ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF CIRCULATION CONTROL BY MEANS OF A TURBULENT COANDA JET

by E. S. Levinsky and T. T. Yeh

Prepared by
AIR VEHICLE CORPORATION
San Diego, Calif.
for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1972
An analytical and experimental investigation of circulation control on a circular cylinder by means of tangential blowing (Coanda effect) is presented. The analytical method developed has also been used to estimate the blowing coefficients required for achieving potential flow on airfoils with flaps. The analysis is presented for conditions for which the flow in the boundary layer ahead of the jet exit is turbulent. The turbulent boundary layer and the jet layer on the upper surface, and the turbulent boundary layer on the lower surface are computed by a multi-strip integral method. The region of integration is between the corresponding transition and separation points on each surface. Longitudinal curvature effects, which give rise to a radial pressure gradient across the jet layer and to an additional adverse tangential pressure gradient just upstream of the separation point, are included in the jet layer analysis in an approximate manner. The longitudinal curvature effect is found to have a pronounced influence on the separation of the jet layer.

The method has been programmed in FORTRAN IV. Values of the calculated surface pressure distribution, location of the separated region, and values of induced circulation and lift have been compared with wind tunnel test data. Significant parameters in the analysis affecting jet separation are the ratios of the maximum jet velocity in the fully merged jet layer just downstream of the jet exit to the average velocity in the jet slot, to the free stream velocity, and to the maximum jet velocity at the separation point. For the range of cases considered, the ratios of the jet slot thickness to the cylinder radius and to the boundary layer thickness were found to have only a negligible effect on jet separation, except for their influence on the ratio of the maximum jet velocity to the average jet velocity inside the slot.

In general, the analyses and the test data showed reasonable agreement with regard to pressure distribution, boundary- and jet-layer separation, and included circulation and lift. However, the predicted value of C for a given lift coefficient was found to depend upon the ratio of the maximum jet velocity to the average jet velocity inside the slot, which was established empirically. Further improvement of the method, especially in regard to determining the shape of the initial jet profile and to evaluating the jet growth and velocity decay ahead of the separation point should result in better overall agreement and remove some of the empirical relations contained in the theory.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>5</td>
</tr>
<tr>
<td>THEORY</td>
<td>9</td>
</tr>
<tr>
<td>Flow Model</td>
<td>9</td>
</tr>
<tr>
<td>Coanda Jet Equations</td>
<td>10</td>
</tr>
<tr>
<td>Shear stress relations</td>
<td>12</td>
</tr>
<tr>
<td>Curvature and induced pressure gradient terms</td>
<td>14</td>
</tr>
<tr>
<td>Starting conditions</td>
<td>19</td>
</tr>
<tr>
<td>Separation condition</td>
<td>21</td>
</tr>
<tr>
<td>Boundary-Layer Theory</td>
<td>21</td>
</tr>
<tr>
<td>Laminar boundary layer</td>
<td>21</td>
</tr>
<tr>
<td>Turbulent boundary layer</td>
<td>23</td>
</tr>
<tr>
<td>NUMERICAL SOLUTION AND SAMPLE CALCULATIONS</td>
<td>24</td>
</tr>
<tr>
<td>EVALUATION OF THEORY AND COMPARISON WITH TEST DATA</td>
<td>27</td>
</tr>
<tr>
<td>Pressure Data</td>
<td>27</td>
</tr>
<tr>
<td>Force Data</td>
<td>29</td>
</tr>
<tr>
<td>Velocity Profile Data</td>
<td>29</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX A - TANGENTIAL BLOWING BLC ON AN AIRFOIL</td>
<td>32</td>
</tr>
<tr>
<td>APPENDIX B - WIND TUNNEL TEST PROGRAM</td>
<td>33</td>
</tr>
<tr>
<td>Model Geometry</td>
<td>33</td>
</tr>
<tr>
<td>Test Procedures and Conditions</td>
<td>33</td>
</tr>
<tr>
<td>Data Reduction and Corrections</td>
<td>34</td>
</tr>
<tr>
<td>APPENDIX C - COEFFICIENTS, COANDA JET THEORY</td>
<td>35</td>
</tr>
<tr>
<td>APPENDIX D - COMPUTER PROGRAM</td>
<td>41</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>69</td>
</tr>
<tr>
<td>FIGURES 1 THROUGH 25</td>
<td>71</td>
</tr>
</tbody>
</table>
ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF
CIRCULATION CONTROL BY MEANS OF
A TURBULENT COANDA JET

By E. S. Levinsky and T. T. Yeh
Air Vehicle Corporation

SUMMARY

An analytical and experimental investigation of circulation control on a circular cylinder by means of tangential blowing (Coanda effect) is presented. The analytical method developed has also been used to estimate the blowing coefficients required for achieving potential flow on airfoils with flaps.

The analysis is presented for conditions for which the flow in the boundary layer ahead of the jet exit is turbulent. The turbulent boundary layer and the jet layer on the upper surface, and the turbulent boundary layer on the lower surface are computed by a multi-strip integral method. The region of integration is between the corresponding transition and separation points on each surface. Longitudinal curvature effects, which give rise to a radial pressure gradient across the jet layer and to an additional adverse tangential pressure gradient just upstream of the separation point, are included in the jet layer analysis in an approximate manner. The longitudinal curvature effect is found to have a pronounced influence on the separation of the jet layer.

The method has been programmed in FORTRAN IV. Values of the calculated surface pressure distribution, location of the separated region, and values of induced circulation and lift have been compared with wind tunnel test data. Significant parameters in the analysis effecting jet separation are the ratios of the maximum jet velocity in the fully merged jet layer just downstream of the jet exit to the average velocity in the jet slot, to the free stream velocity, and to the maximum jet velocity at the separation point. For the range of cases considered, the ratios of the jet slot thickness to the cylinder radius and to the boundary layer thickness were found to have only a negligible effect on jet separation, except for their influence on the ratio of the maximum jet velocity to the average jet velocity inside the slot.

In general, the analyses and the test data showed reasonable agreement with regard to pressure distribution, boundary- and jet-layer separation, and induced circulation and lift. However, the predicted value of C_μ for a given lift coefficient was found to depend upon the ratio of the maximum jet velocity to the average jet velocity inside the slot, which was established empirically. Further improvement of the method, especially in regard to determining the shape of the initial jet profile and to evaluating the jet growth and velocity decay ahead of the separation point should result in better overall agreement and remove some of the empirical relations contained in the theory.
INTRODUCTION

Considerable research has been carried out in the past dealing with lift augmentation through circulation control by means of tangential blowing over an airfoil with a rounded trailing edge, e.g., references 1 through 3. The purpose of the present study is to develop an analytical method for predicting the circulation and lift induced by tangential blowing over a circular cylinder under conditions for which the boundary layer ahead of the jet exit is turbulent. Although the present method is directly applicable only to airfoils of cylindrical cross section, e.g., as proposed for circulation controlled rotors (refs. 1 and 2), the tangential blowing lift generating mechanism, which is due to the Coanda effect, will also occur on other airfoils with blunt trailing edges, e.g., a modified elliptical section (ref. 3). It is also demonstrated that the method can serve as a basis for predicting the lifting characteristics of STOL aircraft employing tangential blowing circulation control on wings and flaps with sharp trailing edges (leading and trailing edge blowing).

The physical explanation of the Coanda jet mechanism is well known. Thus, for either static or forward speed conditions, should the tangential jet try to separate from the curved surface, a small vortex would be formed between the inner boundary of the jet and the wall which would reduce the static pressure at the wall below that at the outer surface of the jet and cause the jet to bend along the surface. For an attached jet, the radial pressure difference is balanced by centrifugal force. Due to viscosity, the jet gradually loses momentum and the local radii of curvature of the streamlines increase with angular distance θ from the jet exit. Both effects contribute to a gradual decrease in the radial pressure difference across the jet and to an additional adverse pressure gradient along the surface. It is this self-induced adverse pressure gradient $\partial p/\partial \theta$ which eventually causes the jet to separate. The angle through which the jet is able to adhere to the surface is known to depend upon a number of parameters including the excess momentum in the jet layer (C_{p} in coefficient form), the nature of the jet layer (laminar or turbulent), the incidence angle of the jet exit with respect to the free stream direction θ_{e}, and Reynolds number.

Considerable test data are available for turbulent Coanda jets under both static and forward speed conditions, e.g., Fekete (ref. 4), Newman (ref. 5), and references 1 through 3. Additional wind tunnel data under forward speed conditions are presented in the present report. Data for laminar flow conditions are less readily available, but have been obtained under static conditions by testing in oil (ref. 6).

A complete theoretical analysis of the Coanda jet effect, even for laminar flow conditions, has, to our knowledge, not been carried out. Thus, Glauert (ref. 7) treated the flow of a jet along a straight surface (termed "wall jet") under static external conditions and for both laminar and turbulent flow. However, because of the plane wall, the pressure in the jet was constant everywhere and no separation occurred. Bloom and Steiger (ref. 8) extended the laminar jet theory to conditions with external
The laminar jet solutions by Wygnanski and Champagne (ref. 10) include effects of self-induced pressure gradients and are valid for surfaces on which the radius of curvature increases with θ in a manner such that the velocity profiles remain similar. Wei and Levinsky (ref. 6) treated the laminar jet over a cylinder under static outside flow conditions by a second-order boundary-layer theory which included the normal momentum equation and allowed for a pressure difference across the jet layer. To the order of the terms retained, the drop in wall shear and rise in surface pressure agreed with test results up to $\theta < 45^\circ$, but were found to be much less than observed experimentally for larger θ.

On the other hand, methods developed to date for a turbulent wall jet are all semi-empirical in that assumptions are required for the form of the turbulent shear stress, for the shape of the velocity profile, and for the separation criterion, e.g., Glauert (ref. 7), Gartshore and Newman (ref. 11) Kind (ref. 12), and Guitton (ref. 13).

Glauert developed separate solutions for the outer and inner portions of the wall jet under static outside flow conditions. The outer portion, beyond the maximum velocity point y_m', was assumed similar to a free jet with a constant eddy viscosity ϵ across the region, whereas the inner region was taken similar to a wall boundary layer with the shear at the wall $\tau(0)$ given by the Blasius formula

$$\tau(0) = 0.0235 \frac{u^2}{\left(\frac{v}{u_y}\right)^{1/4}} = \epsilon \frac{\partial u}{\partial y}$$

The above equation implies that $u \sim y^{1/7}$ in order that τ be non zero at the wall. Solutions obtained for the outer and inner regions both contained undetermined constants which were determined by matching at the maximum velocity position. Although the Glauert results agree well with experimental data, no curvature effects are included and hence no separation is predicted by this analysis.

Gartshore and Newman treat the turbulent wall jet with (or without) outside flow by a multi-strip integral method in which the jet layer is divided into four regions. The velocity profile in the inner two regions (below $y = y_m$) is taken of the form

$$u/u_m = (y/y_m)^n$$

where u_m', y_m', and n are unknown functions of the polar angle θ. The velocity profile in the outer regions is taken of the form
where \(u_1 \) is the outside potential flow velocity and \(L \) is a fourth unknown function of \(\theta \). Four ordinary differential equations are obtained which are readily integrated for the four unknown functions, provided, however, that expressions are available for the turbulent shear stress at the surface and at the boundary of each strip. Although the method of Gartshore and Newman does lead to a prediction of flow separation, when \(n \geq 1/2 \), such separation is due to adverse pressure gradient effects in the outside potential flow. Curvature effects, which can induce an additional adverse pressure gradient into the jet layer, are not included in their formulation, because of the neglect of the radial momentum equation. The procedure to be followed for the Coanda jet layer in the current paper is essentially an extension of the multi-strip integral method of Gartshore and Newman to include curvature and induced pressure gradient effects. We note also that Gartshore (ref. 14) has investigated limitations of the above method due to thick boundary layers upstream of the blowing slot.

Kind (ref. 12) used a single expression due originally to Spalding (ref. 15) which contains two unknown parameters for the velocity profile across the entire wall jet. The two differential equations needed to solve for the wall jet development are supplied by an equation for the conservation of angular momentum and by an entrainment equation. Empirical corrections are included for the effects of curvature on entrainment and on the mean pressure inside the layer. Kind also used an empirical criterion based on local pressure gradient to determine the separation point and thereby obtained good agreement with test results. It was decided to base the present formulation upon the procedure of Gartshore and Newman rather than that of Kind, because the former method was judged to be somewhat less dependent upon empirical correlations and could be more readily generalized to include curvature and induced pressure gradient effects.

Guitton (ref. 13) treated the turbulent jet flow over surfaces for which the radius of curvature was either proportional to the jet layer thickness or constant by perturbation methods wherein the plane jet flow is the zeroth order approximation and the expansion parameter is proportional to the ratio of the jet thickness to the radius of curvature. In the former case self-preserving similarity type solutions were obtained, somewhat in analogy with the results of reference 10 for laminar flow. In the case of a constant radius surface, assuming zero shear at the wall and constant angular momentum leads to expressions for the decay of the maximum velocity and the growth of the jet thickness which depend upon a single unknown constant which is determined empirically. Guitton notes that the perturbation method becomes invalid when the expansion parameter exceeds 0.07. Comparison with the test data of reference 4 for the maximum jet velocity and thickness shows fair agreement for small values of the expansion parameter, up to \(\theta \sim 45^\circ \). No evidence of separation at larger angles of \(\theta \) is predicted.
We note that none of the methods discussed so far is able to predict the rapid rise in surface pressure which occurs ahead of the jet separation point (e.g., figure 12). Failure of these methods was noted by Kind (ref. 16), who further pointed out that the rise in surface pressure could be predicted by determining the local radius of curvature of the jet streamlines and then integrating the equations of motion normal to the streamlines. Kind obtained the streamline radii of curvature and velocities from experimental data (ref. 4), and agreement with measured surface pressures was shown to be excellent.

Because of the expected strong coupling between the surface pressure distribution and separation of the Coanda jet, it appears that any method for calculating lift due to tangential blowing must be able to predict the surface pressure distribution with reasonable accuracy. The method to be presented in the present paper approximates the pressure distribution over the cylinder by assuming that the streamline radius of curvature is constant up to a distance of several jet thicknesses ahead of the separation point. Over this region the static pressure distribution outside of the jet layer is assumed to be given by potential flow theory with circulation. The static pressure on the surface is somewhat less than that outside of the jet layer because of centrifugal force effects. For a distance of several jet thicknesses ahead of the separation point the pressure difference across the jet layer is assumed to decrease linearly reaching zero at the separation point. Thus, the additional suction on the surface of the cylinder due to jet curvature is assumed to vanish at the separation point. This is in accordance with test data showing zero static pressure increase across the jet layer at separation (ref. 16). Turbulent shear values inside the jet layer will be based on the expressions of Gartshore and Newman (ref. 11), and alternatively, on wall jet measurements by Goradia and Colwell (ref. 23), neither of which include longitudinal curvature effects.

The overall flow model used in the present method, including the equations for the laminar boundary layer, turbulent boundary layer, and Coanda jet regions, is presented in the next section. Succeeding sections present sample calculations and comparisons with new and existing test data. A description of the wind tunnel model, test conditions and corrections; and a listing of the computer program are found in the Appendices.

LIST OF SYMBOLS

\begin{align*}
A_{c_i}, B_{c_i}, \ldots, F_{c_i} & \quad \text{coefficients for curvature effects defined in Appendix C} \\
A_i, B_i, \ldots, F_i & \quad \text{coefficients defined in Appendix C} \\
a_j & \quad \text{coefficients in eqs. (35) and (36)} \\
A_p, B_p, \ldots, F_p & \quad \text{coefficients for induced pressure effects defined in Appendix C}
\end{align*}
AR aspect ratio
b cylinder span (exposed length of semispan model equals \(b/2 \))
\(C_D \) drag coefficient
\(C_L \) overall lift coefficient
\(C_{\ell} \) two-dimensional lift coefficient
\(c_p \) local pressure coefficient normalized by \(q_\infty \)
\(\bar{c}_p \) normalized pressure coefficient across jet layer, eq. (45)
\(C_\mu \) jet momentum coefficient [eq. (40)]
D denominator in eq. (36)
f_0, f_1, f_2, f_11, \ldots functions of \(\eta \) defined in ref. 22
H shape factor \(\delta^*/\theta^* \)
K empirical factor in eq. (34)
\(K_1, K_2, K_5, K_6 \) definite integrals defined in Appendix C
L length in jet velocity profile, eq. (9)
L' \([\pi/4 \ln 2]^{1/2} L \)
N number of thicknesses \(y_m + L \) ahead of the separation point at which a linear adverse tangential pressure gradient is imposed; also, numerator in eq. (36)
n exponent in jet velocity profile, eq. (9)
p pressure
\(\Delta p_i \) pressure difference across \(i^{th} \) jet layer zone, eqs. (22) and (23)
q total velocity inside boundary layer; also, dynamic pressure
R cylinder radius
\(R \)
local streamline radius of curvature

\(r \)
radial distance from center of cylinder

\(\text{Re} \)
Reynolds number \(\frac{R V_\infty}{v} \)

\(\text{Re}_{\theta^*} \)
momentum thickness Reynolds number \(\frac{u_1 \theta^*}{v} \)

\(t \)
jet slot exit thickness

\(u \)
tangential velocity component inside boundary layer

\(u_j \)
average velocity inside jet slot exit

\(u_{j\infty} \)
average jet velocity when expanded isentropically to free stream static pressure, eq. (41)

\(v \)
radial velocity component inside boundary layer

\(V_\infty \)
remote free stream velocity

\(x \)
distance along cylinder surface

\(y \)
normal distance from surface

\(\Gamma \)
induced circulation

\(\hat{\Gamma} \)
\(\Gamma/4 \pi V_\infty R \)

\(\delta \)
turbulent boundary-layer thickness

\(\delta^* \)
turbulent displacement thickness

\(\delta_\ell^* \)
laminar displacement thickness

\(\epsilon \)
eddy viscosity; also, downwash angle at cylinder

\(\eta \)
normalized boundary-layer thickness in eqs. (35) and (36)

\(\theta \)
polar angle measured clockwise from top of cylinder

\(\Delta \theta \)
angular distance from forward stagnation point

\(\theta^* \)
turbulent momentum thickness
\(\theta_e \)
jet exit incidence angle

\(\theta^* \)
laminar momentum thickness

\(\mu \)
viscosity

\(\nu \)
kinematic viscosity

\(\nu_t \)
effective turbulent viscosity

\(\rho \)
mass density

\(\tau \)
shear

Subscripts

\(e \)
jet exit value

\(i \)
summation index \(i = 1, \ldots, 4 \)

\(j \)
summation index \(j = 1, 2, \ldots; \) also,
average value at jet slot exit

\(L \)
lower

\(\ell \)
laminar

\(m \)
at maximum velocity point \(y_m \) inside jet layer
profile

\(m/2 \)
at height of \(y_m/2 \) inside jet layer

\(\text{sep} \)
separation

\(\text{stag} \)
forward stagnation point

\(t \)
turbulent

\(U \)
upper

\(y_m + L \)
at height \(y_m + L \) inside jet layer

\(o \)
wall value

\(l \)
potential theory value taken at surface

\(\infty \)
remote free stream value
THEORY

Flow Model

We shall consider the two-dimensional incompressible flow past a circular cylinder with circulation generated by tangential blowing. The flow past such a cylinder may be described by the model shown in figure 1. The flow outside the viscous regions (boundary and jet layers and separated wake) is taken as a potential flow with circulation Γ for which the inviscid velocity at the surface $u_1(\theta)$ is

$$u_1 = 2V_\infty (\cos \theta + \hat{\Gamma})$$ \hspace{1cm} (1)

where $\hat{\Gamma} = \Gamma/4\pi V_\infty R$, V_∞ is the remote free stream velocity, and R is the cylinder radius.

