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ABSTRACT

The current distribution and impedance of a thin cylindrical

antenna with parallel orientation to the static magnetic field of a

lossy magnetoplasma.is calculated with the method of moments. The

electric field produced by an infinitesimal current source is first

derived. Results are presented for a wide range of plasma parameters.

Reasonable answers are obtained for all cases except for the overdense

hyperbolic case. A discussion of the numerical stability is included

which not only applies to this problem but other applications of the

method of moments.
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CHAPTER I. INTRODUCTION

Since man has launched space vehicles into the ionosphere, there

has been strong interest in the effect of plasmas on antennas. A

primary interest is understanding the effects of the plasma on the-

current distribution and the antenna impedance. Since .cylindrical

antennas have a simple geometry, are well-understood in free space, and

have wide usage, they are most commonly studied in plasma .problems.

Because one cannot analytically solve Maxwell's equations for a lossy

magnetoplasma with cylindrical boundary conditions, .a .current distribution

usually is assumed. This assumed current distribution, though, represents

only the limiting case of an infinitesimal antenna. Approximations made

by other workers give results valid for infinite length-antennas. These

approximations simplify the analytical work but give results of questionable

validity for .the finite antenna.

The approach used in this report eliminates -these .approximations.

The method of moments is used to solve for current distribution -on the

antenna. Basically, .this method converts an integral .equation .into a

matrix equation which can be easily solved by computer methods. From the

current distribution one can trivially find the impedance .at .the-feed

point. Thus, .the .current distribution and impedance for the finite

antenna over a wide .range of plasma densities and'applied magnetic fields

can be calculated.

The geometry used in this problem is shown in Figure 1. The

orientation of the antenna is restricted to the z .direction .parallel to

the applied magnetic field. The antenna is described by -the .half-

length H and radius a. For a thin-wire antenna, the condition a « H
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Figure 1. Geometry of Problem
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must hold. For the method of moments, the antenna is divided into an

odd number of segments N. . .

The first step in applying the method of moments is solving f.or

the electric field due to an infinitesimal source. Exact details of

how the method of moments is applied will be discussed. .Results are

given for a .wide .range of plasma parameters and are compared to the

limiting .cases .of free space and quasi-static -models. Comparisons are

also made to experimental data. A sensitivity theory is discussed

which applies not only to this problem but to many other applications

of the moment method. '



CHAPTER II. FIELDS DUE TO INFINITESIMAL SOURCE

2.0 An Overview

To determine the current distribution along an antenna it is first

necessary to find the fields produced by an infinitesimal current

source. The derivation given here used the notation and technique

developed by Mittra and Deschamps [1]. In their paper they outline the

derivation of the field components for any orientation of an

infinitesimal source. The parallel orientation case worked out in

detail here, however, is not the same as the specific case completed

in their paper.

In this report the plasma will be characterized by normalized

plasma parameters X, Y, and Z where

a) 2 o / u »2
.if, Y2 . _£
0) I ' I 0) ' '

0) =

Ne2"1/2

o

P I me0J
plasma frequency (2.1)

eB
a) = = cyclotron frequency

a) = operating frequency

V = collision frequency

N = average electron density

e = magnitude of electronic charge

m = mass of electron

B = applied magnetic field.
' O :

-Thê use~~of X, Y, and Z parameters allows one to indicate results on

commonly used plasma diagramfe.
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Before giving the lengthy details, we wish to give an overview-

of the derivation. Maxwell's equations can be combined to yield

a relation for the electric field caused by an infinitesimal source

in the plasma. Taking the Fourier transform allows one to easily solve

for the transform of the z component of the electric field. The main

feature of this technique is that in performing the inverse Fourier

transform,the integral can be broken into a sum of functions.such

that one can analytically integrate terms that are singular when

observation and source points coincide. These terms represent the

near field and are dominant in the determination of the antenna current

and impedance. Terms that are finite when observation and source

points coincide need to be .numerically integrated, but these represent

far-field terms and need not be as accurate because of their small

relative size. The rest of this chapter gives the details; the final . ..

expressions for the field due to the infinitesimal source are given

by Equations (2.80)through (2.88).

2.1 Maxwell's Equations •

Using e time convention, Maxwell's equations for the plasma

are

curl E = -jojyH (2.2a)

curl-I = jwe F • E" + J . (2.2b)

div H = 0 (2.2c)

div F • E = p/e (2.2d)
. o

where



U = 1 - JZ

e = 1 - UX/(U2 - Y2)

(2.3)

e' =
YX

U 2-Y 2

e = 1 - X/U.z

When (2.2a) and (2.2b) are combined, the following equation is

obtained

— 2 = — — 2 2curl curl E = k e • E - juyJ, k = u ye•. (2.4)o o o

At this point it becomes convenient to transform the problem

into k-space by applying the Fourier transform. Let E' and J'

represent the transforms .of-E and J. , The transform E'. of E is ; .
x x

defined by
00 j (k x+k y+k z)

E:(k_, k., k.) = / / / Ê (x, y, z) e X y Z

xx' y' z dxdydz

(2.5)

with the transforms of other components defined similarly. Note that

the del operator can be replaced by jk. Then, using a vector

identity, the transform of (2.4) can be written as

k(k • E') - k -k E' + k2 e E' = jcoyJ'. (2.6)

Next one can expand this equation by components and write it in matrix



form

•e -je1 0

je' e 0

0 0 ez

-

-k2-k2 k k k ky z x y x z

k k -k2-k2 k kx y x z y z

2 2k k k k -k -kx z y z x y

1

j

E'
: x

E'y

E'
. z

-*»

J'
X

J'. y

j'z

(2.7)

Because of the radial symmetry about the z axis, k.can be represented

by spherical coordinates (T, V, a),

k = T sinYcos^a, k = T sin V sin a, k = T cos f . (2,8)
x y z

Making these changes and collecting terms , we obtain

ME' = j ̂ - J'
o

M =

- sin24< cos2a)

(2.9)

2 2 2
-je'+F sin V sin a cos a T sin ^ cos ^ cos a

2 2 2 2 2
je'+r sin 41 sin a cos a e-r (1 - sin V sin a)

sin Y cos y cos a T'sin ¥ cos V sin a

F^sin Y cos ¥ sin a

2 2
e - r.sinz 1

where I", = - T / k .
1 o

To solve for E' we can write

E' = M"1 j j2- J'.
o

-1

(2.10)

Finding M is a straightforward but lengthy algebraic manipulation.

One finally obtains
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M'1 = [a±j]/A (2.11)

A = det(M) = rj(e sin2¥ + e cos2^) - T2 [e e (1 + cos2¥) + (e2 - e'2) si
1 z 1 z

+ (e2 - e'2)e

in = r%in
2 f cos2 a - r2[e sin2 > + e (1 - sin2 f sin2 a)] + e e

IJ. 1 1 Z Z

Z

/ 1 O O
a-, = T sin ¥ sin a cos a - T, sin ^(e sin .a cos a -je') - je' e

2 2 'a.,.. = T sin ¥ cos V [T cos a - (e cos a - je' sin a)]

4 2 2 2a.. _ = T sin ¥ sin a cos a - T. sin .V (e sin a cos a + je') + je' e
i^. J_ J_ Z Z

a.- = rj sin2 ¥ sin2 a - F2[e sin2 Mf + e (1 - sin2 V cos2 a)] + e e// 1 1 z z

2 2n ̂ * • \ir m r n *• • / _r 1*1 \ 1aoo = rn sin T cos T [r. sin a - (e sin a + ie cos a)Ijz i 1

2 2a1 „ = T. sin ¥ cos Y [T cos a - (e cos a.+ je' sin.a)]

2 2aOQ = r sin V cos V [T sin a - (e sin a - je' cos a)]2.3 1 1

4 2 2 2 2 2
a = F cos V — F e(l + cos V) + e — e33 1 . 1

where T. = r/k .
1 o

It should be noted that det(M) = 0 is the dispersion relation for

the plasma. Since, for a fixed polar angle ¥, this is a second-degree

2
polynomial in T., there will be exactly two roots. These two roots are

the squares of the indices of refraction for two characteristic plane

waves traveling at an angle Y to the ma^^yic^fJ1el£L^_The_p_rpper_square

root must be taken to satisfy the radiation condition.. One can appreciate
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the conceptual difficulties inherent in understanding plasma problems

since unlike free space, there is not even a unique wavelength in a

given direction. The exact form of the indices of refraction will be

given shortly. . ,

To solve our problem, only one of the nine terms of (2.11) will be

needed. For parallel orientation of the antenna, there is only source

current in the z direction. Only E' is constrained by the boundary
z

condition. Therefore, the rest of this chapter is directed to finding

the inverse transform of

2.2 Inverse Transform

Conceptually all that remains is to perform the inverse transform

(2.13)

Recall that J' is unity since our problem is formulated for a Dirac 6
Z

source. If spherical coordinates are also used for the observation point,

(2.13) becomes

oo . ,77 2lf ' '.;

17 tv A ^ - 1" t X ^ f f f ( &33 v 0 -jTRf sine; sin T cos (â >)+cps 9 cos
Ez(R, 9, <)>) - £- ( 2^ ) / I ( A ). e

o Vo

• T sin ¥ da dW dr

where x = R sin 0 cos ". "F . , y = R sin. 6 sin $ .. , z = R cos 6..

First we can relatively easily perform the a integration using the

following standard integration formula [2],
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2TT

J (PR sin 9 sin Y ) = e 9 ~ da. (2.15)
O £TT /

0 , .

Applying (2.15) to (2.14) produces

E - . in ( i. }
2 I f ( !|3 r R sin e s.n e-JR cos ecos.* '-2

z K 2ir / I A o
J

A 9 o o 9 7
333 ricos ¥ ~ ri e( -1 + cos *) + e - e1

rj(e sln2V + e cos2^) -r T2[e e (1 + cos2 T) + (e2 - e|2sin2'i']+(e2-e'2)e1 z 1 z • z

At this point it is convenient to write A in factored form.

A(F, If) = (e sinV+ ez cos
2V)(r2 - n2) (F2 - n2) (2.17)

where

2 2 B(f) ± B(¥)- 4:A(f) CQO

= e sin2^ + e cos2 '
z

e e (1 + cos2 f) + (e2 - e'2)

COO = (e - e') ez. •

Recall n1 and n_ represent indices of refraction in the plasma mentioned

earlier.

The ability to do the integration; in (2.16) depends upon it being
a33possible to break ̂ -^ into a sum of functions with different dominant
A

"orders o"f P. As mentioned in the overview, it will be shown that those

terms which are singular when observation and source point coincide can
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be integrated in closed form. .These represent near-field terms and

will be dominant in this problem. Those terms that are finite when

observation and source points coincide will need to be integrated .

numerically but will be small compared to singular terms.

By successive synthetic division one can show

a., . 2W r2 k2(e2 + e
2 - cos y r

A

2 2 2 2 ' 2 2 2 2 2 2 2 2
2 2 (r kQ[e(e -e1 ) - (n^ n2)(e +e' cos V)] A-n^ n2 (e +e'

o ,p2 _ n2k2.,r2 _ n
2k2)A

2(y\

2 2 :

where A(40 = e sin * + e cos ¥.z

Let the various parts of the z component of the field be defined

as follows

2 r 1 2r 2 •
-j-y ° 5- J (F R sin 9 sin V )

J ^ e sin 7 + e cos V
zs ko

. e-jFR cos 9 cos

2 r ? (e2 + e'2cos2y)sin3 y -jTR cos 6 cos V .. .
-

(2.20)

J (FR sin 6 sin V ) d<Fdr
o

^
,zf

00
0 ° (2,21)

• J0(rR sin 9 sin n e-
jrRc°S 6 C°S '* sin V d*dr..

The total field is given by

E = E + E ' + E , . (2.22)z zs zfs zf
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When the total field is decomposed in this way, E represents the most
zs

singular term in R, E ,. the next most singular term, and E ,. represents
21S Z £

a finite term. What remains now is the evaluation of each integral

separately.

