Automatic Recognition of Vector
and Para’.lel Operations in a
Higher Level Language

Paul B. Schneck

~Institute for Space Studies
Goddard Space Flight Center
New York, N.¥Y. 16025

' (NASA-TNM=-X-68608) AUTONATIC ELCOGNITION OF N72-31227
VECTOK AND PARALQEL cpﬁagfrgwébfg §lééég£gk Wiam3nea
LLVEL LANGUAGE P.B. Schneck (NASA) [1971]

8 p C8SCL YR Uunclas
G3/C8 16202

V Rt;producedby T R L
ATIONAL TECHNICA
::lFORMAT\ON SERVICE

rtment of Commerce
us DS?:?ngfield VA 22151

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY., ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.,

A compiler for recognizing statements of a
FORTRAN program which are suited for fast
execution on a parallel or pipeline
machine such as ILLIAC-IV, STAR or ASC is
described. The technique employs "inter-
val analysis" to provide flow information
to the vector/parallel recognizer. Where
profitable the compiler changes scalar
variables to subscripted variables. The
output of the compiler is an extension to
FORTRAN which shows parallel and vector
operations explicitly.

KEY WORDS AND PHRASES: parallel computa-
tions, vector processing, pipeline, inter-
val, flow analysis, compiler.

CR CATEGORIES: 4.12, 4.22

INTRODUCTION

The very high performance computers
being built today for delivery in the next
several years (e.g. Texas Instrument's ASC,
Control Data's STAR and Burrough's ILLIAC~
IV) rely on radically new machine organi-
zations to attain their speed. They are
based on pipeline (vector) or parallel
processing concepts (1) which, however dif-
ferent they may be, appear quite similar
to the user. Each of these computers
requires that the same sequence of opera-
tions be applied to a large set of data
"items in a regular fashion. Each opera~
tion is specified in turn and it is ap-
plied to the entire set of cdata. Thus,
these machines may be thought of as per-
forring an operation sinultanecusly on all
data items. The ILLIAC-IV operates on 64
- data jtems in parallel. The STAR and ASC
perform operations on data items sequen-
tially, but with a very high degree of
overlap.

Howvever, programmers are not accus-
tomed to stating problems in the form
required by these machires. &n effective
means of problem statement is transforma-
tion of a standard high level language
progran into one which details parallel
operations, This paper describes the
technicues used in-a compiler to perform
this transformation. The compiler accepts
a standard FORTRAN program (2), identifies

implicit parallel or vector operations and
produces a program which performs these
operations explicitly. The program output
by the compiler is 'almost' in the
Burrough's ILLIAC-IV FORTRAN language (3).
In this extension to FORTRAN an asterisk
appearing in a subscript position indicates
that the entire column takes part in an
operation. The operation is performed in
a manner analagous to the functioning of
an I/0 statement's "implied DO".

The next three sections of this paper
describe three of the four compiler seg-
ments:

1. Statement Classification

2. Flow Analysis

3. Recognition of Parallel or Vector
Operations '

4, Optimization (not included, will be

-discussed in a later paper).

STATEMENT CLASSIFICATTON

As each source statement is read it
is classified as one of the approximately
forty FORTRAN statement types (4). The
appropriate routine is then called to
process the statement. Two functions are
performed at this time. The source state-
ments are transformed to an intermediate
text representation which is convenient
for further analysis, and information is.
gathered which will later be used to deter-
mine program flow and data flow. Each
appearance of a variable, constant, or
label is entered in a "reference table"
and dictionary. The format of this key
pair of tables is given in Figure 1. When
the entire FORTRAN program has been read,
control is transferred to the flow analy-
sis routines.

