 .6  through 4 .12  show the resul ts  of a simulation of De sign I 

recovering f rom an  initial pointing e r r o r .  The initial e r r o r  was due to the 



I 

100. 

satellite being rotated away from its nominal attitude by three successive 

rotations of ten degrees each, f i rs t  about the z axis ,  th:n the y axis,  and 

finally the x axis. Sun and ear th  sensor measurements a r e  corrupted by 

additive Gaussian noise, and a sensor sampling rate of once each minute is 

used to determine the pointing e r r o r  and its derivative (see 4.20) ) .  

attitude control law described in  4.22) with a deadband is used to pitch the 

The 
I 

I sails. Gravity gradient torques , antenna reflected and absorbed sunlight 

torques, and center of mass  misalignment torques a r e  included. Table 4.1  

summarizes the numbers used for these simulations. 

The simulation results lend credibility to the previous a'ssumptions 
I 

that gyroscopic coupling torques and cross-axis coupling torques a r e  negligible 

compared to the sail attitude control torques. Note that for the exampfe just  

discussed, the harmonic content of the e r r o r  and its derivative is in  the 

neighborhood of ten degrees per hour; this ra te  is much higher than the 

angular velocity of the solar panels about their shafts, but it is comparable 

to the angula*r velocity of the antenna about its shaft, roughly fifteen degrees  

per hour.  Hence, there is some coupling between the angular momentum of 

the satellite and the angular momentum of the antenna, but the attitude control 

law is able to compensate for it. 

The results presented here are representative of over fifty different 

simulations of the attitude control equations for  both Designs I and II. 
1 

Satellite transient response to pointing e r r o r s  such a s  those just  described 

were checked at  eight equally spaced t imes of year (starting with December 21) ,  
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and at different initial t imes of day (midnight, six a .m. ,  noon, and six p .m. ) .  

Finally, most runs were made with the sai ls  misaligned in cant and pitch, 

the satellite center of mass  misaligned, gravity gradient disturbance torques 

present,  antenna sunlight pressure disturbance torques present,  and sensor 

measurements corrupted by Gaussian noise. These simulation resul ts  

verified the results of a theoretical analysis: When the satellite design 

parameters  a r e  perturbed slightly from their nominal values, and when dis- 

turbance torques ac t  on the satellite the attitude control torques a r e  sufficient 

to keep the satellite aligned along its nominal. orientation to within attitude 

sensor noise limitations. 
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Figure 4.1.3 

Design I - -  Simulation Parameters  - 
1. Inertia Tensor Components 

A. Antenna Principal Axis Inertia Tensor Components 

300 kg-meter I 

I 225 kg-meter 

2 2 5 kg -mete r I 

Solar Cell Body-fixed Axes Inertia Tensor Components 

2 

2 

2 

axx 

=YY 

azz  

B. 
2 

I 964 kg -mete r 
20s 

I w 482 kg meterL 

2 48 2 kg -mete r zz I 

II. Sail Parameters 

2 Sail area 3 meter  

1 - Center+f -pressure  to sail hinge 

E 0 . 0 5  (dimensionless) 

5 meters  
S 

9 

111. Control Law Pa rame te r s  

x-axis deadband (same for all three axes)  0 . 1  degree 

- 1  - 1  K = K = 30 (radiansjmin)  ; K = 40 (radians/min) x ,  Y z 

sensor noise (same for  a l l  three axes) 

mean 0 degrees standard deviation 0.03 degrees 

Cant angles 
a = 45 degrees  k = 1 , 2 , .  . .6 k 

Pitch angles 
bk = 15 degrees  k k 1 , 2 , .  . . 6  
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IV. Dimensions - 

Center of mass misalignment 

10 centimeters 

Antenna (distance from center of mass to surfaces) 