The viscous flow is split at the forward stagnation point into upper and lower surface boundary layers. The boundary layer along the lower surface is taken as laminar up to the lower transition point. The boundary layer is assumed to be fully turbulent between the transition point and the lower separation point (see figure 1). The surface pressure coefficient at the lower separation point is assumed to be given by potential flow theory. Thus, from equation (1),

$$c_p(\theta_{sepL}) = 1 - 4 \left[\cos(\theta_{sepL}) + \hat{\Gamma} \right]^2$$ \hspace{1cm} (2)

Similarly, the upper surface boundary layer is assumed laminar up to the upper transition point, and turbulent from the transition point to the jet exit slot. At the jet exit θ_e, the boundary layer is assumed to merge with the jet flow, and the resultant Coanda jet is taken as turbulent between the jet exit and the upper separation point. The surface pressure at the upper separation point $c_p(\theta_{sepU})$ is again assumed given by potential theory.

The wake region $\theta_{sepU} \leq \theta \leq \theta_{sepL}$ is taken to be at constant pressure in accordance with previous experimental data (refs. 1, 2, 4, 16), and as indicated by the present test results (see Appendix B). Thus, we require

$$c_p(\theta_{sepU}) = c_p(\theta_{sepL})$$ \hspace{1cm} (3)

Equation (3) is used in the present formulation to determine the point θ_{sepU} for a given value of $\hat{\Gamma}$. Thus, from
equations (2) and (3) we obtain

$$\theta_{\text{sep}_U} = \cos^{-1}\left\{\frac{1 - c_p\left(\theta_{\text{sep}_L}\right)}{2}\right\}^{1/2}$$

(4)

In the present method \hat{T} is considered given. The values of θ_{sep_L} and $c_p\left(\theta_{\text{sep}_L}\right)$ are found by integrating the boundary layer equations along the lower surface of the cylinder from the forward stagnation point until the point at which the boundary layer separates. Conditions in the turbulent boundary layer just ahead of the jet exit are found by integrating the boundary-layer equations along the upper surface of the cylinder. Properties in the jet layer downstream of the jet exit are found by integrating the Coanda jet equations up to the upper separation point. Starting conditions for the Coanda jet equation are dependent upon the boundary-layer properties ahead of the jet exit slot and upon the thickness and the momentum of the jet issuing from the slot. The problem is to determine that particular value of jet momentum (or slot thickness) for which the Coanda jet layer just separates at the required position θ_{sep_U}. In general, this must be found a posteriori by trying several values of jet momentum.

Coanda Jet Equations

We consider first the equations of momentum and continuity for a two-dimensional, incompressible, turbulent flow in cylindrical coordinates (r, θ). For a steady mean flow over a cylinder of radius R, retention of terms of $O(1)$ and $O(6)$ in the tangential and normal momentum equations gives (see ref. 17):

$$\frac{\rho u}{R} \frac{\partial u}{\partial \theta} + \frac{\rho v r}{R} \frac{\partial u}{\partial r} + \frac{\rho u v}{R} = - \frac{1}{R} \frac{\partial p}{\partial \theta} + \frac{2\tau}{R} + \frac{r}{R} \frac{\partial r}{\partial r}$$

(5)

$$\frac{u}{q} \frac{\partial p}{\partial r} - \frac{v}{q} \frac{1}{r} \frac{\partial p}{\partial \theta} = \frac{\rho q^2}{\mathcal{R}}$$

(6)

$$\frac{\partial v}{\partial r} + \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{v}{r} = 0$$

(7)

Here u and v are tangential and radial components, respectively, of the resultant velocity q; ρ is the density; p is the local static pressure; \mathcal{R} is the local streamline radius of curvature, and τ is the total shear stress defined as

$$\tau = \mu \frac{\partial u}{\partial r} - \rho \langle u' v' \rangle$$

(8)
All unprimed quantities are time averaged values and primed quantities represent instantaneous values. The brackets $\langle \rangle$ indicate a time average. All viscous terms in the normal momentum equation, equation (6), have been omitted, since they are assumed of higher order.

Equations (5) to (8) will be solved for the velocity distribution in the Coanda jet layer using multi-strip integral methods. Thus, following reference 11, we assume a four-parameter velocity profile of the form

$$
\begin{align*}
\frac{d^2 u}{dy^2} &= A_i \frac{d u_1}{dx} + B_i \frac{d u_m}{dx} + C_i \frac{d L}{dx} + D_i \frac{d y_m}{dx} + E_i \frac{d n}{dx} + F_i \\
\int_{y_{iL}}^{y_{iU}} \frac{u v}{R} dy &= \int_{y_{iL}}^{y_{iU}} \left(\frac{\partial}{\partial x} + \frac{u_1}{d x} \right) d y
\end{align*}
$$

where $y = r - R$ and u_1 is the local free stream velocity which is assumed given by equation (1). The four unknown parameters u_m, n, y_m, and L are unknown functions of θ and are to be determined.

The wall-jet layer is divided into four strips or zones as shown in figure 2. By first eliminating v from equation (5) through use of equation (7), and by substituting for u through equation (9), integration of the tangential momentum equation across each of the strips is readily carried out and may be shown to yield a system of four quasi-linear ordinary differential equations of the form

$$
\begin{align*}
A_i \frac{d u_1}{dx} + B_i \frac{d u_m}{dx} + C_i \frac{d L}{dx} + D_i \frac{d y_m}{dx} + E_i \frac{d n}{dx} + F_i \\
\int_{y_{iL}}^{y_{iU}} \frac{u v}{R} dy &= \int_{y_{iL}}^{y_{iU}} \left(\frac{\partial}{\partial x} + \frac{u_1}{d x} \right) d y
\end{align*}
$$

$i = 1, 2, 3, 4.$

Following the convention of Gartshore and Newman, the subscripts 1, 2, 3, and 4 were chosen to correspond to integration across the strips $0 \rightarrow y_m$, $y_m \rightarrow y_m + L$, $y_m \rightarrow \infty$, and $y_m / 2 \rightarrow y_m$, respectively. Here $dx = R d\theta$, and y_{iL} and y_{iU} represent the lower and upper integration limits for the i'th strip.
The coefficients \(A_1, B_1, \ldots, E_i \) are identical to those given previously by Gartshore and Newman, since all inviscid longitudinal-curvature and self-induced pressure-gradient effects are included in the two terms on the right-hand side of equation (10). The coefficients \(F_i \) contain differences of the order \(\frac{\delta}{R} \) from the values given by Gartshore and Newman, due to the influence of longitudinal curvature on the viscous terms in equation (5). For completeness, the coefficients have been listed in Appendix C.

Shear stress relations.—We note that the coefficients \(F_i \) include values of the shear stress \(\tau_o \) on the surface of the cylinder, \(\tau_m \) at the maximum velocity point, \(\tau_m/2 \) at one-half the height of the maximum velocity point, and \(\tau_L \) at a height \(y_m + L \). For laminar flow, the shear stress at these locations may be expressed in terms of the viscosity \(\mu \) and the velocity gradient, and hence the system of equations (8) through (10) form a closed set. For turbulent flow, on the other hand, the shear stress as given by equation (8) is dependent upon the mean value of the product of the instantaneous velocities and cannot be expressed in terms of the velocity gradient. Hence, closure of the system of equations must be accomplished by supplying auxiliary relations for the turbulent shear values.

Two sets of relations have been used in the present paper for approximating the turbulent shear stresses. The first set is based largely on expressions given in reference 11. The second set utilizes new expressions for \(\tau_o \) and \(\tau_m \) based on measurements given in reference 23.

According to reference 11, the wall shear is given by a modified Ludwig-Tillman law of the form

\[
\frac{\tau_o}{\rho u_m^2} = 0.0128 \left(\frac{y_m u_m}{v} \right)^{1/6} \left[\frac{n}{(n+1)(2n+1)} \right]^{(11n-1)/6}
\]

(11)

The shear stress at the height \(y_m/2 \) from the surface is given by the expression

\[
\frac{\tau_m/2}{\rho u_m^2} = \nu_t \left(\frac{\partial u}{\partial y} \right)_{y_m/2} = \frac{u_m}{\nu_t} \frac{\delta^*}{\nu_t} \left(\frac{\partial u}{\partial y} \right)_{y_m/2} = \frac{2 n^2}{2n (n+1)} \left[\text{Re}_{y_m/2} \right]^{-1}
\]

(12)

where \(\text{Re}_{y_m/2} = \frac{\delta^*}{\nu_t} \) was assumed constant and equal to 50 for the midpoint of the inner jet layer in accordance with previous boundary-layer measurements.
For the maximum velocity point Glauert (ref. 7) assumed that the shear stress \(\tau_m = 0 \), because \(\left(\frac{\partial u}{\partial y} \right)_{ym} = 0 \). Newman, however, (ref. 5) points out that \(\tau_m \) will not be zero even though the velocity gradient vanishes at this point, because the jet layer is asymmetrical about \(y_m \). Gartshore and Newman related \(\tau_m \) to the shear \(\tau_{ym+L} \) at the height \(y_m + L \) through the expression

\[
\tau_m = \tau_{ym+L} \left[0.15 + 0.30 \left(\frac{y_m}{L} \right)^2 \right]
\]

Harris (ref. 19) expressed \(\tau_m \) in terms of the wall shear through the relation

\[
\tau_m = -\tau_o \left(1 - \frac{u_1}{u_m} \right)^2
\]

Both of the above equations for \(\tau_m \) yield a negative value for \(\tau_m \), since, as will be shown below, \(\tau_{ym+L} \leq 0 \).

The shear \(\tau_{ym+L} \) at the mid velocity point in the outer jet layer may be written

\[
\tau_{ym+L} = \rho u_m^2 \left[\nu_t \frac{\partial u}{\partial y} \right]_{ym+L} - \nu = \left(1 - \frac{u_1}{u_m} \right)^2 \frac{L}{\Re_{ym+L}}
\]

where equation (9) has been used to evaluate the velocity gradient at \(y_m + L \). The Reynolds number \(\Re_{ym+L} = \left(\frac{u_m - u_1}{\nu_t} \right) L \) was approximated equal to 50 for several of the sample calculations. Equations (11), (12), (13), and (15) constituted the first set of shear stress relations.

For the second set of shear stress relations, alternate expressions were used for \(\tau_o \) and \(\tau_m \) from reference 23 [eqs. (9) and (10) of ref. 23]. In addition, the Reynolds number \(\Re_{ym+L} \) was approximated as

\[
\Re_{ym+L} = 35 \left[1 + 295 \left(\frac{\partial u}{\partial x} \right)^2 \right] \left(\frac{\partial u}{\partial y} \right)^2
\]

as discussed in reference 11.
None of the above expressions for the turbulent shear have been modified for effects of longitudinal curvature. Based on boundary-layer measurements, Tetervin (ref. 17) approximated the decrease in wall shear with longitudinal curvature by the polynomial expression

\[
\begin{align*}
\frac{\tau_o}{(\tau_o)_{R=\infty}} & = 1 - 0.338 \times 10^3 \left(\frac{\theta^*}{R} \right) + 0.0438 \times 10^6 \left(\frac{\theta^*}{R} \right)^2 \\
0 & \leq \frac{\theta^*}{R} \leq 0.004
\end{align*}
\]

However, since use of equation (16) by Tetervin failed to predict the observed behavior of \(\frac{\delta^*}{\theta^*} \) with \(x/R \) (ref. 17), it was decided to use the unmodified expressions for wall shear in the present study.

Curvature and induced pressure gradient terms.— The two integrals on the right hand side of equation (10) represent effects of curvature and induced pressure gradient, respectively, and vanish for the case of a flat surface for which \(R = \infty \). It is these two terms which distinguish the flat wall jet from a Coanda jet flow over a curved surface, and lead to earlier separation for the latter.

In order to evaluate the curvature term [first term on the right hand side of equation (10)], it is convenient to first obtain \(v \) from the equation of continuity, equation (7). This gives, to lowest order in \(y/R \)

\[
v(y) = - \int_0^y \frac{\partial u}{\partial x} \, dy
\]

Substituting for \(u \) from equation (9) gives, when \(y \leq y_m \)

\[
v = - \frac{y_m u_m}{n+1} \left(\frac{y}{y_m} \right)^{n+1} \left[\frac{d u_m}{dx} u_m - n \frac{d y_m}{y_m} \right] + \left(\frac{\ln \frac{y}{y_m} - \frac{1}{n+1}}{y_m} \right) \frac{d n}{dx}
\]

and, when \(y \geq y_m \),

\[
v = - \frac{y_m u_m}{n+1} \left[\frac{d u_m}{dx} u_m - n \frac{d y_m}{y_m} \frac{d n}{dx} \right] - (y - y_m) \frac{d u_1}{dx}
\]

\[
- (u_m - u_1) \frac{d y_m}{dx} + (u_m - u_1) \left[\frac{d y_m}{dx} + \left(\frac{y - y_m}{L} \right) \frac{d L}{dx} \right] \exp \left[- \left(\frac{y - y_m}{L} \right)^2 \right]
\]

\[
- \left[L \left(\frac{d u_m}{dx} - u_1 \right) + (u_m - u_1) \right] \frac{d L}{dx} \int_0^{y-y_m} \frac{y-y_m}{L} \exp \left[- \frac{\xi^2}{2} \right] \, d \xi
\]

\[14\]
Making use of equations (9), (17), and (18), the curvature term may be expressed in the form

\[
\int_{y_i}^{y_i+U} \frac{uv}{R} \, dy = A_{c_i} \frac{du_1}{dx} + B_{c_i} \frac{du_m}{dx} + C_{c_i} \frac{dL}{dx} + D_{c_i} \frac{dy_m}{dx} + E_{c_i} \frac{dn}{dx} + F_{c_i}
\]

\[
\quad i = 1, 2, \ldots, 4
\]

(19)

where the subscripts i refer to the same integration zones as for equation (10). In performing the integration, it was assumed that the integrals across the strip \(y_m + L \leq y \leq \infty \) were small compared to the total integrals. Hence, the coefficients \(A_{c_2} = A_{c_3} \), etc. This assumption is believed consistent with the assumptions to be made in evaluating the induced pressure terms, viz., that the static pressure has reached the outside potential value at \(y = y_m + L \). The coefficients \(A_{c_i}, B_{c_i}, \) etc. are given in Appendix C.

The induced pressure gradient term is evaluated by use of the normal momentum equation. Equation (6) may be simplified by assuming that the radial velocity component is much less than the tangential component of velocity over the major portion of the jet layer for which the jet remains thin. This assumption should remain valid until the jet begins to thicken prior to separation. Thus, we approximate equation (6) by

\[
\frac{\partial p}{\partial r} = \frac{\rho u^2}{R} \]

(20)

for \(\theta_e \leq \theta \leq \theta_{sep} - \frac{(y_m + L)N}{R} \)

Here we have replaced the local streamline radius of curvature by \(R \). The thickness \(y_m + L \) varies with \(\theta \), and \(N \) refers to the number of thicknesses \(y_m + L \) ahead of the separation point for which the simplified normal momentum equation will be used.

Using equation (20) and assuming that the static pressure \(p_{y_m + L} \) at the height \(y_m + L \) equals the outside static pressure \(p_L \), the static pressure along the boundaries of the various zones in the jet layer becomes
\[\begin{align*}
\Delta p_1 &= \left(\frac{\rho u_m^2 y_m}{2n+1} \frac{\partial p}{\partial x} \right)_{iL} L \\
\Delta p_2 &= \frac{\rho L}{R} \left(0.06 u_1^2 + 0.26 u_1 u_m + 0.68 u_m^2 \right) \\
\Delta p_3 &= \Delta p_2 \\
\Delta p_4 &= \frac{\rho u_m^2 y_m}{(2n+1) R} \left[1 - \left(\frac{1}{2} \right)^{2n+1} \right]
\end{align*} \]

The integrand \(\frac{\partial p}{\partial x} + u_1 \frac{du_1}{dx} \) in the induced pressure gradient term may be readily evaluated by direct differentiation of equations (21). Using average values for \(p \) across each zone gives for \(i = 1 \).
Similarly, for $i = 2$ and $i = 3$,

$$\int \left(\frac{\partial p}{\partial x} + \rho u_1 \frac{du_1}{dx} \right) dy = \int \left(\frac{\partial p}{\partial x} + \rho u_1 \frac{du_1}{dx} \right) dy = \frac{L}{2} \frac{d}{dx} (\Delta p_2)$$

whereas, for $i = 4$,

$$\int \left(\frac{\partial p}{\partial x} + \rho u_1 \frac{du_1}{dx} \right) dy = \frac{y_m}{2} \frac{d}{dx} \left[\Delta p_2 + \frac{\Delta p_4}{2} \right]$$

After carrying out the indicated differentiation through use of equations (23), the results may be grouped in the form

$$\int \left(\frac{\partial p}{\partial x} + u_1 \frac{du_1}{dx} \right) dy = A \frac{du_1}{dx} + B \frac{dA}{dx} + C \frac{dL}{dx} + D \frac{dy_m}{dx}$$

$$+ E \frac{dn}{dx} + F$$

where the coefficients A, B, etc., are again given in Appendix C.

