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EXAMINATION OF TWO METHODS OF DESCRIBING THE

THERMODYNAMIC PROPERTIES OF OXYGEN

NEAR THE CRITICAL POINT

By Thomas H. Rees and John T. Suttles
Langley Research Center

SUMMARY

A computer study was conducted to compare the numerical behavior of two
approaches to describing the thermodynamic properties of oxygen near the critical point.
One approach utilized properties from the tabulated data presented by L. A. Weber, and
the other approach was based on computing properties using the curve-fit equations
developed by R. B. Stewart, Data on the relative differences between values of specific
heats at constant pressure (Cp\, density, and isotherm and isochor derivatives of the equa-
tion of state are presented for selected supercritical pressures at temperatures in the
range 100 to 300 K. The results of a more detailed study of the cp representations
afforded by the two methods are also presented.

The correlation of the two methods at the "selected pressures was very good outside
the near-critical temperature region (150 to 170 K). Large differences (up to 30 percent)
occurred within this region, however. The detailed study of Cp representations illus-
trated that these large discrepancies were due not to differences in the basic data of the
methods but to the fact that the resolution of Weber's data in the near-critical region was
not adequate to allow sufficient description of the thermodynamic functions by linear
interpolation. In order to illustrate the effects of this poor description, identical calcu-
lations were performed based on the two methods of obtaining thermodynamic properties.
Regions of erratic behavior in the calculations based on Weber's tabulations were cor-
related to errors introduced by linear interpolation.

INTRODUCTION

The removal of the mixing fans from the supercritical oxygen storage tanks in the
Apollo spacecraft introduced the possibility that the fluid in the tank could be stratified,
possibly giving rise to several serious effects. First, it could cause erroneous quantity
probe measurements with the potential for precipitating a mission abort. Second, if the
low-density fluid from the stratified layer entered the oxygen supply lines, the potential
would exist for fuel-cell shutdown. Finally, if the stratified layer became too extensive,



a perturbing force of even extremely low magnitude could cause depressurization with
the potential for the existence of two-phase fluid in the tank.

The concern about the effects of stratification in the redesigned tanks led to a sig-
nificant volume of analytical study in that area (refs. 1,2, and 3). The thermodynamic
data for oxygen that served as bases for the various studies were not identical; some
investigators used the tabulated data presented by L. A. Weber (ref. 4), while some relied
on the curve-fit equations developed by R. B. Stewart (ref. 5).

Comparisons of results presented in references 1 to 3 with unpublished calcula-
tions made by J. T. Suttles and G. L. Smith of the Langley Research Center have revealed
significant differences. For example, Suttles and Smith using Weber's tabulations 'for the
thermodynamic data predict the generation of very rapid oscillations of the mean pres-
sure in the tank (about 25 cycles per hour after 2 hours) for a high-density case whereas
Baldwin, Reinhardt, and Sheaffer (ref. 1, ch. 6) using Stewart's equations predict rates
of about 3^ cycles per hour. Although the overall methods of analysis in the cited papers
are diverse and thus undoubtedly contribute to the varying results, the contributions to
these differences caused by the use of different descriptions of the thermodynamic data
were also questioned. The purpose of this paper is, therefore, to compare the descrip-
tions of the thermodynamic data for supercritical oxygen afforded by the two methods
mentioned (refs. 4 and 5) and to compare the results of identical calculations based upon
the two methods.

The approach taken was first to compute by each method values of specific heats
at constant pressure (Cp), density, and the isotherm and isochor derivatives of the equa-
tion of state for supercritical pressures of 58.5 and 60 atm over the temperature range
100 to 300 K. The percent differences of values computed by Stewart's equations from
interpolated values of Weber's tabulations were computed and plotted against tempera-
ture. The values of cp were also plotted along selected isobars and isotherms.
Finally, thermodynamic properties computed by Stewart's equations were applied to a
simple mathematical model of the Apollo cryogenic oxygen storage tank for which the
results of calculations based on Weber's tabulations were available.

SYMBOLS

Ai coefficients in vapor-pressure curve fit (eq. (4)), defined in appendix B,
table IIIB

Ci coefficients in zero-pressure specific-heat equation (eq. (B3)), defined in
appendix B, table IIB



Cp specific heat at constant pressure, J/kg-K

c° specific heat at zero pressure, liter-atm/mole-K

Cp(T) Cp as a function of T only, that is, along an isobar

f^ functions for evaluating derivatives of equation of state (eq. 1)),
defined in appendix A, table IVA

gj functions for evaluating integrals of thermodynamic equations,
defined in appendix B, table IB

H enthalpy, liter-atm/mole

H°TO reference enthalpy at triple point, liter-atm/mole

m mass flux, kg/hr

nj coefficients in Stewart's curve fit to equation of state for oxygen (eq. (1)),
defined in appendix A, table IA

p pressure, atm (1 atm = 101.325 kN/m2)

Py vapor pressure, atm

R characteristic gas constant for oxygen, 0.0820535 liter-atm/mole-K

T temperature, K

Tc temperature at critical point, K

To temperature at triple point, K

t time, sec

U internal energy, liter-atm/mole

Q heat flux, watts



functions for evaluating equation of state and derivatives, defined in
appendix A

functions for evaluating integrals of thermodynamic equations, defined
in appendix B

density, mole/liter

critical density, mole/liter

saturated liquid density, mole/liter

saturated vapor density, mole/liter

isochor derivative of equation of state

isotherm derivative of equation of state

Subscripts:

COND conduction

HTR heater

input

leak

net

input

leak

net

RAD radiation

METHOD

Two methods of describing the thermodynamic properties of oxygen were utilized
in the present investigation. The first method was based on the least-squares curve fit
to the equation of state for oxygen developed by Stewart (ref. 5). Stewart's curve fit
gives pressure in terms of temperature and density over the entire range of data avail-



able at the time. The estimated accuracies of the equation of state over the three main
temperature -pressure ranges are given as follows:

1. Gaseous range of values (65 to 300 K, to 340 atm) — ±0.1 percent in p

2. Liquid range (65 K to Tc, to 340 atm) - ±0.15 percent in p

3. Near-critical range (125 to 165 K, 40 to 100 atm) - ±0.3 percent in p

Stewart also presented methods for calculating entropy, enthalpy, internal energies, and

specific heats from derived functions using his equation of state and its derivatives.