Antenna surface areas 

2 
A2 = A3 = A4 = % = 1.45 me te r s  

2 
Al = A6 = 2.05 meter  

Solar panel 

r = 0.25 meter  y = 0.25 meter  

h = 1.0 meter z = 0.10 meter 

V. Weight Breakdown (Goddard (57), M.I. T. (60)) 

A. Antenna-ele ctronics B. Solar cells panels 

Antenna 25 lbs Bearing d e e  15 lbs 

Power control 23 lbs Solar cells 45 lbs  

Batteries 50 lbs Electronics 10 lb s  

Cables 8 l b s  Electronics 80 lbs  

Attitude control 25 l b s  Structure 25 l b s  

Structure 25 lbs Contingency 19 lbs 

Contingency 19 lb s  

Total 247 lbs Total 122 lbs  
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APPENDIX A 

Coordinate Frames  and Coordinate Transformations 

Five different coordinate f rames a r e  useful in discussing the attitude 

control dynamics of Designs I and 11. Each of the following four coordinate 

f rames  have their origin a t  the satellite center of mass: 

X -Y -Z  --nominally earth-pointing coordinate f rames,  with e e e  

the X -axis aimed a t  the center of mass  of the e 

ear th ,  the Y -axis perpendicular to X and in  the e e 

orbital plane, and the Z -axis parallel to  the e 

ear th ' s  axis of rotation 

X -Y - Z  --the antenna-electronics principal axes f rame,  a a a  

nominally coincident with X -Y - Z  e e e  

X -Y - Z  --nominally sun-pointing coordinate f rame,  with the 
9 5 s  

X -axis aimed at the center of the sun, the Y -axis 
S S 

perpendicular to X and parallel to the ecliptic, and 
S 

Z -axis normal to the ecliptic 
S 

X -Y - Z  --the body-fixed axes frame, parallel to the solar cell 
b b - b  

panel principal axes frame and nominally coincident 

w i thX -Y -Z 
s s s  

The fifth coordinate f rame has  i ts  origin a t  the center of m a s s  of the kth 

solar panel (see Figures 1 and 2): 

X -Y - Z  --the principal axes f rame for solar cell panel k, 
Pk Pk Pk 

nominally parallel to X -Y -2 s s s  

t 
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Direction cosines from one coordinate f rame to another a r e  differentiated by 

a combination of mnemonic subscripts and superscript9. For  example, the 

direction cosines from X -Y -Z to X -Y -2 a r e  denoted by a a a  b b b  

with the superscript "a" denoting antenna axes, the 

subscript "b" denoting body-fixed axes 

Da 
-b 

The direction cosines f rom earth-pointing coordinates to sun-pointing 

coordinates can be expressed in te rms  of Euler angles: 

! 

I 

where 

9 = daily orbital position of satellite 

8 = angle of earth 's  axis of rotation with ecliptic 

Jr = annual orbital position of satellite 

or 

Jr = Q(t-t ) + +o, $= 2x/(365*24) radianslhour 
0 

e = 23.50 
0 0 

. = a(t-to) + qo,q = 2n/24 radianslhour 

t = initial time of day (midnight) 

so = initial position in  orbit (side of earth away f rom sun) 

0 

= initial time of year (December 21) 
$0 

- 
0 

0 

1 - 

where all  initial t imes a r e  nominal times taken for convenience in the com- 

puter simulation of Designs I and 11, and easily changed to other values. 
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If the antenna follows a preprogrammed drive with respect to the solar panels, 

then it is straightforward to find the angular velocity of the antenna in 

sun-pointing coordinates: 

I 
xb 

Figure A .  1 

Euler Angles From X -Y -Z to X - Y  -2 
e e e  s s s  
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APPENDIX B 

Inertia Tensors 

In X -Y -Za the antenna-electronics inertia tensor is: 
a a  

I =  
a a  

0 

1 
=W 
0 

In body-fixed axes X -Y -Z this becomes: 
b b b  

a I = A  I Ab a b  -b a a  -a 
b T  = A  

-a 

In solar panel principal axes,  X -Y -Z the kth solar panel inertia 
Pk Pk Pk’ 

tensor is: 

I 0 0 
P= 

I 0 
0 PYY 

0 
8 

0 I 
PZZ- 

In body-fixed axes X -Y -Z 

the form: . 

for Design I, either solar panel inertia takes b b b’ 

I = I .  + I  
-P -Pm T k  

1 - 1  
p n o m  -1 -nom = m  D I I D  I 

-Pm 

I =  -1 

- rh  0 r 

m = solar cell panel m a s s  
P 



* .  
s 

111. 

