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ABSTRACT .

In a finite-B plasma ion cyclotron radius dispersion
forms a trailing wave train for a pérpendicular fast shock.
Collisionless dissipation is provided by the three wave

decay of-thelwave'traiﬁ into very oblique fast énd_parallel'

- Alfven waves. :Parficlglthermaliiation resuifs_from Landau
_démpiﬁg‘ofrob}ique faSFJwgVe turbulénce. The shock dampingv
-length‘fé three wave dééay‘isAmany ion cyélbtron.radii:
-Undampéd Alfven tufbuleﬁce;should pétsistnfar downétieam'-

_from the shock.



1.0 INTRODUCTION . - . . - , L

‘The hioh—B. (Sij= SnNTi/Bz) » truly colliSion-free plasma which
‘permeates the 1nterplanetary medlum and most of the maonetosphere has
stlmulated consxderable theoretlcal and experlmental research on the |
structure of high-B collisionless shocks [kennel and Sagdeev, 1967a, by
| Tidman 1967' Kennel;and Petschek 1968; Fledrlcks et al., 1970].

- Theoretical interest centers -on determlnlng the maCTOSCOplc or fluid .
behav1or of the plasma flow1ng through a shock and spec1fy1ng the
_colllslonless plasma turbulence which prov1des mlcroscoplc d1551pat10n
Two dlstlnct approaches to thls problem have evolved in the'shock.
'literature' a fully turbulent shock mode] in whlch COlllSlOﬂlCSJ 

' d1551pat10n dominates the structure [Flshman et al. 960 Tldman 1967;
_Kennel.and Segdeev, 19673], and fluld shock_models in which plasma
~:dynemics are governed by.diSPersive hydromegnetic equatlons.and weak
_collisionless dissipetion_[Sagdeev, 1966]. ‘The large parametet rangé-.
and’high varlability of Spece~plesmaS’permitsAemple room for applicatibn.
of-both methods - | ‘ | | |

In th1s paper the f1u1d approach is employed to 1nvest1gate a fasti‘
:shock propagatlno strlctly perpendlcular to the magnetlc f1e1d in a
hlgh—B plaSma The shock structure is a nonlinear wave traln w1th ion.
:cyclotron radius (ICR)- osclllatlon lengths which tralls in the downstream
hh'flow Thls nonlinear waveitraln decays by the three wave mode coupllng
process into obllque fast and parallel Alfven waves, thus :ellnqulshlngi
~ordered shock oscillation energy to incoherent wave turbulence. The‘

‘irreversible energy exchange between waves-is the collisionless



dissipation needed to spatially damp wave’train oscillations and couplete

-
. .

the shock transition.

Kennel and Sagdeev [1967b] flrsL p01nted out that finite-B perpen-

dlcular shocks should possess ion cyclotron radius wave train structure.

As recognized by MacMahon [1968] and hy Fredrlcks and hennel [1968],
however, kennel and Sagdeev used an 1nconp1ete set of ICR fluid equations,

and hence obtalned the incorrect sign of ICR dlsperslon for the fast

mode. (They found the ICR wave train leadingfin,thg upstream flbw,)

Cdnsequéntly the three wave decay of the wave train into perpendicular

- magnetosonic turbulence proposed for the shock dissipation is invalid.
~ However, the physical discuSSion of wave train formation,_the'threé wave
decay instability, as well as the basic analytical techniques employed

N to investigate wave trains and turbulent dissipation preSented in Kennel

and Sagdeev [1967b]‘afe eésentially correct and are retémmended to the
intere§ted’readef. Tﬁefefore in this paper there ié littlevnéed.to dwell
exténéiQély_On the physics éf-wave traihs"of\to equund'on calcﬁlétioﬁal
detalls. | o

Sectlon é 1 presents and brlefly comments on. the set. of fluid
gqﬁat1ons Chew- Goldberger Low hydromagnetlcs with flrst order ion
cyclotron radius correctlons, used‘ln the analys;s.._The llpga; dlSpBTSion'
relation for fherﬁerpeﬁdicular f;st wéve’is derived._ For, Qaveieﬁgths‘- .
comparable to the ICR, the wave propagates dlsper51ve1y “1th phase speeds
less than the long wavelength hydromaonetlc fast speed. .

In the shock interior the fluid tran51t19n bgtween,upstream and-

‘downstream flow states is organized into a train of coherent or laminar
_oscillations which are weakly damped by collisionless dissipation.

. These wave trains consist of dispersively propagating waves whose .phase



speed matches the local fluid velocity; the relevant standing waves must

-

be on the same branch of the dispersion .relation as “the waves which form

the shock. Since ICR dispersion slows the fast-wéve.épeed, the wave train

with ICR oscillation lengths trails in the downstream shock flow. 1In

Section 2.2 a differential equation for the flow velocity through the shock

~ is derived. Here ICR dispcrsion'balances the nonlinear hydromagnetic

stecepening of the shock and establishes a.steady shock flow. The scale

length of the leading velocity gradient in the shock and the downstream

oscillation wavelength is determined from the differential equation in

Section 2.3. The ICR wave train is found to be a valid description of the

' Ashock structure only if the sheck is weak i.e., if the Mach number is much

less than two. Hence ‘the present analysis does not apply to the st1ong

bow sh0ck 1nteract10n near the subsolar reglon of the magnetosphere ICR

. fast shock stxucture mlght'occur in the weak shock region on the magnct0+'fv

sphere'flanké or for shocks propagating in the interplanetary_medium.
"Section 3.0 analyzes the three wave decay of the nbnlinear perpendic-

ular wave train into oblique fast and parallel Alfven'uaves."The matTix

eléments coupling the three waves are derived in Section 3.1, following

B the standard‘techniques-[éee Galeev and Karpman, 1963;_Kadomtsev, 1965;

