AN APPROACH TO ATTITUDE DETERMINATION FOR A SPIN-STABILIZED SPACECRAFT (IMP I)

by Ai Chun Fang

Goddard Space Flight Center
Greenbelt, Md. 20771
An Approach to Attitude Determination for a Spin-Stabilized Spacecraft (IMP I)

Ai Chun Fang

Goddard Space Flight Center
Greenbelt, Maryland 20771

This report presents both the analysis and the FORTRAN program for the determination of attitude of a spin-stabilized spacecraft. The use of telemetry data that provide information about two reference vectors and their relation to the spin axis is outlined. A technique for the determination of the spin-axis orientation that employs only simple calculations is described.
CONTENTS

Abstract .. i

INTRODUCTION ... 1

THE ATTITUDE DETERMINATION TECHNIQUE 1

 Mathematical Considerations 1
 The Attitude Determination Equations 2
 The Reference Vectors ... 6

ANALYSIS OF THE IMP I DATA ... 9

 Sensor Data ... 9
 Determination of Crossings 10
 Computation of the Nadir Angle δ 11

FORTRAN PROGRAM .. 14

 Subroutine SPIN .. 14
 Attitude Data Reduction and Attitude Determination for IMP I ... 15

CONCLUSION ... 15

ACKNOWLEDGMENTS .. 16

Appendix A—FORTRAN Symbols 17

Appendix B—FORTRAN Listing of Subroutine Spin 19

Appendix C—FORTRAN Listing of Attitude Determination Program for IMP I ... 23

Appendix D—Sample of Attitude Determination Output 29
AN APPROACH TO ATTITUDE DETERMINATION FOR A SPIN-STABILIZED SPACECRAFT (IMP I)

by

Ai Chun Fang

Goddard Space Flight Center

INTRODUCTION

This report describes a simple technique for the determination of attitude of a spin-stabilized spacecraft. Use is made of telemetry data that provide information about two reference vectors and their relation to the spacecraft spin axis. This information indicates that the angle between the spin axis and each of the reference vectors can be obtained. Consider each of these angles as the half-angle of a cone whose axis coincides with the corresponding reference vector; then, the intersection of these two cones determines the position of the spin axis. If the spin axis is represented by its three direction cosines in an inertial coordinate system, two linear equations with three unknowns can be formulated. In order to solve this problem, an additional linear equation containing the same three unknowns is needed. The derivation of the third equation is based on the generation of a new unit vector that makes a known angle with the spin axis. The spacecraft attitude is then computed by solution of these three linear equations. An application of this technique, a determination of the attitude of IMP I, is illustrated in detail, and the associated FORTRAN program is presented.

THE ATTITUDE DETERMINATION TECHNIQUE

Mathematical Considerations

Let the unit vector \(W(W_1, W_2, W_3) \) represent the spacecraft spin axis, and assume that \(P(P_1, P_2, P_3) \) and \(Q(Q_1, Q_2, Q_3) \) are two unit vectors with components known with respect to an inertial coordinate system. The inertial coordinate system employed is an earth-centered, right-handed, orthogonal system whose \(Z \)-axis coincides with the North Pole; the \(X, Y \) plane is the equatorial plane in which the \(X \)-axis passes through the vernal equinox. Consider the coordinate system \(x, y, z \) to be a spacecraft-centered coordinate system. If \(x, y, z \) are parallel to \(X, Y, Z \), respectively, then the direction cosines of any vector in space are identical in both coordinate systems.

Define the angles:

\[
\begin{align*}
\beta &= \text{the angle (in radians) between } W \text{ and } P \quad (0 \leq \beta \leq \pi) \\
\delta &= \text{the angle (in radians) between } W \text{ and } Q \quad (0 \leq \delta \leq \pi).
\end{align*}
\]
If either β or δ is equal to 0 or π, the position of the spin axis in the inertial system is immediately known without further calculation. Therefore, only those cases for which both β and δ are greater than 0 and less than π will be discussed.

It should be noted that the angles β and δ are quantities measured by sensors aboard the spacecraft. Knowing β and δ, one can determine two possible orientations of the spin axis. Usually, the correct selection is made from a knowledge of the attitude control requirement. Figure 1 shows the relation of the spin axis W to the reference vectors P and Q.

Since

$$\mathbf{P} \cdot \mathbf{W} = \cos \beta,$$ \hspace{1cm} (1)

the spin axis must be on a cone with axis P. Also, since

$$\mathbf{Q} \cdot \mathbf{W} = \cos \delta,$$ \hspace{1cm} (2)

the spin axis must lie on another cone with axis Q. The intersection of these two cones can be determined by solution of the following three equations:

$$P_1 W_1 + P_2 W_2 + P_3 W_3 = \cos \beta,$$ \hspace{1cm} (3)

$$Q_1 W_1 + Q_2 W_2 + Q_3 W_3 = \cos \delta,$$ \hspace{1cm} (4)

$$W_1^2 + W_2^2 + W_3^2 = 1.$$ \hspace{1cm} (5)

Because Equation 5 is nonlinear, it is obvious that solution of the above three equations will involve the solution of a quadratic equation in one of the three unknowns (W_1, W_2, or W_3). The problem can be simplified if a third linear equation can be derived to replace Equation 5. The spin axis is then determined by the solution of three linear equations.

The Attitude Determination Equations

To obtain the third linear equation, first let η be the angle (in radians) between P and Q. Then, assume that the two vectors P and Q are not parallel (i.e., $0 < \eta < \pi$), and define the unit vector $V(V_1, V_2, V_3)$ perpendicular to both P and Q:

$$V = \frac{1}{\sin \eta} (\mathbf{P} \times \mathbf{Q}),$$ \hspace{1cm} (6)

therefore,

$$V_1 = \frac{P_2 Q_3 - P_3 Q_2}{\sin \eta},$$ \hspace{1cm} (7a)
\[V_2 = \frac{P_3 Q_1 - P_1 Q_3}{\sin \eta}, \] (7b)
\[V_3 = \frac{P_1 Q_2 - P_2 Q_1}{\sin \eta}. \] (7c)

Let \(\tau \) be the angle between \(W \) and \(V \). Then,
\[V \cdot W = \cos \tau. \] (8)

Equation 8 yields a third conical surface on which the spin axis must lie. (See Figure 2.) Application of spherical trigonometry to triangle \(ABC \) of Figure 3 yields
\[\cos \eta = \cos \beta \cos \delta + \sin \beta \sin \delta \cos \alpha, \]
by law of cosines; hence, by law of sines,
\[\sin \chi = \frac{\sin \alpha \sin \beta}{\sin \eta}. \]

Since
\[\sin \chi = \cos \lambda', \]
\[\cos \lambda' = \frac{\sin \alpha \sin \beta}{\sin \eta}. \]