The assumption of a thin jet layer breaks down near the separation point, as pointed out earlier, and the approximate form of the normal momentum equation given by equation (20) would not be expected to hold when the jet thickens. When the jet approaches the separation point the
streamline radii of curvature \mathcal{R} in the full normal momentum equation, equation (6), tend to become very large as the jet straightens (see fig. 1). It is in this region that the radial pressure difference $p_1 - p_0$ across the jet drops rapidly to zero due to the loss in centrifugal force. This may be seen from the experimental pressure distributions, e.g., figures 10 to 14.

Because of the failure of equation (20) near the separation point, the induced pressure gradient term in equation (20) has been approximated by the linear expression

$$
\int_{y_1 L}^{y_1 U} \left(\frac{\partial p}{\partial x} + u_1 \frac{du_1}{dx} \right) dy = (y_1 U - y_1 L) \left[\frac{\Delta p_1}{R(\theta_{\text{sep}} - \theta)} \right]_{\theta = \theta_{\text{sep}}} - \frac{(y_m + L) N}{R} \tag{28}
$$

for the region $\theta_{\text{sep}} - \frac{(y_m + L) N}{R} < \theta \leq \theta_{\text{sep}}$.

Equation (28) implies a linear decrease in the induced static pressure difference within the jet layer from its value Δp_1 at $\theta = \theta_{\text{sep}} - \frac{(y_m + L) N}{R}$ to zero at $\theta = \theta_{\text{sep}}$. The additional pressure gradient thereby imposed, which will be on the order of

$$
0 \left[\frac{(t/R) \rho u_j^2}{(y_m + L) N} \right]_{\theta = \theta_{\text{sep}}} = \frac{(y_m + L) N}{R}
$$

will increase the tendency of the jet layer to separate. Here u_j is the average jet velocity at the exit which is of thickness t. In order for the linear induced pressure gradient approximation to be valid, the jet momentum required for separation at θ_{sep} should prove relatively insensitive to N.

In accordance with the above approximation, the coefficients in equation (27) are taken as

$$
A = B = \ldots = E = 0 \tag{29}
$$

and

$$
F = \left(y_1 U - y_1 L \right) \left[\frac{\Delta p_1}{(y_m + L) N} \right]_{\theta = \theta_{\text{sep}}} - \frac{(y_m + L) N}{R} \tag{30}
$$

for the interval $\theta_{\text{sep}} - \frac{(y_m + L) N}{R} < \theta \leq \theta_{\text{sep}}$.

18
Starting conditions.— Equations (10) constitute a set of four parabolic differential equations with dependent variables u_m, L, y_m, and n, and independent variable $x = R \theta$. Initial conditions are required at the jet exit $\theta = \theta_e$.

By assuming an average velocity u_j for the jet at the exit of thickness t, conservation of momentum gives

$$u_j(u_j - u_1) t - u_1^2 \theta^* = \int_0^{y_m} u(u - u_1) dy + \int_{y_m}^{\infty} u(u - u_1) dy$$ \hspace{1cm} \text{(31)}$$

The terms on the left hand side of equation (31) represent the net excess momentum in the jet and boundary layer at $\theta = \theta_e$. The terms on the right hand side represent the excess momentum in the fully merged jet layer with a velocity profile of the form given by equation (9). Transition to the jet layer velocity profile is assumed to occur in a negligible distance. Substituting equation (9) into equation (31) and carrying out the indicated integration then gives for the height y_m

$$\frac{y_m}{t} = \frac{1 - \frac{u_1}{u_j} \left(1 + \frac{\theta^*}{\theta_e} \frac{u_1}{u_j} \right)}{\frac{u_m}{u_j} \left(\frac{n}{n+1} \ln \frac{u_m}{u_j} \right) + \frac{L'}{y_m} \left(\frac{n}{n+1} \right) + \frac{1}{\sqrt{2} \left(\frac{u_m}{u_j} - \frac{u_1}{u_j} \right)}}$$ \hspace{1cm} \text{(32)}$$

A second initial condition was obtained by taking the ratio

$$L'/y_m = \left(\frac{\pi}{4 \ln 2} \right)^{1/2} L/y_m = 6$$ \hspace{1cm} \text{(33)}$$

which is in accordance with the measurements of Fekete (ref. 4) and the calculations of Glauert (ref. 7) for zero outside flow conditions. The sensitivity of the resulting Coanda jet development and separation to variations in the initial value of L'/y_m remains to be determined under conditions of forward speed.

The third initial condition is supplied by the starting value of the exponent $n(\theta_e)$. Values for $n(\theta_e)$ are expected to lie in the range $1/7 < n(\theta_e) < 1/5$. The results of the calculations may be shown to be insensitive to the value used for $n(\theta_e)$, since $n(\theta)$ has been found to
rapidly adjust to the same value downstream of θ_e over the above range of $n(\theta_e)$ (see figs. 6 and 7).

The fourth initial condition is the value $u_m(\theta_e)/u_j$. Use of the conservation of mass equation for determining $u_m(\theta_e)/u_j$ has been ruled out because of the entrainment of mass from the outside flow into the jet layer just downstream of the exit. Data by Fekete show that the maximum jet velocity $u_m(\theta_e)$ is somewhat less than the average velocity u_j and that the ratio $u_m(\theta_e)/u_j$ decreases with decreasing t/R. Dunham (ref. 1) also notes a significant influence of the parameter t/R on the effective jet momentum. From considerations of viscous mixing, it appears that $u_m(\theta_e)/u_j$ should vary inversely with the ratio δ/t, where δ is the boundary layer thickness ahead of the slot. On the other hand, the parameter which will be shown to have the major influence on the Coanda jet separation is the ratio $u_m(\theta_e)/u_1(\theta_e)$, or equivalently, $u_m(\theta_e)/V_\infty$. In order for the jet moment coefficient C_μ to be nearly independent of t for the same value of $u_m(\theta_e)/V_\infty$, we require $u_m(\theta_e)/u_j \sim t^{1/2}$. Hence, it seems reasonable to assume the variation

$$\frac{u_m(\theta_e)}{u_j} = K \left(\frac{t}{\delta}\right)^{1/2} \leq 1$$

where the parameter K is to be found from experimental data.

Equations (32), (33), (34), together with an assumption for $n(\theta_e)$, constituted the usual set of starting conditions. An alternate set of starting conditions was also used which did not involve the empirical constant K. The alternate starting conditions ($\theta = \theta_e$) consisted of taking $\gamma_m = L = t$, obtaining u_m/u_j from equation (32), and again assuming the initial value for n. We note that the alternate starting conditions seem preferable, since they do not contain the constant K. However, the ratio u_m/u_j may no longer vary with $t^{1/2}$, since equation (34) is no longer used, and C_μ will therefore be somewhat dependent upon t/R.

We remark that considerable uncertainty exists with respect to the initial values for the jet velocity parameters and, in fact, with regard to the adequacy of equation (9) in representing the jet velocity profile for thin jets (refs. 14, 23). Measurements of the jet velocity profile near the exit would be of substantial aid in determining the starting jet parameters. On the other hand, a calculation of the initial mixing between the jet and the external flow by finite-difference methods, as reviewed in reference 20, could also serve to eliminate some of the empiricism in the starting parameters.

20
Separation condition.— The Coanda jet is assumed to separate when the exponent n for the inner velocity profile exceeds 1/2 with $dn/d\theta > 0$. This separation condition, which was also used in reference 11, is based on an analogy with turbulent boundary-layer theory which, on the basis of the standard mixing length hypothesis, may be shown to yield zero shear stress at the wall when $n = 1/2$ (ref. 21). The condition $n = 1/2$ is equivalent to a value of the shape factor of the inner profile

$$H_m = \delta_m^*/\theta_m^* = 2n + 1 = 2$$

We note that expressions for wall shear from equation (11) or from equation (9) of reference 23 do not vanish when $n = 1/2$. These equations may be regarded as approximate when $n \sim 1/2$.

Boundary-Layer Theory

As discussed previously, a boundary-layer calculation is carried out along the lower surface to determine the lower surface separation point for a given Γ. A boundary-layer calculation is also performed along the upper surface between the forward stagnation point and jet exit in order to evaluate the boundary-layer thicknesses δ and θ^* just ahead of the exit for initializing the Coanda jet calculation.

Laminar boundary layer.— The laminar boundary-layer calculation is initiated at the forward stagnation point $\theta_{stag} = \cos^{-1} (-\Gamma)$ and continued along both the upper and lower surfaces until the momentum thickness Reynolds number $Re_\theta^* = \frac{|u_1|\theta^*}{\nu} = 300$. Standard series expansion methods are used to calculate the laminar boundary-layer properties (e.g., ref. 22), and result in the expressions

$$\frac{\delta^*}{R} = \left(\frac{RV_\infty}{\nu} \right)^{-1/2} \left(\frac{du_1/d\theta}{V_\infty} \right)^{-1/2} \theta_{stag} \left[\frac{(\eta - f_0) \Delta \theta + (\eta - f_1) a_1 \Delta \theta^2 + (\eta - f_2) a_2 \Delta \theta^3 + \ldots}{\Delta \theta + a_1 \Delta \theta^2 + a_2 \Delta \theta^3 + \ldots} \right] \lim_{\eta \to \infty}$$

and

$$\frac{\theta^*}{R} = \left(\frac{RV_\infty}{\nu} \right)^{-1/2} \left(\frac{du_1/d\theta}{V_\infty} \right)^{-1/2} \theta_{stag} \left(\frac{N(\Delta \theta)}{D(\Delta \theta)} \right) \lim_{\eta \to \infty}$$

where
\[N = \left[f''(0) - (\eta - \xi_0) \right] \frac{\Delta \theta^2}{2} + a_1 \left[f''(0) - 2(\eta - \xi_0) - (\eta - \xi_1) \right] \frac{\Delta \theta^3}{3} \]

\[+ a_1^2 \left[f_1 - \int_0^\infty (f_1')^2 \, d\eta \right] \Delta \theta^4 + 2 a_2 \left[\frac{f_0 + f_2}{2} - \int_0^\infty f_0' \, f_2' \, d\eta \right] \Delta \theta^4 \]

\[+ 2 a_1^2 \left[\frac{f_{11}}{2} - \int_0^\infty f_1' \, f_1' \, d\eta \right] \Delta \theta^4 + \ldots \]

and

\[D = \Delta \theta^2 + 2 a_1 \Delta \theta^3 + (a_1^2 + 2 a_2) \Delta \theta^4 + \ldots \]

Here, following the method in reference 22, \(u \) has been expanded in the series

\[u = \left\{ \frac{d u_1}{d \theta} \right\}_{\theta = \text{stag}} \left\{ f_0' (\eta) \Delta \theta + a_1 f_1' (\eta) \Delta \theta^2 + a_2 f_2' (\eta) + a_1^2 f_{11}' (\eta) \Delta \theta^3 + \ldots \right\} \]

where

\[\eta = \left(\frac{\nu}{R} \right) \left[\frac{R}{V^\infty} \left(\frac{d u_1}{d \theta} \right) \right]_{\theta = \text{stag}}^{1/2} \]

\[a_j = \frac{1}{(j+1)!} \left[\frac{d^{(j+1)} u_1}{d \theta^{(j+1)}} \right]_{\theta = \text{stag}} \]

and the \(f \) functions are given in Table VI.1 of reference 22. The derivatives \(\frac{d^{(j+1)} u_1}{d \theta^{(j+1)}} \) are readily evaluated from equation (1), and \(\Delta \theta \) represents the angular distance from the forward stagnation point, viz., \(\Delta \theta = \theta - \cos^{-1}(-1) \). For the upper surface \(\Delta \theta \geq 0 \), whereas on the lower surface \(\Delta \theta \leq 0 \).

The range of convergence of the laminar boundary-layer expansion is unknown, although the series expansion for the outer flow \(u_1 (\theta) \) is
readily found to be accurate to within 10\% for \(-\pi/2 \leq \Delta\theta \leq \pi/2\), when retaining terms up to and including \(a_2\). Extension of the range of validity would require evaluation of additional odd-subscripted \(f\) functions beyond \(f_1\), which has to our knowledge not been carried out.

Turbulent boundary layer. — The multi-strip integral representation of the turbulent boundary-layer equations is readily obtained from equations (10) by setting \(u_m = u_1\) and \(L = 0\). [Curvature and induced pressure gradient terms will be neglected in the boundary-layer approximation in accordance with the usual ordering procedures.] This gives, with \(y_m\) replaced by \(\delta\),

\[
D_1 \frac{d\delta}{dx} + E_1 \frac{dn}{dx} = -\frac{\tau_0}{\rho} - (A_1 + B_1) \frac{du_1}{dx}
\]

\[
D_4 \frac{d\delta}{dx} + E_4 \frac{dn}{dx} = -\frac{\tau_m/2}{\rho} - (A_4 + B_4) \frac{du_1}{dx}
\]

where the coefficients are given in Appendix C.

The unknowns in the turbulent boundary layer are the thickness \(\delta\) and the exponent \(n\). Initial conditions for \(\delta\) and \(n\) are supplied by equating the turbulent and laminar momentum and displacement thickness at the transition points, viz.,

\[
\frac{\delta^*_t}{R} = \left(\frac{\delta}{R}\right) \frac{n}{n+1} = \frac{\delta^*_t}{R}
\]

\[
\frac{\theta^*_t}{R} = \left(\frac{\delta}{R}\right) \frac{n}{(n+1)(2n+1)} = \frac{\theta^*_t}{R}
\]

\(\theta^*_t\) \(\tau\) transition

where \(\delta^*_t/R\) and \(\theta^*_t/R\) are given by equations (35) and (36). The turbulent boundary-layer equations are integrated along the upper surface until \(\theta = \theta_e\) and along the lower surface up to the lower separation point at which \(n = 1/2\).
NUMERICAL SOLUTION AND SAMPLE CALCULATIONS

The system of equations described in the previous section representing the boundary and Coanda jet layers has been programmed for solution on the CDC 3600 digital computer in the FORTRAN IV language. The laminar boundary-layer properties are obtained algebraically, whereas the turbulent boundary and jet layers are obtained using a Runge-Kutta marching procedure. A listing of the computer programs and sample input and output are given in Appendix D.

Results of sample calculations for values $\hat{\Gamma} = 0$, 0.25, and 0.50, and based on the Reynolds number $Re = Re = R \frac{V_\infty}{\nu} = 5 \times 10^5$ and $\theta_e = 0^\circ$ are presented below.

The laminar boundary-layer development according to equations (35) and (36) has been plotted in figure 3 for both upper and lower surfaces of the cylinder. Only minor differences due to $\hat{\Gamma}$ are noted for δ^*/R and θ^*/R, except for the location of the calculated transition point.

The turbulent boundary-layer development along the lower surface of the cylinder is shown in figure 4. Of special interest are the calculated separation points ($n = 1/2$) at the values $\theta_{sep_L} = 135^\circ, 142.5^\circ$ and 150° for $\hat{\Gamma} = 0$, 0.25, and 0.50, respectively. The turbulent boundary-layer development and corresponding separation points along the upper surface, without blowing, are shown in figure 5. Also indicated are the required upper-surface separation points θ_{sep_U} for satisfying the separation condition of equations (3) and (4). Tangential blowing is required along the upper surface to attain the required separation locations when $\hat{\Gamma} > 0$.

The development of the Coanda jet layer over the upper surface is shown in figures 6 through 9 for $\hat{\Gamma} = 0.50$. The required value of θ_{sep_U} is 97.5° for this value of $\hat{\Gamma}$. The significant parameters in the theory for determining the jet strength are the ratios $u_m(\theta_e)/u_1(\theta_e)$ [or equivalently, $u_m(\theta_e)/V_\infty$] and t/R, and will be used in the following comparisons. These parameters may be used to evaluate the jet momentum coefficient C_μ defined herein as

$$C_\mu = \left(\frac{t}{R} \right) \left(\frac{u_j}{V_\infty} \right) \left(\frac{u_j}{V_\infty} \right)$$

(40)

which has been found to correlate the experimental data. Here the
ratio \(u_j / V_\infty \) is given in terms of \(u_m (\theta_e) / V_\infty \), \(K \), and \(t/\delta \) through equation (34), and \(u_j \) is the velocity attained by the jet when expanded isentropically to the remote free stream pressure. For incompressible flow, Bernoulli's law gives

\[
\frac{u_j}{V_\infty} = \left[1 + \left(\frac{u_j}{V_\infty} \right)^2 \left(1 - 2 \frac{t}{R} \right) \right]^{1/2}
\]

We consider first the effect of \(u_m (\theta_e) / V_\infty \) on the Coanda jet layer development for \(t/R = 0.01 \) and with curvature and induced pressure gradient terms omitted (fig. 6). In this case, although the tendency of the jet to separate is clearly delayed by increasing the jet velocity ratio \(u_m (\theta_e) / V_\infty \), the results are seen to be physically unrealistic in that no separation occurs at \(\theta_{sep} = 97.5^\circ \) for any value of \(u_m (\theta_e) / V_\infty \).