The second method of describing the thermodynamic properties of oxygen utilized
in the present investigation involved interpolation of- Weber's tabulations of the thermo-
dynamic properties (ref. 4). Values of molar volume, isotherm and isochor derivatives
of the equation of state, enthalpy, entropy, specific heats, and velocity of sound were
tabulated as functions of pressure (to 330 atm) and temperature (To to 300 K). These
data were presented in increments of 5 atm and 2 K up to 160 K and in increments of
5 atm and 5 K above 160 K.

For the purpose of the present study, values of cn, p, -•} , and \-\ were
P \ 9p/T \ 9T/p

taken directly from Weber's tabulations (ref. 4), read into the digital computer, and ref-
erenced by linear interpolation.

The equations required i >r utilization of Stewart's method were adapted from ref-
erence 5. The equations and procedures used in the present investigation are presented
in detail. Also, a computer listing of subroutines used for applying Stewart's method is
included as appendix C.

Equation of State

The curve fits for the thermodynamic properties1 of oxygen developed by Stewart
(ref. 5) were programed into the computer. The least-squares curve fit for the equation
of state, given in reference 5 as equation (7), is presented here as equation (1):

" nc nq n10\ •?
*5p = pRT + n,T + n9 + - + - + -± p + nRT + n7T + nft + —F M 1 2 H 6 7 8

A
n12)p

4

+ p
K /n1 ft n10| lo 1

(1)
5



The coefficients for equation (1), nj through ^g, are included in table IA of appen-
dix A. The constraints for the critical point and the fixed-point data imposed by Stewart
upon the curve fit for the equation of state are listed in tables IIA and IHA. of appendix A,
respectively.

Since the calculations required density as a function of temperature and pressure,
equation (1) was solved numerically for density by an iterative method.

The isochor derivative (-^} and the isotherm derivative (-|H of equation (1)
\ t f l/p \°P/T

are given in appendix A as equations (A2) and (A3), respectively.

Specific Heat Calculations

Since the method of Stewart (ref . 5) does not include a procedure for calculating Cp
throughout the entire range of supercritical conditions being considered, it was necessary
to adopt the procedure described in this section. The approach is based upon the use of
the enthalpy equation to produce a consistent calculation of Cp for the entire range of
interest.

The specific heat at constant pressure was approximated by a central differencing
of the enthalpy versus temperature curve;

- H ( T - AT,p2)cp(T,p) = - - —± - U (2)

where PJ and p2 are densities at T + AT and T - AT, respectively, for a given
pressure. A temperature increment AT = 1.0 K was used in equation (2), except in the
near -critical region (150 K ^ T ^ 170 K) where AT = 0.1 K was used to improve the
approximation. A brief computer study showed that, for AT = 0.1 K, a halving of the
temperature increment to AT = 0.05 K produced a change in cp of less than 0.2 percent
in the near -critical region, which is within the accuracy of Stewart's curve -fit equations.

Using the method of reference 5, it was necessary to calculate the enthalpies -for
equation (2) differently for temperatures above and below Tc. The procedure is
described in the following sections.

Temperatures above critical.- For temperatures above Tc the enthalpy used in
equation (2) was calculated by equation (18) of reference 5, given here as equation (3)

H(T,p)=.H°1 » 'SI
T

- dp

LT'P° dT (3)



The solution to the integrals over p in equation (3) is simplified by using the equation
of state (eq. (1)) and its isochor derivative (eq. (A2)). The indefinite solutions to the three
integrals in equation (3) are given in appendix B. The reference enthalpy used was the
enthalpy of the ideal gas at the triple point To = 55.0 K which is HT = 15.7 liter-
atm/mole (ref. 5).

Temperatures below critical.- The method used for calculation of the enthalpy of
supercritical oxygen at temperatures below Tc involved integration of internal energies
from the saturation point along an isotherm. The use of internal energies in this region
is part of the method of reference 5. The sequence of computations is described as
follows:

First, the vapor pressure was calculated from the vapor -pressure curve fit for
oxygen given as equation (7) in reference 4,

loge py(T) = A! + A2T + A3T
2 + A4T

3 + AgT4 + AgT5 + A?T
6 + AgT7 (4)

The Ai's for equation (4) are listed in table IIIB of appendix B.

Next, the saturated liquid and vapor densities, p ± an^ Psat > were calculated

by the simultaneous solution of the equation of state (eq. (1)) and the vapor-pressure
curve (eq. (4)).

The saturated -vapor enthalpies were calculated by evaluating equation (3) at T,
p . , and pv. The saturated -liquid enthalpies were calculated by subtracting the

enthalpy change due to vaporization as given by the Clapeyron equation from the saturated-
vapor enthalpy:

1 \ /«- _ (5)

/dpv\where ( — —I is the derivative of the vapor -pressure curve (eq. (4)).

The internal energies and the enthalpies were related as follows:

U(T,p) = H(T,p)--| (6)

The internal energies were calculated by equation (24) of reference 5, given here as
follows:

- T



where U(T,p t \ is the saturated-liquid internal energy, calculated from equations (5)

and (6). The solutions to the integrals in equation (7) were facilitated by the use of the
following relations:

R
P

dp - R loge p (8)

^dP-U^- 2 *- dP + *Tlogep (9)
T

After the appropriate substitutions are made, equation (7) becomes

PsatLL P x 7^T psatL\p 'T

The integrals used in equation (10) are the same as those used in equation (3).

Finally, the enthalpy used in equation (2) was calculated by equation (6).