Therefore,
\[\cos \tau = \sin \delta \cos \lambda' = \frac{\sin \alpha \sin \beta \sin \delta}{\sin \eta}. \] (9)

Consequently, \(W_1, W_2, \) and \(W_3 \) are determined by the following three equations:
\[
\begin{align*}
P_1 W_1 + P_2 W_2 + P_3 W_3 &= \cos \beta, \\
Q_1 W_1 + Q_2 W_2 + Q_3 W_3 &= \cos \delta, \\
V_1 W_1 + V_2 W_2 + V_3 W_3 &= \cos \tau.
\end{align*}
\] (10)

In matrix form, Equation 10 becomes
\[
\begin{pmatrix}
P_1 & P_2 & P_3 \\
Q_1 & Q_2 & Q_3 \\
V_1 & V_2 & V_3
\end{pmatrix}
\begin{pmatrix}
W_1 \\
W_2 \\
W_3
\end{pmatrix}
= \begin{pmatrix}
\cos \beta \\
\cos \delta \\
\cos \tau
\end{pmatrix}. \] (11)
Figure 2—Spacecraft spin axis \(W \) and the intersection of the three cones.

Figure 3—Unit vectors \(P, Q, W, \) and \(V \) on the celestial sphere centered at the spacecraft.
Define the determinant Δ by

$$
\Delta = \begin{vmatrix}
P_1 & P_2 & P_3 \\
Q_1 & Q_2 & Q_3 \\
V_1 & V_2 & V_3
\end{vmatrix}.
$$

Since

$$
\Delta = \sin \eta
$$

$\neq 0$,

the matrix is nonsingular and possesses an inverse. Therefore,

$$
\begin{align*}
W_1 &= \frac{\Delta_1}{\Delta}, \\
W_2 &= \frac{\Delta_2}{\Delta}, \\
W_3 &= \frac{\Delta_3}{\Delta},
\end{align*}
$$

where

$$
\begin{align*}
\Delta_1 &= \begin{vmatrix}
\cos \beta & P_2 & P_3 \\
\cos \delta & Q_2 & Q_3 \\
\cos \tau & V_2 & V_3
\end{vmatrix}, \\
\Delta_2 &= \begin{vmatrix}
P_1 & \cos \beta & P_3 \\
Q_1 & \cos \delta & Q_3 \\
V_1 & \cos \tau & V_3
\end{vmatrix}, \\
\Delta_3 &= \begin{vmatrix}
P_1 & P_2 & \cos \beta \\
Q_1 & Q_2 & \cos \delta \\
V_1 & V_2 & \cos \tau
\end{vmatrix}.
\end{align*}
$$

If $|W_3| = 1$, the spin axis points toward either the North Pole or the South Pole. For $|W_3| \neq 1$, the right ascension R_s and declination D_s of the spin axis are

$$
\begin{align*}
R_s &= \tan^{-1} \frac{W_2}{W_1}, \\
D_s &= \sin^{-1} W_3.
\end{align*}
$$
The Reference Vectors

Two sensing instruments are required for the measurement of β and δ. At present, several types of sensors have been developed for this purpose. Among them are the sun sensor, for measuring the angle between the spin axis W and the sun position unit vector S; the earth-horizon sensor, which provides the angle between W and the downward local vertical unit vector L; and the magnetometer, which provides the angle between W and the geomagnetic field unit M. If the spacecraft possesses these three types of sensing instruments, then P and Q can represent any two nonparallel vectors chosen from S, L, and M.

However, because of limited space, most spacecraft contain only two types of sensors. Hence, the information given can provide only two of the vectors to be used instead of three. For instance, if a sun sensor and a magnetometer are the two instruments aboard the spacecraft capable of measuring β and δ, then the sun position unit vector S and geomagnetic field unit M should be represented.

Let

$SL =$ the angular distance of the sun from the vernal equinox, measured eastward in the ecliptic plane (see Figure 4),

$i =$ the inclination of the ecliptic to the Equator.

The right ascension α_s and the declination δ_s of the sun can be obtained from

$$\tan \alpha_s = \cos i \tan SL$$

$$\sin \delta_s = \sin i \sin SL.$$
The components of the sun position vector S are

$$S_x = \cos \delta \cos \alpha,$$

$$S_y = \cos \delta \sin \alpha,$$

$$S_z = \sin \delta.$$

Since $P = S$, we have $P_1 = S_x$, $P_2 = S_y$, and $P_3 = S_z$.

If the sun sensor happens to be the only type of sensor providing information, the spacecraft attitude cannot be determined from a single spacecraft telemetry readout. However, if the spin axis changes only slightly, its orientation can be estimated by solution of Equations 10 with P as the sun position vector at time T_1 and Q as the sun position vector at a different time T_2, where T_1 and T_2 are days.

The spacecraft position unit vector R is known from orbit determination. If S_1, S_2, and S_3 are the three direction cosines of the vector R at the time when the magnetometer makes the measurements (see Figure 5), then

$$L = -R,$$

$$\cos \sigma = \frac{S_1}{\sqrt{S_1^2 + S_2^2}},$$

$$\sin \sigma = \frac{S_2}{\sqrt{S_1^2 + S_2^2}},$$

$$\cos \nu = S_3,$$

$$\sin \nu = \sqrt{S_1^2 + S_2^2}.$$

Let B_x, B_y, and B_z be the components along the body axes of the earth's magnetic field measured by the magnetometer. If the spacecraft spin axis is designed to coincide with the body z-axis, the angle δ between the spin axis and the earth's magnetic field is given by

$$\delta = \cos^{-1} \frac{B_z}{\sqrt{B_x^2 + B_y^2 + B_z^2}}.$$

Since the position of the spacecraft is known, a local coordinate system with its origin O_i at that position can be defined. In this system, the x_i-axis points north, the y_i-axis points east, and the z_i-axis points down along the local vertical. (See Figure 6.) At the point O_i, the direction cosines M_N, M_E, M_V of the field vector M in the x_i, y_i, z_i system can be derived from actual knowledge of the field. The components of M in the geocentric inertial coordinate system can therefore be obtained by the use of a coordinate transformation.