’ Sagdeev 1966; Sagdeev and Galeev, 1969] The-growth'rate of the decay

1nstab111ty is estimated in terms of the wave traln osc111at10n amplltude ‘

- in Sectlon 3.3. The Landau or transit time damplng rate of -the obllque

fast waves is  shown to be less than the decay growth ‘rate prov1ded that 8

'does not greatly exceed unlty In Section 3 4 the wave train spat1al
'damplng provided by three wave decav turbulence s found to be many ICR

scale lengths. Since Alfven waves are not Landau damped, Alfven turbulence

generated by the decay instability should persist far downstream from the

shock.

v'a



2.0 ION CYCLOTRON RADIUS WAVE TRAIN FOR PERPENDICULAR FAST SHOCKS

This section briefly reviews previous work on the ion cyclotron

. radius (ICR) perpendicnlar fast shock wave train [see Kinsinger and Auer,

©© 1969; Goldberg, 1970], and makes specific the problem at hand. The time

dependent Chew~Goidberger—Low (CGL) hydromaénetic equatione correct to
first order in the small ICR expan51on are preaented in Sectlon 2 1

the perpendicular fast mode_dlsper51on relatlon is determlned Following
standardvanalytieal.;eehniques; a differenfial'equatiOn for fhe time

independent wave train structure is derived in Section 2.2; the wave

“train properties are examined in Section 2.3.

2.1  THE CGL41CR FLUID, SET

For time scales long conpared to the ion cyclotron perlod and space'

-scales "longer- than the ICR plasma dynamlcs are often reasonably well

approximated by moments of the Viasov equatlon' 0f course, phenomena
which depend on details of the partlcles' dlstrlbutlon functlons, such as
Landau and cyclotrondresonance; and heet flow, cannot be treated by f1u1d

'equationé. By systemetically expanding the Vlasov moments.a set'of_fluld_

equations w1th flrst order ICR corrections can be obtained. to ‘describe

.motlon‘both parallel and perpendlcular to the magnetlc field. The_formula- 4

\

: tlon employed here is due to Macﬂahon [1965] and the 1nterested feader'

is referred to his paper_for details. A common dlfflculty with equatlons

~derived from a momenﬁ hie;a:cny_is that they fail to close,»i.e., lovwer

order moments depend on higher order'ones;A,This difficulfy is avoided

-

- for ‘the degenerate case of shockvpropagation'perpendicular to the magnetic



field [MacMahon;, 1965] and for small amplitude linear waves. The consi.d-

erations of this paper are restricted to these cases and, therefore, the
fluid equations'presented below are a truncation of the full set.
' The equation for the continuity of mass flow is
9p - ' ’ . U
- . - . .
£+ Ve(pv) = 0 s | (2.1)

where o 'is'the mass density and V. is the fluid velocity. The

dynamical force equation is '

~

dv iy, J X B :
pgr=-vp) == (2.2)
where P(l) is the pressure tensor summed for ions and élecfrons,'ahd

-~

the superscript (1) denotes retention of first order ICR contributions. B

llgb is the current density, B the magnetic field, and C is the

velocity of light. Gaussian units are used. The relation-between J
and B ‘is specified by Ampere's equation

~.

vxp=2Tg . @
The electric field E is governed by the particularly simple'Ohmfé-léw .

§_+_ Cl = 0 . " L. R (2.4)

The ngglectvof contributions to Ohm's law from finite ion and electron -
“inertia, and resistivity is a further'restrictionﬁon the calculations

’ + + -
performed here, When B = 8nP'/BZA> 1 , inertial dispersion-is a -

smaller effect than ICR dispersion. Faraday's law

Ofr
] @
ﬁ,lw

W x E = -

. (2.5) -

completes the Maxwell set.

.'a



For shock.investigations an equation expressing the conservation of

energy is required

ot 2 4. 2 8

( 2. B p(1) ]

2 2]
3 | ev (1) . 1,01) .8 -
——+ P +~P"_ + + Vv pv T...f 35

B x (vxB) ' B -

dm S S

(1)
ll ,

and ﬁfl) are pressures pcrpend1cular and parallel to the =

p() p(D

magnetic'field Sub51d1ary equations for and are needed -
below, and will be wrltten here in a form approprlate only for perpendlcular

“shock and linear wave propagat1on

" dP(l) o o
.é%~_.+ Pcl) (v vy s *(1? =0 T en
) o - .
ap N - N »
%“ d‘; . Plfl)'-( = v.y_ - Vé,.y_] +\\v.g—:‘:’(1)- = -0 (2.8)

"~ where V '1s the perpendlcular gradlent operator Contrlbutlonq to
(2. 6), (2. 7), and (2 8) from zero order heat flow along B. have been
neglected these heat flow moments depopo on the exact.shapo of‘the:'
'-distribution funotion and are notAdeternined"by.tﬁe moment eouations.
~The1r neglect represents the closuro‘of the moment hlerarchy

The quantitios $( ) and g:f ) are~the f1rst order ICR heat

-$ ) ‘ . .
. flows perpendioular to' B Only if ) is needed and subject to'tho~
same restrictions approprlate to (2 7) and (2 8), takes the form ,

2B Q P(O)*

.~,(1)' L oM | | I
Looamr| e ] T e




(0)+
gL

~ frequency; e is the clectronic charge and. M_ the ion mass,- In (2.9)

is the zeroth order ion pressure; € = eB/M c is the ion gyro-

terms involving heat flow and fourth order moments have been neglected;
these terms can be significant for plasmas whose distribution functions

deviate greatly-froh Maxwellian [MacMahon, 1965, 1968].