On the other hand, with the curvature and induced pressure gradient terms included, separation is found to occur at \(\theta = 97.5^\circ \) when \(u_m (\theta_e) / V_\infty \approx 4.4 \). The results in figure 7 are for the values \(N = 5 \) and \(K = 1 \). This increased tendency of the jet to separate, at the larger values of \(u_m (\theta_e) / V_\infty \), in contrast to the results in figure 6, is due to the additional pressure rise imposed ahead of the separation point, \((y_m + L) N \)

i.e., when \(\theta_{sep} - \frac{R}{N} \leq \theta \leq \theta_{sep} \), due to loss of centrifugal force as discussed previously.

The change \(\Delta n \) resulting from this additional pressure rise may be estimated by solving equations (10) for \(d_1 / dx \) with \(i = 1 \) and \(4 \), and then isolating the contribution resulting from the induced pressure gradient term. The result is

\[
\frac{dn}{dx} = \frac{- y_m (D_4 - D_1/2) \partial / \partial x (p/\rho + u_1^2/2)}{D_4 E_1 - E_4 D_1}
\]

Evaluating the coefficients from Appendix C gives

\[
\frac{dn}{dx} = \frac{2^{n-1}}{2 \ln 2} (2n + 1) (n + 1) \frac{t}{R} \frac{d \tilde{c}_p}{dx} \frac{1}{(u_m / u_j)^2}
\]
where \(\tilde{c}_p = \left(\frac{P_1 - P_0}{\frac{1}{2} \rho u_j^2} \right) \) is the normalized pressure coefficient for the difference in pressure across the jet layer. Taking an average value for the exponent \(n \approx 0.40 \), using equation (34) to calculate \(\frac{u_m(\theta_e)}{u_j} \), and evaluating \(u_m \) at \(\theta_{sep} \) gives

\[
\Delta n \approx \frac{0.58 \left(\frac{\delta}{R} \right)}{K^2} \left(\frac{u_m(\theta_e)}{u_m(\theta_{sep})} \right) \Delta \tilde{c}_p
\]

Equation (44) clearly shows that the rise in the exponent \(n \) required for separation (\(\Delta n \approx 0.2 \) to 0.3 for separation) is independent of the additional adverse pressure gradient ahead of the separation point, but depends on the pressure rise coefficient \(\Delta \tilde{c}_p \) against which the jet layer must act.

We note that equation (44) is dependent upon the square of the ratio of the maximum jet velocity at the exit \(u_m(\theta_e) \) to the maximum jet velocity at the separation point \(u_m(\theta_{sep}) \), and that \(\Delta n \) is therefore highly dependent upon the decay rate of \(u_m \) with \(\theta \). The higher the decay rate, the larger the value of \(\Delta n \) and the stronger the tendency of the Coanda jet layer to separate.

We note also that equation (44) is independent of the jet thickness ratio \(t/R \), although this result depends on the use of equation (34) which is empirical. The factor \(K \) in equation (44) is also empirical, and relates \(u_m(\theta_e) \) to the average velocity inside the jet slot \(u_j \) through equation (34). Since equation (44) is independent of \(N \), as well as of \(t/R \), we expect that the separation positions found as a function of \(\frac{u_m(\theta_e)}{V_\infty} \) in figure 7 should be nearly independent of the parameters \(N \) and \(t/R \). This is shown to be the case in figures 8 and 9, wherein \(N \) and \(t/R \) are varied over the range \(3 \leq N \leq 10 \) and \(0.005 \leq t/R \leq 0.015 \), respectively. Effects of the parameter \(K \), which relate \(\frac{u_m(\theta_e)}{V_\infty} \) to \(u_j/V_\infty \) and hence to \(C_\mu \), will be discussed in the following section.

The variation of \(n \) with \(\theta \), using the alternate starting conditions and the second set of shear relations, is shown in figures 10 and 11 for \(\tilde{G} = 0.29 \) and 0.5, respectively. The calculations were performed for \(t/R = 0.015 \) and \(N = 5 \). The empirical factor \(K \) does not occur when the alternate starting conditions are used, as mentioned previously. However, some variation in the value of \(C_\mu \) required for separation with \(t/R \) is to be expected when using the alternate starting conditions.

26
The methods presented in the previous sections have been evaluated by comparing with wind tunnel test data of tangential blowing over a cylinder obtained during the course of the current study. Model descriptions and test conditions are presented in Appendix B.

Pressure Data

The variation of local pressure coefficient c_p around the cylinder for zero tangential blowing is shown in figure 12 as a function of Reynolds number. Also included are the corresponding drag coefficients C_D. Both pressure and drag data clearly show a rapid change from laminar to turbulent separation when $Re \geq 1.8 \times 10^5$. All testing with tangential blowing was therefore carried out at Reynolds numbers exceeding this value. Also shown in figure 10 is the potential theory pressure distribution according to equation (1) with $\theta_e = 0$. Agreement between potential theory and the turbulent data is surprisingly good on the windward surfaces, although the experimental data show a consistently more positive peak pressure coefficient (by $\Delta c_p \approx 0.3$) and a more positive pressure over the unseparated portion of the leeward surfaces (by $\Delta c_p \approx 0.5$). This discrepancy, which may be in part due to boundary-layer displacement effects and in part due to the large wake region, will be shown to decrease with increasing tangential blowing. As indicated in figure 12, the calculated values of θ_{sep} compare well with the data, although the calculated pressure coefficient $c_p(\theta_{sep})$ in the wake is more negative than the test results by $\Delta c_p \approx 0.5$, due to the effects discussed above.

Test results on the effect of tangential blowing on pressure distribution with $\theta_e = 0^\circ$ are shown in figures 13 through 16 for several values of the momentum coefficient C_μ. The indicated values of Γ, which were found by fitting equation (1) to the data outside of the separated region, are $\Gamma = 0.06$, 0.29, 0.29, and 0.59 for values of $C_\mu = 0.05$, 0.28, 0.25 and 0.66, respectively. Figures 13 and 14 are for a slot thickness $t/R = 0.0057$, whereas figures 15 and 16 are for a slot thickness $t/R = 0.015$. The pressure distributions in figures 14 and 15 are found to be remarkably similar, although the thickness ratios vary by a factor of nearly 3, thus indicating the validity of C_μ as a correlating parameter for the experimental data.

The data show progressively improved agreement with potential theory as C_μ increases. It is of note that the surface pressure in the jet layer is more negative than the potential theory values outside the jet layer due to
centrifugal force effects, as previously assumed in the theory. The pressure difference across the jet layer $p_1 - p_o$ was given in coefficient form in equation (43) as

$$\widetilde{c}_p(\theta) = \left(\frac{R}{t}\right)\left[\frac{p_1 - p_o}{1/2 \rho u_j^2}\right] \approx 2$$ \hspace{1cm} (45)

where the value 2 corresponds to a jet of constant thickness t and velocity u_j. Equation (45) may be expressed in terms of the usual pressure coefficient c_p as

$$\Delta c_p = \frac{p_1 - p_o}{1/2 \rho V_\infty^2} = \left(\frac{u_j}{V_\infty}\right)^2 \left(\frac{t}{R}\right) \widetilde{c}_p \approx 2 C_\mu$$ \hspace{1cm} (46)

The variation of Δc_p with θ may be predicted by the theory, and calculated results for $t/R = 0.01$ are presented in figures 14 through 16 for $\theta = 0.25$ and 0.59. Although the theory does not predict some of the irregularities in Δc_p observed in the measurements, both theory and test data exceed the value $2 C_\mu$ over the major length of attached flow and then drop rapidly to zero just ahead of the separation point. This leads to the additional tendency of the jet to separate as assumed in the analysis.

The region over which Δc_p is assumed to linearly decrease to zero is also shown in the figures. The experimental data in figure 14 show a much more severe adverse pressure gradient and somewhat larger value of θ_{sepU} than predicted by the theory. This may have been due in part to the narrow slot size ($t/R = 0.0057$) used for the test.

On the other hand, agreement between the theory and test results in figures 15 and 16 is somewhat closer in regard to the pressure distribution ahead of the separation point and in regard to predicted values of θ_{sepU} and c_{psep}. Additional comparisons between test results and theory are clearly required to evaluate the accuracy of the theoretical model and the effects of such parameters as N, K, Re, etc. on pressure distribution and separation.

The effect of θ on pressure distribution and on \hat{C}_μ for the same value of C_μ is shown in figure 17. Increasing θ_e from 0° to 20° is seen to result in an increase in \hat{C}_μ from 0.59 to 0.67 at $C_\mu = 0.66$.

In general, increasing θ_e beyond 20° did not result in any increase in circulation or lift at constant C_μ, as will be shown in the following paragraph dealing with the force data.
Force Data

The force data in the form C_f versus C_μ have been plotted in figure 18 for $\theta_e = 0^\circ$ for values of $t/R = 0.0057$, 0.010, and 0.015. The experimental data, which were obtained on a semispan model of exposed aspect ratio equal to 4, were corrected to correspond to two-dimensional values as explained in Appendix B. Using the basic initial conditions, the theoretical value of C_μ for a given $u_m(\theta_e)/V_w$ depends on the value of the parameter K, with $K = 0.7$ appearing to give the best fit with the data. Also shown in figure 18 are theoretical results using the alternate initial conditions and shear laws for $t/R = 0.015$ and 0.010. The latter method appears to somewhat underestimate the required C_μ value for the present experimental data.

In addition, figure 18 shows two-dimensional experimental data by Cheeseman and by Jones and Buckingham from reference 1. These data appear to correlate well with the corrected three-dimensional model data obtained from the current test program. All data show a rather abrupt decrease in slope C_f versus C_μ for values of $C_f \geq 5$. This result may be due to sonic effects in the jet, since values of total to static pressure equal to 1.8 were required for the largest C_μ values plotted. Current test data for values of the jet pressure ratio exceeding 1.85 gave much lower values of C_f at higher C_μ, and have not been plotted.

The effect of θ_e on C_f at constant C_μ is shown in figure 19. Although C_f generally increases with increasing θ_e for $\theta_e \leq 20^\circ$, a maximum C_f is reached near $\theta_e \approx 20^\circ$, and C_f is found to decrease for θ_e somewhat beyond this value. Corresponding theoretical calculations of the effect of θ_e on C_f have as yet not been carried out.

Velocity Profile Data

The wall jet layer calculations have also been compared with velocity profile survey data taken inside a wall jet over a flat surface with an outside flow of adverse pressure gradient (ref. 23). The comparison was made for the test case corresponding to an initial value $u_m/u(0) = 1.62$. As indicated in figure 20, the assumed starting profile, which was given by equation (9), did not match the velocity minimum in the outer region of the wall jet. As shown also in figure 20, the predicted decay in u_m was somewhat less than measured, possibly due to the velocity minimum in the starting profile. The more rapid experimental decay in u_m could also account for the larger experimental values of C_μ required for producing a given Γ. This is in accordance with the previous discussion relating
equation (44) wherein it was shown that the higher the decay rate of u_m with θ, the larger the value $\Delta n(\theta)$ and the more likely the Coanda jet to separate.
CONCLUSIONS AND RECOMMENDATIONS

A theory and computer program have been developed for predicting the circulation and lift induced by tangential blowing over a circular cylinder under conditions of turbulent separation. The theory has been evaluated by comparison with test data of pressure distribution, separation position, and induced circulation (or lift) for several values of the ratio of the jet-slot thickness to cylinder radius and jet velocity to free stream velocity. The induced pressure difference across the jet layer due to centrifugal force effects has been included in the theory, and was found to have a pronounced effect on the jet separation.

The predicted value of C_μ required to achieve a given lift coefficient was found to be highly dependent upon the ratio of the maximum velocity u_m in the fully developed jet layer profile just downstream of the exit θ_e to the average jet velocity inside the slot u_j. This ratio was estimated from equation (34) by either of two methods, one of which involved an empirical constant K and was found to give good agreement with pressure and force data with $K = 0.7$. The alternative method, which did not involve any empirical constant, underpredicted the blowing requirements for achieving a given C_L.

An improved analytic procedure for determining $u_m(\theta_e)/u_j$ and a more general velocity profile employing a velocity minimum appear necessary in order to obtain improved agreement.

The tendency of the jet layer to separate was also found to be highly dependent upon the maximum velocity u_m in the jet layer at the separation point θ_{sep} as indicated by equation (44). Measurements of the initial Coanda jet velocity profile and of the decay in maximum velocity from the jet exit to the separation indicate a somewhat faster decay rate in u_m than predicted by the theory. This faster decay rate may be due to the velocity minimum in the initial jet velocity profile, and if generally true, could explain the lower C_μ values predicted by the theory. Additional velocity profile data are required to verify this effect.
APPENDIX A

TANGENTIAL BLOWING BLC ON AN AIRFOIL

The method developed for estimating the jet momentum coefficient \(C_\mu \) required to achieve a given nondimensional circulation \(\Gamma \) on a circular cylinder may be applied, with only minor modification, to tangential blowing over an airfoil with a flap. In the case of an airfoil, the outside pressure distribution may be again assumed given by potential theory after the critical value of \(C_\mu \) has been reached. Because of the sharp trailing edge, the critical \(C_\mu \) value is taken as that value of the jet momentum coefficient which moves the jet layer separation point to the trailing edge. Thus, the upper flow is assumed decoupled from that on the lower surface. Curvature effects, which cause an additional pressure rise \(\Delta p \), are included in the calculation over the rounded flap knee. The corresponding change in the exponent \(n \) is again given by equation (44) where \(R \) now refers to the radius of the flap knee.

The pressure rise \(\Delta p \) is assumed to occur linearly over a distance of five jet layer thicknesses just beyond the end of the flap knee, in much the same manner as assumed at the separation point with the circular cylinder.

Calculations were made for the flapped airfoil of reference 24 with flap deflection angles of 20° and 60°. The corresponding upper surface measured velocity \(u_1/V_\infty \) versus normalized distance \(s/c \) from the stagnation point are shown in figure 21 along with the locations of the jet exit and flap knee regions. The potential theory velocity distributions were very close to the measured distributions shown in figure 21 at the critical \(C_\mu \) values of 0.027 and 0.067. The second peak in \(u_1 \) near the leading edge with \(\delta_f = 60^\circ \) was due to a nose flap deflection in this case. By carrying out calculations with successively increasing amounts of blowing, the variations \(n \) versus \(s/c \) shown in figures 22 and 23 were obtained. The alternate initial conditions and shear relations were used for the computations. Calculated values of \(C_\mu \) needed to move the separation point to the trailing edge are seen to be \(C_\mu \sim 0.018 \) and \(C_\mu \sim 0.047 \) for \(\delta_f = 20^\circ \) and \(60^\circ \), respectively. A graphical comparison between theory and experiment is given in figure 24, wherein it is again evident that the theory underpredicts the amount of blowing required for attached flow. Results from a previous investigation (ref. 25) on another flapped airfoil are also included in figure 24 for comparison.
APPENDIX B

WIND TUNNEL TEST PROGRAM

A supporting wind-tunnel program was carried out with the aid of the NASA Technical Monitor (Mr. Victor Corsiglia) in the 7 X 10 ft. low speed wind tunnel at the U.S. Army Aeronautical Research Laboratory, Ames Research Center. Purpose of the test program was to provide pressure and force data with tangential blowing to help evaluate the analytical procedures developed herein.

Model Geometry

A semispan model consisting of a circular cylinder mounted vertically in the tunnel and attached to a balance beneath the tunnel floor was tested. The general arrangement was as shown in figure 25, and consisted of an outer cylinder of 6-inch diameter with an inner pipe of 2.5-inch diameter. The height (exposed semispan) of the cylinder above a circular boundary-layer splitter plate was 24.8 in. Compressed air was supplied through the inner pipe and entered the plenum region between the concentric cylinders through a large number of 0.1-in. diameter holes (approximately 300 in number). The holes were drilled through the side of the inner pipe opposite the jet slot (see fig. 25), and were spaced to provide flow uniformity in the plenum region.

The jet exit slot in the outer cylinder was 24-in. long. The jet slot thickness \(t \) could be varied from 0.015 in. to 0.045 in. by sliding the slot leading edge circumferentially as shown in figure 25. The slot geometry was contoured so that the jet incidence angle to the surface of the cylinder would not exceed 10° with the largest slot opening.

Total head tubes were mounted at three spanwise stations along the slot to measure the average total pressure at the jet exit and to check total pressure uniformity. Static pressure taps were spaced circumferentially at intervals of approximately 10° around the outer cylinder at a spanwise station of 6 in. (25% of the semispan) from the inboard end of the slot.

Test Procedures and Conditions

Data without blowing were run at nominal \(q \) values from 5 psf to 75 psf whereas data with blowing were run at nominal \(q \) values of 25 psf and 50 psf. For each slot thickness \(t = 0.015, 0.030, \) and 0.045 and for a given jet total pressure the slot incidence \(\theta_e \) was varied from approximately \(0^\circ \) to \(30^\circ \) by rotating the tunnel floor.
Data Reduction and Corrections

Two component (side force and drag) force data were obtained from the mechanical scale system, whereas pressure data were obtained from Scanivalve digital readouts for each run. Only a limited amount of the experimental data has been presented in the present report.

The jet velocity at the exit was found by measuring the ratio of the jet total pressure to the static pressure at the slot exit (25% span location). This procedure was favored over the use of available flow meter data, which together with a knowledge of the slot thickness will yield the average jet velocity over the entire span. The latter approach was not used, because it was judged to be more sensitive to inaccuracies in jet slot thickness and did not give the local jet velocity at the 25% semispan location for correlating with the pressure and force data.

Because of the finite aspect ratio (AR = 8 based on full lift carryover at the splitter plate) a downwash angle ϵ, which increased with increasing C_L, was produced by the trailing vortices. The experimental pressure distribution data plotted in figures 13 through 17 were shifted by the amount

$$\Delta \theta^\circ = \epsilon \sim \frac{1.25 C_L}{\pi AR} \times 57.3$$

for comparison with the theoretical results to correct for this effect.