The first part of the transformation is a rotation $R_y(\pi - \nu)$ about the y_I-axis through an angle $\pi - \nu$. The second part is a rotation $R_z(-\sigma)$ about the displaced z_I-axis through an angle $(-\sigma)$. These two rotations bring the x_I, y_I, z_I axes parallel to the X, Y, Z axes, respectively. The matrices for these two rotations are

$$R_y(\pi - \nu) = \begin{pmatrix} -\cos \nu & 0 & -\sin \nu \\ 0 & 1 & 0 \\ \sin \nu & 0 & -\cos \nu \end{pmatrix}$$

$$R_z(-\sigma) = \begin{pmatrix} \cos \sigma & -\sin \sigma & 0 \\ \sin \sigma & \cos \sigma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Therefore, the transformation to obtain the direction cosines of M in the inertial coordinate system may be written as

$$\begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} = R_z(-\sigma)R_y(\pi - \nu) \begin{pmatrix} M_N \\ M_E \\ M_V \end{pmatrix}$$

$$= \begin{pmatrix} \cos \sigma & -\sin \sigma & 0 \\ \sin \sigma & \cos \sigma & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\cos \nu & 0 & -\sin \nu \\ 0 & 1 & 0 \\ \sin \nu & 0 & -\cos \nu \end{pmatrix} \begin{pmatrix} M_N \\ M_E \\ M_V \end{pmatrix}$$
or

\[
\begin{pmatrix}
M_1 \\
M_2 \\
M_3
\end{pmatrix} =
\begin{pmatrix}
-\cos \nu \cos \sigma & -\sin \sigma & -\sin \nu \cos \sigma \\
-\cos \nu \sin \sigma & \cos \sigma & -\sin \nu \sin \sigma \\
\sin \nu & 0 & -\cos \nu
\end{pmatrix}
\begin{pmatrix}
M_N \\
M_E \\
M_N
\end{pmatrix} .
\]

Thus, \(Q_1 = M_1, Q_2 = M_2,\) and \(Q_3 = M_3.\) However, if an earth-horizon scanner is used instead of the magnetometer, then we would have \(Q_1 = -S_1, Q_2 = -S_2,\) and \(Q_3 = -S_3.\)

ANALYSIS OF THE IMP I DATA

Sensor Data

The IMP I onboard attitude determination system consists of a sun sensor and an earth-horizon scanner. The sun sensor measures the angle \(\beta\) between the spin axis \(W\) and the sun position unit vector \(P\) and triggers a counter that records the time \(T_S\) between successive sun pulses. Values of \(T_S\) are the spin periods \(SP.\) It is to be understood that the spin period cannot be determined when the spacecraft enters earth’s shadow.

The horizon scanner is mounted at an angle \(\gamma\) from the spin axis of the spacecraft. As the spacecraft rotates, it scans a cone of half-angle \(\gamma.\) (For IMP I, \(\gamma \approx \pi/2\) radians.) During each rotation, the scan may intersect earth. Let \(E_i\) be the point where the scan cone enters the sunlit earth disk and \(E_o\) be the point where it leaves the sunlit earth disk. (See Figure 7.) At \(E_i\) and \(E_o,\) the discontinuity between the bright earth disk and the dark background will cause the sensor to produce a positive output pulse. If \(T_i\) and \(T_o\) represent, respectively, the times at which the \(E_i\) and \(E_o\) pulses are produced with respect to the previous sun pulse, the earth width \(\mu\) is defined by

\[
\mu = \text{TEW} \frac{2\pi}{SP} ,
\]

where

\[
\text{TEW} = T_o - T_i .
\]

During the time interval \(T_i,\) the spacecraft will rotate through an angle \(\theta\) measured about the spin axis:

\[
\theta = T_i \frac{2\pi}{SP} .
\]

The values of \(\text{TEW}\) and \(T_i\) are telemetered to earth and used in the calculation of the nadir angle \(\delta,\) the angle between the spin axis and the vector \(L\) from the spacecraft to the center of earth. If \(\rho\) is one-half the angle subtended by earth at the spacecraft position, then it is
obvious that any telemetry data processing one or more of the following conditions should be rejected:

\[
\begin{align*}
\beta &< 0, \\
\beta &> \pi, \\
\mu &> 2\rho .
\end{align*}
\]
\tag{16}

The half-angle \(\rho \) is given by the equation:

\[
\sin \rho = \frac{R_e}{R_e + h},
\]
\tag{17}

where \(R_e \) is the radius of earth and \(h \) is the altitude of the spacecraft orbit.

Since a portion of earth is always dark, a fully illuminated disk may not always be seen by the spacecraft; hence, it is necessary to determine the visibility of the terminator and the sunlit earth horizon before the nadir angle is computed. The situation will be either (1) that both \(E_i \) and \(E_o \) are at the sunlit horizon (double horizon crossing) or (2) that one of them is at the sunlit earth horizon (single horizon crossing) while the other is at the terminator (terminator crossing).

Determination of Crossings

For the determination of the crossings, the inertial coordinate system will be used. The cosine of the angle \(\varphi \) between the sun and the spacecraft is

\[
\cos \varphi = S_x S_1 + S_y S_2 + S_z S_3.
\]
\tag{18}

A comparison between the angles \(\varphi \) and \(\rho \) is required. If

\[
\cos \varphi > \cos \rho ,
\]
\tag{19}

the spacecraft is in sunlight, and the fully illuminated earth is seen (i.e., both \(E_i \) and \(E_o \) are sunlit horizon crossings). If

\[
-\cos \rho \leq \cos \varphi \leq \cos \rho ,
\]
\tag{20}

the spacecraft is in sunlight, and the terminator is visible. Therefore, one of the crossings is a terminator crossing. Unfortunately, the terminator data are not useful in the calculation of the nadir angle and are rejected. Only when the horizon is sunlit are the data acceptable.

The determination of the sunlit crossing horizon depends upon the rotation angle of the spacecraft \(\theta \). If \(\theta < \pi \), \(E_i \) is at the sunlit horizon. This is because the sun position vector and the vector from earth’s center to \(E_i \) form an acute angle. If \(\theta > \pi \), then \(E_o \) is at the sunlit horizon. If

\[
\cos \varphi < -\cos \rho ,
\]
\tag{21}

the spacecraft is in earth’s shadow, and the data are rejected.
Computation of the Nadir Angle δ

Two different techniques are used to obtain δ: one for the case of a fully sunlit earth and the other for the case when the terminator is visible. For both cases, the coordinate system centered at the spacecraft will be employed.

Case I: Solution Procedure for δ When Earth Is Fully Visible

Consider the planes WE_i, WE, and WE_o that are defined by the vector W and the points E_i, E, and E_o, respectively. The angle between the planes WE_i and WE_o is μ. If the spacecraft is spinning without precession, the plane WE bisects μ. Thus, the angle δ is related to the measured angles μ and ρ, as can be seen by application of the law of cosines to the spherical triangle AE_iE:

\[
\cos \rho = \cos \gamma \cos \delta + \sin \gamma \sin \delta \cos \frac{\mu}{2},
\]

since

\[
\sin^2 \delta = 1 - \cos^2 \delta.
\]

If $\gamma = \pi/2$, it follows from Equation 22 that

\[
\delta = \sin^{-1} \left(\frac{\cos \rho}{\cos \mu/2} \right).
\]

For $\gamma \neq \pi/2$, Equations 22 and 23 can be solved for $\cos \delta$. However, another equation in δ can be obtained if the law of cosines is applied to the spherical triangle ASE:

\[
\cos \eta = \cos \beta \cos \delta + \sin \beta \sin \delta \cos \left(\theta + \frac{\mu}{2} \right).
\]

Therefore, for $\gamma \neq \pi/2$, Equations 23 and 25 can also be used to evaluate $\cos \delta$.