- R ey assiy A \rpiive.g

LA 1 > 2 8
1 1
2 50 2 > -3 9
B 3 3 4
3 3
C 5 -3 7
4 \\\\:
-4 6
5
5 -
6 4
Dicti
ictionary 5 -3
7
ISN N 8 -5 -1
2 ees A
3 50 B=B+t... 6
4 C=... 9 -2
5 A=B*C
6 IF()50, 60, 60 10

Reference Table

*
ISN > 0 is a use,
ISN < 0 is a definition.

a positive number indicates the next reference
table entry, a negative number indicates end
of reference chain, and points back to the
variable in the dictionary,

Figure 1. Reference Table and Dictionary

FLOW ANALYSIS

The first task of the flow analysis
- routines is to divide the program into a
set of basic blocks. A basic block is

. defined as section of code with only one
point of entry, one point of exit, and no
internal flow, as shown in Figure 2. A
referenced label is a point of entry and
" causes a basic block to begin, a branch is
a point:of exit and causes a basic block
to end. With an adaptation of an algo-
rithm by Kleir and Ramamoorthy (5) basic
blocks are identified by chaining through
the reference table to locate entry and
exit points.

U=3bU./FLUAT(N)
DO 1 I=1,N

A(I)=SIN(FLOAT(I)*Q)
1 B(I)=COS(FLOAT(I)*Q)

Z=A (N) +B (N)
7 Y=A(N)*A(N)-B(N)*B(N)
DO 2 I=1,N

2 A(I)=A(I)*(Z+B(I)/Y)

WRITE (6,101)A
STOP

OO

END
Figure 2. Basic Blocks

It is now possible to characterize
the program flow in terms of basic blocks.
The elementary flow relationship that we
employ is called a predecessor. Block "i"
is said to be a predecessor of block "j"
if block "j" can be reached from block "i";
it is an immediate predecessor if block
"j" can be reached in one step. A set of
predecessor lists is used to represent the
program flow. Each predecessor list gives
all the immediate predecessor blocks, as
in Figure 3. : .

Block Predecessors
1 " None
2 1,2
3 2
4 3,4
5 4
6 5

Figure 3. Predecessor list of
sample program in Figure 2

We are ready to begin processing at
this time. All that remains is to choose
an ordering of the basic blocks. Clearly
we wish an ordering that will identify
loops, as that is a necessary condition for
the existence of parallel or vector opera-
tions. The notion of a "Strongly Connec-
ted Region" (SCR} which is roughly equi-
valent to the extended range of a "DO"
loop is convenient at this time. An SCR
is a set of basic blocks with the property
that any pair of basic blocks of the set
are predecessors of one another. Nested
loops. produce a nested set of SCRs when
all blocks of inner locps are treated as
single blocks. A construct which readily
finds SCRs and has other useful ordering
relations is called the "Cocke-Allen
interval decomposition™ (6, 7). By using
this technique we will identify SCRs and
determine a processing order.

ol

-The "interval" construction arises
naturally by extension of the concept of
basic block. Because a basic block has
only sequential flow it is not useful
where consideration of flow is necessary.
We extend the definition of basic block to
permit divercent flow paths. This is
still not adeguate for handling SCRs so we
extend the definition acain to permit con-
vergent flow paths from a cormon predeces-
sor. This development is traced below.

¥We now define an "Extended Basic
Block" as a section of code with one entry
and any number of exits. An extended
basic block is a set of basic blocks which
can be amalgamated to a unit, as shown in
Figure 4. The extended basic block per-
mits us to work with larger units of code.
For example, Figure 4 illustrates an ex-
.tended basic block which is a set of basic
blocks on three divergent paths. We may
consider blocks 1-2-3, blocks 1-2-4 and
blocks 1-5 as units, for the order of code
is sequential along each path.

J

Figure 4. Extended Basic Block

H

To construct an extended basic block
we begin by initializing it to a given
basic block called the "head". A basic
block may be added to the extended basic
block if and only if it has a single irme-
diate predecessor which is already a mem-
ber of the extended basic block. This
definition immediately rules out many com-
mon cases of program flow, as shown in
Figure 5.

Extended
Basic
Block

A=B. OR. C
IF (AYGO TO 3

P=Q+R

3E=E=xP

Figure 5, Flow which is not an
Extended Basic Block

The definition is now extended to
allow convergent paths, and so yields an
"interval”. An interval is the maximal
set of basic blocks containing a distin-
guished basic block, called the "interval
head", with the properties that:

a) all predecessors of blocks in the
interval, except the interval head,
must belong to the interval.

b) any SCR in the interval must in-
clude the head.