Numerical difficulties. - Iterating for the saturation densities was complicated by
the existence of an extraneous positive real root of equation (1) which lies between the
roots representing the saturated vapor and liquid densities. Calculation of the extraneous
root was avoided by careful choice of the bounds on the iteration. Evaluation of equa-
tion (A3), the isotherm derivative of the equation of state, at each calculated root pro-
vided a check for extraneous roots, since the isotherm derivative is always positive at
the saturation densities but negative at the extraneous root. The problem of the extrane-
ous root to equation (1) is addressed more comprehensively by Walter A. Reinhardt in
reference 1, chapter 4.

Discontinuities were calculated in the cp -isobars at Tc. Since the temperature
range encompassing the discontinuities was only about 2 K at the pressures investigated,
this problem was circumvented by calculating Cp's above and below the discontinuity
and interpolating linearly along the isobar for intermediate temperatures.

Stewart's equations (ref. 5) exhibited sensitivity to propagation of errors. The
large number of operations involved tend to mushroom seemingly insignificant relative
errors in p, for example, into large relative errors in p calculated from equation (1).
This effect can be minimized by demanding higher-order accuracy on the iterations for p,
and by programing for minimum propagation of errors. (Reduction of the number of com-
puter operations is one effective method for minimizing propagated errors.) A discus-
sion of computer propagation of errors may be found in a numerical -methods text such
as reference 6.

8



The method described above for calculation of Cp's proved to be expensive in
computer run time relative to a table look-up method; consequently, care was required
in the coding and logical flow to insure maximum efficiency.

PROCEDURE

The procedure used in the present study involved first calculating values of Cp, p,

( 9n\ /fln\
—) , and (—) for two supercritical pressures (58.5 and 60 atm) and a range of tem-
9P/T V^/p

peratures, 100 to 300 K, in 2 K increments. The percent differences between values
from Stewart's method and from Weber's tabulations were computed by the following
relation:

Stewart's value - Weber's value ,Percent difference =
Weber's value

These percent differences were plotted against temperature in figure 1. Values of Cp
were then calculated over the temperature range 130 to 180 K in increments of 0.2 K
along the isobars 55, 60, and 58.5 atm and are presented as plots in figure 2. In figure 3,
a family of similar curves from reference 4 is presented for comparison. Values of c
were also calculated over a range of pressures, 55 to 70 atm, in increments of 1 atm for
four isotherms, 140, 157, 160, and 180 K. These isotherms are presented as figure 4.

In order to explore the effects on calculated results caused by using Stewart's
method rather than Weber's, identical calculations were performed and compared. In
these calculations use was made of a simple mathematical model of the Apollo cryogenic
oxygen storage tank developed by J. T. Suttles and G. L. Smith. Suttles and Smith used
a one -dimensional cylindrical tank model as shown in figure 5 which facilitated a solution
but retained the essential features of the actual tank. Their calculations gave the time
rate of change of pressure as a function of temperature for two mass flux rates,
0.2268 kg/hr or 0.5 Ib/hr and 0.6804 kg/hr or 1.5 Ib/hr, both for heat addition (Qnet =
125 watts) and for no heat addition. The present calculations were made for pressures
of 58.5 and 60 atm. The 60-atm case shows comparison of the results based on the two
thermodynamic representations at a pressure at which Weber's data were tabulated. The
58. 5 -atm case duplicates the conditions imposed on the calculations of Suttles and Smith.
The results of the calculations are presented as plots in figure 6.

RESULTS AND DISCUSSION

Thermodynamic Properties

The percent differences in the thermodynamic properties calculated by the different
methods (figs. l(a) to l(d)) range between zero and 3 percent outside the near -critical



region (150 K < T < 170 K); however, large differences were noted inside this region.
Also, the error introduced by linear interpolation of Weber's tabulations appears to have
a significant effect upon the percent differences. The magnitudes of the percent differ-
ences were, in general, larger at points representing interpolated Weber's data than at
points representing tabulated data. The differences in Cp were by far the most signifi-
cant; therefore, Cp was selected for a detailed examination.

Figures 2(a) to 2(c) present comparisons of values of cp produced by the differ-
ent methods plotted as functions of temperature along three isobars (55 atm, 60 atm, and
58.5 atm). It should again be noted that agreement outside the near-critical temperature
region (150 K to 170 K) appears to be very good. Furthermore, the points corresponding
to tabulated data in reference 4 (circled points, 55 and 60 atm) agree very well with values
calculated by Stewart's curve fits over the entire temperature range; if the circled points
were faired smoothly, the faired curves would closely approximate the curves calculated
from Stewart's equations. This statement is supported by figure 3, which was taken
directly from reference 4. Although the isobars from figure 2 do not appear in figure 3,
the smoothness and characteristic shape of the 50- and 70-atm isobars of figure 3 give
strong support to at least the shape of the cp-curves obtained from Stewart's equations
shown in figure 2.

Since figures 2(a) and 2(b) represent data at pressures at which values of Cp were
tabulated in reference 4, the poor behavior of Weber's data in the proximity of the peaks
could only be due to linear interpolation of Cp(T) between points too widely spaced in
temperature to describe the peak adequately. Figure 2(c), on the other hand, represents
the 58.5-atm isobar, which is between tabulated pressures. This figure, therefore, illus-
trates the combined effect of double first-order interpolation of cp, which appears to be
only slightly worse than the effect of interpolating Cp(T) along the tabulated isobars.

Figure 4, a comparison of Cp's along selected isotherms, is presented to illus-
trate better the effects of linear interpolation of pressure. The 140 and 180 K isotherms
lie outside the near-critical region and reassert the statement that first-order interpola-
tion of Weber's data is sufficient outside of this region. The 160 K isotherm (a tabulated
temperature) illustrates the irregularity introduced by linear interpolation of Cp with
pressure in regions where the slope of the curve changes rapidly. Although the relative
accuracy of the two methods at points where tabulated data exist in reference 4 has not
been established, certainly Stewart's equations yield smoother results in the near-
critical region than linear interpolation of Weber's tabulated data. Finally, the 157 K
isotherm again represents a comparison of the results of Stewart's method with double-
interpolated Weber's data corresponding to the peak of figure 2(a). The greatest part of
the deviation of this pair of curves near 55 atm is attributed to interpolation of Cp with
temperature since 55 atm is a tabulated pressure. The error caused by first-order

10



interpolation of Cp with pressure appears to be relatively insignificant compared to
the gross error caused by first-order interpolation of the Cp(T)-curves near their peaks.