It should be noted that Equations 22 and 25 are linear in $\sin \delta$ and $\cos \delta$. Therefore, one can obtain δ by simply solving these two equations simultaneously:

\[
\sin \delta = \frac{\cos \beta \cos \rho - \cos \gamma \cos \eta}{\Omega},
\]

\[
\cos \delta = \cos \eta \sin \gamma \cos \mu/2 - \cos \rho \sin \beta \cos \left(\theta + \mu/2 \right),
\]

where

\[
\Omega = \cos \beta \sin \gamma \cos \frac{\mu}{2} - \sin \beta \cos \gamma \cos \left(\theta + \frac{\mu}{2} \right) \neq 0,
\]

we have

\[
\delta = \tan^{-1} \left(\frac{\cos \beta \cos \rho - \cos \gamma \cos \eta}{\cos \eta \sin \gamma \cos \mu/2 - \cos \rho \sin \beta \cos \left(\theta + \mu/2 \right)} \right).
\]
Equation 28 will satisfy Equation 23 if there are no errors in the values of measured quantities. However, the values of the measured quantities $\beta, \rho, \theta,$ and μ will contain errors, and the measurement errors in ρ and μ might be different from those in β and θ. Consequently, the solution of Equations 22 and 23 might not satisfy Equation 25 (or the solution of Equations 23 and 25 might not satisfy Equation 22). In other words, even with identical input data, the final attitude solutions are expected to have slightly different values if the equations being used in the computations are not exactly the same.

Case II: Solution Procedure for δ When the Terminator Is Visible

If the spacecraft is in a position where the terminator is visible, the angle μ is no longer bisected by the plane WE, and the Case I method cannot be employed for the determination of δ. Therefore, another method will be developed for this situation.

Suppose that $0 < \theta < \pi$ and that the point E_i is at the sunlit horizon. Let WS be the plane containing the spin axis and the sun. Define a horizon plane WE_i (a plane containing both the spin axis and a point on the sunlit horizon). If ϕ is defined as the smaller of the two angles between planes WS and WE_i, then

$$\phi = \theta .$$ (29)

If λ and η are two great circle arcs extending from the sun S to the points E_i and E, respectively (see Figure 8), then

$$\cos \lambda = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos \phi .$$ (30)

The value of λ must satisfy the following condition:

$$\eta - \rho \leq \lambda \leq \psi ,$$ (31)

where ψ is the hypotenuse of the right spherical triangle SEC, which has legs ρ and η. (See Figure 9.) The value of ψ is determined by the equation

$$\cos \psi = \cos \rho \cos \eta .$$ (32)
The angle ξ between arcs β and λ of the spherical triangle SE_iA in Figure 8 can be found by application of the law of sines:

$$\sin \xi = \frac{\sin \phi \sin \gamma}{\sin \lambda} , \quad (33)$$

where

$$0 \leq \xi \leq \pi .$$

Next, the angle ϵ between arc λ and η of the spherical triangle SE_iE is evaluated by the use of the equation

$$\cos \epsilon = \frac{\cos \rho - \cos \lambda \cos \eta}{\sin \lambda \sin \eta} . \quad (34)$$

Since

$$|\cos \lambda| \leq 1$$

we have

$$\cos \rho \geq \cos \eta .$$

Hence, the value of $\cos \epsilon$ determined by Equation 34 can never be negative. The range of ϵ is

$$0 \leq \epsilon \leq \kappa . \quad (35)$$

This can be seen in Figure 9, which shows that the arc SG of the right spherical triangle SGE is tangent to earth. The angle κ is obtained by the use of the equation

$$\kappa = \sin^{-1} \frac{\sin \rho}{\sin \eta} \quad (36)$$

The computed values of the angles λ and ϵ must satisfy Equations 31 and 35, respectively, or the data are rejected, and no further computations are made with them.

The nadir angle δ is determined by the following equations:

$$\cos \delta = \cos \beta \cos \eta + \sin \beta \cos (\xi + \epsilon) \sin \eta \quad \text{(for ϵ not included in ξ—see Figure 8)} \quad (37)$$

$$\cos \delta = \cos \beta \cos \eta + \sin \beta \cos (\xi - \epsilon) \sin \eta \quad \text{(for ϵ included in ξ—see Figure 10).} \quad (38)$$

The range of δ is

$$\gamma - \rho \leq \delta \leq \gamma + \rho . \quad (39)$$

When θ is in the range $\pi < \theta < 2\pi, E_o$, where the scanning cone crosses the sunlit horizon, becomes the point of interest. The horizon plane in this case would be WE_o, and the viewing angle ϕ is given by

$$\phi = 2\pi - (\theta + \mu) . \quad (40)$$

The solution procedure for this case is similar to that already presented and will not be covered here.

Once the nadir angle δ is known, the attitude of the spacecraft can be determined with the aid of the technique described in the first section of this paper.
A FORTRAN PROGRAM*

Subroutine SPIN

Based on the analysis developed in this report, a FORTRAN subroutine, SPIN, was developed for the computation of the components of the spin axis. The FORTRAN listing of this subroutine is given in Appendix B. The subroutine is referenced by the following statement:

CALL SPIN (P, Q, BETA, DETA, W, U, IN),

where the input variables are

- \(P \) = reference vector with components \(P(1), P(2), P(3) \),
- \(Q \) = reference vector with components \(Q(1), Q(2), Q(3) \),
- \(BETA \) = angle \(\beta \), between spin axis and vector \(P \),
- \(DETA \) = angle \(\delta \), between spin axis and vector \(Q \),

and the output parameters are

- \(W \) = spin-axis orientation vector with components \(W(1), W(2), W(3) \),
- \(U \) = spin-axis orientation vector with components \(U(1), U(2), U(3) \),
- \(IN \) = 0, if the spacecraft attitude cannot be determined,
- \(= 1 \), if there is only one solution \(W \) for the spin-axis orientation \([\text{the components } W(1), W(2), W(3) \text{ of } W \text{ are computed}]\),
- \(= 2 \), if there is another solution \(U \) in addition to \(W \) for the spin-axis orientation \([\text{the components } U(1), U(2), U(3) \text{ of } U \text{ are computed}]\).