2.3 Integrating E
• Z S

The convergence of (2.19), the equation which defines E , at first-
Z S

appears to be questionable. One can note that for a three-dimensional

2
Fourier transform, V with respect to the observation coordinates R

2
and 0, can be replaced by -r . Therefore, (2.19) can be written as

: ~to- } v2ls(R' 9) (2.23)
o

V2I (R, 9) = - f f—: ^° ' °""19 e Ji" ~- ' wa v J (FR sin ¥. sin
S . / / _ _ . -̂,,, . ^ « f Or r r ^os ̂  sin>y

J J e aln Y + eBcos f
O'O

where the order of integration and differentiation has been formally

interchanged.

Suppose we make the following change of variables to cylindrical

coordinates.

z = R cos 6 , p = R sin 8

(2.25)

Y = T cos y, u = r sin V .

Then we can write (2.24)

' 6> -F£>£ f fp 9p 3(> J J
U U

where^essel^s_equation_has._been^ used -to_ explicitly — perfom-di^ferent-iation-

with respect to p outside the integral.
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Completing the change of variable gives

2 ,,-JYz
oo oo

;

r
J-' 2,

u=Q Y=-» """" ' V

First, to perform the Y integration, we will perform the integral

dy. (2.28).rjLŜ I!
•J eu + eeu + e Y_„ 2

At this point we can explicitly change the order of differentiation with respect

to z and .the integration, thus completing the formal interchange

indicated earlier.

00

.2

J = - 2 2 dY' (2'29)
9z J eu + e

At last we have an integration that can be performed with the aid of

the residue theorem of complex variables. The integrand in Equation (2.29)

is of exponential order; and therefore, for positive z we may close the

integration path over the lower-half complex Y plane. There is only

one simple pole at

Y = -j /e/eTu .

One obtains
•Ve/e zu

- — . (2.30)
u

We substitute into (2.27) and perform differentiation with respect to z

rr- °°

=~
ffv? la . 9. r
y— 3 P 9p P 9pJ €

VI rT^-P^T e J (p:u) du, (2.31)s y—3 p 9p 9pJ o
/ z

This final integration for E can be performed to obtain
Z S



where the following definite integral has been used [3]
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(2.32)

e-
at jo(bt) .

/ a + b
(2.33)

Finally

or

19 9
zs 4irk e p 9p H 9p fr

£zp

E
zs

-jn/?
4irk e

0 Z (ez
2

1

+ e
2

P )
3/2

"2ez

2
Lez

2
z

+ e p

P

2

2

(2.34)

(2.35)

The dependence on distance can be seen more clearly by noting

/ 2 2~
Rf = ve V^ez +e p is used as a plasma-scaled distance in some

' Z . •
that

statics problems. Clearly

f

_ -Jne"
Jzs 4irk. .e _., 3

o z R

0 2 22ez - e p '

L ez + e pz

(2.35a)

2.4 Integrating E
zfs

We repeat (2.20), which defines E ,

oo

^ > 2 f2lT /

2 r r (e2 '+ e'2cos2• y)sin\ -jTR cos 6

0 '0 .-: A

cos

• J (FR sin 6 sin- * )
o
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This, term will be artificially divided into two.: terms E and .E
zfsl zfs2

for ease of integration.

Ezfsl * -J"ko ( i "> £2l ' (2'36)

where
00 IT _

V -jTR cos 9 cos
I •/Ifsl A2W0 0 Q '

J... (FR.-sin 9 sin .. .<? ) dW;.. (2.37)
o

Ezf s2

where

oo TJ-
2 3

T i i cos y sin V -jTR cos 9 cos * , . . .1,- o = I / o '6 J (FR sin o sin T )fs2 A2/mx ov
f

J
00 (2.39)

Again it will be useful to apply the same change of variables used for

E . • • •
zs

z = R cos 9 p = R sin 9
. (2.40)

y = T cos ¥ u = T sin ¥.

Applying these changes, (2.37) becomes

00 00

'fsl- J J »; 22 eJ' Jo(»u>
u=0' i YT—°° z

To do the y integration we need to evaluate

r'dY. (2.42)
r
/ 2 . 2,

i + e y )z

This :iiitegration can be done with the aid of the residue theorem. One

can close the integration path in the lower-half complex y plane and

evaluate the residue at the second-order pole, y = ~Jy e/e u,-obtaining
Y Z ... t



2e e u
z

-/e/e zu r
e z +

16

(2.43)

Equation (2.41) becomes

00

fsl 2e
TT f / . 1

~ J r 7^Z -' I /
ez

zu
J (pu) du
o

(2.44)

or

Lfsl 2ee
z J_

9z

zu
J (pu) du
o

0
(2.45)

by recognizing the integral as the derivative of a different function.

Applying the integration formula

(2.46)e J (pu) du =

obtained from Dwight [4], (2.45) may be written

fsl / -1 2 ̂ -1 2 *
/e p + ezz

(2.47)

Performing the indicated differentiation, E may be finally

written as

(2.48)

or

, -jnko J,
Jzfsl Sir R'

2
ez

2 . .21e p + ez Jz

(2.48a)

The integration for E ,. „ will be done similarly. Using the same change

of variables,
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co oo

Lfs2
r r Y u

. 2 , 2,2, 2^ 2.
J J (eu + e Y ) (u +Y )•

u=0 Y=-°° z

(2.49)

Again the Y integration is done first

J =
2 -

Y e
jdv

2 222 2 *
(eu + e Y ) (u + Y )

(2.50)

This integration can be performed with the aid of the residue theorem1..

Note in this case that there will be a pole at Y = ~u that did not

occur for E ,. n . One obtains the following equation
zrsl

J =
£ze

-uz
UZ

t ^ 3 e -e (e - e)u \ z
z z

+
e + e
z- zu

2/e/e (e -
/ z z

(2.51)

The final integration of E uses the exact methods as E ,. ;
zfs2 zfsl

did. Differentiation with respect to z is moved outside the integral,

the integration formula (2.46) is applied, and differentiation with

respect to z is performed. After simplification one obtains

,2.
zf s2 4Tr (e - e) ~\ (e - e)z \ z /2 . 2

/z + p
(2.52)

ez
e + e

z .
e - e " • 2 . 2z e p + ez

or

e + e
Jzfs2 4ir . . -< , . / 2 . 2 2Rf I e - e 2 ^ 2

( e - e ) \ ( e - e ) / z + p L z e p + e z j

z v~ z z

(2.52a)
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2.5 Integrating,;E f

Equation (2.21), which defines E c, can be written
zt

zf = jnko ( "27 )2 P (R> e) (2<53)

f ? NO1 «f)e"jrR COS '6 COS •* .......
P(R, 6) ». "V ;, 9 - 5 - =r-5- J (rR sin 6 sin y.)

J0 J0 <F - n l k o > ( r -h2 V °

• sin3T drd4< (2.54)

N( r , 4-) = r2[e(e2 - e '2) -(n^ + n^)(e2 + e'2 cos2»]

n n (e- + e'z cos^ V) k . (2.55)

Note that the - integrand of (2.54) is even in ¥. Therefore, the

limits of integration can be changed

W/r2 P N(F , V) 8lta3V:e'jrRp J (FRq)
P(R, e) = -j- - — — F- - — ° A drd^ (2.56)

J 2 2 2 2 2 2 2

where we have also substituted

- n k )

p = cos 6 cos T
<2.57)

q = sin 9 sin ¥

The Bessel function can be changed to a more tractable form by using

the integral definition

V r R q ) = i / [e-™"801
 +eJF R^P S a]da. (2.58)

0

Making this substitution and changing the order of integrations, we

can organize P(R, 6) as
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TT/2 IT/2

P(R, 9) = (I + I ) ,. dadY (2.59)
A

where
i

N(r. v) e-
jrR(p 4 q cosa)

2 2 2 2 2 2 d l > (2'60)

q cos a>
I = > dr. (2.61)

J 2 2 2 2 2 2<--£. £*^£.\/_-^.' £..&.v

-co (E - niko) (F - n2ko)

The next step is obviously integration by the residue method.

However, one must take care to consider the signs of (p + q cos a)

and (p - q cos a) for various ranges of f and 6. Also one must :

2 2
remember that the square roots of n and n must be taken so that n

and n^ have negative imaginary parts to satisfy the radiation condition.

For the range of the angles; permitted by (2.59) for I.., it can.

easily be seen p + q cos a > 0. Therefore, the integration path can

be closed in the lower-half T plane to obtain

-2TTJ

-jnrk R(p + q cos a) -jn k R(p + q cos a)
e L"° N.(n0k ,40 e °

+
2Q,

(2.62)

For I , the sign of (p - q cos a) depends on the exact range of

9, V, and a. Recalling (2.57)

p = cos 0 cos ¥
(2.57)

q = sin 6 sin ¥,

one can see
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p - q cos a > 0' whenever either 0 < ¥ < ir/2 - 9 and'O <'a < Tr/2 or whenever

- 8 < V < iT/2, and cos"1 £ <a< ir/2.- q - -
(2.63)

In this case the integration path can also be closed in the lower-half F

plane to obtain

-2TT1
N(niko, V

2n. (n

N -jn k R
) e 1 °
2 - n2)

(p - q cos a) ,,,. i k v^ -Jn2k R(p -1 - K - j T ^ g L O

2 2.-2n0(n. - n_)

q cos a)

(2.64)

However,

p - q cos a < 0 for - - 6 < ¥ < and 0 < a < cos
"

.

(2.65)

Then, the integration path must.be taken in the upper half of the complex-

F plane to obtain

2 .?

— J"-|I>- "-VP M
N(— n k y) e

-2n (n2 - n2)
1 2 2.

(2.66)

Gathering the results of (2.62), (2.64), and (2.66) and carefully

noting over which range each is valid, we can rewrite (2.59). Note that

N is an even function of its first argument, and that the second term ,of

I1 and !„ is the first term with all n 's and n 's interchanged.

P(R, 9) = Rnl(R, 9) + Pn2(R, 6);

P .(R, 9) = P .(R, 9) with h, and n. interchanged
n2 nl 1 z _. ,

N(n7k , V) e
 1

(2.67)

L L
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-Jnvk R(P - q cos a)

r r

-jn..k R(p - q cos a)
iT/2 w/2 N(n k , ¥) e ° ,

/

f ° sin'
/ 2 2 2 •

o TT/2-8 cos'Vq ' nl(nl " n2} A ^

dad*

N(n k , ¥)

j J J ~^s:
O TT/2-9 0 1 J. l-

(2.68)

Note that the first integral's range can be broken into the .ranges

of the last three integrals. One can then distribute the integrand

of the first integral to the last three. Recognizing the exponential

form of the cosine function one finds

TT/2-9 Tr/2 - ' k R . . _ . . . .

P .-(R, 6) = / / H(n1 t n0, V) e 1 ° cos(n..k Rq cos a) dadY
n i I I j - o

0 J0

7T/2 TT/2

X O

TT/2-6 cos p/q

, n2, V) .e cosCn^Rq cos a)

Tr/2 c o s p / q . I T ,r /- r M -Jnik Rq cos a
/ H(n l t nz,- V) .e- cos(n^Rp.) dad*.

1T/2-6 ' 0 .
' (2.69)

where we have let
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N(nTk , V) sin
3'?

H(n_, n_, .¥) = ̂ f — - _„ (2.70)
k 2 2 2
o A* (<F) n.- n)

A little algebra simplifies (2.70) to

n [e(e2 - e'2) - n2(e2 + e'2 cos2f) Jsi

n2 - n2) (2.70a)

Now if we formally add and subtract the term

" 2 c ° / q

TT/2-6

- ° I P
/ HCi^, n2, f) e cosCn^Rq cos a) dad*

^

from P 1 (R, 6), it completes the range of one integral so that we can use the

identity [5]

ir/2
2 rJ (n^ Rq) =— I cosCn^k Rq cos a) da. (2.71)

^
Using these two manipulations^? (R, 6) .further simplifies to

TT/2

Pnl(R
/- ~J»I

, 6) -| / H(n;L, n2, .*) e.
 X

ir /2 _., k Rq cos a _jn k Rpir /2 c o s p / q _. ,

/ / : ' H(tt i fn2,*)[e 1 - e

ir/2-6 0

cos(n k Rq cos a)] dadf. (2.72)

Simply expanding exponentials

Pnl(R, 6) - £ '

2/2 cos p/q

j / f H^, n2,j / / ' H ( n , , n9, V) sin n1k/iR(p - q cos a) -dadV. . (2.73)

TT/2-e o
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At this point it appears that no more exact simplifications are

possible. It will be necessary then to make judicious approximations ..to

put P 1 (R, 9) into a suitable form for calculation The approximations
I n

will be easier to justify in cylindrical coordinates where

z = R cos 9

(2.74)

p = R sin 6 o

Recall that z is to be interpreted as the distance along .the antenna .-.-..-••

from the dipole source and p will be a, the radius of the antenna, which

is assumed to be small compared to the length.