Slnce the factor l/Q appears in (2. 9], gifl? is fofmally of

first ordcr hence formally, Ve P( ) could be replaced by Ve P( ) ,
& (1)

whereupon it is . easily shown that SA vanishes, ICk dispersion,

‘however, couples dlfferent degrees of freedom, and the lowest ofder ICR-
correctlons to long wavelenath hydromaonetlcs are produfts of two ICR-
;terms Therefore in (2 9) Ve P( ) hust be retalned 51nce gﬁ( )
;contrlbutes to, and is actually the domlnant contrlbutlon to, ICR
dlsper51on [VacMahon, 1968] | |

1If B is assumed to be in the z dlrectlon the only components of

( .
P‘1J required below are P( ) and P( ) ; these are .~
: _ 0+ . ) o o
. p dv S . )
. XX & c2d, - dx : : B b
o (0)+ L v o - - :
: ) _ du . ' ' 11y
- pxy = 2s2+ dx L : (27_11)‘_

4I'iu ande'v 'are the fluia veiocities.in the X and“y directioh re5pective1y.

Before passing to the shock wave train, a use ful exerc1se is to
'determlne the linear dlsper51on relation for the perpendlcular fast wave,
.Linearizing about a sta;iohary, upiform'equilibrlum of ipfinite-spatial
;extent and assuming herhonic perturbations of the form 6u(xyiyi)-f

Su exp[ikx-wt] , " (2.1) - (2.11) reduce to the diSpersioﬁ relation -



2 . - pf : - :
w2 34 272 o
2°C (-7 =k R - @)

CF is the hydromagnetic fast speeo,_ Cé:# [(32/4ﬂp)‘+ tZRfl)/p)]l/z
~and R, = (P(0)+/O§ )1/2 is the ion:cyclotron radius based on the
zeroth order ion pressure. The small icﬁ expansion.of the fluid -
equations requires toat K£R+.<‘1.; shorter'wavelengrﬁs'canvonly be
freated correotly by the kinetic'theory’[Fredricks 1968]

As found by MacMahon [1968] and. by Fredrlcks and Kennel [1968] CR

disper51on ,k-zR 2 term in- (2. 12), decreases the phase ve10c1ty below

1+
the hydromagnetic fast speed | In the context of shocl wave trains,
,therefore the dlsper51ve1y propaoatlng fast wave can phase stand,

w/k‘= u = flow veloc;ty, ‘only in the downstream shock flom.: (The down- '
stream flow velocity must bevless than CF' byethe-sh0ckeevolut10nary

conditions [Kantrowitz and Petschek,'1966].)' Hence linear Weve theory

predicts that the B > 1 perpendicular fast shock wave train trails ~

.behind the ‘shock leading edge;p'

:"2 2 DERIVATION OF THE SHOCK WAVE TRAIN

When d15$1pat1ve processes are weak, tme colllslonless shock
fran51t10n from upstream to downstream stat1onary states takes the form
of a nonllnear dlsper51ve1y propegatlng wave whose phase veloc1ty
matches the local flow Speed Thls wave train is descrlbed by a
-dlfferentlal equation which balances dlsper51on and weak d1551pat10n
' agalnst nonlinear shock steepenlng Slnce the analvtlcal technlques
for obtaining the d1fferent131 equatlon are standard [see Sagdeev 1966

Cavaliere and Englemann, 1967; Kennel and Sagdeev,.1967b], only the

highlights are presented. A small Qiscosity is included in the englysis:



to simuiate weak collisionless diséipetion,'; specific medellof which
is the subject of Section‘SLO.‘ |

Wave'traiﬁ‘solutions‘te IZQI)”— (2.11) are- sought whieh are cimev
independent in the co-moving shock frame. The shock normal is assumed
to be in thelk-direction; and is perpendiculaf to the magnetic field:in..
the z—direétion* biﬂsma quantities_are assumed to be functions ef-i only
Equatlons (2.1) -~ (2. 6) now poqsess a flrst 1ntegral with re5pect to x;

in regions where the flow is spatially uniform, these integrals are the’ :

1'familiar SHOCk\Reqkine;Hugoniqt'relationé'which‘connect the upstream and’

downstream states. For (2.1) - (2.6), however, enly five independent

“relations between the six dynamical variables are obtained; hence an

additional COnserQatiqn law is needed.
iGeldberg [1970] has pointed out that for perpendicular propagation,
- '
W

the equation for (2.8), provides the required conservation law.