The average lift coefficient across the cylinder C_{L}, as measured by the balance, was converted to a two-dimensional lift coefficient C_f at the 25%-semispan station (corresponding to the location of the pressure data), for comparison with the two-dimensional theoretical results. Using the Kutta-Joukowski law

$$C_f = \frac{\rho V_\infty \Gamma b}{(1/2 \rho V_\infty^2) 2 R b} = 4 \pi \frac{\Gamma}{\pi}$$

where Γ is the value at the 25%-semispan position. The empirical relation $C_L \approx 10.5 \frac{\Gamma}{\pi}$ was found from the experimental data giving

$$C_f \approx \frac{4 \pi}{10.5} C_L$$
Integration of the tangential momentum equation across each of four strips (see fig. 2) of the jet layer results in a system of quasi linear ordinary differential equations of the form given by equation 10. The coefficients for each strip are as follows:

\[
\begin{align*}
A_1 &= -u_1 y_m \\
B_1 &= \frac{u_m y_m}{(2n+1)(n+1)} \\
C_1 &= 0 \\
D_1 &= -\frac{n u_m^2}{(2n+1)(n+1)} \\
E_1 &= u_m^2 y_m \left(\frac{1}{(n+1)^2} - \frac{2}{(2n+1)^2} \right) \\
F_1 &= \frac{\tau_o}{\rho} - \left(1 + \frac{y_m}{R}\right) \frac{\tau_m}{\rho} - \frac{y_m}{2R} \left(\frac{\tau_m}{\rho} + \frac{\tau_o}{\rho}\right) \\
A_2 &= (u_m - u_1) L \left(\frac{5}{2} K_1 - 2K_2 - \frac{1}{2}\right) - u_1 K_1 L \\
B_2 &= (u_m - u_1) \left(\frac{y_m}{2(n+1)} + L \left(2K_2 - \frac{K_1}{2}\right)\right) + u_1 L K_1 \\
C_2 &= (u_m - u_1)^2 \left(K_2 - \frac{K_1}{2}\right) + u_1 (u_m - u_1) \left(K_1 - \frac{1}{2}\right) \\
D_2 &= \frac{(u_m - u_1)}{2(n+1)} u_m
\end{align*}
\]
\[E_2 = - \frac{(u_m - u_1) u_m}{2(n+1)^2} y_m \]

\[F_2 = \frac{\gamma_m}{\rho} \left(1 + \frac{y_m}{R}\right) - \frac{\gamma_m + \chi}{\rho} \left(1 + \frac{y_m + \chi}{R}\right) - \frac{\gamma_m + \chi_L}{2\rho} \frac{L}{R} \]

\[A_3 = 2(u_m - u_1) L' \left(1 - \frac{1}{\sqrt{2}}\right) - u_1 L' \]

\[B_3 = (u_m - u_1) \left(\sqrt{2} L' + \frac{y_m}{n+1}\right) + u_1 L' \]

\[C_3 = (u_m - u_1) \left[\frac{\pi}{4} \ln \frac{n}{2}\right]^{1/2} \left(u_1 + \frac{u_m - u_1}{\sqrt{2}}\right) \]

\[D_3 = \frac{u_m (u_m - u_1)}{n+1} \]

\[E_3 = - \frac{(u_m - u_1) u_m y_m}{(n+1)^2} \]

\[F_3 = \frac{\gamma_m}{\rho} \left(1 + \frac{y_m}{R}\right) - \frac{L}{2R} \left(\frac{\gamma_m + \chi_L}{\rho}\right) \]

\[A_4 = - u_1 y_m \sqrt{2} \]

\[B_4 = u_m y_m \left[1 - \left(\frac{1}{2}\right)^{2n+1}\right] \]

\[C_4 = 0 \]

\[D_4 = - u_m^2 n \left[1 - \left(\frac{1}{2}\right)^{2n+1}\right] \]
\[E_4 = \frac{u_m^2 y_m}{(n+1)(2n+1)} \left\{ \left[1 - \left(\frac{1}{2} \right)^{2n+1} \right] \frac{2n^2 - 1}{(2n+1)(n+1)} + \left(\frac{1}{2} \right)^{2n+1} \ln 2 \right\} \]

\[F_4 = \frac{\tau_m/2 - \tau_m}{\rho} + \frac{y_m}{R} \left(\frac{\tau_m/2 - 2 \tau_m}{2 \rho} \right) - \frac{y_m}{4R} \left(\frac{\tau_m/2 + \tau_m}{\rho} \right) \]

Here, we have used

\[K_1 = \int_0^1 \exp \left(- \ln 2 \xi^2 \right) d\xi = 0.8101 \]

\[K_2 = \int_0^1 \xi \exp \left(- 2 \ln 2 \xi^2 \right) d\xi = 0.6805 \]

and

\[L' = \left(\frac{\pi}{4 \ln 2} \right)^{1/2} L \]

Numerical values of the integrals \(K_3 \) and \(K_4 \) used in reference 11 have been obtained and the results incorporated into the coefficients.

Evaluation of the curvature terms in equations (10) results in an expression of the form given by equations (19), where the coefficients are as follows:

\[A_{c_1} = C_{c_1} = F_{c_1} = 0 \]

\[B_{c_1} = - \frac{y_m^2 u_m}{2R (n+1)^2} \]

\[D_{c_1} = \frac{y_m^2 u_m^2}{2R (n+1)^2} \]
\[E_{c_1} = \frac{3y_m^2 u_m^2}{4R(n+1)^3} \]

\[A_{c_2} = A_{c_3} = -\frac{L^2}{R} \left[u_1 \left(\frac{1}{2} - K_5 \right) + \left(u_m - u_1 \right) \left(\frac{1}{4 \ln 2} - K_6 \right) \right] \]

\[B_{c_2} = B_{c_3} = -\frac{L}{R} \left[\frac{u_1 y_m}{n+1} + L u_1 K_5 + \frac{y_m (u_m - u_1) K_1}{n+1} + L K_6 (u_m - u_1) \right] \]

\[C_{c_2} = C_{c_3} = \frac{L}{R} \left[u_1 (u_m - u_1) \left(\frac{1}{4 \ln 2} - K_5 \right) + \left(u_m - u_1 \right)^2 \left(\frac{3}{16 \ln 2} - K_6 \right) \right] \]

\[D_{c_2} = D_{c_3} = \frac{L}{R} \left[\frac{n}{n+1} u_m \left[u_1 + (u_m - u_1) K_1 \right] - (u_m - u_1) \left[u_1 + (u_m - u_1) K_2 \right] \right] \]

\[E_{c_2} = E_{c_3} = \frac{L}{R} \frac{u_m y_m}{(n+1)^2} \left[u_1 + K_1 (u_m - u_1) \right] \]

\[F_{c_2} = F_{c_3} = 0 \]

\[A_{c_4} = C_{c_4} = F_{c_4} = 0 \]

\[B_{c_4} = -\frac{y_m^2 u_m}{R(n+1)^2} \left[1 - \left(\frac{1}{2} \right)^{2n+2} \right] \]

\[D_{c_4} = \frac{y_m u_m^2 n}{R(n+1)^2} \left[1 - \left(\frac{1}{2} \right)^{2n+2} \right] \]
\[
E_{c4} = \frac{y_m^2 u_m^2}{R (n+1)^2} \left[\frac{1 - \left(\frac{1}{2} \right)^{2n+2}}{2} \right] \left[\frac{3}{2n+1} - \frac{\left(\frac{1}{2} \right)^{2n+2}}{1 - \left(\frac{1}{2} \right)^{2n+2}} \right]
\]

where \(K_5 = \int_0^1 \int_0^\xi \exp \left(- \xi_1^2 \ln 2 \right) d \xi_1 \ d \xi = K_1 - \frac{1}{4 \ln 2} \)

and \(K_6 = \int_0^1 \exp \left(- \xi^2 \ln 2 \right) \int_0^\xi \exp \left(- \xi_1^2 \ln 2 \right) d \xi_1 \ d \xi = \frac{\pi}{8 \ln 2} \left[\text{erf} \sqrt{\ln 2} \right]^2 \)

The induced pressure gradient term in equation (10) may be expressed in the form of equations (27), where the coefficients are as follows:

\[
A_{p1} = - y_m \left(\frac{\Delta p_2}{\rho} \right) \left[\frac{0.12 u_1 + 0.26 u_m}{0.06 u_1^2 + 0.26 u_1 u_m + 0.68 u_m^2} \right]
\]

\[
B_{p1} = - y_m \left\{ \left(\frac{\Delta p_1}{\rho} \right) \left(\frac{\Delta p_2}{\rho} \right) \right\} \left[\frac{0.26 u_1 + 1.36 u_m}{0.06 u_1^2 + 0.26 u_1 u_m + 0.68 u_m^2} \right] + \frac{\Delta p_4}{\rho} \}
\]

\[
C_{p1} = - \frac{y_m}{L} \left(\frac{\Delta p_2}{\rho} \right)
\]

\[
D_{p1} = - \frac{1}{4} \left(\frac{\Delta p_1}{\rho} \right) - \frac{1}{2} \left(\frac{\Delta p_4}{\rho} \right)
\]

\[E_{p_1} = y_m \left\{ \frac{\Delta p_1}{\rho} \left(\ln 2 + \frac{1}{2n+1} \right) + \frac{\Delta p_2}{\rho} \left[\frac{1}{2n+1} - \left(\frac{2^{2n+1} + 1}{2^{2n+1} - 1} \right) \ln 2 \right] \right\} \]

\[F_{p_1} = 0 \]

\[A_{p_2} = A_{p_3} = -\frac{L}{2} \left(\frac{\Delta p_2}{\rho} \right) \left[\frac{0.12 u_1 + 0.26 u_m}{0.06 u_1 + 0.26 u_m + 0.68 u_m^2} \right] \]

\[B_{p_2} = B_{p_3} = -\frac{L}{2} \left(\frac{\Delta p_2}{\rho} \right) \left[\frac{0.26 u_1 + 1.36 u_m}{0.06 u_1 + 0.26 u_m + 0.68 u_m^2} \right] \]

\[C_{p_2} = C_{p_3} = -\frac{1}{2} \left(\frac{\Delta p_2}{\rho} \right) \]

\[D_{p_2} = D_{p_3} = E_{p_2} = E_{p_3} = F_{p_2} = F_{p_3} = 0 \]

\[A_{p_4} = -\frac{y_m}{2} \left(\frac{\Delta p_2}{\rho} \right) \left[\frac{0.12 u_1 + 0.26 u_m}{0.06 u_1 + 0.26 u_m + 0.68 u_m^2} \right] \]

\[B_{p_4} = -\frac{y_m}{2} \left\{ \left(\frac{\Delta p_2}{\rho} \right) \left[\frac{0.26 u_1 + 1.36 u_m}{0.06 u_1 + 0.26 u_m + 0.68 u_m^2} \right] + \frac{1}{u_m} \left(\frac{\Delta p_4}{\rho} \right) \right\} \]

\[C_{p_4} = -\frac{y_m}{2L} \left(\frac{\Delta p_2}{\rho} \right) \]

\[D_{p_4} = -\frac{1}{4} \left(\frac{\Delta p_4}{\rho} \right) \]

\[E_{p_4} = \frac{y_m}{2} \left(\frac{\Delta p_4}{\rho} \right) \left[\frac{1}{2n+1} - \frac{\ln 2}{2^{2n+1} - 1} \right] \]

\[F_{p_4} = 0 \]

40
APPENDIX D

COMPUTER PROGRAMS

Two computer programs entitled TURBUL and COANDA have been developed for calculating the boundary-layer and jet-layer characteristics, respectively. Each program utilizes format-free inlist features, so that initial data may be punched in a specified, but very flexible, manner.

Program TURBUL

Program TURBUL calculates the laminar and turbulent boundary layers on the lower and upper surfaces of the cylinder, and must be used first to supply starting data for Program COANDA. Major subroutines of Program TURBUL are: (i) LAMINAR, (ii) TURBLRU, (iii) TURBLRL, (iv) DY2DX02, and (v) RKLDEQ, and have been listed on pages 46 through 52. Subroutine LAMINAR calculates the laminar boundary-layer characteristics and transition points on both lower and upper surfaces. Subroutines TURBLRU and TURBLRL calculate the turbulent boundary-layer characteristics on the upper and lower surfaces, respectively, up to the separation points, and indicate conditions at the jet exit and the desired upper-surface separation point. Subroutine DY2DX02 solves the two simultaneous differential equations of the turbulent boundary-layer theory, equations (37) and (38), utilizing the Runge-Kutta-Gill method contained in subroutine RKLDEQ.

Recognized symbols and default values for the various input parameters are listed in Table I.

Program COANDA

Program COANDA calculates the jet layer development from the position of the jet exit to either the desired separation point or to the angular position at which \(n \geq 1/2 \). Major subroutines of Program COANDA are (i) DY4DX09, (ii) RKLDEQ, (iii) NWMATINV, (iv) XYPLOT, (v) RANGE, and (vi) AMPF, and have been listed on pages 53 through 68. Subroutine DY4DX09 solves the four simultaneous jet layer differential equations, equations (10), utilizing the Runge-Kutta-Gill method, subroutine RKLDEQ. Matrix inversion is accomplished by subroutine NWMATINV. The remaining three subroutines are used for plotting purposes.

Recognized symbols and default values for the various input parameters to Program COANDA are listed in Table II.
TABLE I

RECOGNIZED SYMBOLS, PROGRAM TURBUL

<table>
<thead>
<tr>
<th>Program Symbol</th>
<th>Normal Designation</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMA</td>
<td>$\hat{\Gamma}$</td>
<td>0</td>
<td>normalized circulation</td>
</tr>
<tr>
<td>RVINF</td>
<td>$R \frac{V_{\infty}}{\nu}$</td>
<td>0</td>
<td>free stream Reynolds number Re</td>
</tr>
<tr>
<td>RC</td>
<td>$</td>
<td>u_1</td>
<td>\frac{\theta_f}{\nu}$</td>
</tr>
<tr>
<td>RT2</td>
<td>$</td>
<td>u_1</td>
<td>\frac{\theta^*}{\nu_t}$</td>
</tr>
<tr>
<td>DALM</td>
<td>$\Delta \theta_f$</td>
<td>0</td>
<td>laminar step size (deg)</td>
</tr>
<tr>
<td>DATB</td>
<td>$\Delta \theta_t$</td>
<td>0</td>
<td>turbulent step size (deg)</td>
</tr>
</tbody>
</table>
TABLE II
RECOGNIZED SYMBOLS, PROGRAM COANDA

<table>
<thead>
<tr>
<th>Program Symbol</th>
<th>Normal Designation</th>
<th>Default Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCURV</td>
<td>-</td>
<td>3</td>
<td>a control integer which designates the following options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1, no curvature or induced pressure gradient effects included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 2, assume radius of curvature $R = R$ (constant)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 3, assume radius of curvature $R = R$ up to a distance $N(y_m + L)$ ahead of the separation point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 4, input error</td>
</tr>
<tr>
<td>WR</td>
<td>t/R</td>
<td>0</td>
<td>ratio of exit slot width to cylinder radius</td>
</tr>
<tr>
<td>RJ</td>
<td>Ru_j / ν</td>
<td>Re / V_∞</td>
<td>jet Reynolds number. Needs be given only if $V_\infty = 0$.</td>
</tr>
<tr>
<td>RVINF</td>
<td>RV_∞ / ν</td>
<td>0</td>
<td>free stream Reynolds number Re</td>
</tr>
<tr>
<td>GAMA</td>
<td>$\hat{\Gamma}$</td>
<td>0</td>
<td>normalized circulation</td>
</tr>
<tr>
<td>BLYM</td>
<td>$\delta (\theta_e)$</td>
<td>$\frac{\delta^}{\theta^} \left(\frac{\delta^}{\theta^} + 1 \right)$</td>
<td>turbulent boundary layer thickness at jet exit. [Either δ, or $\delta^$ and $\theta^$, must be given.]</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLN n(θₑ)</td>
<td>turbulent boundary layer exponent n at jet exit. [Either n, or δ* and θ*, must be given.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELTAS δ*</td>
<td>turbulent displacement thickness at jet exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETAST θ*</td>
<td>turbulent momentum thickness at jet exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMN n</td>
<td>starting value for n, Coanda jet layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIGN N</td>
<td>number of jet layer thickness ahead of separation point at which additional tangential pressure gradient is imposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YMDY1 yₘ/yₘ + L</td>
<td>ratio of initial jet layer thicknesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT1 [(uₘ - u₁) L/vₜ] yₘ + L</td>
<td>effective turbulent Reynolds number evaluated at y = yₘ + L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT2 [uₘ δ*/vₜ] yₘ / L</td>
<td>effective turbulent Reynolds number evaluated at y = yₘ / L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UJDVINF u₁/V∞</td>
<td>velocity ratio to be specified only if VINF is not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VINF V∞/u₁</td>
<td>1/UJDVINF to be specified only if UJDVINF is not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUM K</td>
<td>empirical constant used to calculate uₘ n(θₑ) from equation (34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETAO</td>
<td>θ_e jet exit location (deg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETASP</td>
<td>θ_{sep} desired separation point (must always be given)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISTEP</td>
<td>- number of step sizes used in the integration ($1 \leq ISTEP \leq 9$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANGLE(10)</td>
<td>$\Delta \theta$ integration step sizes (degs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETAE(10)</td>
<td>- angular positions for changing step sizes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM TURBUL
TYPE REAL N
DIMENSION Y(2)
COMMON /AAA/ GAMA,RVINF,RC,RT2
COMMON /INPUT/ GAMA,RVINF,DALM,DATA,R,GAMATP,RT2
RC=300.
CALL INLIST(INPUT)

DEGREE=180.0/3.1416

DALM=DALM/DEGREE $ DATB=DATB/DEGREE
CALL LAMINAR(STAGN2,-DALM,THETAT,Y)
CALL TURBLRL(THETAT,STAGN2,DATA,Y,UI)