First, note that the sine term in the second integral of (2.73) is

sin n-k [z cos * - a sin f cos a ] = sin (n..k z cos * )
i o 1 o

' cos (n.k a sin ¥ cos a) - cos (n-k z cos *) sin (n,.k .a .sin •* cos a).1 o l o 1 o

(2.75)

For small a we make a first-order approximation of (2.75) by

sin (n k z cos y) - nnk.a sin.¥ .cos a cos (n,k z cos .*), (2.76)
1 o 1 o 1 o

Now we can perform .the indicated.a integration in (2.73) on this simplified

term (2.76) to get

—1 z cos ¥
sin (n..k z cos f) cos —:—-.—j- - n..k a sin. ¥ cos (h1k z cos ̂ ) sin a

where f~. ~ (2'77)

z cos * I
sin a = /I - a sin f °

We shall also make an approximation for the Bessel function in (2.73)

J (n,k Rq) = J (n,k a sin ¥) a 1 (2078)o 1 o ' o 1 o

for small a. Finally, we can write
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iT/2

Pnl(R, 6) - f
-jn k z cos

°

+ J

7T/2

ir/2-e
sinCn.k z)cos * cos'1 Z C?s

1 o a sin

n k a sin f cos(n 1& z cos I - z cos
a-sin ;<2.79)

where

9 = tan" —.z

2.6 Final Field Expressions for Infinitesimal Source

At last all the fields from an infinitesimal source have been found.

They are repeated here for references purposes.

E = E f E' ' + E._ . + E •-z zs : zfsl zfs2 zf (2.80)

E .
zs

-.me
'3

•
L ez + e p

• Z

(2.81)

-ink
5 - • .°
zfsl - Sir

,ez

R' ez
(2.82)

, 1 . fe '+1 I z 2ez
zfs2 4ir' e - e "\ e - e /

/z
2R' e - e 2 ' 2L z ez + e '

R1 / 2 . 2ez + e p

(2.83)

(2.83a)
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k 2
:, P)

Pnl(z, p)

TT/2

f / ""VV

s, p)] (2.84)

-jn k z cos V

I"TT/2-e

• / i uA "I 2 COSsin(nnk z cos t) cos -r^~1 o a sin

n_k a sin * cos(nnk z cos
1 o 1 o

z cos
a sin

(2085)

where

6 = tan'1 -z
2 2 2 2 2 2 ^

[e(e - e1 ) - n(e + e1 cos *)_] sinf*

(2.85a)

n^ < 0 , Im(n2> < 0

(2=86)

2 2
A(40 = e sin * + e cos

ee (1 + cos2 V) + (e2 - e'2) sin2 V (2.87)

(e2 - e '2) e (2.88)

P _ = P . with all n^'s and n_ ' s interchangedo
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CHAPTER III. APPLICATION OF METHOD -OF MOMENTS

In the last section we derived an expression for the electric field

produced by an infinitesimal source. It can easily be seen that the

current distribution on the antenna, i(z), must satisfy the integral

equation

/ i(z') K(z - z1) dz' = e(z) (3.1)
J o

[E .applied at antenna feed,
.•

0 everywhere else

and where Si is the length of the antenna, and K(z - z1) = E (z - z1) is

the Green's function evaluated on the surface of the antenna. Thus

(3.1) basically specifies that the tangential E field on the surface

of the antenna must be zero.

The general theory of the method of moments will be presented, following

the formulation by Harrington [6] .Then it will be shown how this method , can be

applied to this problem. First define the inner product of two functions on

some interval I as

i, g(z)> = / f(z) g(z) dz. (3.2)

Now consider solving the inhomogeneous equation

L(f) = g (3.3)

where f and g are functions defined on the common interval I, L is

a linear operator, g is known, and f is unknown.

Suppose f is approximated^*^ a^ jui^o^_n_knpwn_fjm_ctions_weighted_by_

n unknown coefficients a .
\ n
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n
(3,4)

The f functions are called expansion functions. Now by substituting

(3.4) into (3.3) and using the linearity of L, the equation becomes

a L(f ) = g. (3.5)

Now define a set of n weighting functions or testing functions,

w., i = 1, n. By taking the inner product of both sides of (3.5) with

respect to each testing function, the equation becomes

n

J-l
a < w , Lf > f < w ,g>, i -• 1, 2,• • • n. (3,6)

This can be written in matrix form as

= tgi] (3.7)

where

n

Lf>

Lf2>

8.1 8 >
g >

< w.n» .8 >

(308)

(3.9)

Equation (3.7) can be solve<| for [a ] simply by inversion, provided
| J r

[H .] is. nonsingular
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Thus, f has been solved as a weighted sum of the expansion functions.

The method of moments, as it has thus been described, is very general.

The particular choice of expansion and testing functions used for this

problem will simplify the form of the solution considerably. Also,

this choice affects the accuracy attainable for a given number of

functions. Now we will show how to; apply the method to this antenna

problem by first identifying the functions and operators in (3.3)- The
i ' ' ' , ' '

unknown function f is i(z) defined pn the interval [0, £] representing

the antenna. Likewise, the known function g is the tangential electric

field e(z) . The linear operator L is the integral operator

L(h) = f h(z') E (z - z') dz' (3.11)
/ z
O ;

or described in words, convolution with the Green's function along the

antenna. ;

Next expansion functions must be devised for i(z). We will follow

what is called the method of subsections, that is, expansion functions

are chosen that are defined on only a subsection of the antenna interval.

First, the antenna is divided into odd n number of segments, where each

2H
segment has length— . Then, the expansion functions are defined as the

pulse functions

if (i - 1) — < -z < i ( — )
n — — n

. (3.12)
otherwise '

Now we can express i(z)_as - -

n
i(z) = I i p (z). (3.13)

• 4 11
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Figure 2 shows how the use of pulse expansion functions replaces the actual

current with a step approximation.

Now a set of testing functions must be chosen. The simplest choice

utilizes the point-matching method„ For this method, we choose w. to

be 6(z - m.) , where 6(z) is the Dirac delta function and m. is the

midpoint of the i antenna segment. Thus, by the sampling property

of the 6 function, the right-hand side of (3.6) is

8 V* (3.14)

Therefore, for this problem [g ] = [e.], where [e] is the vector of

tangential electric fields evaluated at the midpoint of each segment„

Similarly, we can see that element £. of (3.8) is the electric field

at the midpoint of the i segment caused by the uniform current over the

j segment.

Finally, the original integral equation (3.1) has been transformed

into the following matrix equation

where Z ..

Z I - E (3=15)

is the electric field produced by the uniform current

over the j segment evaluated at the midpoint of the i segment,

0

0

0

I = i, is the current

over k segment

E applied

0

0

0

tangential

electric field

at midpoint of

i thk segment

The solution is obviously

YE. (3.16)



30

0 ith interval

PULSE FUNCTION p.(z)

2H

PULSE FUNCTION EXPANSION FOR i(z)

Figure 2. Use of Pulse Expansion Functions
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th
Suppose the feed is at the k segment. Then the impedance of the

Vk
antenna is simply -— where v, is the voltage over the gap, In this

\ k

report the feed is always at the center of the antenna.

Note some very important properties of the matrix Z. First, there

are only n unique elements. Segments the same distance apart have the

same effect on each other. Thus z,. = z , ... Also, by symmetry
i J ITK. , J Tk

z _. = z... Therefore we can write Z as

n

Z = ..(3.17)

n 2 l

The matrix Z is a complex symmetric matrix. Unfortunately, most

of the useful properties of real symmetric matrices or complex

Hermitian matrices do not apply to complex symmetric matrices. . The

element z is called the self-element since it is the field at the

midpoint of a segment carrying a uniform current. Since the fields.

decrease strongly with distance, it will be shown that Z is strongly

diagonal.

The Z matrix has been discussed somewhat generally. Next, we

will discuss the method for calculating the elements from the Green's

function derived in the last section. There,are three different sets of
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expressions based on three different models for the distribution of

current over one segment. The basic model used assumes that the

current over one segment is uniformly distributed over the axis line;

this current distribution will be called the current filament model.

Since the field is evaluated at the radius, it remains finite.

Recalling that the length of one segment is 2A£, we can write the

field caused by the current filament as the superposition of fields caused

by infinitesimal sources distributed along the filament. Thus,

A£
Ez filament<z>*>°° (z - z', a) dz'. (3.18)T~ f

M J.

The factor of 1/2A5, is included to make the effective current over the

segment equal for the two models, this integration was done on each

of the four component fields of E . For E ,£,.,, and E f ,, oneZ ZS ZXSJ. ZXS^M

must perform integrals of the form

AX,

1=1 (z " *')—;; dz' (3019)
/ ffz - z1") + a lm— A S i z / ' a J

where n is 0 or 2 and m is 1/2, 3/2, or 5/2. These integrals can be

found in common integral tables. Therefore, the integrated forms of

E , E ,. n, and E will be simply presented later.
ZS ZXS-L ZXS^C

Integrating E ., the component of the Green's function E , whichzz • . z

cannot be written in closed form, requires more explanation. Recall

that Ezf is given by (2. 84)

Ezf = ̂ ko ( 2) tPnl(z' P) +Pn2(2»
(2.84)

The first term can be written as __ • __
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Pul ' X.f. + Z,fb (3'20)

where

7T/2
r

f / Hd^, n
-jn.k z cos

Izfa = £ / H(n i , n0, *) e A u d* (3,21)

Yz

J «(ni> v 8ln(niV cos

TT/2-6

r~Tz- n.k a sin f cos(nnk z cos V) /I - I —1 o '1 o / \ a/ • -J
(3,22)

where

9 = tan"1 -.z • .

Remember n,, n» and H are functions of V „

We will make the approximation that I .„ can be neglected» To
• . ' ' ZXD - •. " . ' '

justify this, first note that the integration width for the self-

element where z = 0 is 9 = -r. For the first segment away from the •

source element, z = 2A£, and since only thin wires are being treated,

— is small. Therefore for all elements, except the self-elementS6 - £,

We can now make small angle approximations in (3*22) and perform the

integration to get '

2 • :

T ~ ^ «^ J IT, 3ir , a _ >, _,vI ^, - -j HCnn , n., -T-) -r- n. k — , z > 2Ax. (3o23)
z r b - l ^ Z o l o Z ' -

. - 2 ' ; ' ; ' : :': : : -:
Because of the — term, I __ should be sinall compared to I -f( . For

z = 0, Equation (3.22) simplifies to

fI L. = j H(n-, n,, '¥) n. k a .sin V d.^o (3.24)
z f b j • 1 2 l o

Direct numerical integration of (3021), (3.22), and (3.24) indicates

that I _. may be neglected for all terms including the self-element.
ZID



34

Moreover, one should note that the singular field terms are orders of

magnitude larger than E _ for all but the farthest segments; therefore,

E need not have an extremely small relative error.
ZI

Now, when I _, is neglected, E ,. can be integrated over one
: Z£D ZIT . > - •

segment, according to (3 = 18). Note that z occurs :only in the exponential
-jn..k z cos '¥ :
e . Therefore, one obtains the integrated form of E -

ZJL

by integrating the exponential. One can easily verify that

' AS- '

2A£ J

-Jn.k (z - z') cos V -jn.k z cos V
.L O i t -L Oe dz1 = e

siri(n,k cos * A£\
1 o 'I

n,k cos TAJZ,1 o

(3.25)

One does the exact same integration for the exponential containing

n9. The integrated form; of E _ is then only E _ with the exponentials
£ . Z jC ZI ' ','

replaced by the right-hatid side of (3.,25).