Calculations for Tank With Uniform Properties

The calculations for a uniform tank performed by Buttles and Smith were repeated,
and the results are presented in figures 6(a) and 6(b). The calculations gave the time
rate of change of pressure as a function of temperature for two mass flux rates,
0.2268 kg/hr or 0.5 Ib/hr and 0.6804 kg/hr or 1.5 Ib/hr, both for heat addition (Qnet =
125 watts) and for no heat addition. The calculations were made using both methods for
description of the thermodynamic properties of oxygen for two pressures (p = 60 atm
and 58.5 atm). Results from the two methods agreed over the entire temperature range
for no heat addition, and for temperatures greater than 170 K for the heat-addition case.
The methods also agreed fairly well for the latter case up to approximately 140 K. The
divergent behavior between 140 and 154 K correlates with differences in the thermody-
namic properties previously noted in that range.

The relative behavior of the results based upon the two methods in the region
between 154 and 170 K warrants special attention, however. The results from Weber's
data in figure 6(a) up to 160 K correspond to tabulated thermodynamic properties from
reference 4. It is important to note that the pressure derivatives calculated from Weber's
data at 162 and 164 K correspond to regions of poor description of the peak in the Cp(T)-
curve by linear interpolation (figs. 2(b) and 2(c)), while the derivatives at 58.5 atm, 156
and 158 K, correspond to points of large percent differences in all the thermodynamic
properties (fig. 1).

In summary, comparison of figures 6(a) and 6(b) indicates that the variations in the
pressure derivative between 154 and 170 K calculated from linearly interpolated data
from reference 4 (these variations were described as "unusual" by Suttles and Smith)
were caused by the error introduced by such interpolation.

The calculations for the stratified-tank problem performed by Suttles and Smith
were not made, but significant differences in the behavior of calculations around the criti-
cal temperature could be expected.

CONCLUDING REMARKS

A study was made to compare the approximations of the thermodynamic behavior of
supercritical oxygen as afforded by Weber's tabulations and by Stewart's curve-fit equa-
tions as presented in this paper. Comparisons were presented for density, the isotherm
and isochor derivatives of the equation of state, and specific heat at constant pressure

for a range of temperatures and two supercritical pressures. Special attention was
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given to approximations of cp. Calculations for a simple one-dimensional mathematical
model of the redesigned Apollo cryogenic oxygen storage tank with uniform properties •
were made based upon both approximations of the thermodynamic properties of oxygen.
The results were plotted and presented for comparison.

In general, the thermodynamic properties obtained by the two methods agreed very
well except in the near-critical temperature region (150 to 170 K). Stewart's equations
were more effective in approximating the general shapes of the curves of the thermody-
namic properties in regions of rapid variation than linear interpolation of Weber's tabu-
lations. The resolution of Weber's data was insufficient for first-order interpolation in
regions of rapid variation in the thermodynamic properties. Additional tabulated data
near the critical point would greatly enhance the reliability of Weber's tabulations in this
region.

Similarly, the results of the uniform-tank calculations agreed for temperatures
above 170 K. Regions of erratic numerical behavior in the results of the calculations
based on Weber's tabulations were correlated to errors introduced by linear interpolation.

From a utilization standpoint, both methods of describing the thermodynamic prop-
erties of oxygen have advantages. For limited ranges of temperature and pressures such
as those in !he present study, the table look-up method was considered more convenient
and efficient for computer programing. On the other hand, if a very wide range of con-
ditions must be studied, the large number of data points required for this method could
make computer storage requirements the limiting factor; the curve-fit method becomes
more advantageous as the ranges of temperature and pressure increase.

If Stewart's equations are to be employed, certain obvious techniques can be incor-
porated to enhance the efficiency of the method; for instance, the problem should be for-
mulated so that temperature and density are the independent variables. Owing to the
large number of operations involved, calculation of specific heats should be avoided if
possible, especially in the near-critical region where the uncertainty of the representa-
tion is the greatest. Stewart's equations should be programed to avoid redundant opera-
tions and to minimize propagation of errors.

More recent data are now available (refs. 7 and 8) which improve the description
of the thermodynamic behavior of oxygen in the critical region; nevertheless, linear inter-
polation in this region is not recommended. Regardless of the methods of describing
thermodynamic properties chosen for future investigations, a brief numerical study of the
description afforded will probably disclose any gross misrepresentations of the data
similar to linear interpolation of Weber's tabulations in the critical region.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., July 25, 1972.
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APPENDIX A

DERIVATIVES OF THE EQUATION OF STATE (REF. 5)

Equation of State

The equation of state (eq. (1)) may be written
24

p = pRT + ^ npq (Al)

where the n^'s are the coefficients listed in table LA, and the X^ functions are as
follows:

9 *? / o / 4
Xi = p^T Xg = p-yT Xll = P3fl/T

X2 = p2 X1Q = p3/T2 X18 = p5fly/T2

X3 = P2/T2 Xn = p4T X19 = p5

•v. _ n2/T4 v - n4 V - n5A 4 - P / 1 A j 2 - p A2Q - p

X5 = p2/T6 X13 = p5 X21 = p7

X6 = p3T2 X14 = P5/T X22 = p7fly

X_ — /-i3rp -y 3f Ap2 "V" _ n '
7 ~" P •*• 15 P 1 / •*• 2*} P

The f j's are given in table IVA.