2y - 
Figure B .  1 

Solar Panel Dimensions 
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Figure B .2 
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:I 1 

In body-fixed axes for Design I1 either solar panel inertia takes the form: 

I = I  + I  
7, -Pm -Pk 

I = m  D1' I DII- l  
-Pm p -nom II n o m  

Finally, the satellite inertia tensor becomes, i n  X -Y -2 - b b b '  

I = I  + 2 I  -sat - a b  7, 

This-is graphed as a function of time for Design I, starting at midnight, 

December 2 I ,  and continuing for twenty four hours ,  on the following page. 

Numbers to  do the graph are taken from Table 4.1.  
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APPENDIX C 

Sail Torques 

Sunlight pressure  striking a surface generates a force with three 

physically distinct components : 

Esunlight = F  -reflected 4- z b s o r b e d  t F  -reradiated 

Only the reflected component will be dealt with here  

2 = A(1-E ) (2I/c) ( n o  s )  ( -n)  - -  - S 
F -reflected 

where 

A = surface a rea  

E = surface emissivity 

2 I = sunlight pressure constant = 1380 wat ts lmeter  

c = speed of light in vacuum = 3 x 10 meters / sec  8 

- s = unit vector pointed at  sun 

n = unit vector normal outward from surface - 
The unit normal vectors for each sail in X -Y - Z  are:  

b b b  

r cosa, cosb-7 
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where 

a k 

bk 

= cant angle with respect to % axis of sail k 

= pitch angle about longitudinal axis of sail k 

The vectors f rom the satellite center of mass  to the center of pressure of 

each sail are: 

r =  
-1 

r =  -2 

.. 4 

1 - rcos  $.' - 1  8 sina 
S 

r s i n y  + I  0 cosa t y 
S 1 

h - 
2 - rcos  -1 sina 

r siriq 
h+z 2 +1 cosa 

S 

r =  -4 

r =  -5 

3 sina 
S 

- 
r c o s q  - 1  

. s  

-rsin+ t1 rt 
S 

h - 
. r c o s y  -1 S 0 

- r sin f 
-h-z -1, . 

r s i n q  r - 1  1 
S 

-1 4 
S 

h 

The torque generated by sail k is (in body-fixed axes);  

2 % = Zk zk = A(l-E (21/c) (%' 5) (% xk)  y=\ , . .  b S 

= T1 + T + T + T + z5 t T = total sail torque 
Ebody - -2 -3 4 -6 

5 cosa 
sina5 I 
sina6 

cosa 6 

and where the dot product of the sun pointing unit vector with each sail normal 

is carr ied out assuming all vectors a r e  expressed in  body-fixed axes.  
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APPENDIX D 

Antenna Sunlight Disturbance Torqul:s - 
A. Reflected Sunlight Pressure  Torques 

In antenna principal axes, vectors f rom the satellite center of m a s s  

to the surface of the antenna are:  

- 
-2 = - s -  

L 

0 

-1 
aY 

0 - -  
r = - I  = 
-3 -5 

The reflected sunlight force on each face of the antenna is 

2 
Fr = %('-Esk) (21/c) (2 0 %) (-%) -ka k =  1, ..., 6 

where 

pic 
Esk 

= surface area of face k, k = 1, . . . ,6 

= emissivity of surface k 

= unit normal vector outward from surface k in X -Y 
% c *  a a a  

-Z 

s = sun-pointing vector in antenna principal axes - 
The reflected sunlight torque due to each face is (in X -Y -2 ) 

a a a  

The total reflected sunlight torque due to the antenna in body-fixed axes 

X -Y -2 is then b b b  

0 

0 

-r 
c a? 