Generally, there will be more than one attitude solution. The correct solution will be chosen by means of a comparison with an a priori estimate of spin-axis orientation. The solution that is closest to the estimate is chosen.

The main program provides—

(1) The input parameters \(P, Q, BETA, \) and \(DETA \) before the subroutine SPIN is called

(2) Right ascension and declination, if they are desired, after subroutine SPIN is called when \(IN \neq 0 \) and \(|W(3)| \neq 1 \) \([\text{and/or } |U(3)| \neq 1 \text{ if } IN = 2]\)

*See Appendix A for a list of the FORTRAN symbols.
(3) The correct solution for the spin-axis orientation when IN = 2

Attitude Data Reduction and Attitude Determination for IMP I

For the spin-stabilized spacecraft IMP I, a FORTRAN program is used to reduce the input attitude data and compute the nadir angle. The subroutine SPIN (P, Q, BETA, DETA, W, U, IN) is then called to determine the spacecraft attitude. Since the telemetry data obtained from IMP I are quite abundant, it is necessary to select suitable values for the input. In the implementation of this selection procedure, several conditions are imposed that test the available telemetry data. All data that fail to satisfy these conditions would yield spurious attitude solutions and are therefore rejected. The FORTRAN program listing given in Appendix C is intended to conserve computer time and provide the correct spin-axis orientation. The input parameters are

Card deck 1: ID, IDAY, IH, IM, IMS, IET, IEW, SPP, BETAD

```
FORMAT (II, I4, 213, 16,
```

```
5X, 215, 5X, 2F8.2)
```

Card deck 2: SP, SQ, ST, SX, SY, SZ

```
FORMA  (13X, 3F12.3, 3F10.7),
```

where

- BETAD = angle between W and P (degrees),
- ID = option for control to read the input card deck (when ID = 0, the attitude data are read continuously until ID ≠ 0),
- IDAY, IH, IM, IMS = time (days, hours, minutes, and seconds, respectively),
- IET = time of occurrence of E_i-pulse with respect to previous sun pulse,
- IEW = time between E_i and E_o pulses,
- SPP = spin period of the spacecraft,
- SP, SQ, ST = components of spacecraft position vector,
- SX, SY, SZ = components of sun position unit vector.

The output parameters are the components of all attitude solutions together with the right ascension and declination of the selected spin-axis orientation. A sample of the output is shown in Appendix D.

CONCLUSION

This report has demonstrated how telemetry data from IMP I are used in a determination of the attitude of that spacecraft. The technique can be applied to any spin-stabilized spacecraft having any two of the following three instruments aboard: sun sensor, magnetometer, and earth-horizon sensor. Examples of such spacecraft would include ISIS 1 and SSS 1.
ACKNOWLEDGMENTS

The author would like to thank Mr. Clyde H. Freeman for valuable discussions during the course of this project, Dr. David L. Blanchard and Mr. Cyrus J. Creveling for reviewing this report, and Mr. Gene A. Smith for assisting in the FORTRAN programming.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, November 15, 1971
311-07-12-06-51
Appendix A

FORTRAN Symbols

<table>
<thead>
<tr>
<th>Mathematical Symbol</th>
<th>FORTRAN Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_e</td>
<td>RE</td>
</tr>
<tr>
<td>γ (degrees)</td>
<td>GAMAD</td>
</tr>
<tr>
<td>$\sin \gamma$</td>
<td>SGAMA</td>
</tr>
<tr>
<td>$\cos \gamma$</td>
<td>CGAMA</td>
</tr>
<tr>
<td>μ (degrees)</td>
<td>EW</td>
</tr>
<tr>
<td>$\cos \mu/2$</td>
<td>CEW</td>
</tr>
<tr>
<td>β (degrees)</td>
<td>BETAD</td>
</tr>
<tr>
<td>β (radians)</td>
<td>BETA</td>
</tr>
<tr>
<td>$\sin \beta$</td>
<td>SB</td>
</tr>
<tr>
<td>$\cos \beta$</td>
<td>CB</td>
</tr>
<tr>
<td>θ (degrees)</td>
<td>ET</td>
</tr>
<tr>
<td>$\cos (\theta + \mu/2)$</td>
<td>CETWH</td>
</tr>
<tr>
<td>ρ (radians)</td>
<td>ROM</td>
</tr>
<tr>
<td>$\sin \rho$</td>
<td>SR</td>
</tr>
<tr>
<td>$\cos \rho$</td>
<td>CR</td>
</tr>
<tr>
<td>$\sin \phi$</td>
<td>SA</td>
</tr>
<tr>
<td>$\cos \phi$</td>
<td>CA</td>
</tr>
<tr>
<td>η (degrees)</td>
<td>ETA</td>
</tr>
<tr>
<td>$\sin \eta$</td>
<td>SE</td>
</tr>
<tr>
<td>$\cos \eta$</td>
<td>CE</td>
</tr>
<tr>
<td>ψ (degrees)</td>
<td>XD</td>
</tr>
<tr>
<td>$\cos \psi$</td>
<td>CKX</td>
</tr>
<tr>
<td>Mathematical Symbol</td>
<td>FORTRAN Symbol</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>δ (radians)</td>
<td>DETA</td>
</tr>
<tr>
<td>sin δ</td>
<td>SDTA</td>
</tr>
<tr>
<td>λ (degrees)</td>
<td>CKD1</td>
</tr>
<tr>
<td>sin λ</td>
<td>SK1</td>
</tr>
<tr>
<td>cos λ</td>
<td>CK1</td>
</tr>
<tr>
<td>ε (degrees)</td>
<td>EK1</td>
</tr>
<tr>
<td>Ω</td>
<td>DNUM</td>
</tr>
<tr>
<td>cos ε</td>
<td>CEK1</td>
</tr>
<tr>
<td>κ (degrees)</td>
<td>SED</td>
</tr>
<tr>
<td>ξ (degrees)</td>
<td>BK</td>
</tr>
<tr>
<td>sin ξ</td>
<td>SBK</td>
</tr>
<tr>
<td>cos φ</td>
<td>CSES</td>
</tr>
<tr>
<td>φ (degrees)</td>
<td>SESD</td>
</tr>
<tr>
<td>cos τ</td>
<td>CETA</td>
</tr>
<tr>
<td>cos α</td>
<td>FA</td>
</tr>
<tr>
<td>Δ</td>
<td>DTA</td>
</tr>
<tr>
<td>Δ₁</td>
<td>DT1</td>
</tr>
<tr>
<td>Δ₂</td>
<td>DT2</td>
</tr>
<tr>
<td>Δ₃</td>
<td>DT3</td>
</tr>
</tbody>
</table>
Appendix B

FORTRAN Listing of Subroutine Spin

SUBROUTINE SPIN(P, Q, BETA, DEFA, W, U, IN)

C IF IN=0, THERE IS NO SOLUTION FOR ATTITUDE DETERMINATION
C EITHER BECAUSE P IS PARALLEL TO Q OR BECAUSE THERE
C IS ERROR IN MEASUREMENT
C IF IN=1 ONE SOLUTION FOR SPIN AXIS ORIENTATION, THE COMPONENTS
C OF SPIN AXIS W(1), W(2), AND W(3) ARE THEN COMPUTED.
C IF IN=2 TWO SOLUTIONS FOR SPIN AXIS ORIENTATION, THE SECOND
C SET OF COMPONENTS U(1), U(2), AND U(3) ARE COMPUTED
C IN ADDITION TO THE FIRST SET W(1), W(2), AND W(3).