Isochor Derivative

The isochor derivative f-^j for equation (Al) is given as
\9T/p

24

.

where the n^'s are the coefficients listed in table IA, and the X^ functions are as
follows:

13



APPENDIX A - Continued

Xj = p2 X9=-p3/T2 X17 = -4p3fi/

X2 = 0 X10 = -2p3/T3 X18 = -2p

X3 = -2p2/T3 xn = p4 X19 = -3p5fl/ 4

X4 = -4p2/T5
 Xl2 = o X20 = ^pS

X5 = -6p2/T7 X13 = 0 x21 = -2p7fl/T3

X6 = 2Tp3 X14=-p5/T2 X22 = -3p7fi/T4

X7 = P3 X15 = -2p3f iT3 X23 = V

X8 = 0 X16 = -Sp-yT- X24 =

The f^'s are given in table IVA.

Isotherm Derivative

/9n\
The isotherm derivative [ —) for equation (Al) is given by

WT
24

-^) =RT +

where the n^'s are the coefficients listed in table IA, and the Xi functions are as

follows:

Xx = 2pT X9 = 3p2/T X17 = :

X2 =

x3-

X4 =

X5 =

X6 =

X7 =

x8 =

2p

2p/T2

2p/T4

2p/T6

3p2T2

3p2T

3P2

X10
xll
X12

X13

X14

X15

X16

= 3pz/T^

= 4p3T

= 4p3

= 5p4

- 5P4/T

= fe A2

= feA3

X18

X19

X20

X21

X22

X23

X24

= f7/T^

= f7/T3

= f7/T4

-%A2

=%A3

-^
= fgf2f 3 £10f3 +

The fi's are given in table IVA.
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APPENDIX A - Continued

TABLE IA.- COEFFICIENTS FOR EQUATION (1)

T in K, p in atm, p in mole/liter

R = 0.0820535

nj = 3.38759078 x 10'
3

n2 = -1.31606223

n3 = -7.38828523 x 10
3

n4 = 1.92049067 X 10
7

n5 = -2.90260005 x 10
10

n6 = -5.70101162 X 10

n? = 7.96822375 X 10

ng = 6.07022502 X 10~
3

ng = -2.71019658

-8

-5

-6

n1Q = -3.59419602 X 10

nn = 1.02209557 X 10

n12 = 1.90454505 X 10'
4

n13 = 1.21708394 x 10"
5

n14 = 2.44255945 x 10~
3

n15 = 1.73655508 x 10
2

n16 = 3.01752841 x 10
5

n17 = -3.49528517 X 10
7

n18 = 8.86724004 X 10-1

n!9

n20
n21

n22

n23
n24

n25
n26
n27
n28

-2.67817667 x 102

1.05670904 X 105

5.63771075 x 10~3

-1.12012813

1.46829491 x 102

9.98868924 x 10'4

-0.00560

-0.157

-0.350

0.90

TABLE IIA.- CONSTRAINTS IMPOSED ON EQUATION (1)

p,p,T at the critical point

-%-} = 0 at the critical point

= 0 at the critical point

fel = 1.928386 atm/K at the critical point
\9T/n

"p = 50.14 atm
p = 13.333 mole/liter
T = 154.77 K

15



APPENDIX A - Concluded

TABLE HIA.- FIXED-POINT DATA

Critical pressure
Critical temperature
Critical density
Normal boiling temperature (International practical

temperature scale (IPTS), fixed point)
Density saturated vapor at normal boiling point (eq. (1))
Density saturated liquid at normal boiling point (eq. (1))
Triple point pressure
Triple point temperature

50.14 atm
154.77 K
13.333 mole/liter

90.18 K
0.1396 mole/liter

35.65 mole/liter
0.00150 atm

54.353 K

TABLE IVA.- FUNCTIONS FOR EVALUATING DERIVATIVES

OF EQUATION OF STATE

*1 = exp(n25p
2)

*2 =

f3 = exp[n26f2
2 + n27(T - Tc)

2]

f4 = 2n27(T - Tc)f3

*5 =

*6 =

f7 = 5flP<

f8 = 7f!P£

f9 =(n28

nOQ-l)28 >

- 2f2n26f3f10

f13 = 6f5p
2 + f12p3

f14 = 20fjp3 + 10f5p
4

f!7 =

f!8 = (2f10n26f3 + 2f2n26fll)f10 + 2f2n26f3f17

16



APPENDIX B

INTEGRATION OF THE THERMODYNAMIC EQUATIONS (REF. 5)

The solution of the integral \ ^ - -^rhlp) dp (from eq. (3)) at constant tempera -
P P

/ 9n\
ture is given by equation (Bl). This integration uses the isochor derivative (-^\ given

\ 9T/p
in appendix A as equation (A2).

24
dp = Y n^ (Bl)

_T 1=1

where the n^'s are the coefficients listed in table IA, and the Yj functions are as
follows:

Y9 = p2/(2T2) . Yi7 = 4g4//T>5

= pT Y14 = p4/(4T2)

= 4p/T5

= 6p/T7 Y13 = 0

2

Y 7 =-p 2 /2

Y8 = 0 Y16 = 3g4/T
4 Y24 = -n27(T -

where the g,'s are given in table IB.

r/ D RT\The solution of the integral \ I ±— — — )dp at constant temperature is given by
J \P2 p /

equation (B2). This integration uses p = f(T,p) from equation of state (eq. (Al)) as given
in appendix A.

24
<B2)
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APPENDIX B - Continued

where the n^'s are the coefficients listed in table LA, and the Yi functions are as
follows:

Y! = Tp Y9 = p2/(2T) Y17 = i

Y2 = p Y10 = P2/(2T2) Y18 = g

Y3 = p/T2 YU = p3T/3

Y4 = p/T4 Y12 = p3/3 Y20 = ^

Y5 = p*T6 Y13=.p*/4 Y21 = g

Y6 = p2T2/2 Y14 = p4/(4T) Y22 = g6/T
3

Y7 = p2T/2 Y15 = g4/T
2 Y23 = g6/T4

Y8 = p2/2 Y16 = g4/
T3 Y24 = g3/(

2n28n26)

where the g^'s are given in table IB.