In the_shock,frame (2.8) becomes . o ,'3 R

o xePuegi®P a0 . 0 ay
Since -QJTI).; vanishes for a'épatiel}y unifofm'fiow, (2.13) yields:c

P(l)u;clpal)/p = T“'= const.; for perpendiculaf shocks.theAperallel

'temperature is unchanged - ‘ " — , S o,

Slnce v1scous d1$51pat10n is assumed small second order terms in

the coefflclent of v1sc051ty, u, arefdropped in che derivation; in

j'addit'io'n terms of order4u(R,/L)*, where L; is a characteristic shock .
'scale length, can be neglected With theée approximations (2.1) -w(2,6)

.and (2.13) reduce to the fOIIOW1ng wave train d1fferent1a1 equatlon



(0)+ :
3 %0 2 (R el waeu
4 plul + dx Q+ dx | Pyuy- -qx
M -1
=u’ |2 aw? e au L (2.14)
i 2 2 : -
Mg ] :
uy denotes the upstream flow-speed, and M =;u1/CF is the magneto-

BT

sonic Mach Number; VAu = (u-u )/u ..
. The first term in (2. 14) represents ICR d15persxon and W111 yleld
an osc1llat0ry tralllng wave train., - The-first derivative term repre- 
sents weak v1scous dlSSlpatlén. The right-hand Sidg of this-seéond orderJ
equatioh can be interpreted as a n&nlinear dri?ipg erce;;séttiﬁg'this’_
term équal‘to zero yields the'Rahkinefﬂugoniot'relations'for u.. An
:énalogy between (2,14) and wéakly damﬁed particle motion.in’an anhérmonic
. potential well ié presented in Sagdeev f1966].énd iﬁ Kennel aﬁd>8égdgév.
[1967b]. The next section discusses an_altgrnativesmethééffof.obtainingv

.

‘the wave train properties.

2.3 STRUCTURE OF THE icR;WAvE TRAIN

The kéve tféin &ifferentia} equétion'is noniinear.siﬁcé béth the ;
Eoef;iCients of the diffefentiél operators aﬁd the driving for;é_are
nonlinear functionais,of'thé'velocity. “Equation (2.14), héWevér,'déeg :'
'possesé tﬁo stéfionary béiﬁts locafed at the-upsfreém and doWnstream
' asolut1ons of the Ranklne Huaonlot relat1ons [zeros of the rlght hand glde
of (2.14)]. A general technlque for determlnlng the qualltatlve features
of the nonlinear equatlon is to 11nearlze about the statlonary po1nts -

and examine the stablllty of the linearized solutions. For wave trains

- shock transition requires that the perturbations be unstable (stable)’



. from u

upstream (downstream) [see Sagdeev, 1966; Cavaliere and Englemann, 1967]. -
The linearized solutions determine whether the wave train osc¢illations

occur in the upstream or downstrcam flow and provide estimates of -the

. shock scale lengths,

After some manipulation, the linearized version of (2.14) for the

»

perturbed velocity &u becomes

‘ 2 2
2 d26u . déu v CF
2 (0)+ dx 0)+

dg Q& Qé /P

~where the coefficients of 6u' are now to be evaluated about either the

upstrgam or downstream flow. If termsvof orders uz are neglected,

~solutions to (2.15) in the form 6& « ekp(kx) are

S o 2.2 1/2 )
R Aty [p - (L(IE):D] | a6
oz RTRT L7 | o

N

Fy

with a scale height given by

(0)+71/2
3 " N
4 oc ? |bi2-1] /2

Since ‘Mz -1 >0 wupstream, (2.16) yfé1d§ u decreasing exponentiaily

1

L «(' C(2any

PCE

Hence ICR dispersion determines the thickness of the leading edge.

Downstreah M 2-1 < 0 , and solutions of (2.16) are_damped oscillations

F
witﬁ'wavelengths given by (2.17) evalua;ed about the downstream flow
‘ . . w2, 2 e
and damping length " %'E£O)+R+ /au . Therefore as predicted by_the

linear wave dispersion relation [Macmahon, 1968; Fredricks and Kennel,

1968] ICR dispersion forms a trailing shock wave train.



IWeak shocks, M

~-14- .

The firSt,order'ICR-CGL‘fluid edhations provide an accurate

_ descriptioh of the shock structure if, and only if, the shock thickness

L << R+ ) Therefore {from (2.17) thé upstream Mach number is limited fo
values. Mg -1 << %-Qio)+/DCF2 <1, so that ICR dispersive shocks must be

- weak. Coroniti [1970] has shown that stronger high—B fast shocks

_ steepen until thicknesses of order the electron’intertia length C/wp

(w; = 4ﬂNe2/M_) , are reached; for solar wind plasmas, C/w_ << R, .

The shock structure is now described by‘a trailing C/u% ,Iength wave

_train.

In 'summary, the ICR—CGL'hydromagnetic equations describe plasma

behavior over scale lengths long compared to R, A-closed set off :

_ ‘Rankine-Hugoniot relations for'perpendicﬁlar shocks exiéts'with,T“”

constant across the shock. When ICR dispersion is balanced against

- -nonlinear steepening, d trailing wave train with R, scale lengths

resolves the shock structure. This shock solution is valid only for

_

F-l <<1. In the above analysis weak_coliiéionlegs .

dissipation was assumed to provide an irTreversible shock transition.
. The next section considers a specific model, the nonlinear three wave