' • '. We will summarize the fields produced by a current filament mode,,

To avoid proliferation of variable names, the integrated form has

the same name as the corresponding term of the Green's function. We

have substituted the 'antenna radius a for p.

E .... . j , " E + ! £ . . , + £ _ „ + £.- (3o26)z filament model zs zfsl zfs2 zf

z .jvAA . ^ z -"

(3.27)

i. ,2 ez 2where a = — a

"zfsl 8ir(2AA)
+ Afc + / (z + A&) 2 + a'2

+ / (z - AJl) + a'z - A£ + / (z -

z -

/(z + AJl)2 + a'2 /(z - A£)2 + a'2
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Jzfs2
1 , z .+ ..A&

-Jin
-' e

/ 2 2
+ /(z H Ail) + a

/ ~ 2 ~ 2 ~
z - AX, •+•'/' (z - A£) + a -

1 z -+ Aft + /(z •+ AS,)2 + a'2
JCil

z z - AA + /(z - A£) 2 - a1

_ _
2e

z -

AH)2 + a'2 /(z - AH)2 + a'2
(3.29)

Ezf =

k 2

27 > < P n l + P n 2 >
(3.30)

-jn,k z cos r s i n k cos * A£)

"nl
1 o

(3.31)

9 9 - 9 7 9
> e' ) - n(e +e' cos. . sin

H(n , . n 2 ,
o .

7 - 2
*

-, , n9 =
•

i/B2

2A(«F)

(3.32)

. , , n . . .
; Im(n ) < 0 , (3.33)

Im(n2) < 0

A('l') = e sin2 V + e cos2

Z
(3.34)

= ee (1 + cos2 '*) + (e2 - e '2) sin2 'V
z

(e2 - e '2) e
z

P _ = P n with all n 's and n's interchanged. (3.35.)
nz nl i L
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Equations (3.32) to (3.35). are the same as Equations (2<80) to

(2.89) but are reproduced for reference.

It has been shown [7] that one obtains better answers if /2-a -

is used in the calculations as an effective radius in place of a.

This correction compensates for the assumption that the current is

on the axis instead of distributed on the surface.

One can note that many simplifications in the preceding :formulas

are possible and in many cases necessary for limiting cases of the .

general anisotropic plasma. For free space, the E f term has zeros. .

in both the numerator and the denominator. One can clearly see that

for plasma parameters X = 0, corresponding physically to free space

2with an applied magnetic field, and that for Y = 0, corresponding

physically to an isotropic plasma, there is no off-diagonal dielectric

element e1. and, therefore, E , „ = 0. In the limiting case of
ZJL.SZ.

free space, E ,. „ must be set equal to zero. One must also analytically

treat removable singularities in the expressions for E ... For the
Z I

isotropic case, the two indices of refraction n.. and n~ are equal.

The expression for H can be rewritten to avoid an indeterminate form.

Next one can compare the fields produced by the current filament-

model to the fields produced by 6-source model. The 6-source model

is physically unrealistic; however, it should give the same values as

the filament model for observation points far from the segment

with the current. Far from the source .numerical calculations show

that for all field components one may use the 6-source model to avoid

subtracting nearly equal terms present in the filament model expression.

In_general,_no_more.Lthan_21_segments—were used .and,—therefore,—the—

6-source model was not needed for computation. One can note that the
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E f term is nearly independent of distance. Therefore, one would
Z !•

not expect the fields due to the two models to be significantly

different for any distance. Calculations verify this.

A third current distribution model was considered. One might

object to the filament model as being unrealistic, especially for

elements very close to the current segment. Therefore, we have

examined a model for which the current is uniform on the surface

of the segment. We call this model the cylindrical current model.

This model can be obtained from the filament model by summing up the

contribution of .distributed current filaments placed along the surface

of the current segment. When one integrates around the segment, one

needs to replace the radius a with the radial distance 2a sin ••£•„„

(See- Figure 3.) Recall that E has the form E (z, a). Therefore,
Z ' Z

we write

27T

~^~ I2ir /
E 1.1 j -t i = ~~ I E *.M «- (z» 2a sin -) d<J>.z cylindrical 2ir / z filament ' 2

(3.36)

Since "the cylindrical mpdel is needed only in the very near region, and

since in this region the E term strongly dominates the other terms,
zs

this cylindrical integration is applied only to the E term. Then
Z 5

substituting E r., into Equation (3.36) one obtainse zs filament ^

zs cylindrical 2ir J Sirk eAX,

z + AX, z -

O 9 9 A J' •*• 9 99* '
A£>2 + 4a-' sin2 |] . [<z - A£)^ +• 4a-' sin '|]' .

(3.37)
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Observation point (a,o,z)

Current-source filament with

center (p, <£, z) = (a,</>, o)

SIDE VIEW

Observation
point

PROJECTION INTO x-y PLANE

JFigure 3. Cylindrical Model_as_Dj^s^rjLbut_ed_Current,_Filangints_on_Surface
of Segment



39

One can see that (3.37) essentially is an integral of the form

, 2TT j

T L f d<t) . ! /, oo\
1 ~ 9,r I 9 9 A 9 -J/9 ' V.-3'-30^2TT / . , . I - . 2 d) . , Z, J/2JQ [4a* . sin •*- + b ]

Making the change of variable ' *
6 = (js 4- IT (3.39)

and simplifying yields

d9 (3.40)•/: (1 - k2 sinV'2

where

2a' , ,2 z 2
• • • •• • ."— arm a f =s — a. ^r/2 and a = ~ r a - (3°41>

Note how similar (3.40) is to the definition of an elliptic

integralo Applying a clever transform from Gradshteyn and Ryzhik

[8] allows us to write ,

o 7
4ira'-:> 1 - k

E(k) . (3.42)

where E(k) is an elliptic integral of the second kind. Equation (3.42)

can be applied to (3»37) to obtain

,3

Jzs cylindrical 8irk^ eA£ ,

(3.43)

4ira'3 1 - k2

2 a . 2 a f •
K

+ ? 2 1 / ? ' - 9 - 9
[(z + A£)^ +-4a '^ ] ± 7 / [(z - 'Z

Now one can compare the fields due to a current filament to the fields

due to the equivalent current flowing on the cylindrical surface.

Although one might expect much different values for the most singular
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termsj the results were extremely close. Except near z = A£, the fields

generally agree to better than 1 per cent. See Table 1 for a comparison

of the two models for various distances and plasma parameters.

One can note that the field for the cylindrical model is singular

for z = A£, and that it changes sign crossing this point. This can

easily be understood from a quasi-static model. From this viewpoint,

the current causes rings of charge to accumulate on the edges of the

cylinder, and the electric field is the electrostatic field due to these

two rings. Clearly for z = A£, one is evaluating the field at the

ring and it is singular there. The filament model remains finite at

z = .A£ because for this model the charge is on the axis, an effective

distance of a1 from the point of observation.

After comparing the three current distribution models, we

decided that the filament model was entirely adequate for E ,. - ,

E , and E ... For E we use the cylindrical model although itztsi zt zs

is only slightly different from the filament model. Therefore,

each element z. of Z, as shown in (3.17), is computed as

z - E [(i - 1) 2A£,.a] .'."., (3.44)
1 Z • • ' • .- '

where

E = E (z, a);
Z Z

the cylindrical model of E is used for E and the filament modelz zs

is used for E^, E^, and Eif.

There are still a few small matters to discuss before calculating

I, the current vector. First, one may consider applying one volt to

-the-feed-obtaining—the-result-ing-electric-field :
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TABLE 1.

COMPARISON OF ELECTRIC FIELDS DUE TO FILAMENT AND
CYLINDRICAL CURRENT DISTRIBUTION MODELS

H = 1, a = 1/144., H ko .1, z = m2A£

X Y2 Z

0 0.0

/

.1 .1 .05

segments
m

0

.43

' 1

2

5

10

0

.43

1

2

5

10

E cylindrical (z, a)
Z S

REAL

0.0

0.0

0.0

0.0

0.0

0.0

-.2862xl05

-.2067xl06

.1260xl05

1094. ;

63.54

7.834

TMAG

.3395xl07

.2737xl08

-.1496xl07

-.1283xl06

-7437.

-916.8

.3814xl07

.3059xl08

-.1681xl07

-.1442xl06

-8362. ,

-1031,.

E filament (z ; J2 a )
zs

REAL

0.0

0.0

0.0

0.0

0.0

0.0

-.2835xl05

-.8602xl05

.1246xl05

1093.

63.53

7.834

IMAG

.3388xl07

,1418xl08

-.1493xl07

-,1283xl06

-7437.

-916.8

. 3806xl07

.1574xl08

-.1677xl07

-.1442xl06

-8362.

-1031.
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TABLE 1. (CONTINUED)

X Y2 Z

.9 .9 .05

.2 .25 .Of

segments
m

0

.43

1

2

5

10

0

.43

1

2

5

10

E cylindrical (z,a)
zs

REAL

-.4836x10̂

-Il258xl08

.2150xl06

01718xl0
5

985.6

121o4

i

-.2767xl06

r.2534xl07

.1223xl06

.1028xl05

594.0-

73.20

IMAG

-.4101xl06

-.9702xl07

.1822xl06

. 1459xl05

837.4

103.1

-.2084xl07

-.2088xl08

.9215xl06

.7692xl05

4441.

574,. 2

E filament (z , v/2~ a)
zs

REAL

-o4838x!06

-.1283xl08

.2150xl06

.1718xl05

985.6

121.4

-.2754xl06

-1.440xl07

,1216xl06

.1027xl05

594.0

73.20

IMAG

-.4099xl06

-.9433xl07

.1821xl06

.1459xl05

837.4

103.1

-.2082xl07

-.1382xl08

.9207xl06

.7692xl05

4441.

547 o 2
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TABLE. 1. (CONTINUED)

X Y2 Z

2. 2. .05

.5 2 . .05

segments
m

0

.43

1

2

5

10

0

.43

1

2

5

10

E cylindrical (z, a)
zs

REAL

-.1291xl06

-.1857xl08

i

.5776xl05

[4361.

i
;248.4
1

'30.55
i
i

^.llSOxlO6

-.1499xl07

.5231xl05

,4288.

;426.9

30.41

IMAG

.1250xl07

.2765xl07

-.5571xl06

-4350xl05

-2488.
-

-306.2

.2381xl06

.3021xl08

-.1055xl07

-.8647xl05

-4979.

-613,4

E filament (z , ̂ 2 a)
zs

REAL

-.1312xl06

-.2355xl09

.5877xl05

4372.

248.5

30.56

-.1180xl06

-.1208xl07

.5231xl05

4288.

246.9

30.41

IMAG

.1249xl07 '

.8449xl08

-.5568xl06

-.4349xl05

-2488.
: |

-306 o 2
1
i

.2 380x10 7

.243xl08

-.1055xl07

-.8647xl05

-4979.

-613.4
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V V
„ _ feed, feed _ 1
Efeed " " d ~ 2A4 '" " 2AA *

since the gap distance d is 2A2,. Second, note that E ...... . givesz rilament

the field due to a distributed source with the same effective current

as the S-source model e This 6 source was one ampere at one point;

when it is distributed, the current at any point is only -rr-r ampere.