r r r r = T  r 
-ant Tr = -b -a T~ total -total Tr  - l a  ' -T2a + rfa + -T4a + z5a ' r6a 
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B. Absorbed Sunlight P res su re  Torques 
I 

Sunlight being absorbed by a surface it strikes causes a force to be 

gene rated . 

where 

A = surface a rea  of surface 

B = absorptivity of surface 

I = solar pressure constant = 1380 watts/meter 
2 

8 c = speed of light in vacuum = 3 x 10 meters / sec  - 
- s = unit vector pointed at sun 

n = unit normal vector outward from surface - 
. 

The absorbed sunlight pressure force on each face of the antenna in  antenna 

principal axes is then: 

a = A B (I /c)  (s 0 n) (-s) - -  - -Fka k k  

where 

Bk = absorptivity of surface k 

The absorbed sunlight torque due to surface k in antenna axes is: . .  

The total absorbed sunlight torque due to the anter2na is the vector sum of the 

individual surface torques. 
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C. Reradiated Sunlight P res su re  Torques 

Sunlight being reradiated by a surface it strikes generates a force: 

where 

A = Surface a rea  of surface 

= intensity of reradiated sunlight IR 
8 c = speed of light i n  vacuum = 3 x 10 meters/sec 

n = unit normal vector outward from surface - 
To find IR, the temperature on the surface must  be found a s  a function of 

time, then the Stefan-Boltzmann formula must be used to find I R: 

4 
= E T (t)bJ 

S 

E = emissivity of 
S 

e = Stefan-Boltzmann constant 

T = surface temperature 

Final Note: When sunlight does not strike a surface, there is no 

reflected or  absorbed force.  Each of the forces in sections A and B for a 

given surface a r e  multiplied by a function which is one when the surface is 
I 

struck by sunlight and zero when it i s  not: this shadowing factor was included 

in the graphs of the reflected and absorbed antenna sunlight torques 

(Figures 4.4 and 4.5) .  
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Chapter Five 

Summary and New Directions 

5 . 1 .  Summary 

The principal theme of this research program has been rigid body 

mechanics,  as applied to space satellites. The study was broken down into 

three sections. 

The first section developed a four-dimensional space-time formulation 

of Newtonian mechanics. The equations of motion for a particle, a point with 

mass  m, were found to be: 

$?r =fx 

where (x ,y , z ) a r e  the spatial coordinates of the particle, (px, p ,p,,m) is 
0 0 0  Y 

the l inear momentum of the particle,  and (F , F , F ) a r e  the forces acting on 

the particle,  with all variables measured in  a right-handed Cartesian inertial 

X Y Z  

coordinate fr'ame a t  the same instant of time t . 
describe how the t ime rate of change of the l inear momentum is related to 

The first four equations 
0 

forces ,  while the l a s t  six describe how the time rate  of change of the total 

angular momentum of the particle,  the moment about the space-time origin of 

t h e  l inear  momentum, is related to forces. When no forces  ac t  on the particle,  

the four components of the l inear momentum and the six components of the total 

angular momentum a r e  all constant. Noether(21) showed through a Lagrangian 
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formulation of mechanics as  well as  a calculus of variations argument that 

these a r e  the only ten quantities conserved when no forces act  on the point 

mass; the formulation of mechanics presented h e r e  complements this view- 

point, and is perhaps more straightforward and offers greater  physical insight 

into the nature of the conservation laws. 