The solution of the integral \ c° dT is given by

8
dT = R Y C.-Y, (B3)

i=l

where R is given in table IA, and the Cj's are the coefficients listed in table IIB, and
the Yi functions are as follows:

Y! = -1/(2T2) Y5 = T2/2

Y2 = -1/T Y6 = T3/3

Y3 = loge T Y7 = T4/4

Y4 = T Y8 = uT/(eu - l)

where u = Cg/T.

18



APPENDIX B - Concluded

TABLE IB.- FUNCTIONS FOR EVALUATING INTEGRALS

OF THERMODYNAMIC EQUATIONS

TABLE IIB.- COEFFICIENTS FOR ZERO-PRESSURE SPECIFIC-HEAT EQUATION

GI = -1.86442361 X 102

C2 = 2.07840241 X 10

C3 = -3.42642911 X lO"1

C4 = 3.50297163

C5 = 2.05866482 X 10'7

C6 = -1.11035799 X10'8

C7 = 2.08612876 x 10'11

C8 = 1.01894691

C9 = 2.23918105 x 103

TABLE IIIB.- COEFFICIENTS FOR VAPOR-PRESSURE EQUATION (EQ. 4)

T in K, pv in atm, p in mole/liter

Aj = -62.5967185

A2 = 2.47450429

A, = -4.68973315X10-2

A4 = 5.48202337 x 10

A5 = -4.09349868 X 10

A6 = 1.91471914 xlO

-4

-6

-8

-11A7 = -5.13113688 x 10

Ag = 6.02656934 X10'14

19



APPENDIX C

LISTING OF FORTRAN SUBROUTINES FOR STEWART'S METHOD

SUBROUTINE STEWART(TEMP.RHO,PRESS,CP»DPDT,DPDRHO»ENERGY)
INPUT PRESS(ATM) RHO(GM-MOLE/L)
DIMENSION XN(28)
COMMO!\|/N/XN,TEMPCR»RHOCRIT»R
OATA(XNd).1=1,28)/3.38759078E-3,-1.31606223,-7.38828523E+3,
11.92049067E+7,-2.90260005E+10,-5.70101l62E-8,7.96822375E-5,
26.07022502E-3.-2.71019658,-3.594l9602E+l,1.02209557E-6,
3l.90454505E.-4, l.21708394E-S,2.44255945E-3»1.73655508E*2»
43.01752841F>5,-3.49528517E+7,8.86724004E-l,-2.67817667E+2,
51.05670904E+5,5.63771075E-3,-1.12012813,1.46829491E*2»
69.9B868924E-4,-.00560,-.157,-.350,.9/
RHODUM=RHO
PCRIT=50.14
01=C1C2C4(TEMP,RHO)
DPDT=C2(TEMP,RHO)*1.01325E*5
DPDRHO=C4 < TEMP,RHO)'•> 1. 01325E + 5/31.9988
CP=CPHU(TEMP,RHO,01 )*1.01325E+5/31.9988
PRESS=01*1.01325E+5
ENERGY=0.
RHO=RHOOUM
RETURN
END

20



APPENDIX C - Continued

FUNCTION CPHU(TEMP,RHO»P)
C ALL PRESSURES IN ATM ALL DENSITIES IN GM-MOLE/L
C CPHUIL-ATM/GM-MOLE/K) H(L-ATM/GM-MOLE) U,DITTO

EXTERNAL FOFX
COMMON/THERM/Pl,T
COMMON C1»C2
DIMENSION A(8),H<2)
DATA (Ad) ,1=1,8)/6.02656934E-14,-5.131136R8E-11,1.91471914E-8,
l-4.09349868E-6,5.48202337E-4,-4.68973315E-2,2.47450429,
2-62.5967185/
ENTHALP(T,RHO,RH01,P)=1590.929*9.86896E-3+P/RHO-.0820535*T
A-D5(55.»RHO)
1-D2(T,RH01)-D1D2D5<T.RH01)*T«-D5(T,RHO) +D2 ( T ,RHO) *D1D2D5 ( T, RHO) »T
ENERGY(T,RHO»RH01.USAT)=USAT-D2(T,RH01)-D1D2D5(T,RHO1)*T + D2(T.RHO)
1+D102D5(T,RHO)*T
R=0.0820535 $ RHODUM=RHO $ ICOUNT=0 $EREL=5.E-7 $ TINCR=1.0
TI=153. $ TIP1=155.2
IF(TEMP.GT.TI.AND.TEMP.LT.TIPDGO TO 2222
GO TO 1111

2222 FACTOR=31.9988/1.01325E5
CPI=CI»FACTOR
CPIP1=C2*FACTOR
CP=CPI+(TEMP-TI)/(TIP1-TI)*(CPIP1-CPI)
CPHU=CP
RETURN

1111 IF(TEMP.GE.150..AND.TEMP.LE.170.)TINCR=0.1
DELT=2.*TINCR

6 IF(ICOUMT.EQ.2)GO TO 205
T=TE^P-TINCR % ICOUNT=ICOUNT+1 $ TINCR=-TINCR
ASSIGN 1 TO INDEX
NDEX=l
P1=P
RGM=.8J-t«HO$RGP=1.2*RHO$DELTRG=.l*RGM
IF (T.GT.155..AND.T.LT.162.)RGM=.5*RHO
EREL=5.E-7
EA8S=EREL*RGM

9 CALL ITR2(RHO»RGM»RGP,DELTRG»FOFX,EREL* EABS»50»ICODE)
IF(ICODE.NE.O)GO TO 1000
GO TO INDEX,(1,55,60)

1 IF(T.LT.154.77)GO TO 10
5 H(ICOUNT)=ENTHALP(T,RHO,0.,P)

GO TO 6
10 PVLM=A(1)

DO 15 1=2,8
15 PVLN=PVLN*T+A<I)