Therefore, one should multiply all elements of Z by 2A£ to get true

fields. Eqviivalently , this last factor of 2A£ is factored from.

the Z matrix into the E vector. Therefore, considering both comments

about the 2 A H factor, the vector E is computed as

1

E = [e] =

-r- , i = center element

i
0 , i ̂  center element

.. (3.46)

One must also make slight corrections between effective and

actual dimensions of the antenna. The use of pulse expansion functions

assumes a finite current at the end of the antenna when the true current

must be zero. To compensate for this, dummy segments have been

added to each end. These segments are not used in calculations,

but only make the length of the antenna for which the nonzero currents

can exist shorter than.the actual physical length 2H. Therefore,-for

segments one uses

9H 2H
2A£ = " - instead of 2A£ =•—".n + Z n

The exact number of segments to add was partially determined

empirically. Using one extra segment on each end results in a

good, but jaot perfect, linear current ̂ distribution for_a_very_short
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antenna in free space. The other dimensional correction, which

has already been noted, is that one uses an effective radius of

/J a instead of the actual radius a in all calculations using the

filament model*

In most cases, 21 active antenna segments were used. Trials

with 33 and 45 segments show only slight changes. It is not at

all clear what is an optimum number of segments to use because one

cannot always assume that using more terms gives a better approximation„
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CHAPTER IV. NUMERICAL DIFFICULTIES

The field expressions for the filament current model appear

deceptively simple. Even though these expressions have required .a . -

lengthy derivation, most of the effort expended on this problem .has been

in performing numerical computations. For the terms in closed form, one

must guard against loss in accuracy due to subtracting nearly equal terms,

and for the terms .indicated as integrals, one must perform difficult

numerical integrations. The purpose of this section is to describe the

numerical analysis required in writing an efficient computer program.

Particular attention is paid to the numerical integrations needed for

E f. The general question of stability of the method is discussed in

Chapter V.

The computer program that is used can be found in the Appendix»

For computational purposes, it was convenient to formulate the field

expressions with dielectric constants normalized to e. Thus, in .the . . . .

program e' is actually e'/e, e is e /e, and the field expressions .havez z

been correspondingly modified. One result of this renormalization .is

that one uses n̂ /e" in place of n-. In this case, one must be careful
f\

to compute n.. ve as the square root of n.. e with the negative .imaginary ..

2
part rather than as the product of the square roots of n. and e taken

individually.

For the singular .terms in closed form, E , E•- -, and .E f .„, .one

must be careful to avoid subtracting nearly equal quantities. This problem

increases with increasing distance z; As has been already indicated, if

fields are needed more .than 30 segments away, the 6-source model .gives

entirely adequate values. A series expansion of the singular terms has
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been made, but the range of validity for the filament and the .6-;source

models overlap and, therefore, the series expansion is not needed.

The largest .source of numerical difficulty is performing.the .

numerical integration for the finite term E f. The shape of the

graph of the integrand .varies with the three plasma parameters, the .free-

space wavenumber k , and the distance z. Figure 4 shows real and imaginary

parts of the integrand for various parameters scaled so that the difference

between maximum .and . minimum .function values is unity. For .some .plasma

parameters the integrand is well-behaved, but for many values, .the-integrand

is nearly singular at some point. The integrand starts at zero, goes

through a strong positive peak and through a strong negative peak,,

Essentially, one has to subtract the effects of the two large and nearly

2
equal peaks. As Y .or X gets closer to 1, and as the loss factor Z .

decreases, the peaks get narrower and steeper until the integrand resembles

the doublet function.

Now one can appreciate the numerical difficulty. The standard . .-.

technique of singularity subtraction is not applicable because of the

complicated form of the integrand. One cannot even find analytically, the

zero crossing of the integrand. An integration scheme with moderate-? .

sized uniform steps might .only randomly sample the nearly-singular .region-

or overstep it completely. If the steps were small enough to accurately

sample the peaks, there would be an excessive number over regions where .-,-

the function is relatively flat. Therefore, we have chosen a variable-step

Romberg integration .scheme [9].

The Romberg quadrature scheme is based on Richardson extrapolation

of successive trapezoidal-rule estimates of the area under the integrand. .

Suppose one needs the integral of some function f(x) over the interval
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0

/^
/ °

/
/y

-x / •\ /
\ //

~ \̂
V

[^
O f 0 | o i

SEAL Part, z = 0
Y. = .1, Y2 = .1,

Z = .05

REAL Part, z = 0
X = .3, Y2 = .5,

Z = .05

REAL Part, z = 0
X = .7, Y2 = .5,

Z = .05

n
2

REAL Part, z = 0
X = .9, Y2 = .9,

Z = .05

IT
u 2

REAL Part, z = 0
X = .9, Y2 = .9,

Z = .01

REAL Part, z = TT
X = .9, Y2 = .9,

Z = .05

Tl

2
0

IMAG Part, z =
X = .3, Y2 = .:

Z = .05

i r \
' i / A

1 / \ o

0(/ ;

I
0 f 0 •n

2

REAL Part, z = 0
X = 1.5, Y2 = .5,

Z = .05

IMAG Part, z = 0
X = 1.9, Y2 = 1.9,

Z = .05

Figure 4. Normalized Integrand in the Numerical Integration of
E .. for Various Plasma Parameters and Distances
zf
(k = .576, H = Tr/2, n 21)
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[a, b]. Let h = a - b. The trapezoidal-rule estimate of the area for

k
2 equally spaced segments is

— r — f ( \ 4 - f f \ 4- • • 4. f f \ 4. — f f \"\

(4.1)

where

xn = a + (n - 1) -^ .

Extrapolations T , can be generated by the formula

T ' = —-— (4n T . , . .. - T . . ) . (4.2)nk ,n v n-l,k+l n-l,k

These results can be tabulated as a triangular array

T
00

T T

(4.3)
T T T
02 11 20

T T T T
03 12 21 30

e 0 » • ' •

The elements of the first column are the trapezoidal-rule estimates;

each other element is generated from the element to the left and .the

element above the element .to the left. The accuracy of the estimates ..

becomes better as .one moves down and to the right. The procedure stops

when the last two elements of a row are sufficiently close. Recall .that

3the trapezoidal rule has an error term on the order of h . „ The application

3of (4.2) to T__ and TOI subtracts the h error term leaving only an .

error on the order of h for Tlf). Substituting ,(4;ll) into (4.2) shows

that T Q is exactly the Simpson rule estimate; similarly, T Q is. the ,.

third Newton-Cotes formula. One might suspect that .T̂ g is the k

Newton-Cotes formula, but fortunately that is not true. High-
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order Newton-Cotes formulas suffer severely due to round-off error

while Romberg's method converges very well.

Due to the particular integrand in this problem, we .have

partially followed modifications suggested by Miller and Burke [10],

This modification is applicable to any numerical integration .where

the function is well-behaved except in a small subinterval. The original

interval is divided into m subintervals and Romberg's method is applied

to each. Convergence is checked by means of a test ratio T . If

T - T
' 01 10' < T (4.4)

IT I1 101

only the midpoint of the subinterval needs to be computed and Tin can

be used as the area of the subinterval. If (4.4) does not hold, two

additional points in the subinterval are computed and the program checks

if

20 I

If (4,5) is true, T 0 is used as the estimate of the area. However, if

(4.5) is not satisfied, the program subdivides the interval and applies

Romberg's method on that new subinterval rather than subdividing .all

intervals as the unmodified .version would require. Thus, no estimate

higher than T is computed for an interval. This scheme is efficient

since the midpoint of the new subinterval has already been calculated. .

If one had tried using an adaptive Gaussian quadrature scheme, one could

not have used any previous calculations. A distinctive feature of our
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method is that our program saves all calculations made. Thus when

a subinterval converges, -one already has the function values for the end .

points and midpoint of the next subinterval to be integrated. -To be

practical, one must limit the maximum number of subdivisions allowed

and the minimum size of a subinterval, .

The exact error of this method is hard to estimate precisely.

One may calculate an error estimate as the sum of the differences between

the two best area estimates for each subinterval. This is a very
i

pessimistic guess of the error. Even so, in most cases the relative

error calculated in this way will be far less than T although there is

no assurance that this is always true. The usual value used for T

is 10~4.

A very interesting pathological case exists for this modified .

integration scheme. The .T._0 estimate term of (4»3) is exact for a
Q

polynomial of degree up to 5. When the program tried integrating .y = x

over [0, 1] as a test problem, it kept subdividing the first interval

until it had reached the maximum number of subdivisions allowed. The. .

problem is analogous to integrating a parabola with the trapezoidal rule.

2Consider approximating the function y = x with a straight line over

[0, e]. The true value of the integral over the interval will be

1 3 1 3-^ e but the integral of the approximation will be -j e . Clearly the

absolute error of the approximation decreases as e decreases but .the .

relative error does not. When a maximum number of subdivisions is specified,

there is no practical problem. Absolute error on the first interval .is

small enough, and for .any interval not containing the 0, the .relative error

converges. In practice, this pathology occurs when the'function behaves as

a high-order polynomial.
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The Romberg .method has been described for the case of a real

function. For a complex .function, such as in this problem, .we have

required that the test ratio be satisfied for both the real .and

imaginary parts of the estimates before going to the next interval.

The integration of E is done slightly differently than formally
z n

indicated. The integrands of Pnl and Pn2 are added together before

integrating. This not only eliminates the need for two separate

applications of Romberg's method, but also simplifies the handling

of terms common to P , and P „„nl n-z
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CHAPTER V. STABILITY OF METHOD OF MOMENTS

After many trial runs, we wished to test the stability of our

method. Even if the models used were perfect and electric fields could

be precisely analytically formulated, there would still be computational

errors that would.be transmitted to the final answers. Knowing .the

sensitivity of the final answers to both matrix manipulation errors and

errors in computing the fields allows one to estimate how accurately

fields must be calculated to get results that are reliable. Early,

results obtained from field calculations with deliberate perturbations

showed a noticeable sensitivity. The stability theory developed here

applies not only to this particular plasma problem, but also to any

problem using the method of moments.

This sensitivity analysis will use norms of complex vectors and

matrices to estimate error. Because of the wide variety in .definitions

of matrix norms, we wish to develop our analysis in detail and carefully

define our matrix and vector notation for complex matrices and vectors.

Our definition will follow Forsythe and Moler [11].

, . T T
All vectors x will be assumed to be column vectors. A and x

will indicate the transpose of matrix A and vector x, that is, the

H
original matrix or vector with rows and columns interchanged. A and .
Ti
x will indicate the matrix or vector that is the complex conjugate of .

the transpose of the original matrix or vector. A matrix that is

equal to its own transpose conjugate is said to be Hermitian.

Next we define vector norms. The Euclidean norm of a complex

vector x is defined as .

I x l l = / x Hx I x l + l x l + '-' + lx (51)I AI 12 l xl I ' ' vjtJ-/
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where x , x9, • • *>x are components of x. For real vectors this

norm is the usual concept of the length of a vector. We can also

define vector norms

ML = I l*i I (5.2)

max |x |. (5.3)

These norms are not quite as geometrically obvious as the Euclidean norm.

Figure 5 shows all possible unit-length vectors in two dimensions for

each of the three norms. Mathematically, one can define an infinite

number of norms, but these three are the most useful. All vector

norms must satisfy the following three properties.

| | ex | | = | c | • | | x | | for any real scalar c , (5.4)

| ]x| | * 0 and | |x| | = 0 if and only if x = null vector,

(5.5)

| |x + y| | < | |x| | + ||y|| (triangle inequality) . (5.6)

Next we define a matrix norm for square matrices A as

I I Ax | I
j 'I A | | = max - (5.7)

x#) MX ||

or equivalently

| |A| | = max | |Ax| | . (5.8)

Mx||=l

Each of the three vector norms thus produces a matrix norm that is said

to- be -compatible with -the generating vector norm. Because_of this ____

compatibility, these matrix norms satisfy the three vector norm
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I|x|l2=l II x 11 = 1

1*'

IML-i

Figure 5. Unit Vectors under Different Norms



56

properties (5.4), (5.5), and (5.6), when x and y are replaced by matrices.

From the definition (5.7) one can see

| |Ax| | < | |A| | • | |x| | for all A and x. (5.9)

The main advantage of the two non-Euclidean norms is their ease of

computation. It can be shown [12] that

n

MA!.^ = max I ' |a±;j| (5.10)

l<j.<n 1=1

I |a1;J|. (5.11)

Finally we can introduce a scalar function of a matrix that

measures the degree of ill-conditioning for certain operations with

this matrix.