The second section developed a new method for estimating the three 

angles which specify the spatial orientation of a rigid body, f rom observations 

of direction cosines and quaternions. The method presented is analogous to 

phase-locked-loop phase estimation, but is a generalization to three dimensions 

of phase-lock techniques, and is not simply three "one-dimensional" phase- 

locked loops. 

cosines, the other on quaternions, were discussed for two specific examples, 

Two ways to implement this method, one based on direction 

fixed orientation to space and constant rate of change of the three angles. The 

theoretical deterministic performance l imits  of each implementation were 

addressed: first, an analysis of the dynamics of each implementation for 

small  estimation e r r o r s  was carr ied out, and second, the steady state and 

stable equilibrium points of each scheme were discussed. When noise was 

included in each implementation the theoretical stochastic performance limits 

were quite difficult to pin down; i n  particular,  Fokker-Planck equations could 

be derived for each example under certain simplifying assumptions about the 

nature of the noise , but they could not be solved. However, for a special set 

of conditions, with a quaternion based method for estimating the unknown 

phases of the three angles a s  the angles change a t  a constint known ra te  with 

, 
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t ime,  the Fokker-Planck equation was solved explicitly for the steady state 

e r r o r  probability density. All theoretical analyses, both deterministic and . 

stochastic, were  backed up by extensive computer simulation. 

The third section was concerned with the attitude control dynamics of 

two specific communication satell i tes,  each using sunlight pressure  to generate 

attitude control torques. Large reflecting surfaces,  called solar sai ls ,  were 

attached to each satellite; by canting the sails in different directions, sunlight 

pressure  torques were produced which corrected pointing e r r o r s .  The equa- 

tions of motion for  each design were derived, and then linearized about a 

nominal trajectory,  and the linearized equations were analyzed using standard 

'linear system theory techniques. The attitude of each design was determined 

from sun and ear th  sensor measurements. A heuristic bang-bang control law 

I which governed when and how to cant the sai ls  was developed. Five types of 

disturbance torques were  identified, the largest of which is due to the ear th ' s  

gravitational field, and were shown to be much smaller than sunlight pressure  

attitude control torques. Extensive computer simulation of the total equations 

of motion for  each design, typically with a small initial pointing e r r o r ,  con- 

firmed the theoretical analysis of the linearized equations of motion. 

5.2 .  New Directions 

Several topics for further research are now outlined. These topics 

are grouped into the same three areas discussed in  the main body of this 

report ,  in keeping with the central theme of developing a grea te r  understanding 

into space satellite dynamics with applications to sunlight p re s su re  attitude 

control. 
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1. Deterministic Rigid Body Mechanics 

At the present time a mathematically rigorous theory of finite-dimen- . 

sional l inear systems exists, which has found wide application to many practi- 

cal problems (e .  g.  , problems arising in engineering and physics). At the 

s ame time, a mathematically rigorous theory of rigid body mechanics does 

not yet exist ,  but it would be useful i n  the design of practical attitude control 

systems for space satellites. Just  as linear system theory has  both qualita- 

tive and quantitative aspects,  so would a theory for rigid body mechanics. 

A qualitative theory of rigid body mechanics would presumably draw on 

differential- geometry and differentiable manifold theory, Lie algebras and Lie 

groups, as well a s  geometry and topology, i n  addressing such issues  a s  con- 

trollability and observability of a space satellite, a s  well a s  questions of 

stability. 

is the design of control laws for despinning space satellites from high spin 

I 

I I One example in which such a theory might prove of immediate use 

rates  just  after injection into earth orbit down to much lower spin ra tes .  

second example where this type of theory might find immediate application is 

in  the question of the stability of a dual-spin space satellite. 

A 

A quantitative theory of rigid body mechanics would be concerned with 

at leas t  two a reas .  

numerical techniques to questions such a s  numerical integration of rigid body 

The first is the application of digital computers and 

I 
equations of motion and optimal control laws for arbi t rary space satellites. 

The second area  is complex variable analysis. 

angle variables play a key role in  classical quantitative rigid body mechanics: 

Elliptic functions and action 
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Hua(35) and Klein and Sommerfeld(l6) have indicated this role might be more 

significant than previously expected. 

theory a r e  analytically intractable, and perhaps can be solved numerically. 

Many problems in complex variable 

- .  