DIMENSION P(3), Q(3), W(3), U(3)
DIMENSION A(3), B(3), C(3), D(3), V(3)
 50 FORMAT (2X, 6F12.8)
C ER IS THE ERROR LIMIT WHICH CAN BE MODIFIED.
C ER=0.00001

C IN=1
C SBETA=SIN(BETA)
C CBETA=COS(BETA)
IF(SBETA.LE.ER) GO TO 100
C SDEFA=SIN(DEFA)
C DEFA=COS(DEFA)
IF(SDEFA.LE.ER) GO TO 140

C CGE=AM=1.0*Q(1)+P(2)*Q(2)+P(3)*Q(3)
ACMA=ABS(CGE)
IF(A*GE.1.0) GO TO 180
E=ACOS(CGE)/0.001745329
SGE=SQR(T(1.0-CGE*CGE))
PRINT 52,GE
 52 FORMAT(2X, 'ANGLE BETWEEN TWO GIVEN VECTORS P AND Q ARE', F12.5)

C IF((1.0-ACMA).LE.ER) GO TO 200
AD=COS(BETA+DEFA)
IF(AD.GE.CGMA) GO TO 55
IF((CGE-AD).LE.ER) GO TO 65

C FA=(CGEA-CBETA*CGE)/SBEA*SDEFA
IF(SF*.0.GT.1.0) GO TO 60
C=ABS(SQRT((1.0-FA*FA)))*SBETA*SDEFA/SGE
IF(SF<0.0) GO TO 78

C 55 IF((AD-CGEMA).LE.ER) GO TO 65
PRINT 58, AD, CGEMA

19
58 FORMAT(2X,'COS(BETA+DETA)='F10.7,*,COS(GMA)='F9.7,*ERROR*)
 GO TO 290

C
60 IF((ABS(FA)-1.0)*GT.*ER) GO TO 70
65 CETA=0.0
GO TO 80
70 PRINT 75,FA
75 FORMAT(2X,*ERROR IN COS(ALFA)='F11.8)
 GO TO 290

C
78 IN=2
80 CALL CROSS(P,Q,V)
 DO 90 I=1,2
 A(I)=P(I)
 A(2)=Q(I)
 A(3)=V(I)
 B(I)=P(I)
 B(2)=Q(I)
 B(3)=V(I)
 C(I)=P(I)
 C(2)=Q(I)
 C(3)=V(I)
 D(I)=CETA
 D(2)=CDETA
 D(3)=CETA

C
 DTA=DET(A,B,C)
 DT1=DET(D,B,C)
 DT2=DET(A,D,C)
 DT3=DET(A,B,D)
 W(1)=DT1/DTA
 W(2)=DT2/DTA
 W(3)=DT3/DTA

C
 IF(IN.EQ.1) GO TO 300
 V(1)=-V(1)
 V(2)=-V(2)
 V(3)=-V(3)
 U(1)=W(1)
 U(2)=W(2)
 U(3)=W(3)

C
 PRINT 82,1,U(1),U(2),U(3)
82 FORMAT(2X,*SOLUTION 'I2',' COMPONENTS OF SPIN AXIS ARE 'F12.5)
90 CONTINUE
 GO TO 500

C
100 PRINT 120
120 FORMAT(2X,*SPIN AXIS IS PARALLEL TO VECTOR P*)
 IF(CETA*GT.*0.0) GO TO 130

C
 W(I)=-P(I)
 W(2)=-P(2)
 W(3)=-P(3)
 GO TO 300

20
C
130 W(1)=P(1)
 W(2)=P(2)
 W(3)=P(3)
 GO TO 300
C
140 PRINT 150
150 FORMAT(2X,'SPIN AXIS IS PARALLEL TO VECTOR Q')
 IF(CDETA*GT.0.0) GO TO 160
 W(1)=-Q(1)
 W(2)=-Q(2)
 W(3)=-Q(3)
 GO TO 300
C
160 W(1)=Q(1)
 W(2)=Q(2)
 W(3)=Q(3)
 GO TO 300
C
180 IF((ACMA-1.0)*LE.*ER) GO TO 200
 PRINT 185,CGEMA
185 FORMAT(2X,'ERROR IN COS(GEMA)=',F11.8)
 GO TO 290
C
200 PRINT 250
 FORMAT(2X,'P AND Q ARE PARALLEL')
290 IN=0
C
295 PRINT 295,IN
 FORMAT(2X,'IN='',I2,'*****NO SOLUTION*****')
 GO TO 500
C
300 PRINT B2,IN,W(1),W(2),W(3)
500 RETURN
END

SUBROUTINE CROSS(P,Q,W)

C
C P AND Q ARE DIRECTION COSINES OF TWO UNIT VECTORS
C W REPRESENTS THE UNIT VECTOR IN THE DIRECTION OF (P)X(Q)
C DIMENSION P(3), Q(3), W(3)
C G1=P(2)*Q(3)-P(3)*Q(2)
C G2=P(3)*Q(1)-P(1)*Q(3)
C G3=P(1)*Q(2)-P(2)*Q(1)
C SQ=SQRT(G1*G1+G2*G2+G3*G3)
C W(1)=G1/SQ
C W(2)=G2/SQ
C W(3)=G3/SQ
RETURN
END
SUBROUTINE DIRC(RA, DE, D)
C
C RA IS THE RIGHT ASCENSION.
C DE IS THE DECLINATION.
C RA AND DE ARE IN RADIANS.
C DETERMINE THE DIRECTION COSINES
C
DIMENSION D(3)
D(1) = (COS(RA)) * (COS(DE))
D(2) = (SIN(RA)) * (COS(DE))
D(3) = SIN(DE)
RETURN
END

FUNCTION DET(A, B, C)
C
DIMENSION A(3), B(3), C(3)
C COMPUTE THE DETERMINANT OF 3x3 MATRIX
CF1 = B(2) * C(3) - B(3) * C(2)
CF2 = B(3) * C(1) - B(1) * C(3)
CF3 = B(1) * C(2) - B(2) * C(1)
DET = A(1) * CF1 + A(2) * CF2 + A(3) * CF3
RETURN
END
FORTRAN Listing of Attitude Determination Program for IMP I

DIMENSION P(3),Q(3),W(3),U(3)
DATA RAD,TP1/0.01745329,6.2831853/
DATA RE/6378.388/
DATA GAMAD/90.0/
DATA ERR, BEAM/0.10, 3.0/

RES IS THE RADIUS OF THE EARTH, ERR IS THE ERROR LIMIT.
BEAM -- THE FIELD OF VIEW OF THE HORIZON SCANNER.