In constructing an interval we again begin
by setting the interval equal to a given
basic block, the interval head. A basic
block may be addded to the inteval if and
only if all of its immediate predecessors
are already in the interval. This defini-
tion yields a partial order among the
blocks of the interval, shown in Figure 6.

Since a basic block can be made part
of an interval only if all its predeces-
sors are already in the interval, it is
clear that an SCR cannot be added to an
interval. However, an interval will con-
tain an SCR when a block of the SCR which
could not be added to a prior interval
becomes the head of the interval. Thus,
intervals can be used to identify SCRs.

3 .

Figure 6. Interval

The interval construction unigquely
partitions a program flow-graph (6). The
resulting intervals are then treated as
basic blocks arnd the process .repeated as
in Figure 7. The set of iterated inter-
vals defines a processing order (with some
blocks processed several times) for analy-
sis of the source program. The iterated
interval segquence either converges to a
single block or takes on an irreducible
form. By transformation of the source
program the irreducible form could be
eliminated (8). Currently either condi-
tion signals the completion of processing.

b. first level
intervals

c. iterated
interval

a, flow diagram

Figure 7. Iterated Intervals

RECOGNITION OF PARALLEL OR VECTOR
OPERATIONS

The input to this segment of the com-
piler is the ordered set of blocks of an
interval, The interval may contain the
entire. program or an SCR. The SCR is the
item of interest and must be located with-
in the interval. As observed earlier the
target of the backward branch creating the
SCR must be the interval head. The SCR
consists of all interval predecessors of
the interval head. It is in the SCR that
parallel or vector operations can be per-
formed when sucessive passages through
the SCR are independent of one another.

q

In order to execute computations within
the SCR in a parallel or vector mode of
operation, the number of iterations must
not be dependent on computations within
the SCR. Ecuivalently, the SCR must have
only one exit, controlled by the variable
used to count the number of iterations
called the induction variable.

The induction variable must now be
identified. To accomplish this it is
necessary to distinguish "relative con-
stants", those variables (all constants
are relative constants) whose values do
not change within the SCR. This is done
iteratively, by first marking all wvaria-
bles which are not defined within the SCR,
as they are clearly relative constants.
Next, all variables which have only a sin-
gle unconditional definition that precedes
all uses and is defined in terms of rela-
tive constants are marked relative con-
stants. This process is repeated until no
new relative constants are found.

If the exit branch of the SCR depends
upon precisely ane variable that is not a
relative constant then that variable is
the induction variahie candidate. 1In
order for the indwction variable candidate
to be the inductiamr wariable it may only
be defined by additiwon or subtraction of a
relative constant exgression to itself
within unconditiomal arithmetic state-
ments. In an STR corxesponding to a
"DO" loop the inmduction variable is the do-
variable. Identification of the induction
variable means it is possible to determine

- the number of iterations of the SCR before
~entry. . If no imduciiom variable can be
identified then parallel or vector calcu-
lations cannot be perfermed and the next
interval is processed.

When the induction variable has been
identified it is used to determine which
subscripted variables may participate in
vector and parallel operations. Currently
the compiler considers only subscripted
variables in which the induction variable
makes precisely one appearance in the same
position in every subscript. Any other
variable which appears in the subscript
must be a relative constant, s» that its
value is available for the entire parallel
or vector operation (corresponding to each
iteration through the SCR). A subscripted
variable may participate in vector and
parallel’ operations only if there is no
"feedback” between different iterations of
the SCR, as shown in Figure 8.

‘ In order to determine whether feedback
can occur we must krow in which direction
the inductiocn variable is changing. 1If

the induction variable is not incremented
by a constant, we must examine the exit
branch of the SCR. If the loop exit
occurs on "greater" (>,2) condition the
induction variaktle is increasing, if the
loop exit occurs on "less" (<,<) condition,
the induction variable is decreasing.

Other conditions make it impossible to
determine the direction of change of the
induction variakle, therefore impossible

to check for feedback, and so parallel and
vector operations cannot be performed.