X=UI/7.0-0.51
F(X)=2,3

1 ANGLEND=3.1416-ACOS(X)
GO TO 4

2 ANGLEND=1.5708
GO TO 4

3 ANGLEND=ACOS(X)

4 IF(ANGLEND.GT. STAGN2) ANGLEND=STAGN2
THETASP=ANGLFND*DEGREE
PRINT 70, THETASP, UI

70 FORMAT('///10X'THE EXPECTED WALL JET SEPERATION WILL BE AT THETA=',
*F12.3,' DEGREES','/20X WHERE U1=',F11.3,'/1H1)
IF(GAMA.GT.0.51) DALM=DALM*GAMA/0.5
CALL LAMINAR(STAGN2,DALM,THETAT,Y)
CALL TURBLRL(THETAT,THETASP,DATA,Y)
END

SUBROUTINE LAMINAR(STAGN2,DALM,THETAT,Y)
INPUT ANGLES ARE IN RADIAN

THF CIRCULATION GAMA=GAMA/((4*3.1416*R*V(INFINITY)))
THE FREE STREAM REYNOLDS NUMBER RV=R*V(INFINITY)/NU
THE BOUNDARY LAYER REYNOLDS NUMBER RC=U1*THETA*/NU
THE LENGTH SCALE=R IS THE RADIUS OF THE CYLINDER

THE VELOCITY SCALE V(INFINITY) IS THE FREE STREAM VELOCITY

COMMON /AAA/ GAMA,RVINF,RC,RT2
DIMENSION Y(2)

DEGREE=180.0/3.1416
DANGLE=DALM
STAGN2=3.1416-ACOS(GAMA) $ STAGN2=STAGN2*DEGREF
TRTGAMA=TRTGAMA**2
A1=GAMA/TRTGAMA $ A2=-1.6
RVGAMA=(RV*TRTGAMA)**(-0.5)
IF (DANGLE)=1,2,3
1 STAGN1=-STAGN2+6.2832
PRINT 71
71 FORMAT(///)
PRINT 3 $ GO TO 5
2 STAGN1=-STAGN2 $ PRINT 4
3 FORMAT(1OX,'THE LAMINAR BOUNDARY LAYER ON THE LOWER SURFACE',//)
4 FORMAT(1OX,'THE LAMINAR BOUNDARY LAYER ON THE UPPER SURFACE',//)
5 STAGN1=STAGN1*DEGREF
PRINT 6 RV,RC,GAMA,A1,A2,STAGN1A,STAGN2A
6 FORMAT(10X,'THE FREE STREAM REYNOLDS NUMBER RV=',E11.4,10X,'THE TR
*SITION REYNOLDS NUMBER RC=',E11.4,10X,'THE CIRCULATION GAMA=',
*7415X,'THE CONSTANTS A1=',F11.4,7X,'A2=',F11.4,10X,'THE UPSTREF
*AM STAGNATION POINT THETA(STAG1)=',F10.2,' DEGREES',10X,'THE DOWN
*FREE STREAM STAGNATION POINT THETA(STAG2)=',F10.2,' DEGREES',//)
PRINT 8
8 FORMAT(5X,'THETA(DEGREF)',11X,'THETA(RADIAN)',11X,'U1/V1',7X,'DTHETA*/
R',7X,'THETA/R',7X,'U1*(THETA*)/NU1*/)
DT=0 $ C1=0.3813*A1 $ C2=0.3938*A1
C3=-0.713*A1**2-0.6443 $ C4=A1**2+7.*A1**2
TA1=2.6*A1 $ NDT=0 9
DT2=DT*DT $ UDT=1+A1*DT+A2*DT2
DTHETA=RVGAMA*(0.6479+C1*DT+0.01897*DT2)/UDT
THETA=RVGAMA*(0.2025+C2*DT+C3*DT2)/(1+TA1*DT+C4*DT2)
U1=TRTGAMA*DT*UDT
R=U1*THETA*RV
IF(R .LT. 0.) R=-R
ANGLE=STAGN1+DT $ ANGLEC=ANGLE*DFGREF
PRINT 10, ANGLE, DT, U1, DELTA, THETA, R

10 FORMAT(F15.2,3X,5E15.4)
 IF(NDT .EQ. 1) GO TO 23
 IF(R .GE. RC) GO TO 20
 IF((ANGLE-STAGN2)*GAIN .GE. 0.) GO TO 21
 PI=R $ DT=DT+DANGLE $ GO TO 9
20 DT=DT-DANGLE*(R-RC)/(R PI) $ GO TO 9
 NDT=1 $ GO TO 9
21 PRINT 22
22 FORMAT(10X,'THE BOUNDARY LAYER REYNOLDS NUMBER DOES NOT REACH THE
 * TRANSITION REYNOLDS NUMBER BEFORE THE ANGLE THETA IS GREATER TH
 * AN THE DOWNSTREAM STAGNATION POINT')
23 THETA=ANGLE
 PRINT 24
24 FORMAT(10X,'THE DATA AT THE TRANSITION POINT FROM LAMINAR TO TUR
 *BULENT BOUNDARY LAYER')
 PRINT 8
 PRINT 10, ANGLE, DT, U1, DELTA, THETA, R
 Y(2)=0.5*(DELTA/THETA-1.)
 Y(1)=DELTA*(Y(2)+1.)/Y(2)
 PRINT...70, U1, Y
70 FORMAT(10X,'THE STARTING VALUES FOR THIS TURBULENT BOUNDARY LAYE
 *R ARE'/15X,'U1=',F11.4,5X,'Y1=1.,F11.4,5X,'N=1.,F11.4,10X,'/
 *10(*****,3X)'/')
 RETURN
END

SUBROUTINE TURBLPU(UPHI0,UPHIEND,DPHI,Y)
C INPUT ANGLES ARE IN RADIAN
DIMENSION Y(2),DY(2)
COMMON /AAA/GAMA, PVINF, RC, RT2
DFGREF=180/3.1416
PRINT 1
1 FORMAT(10X,'THE TURBULENCE BOUNDARY LAYER ON THE UPPER SURFACE')
 /*10X,'RV=',E11.3,'GAMA=',F7.4,10X,'PHI=',D11.4,10X,'U1=',F11.4,10X,'UPHI=',UPHI0+PHI
 PHI=0.0 $ NT=0 $ UPHI=UPHI0+PHI
 U1=2.*(COSF(UPHI)+GAMA)
```

DU1=-2.*SINF(UPHI)
DDPHI=DPHI/8.
PHIFND=UPHI0+2.*DPHI-0.0001
ND=1
PRINT 4
GO TO 11
10 CALL DY2DX02( Y(1),Y(2),U1,DU1,DY)
100 S=RKLDEQ(2,Y,DY,PHI,DDPHI,NT)
IF(S-1.0) 999,8,11
8 GO TO (9,10,9)NT
9 UPHI=UPHI+PHI
U1=2.*(COSF(UPHI)+GAMA)
DUI=-2.*SINF(UPHI)
GO TO 10
11 CALL DY2DX02( Y(1),Y(2),U1,DU1,DY)
UPHI1=UPHI*DEGREE
$ PHI1=PHI*DEGREE

PRINT 17, UPHI1,PH1,Y,U1,DY,DUI
12 FORMAT(8F14.3)
4 FORMAT(/3X*PHI(DEGREE),6X,PHI-PHI0,12X,YM,13X,IN,12X,U1,
* 11X*DYM,12X,DN,11X,DUI/) 
IF(MD .EQ. 1 OR DU1 .GE. 0.0) GO TO 7
IF(U1 .LT. 0.0 OR Y(2) .GT. 0.5) GO TO 999
7 IF(UPHI .LT. PHIEND) GO TO 100
IF(MD .EQ. 2) GO TO 999
ND=2 $ DDPHI=DPHI
PHIEND=UPHIEND
PRINT 70 $ GO TO 100
70 FOR IAT(/15X,8(*X*X,3X)/)
999 RETURN
END
```
SUBROUTINE TURBFLI (LPHI0, LPHIEND, DPHI, Y, U1)
C
INPUT ANGLES ARE IN RADIANS
TYPE REAL LPHIEND, LPHI, LPHI0, LPHI1, N1, N2
DIMENSION Y(2), DY(2)
COMMON /AAA/ GAMA9RVINF, RC, RT2
DEGREE=180./3.1416
PRINT 1
1 FORMAT(10X, 'THE TURBULENCE BOUNDARY LAYER ON THE LOWER SURFACE' //)
 PHII=0.0 $ NT=0 $ LPHI=LPHI0-PHI
 U1=-2.* (COSF(LPHI)+GAMA)
 DU1=-2.*SINF(LPHI)
 PRINT 4
4 FORMAT(/3X,PHI,DEGREE,6X,PHI-PHI1,,12X,YM,,13X,N,,11X,-U1,/)
 DDPHI=DPHI/8.*
 PHIEND=LPHI0-2.*DPHI+0.00001
 ND=1
 GO TO 10
10 CALL N2D2X02(Y(1), Y(2), U1, DU1, DY)
100 SERKLDF0(Y, DY, PHI, DPHI, NT)
 IF(S-1.0) 999, 8, 11
8 GO TO (9, 10, 9)NT
9 LPHI=LPHI0-PHI
 U1=-2.* (COSF(LPHI)+GAMA)
 DU1=-2.*SINF(LPHI)
 GO TO 10
11 CALL N2D2X02(Y(1), Y(2), U1, DU1, DY)
 LPHI1=LPHI*DEGREE $ PHI1=PHI*DEGREE
 PRINT 12, LPHI1, PHI1, Y, U1, DY, DU1
17 FOR IAT(8E14+3)
 IF(I1D .LE. 1) .OR. DU1 .GE. 0.0) GO TO 2
 IF(Y(2)-0.5) 3, 20, 5
3 U11=U1 $ N1=Y(2)
 IF(LPHI .GT. PHIEND) GO TO 100
 IF(I1D .LE. 2) GO TO 20
 ND=2 $ DDPHI=DPHI
 PHIEND=LPHIEND
 PRINT 70 $ GO TO 100
70 FORMAT(/15X,8('****',3X)/)
5 U12=U1 & N2=Y(2)
 R=(N2-C*5)/(N2-N1)
 U1=U12-B*(U12-U11)
 PHI1=PHI1-DPHI*DEGREF*B
 LPHI1=LPHIO*DEGREF-PHI1
20 PRINT 71, LPHI1, PHI1, U1
 .71 FORMAT(/1:,X9,'THE LOWFR TURRULFNT FLOW SEPERA.TFS AT',/lnX,
 ++'PHI=',FQ.?, 1 DEGREFS'rhX,'PHln-P~~=l,~~.~,l DEGRFFSt,6X,t'!.dHFRE -0
 *l=',Fll.?,)
 CJRRr)UT T'
 THE DIMENSIONLESS VELOCITY AND LENGTri ARE PROPERLY NORMALIZED BY THE
 CHARACTERRISTIC VELOCITY AND LENGTHE SCALES. E.G. V(INFINITY)* RADIUS OF
 CYLINDER(R).
 COMMON /AAA/ GAMA,RV ,RC,RT2
 TYPE REAL N,NP1, K ,N2
 DIMENSION DY(12)
 DATA K,RT2/0.5931,50. /
 NPI1=1.1/(N+1.) & _ TNP1=1.1/(2.*N+1.)
 SNP1=NP1**2 & STNP1=TNP1**2
 TN2=NP1*TNP1 & U12=U1**2
 N2=2*1. & U12N=U12*N & U12YM=U12*YM & U12YMA=U12*YM
 U1Y U1U1=U1YM*DU1
 TN=1.01285*U12*(PV*U1YM)*(((-0.166666671*(N*TN2)**((11.*N-1.)*
 *0.16666667))
 T2=U12*N2*NP1/(2.*(N-1.)*RT2)
 W=1.1-0.5*(1./TNP1)**TN2
 D1=U12N*TN2 & E1=U12YM*(SNP1-2.*STNP1)
 D4=U12N*W & F4=U12YM*(W*(2.*N2-1.)*TN2+K*(TN2-W1))
 G1=-T0+U1YM*DU1*(1.-TN2)
 G4=T2+U1YM*DU1*(0.5-W)
 DETER=D1*E4-D4*E1
 DY(1)=(G1*E4-G4*E1)/DETER
 DY(2)=(D1*G4-D4*G1)/DETER
 RETURN
 END
FUNCTION RKLDEQ(N,Y,F,X,H,NT)
C D2 USCD RKLDEQ F 63
DIMENSION Y(10),F(10),Q(10)
NT=NT+1
GO TO (1,2,3,4),NT
1 DO 11 J=1,N
11 Q(J)=0.
A=0.5
X=X+0.5*H
GO TO 5
2 A=EXP(-2.29280321881)
GO TO 5
3 A=1.7071067812
X=X+0.5*H
GO TO 6
4 DO 41 I=1,N
41 Y(I)=Y(I)+H*F(I)/6.-(Q(I)/3.
NT=NT
RKLDEQ=2.
GO TO 6
5 DO 51 L=1,N
Y(L)=Y(L)+A*(H*F(L)-Q(L))
51 Q(L)=2.*A*H*F(L)+(1.-3.*A)*Q(L)
RKLDEQ=1.
6 CONTINUE
RETURN
END

*EXECUTE,A=UTILITY

GAMA=0.25, RVINF=5.0E5, DALM=5.0, DATR=4.0 END
PROGRAM COANDA
COM'ION /1/ PRES1(6),PRES2(6),PRES4(6),CURVA1(5),CURVA2(5),
COM'ION / CONST / KCURV, RJ, RT1, RT2
COM'ION / DPRESS / PM2M, PM3M
COM'ION / YDY / Y(5), DY(5)

TYPE REAL LO,N
DIMENSION X(500),UM(500),YM(500),L(500),N(500),Y(500),U(500),W(500)
*DANGLE(10), THETA(10)
NAMELIST / DATA1/ KCURV, WR, RJ, RVINF, GAMA, BLYM, BLN, DELTAS,
*THETAASP, SMN, BIGN, YM DY1, RT1, RT2, UJDVINF, VINF, CUM
NAMELIST / DATA2/ THETA10, THETASP, ISTEP, DANGLE, THETA
VINF=-100.
RT1=RT2=50.
KCURV=1.
RIGN=5.
YM DY1=0.14
SMN=0.185
CUM=1.
CALL INLIST (DATA1)
CALL INLIST (DATA2)
PRINT 71

71 FORMAT(///)
WP0=WR
IF(A B SF(VINF) .LE. 1.E-5) 1,3
1 U1(1)=Y(5)=DY(5)=0.0
MVINF=1 $ PRINT 72
72 FORMAT(15X**** FOR THE STATIC CASEF, *****)
GO TO 38
3 IF(UJDVINF .LE. 0.) 36,37
36 UJDVINF=1./VINF
GO TO 4
37 IF(VINF .LE. -10.) VINF=1./UJDVINF
4 V=VINF
MVINF=2
38 GO TO (49,50,51,998) KCURV
998 PRINT 80 $ GO TO 999
80 FORMAT(///10X,**** THE ERROR INPUT IN THE CONSTANT KCURV ****/)
49 PRINT 52 $ GO TO 56
52 FORMAT(10X,KCURV=1, THIS IS FOR A CYLINDER WITHOUT CONSIDER THE
 CURVATURE EFFECTS) //
50 PRINT 53 $ GO TO 56
53 FORMAT(10X,KCURV=2, THIS IS FOR A CYLINDER WITH CONSTANT CURVATUR
 //)
51 PRINT 54
54 FORMAT(10X,KCURV=3, THIS IS FOR A CYLINDER WITH CURVATURES) //
56 TWR0=2./WR0
IF (RVINF .GT. 10.) RJ=RVINF/V
DEGRFF=180. * 3.1416
THETA01=THETAO
THETAS1=THETASP
N(1)=SMN
THETAO=THETA01/DEGREE
THETAS=THETAS1/DEGREE
ISTEP=ISTEP+1
DO 63 IS=2,ISTEP
DANGLE(IS+1)=DANGLE(IS+1)/DEGRFF
63 THETA(IS+1)=THETA(IS)+DANGLE(IS+1)/DEGRFF
DANGLE(1)=0.2*DANGLE(2)
THETA=THETA0
GO TO (32,33) MVINF
33 TV=2.*V
Y(5)=TV*(COSF(THETA)+GAMA)
DY(5)=-TV*SINF(THETA)
CMU=WR/R*SORT(1-((U(1)/V)**2+(1-2.*WR0)/(V*V))
PRINT 73, RVINF, GAMA, V, UJ*VINF,CMU
73 FORMAT(10X,'THE FREE STREAM REYNOLDS NUMBER RVINF=VINE*RO/NU=',
 *E11.4/10X,'THE CIRCULATION GAMA=',F11.4,15X,'THE FREE STREAM VEL
 *OCITY VINF/UJ=',F11.4,15X,'UJ/VINF=',F11.4/10X,' THE JET MOMENTUM
 * CMU=',F11.4//)
37 PRINT 70, RJ, WR0, THETAO1, DIGN
70 FORMAT(10X,' THE WALL JET REYNOLDS NUMBE RJ=UJ*RO/NU=',F11.4,//
 *10X,' RATIO OF SLOT WIDTH TO RADIUS OF CYLINDER w/R=',F11.4//
 *,' JET STARTS AT THETA=',F7.2,' DEGREES',
 *' ')
IENT EFFECTS START AT YM+L0 .GE. (THETAS(SEP)-THETA)/BIGN/

* !5X* WHERE BIGN=10,FF11,4,///)

IF(BLYM*BLN *LT. 1.E-20) 47,48

48 DELTAS=BLYM*BLN/(BLN+1.1)

THETAST=DELTAS/(2.*B1N+1.)

GO TO 44

47 BLN=0.5*(DELTAS/THFTAST-1.)

BLYM=DELTAS*(BLN+1.1)/B1N

44 PRINT 77, BLYM, BLN

PRINT 78, UI(1), DELTAS, THETAST

77 FORMAT(10X,'THF BOUNDARY LAYFR PARAMETFRS*1/15X,'YM=1,E11,4,10X

*1,111.'N=1,E11,4,///)

78 FORMAT(10X,'UI=' ,F11.4,' ,DFTAS(TAR)=1,E11,4,10X,'THFTA(STAR)=1

*1'E11.4,///)

UM(1)=SQRTF(WRO/BLYM)*CUM

IF(UM(1) .GT. 1.) UM(1)=1.