‘_décay‘proceSS, for this dissipation,



3.0 THREE WAVE DECAY INSTABILITY OF A NONLINEAR PERPENDICULAR FAST WAVE

3,1 INTRODUCTION

A nonlinear ane, such as a wave train, does not always constitute
an equilibrium state since the oscillation amplitude is far from the
thermal level. .Two perturbation waves, either thermalfBr‘nonthermalf

fluctuations , can couple . to or scatter off the nonlinecar wave spatial

: gradlents [Galeev and harpman, 1963 hadomtsev 1965]. If these-modei
' coupllngs resonantly extract energy from the nonllnear wave, thus
_ampllfylng the perturbatlon waves, .the nonllnear wave amplltude'can

'decay faster than ‘the _rate set by partlcle partlcle colllslons A:‘

nonllnearvnave train, the:efore can parametrlcally exc1te 1ncoherent
wave turbulence which in general will not phase stand‘in thefshock'

flow' and whlch prov1des a form of 1rrever51b1e colllslonless d1$51pat10n

that damps the wave train amplltude | Partlcle dlstrlbutlons adJust by .

damping the turbulent waves, eventually relax1ng to a unlform downstrean

state.

The three wave decay instability is possible only if the wave

frequencies and wave vectors of the interacting modes satisfy’the_following

resonance conditions_[Sagdéevvand‘Galeev,.1969]

(3.1)

Y% * 9
K=k vk - S , RN G

wo, EO 'refer to the nonllnear wave, and wl, Ei Aand w2 52 are the

 two perturbing waves.- In analogy w1th quantum mechanlcs (3.1) and

\J



._1ength.

(3.2) express the conservation of wave energy and wave momentum in the

’

" interaction. In addition to (3.1) and (3.2) the matrix.elements coupling -

the three waves must be non-zero and have the appropriate sign for

instability.

" A general theorem governing possible decays is that three waves-on

the same branch of the dispersion.relation can.mode couple only if w

increases with increasing k. (see Sagdeev and Galeev [1969] or Kennel
and Sagdeev [1967b] for proof). Therefore, from (2;12),,d¢céys between

three perpendicular high-8 fast waves are disallowed [MacHahon, 1968].

The fast mode, however, can unstably interact with waves on other branches

of the dispersion relation provided that the decay is not forbidden by
polarization réstrictions.=

This section considers the decay of the perpendicular- ICR wave train

'int§ slightly oblique fast waves and Alfven waves propagafing;paréllél_

‘to the magnetic field. The motivation for treating this-particular case.

is that Alfvén'waﬁes are undamped in'high-B biasmas;[Bérnes; 1967]; and -
fhgfefore‘éoﬁldmp6§$ibly.belobServed in the.do&nst}eam fléw:by spé§§-f_
craft. 'Other.decéyvmodes are npt‘éonéideréd but_coﬁld'coﬁt;ibufelto'thef f
tofal'shock dissipation. The matri% eiéments foriphe intefacti;ngré i.*
derived inmSectiéﬁ 3;2}5 The growth.rate forxthe'qecay in$tabi1ity-i§ ;

determined in Section 3.3. Section 3.4 estimates the wave train damping' _

3.2 THE MODE COUPLING HATRIXVELEMENTS -

Since the ICR shock must be.Weak, L&z - 1 << 1, the downstream -

wave train-oscillation amplitude is small, Therefore locally'the wave - - . -

train should approximateiy obey. the linear wave dispersion relation, . -



and the wave polarizations can’be interreleted by linear.theory. For
L , the perpendicular»ICR shock_wave:train,;the polarizatioﬁs are - 6Vx, dvy,

Sp, GBZ, and 68(1) ; the temporal and sﬁatial dependence is of harmontew
~ form exp[ik 'x i t] . The slightly oﬁlique fast mbde is denoted by

Ve ‘EJ, bl’ fgl), and oscillates as exp[i(k, x + Ky2) - iw t]
‘ ' 1 l

Similarly the Alfven wave polarizations are  V s by , which vary as
2 2 '
:‘exp[lk z - iw t]
2 .

- From (3. 2), the wave vectors of the three 1nteract1ng modes must

"satlsfydngéo = k¢j =k, and'.k“1,= k, =k, . For slightly oblique
prbpagation of wave (1), ké;>> k,‘, an assumptlon which permits

o con51derab1e 51mp11f1cat10n in determlnlng the matrix elements coupllng
the three waves. | |
The calculatton follews the methed df Sagdeev and Géleev.[1969].
The dispersion relatlon for each mode is determlned from Eqs. (2.1) -
(2. 9) retalnlng the rcsenant nonllnear coupllng of the pe rturbation'waﬁes;
~to the large-amplltude wave; the resonant coupllngs are of the form |

SV V for the Alfven wave and OV* V for the obllque fast mode
LYy _ : X 'y, ,

(* denotes complex conjugate). - Other ﬁon11near_terms such as Vx or
-Vx Vy are neglected. - The linear wave polarizations are then used to =
XY, . R , ‘ . o
eliminate all the variables in terms of" Vo s V}’;'and va.} The wave

AR , : : 1 2 . S
"polarizations'are honlinearly-eoupled by matrix elements, the relative

signs of which determiﬁe the'stability of the interection. Since tﬁe

analyt1ca1 procedures are standard the calculatlon is’ outllned only for
the Alfven wave; the:result for ‘the fast mode is sxmply stated Fu:ther-”
more assuming k$ >> kl;,‘ICR terms of order k"R* << 1 contrlbute

negligibly compared to KLR4 <1 terms and are dropped.
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I : Substitution of the above polarizationS-iﬁfo the yééomponent of
Ohm's law, (2.4) and (2.5), and use of (3.1) and (3.2) yields the
~ following equation:for, b |