Define the condition number of square matrix A as

cond (A) = | |A| | - | | A'1 | |. (5.12)

For real matrices, the condition number with respect to the Euclidean

norm can be calculated

cond2(A) = /*1An (5.13)

where X.. and X are the largest and smallest eigenvalues in absolute

T •
magnitude of the symmetric matrix AA . If matrix A is symmetric

cond. (A) = — — - (5.14)2

where X.. and X are the largest and smallest eigenvalues of A.
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If matrix A is complex, (5.13) can be applied where one uses the
H . ' • • - .

largest and smallest eigenvalues of AA which will be Hermitian and

thus have real eigenvalues.

For the case of real symmetric matrices and the Euclidean norm,

one can most easily understand the application of the condition number. :

One can think of premultiplication by a matrix as a vector function in

which components of the vector in the direction of the eigenvectors, !Of

the matrix are stretched or shrunk by the respective eigenvalues.

Consider y = Ax as a mapping of vectors x onto vectors y. It is

geometrically clear that y = Ax maps the n-dimensional sphere of .all

unit length x's onto an n-dimensional ellipsoid with semi-major

axis A, and semi-minor axis X . One can see: that Ix, |/-|\ I is the
1 n ' 1' .' n1

ratio of possible distortions a vector x can undergo. Also note that

the condition number shows the loss in accuracy for computation of components

of x that are not in the direction of the eigenvector associated with the

largest eigenvalue. The geometrical interpretation with other norms is

not as clear.

It is to be stressed that cond(A) is a far better measure of ill-

conditioning than the smallness of the determinant A. Even if A is

normalized, the smallness of det(A) has a weak relation to the degree

of ill-conditioning. Supporting examples are given by Forsythe and

Moler.

Now we will indicate how the condition number can be used to

measure sensitivity of a solution to a linear system. Consider the

problem

Ax = y (5.15)

with unknown vector x. Suppose now that y is precisely known but that
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A and, .therefore, x are subject to uncertainty. Then

(A + 6A)(x + 6x) = y (5.16)

where 6A and 6x are uncertainties in A and x. Forsythe and Moler show

from Equations (5.4) to (5.9) that

x + 6 x

< cond (A) . (5.17)

Thus we can relate relative uncertainty in A to relative uncertainty

in x by a function of A itself. It should be noted that (5.17) is the

sharpest inequality .possible; i.e., the equality will occur for some

6A. Recall that any of the three norms can be used in (5.17). Occasionally

it is useful to write (5.17) as

M 6 xll < _i— - - I IA 1 1 • ||<SA||. (5.18)
• ||x+6x|| •

To make practical calculations of the condition number, the

condition number based on the infinity norm has been used. Equation

(5.10) shows that the norm of A is the sum of the magnitudes of the

elements of the row .that gives the maximum sum. For the special

form of the impedance matrix Z, this is always the center, row. For

the inverse matrix Z , in general, one must check all the rows above

and including the center row. However, if k is small and the current

distribution is essentially triangular, then the center row will have .

the maximum sum of the magnitude of the elements. Multiplying the .norm

of Z by the-nornr of .Z- gives the condition-number which determines

maximum error for the current on any segment. It should be noted
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that since Z. and Z are symmetric, cond (Z) = cond.. (Z) . Thus, if

one estimates error in Z as ||6Z|L, one can use the same condition

number to measure relative error in current I as | | 6l| | / | |l + 611 |.. .

Although the use of the Euclidean norm is geometrically clearer,

it requires far more computations. First, one must form the Hermitian
TT

matrix ZZ before finding eigenvalues. This multiplication, in itself,

3
t^kes on the order of .n multiplications. Rather than finding .all the .

eigenvalues, one needs to find only the largest and smallest. A

computer program has been written to find the largest eigenvalue by

iteration. The iteration scheme operates on the principle that

successive premultiplications of a vector by a matrix orients the

resulting vector in the direction of the eigenvector associated with the

largest eigenvalue in magnitude. Each iteration takes on the order ,of

2
n operations and the convergence of this scheme is so poor that .the .

convergence can be hastened by a linear extrapolation of two successive

vectors. Finding the minimum eigenvalue is even harder. All of the

eigenvalues of a matrix can be shifted by subtracting the maximum

eigenvalue from the diagonal, thus making the former minimum .eigenvalue

the new maximum eigenvalue in magnitude. This, however, does ,not

appear to be an efficient numerical procedure because small eigenvalues

t^nd to be close together causing slow convergence. Even worse, more .

accuracy is required so that when the largest eigenvalue is added .to the

final answer to .obtain .the true minimum eigenvalue, all significant

figures are not lost. One can invert the matrix and find the maximum

eigenvalue of that matrix. This eigenvalue-..will be the reciprocal .of , . .

the minimum eigenvalue of the original matrix, but the inversion itself

will take., on the order of n operations. All considered, using the
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infinity norm,.which is easy to calculate and gives the error in a

Chebyshev sense, appears to be more practical.
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CHAPTER VI. RESULTS

Current distributions and antenna impedances have been calculated

for various plasma parameters. Tables 2 through 9 and Figures 7 through -

14 give the results for eight different plasma conditions. A graph

2
with axes X and Y is very useful for mapping plasma conditions. (See

Figure 6.) The lines plotted on this graph correspond to various

resonances in a lossless plasma. When dispersion surfaces are drawn

over this plot, this display is known as a CMA diagram [13]. From this display

one can see. : that the nature of the characteristic waves in -the plasma

changes abruptly as one crosses any one of these lines; hence, these

lines form regions with similar properties. Each region has been

sampled in the results presented. For our formulation, it is necessary

to have some collision loss; therefore, for all cases, except for free

2
space which corresponds to X = 0 and Y = 0, Z has been arbitrarily

set to .05. In each case H = 1, a = 1/250, and results are presented .

for three values of k . Since there is symmetry around the center

feed, the graphs of current distribution show the current from the end

point to the feed. The condition number based on the infinite norm,

as described in the last chapter, is presented with each calculation.

Balmain has developed an analytical expression for the input

impedance using a quasi-static approximation which assumes a linear

current distribution [14]. The impedance predicted by Balmain's

formulation is presented for comparison. Where our method has determined

a linear current distribution, the two values should agree.

The first case presented is the degenerate plasma condition of

free space. (See Table 2 and Figure 7.) One can see that the data
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TABLE 2.

FREE-SPACE RESULTS (X = 0, Y2 =0, Z = 0)

(See Figure 7)

e = 1.0 e' = 0 e = 1.0
z

k̂ trf1)

.1

.75

1.5

IMPEDANCE (OHM)-
COMPUTED

.1600 - j 4491.

10.39 - j 471.4

68.86 + j 16.52

ADMITTANCE (MILLIMHO) -r
COMPUTED :

7.937xlO~6 + j .2227

4.671xlO~2 + j 2.120

13.73 - j 3.295

COND
OO

27.1

35.8

139
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agree generally with well-known results. The condition number for the

impedance matrix Z is alarmingly high. For k = 1.5, which corresponds

to a dipole slightly longer than a half wavelength, the condition -

number is 140. This means that an error of .1 per cent in formulating

the self term could cause "/a1.14 per cent error in the input impedance. .

One should be aware that for free space the Green's function is much

simpler and allows one to use better expansion functions in the method

of moments. Mautz [15] and Klock [16] have done computer work for

more arbitrarily shaped, thin-wire structures that agrees better, with

measurements than our results for free space. However, condition numbers

for some of these results are still high.

. Results for anisotropic plasmas are given in Tables 3 through 9

and Figures 8 through 14. The validity of results varies with the

region. Although there is not a unique wavelength in an anisotropie

plasma, in several cases the current distribution looks like .a

frequency-scaled, free-space current distribution. Results appear

best in 'regions' ; which make an antenna look shorter, and .worse in_

regions which make an antenna appear longer, just as in free space

*

the stability was best for short antennas. For example, when H .= 1

and k =1.5, an antenna in free space is approximately half-wave

2 "
resonant, but an antenna in a plasma with X = 2 and Y = 2 is

approximately full-rwave resonant. When the current distribution is no

longer linear, Balmain's approximation is no longer valid and there is

no standard analytical approximation.

Several regions require special comment. In the overdense hyper-

bolic region, our results predict a negative radiation resistance .for

k = 7.5 arid 1.5, which is. clearly incorrect. The overdense elliptic
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| r\

region (X1 > 1, Y < 1) is more believable but has some unusual

properties, The current decreases rapidly from the feed, making the

current distribution curve concave upward, the reverse of the usual

curvature of a sinusoidal distribution. The condition numbers indicate

a much better conditioned problem than free space. Unlike other regions,

the condition number decreases and the impedance agrees better with

Balmain's approximation as k increases, although the current distribution

is moving away from the assumed linear distribution. In general, regions ....

separated only by-a hybrid frequency resonance show no drastic changes.

There is little experimental work on current distribution which

can be compared to our theoretical results. Some work was done by

Snyder and Mittra [17], but they were unable to accurately determine:

the plasma parameters. An attempt was made to compare our results to

work done by Ishizone et al. [18]. Their results did not indicate their

antenna radius or a plasma loss parameter Z and so our computations

were made with an arbitrary H/a ratio of 250 and a Z parameter of .05.

Their measurements are all for overdense plasmas (X from 4. to 50) but

2
in both elliptic and hyperbolic regions (Y from 0 to 1.04). In all cases

their current distributions have standing-wave characteristics, often .

with the current increasing at the feed. However, for all of their

cases for which we have made computations, our current distribution

simply decreases rapidly from the feed similar to our computed results

2
for X =2.5, Y = .5. Thus, there is rather poor qualitative agreement

between our results and their measurements.

In trying to understand why blatantly incorrect answers are

sometimes obtained, one can note certain patterns between the

condition number, the validity of the impedance, and the relative importance

of the four terms of the Green's function E . (See Tables 10, 11, and 12.)
'
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As expected, the impedance matrix Z is best conditioned when it is

most nearly diagonal, or when the singular terms which decrease rapidly

with distance are dominant over the finite term. For the overdense

elliptic plasma which gives good results as compared to Balmain's

approximation, the field contribution on a segment distance 2H from

the source due to the finite term is two orders of magnitude less

than the total field, while for the overdense hyperbolic case X = 2,

2
Y = 2, which gives negative radiation resistances, the finite term

is an order of magnitude larger than the total field. The hypothesis

that the difficulties encountered in some regions are due to an

incorrect evaluation of the E' term, either through invalid approximations

or poor numerical quadrature, is strengthened by the tendency of results . . . .

to get worse as k increases. In the singular terms, k appears only

in the coefficient, while in the finite term, k is a factor in the
o

neglected terms of a Taylor series. A method is currently being

investigated to evaluate fields for which the finite term is significant

by an asymptotic expansion of the transformed Green's function.

Calculations were made to test the sensitivity theory discussed

in the last chapter. Consistent with the high condition numbers, it

was found that a 1 per cent perturbation of the diagonal term in the

Z matrix can cause a 30 per cent change of the impedance both for

free space and the hyperbolic overdense plasma. One should note that .

we are unable to obtain the condition number of ah error-free matrix.

If errors have occurred which make the matrix more diagonal, a

deceptively low condition will be calculated. In cases where large;

—-error-must-be-present-^— such-as—for the overdense-hyperbolic_plasma,_one_
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cannot, claim that the results approximate the true results within

definite limits when only the condition number of the matrix with

errors is known. .
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CHAPTER VII. CONCLUSIONS

Using the method~of moments we have been able to calculate the current

distribution on an antenna oriented parallel to the static magnetic

field in a plasma. .For most plasma regions, reasonable impedances

are obtained that agree with the Balmain approximation when kQ is

small. Calculations on the .overdense hyperbolic plasma, however,

give unrealizable results. The exact cause of this discrepancy is

not well understood; work is continuing on a different method of

calculating the fields that will be more accurate and faster for

segments far from the feed.