CO=YMDY1/(1.-YMDY1)

C1=SQRTF(3.1416/4./ALOG(2.*))

C3=(1.-U1(1))**2*WRO-THETAST*U1(1)**2

C6=CO/(2.*N(1)+1.1)+C1/SQRTF(2.1)

C6=C6*UM(1)**2

C7=(-C0/(N(1)+1.1)+C1*(1.-SQRTF(2.1)))*U1(1)

C7=C7*UM(1)

C8=-C1*U1(1)**2*(1.-1./SQRTF(2.1))

L0(1)=C3/(C6+C7+C8)

YM(1)=CO*U1(1)

PHIS1=THETAS1-THETA01

PRINT 75, THETAS1, PHIS1

75 FORMAT(/10X,'THE EXPECTFD SEPFRAITION AT THETA=' ,F8.3,' DEGREES',

*10X,'PHI=' ,F8.3,' DEGREES',///)

NSTEP=0

Y1(1)=L0(1)+YM(1)

I=1 $ NT=0 $ NN=1

Y(1)=UM(1) $ Y(2)=L0(1) $ Y(3)=YM(1) $ Y(4)=N(1)

31 NSTEP=NSTEP+1

DA=DANGLF(NSTEP)

THET=THETAE(NSTEP)

IF (THET .GT. THETAS) THET =THETAS
GO TO 5
40 IF(KCURV .EQ. 4) 60,61
60 PRES1(6)=DPDX1*Y(3)
PRES2(6)=DPDX2*Y(2)
PRES4(6)=DPDX4*Y(3)
61 CALL DY4DX09
100 S=RKLDFO(4 ,Y,DY,THETA,DA ,NT)
 IF(Y(1) .LE. 0. .OR. Y(2) .LE. 0. .OR. Y(3) .LE. 0. .OR. Y(4) .LE. 0.) GO TO 26
 IF(S-1.01.P.99.~. 8.dJ.a _ - - _
26 PRINT 27 , Y $ GO TO 20
27 FORMAT(10X,*TERMINATED THIS LOOP BECAUSE NEGATIVE VALUE OF UM, YM
* , N OR L0*/ 10X,*UM='F11.4, 5X,*L0='F11.4,5X,*YM='F11.4, 5X,
* N='F11.4, 5X,*U1='F11.4)
8 GO TO (40,35) MVINF
35 GO TO (9,40,9) NT
9 Y(5)=TV*(COSF(THETA)+GAMA)
 DY(5)=-TV*SINF(THETA)
GO TO 40
11 I=I+1
 UM(I)=Y(1) $ L0(I)=Y(2) $ YM(I)=Y(3) $ N(I)=Y(4)
 U1(I)=Y(5) $ Y1(I)=Y(2)+Y(3)
 5 X(I)=THETA
IF (KCURV .EQ. 4) 62,64
62 PRES1(6)=DPDX1*Y(3)
PRES2(6)=DPDX2*Y(2)
PRES4(6)=DPDX4*Y(3)
64 CALL DY4DX09
 THFTAl=THETA*DEGREF
 PHI1=THETA1-THFTA01
 PRINT 12, I ,PHI1,THFTAl
12 FORMAT(/2X*INTEGRATING POSITION I='1,14,
*FR.3' DEGREES'/10X,*THETA='FR.3' DEGREFS'/)
 GO TO (6,45,45,46) KCURV
46 PRINT 74, PRES1(6),PRES2(6),PRES4(6)
74 FORMAT(9X,*THE IMPOSED INDUCED PRESSURE GRADIENT EFFECTS ARE'/
*10X,*FP1='F11.4,12X,*FP2=FP3='F11.4, 8X,*FP4='F11.4/)
45 $\text{P}_1=\text{P}_2=\text{P}_4=0$

\[\text{C}_1=\text{C}_2=\text{C}_4=0 \]

\[
\text{DO 30 } K=1,5 \]
\[
\text{P}_1=\text{P}_1+\text{PRES}_1(K) \cdot \text{DY}(K) \]
\[
\text{P}_2=\text{P}_2+\text{PRES}_2(K) \cdot \text{DY}(K) \]
\[
\text{P}_4=\text{P}_4+\text{PRES}_4(K) \cdot \text{DY}(K) \]

\[\text{C}_1=\text{C}_1+\text{CURVA}_1(K) \cdot \text{DY}(K) \]
\[\text{C}_2=\text{C}_2+\text{CURVA}_2(K) \cdot \text{DY}(K) \]

\[
\text{DO 30 } K=1,5 \]
\[
\text{C}_4=\text{C}_4+\text{CURVA}_4(K) \cdot \text{DY}(K) \]

PRINI 23, P1, P2, P4

\[
23 \text{ FORMAT (} 9X, 'THE PRESSURE GRADIENT EFFECTS', /10X, 'P1=', F11, 4, 13X, \]
\[* 'P2=', \text{F11, 4, 13X,} 'P4=', \text{F11, 4, /) \]

PRINT 24, C1, C2, C4

\[
24 \text{ FORMAT (} 9X, 'THE CURVATURE EFFECTS', /10X, 'C1=', \text{F11, 4, 13X,} 'C2=C3=', \text{F11, 4, /) \]

\[
\text{DPM}=\text{PML0} \cdot \text{TWR} \]
\[
\text{DPM}_2=\text{DPV}+\text{PM}_2 \cdot \text{TWR} \]
\[
\text{DP}_0=\text{DPM}+\text{PM}_2 \cdot \text{TWR} \]

PRINT 21, DPM, DPM2, DP0

\[
21 \text{ FORMAT (} 9X, 'THE PRESSURE DIFFERENCES ARE', '/ \]
\[* ', 10X, 'DPM=', \text{F11, 4, 12X,} 'DPM_2=', \text{F11, 4, 11X,} 'DPM_0=', \text{F11, 4, /) \]

\[
25 \text{ B1DUM}=\text{B1} \cdot \text{DY}(1) \]
\[
\text{B2DUM}=\text{B2} \cdot \text{DY}(1) \]
\[
\text{B3DUM}=\text{B3} \cdot \text{DY}(1) \]
\[
\text{B4DUM}=\text{B4} \cdot \text{DY}(1) \]

PRINT 22, B1DUM, B2DUM, B3DUM, B4DUM

\[
22 \text{ FORMAT (} 9X, 'THE MAIN BDUX TRANS', /10X, 'B1DUM=', \text{F11, 4, 10X,} 'B2DUM=', \]
\[* 'B3DUM=', \text{F11, 4, 10X,} 'B4DUM=', \text{F11, 4, /) \]

PRINT 76, A1D1, A2D1, A3D1, A4D1

\[
76 \text{ FORMAT (} 10X, 'A1D1=', \text{F11, 4, 10X,} 'A2D1=', \text{F11, 4, 10X,} 'A3D1=', \text{F11, 4, /) \]

\[
6 \text{ PRINT 24, } Y \]

\[
34 \text{ FORMAT (} 9X, 'DY=', \text{F11, 4, 2X,} 'DY=', \text{F11, 4, 2X,} \]
\[* 'DY=', \text{F11, 4, 2X,} 'DY=', \text{F11, 4, /) \]

PRINT 7, Y, Y1(1)

\[
7 \text{ FORMAT (} 9X, 'YM=', \text{F11, 4, 3X,} 'YM=', \text{F11, 4, 3X,} 'YM=', \text{F11, 4, /) \]
\[* 'YM=', \text{F11, 4, 3X,} 'YM=', \text{F11, 4, /) \]

TF(KCURV *NF, 3) GO TO 65
IF(Y(I)*BIGN .LT. THFTAS-THETA) GO TO 65

K(I) = (THFTAS-THETA)

DX = 1./(THFTAS-THETA)

DPDX1 = (PMLO+0.75*PM2+0.25*PM2)*DX

DPDX2 = 0.5*PMLO*DX

DPDX3 = (PMLO+0.5*PM2)*DX

PRINT 70, DPDX1, DPDX2, DPDX4

70 FORMAT (/9X,11('****',3X),/)

* BEYOND THIS POINT THE CONSTANT IMPOSED PRESSURE GRADIENT
* EFFECTS ARE.*10X.*DPDX1= 1.E11.4,10X.*DPDX2=DPDX3= 1.E11.4.

* 10X.*DPDX4='1.E11.4/9X,11('****'.3X),//

65 GO TO (200,201,NN)

200 IF(N(I) .GT. 0.3) 202, 203

201 IF(N(I) .GT. 0.5) GO TO 20

202 NN = 2

DA = 0.5*DA

203 IF (THETA-THETA 1100.13,13)

10 IF(NSTFP .LT. ISTFP) 71, ZR

71 NO 19 Y=1,1

19 X(K) = X(K)*DEGRFE

CALL XYPLT(X*UM,1,1,50,X(I),X(1),0,0,0,0)

PRINT 14

CALL XYPLT(X*L0,1,1,50,X(I),X(1),0,0,0,0)

PRINT 15

CALL XYPLT(X*YM,1,1,50,X(I),X(1),0,0,0,0)

PRINT 16

CALL XYPLT(X*N,1,1,50,X(I),X(1),0,0,0,0)

PRINT 17

IF(V .LE. 0.00001) GO TO 999

CALL XYPLT(X*V1,1,1,50,X(I),X(1),0,0,0,0)

PRINT 18

14 FORMAT (10X,1UM .VS. THETA (DFGRFFS))

15 FORMAT (10X,1UM .VS. THETA (DEGREES))

16 FORMAT (10X,1YM .VS. THETA (DFGRFFS))

17 FORMAT (10X,1N .VS. THETA (DFGRFFS))

18 FORMAT (10X,1U1 .VS. THETA (DFGRFFS))

999 END
SUBROUTINE NHMATINV(A,B,INDEX,NMAX,N,M,DETERM)

DIMENSION A(NMAX,1),B(NMAX,1),INDEX(1)

EQUIVALENCE(IROW,JROW,IR),(ICOLUMN,JCOLUMN,IC)
EQUIVALENCE(AMAX,T,SWAP,IAMAX),(PIVOT,TEMP,ITEM)
DATA(MINUS=600000000000000000)

C** INITIALIZATION,
DETERM=1.0
DO 20 J=1,N
INDEX(J)=MINUS
DO 550 I=1,N

C** SEARCH FOR ELEMENT OF LARGEST MAGNITUDE.
AMAX=0.0
DO 105 J1=1,N
IF(*INDEX(J1)) 105,105,60
DO 100 K1=1,N
IF(*INDEX(K1)) 100,100,60

105 CONTINUE
100 CONTINUE

IF(AMAX)120,115

115 DETERM=0
RETURN

120 IROW=IR
ICOLUMN=IC
INDEX(ICOLUMN)=INDEX(ICOLUMN) .AND. NOT.MINUS
IF(*NOT.(IROW.ICOLUMN))260,140

140 DETERM=DETERM

C** EXCHANGE ROWS,
DO 200 L=1,N
SWAP=A(IROW,L)
A(IROW,L)=A(ICOLUMN,L)
200 A(ICOLUMN,L)=SWAP
IF(*NOT.M)260,210
210 DO 250 L=1, M
SWAP=B(IROW,L)
B(IROW,L)=B(ICOLUM,L)
250 B(ICOLUM,L)=SWAP
C** SAVE PIVOT INFORMATION, DB DETERMINANT.
260 INDEX(I)=IROW*100000000B*ICOLUM*INDEX(I)
PIVOT =A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT
C** REDUCE LEADING COEF TO 1.
300 A(ICOLUM,ICOLUM)=1.0
DO 350 L=1,N
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT
IF(.NOT.,M)380,360
360 DO 370 L=1,M
370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT
C** SUBSTITUTE FOR NTH VARIABLE.
380 DO 550 L1=1,N
IF(.NOT.,(L1=ICOLUM)) 550, 400
400 T=A(L1,ICOLUM)
A(L1,ICOLUM)=0.0
DO 450 L=1,N
450 A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
IF(.NOT.,M)550, 460
460 DO 500 L=1,M
500 B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
550 CONTINUE
C** UNDO ROW EXCHANGES.
LEN=1
DO 710 L2=1,N
JROW=INDEX(L)/100000000B
JROW=JROW.AND.,777777B
JCOLUMN=INDEX(L),AND.,777777B
IF(.NOT.,(JROW=JCOLUMN))710,630
630 DO 705 K=1,N
SWAP=A(K,JROW)
A(K,JROW)=A(K,JCOLUMN)
705 A(K,JCOLUMN)=SWAP
710 L=1
740 RETURN
END
SUBROUTINE DY4DX09

COMMON / CONST / KCURV, RJ, RT1, RT2
COMMON / YDY / U0, YM, N, U1, DY(5)
COMMON / PPRESS / P0M2, P0M4, PML0
COMMON / RP1, CP1, DP1, EP1, AP1, BP1, CP2, DP2, EP2, AP2, BP2

*BP4, CP4, DP4, EP4, AP4, BP4, BC1, CC1, DC1, EC1, AC1, RC2, CC2, DC2, EC2, AC2

*, BC4, CC4, DC4, EC4, AC4, RL, RH2, RH3, RH4

*, A1DU1, A2DU1, A3DU1, A4DU1

DIMENSION A(5,5), B(5,5), INDEX(5)

TYPE REAL, L0, N, K, K1, K2, K3, K4, NPl, N2, K5, K6

DATA K, K1, K2, K3, K4, U0, 0.5931, 0.6065, 0.6256, 0.6495, 0.7526, 0.8052, 0.8559, 0.9010, 0.9245, 0.9565, 0.9823, 1.0052, 1.0276, 1.0486, 1.0685, 1.0864, 1.0951, 1.1021, 1.0870, 0.9554

NP1 = 1/(N+1.) $ TNPl = 1./(2.*N+1.)
SNP1 = NP1**2 $ STNP1 = TNP1**2
TN2 = NP1*TNP1 $ UM2 = UM**2

UO = U0 - U1 $ UO2 = U0**2

N2 = N**2 $ UM2N = UM2**N $ UYM = U0*YM $ UM2YM = UM2*YM

U1L0 = U1*10 $ U1L0 = U10*10 $ UYMNPl = U0*YM*NP1 $ U11L0 = U11*10

U1UM = U1*U0 $ U12 = U12**2 $ YM11 = YM*U1

CN1 = 0.5**(1./TNP1)

TN = 0.1285*UM2*(RJ*U0M2)**(-0.16666667)*((N*TN2)**(N*1.)*N-1.)

TN = 0.16666667

T1 = -K*U02/RT:

TM = T1*(0.15+0.30*(YM/L0)**(2))

T2 = UM2**N2 $ NPl/(2.**(N-1.)*RT2)

W = (1. - CN1)*TN2

A1DU1 = UYM*U1*DY(5)

A2DU1 = (U0L0*CK4-U1L0*K1)*DY(5)

A3DU1 = (U1L0*CK5-U1L0*K3)*DY(5)

A4DU1 = 0.5*A1DU1

B1 = UYM*TN2

B2 = K1*U1L0+CK1*U0L0+0.5*U0YMNP1

B3 = K9*U1L0+TK4*U0L0+U0YMNP1

B4 = IY*M*W

A(1,1) = B1 $ A(1,2) = 0.0
\[
\begin{align*}
AP4 &= 0.5 \times AP1 \\
BP4 &= -0.5 \times (YC1 + YMPM2M/UM) \\
CP4 &= 0.5 \times CP1 \\
DP4 &= 0.25 \times PM2M \\
EP4 &= 0.5 \times YCNTN \\
CP2 &= -0.5 \times PML0L0 \\
PML0L0 &= CP2 \times L0 \\
AP2 &= PML0L0 \times CU1/CU2 \\
BP2 &= PML0L0 \times CU3/CU2 \\
A(1,1) &= A(1,1) + BP1 \\
A(1,2) &= A(1,2) + CP1 \\
A(1,3) &= A(1,3) + DP1 \\
A(1,4) &= A(1,4) + EP1 \\
A(4,1) &= A(4,1) + BP4 \\
A(4,2) &= A(4,2) + CP4 \\
A(4,3) &= A(4,3) + DP4 \\
A(4,4) &= A(4,4) + EP4 \\
A(3,1) &= A(3,1) + BP2 \\
A(3,2) &= A(3,2) + CP2 \\
A(2,1) &= A(2,1) + BP2 \\
A(2,2) &= A(2,2) + CP2 \\
B(1,1) &= B(1,1) - AP1 \times DY(5) \\
FPDU12 &= -AP2 \times DY(5) \\
R(2,1) &= B(2,1) + FPDU12 \\
R(3,1) &= R(3,1) + FPDU12 \\
R(4,1) &= B(4,1) - AP4 \times DY(5) \\
3 \ CUX &= UMP2YM*SNP1 \\
CU5 &= CUX*YM \times (0.5 - 0.25*CN1) \\
CU4 &= CUX*YM \times 0.25*CN1 \\
RC4 &= -CU5/UM \\
DC4 &= CU5*N/YM \\
EC4 &= CU5*(1.5*NP1-K/(2.0/CP1-1.0)) \\
RC1 &= -CU4/UM + RC4 \\
DC1 &= CU4*N/YM + DC4 \\
EC1 &= CU4*(1.5*NP1+K) + EC4 \\
AC2 &= -L0 \times (CK6*U1L0+CK7*U0L0) \\
RC2 &= -L0 \times (YM*NP1*(U1+U0*K1)+K5*U1L0+K6*U0L0) \\
CC2 &= -L0 \times (CK9*U1U0+CK10*U02)
\end{align*}
\]
\[
\begin{align*}
A(1,3) &= -UM2N*TN2 \\
A(1,4) &= UM2YM *(SNP1-2*N2)*STNP1 \\
A(4,1) &= B4 \quad \text{\&} \quad A(4,2) = 0.0 \\
A(4,3) &= -UM2N*W \\
A(4,4) &= UM2YM*W*(2*N2-1)*TN2+K*(TN2-W) \\
A(3,1) &= B3 \\
A(3,2) &= K*U1U0+K*UJ0 \\
A(3,3) &= UM*UM*NP1 \\
A(3,4) &= A(3,3)*YM*NP1 \\
A(2,1) &= B2 \\
A(2,2) &= CK2*U1U0+CK3*UJ0 \\
A(2,3) &= 0.5*A(3,3) \\
A(2,4) &= 0.5*A(3,4) \\
B(1,1) &= TM-T0-A1DU1 \\
B(2,1) &= T1-TM-A2DU1 \\
B(3,1) &= -TM-A3DU1 \\
B(4,1) &= TM-T2-A4DU1 \\
\text{GO TO (10,2,2,4) KCURV} \\
B(1,1) &= B(1,1) - FP1 \\
B(2,1) &= B(2,1) - FP2 \\
B(3,1) &= B(3,1) - FP2 \\
B(4,1) &= B(4,1) - FP4 \\
\text{GO TO 3} \\
10 & \text{IF(KCURV) EQ. 1) 1,9} \\
\text{IF(KCURV) EQ. 1) 1,9} \\
C1 &= 0.12*U1 + 0.36*UM \\
C2 &= 0.06*U12 + 0.26*U1UM + 2*UM2 \\
C3 &= 0.26*U1 + 1.36*UM \\
PML0 &= L0 \quad \text{\&} \quad CU2 \\
PM2M &= UM2YM \quad *(1.1-CN1)*TNP1 \\
P0M2 &= UM2YM \quad *(CN1*TNP1 \\
YMPML0 &= YM*PML0 \quad \& \quad YMPM2M = YM*PM2M \quad \& \quad YMP0M2 = YM*P0M2 \\
YC132 &= YMPML0*CU2/CU2 \\
AP1 &= -YMPML0*CU1/CU2 \\
BP1 &= -YC132 - (1.5*YMPM2M + 0.5*YMP0M2)/UM \\
CP1 &= -YMPML0*L0 \\
DP1 &= 0.75*PHM2M - 0.25*P0M2 \\
YCN = YMPM2M*(TNP1-K/(1.1-CN1-K)) \\
EP1 &= 1.5*YCN + 0.5*(K+TNP1)*YMP0M2
\end{align*}
\]
4.