The condition for feedback is now
described for an increasing induction vari-
able. Let I(S) be the multiplier of the
induction variable in subscript S, and let
J(S) be the constant term of the induction
variable in subscript S. For example, if
“L" is the induction variable, then

I (3 *L+2,M=-7,2%*N+4) =3

and J (3 * L +2, M~ 7, 2 * N + 4) 2.

Let I, be the maximum of I(S) over all
subscripts appearing in definitions of the
variable and let Ip be the minimum of I(S)
over all subscripts appearing in uses of
the variable. Define Jj, and Jg in a simi-
lar fashion. Feedback potentially exists
if

IL > IR or JL >.JR

As illustrated in Figure 8, potential
feedback does not always result in feed-
back. Potential feedback implies the exis-
tence of subscripts "s" in a definition
and "t" in a use of the variable with
I(s) > I(t) or J(s) > J(t). 1In the case

.of potential feedback all definition/use

pairs of subscripts must be checked to
determine whether feedback actually occurs.
The necessary information is contained in
the reference table. For each definition/

. use pair of subscripts causing potential

feedback, if the definition occurs before
the use along all possible paths (i.e. the
definition back dominates the use) the
pair does not cause feedback. If all such
pairs of subscripts do not cause feedback
then the variable is a candidate for paral-
lel or vector execution.

...A(I)

A(I+1)
a. Feedback

A(I+l) e
oo AlT)
b. potential feedback, no feedback

e dA(I41)...
L WA(T) ...

I\

"

A(I-1)
A(D)

c. no feedback, no potential feedback

Figure 8. Testing for Feedback

vy

It is not sufficient merely to recog-
nize vector and parallel operations among
subscripted variables. It is desirable to
replace seguential processes with vector
and parallel prccesses whenever possible.
Figure %a illustrates a lcop where terpor-
ary variables are used to hold common sub-
expressions; Ficure 9b illustrates the
same loop as transformed by the compiler.
A scalar in an SCR is transformed into a
vector when at least one of its uncondi-
tional definitions is in terms of a vector
quantity.

DO 3 I=1,IM
IM1=MOD (I+IMM2,IM)+1
PO 3 J=2,3M
ALPH=FXCO*(P(J,I)+P(J-1,I))
1 *(FD(J,X)+FD(J-1,I))
gr{(J,1,L)=tT(J,I,L)+ALPH*V(J,I,L)
UT(J,IM1,L)=UT(J,IM1,L)+ALPH*V(J,IMl,L)
vr{J,1,L)=vT(J3,I,L)~-ALPH*U(J,I,L)

3 vr(J,IM1,L)=VT(J,IM1,L)~ALPH*U(J,IM1,L)

a., Source Program with Scalar Variables.

DO 3 I=1,IM
IM1=(MOD ((I+IMM2) ,IM) +1)
ALPHV (*) =((FXCO*{P(*,I)+P(*-1,I)))
1 *(FD(*,I)+FD{®*-1,1)))
uT(*,I,L)=(UT{*,I,L}+(ALPHV(*)
1 *v(*,I,1)))
UT(*,IM1,L)=(UT(*,IM1,L) +{ALPHV(*)
© 1 *V(*,IM1,L)))
VI(*,I,L)=(vT(*,I, L)~ (ALPHV(*)
1 *u(*,I,L)))
VT (*,IM1,L)=(VT(*,IML,L) - (ALPHV(*)
17 *0{*,1IM1,1)))
3 CONTINUE

b. Compiler Output with Subscripted Variables.

Figure 9. Change Scalar to Vector.

Any calculation which is conditional,
and thus loop dependent, cannot be per-
formed in parallel or as a vector. This
would at first seem to eliminate a great
many operations but in fact does not.

Even though flow information indicates
that a calculaticn is conditional it may
not be so in the context of an SCR. As
illustrated in Figure 10, if a conditional
calculation depend¢s on a loop independent
test then either the calculation will
always or never be executed during the
loop, as the test result does not vary
within the loop. In this case both the
loop inderendent test as well as the paral-
lel and vector orerations may be moved out
of the loop as described below,

DO 1 L=1, N
DO 2J=2, 100

IF (MOD{(L, 2}. EQ. 0) A{J)=Z(J}*%B(J)
IF (MOD(L, 2).EQ. 1) A(J)=A(J-1)%=B(J)+1

2 CONTINUE

1 CONTINUE

a. Loop Independent Tests.

b. Flow diagram of original loop.