Y2

| k V. B, |
b ik z. i )'2 K SV*b * A
by, exp[l‘uz-wzt] = | - ——B;—-—-- 5; ( \y z1+VyléBZ) exp[lguz—lwzt]

+ nonresonant terms . (3;3) :

’Bo_ is the equilibrium magnetic field strength. The nonresoriant terms -
o vanish after the phase averaging. The lowest order linear polarizations

~for &B_, 6V, b.; and V. are given by )
2 y’ 'z Yy - :

1.
. - C Keve. o | - -
. . A x0 . g - : o
: . - e , R o ,
- . Kf&ngvx T e~
Oy =i Wy TSR ¢ b0
AR T o
b = T . (3.6)
Z @, R : Lo -
L2, 2 : IR
R LTSN Q+Vxl e |
1 2[w- (kyC, /0D S _
. 2 1/2 ' L SR o
. where CA = (BO /4mp) "% -, . the Alfven speed. Subst;tqtlon of (3.4) -
© (3.7) into (3.3) yields |
. R 2 . . CL
.kV B k Bk, “R, 5wv : 2.2
- k“vyz 0 HkJ,Q o)y 1-- . k“ CA e _ _
b o e ) 2.7 2 : - (3.8)
Y2 2 %12 “wy “[1-(ky °C, Sy 5



2

Note that since the oblique fast-ﬁode has  w, Vv k C , Ka CAz/wl2

1 4 F?

- ky /ké’_<< 1 , and the nonlinear contribution to (3.8) is small.

N,

Performing an identical analysis on the y momentum equation yields

for V
. Yq
ik Bb k B.b
Ny, Sy e
-1w2V = i + i YT B -
R o fPo {Po R0

1

"1

1 ; £ . *
+-t%&£Vx d\y Vy avx)_

(3.9)

* The last two nonlinear'terms_arise_from~-V°VV . The perpendicular fast

wave polarizations satiSfy 6(8 /p) = ; hence the nonlinear term.

'._proportional‘to b_ . ‘vanishes 1dent1cally ' Substltutlng (3 5), (3. 7)

"1
and (3.8) 1nto (3 9) and neglectlng terms - of order k 2C z/w

_ylelds the followlng 51rp1e result

'2 2 : o 2.2
ky Ca - K&Q+RL R, (

?f % Y 2

£~

s 1| evav
1. 0 X X

The coeff1c1ent of Vy is Just the 11near Alfven wave dlsper51on

k 2R 2

2
: relatlon Note that the nonlinear terms are proport10na1 to

<<

1

2

(3.10) |

-A.more convenlent and transparent form of (3 10) is obtalhed byv.«'

- "reformulating the above ana1y51s in a Hamlltonlan representatlon [Sagdeev

'.and Galeev_ 1969] The tlme dependence of the wave awplltude is now

assumed to'have the form Vy V (t) exp[lk z-iw t] where'»Vy

2 Y2

for w, then permits ($J10)‘to be written as'

WD) g 2 2 w4
2 o3 T2y vy
ot Zwowlmz Wy 271 " x Xy

. : 2
“considered as slowly varying. Use of the 11near dispersion relatlon

(t)

is .

(3.11)
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where . = W - was used. .
-0 1 72 .

An identical analysis for the oblique high- fast mode yields for

Vxl(t)
o
SV 2020 22 .
1 LB A e e ey (3.1
ot - 20 . W Xy, . o ~12)

~whexe terms ofs order k /mlz << 1 and ‘k"R+ << 1 have been

lt A
negleeted. A similar equation for the time rate of change of 6Vx‘

could be obtained.

3.3 DECAY INSTABILITY GROWTH RATE .

~ Now cohsi&er,the simple caseAwhere the Qave trainxamplitude greatly -
v,exceeds both perturbation amplitudes 6V, sV i‘vyz . If fhe orewth ,.
time for the 1nstab111ty is long cowpaled to a. flow time across a wave
train scale length the time dependence of 5v’ in (3 11) and (3 1?)"

' can be neglected in the detcrmlnatlon of the 1n1t1a1 decay 1nstab111ty.
b'grOWFh rate, Of course after many e- fOldan tlmes of ‘the 1nstab111ty,‘
6Vx_ will be reduced tq.the perturbatlonvamplltude level; however by
this time the shock transition will be cohpleted Note that the nonllnear""
limit cycle of the decay instability, i;e., wheh all tnree modes share ;
equal ampiitudes'[Sagdeev-ana Geieev 1969], need not be con51dered since .
~the perturbed waves are convected dOWnstream out of the shock region.