SGAMA=SIN(GAMAD*RAD)
CGAMA=COS(GAMAD*RAD)
SPX=0.0
SPY=COS(66.55*RAD)
SPZ=-SIN(66.55*RAD)

SPX,SPY,SPZ ARE THE COMPONENTS OF DESIRED SPIN AXIS ORIENTATION.

1 READ 4,ID,INAY,IN,IM,IMS,IEI,IEW,SPP,BETAD
4 FORMAT(1,14,213,16,5X,215,5X,2F8,2)
 IF(ID.NE.0) GO TO 150
 TSEC=IN*3600+IM*60+IMS/1000
 EW=IEW*360/SPP-BEAM
 SPP IS THE SPIN PERIOD.
 ET=IE*360/SPP
 BETA=BETAD*RAD
 SB=SIN(BETA)
 CB=COS(BETA)

PRINT 6
6 FORMAT(*1*)
PRINT 8,INAY,TSEC
8 FORMAT(//,2X,*TIME OF TELEMETRY DATA IS, DAY= ',13,' SEC= ',F10,2,
 1 ' H M S '*)
PRINT 9,SPP
9 FORMAT(2X,*THE SPIN PERIOD OF SPACECRAFT IS ',F9,2,' MSEC*)
PRINT 10,SPX,SPY,SPZ
10 FORMAT(2X,*THE DIRECTION COSINES OF DESIRED SPIN AXIS ARE ',3F9,5)

READ 16,SP,SQ,ST,SX,SY,SZ
PRINT 14,SP,SQ,ST
14 FORMAT(2X,*THE COMPONENTS OF SPACECRAFT POSITION VECTOR IN K.M ARE
 1 ',3F18,5)
16 FORMAT(13X,3F12,3,3F10,7)
PRINT 17,5X,SY,SZ
17 FORMAT(2X,*THE DIRECTION COSINES OF SUN LINE VECTOR ARE ',3F15,5)
PRINT 18,BETAD
18 FORMAT(2X,*THE ANGLE BETWEEN THE SPIN AXIS AND THE SUN POSITON
 1 VECTOR IS ',F9,3,' DEG.*)
C CHECK THE TWO REFERENCE VECTORS IF THEY ARE PARALLEL
IF(ABS(CSES) .LT. 1.0) GO TO 25
PRINT 24
24 FORMAT(2X,'NO SOLUTION*)
GO TO 1

C C CHECK THE CONDITION FOR DETERMINATION OF CROSSINGS
IF(CSES .GE. CR) GO TO 33
IF(CSES.GE.(-CR)) GO TO 37
PRINT 30
30 FORMAT(/,'2X,'THE SPACECRAFT IS IN THE EARTH SHADOW')
GO TO 1
C
C
33 PRINT 34
34 FORMAT(/,'2X,'THE FULL EARTH IS SEEN')
IF(GAMAD.EQ.90.0) GO TO 36
C
C FOR GAMAD NOT EQUAL TO 90.0, WHEN FULL EARTH IS SEEN
ETWH=(ET+EWH)*RAD
CETWH=COS(ETWH)
DNUM=CB*SGAMA*CEW-SR*CGAMA*CETWH
C
C IF(DNUM.EQ.0.0) GO TO 49
C COMPUTE EQUATION (28)
DETA=ATAN((CB*CR-CGAMA*CE),(CE*SGAMA*CEW-CR*SB*CETWH))
GO TO 39
C
C FOR GAMAD EQUAL TO 90.0, WHEN FULL EARTH IS SEEN
C COMPUTE EQUATION (24)
36 SDTA=CR/CEW
DETA=ASIN(SDTA)
39 DETA=DETA/RAD
JS=1
GO TO 54
C
C
37 PRINT 38
38 FORMAT(/,'2X,'AN EARTH TERMINATOR IS VISIBLE')
C CHECK THE VIEWING ANGLE, WHEN TERMINATOR IS VISIBLE
IF(ET.LT.180.0) GO TO 43
C
EC=(ET+EW)*RAD
CA=COS(TPI-EC)
SA=SIN(TPI-EC)
GO TO 45
C
43 CA=COS(ET*RAD)
SA=SIN(ET*RAD)
C COMPUTE EQUATION (30)
45 CK1=CB*CGAMA+SB*SGAMA*CA
ERH=COS((ETA-ROMD)*RAD)
IF (CK1*LT*ERM)GO TO 48
IF (ABS(CK1-ERM),LT,FRR) GO TO 50
C
PRINT 46,CK1,ERM
46 FORMAT(/,2X,'ERROR IN CK1=0,F5.2,1 FERM=0,F6.2)
49 PRINT 47
47 FORMAT(2X,'ERROR, NO SOLUTION')
GO TO 1
C
C IF(CK1.GE.CKX) GO TO 50
IF(ABS(CK1-CKX).LT.ERR) GO TO 50
PRINT 47
GO TO 1
C
50 SN=SQRT(1.0-CK1*CK1)
26
CKD1=ACOS(CK1) / RAD
C
COMPUTE EQUATION (34)
CFL1=(CR-CK1)*CE/(SK1*SF)
SGL=CEK1/ABS(CEK1)
IF(ABS(CEK1)>0.1) CFL1=SGL
EK1=ACOS(CEK1)/RAD
C
COMPUTE EQUATION (35)
SED=ASIN(SR/SE)/RAD
IF(EK1.LE.SED) GO TO 51
IF(ABS(EK1-SED).LT.(ERR.SQRT)) GO TO 51
PRINT 47
GO TO 1
C
C
COMPUTE EQUATION (33)
51 SRK=SA*SGAMA/SK1
IF(SRK.GT.1.0) SRK=1.0
BK=(ASIN(SBK))/RAD
BEA=(BK+EK1)/RAD
BEB=(BK-EK1)/RAD
C
COMPUTE EQUATION (37) AND (38)
COTA1=CB*CE+SR*SE*COS(BFA)
COTA2=CB*CE+SR*SE*COS(BFB)
C
52 DTA1=ACOS(COTA1)
DTA2=ACOS(COTA2)
D0A1=DTA1/RAD
D0A2=DTA2/RAD
JS=1
IF(COTA1.NE.COTA2) GO TO 53
JS=1
53 DATA=DTA1
PRINT 73,JS
C
C
54 TMAX=0.0
DO 58 JS=1,JS
PRINT 74,1
PRINT 57
CALL SPIN(P,0,BETA,DATA,W,U,IN)
IF(IN.EQ.0) GO TO 1
R1=M(1)
R2=M(2)
R3=M(3)
C
C
COMPARE EACH SOLUTION OF SPIN AXIS WITH THE DESIRED ORIENTATION.
DO 56 J=1,IN
TESTC=SPY*R1+SPY*R2+SP2*R3
IF(TESTC.LT.TMAX) GO TO 55
TMAX=TESTC
PP1=R1
PP2=R2
PP3=R3
55 R1=U(1)
R2=U(2)
R3=U(3)
56 CONTINUE
C
PRINT 57
57 FORMAT(2X,'*')
DETADETA2