A method of quantitatively analyzing the degree of .iLUconditioning .

has been discussed. This method applies not only to this problem -but

to any application of the method of moments. In particular, it is

suggested that the stability of free-space, thin-wire problems be>

evaluated. This method can also be applied to inversion problems

arising from remote sensing studies.
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APPENDIX (LISTING OF PROGRAM USED) _„

C PREPARES E'S TO BE INVERTED
C LIMITS CHANGES

_ C 0 M P L E X E ,Elt El, E Z Sj E Z f S1, T ( 5 5 K EZ_FS2 t_EZ FN1 . TJJ 30 2 5 ) , E Z_Z , ai D_,ZJ_MP_,
I EZFN2,U t ER(21> ,Y l (2 i ) ,THOLOTTEZ(21>

0> tPP|30J_,ZZf301, SMm^j>Ml(3,30) fPPll_3, 30)
RE AL SCI (12 »/ 1C. , fl. , 7.5 ,6. , 5.V4.~, 3. , 2. 5% 2.", 1.5^, 1. ,"°- I
REAL KO/>576/ ,PER(3>/0 . , .01, . l /
REAL SSS(4»/4.53,5.35,13.47,50. /
RE^AL SP ( 21/-1- . 1. 5 0 /i K1 (3} /. Up .75^ 5 / _ _
PI=3.141593
H = l.

CALL CCP1PL(.5,1. ,-3) P_
C M IS NUMBER OF SEGNENTS

M=21
XM=M
~DO 1 600"KJOB=1 ,1
READ (5.251 XC,YC2,ZC

25 FORMAT (3F10.6I

SS=0.
SS1=0,
NPLOT=3

_C XC,YC, AND ZC APE 3 PLASMA PARAMETERS (DON'T USE X,Y,Z)
DL=H/(XM+2.»
_U=I1..0. )-JO.fl. )*ZC
E=(l.,0.)-U*XC/(U**2-YC**2>

_ El5_YC*_XC/C_y**2_-YC_»*2|
E1=E1/E
EZ = (1,,0.I-XC/U
EZ=EZ /E

KO = KK I X X »
PRINT 2 4 , K O » U , X C , Y C 2 t Z C , E , E l , E Z f M

24 F O R M A T C 1 * t 'KOs ' ,F6. 3 t 5 X , ' U = » , ? G 1 6 . 7 , 5 X ? « X C = « , G16.7, 5 X , « Y C ? =
______

1 G16.7/'0' , ' F=« ,2G16.7,5X, •£ !=• , 2G16. 7 ,5X , • EZ=« ,?G16. 7, < 5 X , « M = « ,14 I
PRINT 4

4 FORMAT (1H1, 'FIELD ELEMENTS'/' NO. • ,T17 , • FZS ' , T43 , «E Z^Sl /FZFS? • ,
_

C eCYL FOR "EZS7 E2DLi FOR EZFS1
_ KK=MINO(30,M1

DO 2 1=1 ,KK
X=I-1 _ ____ _
Z = X*2.*DL

JCA^LL E 2 D L K K G , E , E l , E Z t B , D L , Z , g : Z Z , E Z F S l , E Z F S 2 >
CALL"FCYL(KO, E , E i , E Z , A , D L , z , E z s >
CALL E Z F N ( K O , E t E l , E Z , D L , Z , EZFN1 , ER ( I) , Yl ( I) )
T( n =

ZJrfRJTE (6,51J
51 FOR"M"AT"(lH~ tI3,6"E15.472Er8.7/lH , 33X,2El5 . 4

IF(M ,LT. 311 GO TO 12
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E2DL1
KK=MINO(50,M»
DO 5 1=31,KK
X=I-1
Z=X*2.*DL
CALL E2DLKKO,E,El,EZ,B,DL,ZtEZS,EZFSl ,EZFS2)
CALL EZFN(KO,E,E1,EZ,DL,Z, EZFN1 , ER ( I ) , Yl ( I I )
T( I)=EZS+EZFS1+EZFN1+EZFS2

_5 WRITE _(6f5IL_L»EZSjEZFSl __ _ »EZF_N.l./M_n fEZF_S2
12 WRITE (6 ,104 I

104 FORM&T_ llHOt* INTEGRATION AND ERROR '_f_/̂ Q. • ,T15 , 'UNNPRM&L! 7.EO FZFM1
T«,T56, • ERROR' )
COND=0. _
00 71 1=1,M

3 FORMAT (1H , 13 ,5X,2E15.7,5X,2F15.7)
— DP 6 _JT_! »M_

K=M *(T-ll+J " "
KK = IABS(J-U +1

6 T 1 ( K ) = T ( K K )
Mlr.I. ABS(.M/2tl-M*l
C O N D = C O N D + C A B S ( f ( M l ) )

71 CONTINUE
W R I T E ( 6 , 7 2 ) CONP

72 FORMAT (1 HC_L5X t_'_NQRM_BE FOP E__I NV/ER SION =' , E 16. 7 I
CHOLD=COND
CALL LINECHM ,T1 )
IHOLD=0
CONDIT=0.
DO 73 I = 1 , M
COND=0.
DO 74 J=1,M
KK=M*(1-1)+J
C O N D = C O N D + C A B S ( T 1 ( K K ) )
IF (CONO .LE.CONDIT) GO TQ 73
IHOLD=I
CONDIT=COND

73 CONTINUE
WRITE (6,75) CONDIT,IHOLD

75 FORMAT (1H ,5X,'NORM AFTER INVERSION =' ,El 6.7,5X,•ROW•,I?)
COND=COND*CHOLD
WRITE (6,76) COND

76 FORMAT (1H ,5X,'ESTI MATE OF CONDITION =' ,E16.7»
PRINT 7

7 FORMATC 1« )
KK=M**2 -2

9 FORMAT(f • ,I4,3(5X,2E16, 7))
PRINT 15

15 FDRMAT('O'///' NOT MULT BY -1/(2DL>**2' \ .•_
" DO 14 1 = 1,KK,3

14 PRINT 9,1,TKI I,T1(I*1),T1( 1*2)
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F =-!./( 2. *DU**2
DO 13 1=1, M2

13 TKI )=F*T1( I

AD=TUHM>*1000.
Z I M P = 1 . / T 1 ( M M )
M l = « M - l » / 2 ) * M
M 3 = ( M + l l / 2
M 4 = M l + l
M5=M1+M3
DO 17 I = M4,H5
XX=CA8S(T1(I)T"
XY=ATAN2(AIMAG(T1U) ),REAL(Tl( I)M

17 Tl (I)=CMPLX<XX,XY)
PRINT 21

21 F O R M A T C O ' / / / '
_ DO j^O 1 = 1_,M3 ___
20 PRINT 22, TlTH-Ml)
22 FORMATC • , IPX t 2G16. 7 )

_____
', 10X, 'CURRENTS ~ TMAG ~AND P H A S E * ' )

P R I N T 2 3 , A D t Z I M P
F O R M A T C O ' / / /• • , IPX , « A D M I T T A N C E

• ' t l O X , « I M P E D A N C E = ~ » ,2G16 .7 ,~«
' ,2G 1 6^. 7_,J

OHMS'l
M I L L I M HO S i • /

100
DO 30 I = 1 , M 3
PM(
IF
PM1
PP(

3D PPl
PM(]

*!»= REALIT1C I+M1I )
PM(I+1 ).GT.SS> SS=PM«I*ll
IXX,I*-1I=-PM( 1*11
+11= AIMAG(T1(I+ML)I
I X X t I4-1»=-PP(I4-1 »

L >=0.
PMK IXX,1J=0.0

PP1(IXX,1)=0,

DO 53 K=l»7
IF (SS.GE.l. } GO TO 54

53 SS=SS*10.
54 K=K-1

DO 55 1=2,12
IF (SS.GT.SCK 1)1

55 CONTINUE _
GO TO 56

56 SM(2) =
SM(1)=0.

C START
CALL
CALL
CALL
CALL
CALL
CALL
CALL

PLOTTING
CCP1BA
CCP1PL(4.5,2
CCPIPHO.,0.
CCP1PL(0.,6.
FACTOR (.5)
CCP2SY(-7.9,
CCP3NRIO. ,0.

. ,-3)
t3)
,21

,5,.3,'H= ',90. ,3)
,-.3,H ,9,0.,?)
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CALL CCP2SY(-7.4,.5,.3,«X= «,90.,3)
CALL CCP3NR<0.,0.,-.3,XC,90.,3)
CALL CCP2SY (-7.0,.5,.3,«Y 2 =«,9Q.,5>
CALL CCP3NR<0.,0.,-.3,YC2,90.,3»
CALL CCP2SY(-6.6,.5,.3,«Z= ',90.,3)
CALL CCP3NR<0.,0.,-.3,ZC,90.,3)
YP=.5
XP=-6.2
DO 52 K=1«NPLOT
L=K
IF <K.E0.3» L=C
CALL CCP2SY(XP,YP,.3,*KO=«,90.,3)
CALL CCP3NR (0.,C.,-.3,K1(K),90.,3)
CALL CCP2SY (0.tO.,-.3,•...•,90.,3
CALL CCP2SY (0.,0.,-.15,L,90.,-1)

52 XP=XP+.4
CALL FACTOR(1.»
CALL C C P 5 A X ( 0 . , 0 . , « M A G OF CURRENT* f!4,4.01/0,180. , SM I
CALL CCP2SY («3,1.370,.15,'MID POINTS OF SEGMENTS«,Q(K ,22
CALL CCP2SY ( .3,5.800,.15,'FEED•,90. ,4)
DO 46 1 = 1,M4
X X I = I - 1
Z H I M12 . / (XM+1. ) * X X I
CALL CCP2SY <0.,ZZ(I ) ,.C7,13,90.,-1>
DO 46 K=1,NPLOT

IF (K.EQ.3) L=0
K,n = (PMl(K, 114-SMf II )/SM(-2l

4 6 .C A LJL._C_C P2 S Y _ (P Ml ( K , I » , Z Z ( I) , C . 0 7, L , 90. , - ! )
DO 49 K=1,NPLOT
CALL CCP1PL(PM1(K,1),ZZ(1>,3>
DO 49 1=2, M4

_49_ CALL CCP1PHPM U Kj I > , ZZ ( I L, 2 I
CALL CCPlPL(2.5,0.,-3i
CALL__CCP1P_L(_Q..,6..,_21 ____'
CALL CCP5Ax(2.0nO,0. ,«PHASE OF CURRENT « ,6,4. 000, IPO. , SPJ
CALL CCP2SY < .3,1. 370, « 15, 'MID POINTS OF SEGMFMTS* ,90 , , 22 )
CALL CCP2SY ( .3, 5. 800,. 15 , •FEFD1 ,90. ,^ I
DO 47 1 = 2, M4 ___ __ ___ ' _ _
CALL CCP2SY<0.,ZZ(i ) ,.07,13,90. ,-1)
DO 47 K=1,NPLOT _
L=K
IF (K.EQ.3) L=0 ______
PP1(K,I>=( PP1(K,I M/SP12)

KjI I »ZLUi,p.07,L .,_9p̂ _,-l ) ________________
DO 50 K=1,NPLOT

______ CALL__CCPiJH,iPPl(.K,2» ,ZZ_12) ,31
DO 50 1=3, M4

50 CALL CCP1PL(PP1(K.I),ZZ( I), 2)
CALL CCPlPL<4.,-2.,-3)

1QQQ C O N T I N U E
CAL-L—EXIT-
EC4D
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SUBROUTINE LINEQ(LL,C)
2/5/71 C KLEIN CHANGED ARITH IPS TO LOGICAl IPS