I£ V_(t) and v (t) vary as exp[yt] , (3.11) and (3.12)1

. 1 . 2 - . .
reduce to :

| O+, 2.2 - T
k C k (P /p~)k R W o I
2 & 0 . 2 2 . .. ) .
- - = {2 ) 51_] wpy 18V G130

-4|w091w2[



Instabiiity results'only if sign (w;QZ) <0 ,ior from (3.1) if E
wy > ]mll +‘|w2| . Hence the initial léige amplitude wave decays to
wéves of lower frequency or, by the quantum anaiogy, the decay occurs
only to lower cnergy states. o

To further determine the growth rdte, | Ky s wl, and W, must
be ¢stimated. Setting mz = -k CA; k“ >0, bo k‘CF , from (3;1)

i
‘ 2

) ‘ ' = N\ k - K < K, - }(O)'{' 2 . ? 2“
and (2.12) W becomes W JFz-LFF' }"CA 1 F [l (3/8p)(’ /CF )K& 3+

where k|2R+2 < 1 was assumed. . Note that wl/k¢ < U, hence the

perturbed.waves are convected downstream. ~From the Rankine-Hugoniot '

relations for a perpendicular'shock”[Anderson,lléés], Mﬁ is givch by
' o2
(Mi -1) + 3 q1/2 3 - Mf: |
b, = | L S L (3.14)
2 AT -1) + 3
F
1
if M% -1 << 1, Eliminating M. then yields - -
- F - F ;
1 2 -
- p(0)+ | (0)+ .
2k, Cp 2 3 P, 2,2 . (5] 3 BT 2o
e 3 -(ME -1) 4 7 k ‘R = 2 S kR
A 2L ER A
_ . Po*r 0°F
= @ (-]2w2/wl]) o o (3.15)

as an order of magnitude estimate for kn and Iw /w | . The wave

2
train amplitude is estlmated as 6V n (6p/p0 (w /Es) NoMp Co(p -1) v
2 1

C (M - )2 . Substltutlon for w,, 6V_, and l2w /w I into (3.13)
FUF) 0r ®¥x Lharits LN
yields as a very rough estimate



(0)+ . _
kK P S
' L J, 2. :
Y m.ﬁ% M:. kJ? +2(M? -1) . ' R < P
0 °F N v : :
The above calculation assumed that oblique fast and Alfven waves

were present in the'noisgjfluctuation spectrum and could be parametrically
amplified by three wave decay. Oblique fast waves, but not Alfven waves,

have resonant Landau or transit time damping interactions with thermal

ions and clectrons [Stix 1962"Bafhes, 1967] If the nOﬂlinear growth

‘rate (3. ]6) is less than thc Landau dawnlng decreméent, then little or no

energy can be coupled into fast. ‘waves by nonllnedr node coupllng, and the.

three wave decay 1nqtab1111v probably does not prov1d° the shock d1<51pa—

tion. -. The OJlnquv fast wave Landuu damping rate is approylmauely [Stlk,

1962]

s E W 22 2 L
IYL | = —~ B ,E;E: exp[fw /B“ C,”) R S (3.

\x

where ,C.z 2T /d , the Specie thefmal gbeed. Substitution of (3.15)

forv k, , use of the dowpstream phase standing condltlon w, = M_ k,C_ =
el 1 0 F, &F
kK,C.[1 (O)*/ ¢y k7R 22 ' ?

- by (3.14), yields for

to‘estlmate WY W, and -

2 - _ P ‘
ké;R+ ‘1n-terms of MF , and elimination of MF

b |

| o ,C, kG 4,2 |

ggt A _&F | A . 6
.y .’ -n? | o
Fl - AFl_

u

.
A

~ The ratio of thc'nbniinéarfgrowth to the linear damping rate then becores

)+ : S 2
y < ta G 2 2.2 2 - 4c
v — k R+ M. -1)" exp

— (3.
| - - . 1
v, |. 4ooCr CpA8™ - 1oooLele

16)

17)

.18)

19)



, clectron

Siﬁte, C_/CAB" v /ﬁ:7ﬁ; 1/V37 >> 1 unless: 8;'% M+/H;

. Landau damping does not suppress- the nonlinear decay instability. Ton

Landau damping is also small provided the exponential factor is large, or
2

' MF -1 << 2/¥BY | Hence three wave decay is an cffective dissipation’

1 . .
. : : +
process for the perpendicular fast shock - if B7-~ 1 , but becomes

ES

. S i P +
considerably weaker for higher B

3. 4 ESTIV\TL OT THE WAVE- TRAIN DAMPING LENGTH

The threc wave dcc“y 1nstab111ty extracts enezgy from the ozdcrnd

osc111at10ns of the wave train’ and gencratesvlncohercnt wave turbulence )

in the downstream flow. Hence the wave train should persist for a length

Ly ™ MF /Y. before being damped to the'fluétuétion level. Usingn(sllé)

L can be estimated as

b

2 4 0°F +
Ly Vet (0)+ R 3 T

~

) From the downstream phase standlng cond1t10n,  wO = MP K&CF and (2 12)

and (3 14) kéa is estlmated as LAfR 2 > ? —-(pC /P(O; )(M -1)

L. then becomes of order

D
o, Pio)"-. 1/2 R L -
LoV _ : — . ‘ (3.21)
D 2} 2 ol -1y o
Po™F Fy | |

For _Mg.-l << 1 , the wave .train should exist many ion gyro-radii in :
’ 1 . I . , . .

. the downstream flow.

If no other particle'dissipation processes, 'SUch as current

instabilities, are involved in the shock structure shock heatlng ‘of the 3

'-partlcle dlstrlbutlons occurs prlmarlly by Landau damplng of obllque

fast waves. The particle thermallzatlon length should be of order

R}




% : *
L. MF CF/[YL l‘, or substituting (3.18).

31)1(0)+ 1/2 C , -' 4C 2

* 1 o 2 3/2 A

Ly Y| =7 | = 0 -1 « O
'rrpCF B CA 1 " + (M -1)

"the tbat‘by (3.19) LT% ? LD ; hence particle dissipation persists
further downstream than doss wave train d15$1p9£10n

Since Alfven waves are undamped after many' LD or LTi lengths

:downstream the.wave'Spcctrum wlll be domineted by transverse magnetjc\

oscillations.