PV=EXP(PVLN)
IF(P.LE.PV)GO TO 5
RSAVE=RHO $ P1=PV

59 PGM=4.*(EXP(0.0232*PV)-1.) $ RGP=RHO*.6$ DELTRG=.1*RGP-.1*RGM
IF(T.GT.153.)EREL=5.E-10
EA8S=EPEL*RGM
NDEX=60
ASSIGN 60 TO INDEX
GO TO 9

60 RSATV=RHO
RGM=30.-1.5*RSATV $ RGP=1.1*RSAVE S DELTRG=(RGP-RGM)*.2
EABS=EREL*RGM
NDEX=55
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APPENDIX C - Continued

ASSIGN 55 TO INDEX
GO TO 9

55 R5ATL=RHO
90 CONTINUE

SUM=A<1)*7.
DO 100 I=2»7

100 SUM=SUM*T+ (8-1 )«A(I)
DPVDT=5UM*PV
DF,LTH=T*DPVDT J -M1. /RSATV-1. /RSATL>

150 H R S A T V = E N T H A L P ( T » R S A T V » 0 . . PV)
H«SATL=HRSATV-OELTH
U5AT=HRSATL-PV/RSATL
RHO=RSAVE

H(ICOUNTV=U*P/RHO
GO TO 6

205 CPHU=(H(2)-H( 1) )/DELT
T1=TEMP-TINCR $ T2=TEMP+TINCR

900 FORMAT(10X,*T1 = »,F&.3*« T2 = * ,F8.3»'> H(T1) = *»E11
1 '•> H(T2) = *,E11.4»* RV.RL *»?E11.4)
RHO=RHOOUM
RETURN

1000 WRITf-I(6»2) ICODE»NDEX
2 FORMAT(1HO»21HERROR IN CPHU ' ICODE= 12 ,5X» *INDEX = *»I2///)

RETURN)
ENO

"22



APPENDIX C - Continued

FUNCTION C1C2C4(TEMP,RHO)
DIMENSION X ( 2 4 ) ,XN(28) ,F<18)
COMMON/N/XN»TEMPCR«RHOCRIT»R
R=0.0820535
RHOCRIT=13.333
TEMPCR=154.77
F(1)=EXP(XN(25)*RHO»*2> $ F(2)=RHO**XN(28)-RHOCRIT»*XN(28)
F < 3 > = E X P ( X N ( 2 6 ) * F ( 2 ) * » 2 + X N ( 2 7 ) * ( T E M P - T E M P C R ) * » 2 )
X(1)=RHO»»2*TEMP $ X(2)=RHO»»2 $ X ( 3 ) = RHO<n>2/TEMP**2
X(4)=RHO*»2/TEMP*»4 $ X(5)=RHO*»2/TEMP»*6 $ X(6)=RHO**3*TEMP**2
X(7)=RHO**3»TEMP $ X (8 )=RHO«*3 $ X(9)=RHO»»3/TEMP
X(10)=RHO**3/TEMP»»2 $ X (11) =RHO**4»TEMP % X. (12) =RHO**4
X(13)=RHO*»5 $ X(14)=RHO«*5/TEMP $ X(15)=RHO*»3*F(1) /TEMP»*2
X(16.), = RHO**3*F (1)/TEMP»*3 $ X (17) =RHO*»3*F (1) /TEMP»»4
X( l f l )=RHO**5»F( l ) /TEMP**2 $ X(19)=RHO«*5»F(1) /TEMP*»3
X(20)=RHO**5*F(1) /TEMP»«i* $ X (2 1) =RHO*»7*F (1) /TF.MP**2
X(22)=RHO»»7*F(1) /TEMP»*3 S X(23)=RHO*»7*F(1) /TEMP*»4
X ( 2 ^ ) = R H O * * ( X N ( 2 8 ) + 1 . ) * F ( 2 ) * F < 3 )
FACTOR=RHO*R*TEMP
GO TO 10
ENTRY C2
F (<»)=2.*XN(27)»(TEMP-TEMPCR)»F (3) t- F (5) =2. *F (1) »RHO»XN (25)
X ( 1 ) = R H O * * 2 $ X ( 2 ) = 0 . "B X ( 3) =-2. »RHO**2/TEMP»*3
X(4)=-^.*PHO**2/TEMP*»5 $ X(5)=-6.*RHO**2/TEMP»«7
X(6)=2.«TEMP»RHO«»3 S X(7)=RHO**3 $ X(8)=0. $ X(9)=-RHO**3/TEMP»*2
X(10)=-2.»RHO**3/TEMP»»3 $ X (11) =RHO**4 $ XU2)=0. $ X. (13)=0.
X(14)=-RHO*»5/TEMP»»2 $ X(15)=-2.»RHO«»3»F(1)/TEMP*»3
X(16)=-3.»RHO**3ttF(l)/TEMP«»4 $ X(17)=-4.*RHO»»3*F(1)/TEMP**5
X(18)=-2.*RHO«*5»F(1)/TEMP**3 $ X(19)=-3.*RHO<"»5»F(1)/TEMP**4
X(20)=-4.«RHO««5*F<1)/TEMP**5 $ X(21)=-2.»RHO**7»F(1)/TEMP»*3
X(22)=-3.»RHO»*7*F(l>/TEMP**4 $ X(23)=-4.»RHO**7»F(1)/TEMP»*5
X(24)=RHO»*(XN(28)* 1.)»F(2)*F(4)
FACTOR=RHO*R
GO TO 10
ENTRY C4
F (6)=3.*F (1) J-»RHO*«2 + F(5)liRHO»*3 $ F (7) =5.*F (1) *RHO**4+F (5) *RHO*»5
F(8)=7.*F(1)*RHO»*6*F(5)*RHO»*7 $ F(9) = (XN(28)* 1.)*RHO»*XN(28)
F(10)=XN(28)*RHO»*(XN(28)-1.) $ F(11)=2.*F(2)*XN(26)*F(3)*F(10)
X(1)=2.*RHO*TEMP S X(2)=2.»RHO $ X(3)=2.*RHO/TEMP**2
X(4)=2.*RHO/TEMP«*4 $ X(5)=2.*RHO/TEMP«*6 $ X(6)=3.*RHO**2*TEMP**2
X(7)=3.»RHO*it2»TEMP S X (8) =3.*RHO**2 $ X (9) =3.»RHO»*2/TEMP
X(10)=3.*RHO**2/TEMP*»2 $ X(11)=4.»RHO*»3»TEMP S X(12)=4.»RHO**3
X(I3)=5.*RHO»*4 $ X(14)=5.«RHO»*4/TEMP $ X(15)=F(6)/TEMP**2
X(16)=F(6)/TEMP*^3 $ X(17)=F(6)/TEMP*»4 $ X(18)=F(7)/TEMP»*2
X(19)=F(7)/TEMP**3 $ X(20)=F(7)/TEMP*»4 $ X(21)=F(8)/TEMP»*2
X(22)=F(8)/TEMP**3 $ X(23)=F(8)/TEMP*»4
X(24)=F(9)*F(2)*F(3) *RHO*» ( XN ( 28) * 1 . ) »F (1 0 ) *F ( 3) *RHO'»* ( XN (28) * 1 . ) *