COMPLEX Cm,STOR,STO,ST,S
DIMENSION LR<58)
DO 20 1=1,LL
LR(I1=1

20 CONTINUE
Ml=0
DO 18 M=1,LL
"K=M
DO 2 I=M,LL
K1=M1*I

IF ((CABS(C(K1I)-CABS(C(K2»M .LE. 0. » GO TO ?
K=I

2 CONTINUE
LS=LR(M)
LR(M»=LR(KJ
LR(K»=LS
K2=Mi+K
STOR=C(K2>

DO 7 J=l,LL
K1=J1+K
K2=J1+M
STO=C(Kl)
_C!5.i L'ClKi!
C(K2)=STO/STOR

7 CONTINUE
K1=M1+M
C(K1 I = 1./STOR
DO 11 1=1,LL
IF(I-M> 12,11,12

12 K1=M1*I
ST=C(K1)
C(K1)=0.
Jl=0
D^ 10 J=1,LL
K1=J1+I
J<_2_= JH_M
C(K1I=C(K1I-C(K2)*ST
J1=J1+LL

10 CONTINUE
11 CONTINUE

18 __
Jl = 0
DO 9 J=1,LL
IF( J-LR( J) .EG. 01 GO TO 8
LRJ=LR(J) __
J2=( LRJ-1»*LL

21 DO 13 1=1, LL
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K2=J2*I
KUJ1 + I
S=C(K2)
C(K2»=C(K1J
C<K1)=S

13 CONTINUE
LR(J)=LR(LRJI
LR(LRJ»=LRJ
IF(J-LR(J) ,N6. 0) GO TO

8 J1=J1*LL
9 CONTINUE

RETURN
END
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SUBROUTINE EZFNUP , E t El »EZ . DLt Z, EIFN1, ERROR ,Y1 )
REAL KO
REAL*8 XY/1DO/
COMPLEX E, E l ,EZ tX ,EZFNl , ERROR »Y1

8 P12/1.5707963268/
COMPLEX *16 Y,DAPHI1 ,DAPHIO , DHPHI 2, ERR
X=DHPHlO(DBLE(KO)tDCMPLX(DBLE(PEAL(F ) t , DBLE( A IEAGCE > > > »

1 DCMPLX(DBLE(REAL(E1) ) , DBLE ( A IMAG( Fl ) ) ) »
2 ____________ ^CMPk? (DBLE(REAL(EZ) ) , DBLE( A IMAG( E Z ) ) j ,
3DBLE(DL>»DBLE(Z) J
CALL ROHBR.G(.QPQ_iPl 2 » DAPHI1 1 fl t Yf 10-4-, ID- 3 , ERR > ___
ERROR=ERR
Y1 = Y ___ _^ __
K = O R E A L Z ( D H P H I 2 ( X Y M

EZFN1=(0. ,15. )*KO**2*X
RETURN _________ ^
END
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SUBROUTINE E2DL1 ( KO, E, E 1, EZ, At PL , Z , EZS , E ZF SI, E7F S2 »
C THIS SUBROUTINE CALCULATES FIRST THREE E TERMS USING 2 HL MQHEL

COMPLEX Ef El ,EZ,EZS_tEZFSl» EZFS2 ,A1 ? , ZAP , Z AM, Z APH, ZAMH , ?F ? , ZF?
C RETURNS COMPLEX NUMBERS " ......... "
C THIS REPLACES SUBROUTINE E2DL _

R E A L KO ....... "

ZPDL=Z*DL
ZMDL=Z- DL
ZPOL2=ZPDL*»2
ZMOL2=ZMDL**2
ZAP = ZPDL**2 *A12
ZAM=ZMDL **2 -»A12
Z A P H = C S Q R T ( Z A P »
Z A M H = C S Q R T ( Z A M |
ZF~2~=CLOG< <ZPDL +
ZF3=ZPOL / Z A P H - ZMDL/ZAMH

EZS SIMPLIFIED 2/7/70
E Z S = ( 0 , t !5« ) / ( K C ^ D L * E > « ( Z P D L / ( ZAP* Z A P H ) -ZMDL/ ( Z AM* Z A M H ) )
EZFS1=(0 . ,-7. 5 I * ( K O / D L » » ( (2.,0. I *7 .F2-ZF3)
IF ( REAL(EZI .NE. 1. .OR. AIMAG(EZ> .NF. ̂ . .OR. RFA L (Ell

1 ,N£. H. .OR. AIMAG(E1» .NE. O.I GO TO 1
EZFS2= (0. ,0. )
GO TO 2

*'* "2_ _ _ . _ . _
E Z F S 2 =Td. ,15. » * E Y * * 2 / ( E Z - ( 1. ,0. I >»* •? * (KO/DLM'Tt'l +ZF2M

1 ( -2. ,0. |+ZF3* ( .5,0. l*( (1. ,0. I-EZI I
1 (1.- EZI I

2 RETURN
END



95

SUBROUTINE ECYL(KGfE,EltEZtA,PL•ZtEZS)
THIS EVALUATES EZS USING ELLIPTICAL INTEGRALS

COMPLEX E,El,EZ,EZStXfA12,KP2,KM2
REAL KO

THIS FUNCTION STATEMENT EVALUATES ELLIPTICAL INTEGRAL
EL(X)=( ( (( A4*X+A3)*X

-( (( (B4*X+B3)*X +B2)*X ___
DATA Al,A2t A3V A4/. 4432514, 6.260601E-?, 4, 75738AE-2,!. 736506E-,?/
P * T A_ Bl t B2tB3t B4/.2A9983 7 , 9. 2n0180E-2 , A. T- 6 969Q E - 2_, 5 2 6449 6 E - 3_/_
ZPDL=Z+OL

A12=EZ*A**2
^. *A12/(ZPDL**2-»4.*A12>
4.*A12/(ZMDL**2+4.*A12)

EZS=(0 . ,15 . ) / ( (K0*3 .
1 <CSQRT(KP2) *EL«1 . ,G . ) -KP2) /ZPDL-
2 .CJ5QRT (KM 2 i* EUJ. 1 • » 0. ) - KM 2!)/Z MDLJ_.

RETURN
END .
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SUBROUTINE RDMBR G(A,BtTTT,NMIN,Y,TR,HMIN,ERR
CONVERTED TO COMPLEX
IMPLICIT COMPLEX*!6CA-G,0-WtY-Z)
IMPLICIT REAL*8<H,X)
REAL *8 TR,A»6»DREALZ,DIMAGZ

C TNT MUST BE DECLARED EXTERNAL IN CALLING PROGRAM
C ADAPTIVE INTERVAL ROMBERG INTEGRATION ROUTINE
C NMIN IS MIN NUMBER OF SUBINTFRVALS

DIMENSION FF2(10>tFF4(10 ) ,HF(10)
NSUB=10
KODE=0 '
HMAX=<B-AJ/NMIN
ERR=( 000,000)
Y=(ODO,ODOI

F 4 = T N T ( A »

JDjQ_l_J_Jj?It.NM.I N.
INITIALIZE LARGEST INTERVAL POSSIBLE

FO-F4
X4=XO+HMAX

X2=XO+,5*HMAX
LEVEL=0
F2=TNT(X2)
H=HMAX

C_ _ S_TART LOOP...
4 W=FC*FA

.C H FACTOR ED . 0UT OF T ( N|, M I TERMS
TOO=W/2DO
HW=H+2DO*F2

IF ( D R E A L Z t T l O ) . EQ. O.ODO GO TO 20
I FJ DMA XI __ ( DA_ B S (_LPR E AL_Z ( Tl 3J -DR E AL_irTGJLJ 1/DRE A L Z ( T 1 - » ) , __

1 D A B S C ( D I M A G Z ( T I O ) - D I M A G Z ( T O I ) ) / D I M A G Z ( t i 6 n > ,LF.
2 _ TR> GO TO 8 ________

GO TO 21
20 IF (DABSU.DIMAGZ(T1QI -D IMAGZ(TOU » / D I M A G Z ( T l p n . L F . TR> GO TO
21 CONTINUE

Fl = TNT(X_0_t. 25*.H| _ ....... __

TC2=( W W + 2 D Q * ( F 1 + F 3 ) I /8DO
T11=(4DO*T02-TOH/3DO
T2.0.= (l .6.0.0*1.11 rT 10 I./15DO
IF ( O R F . A L Z < T 2 0 ) .EQ.O.ODO) GO TO 22
IFtDMAXL! DABSJ (PREALZ(T20J-DRE.ALZ«.T.11J _

1 D A B S ( ( D I M A G Z ( T 2 n > - D I MAG? (Til l ) /DI MAGZ ( T 1 1 » )
2 _ .LEt TR) GO TO 2

GO TO 23
1- F_ <JAf<^ IMAGZTL201- !MAGZ ( T.1.1 LK/O1MAGZ

23 CONTINUE
______ I_F__{ LEVEL .LIT. _NSUB.._r AND. .H. ...GT.HMINJ^ GO .TO 3
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KODE=1
GO TO 2

SUBDIVIDE
3 H=f

LEVEL=LEVEL+1
FF2(LEVEL)=F3
HF(LEVEU = H
FF4<LEVELI=F4
F4=F2
F2 = F1
X4=XO+H
GO TO 4
Y=Y+T10*H
ERR=ERR+(T10-T01»*H
GO TO 9
UNSUBDIVIDE

2 Y=Y+T20*H
ERR=ERR+(T20-T11I*H
IF(LEVEL .EQ. 01 GO TO 1
FO=FA
F2=FF2(LEVEL)

H=HF(LEVEL)

LEVEL=LEVEL-1
GO TO 4

1 CONTINUE
IF(KODE ,EQ. 1 ) PRINT 5

5 FORMATC ACCURACY SP'ECIF'IED CANNOT "BE OBTAINED 1 )
RETURN
END
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COMPLEX FUNCTION DHPHIO*16(KO,E,El tF-Z.DL,Z)
IMPLICIT REAL*8(A-H,0-Z)

C EXTENSIVE CHANGES 7-28-71 TWO INTEGRAND HALVES SUMMED AND COUNT PP.
C "" FOR TIMES CALLEiTADDED
C CHANGES M_ADE^ 5/1/71 HC FLIMINATED AND INCLUDED IN HPHI

'c CHANGES ~MADE~4720/ 71 " A B O U T SQR'T "OF" NI
C DON'T DO UNIAXIAL CASE

CHANGES MADE 4/15/71 HPHI NO LONGER NF.FDS HCFO
COMP LEX* 16^ Nl , U1_»U2 tCOEF ,H, E11 EZ , E ,Nl 2 , ST , DSCR , N?2, DUM, F1 2 , A , P ,C ,

H1,D1 ,TNttDHPHI2
REAL*8 KC
1=0

RETURN
E N IR_y_INJ_LP HJJL
1 = 1*1
SP=DSIN(PHI \
SP2=SP**2
CP=DCOS(PHII
IF( C D A B S ( E l ) .EQ. C D O I GO TO 1

H FOR El -.= 0^ _ _ _
E12=E1**2
CP2=CP*+2
A = SP2VFZ* " CP2
B = E Z * (
C = ( 1 D O - E 1 2 ) * E Z
. D S C R = C D S Q R T ( B * * 2 - ^ D O * A * C )
N12 = ( B - O S C R » / ( 2 r ) ? * A )
N 2 2 = ( B + P S C R | / ( 2 D O ; * A )
D U M = ( O D O , - 2 D O ) * S P » S P ? / ( A * * 2 * ( N 1 2 - N 2 2 )
D1=LDG*E12*CP?
H=DUM*(1DO-E12-N12*D1 I
H1=-DUM*(1PO-E12-N22*D1
GO TO 2

H FOR JE1_=P^ _
N12~=~(10n,CDO)

f N12 _____
H = ( O D O t 2 D O I*SP*SP2

J!l.f (^pOjODQ)
CA'LCULATING SIN( >/ ( ) TERM

2 S T = C P S Q R T ( N 1 2 « : E )
IF ( D I M A G Z ( S T ) ,GT, 0001 ST=-ST
Ul = ( ST*KC*CP) ___ _
U2=U1*DL
IF ( _ C D A B S ( U 2 I . L T . l.D-3) GO TO ^

" C O E F = C D S I N ( U 2 I / U 2
GO TO 4_
C O E F = ( 1 D O , O D - I
TNT =H*CDEXP(- (OD% l D r » * U l ^ D A B S ( Z ) l B C O E F * S T
S T = C D S O R T t N 2 2 * E I
If^IMAGZ.LSI> «GT. GDC) ST = -ST
U l= (ST
U2=U1*DL
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IF ( COABS(U2>.LT. l.D-3) GO TO 6
COEF=CDSIN<U2)/U2
GO TO 8

6 COEF=(1DO,ODOI
_8 TNT=H1* CDEXP(-(OOOt1DO>*U1*DABS(Z>)*COEF*ST*TNT
9~ RETURN

ENTRY DHPHI2(X)
DHPHI2=DCMPLX(OBLE(FLOAT( I I> ,000)
MI
END
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