Finally, how these threads of both qualitative and quantitative rigid 

body mechanics can be knotted together into a unified theory of rigid body 

mechanics, which would complement and lend insight to each other,  remains 

to be seen. 

2. Stochastic Rigid Body Mechanics 

A natural extension of a deterministic theory of rigid body mechanics 

is to allow position, l inear and angular momentum, and forces to be character-  

ized as random processes.  One example of this was discussed in  the section 

on attitude estimation, where it was observed that both d5rection cosines and 

quaternions could be considered as matrix exponentials of random processes.  

Three broad a reas  for further research into random processes and rigid body 

I 

mechanics a r e  now outlined: 

i) Several extensions of the work presented here ,  estimating 

the three angles which specify the orientation in space of a 

rigid body, come to mind. 

here  be extended to estimate the three angles 3, for example 

F i r s t ,  can the metfwd presented 

the angular velocity is an arbi t rary function of trime, ra ther  

than the two specific examples discussed. SecDad, can that 

branch of information theory known a s  ra te  didortion theory 

be used to provide ultimate performance limitations for est i -  

mating the three angles in the two specific examples already 
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discussed, much a s  this theory has  been used to point out 

performance limitations in  phase-locked-loc2 phase est i -  
a 

mation (see Van Tree ~ ( 4 7 ) ) .  Third , how do quantization 

of observations (either direction cosines o r  quaternions) 

affect performance. Fourth , how is performance affected 

by sampling the observations at discrete instants of t ime,  

a s  compared to  continuously observing spatial attitude. 

ii) A precise mathematical characterization of random 

processes  found in rigid body mechanics i s  needed; since 

the problems encountered in mechanics a r e  frequently 

nonlinear 

terization. Ito( 36) and McKean(41) have carried out some 

mathematical rigor should aid in &is charac- 

preliminary work in this area.  To be of practical use , 

their  work must  be related to observations made by actual 

attitude sensors ;  the section on solar pressure attitude con- 

t rol  discussed sun and earth sensors  , which a r e  not yet 
. 

adequately theoretically characterized , and which a r e  not 

covered by Ito's o r  McKean's work. Another question of 

practical  interest  is how a force, which is a random 

process  (e .g .  , disturbance torques i n  a gyroscope based 

attitude sensing scheme) influences attitude estimation 

(e .g., the three roll-pitch-yaw angles discussed ear l ie r ) .  
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iii) A large body of mathematical l i terature exists on partial 

differential equations and properties of their solutions, 

both qualitative and quantitative. 

Fokker-Planck equation has been extensively studied, a s  

has  abstract  harmonic analysis, and the relationship of 

solutions of partial differential equations to representa- 

tions of those Lie groups and Lie algebras associated with 

spatial orientations. 

the question of what the optimal attitude estimation procedure 

is for processing noisy observations of space satellite orien- 

tation remains to be seen (see Evans( 30)). 

In particular, the 

How this l i terature might help answer 

3. Sunlight P res su re  Attitude Control 

The intent of the third section of this report  was to demonstrate the 

feasibility of a particular example of three-axis attitude control which used 

sunlight pressure to generate attitude control torques. 

were discussed, but perhaps there are  other designs than those presented 

here which take better advantage of the technological constraints associated 

with space satellite design. 

solar sai ls  with the cor rec t  surface properties can actually be built has  never 

been adequately answered; an adequate answer would be to actually construct 

Two specific designs 

The question of whether or  not light weight rigid 

and tes t  in space a satellite which used torques generated by sunlight striking 

solar sai ls  to control its attitude., and to the best  of the author's knowledge, 

this has not been done for any earth orbiting space satellite. In particular,  
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one question that must be answered is how serious is sail flexing and bending 

apt to be and how much might this inference with attitud: control dynamcis. 
I 

Finally, can the same sails used for attitude control be used to station a 

synchronous equatorial orbit satellite over one spot on the earth 's  equator, 

in spite of irregularit ies in the earth 's  gravitational field. 
I 

I 
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