¢. Flow diagram of Transformed loop.

Figure 10. Loop Independent Tests

" Mow the individual statements are
processed in interval order. If a state-
ment is in a block which is executed con-
ditionally on a loop dependent test it
cannot be executed as a parallel or vector
operation. Other statements are processed
by the arithmetic analyzer to find and
delineate parallel and vector operations.
Operands are categorized as one of three
types:

V - vector guantities which may appear
in parallel and vector operations.

R - relative constants; scalars or sin-
gle items of a vector.

M ~ mongrel quantities; neither of the
above.

Pairs of operands combine in the following
manner:

] M v R
M M M M
v M \ v
R M \ R

The arithmetic analyzer moves 'V' sub-
expressions out of the loop to enable them
to be executed in parallel or vector mode.

"It moves 'R"'" subexpressions to the next
outer loop where they are again processed.
On this seconé processing a former 'R‘
subexpression can assume any of the three
possible types. 'M’ subexpressions are
left unchanged and are flagged so that
they need not be re-examined since an 'M'
subexpression cannot take on a different
type in an outer loop. Figure 11 illus-
trates the action of the compiler on a
sample program.

CONCLUSION

This paper has described the internal
- organization of a compiler used to recog-

. nize, create and translate vector or paral-
lel executable operations into a form use-
" ful by the appropriate hardware.

ACRNOWLEDGEMENT

Thet author wishes to thank Ellinor
Angel who designed and programmed the
arithmetic analyzer.

DO 135 J=1,JM
ZM(J)=0.0
DO 136 I=1,IM
136 2M(J)=ZM{J) + P(J,I)
135 zZM(J)=ZM(J)*FIM
WTM=0.
ZMM=0.
DO 137 J=1,IM
WTM=WTM + ABS{DXYP(J))
137 ZMM=ZMM + ZM(J)*ABS (DXYP(J))
ZMM=ZMM/WTM +PTROP
DELTAP = PSF - AMM
DO 301 I=1,IM
DO 301 J=1,JM
301 P(J,I)=P(J,I)+DELTAP

a. Source Program-

ZM(*)=0.
M(*)=ZM(*) *F IM
DO 135 J=1,JM
DO 136 I=1,IM
ZM(J)=(ZM(J) +P (T, 1))
136 CONTINUE
135 _CONTINUE
WTM=0.
ZMM=0.,
T000022ABS (DXYP (*))
T0GO04(*)=2M(*) *T00002 (*)
DO 137 J=1,JM
WIM= (WTM+T00002 (J))
137 ZMM=(ZMM+T00004 (J))
ZMM= ((ZMM/WTM) +PTROP)
DELTAP= (PSF-7MM)
DO 301 I=1,IM
P(*,I)=(P(*,TI)+DELTAP)
301 CONTINUE

b. Compiler Output.
Figure 11, Sample Program

ek da AN A

» . .
1. Graham, W. R., "The Parallel and the
Pipeline Computers,” Datamation, 16, No. 4,
6%, 1970.

2. American National Standards Institute,
USA Standard FORTRAY, USAS X3.9-1966.

3. Burrouchs Corp., Arrav Processing
System FORTRAN IV Reference Manual,
£66106C, 1971.

4, Sale, A. H. J., "The Classification of
FORTRAN Statements," The Comruter Journal,
14, 10, 1971. '

5. Kleir, R. L. and Ramamocorthy, C. V.,
*Optimization Strategies for Micro-.
programs," IEEE Trans. Computers, C-20,
783, 1971.

6. Cocke, J. and Schwartz, J. T., Pro-
gramming Languages and Their Compilers,
‘New York University, Courant Institute of
Mathematical Sciences, 1969.

7. Allen, F. E. and Cocke, J., "Graph-
Theoretic Constructs for Program Control
Flow Analysis,” to be published.

. Cocke, J. and Miller, R. E., "Some
Analysis Techniques for Optimizing Com-
puter Programs,” Proc., Second Hawaii
International Conference of System
Sciences, 1969.

%)