\[U1K1U0 = U1 + K1 \times U0\]

\[DC2 = I0 \times (U1K1U0 \times (U1 - NPI \times UM) + U1U0 \times K1 + K2 \times U0)\]

\[EC2 = I0 \times UYM \times SNPI \times U1K1U0\]

\[A(1,1) = A(1,1) + BC1\]
\[A(1,3) = A(1,3) + DC1\]
\[A(1,4) = A(1,4) + FC1\]
\[A(4,1) = A(4,1) + BC4\]
\[A(4,3) = A(4,3) + DC4\]
\[A(4,4) = A(4,4) + EC4\]
\[A(3,1) = A(3,1) + BC2\]
\[A(3,2) = A(3,2) + CC2\]
\[A(3,3) = A(3,3) + DC2\]
\[A(3,4) = A(3,4) + EC2\]
\[A(2,1) = A(2,1) + BC2\]
\[A(2,2) = A(2,2) + CC2\]
\[A(2,3) = A(2,3) + DC2\]
\[A(2,4) = A(2,4) + EC2\]

\[FPDU12 = AC2 \times DY(5)\]
\[B(2,1) = B(2,1) + FPDU12\]
\[B(3,1) = B(3,1) + FPDU12\]
\[B(1,1) = B(1,1) + YM \times (0.5 \times TM + 1.5 \times T0)\]
\[B(2,2) = B(2,2) + YM \times (TM - T1) + L0 \times (0.5 \times TM + 1.5 \times T1)\]
\[B(3,3) = B(3,3) - YM \times TM + L0 \times (0.5 \times TM + T1)\]
\[B(4,4) = B(4,4) - YM \times (0.25 \times T2 - 1.25 \times TM)\]

9. CALL NWMATINV(A, B, INDEX, 5, 4, 1, DETERM)

DO 11 II = 1, 4

11 DY(I) = B(I, I)

RETURN

END
FUNCTION RKLDEQ(N, Y, F, X, H, NT)

DIMENSION Y(10), F(10), Q(10)

NT = NT + 1

GO TO (1, 2, 3, 4), NT

1 DO 11 J = 1, N
11 Q(J) = 0.

A = 0.5

X = X + 0.5*H

GO TO 5

2 A = 0.29289321881

GO TO 5

3 A = 1.7071067812

X = X + 0.5*H

GO TO 5

4 DO 41 I = 1, N
41 Y(I) = Y(I) + H*F(I)/6 - Q(I)/3.

NT = 0

RKLDEQ = 2.

GO TO 6

5 DO 51 L = 1, N
51 Y(L) = Y(L) + A*(H*F(L) - Q(L)).

Q(L) = 2*A*H*F(L) + (1. - 3*A)*Q(L)

RKLDEQ = 1.

6 CONTINUE

RETURN

END
SUBROUTINE XYPLT(X,Y,JI,KI,IYMAX,XXL,XXS,YYL,YYS)

J7. UCCSD XY PLOT , MODIFIED ON AUG. 12, 1970 BY YEH E 63

THIS PROGRAM PLOTS X IN A 0-100 FIELD VS. Y IN A 0-IYMAX FIELD.

X AND Y VALUES ARE ROUNDED (NOT TRUNCATED) TO NEAREST INTEGERS.

ACTUAL VALUES OF X AND Y ARE PRINTED ON ABSISSA AND ORDINATE.

Y VALUES ARE PRINTED IN DESCENDING OR ASCENDING ORDER FOR LYAXIS.

EQUAL TO 1 OR EQUAL TO 2

DIMENSION X(J),Y(J),IX(1025),lY(1025),1FX(101),ZX(11)

IF (IYMAX .LT. 0) 30,31

30 IYMAX=-IYMAX

LYAXIS=2 $ GO TO 32

31 LYAXIS=1

32 XL=XXL $ XS=XXS $ YL=YYL $ YS=YYS

IF (XXL .LE. XXS) CALL RANGE(X,Jl,KI,XL,XS)

IF (YYL .LE. YYS) CALL RANGE(Y,Jl,KI,YL,YS)

IF (XL .LE. XS OR. YL .LE. YS) GO TO 33

XSCALE=(XL-XS)*.Ol

YSCLAE=(YL-YS)/FLOAT(IYMAX)

J=O

DO 105 I=Jl,KI

101 IF (XL-X(I))105,101,101

102 IF (X(I)-XS)105,102,102

103 IF (Y(I)-YS)105,103,103

104 J=J+1

105 CONTINUE

JMAX=J

AT THIS POINT (X(I)-XS) AND (Y(I)-YS) VALUES HAVE BEEN ROUNDED TO

NEAREST INTEGERS IN ARRAY FIELDS OF 0 TO 100 AND 0 TO IYMAX.

DATA ARE SCREENED TO EXCLUDE VALUES OUTSIDE OF X AND Y LIMITS.

1 FORMAT(1H1)

2 FORMAT(15H Y VALUES, +20(5HI.7),1HI) XYP1T 16

4 FORMAT(1H E10.4, 101A1)

6 FORMAT(15x+20(5HI.7),1HI) XYP1T 19
7 FORMAT(7H X=10**,I3*1H*,10(F7.3,2X),F7.3)
8 FORMAT(8H YSCALE=E10.3,4X7HXSCLF=E10.3)
9 PRINT 1
XYPILT 20
10 DO 5 K=1,11
XYPILT 21
11 PRINT 1
XYPILT 22
12 ZX(K)=10.*FLOATF(K-1)+XSCALE+XS
XYPILT 23
13 CALL AMPF(ZX,IA)
XYPILT 24
14 GO TO (9,11) LYAXIS
XYPILT 25
15 LL=LYMAX
XYPILT 26
16 PRINT 2 $ GO TO 13
XYPILT 27
17 LL=LL-1 $ GO TO 13
XYPILT 28
18 LL=2 $ PRINT 7,IA,(ZX(K),K=1,11)
XYPILT 29
19 LL=1+1 $ PRINT 2 $ GO TO 13
XYPILT 30
20 DO 14 I=2,100
XYPILT 31
21 IFX(I)=(1H)
XYPILT 32
22 IFX(I)=1H1
XYPILT 33
23 IFX(101)=1H1
XYPILT 34
24 DO 16 J=1,JMAX
XYPILT 35
25 IF (IY(J)-LL)15,15,16
XYPILT 36
26 II=IX(J)+1 $ IFX(II)=(1H*)
XYPILT 37
27 CONTINUE
XYPILT 38
28 ZY=FLOATF(LL)*YSCALE+YS
XYPILT 39
29 PRINT 4,ZY,IFX
XYPILT 40
30 GO TO (17,18) LYAXIS
XYPILT 41
31 IF (LL-1,19,19,10
XYPILT 42
32 IF (LL-1,18,20,20
XYPILT 43
33 PRINT 6 $ PRINT 7,IA,(ZX(K),K=1,11) $ GO TO 21
XYPILT 44
34 PRINT 6
XYPILT 45
35 PRINT 8,YSCLF,XSCALE $ GO TO 40
XYPILT 46
36 NOTE THAT WHEN SCREEN IS APPLIED, I AND J MAY NOT REPRESENT SAME
XYPILT 47
37 ARRAY ELEMENTS OF X AND Y
XYPILT 48
38 PRINT 34,XL,YS,YS
XYPILT 49
39 FORMAT(10X,'THE PLOT ROUTINE WAS BY-PASS, SINCE: X=*,F11.4,
XYPILT 50
40 X=*,F11.4,10X,YS=*,F11.4/1)
XYPILT 51
41 RETURN
XYPILT 52
END
XYPILT 53

NOTE THAT WHEN SCREEN IS APPLIED, I AND J MAY NOT REPRESENT SAME
ARRAY ELEMENTS OF X AND Y.
SUBROUTINE RANGE(X,J1,KI,XL,X5) XYP LT 52
DIMENSION X(J1) XYP LT 53
XL=XS=X(J1) XYP LT 54
J2=J1+1 XYP LT 55
DO 4 I=J2,KI XYP LT 56
IF (X(I) .GT. XL) 2,3 XYP LT 57
2 XL=X(I) $ GO TO 4 XYP LT 58
3 IF (X(I) .LT. XS) XS=X(I) XYP LT 59
4 CONTINUE XYP LT 60
RETURN XYP LT 61
END XYP LT 62

SUBROUTINE AMPF (X,I) XYP LT 63
DIMENSION X(I) XYP LT 64
A=X(I) XYP LT 65
IF (-X(I) .GT. A) A=-X(I) XYP LT 66
T=ALOG10(A) XYP LT 67
AA=10**(T-I) XYP LT 68
DO 1 K=1,11 XYP LT 69
1 X(K)=X(K)*AA XYP LT 70
RETURN XYP LT 71
%EXECUTE A=UTILITY XYP LT 72
GAMA=0.29, BLYM=0.0110, BLN=-0.185, VINF=0.255 XYP LT 73
CUM=0.7, VINF=0.180 XYP LT 74

%WR=0.01, RVINF=5.0F5, END XYP LT 75
THETA=0.0, THETASP=76.6, ISTEP=2, DANGLE=2.1, THETAEL=60.77, END XYP LT 76
REFERENCES

Figure 1. Coordinate system, tangential blowing over a circular cylinder.
TRANSITION TO FULLY DEVELOPED COANDA JET PROFILE ASSUMED IMMEDIATE

\[U_m(\theta_e)/U_j = k (t/\delta)^{1/2} \]

Figure 2.- Multi-strip integration zones for Coanda jet profiles.
Figure 3.-Calculated laminar boundary-layer characteristics.
Figure 4. Calculated lower surface turbulent boundary-layer characteristics.

- Transition: initiate turbulent boundary layer

\[\Theta_{SEPL} = 151^\circ, \quad C_P(\Theta_{SEPL}) = 0.51 \]

\[\Theta_{SEPL} = 142.6^\circ, \quad C_P(\Theta_{SEPL}) = -0.19 \]

\[\Theta_{SEPL} = 135.7^\circ, \quad C_P(\Theta_{SEPL}) = -1.05 \]

Separation assumed when \(n = \frac{1}{2} \) and \(\frac{dn}{d\theta} > 0 \)

\[\hat{\Gamma} = 0 \]

\[\hat{\Gamma} = 0.25 \]

\[\hat{\Gamma} = 0.50 \]
Figure 5. - Calculated upper surface turbulent boundary-layer characteristics without blowing.
\[\hat{r} = 0.50, \ t/R = 0.01, \ Re = 5 \times 10^5 \]
\[\Theta_e = 0^\circ \]

For separation,
\[n > 1/2, \ dn/d\Theta > 0 \]

\[\Theta_{\text{SEP}} \] required for \[\hat{r} = 0.5 \]

\[\frac{u_m(\Theta_e)}{V_\infty} = 3.3 \]

Boundary layer, no blowing

No separation predicted

Figure 6. - Calculated Coanda jet layer separation without curvature and induced pressure gradient terms included.
Figure 7. - Calculated Coanda jet layer separation including curvature and induced pressure gradient terms, $N = 5$, $K = 1$.

\[\hat{r} = 0.50, \; t/R = 0.01 \]
\[\theta_e = 0^\circ, \; Re = 5 \times 10^5 \]

\[\frac{u_m(\theta_e)}{V_\infty} = 4.4 \]

BOUNDARY LAYER (NO BLOWING)

ADDITIONAL CONSTANT ADVERSE PRESSURE GRADIENT

INDUCED PRESSURE GRADIENT TERMS INCLUDED

SEPARATED $n > \frac{1}{2}$
Figure 8. - Effect of N on Coanda jet layer development and separation, $\frac{u_m(\theta_e)}{V_\infty} = 4.4$, $K = 1$.
$\Gamma = 0.50, \theta_e = 0^\circ, Re = 5 \times 10^5$

RESULTS FOR $t/R = 0.015$

RESULTS FOR $t/R = 0.005$

NOTE: $\frac{U_m(\theta_e)}{V_\infty} \approx 4.4$

FOR $t/R = 0.005, 0.010,$ AND 0.015

Figure 9. - Effect of t/R on Coanda jet layer development and separation, $N = 5, K = 1$.

79
$\hat{F} = 0.29$, $\theta_e = 0^\circ$, $Re = 5 \times 10^5$, $\frac{1}{R} = 0.01$

$N = 5$

ALTERNATE SHEAR LAWS AND INITIAL CONDITIONS

\[\frac{U_j}{V_\infty} - C_\mu \]

\[C_\mu \text{SEP} \approx 0.2 \]

Figure 10. - Variation of n with θ, $\hat{F} = 0.29$.
Figure 11. - Variation of n with θ, $\widehat{r} = 0.59$.

$\widehat{r} = 0.59 \quad \theta_e = 0^\circ \quad R_e = 5 \times 10^5$

$N = 5 \quad t/R = 0.015$

ALTERNATE SHEAR LAWS AND INITIAL CONDITIONS
Figure 12. - Effect of Reynolds number on measured pressure distribution without blowing.
Figure 13. - Effect of tangential blowing on pressure distribution, $t/R = 0.0057$ and $C_\mu = 0.05$; and comparison with $\Gamma = 0.06$ theory.
CALCULATED

\[\frac{U_m (\Theta e)}{V_\infty} = 3.5 \quad \frac{U_m (\Theta e)}{U_l (\Theta e)} = 1.4 \]

Potential Theory

\[\Gamma = 0.29 \]

\[\Delta C_p \text{ calculated due to centrifugal force, } N = 5, \ K = 0.7 \]

Test Data, \(Re = 2.8 \times 10^5 \)

\[t/R = 0.0057 \]

\[C_\mu = 0.28 \]

Corrected for down wash

\[\Theta_{sep} \text{ calculated} \]

\[C_p (\Theta_{sep}) \text{ calculated} \]

\[\Delta C_p \text{ decreased linearly to zero over this region} \]

Figure 14 - Effect of tangential blowing on pressure distribution, \(t/R = 0.0057 \) and \(C_\mu = 0.28 \); and comparison with \(\Gamma = 0.29 \) theory.
Figure 15. - Effect of tangential blowing on pressure distribution,
t/R = 0.015, Cμ = 0.25; and comparison with \(\hat{r} = 0.29 \) theory.
Figure 16. - Effect of tangential blowing on pressure distribution, $t/R=0.015$, $C_\mu=0.66$; and comparison with $\hat{\Gamma}=0.59$ theory.
Figure 17. - Effect of jet exit angle \(\theta_e \) on pressure distribution, \(t/R = 0.015 \), \(C_\mu = 0.66 \); and comparison with \(\hat{\Gamma} = 0.59 \) and \(\hat{\Gamma} = 0.67 \) theory.
Figure 18. - Comparison of predicted and measured two-dimensional lift coefficient, $\theta_e = 0^\circ$.

Theoretical

Alternate initial conditions and shear
$t/R = 0.01$, $t/R = 0.015$ and 0.10

\[K = 1 \]

\[K = 0.7 \]

Experimental data by Jones and Buckingham (Fig. 9 of Ref. 1)

Experimental data by Cheeseman (Fig. 11a of Ref. 1)

Symbols

- \(\Delta \) $t/R = 0.005$
- \(\circ \) $t/R = 0.010$
- \(\square \) $t/R = 0.015$

Unflagged $q = 50$ psf

Flagged $q = 25$ psf

Figure 18. - Comparison of predicted and measured two-dimensional lift coefficient, $\theta_e = 0^\circ$.

88
Figure 19. - Effect of jet exit angle Θ_e on measured two-dimensional lift coefficient.
Figure 20. - Comparison of calculated velocity profiles with test data over a flat surface.
Figure 21. - Velocity distribution from reference 24 for an airfoil with a flap.
Figure 22. - Separation parameter n versus distance along airfoil surface, $\delta_f = 20^\circ$.

- BLOWING SLOT
- STRAIGHT FLAP SURFACE

DISTANCE ALONG SURFACE FROM STAGNATION POINT, S/C
Figure 23. Separation parameter n versus distance along airfoil surface, $\delta_f = 60^\circ$.
Figure 24. - Blowing coefficient required to move separation point aft to trailing edge.
Figure 25. - Semispan tangential blowing wind tunnel model.