;3.5_ SUMMARY
The paraﬁetric~anéli£ic~fioﬁ ofebblique faét;and;pereliel'Alfven
“waves at the -expense ofthe wave traln 1wp11tude p1oduces the shock
.'dlsslpatxon required by the Ranhlne Huoonlot 1elat10ns In the downstream

L

: flow coherent wave traln oscillations graaually becone dlsordered and-
flnally damp to the fluctuatlon level Obllqge fast wave turbulence_;s-
.Landau»damped by iohs_ana_electrons, thus'prodﬁcingAdownsffeem,partiele.e* -

.thefmalization, until only Aifyep turbuleheevrémains;: The'felexetion
leﬁgfhs for the wvave frain'and.particles afe many fimes R;_; hence the
complete shock tran51t10n reglon should be much broader thanithe initial

\

_ gradlent.of the maonetlc fleld at the~1ead1no edge. Landau damplno of
o obllque fast waves probably restricts’the paltlcular decay 1nstab111ty :

. d1$$1pat10n con51dcred here to shock flons ‘in vhlch 8 does not greatly

exceed unity. The spatlg} structure szthe_ShOCk 1s_sketched 1n Flg. 1, ’-

(3.22)



+.19667. The Rankine-Hugoniot relations, however, require that T,

4.0 DISCUSSION

The three}wave.decay model of .collisionless dissipation probably
greatly ofersimplifies_fhe turbulent rélaxation.of the doﬁnStfeém‘shock
flow.‘:Clearly;decays iﬁto other modes of hydroﬁagnetic ‘turbulence avre -
Pdssibie and would also contribute to wave train dissipatibn. Hence
the damping 1enLLh determined. from a single decdy instability only
repiesean an uppor 11n1t to the qhock length.

Heat transport in the downstream flow mlght also be qﬁite complicated.

If partlclc thc;mallzatlon proceeds by the llnc“r Landau dumplng of

- oblique fast wave turbulence, the quasi-linear theory predlcts thﬂt the

resonant diffusion is entirely in parallel energy [Kgnnel and nnglemann,

Temain

b

‘unchanged across the shock; hence additional turbulent dissipation is

—~

neecded to convert acquired parallel energy into perpendicular energy.

U

unstable to the nonresonant fire-hose and'tO-a_resonant ion instability

. + % P-4 . ' :
‘For T, > Z& and B~ large, parallel propagating fast waves are

[Kennel_and Ségdeev, 1967a; Kennel and Petschek, 1966). Kennel and
Scarf [1968] have'shown that the ion resonant'growth rates are exponentially

enhanced if the electrons are also Tl; >T," anisotropic; the instability

now can affect the .main bulk of'fhé”ion distfibution, thus greatly
: _ \ A | , |
dincreasing the turbulent dissipation.  The dounstream wave spectrum, .

-therefore, is llkely to ekhlblt a variety of turbulent modes each attewptlngA

to drive the plasma toward_a statlonary configuration.
The decay instability considered here predicts -that Alfven wave

turbulence should persist far downstream from the shock. Detection of



these;wavcs; however, does nof it;élfmconstitute‘a verifitatibn.ofytheif.u
propose? dissipation modellsin;e the_fuliy.tﬁrbulént:shock theories of
Kennel and Sagdecv [1967a] énd of Camac qtlal} [1962] also predict
downstream Alfven turbulence Direét obse;vatidns of tﬁe internai shock
structure arenrequifed to.diffeféntiafc-ﬁetﬁeeﬁ the various theories;

Typical solar wind flows have moderate to high Mach nuabers

HF o4 to 10. Therefdre.in the spatial region éurrodhdino the bow of
-the - magnetospherc where the - shoch is- strong, tralllng ICR wave tlalns.

of the type dlscussed here: F}}% not ggnerally be part of the shock
'structure. Fredrlcks,et'al. {1970] have.repqrted_that near the sub-solgf'
régionvtho bow shock is charactefized by élgctrdn:iner’ a lcngths - C/ojp
whiéh.are much'iesé thaﬁ R+ when Bi L S Far out on the flanks of
the magnefoswhere hdﬁever, the shockvstréngth is weak. A150~shocks
propagatlng in the int crplaneuary mcdlum nlght be weak Hencc the
_tralllno ICR fast shock structure could be detected in these regions by

S\

highvtelemctry rate satellites. - A 4‘.
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FIGURE: CAPTION

The spaLJdl structure of the magnetic flcld in th* ILR fast
shock is sketched aga;nst dlstancc_through the shock. Upstréam

is ‘to the left, downstream to the right._ At the leéding edge'

%

‘B increasecs exponentially with a scale'height LaR v Wave

train oscillations, also with R scale lengths trail in-the

downstieam flow. The wave train decays into obllquc fust and

-parallel Alfven waves by thrce wave mode couplnngs, thus

prov1d1ng Jrrevcr51b1e collisionless dlSSlpatlon Wave train

osc1llat10ns are damped over a length L >R, . Ion 2nd

electron Lhermallzatlon procceds by thc ‘Landau damplng of

obllque fast waves. Undampcd Alfvcn ‘aves should be observed

far downstream,
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