58 CONTINUE

C

COMPUTE THE RIGHT ASCENSION AND DECLINATION OF SELECTED SOLUTION.

RA = \text{ATAN2}(P_{P2}, P_{P1})

DA = \text{ASIN}(P_{P31}/\text{RAD})

IF (RA \geq 0.0) GO TO 70

RA = RA + 6.2831853

70 RA = RA/\text{RAD}

C

PRINT 72, R1, R2, R3

72 FORMAT(2X, 'FINAL SELECTION OF THE SPIN AXIS ORIENTATION WITH COMPONENTS ', 3F12.5)

73 FORMAT(2X, 'THE SCANNER CUTS THE EARTH HORIZON AT ', 13, ' POINT')

74 FORMAT(10',', 'OUTPUT FOR POINT', 13, ',', '************')

PRINT 78, RA, DA

78 FORMAT(2X, 'RIGHT ASCENSION AND DECLINATION OF SPIN AXIS ARE ', 1F14.3, ' DEG., ', 1F14.3, ' DEG.')

PRINT 57

GO TO 1

150 END
Appendix D

Sample of Attitude Determination Output
THE SPIN PERIOD OF SPACECRAFT IS 1111.75 MSEC
THE DIRECTION COSINES OF DESIRED SPIN AXIS ARE 0.00000, 0.39795, -0.91741
THE COMPONENTS OF SPACECRAFT POSITION VECTOR IN KM ARE
47081.58105, 30549.70703, 10676.77199
THE DIRECTION COSINES OF SUN LINE VECTOR ARE 0.99717, -0.05646, -0.02449
THE ANGLE BETWEEN THE SPIN AXIS AND THE SUN POSITION VECTOR IS 89.200 DEG.
EARTH WIDTH IS 4.9589 DEG., HALF ANGLE SUBTENDED BY EARTH IS 6.419 DEG.
THE DIRECTION COSINES OF DOWNWARD LOCAL VERTICAL ARE -0.82410, -0.53473, -0.18688
THE VIEWING ANGLE AT THE SPACECRAFT FROM THE SUN TO THE EARTH IS 136.22 DEG.
THE ANGLE BETWEEN THE SUN AND THE LOCAL VERTICAL IS 141.60 DEG.

AN EARTH TERMINATOR IS VISIBLE
THE SCANNER CUTS THE EARTH HORIZON AT 2 POINT

***************OUTPUT FOR POINT 1***************

ANGLE BETWEEN TWO GIVEN VECTORS P AND Q ARE 141.40427
SOLUTION 1, COMPONENTS OF SPIN AXIS ARE .01970, .90739, -.91320
SOLUTION 2, COMPONENTS OF SPIN AXIS ARE .02979, -.26177, .96969

***************OUTPUT FOR POINT 2***************

ANGLE BETWEEN TWO GIVEN VECTORS P AND Q ARE 141.40427
SOLUTION 1, COMPONENTS OF SPIN AXIS ARE .00323, -0.23145, -.97298
SOLUTION 2, COMPONENTS OF SPIN AXIS ARE .01147, -.43586, .99097

FINAL SELECTION OF THE SPIN AXIS ORIENTATION WITH COMPONENTS .00323, -0.23145, -.97298
RIGHT ASCENSION AND DECLINATION OF SPIN AXIS ARE 87.933 DEG., -65.951 DEG.

TIME OF TELEMETRY DATA IS, DAY= 76 SEC= 61396.000 -H M S
THE SPIN PERIOD OF SPACECRAFT IS 1111.75 MSEC
THE DIRECTION COSINES OF DESIRED SPIN AXES ARE 0.00000, 0.39795, -0.91741
THE COMPONENTS OF SPACECRAFT POSITION VECTOR IN KM ARE
45109.67578, 30554.76294, 9937.82300
THE DIRECTION COSINES OF SUN LINE VECTOR ARE 0.99717, -0.05646, -0.02449
THE ANGLE BETWEEN THE SPIN AXES AND THE SUN POSITION VECTOR IS 89.200 DEG.
EARTH WIDTH IS 4.9589 DEG., HALF ANGLE SUBTENDED BY EARTH IS 6.419 DEG.
THE DIRECTION COSINES OF DOWNWARD LOCAL VERTICAL ARE -0.82410, -0.53473, -0.18688
THE VIEWING ANGLE AT THE SPACECRAFT FROM THE SUN TO THE EARTH IS 136.22 DEG.
THE ANGLE BETWEEN THE SUN AND THE LOCAL VERTICAL IS 141.60 DEG.

AN EARTH TERMINATOR IS VISIBLE
THE SCANNER CUTS THE EARTH HORIZON AT 2 POINT

***************OUTPUT FOR POINT 1***************

ANGLE BETWEEN TWO GIVEN VECTORS P AND Q ARE 140.98712
SOLUTION 1, COMPONENTS OF SPIN AXIS ARE .01464, -.90457, -.91357
SOLUTION 2, COMPONENTS OF SPIN AXIS ARE .02492, -.23048, -.97281

***************OUTPUT FOR POINT 2***************

ANGLE BETWEEN TWO GIVEN VECTORS P AND Q ARE 140.98712
SOLUTION 1, COMPONENTS OF SPIN AXIS ARE .01132, .20071, -.97985
SOLUTION 2, COMPONENTS OF SPIN AXIS ARE .01156, -.43964, .99068

FINAL SELECTION OF THE SPIN AXIS ORIENTATION WITH COMPONENTS .01132, .20071, -.97985
RIGHT ASCENSION AND DECLINATION OF SPIN AXIS ARE 87.937 DEG., -66.004 DEG.
"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546