1F(2)*F<11)
FACTOR=R*TEMP

10 SUM=0.
00 1 I=l»24

1 SUM=SUM+XN(I)*X(I)
C1C2C4=SUM+FACTOR
RETURN
END
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APPENDIX C - Concluded

FUNCTION oiD2D5<T.R>iO)
DIMENSION XN(28)»G(6>»Y(24),C<9)
COMMON/N/XN.TCP.RHOCR.R .
DATA (C(I) «I = 1 .9)/-1.86<»42361E*2»2.07840241E+l»-3.42642911E-l»
13.50297163.2.05866482E-7.-1.11035799E-8,2.08612876E-ll*
21.01894691,2.23918105£«-3/

TFMPCR=TCR $ RHOCRIT=RHOCRI>TEMP=T
G(l)=EXP(XN(25)*RHO**2) $ G<2)=RHO*«XN(28)-RHOCRIT«*XN<28)
G(4)=G(1)/(2.*XN(25) )
G(5)=G(1)*(XM(25)*RHO»»2-1.)/(2.*XN(25)*»2)
G (6) =G ( 1) * (XN ( 25) **2*l<HO**4-2.* (XN (25) »RHO*»2-1. ) ) /(2.*XN(25) »*3)
G(3)=EXP(XN(26)*G(2)**2+XN(27)»(TEMP-TEMPCR)*»2>
RHOSQ=RHO*RHO S T2=T»T $ T3=T2*T $ T4=T3»T $ T5=T4»T
Y(1)=-RHO $ Y(2)=0. $ Y(3)=2.«RHO/T3 $ Y(4)=4.«RHO/T5
Y(5)=6.*RHO/T**7 $ Y (6) =RHOS(J*T i Y (7) =-RHOSQ/2. $ Y(8)=0.
Y(9)=RHOSQ/(2.*T2) $ Y ( 10 ) =RHOSQ/T3 $ Y ( 11) =-RHO».*3/3.
Y(12)=Y(13)=0. * Y(14)=RHO*«4/(4.*T2) $ Y(15)=2.*G(4)/T3
Y(16)=3.*G(4)/T4 $ Y(17)=4.*G(4)/T5 $ Y(18)=2.*G(5)/T3
Y(19)=3.*G(5)/T4 $ Y(20)=4.*G(5)/T5 $ Y(21)=2.*G(6)/T3
Y(22)=3.*G(6)/T4 <5 Y ( 23) =4. *G (6)/T5
Y(24)=-XN(27)»(T-TCR)»G(3)/(XN(28)*XN(26)>
GO TO 10
ENTRY 02
RH03=RHOSQ*RHO $ RH04=RH03*RHO
Y(.1)=T»RHO % Y(2)=RHO S Y(3)=RHO/T2 $ Y(4)=RHO/T4 $ Y (5) =RHO/T»»6
Y(<S)=PHOSQ'>T2/2. S Y (7) =RHOSO*T/2 . $ Y (8) =RHOSQ/2.
Y(9)=.5»RHOSQ/T $ Y<10)=.5*RHOSQ/T2 $ Y(11)=RH03*T/3.
Y(12)=RH03/3. "B Y(13)=RH04/4. $ Y (14) =. 25»RH04/T
Y(l5)=G(4) /T2 •* Y(1A)=G(4)/T3 $ Y (17) =G (4)/T4
Y(18)=G(5)/T2 $ Y(19)=G(5)/T3 $ Y (20)=G(5)/T4
Y(21)=G(6)/T2 $ Y(22)=G(6)/T3 $ Y (23)=G(6)/T4
Y(24)=G(3)/(2.*XN(2d)»XN(26))

10 SUM=0.
DO 11 1=1.24

11 SUM=SUM+Y(I)«XN(I)
01D2D5=SUM
RETURN
ENTRY 05
U = C(9)/T S T2 = T<*T $ T3 = T2*T $ T4 = T3*T
Y(l)=-.5/T2 $ Y(2)=-l./T $ Y(3)=ALOG(T) $ Y(4)=T $ Y(5)=.5«T2
Y(6)=T3/3. $ Y(7)=T4/4. $ Y(8)=U*T/(EXP(U)-1.)
SUM=0.
DO 20 1=1.8

20 SUM=SUM*C(I)*Y(I)
010205= SUM *R
RETURN
END
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Figure 2.- Comparison of specific heat at constant pressure along selected isobars.
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+ Weber interpolated value
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(b) p = 60 atm.

Figure 2.- Continued.
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Tempera tur e, 'K

(c) p = 58.5 atm.

Figure 2.- Concluded.
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Figure 4.- Comparison of specific heats at constant pressure along selected isotherms.
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