
PLASMA PHYSICS GROUP

-3 '3*0

Turbulence Structure .of

Firiite-3 Perpendicular Fast Shocks

F. V. Coroniti

April, 1970 R-69

C OP



Turbulence Structure .of

Finite-B Perpendicular Fast Shocks

F. V. Coroniti

April, 1970 . . . R-69

Plasma Physics Group

Department, of Physics

University of California

Los Angeles, California

90024



- 2—

ABSTRACT

In a finite-3 plasma ion cyclotron radius dispersion

forms a trailing wave train for a perpendicular fast shock.

Collisionless dissipation is provided by the three wave

decay of the wave train into very oblique fast and parallel

Alfven waves. . Particle thermalization results from Landau

damping of oblique fast wave turbulence. The shock damping

length to three wave decay is many ion cyclotron radii."

Undamped Alfven turbulence should persist far downstream

from the shock.



1 . 0 INTRODUCTION . _ . - . .

The high-3 (3~ = 8mNT~/B ) , truly collision-free plasma which

permeates the interplanetary medium and most of the magnetosphere has

stimulated considerable theoretical and experimental research on the

structure of high-3 collisionless shocks [Kennel and Sagdeev, 1967a, b;

Tidman, 196.7; Kennel and Petschek, 1968; Fredricks et al. , 1970],

Theoretical interest centers-on determining the macroscopic or fluid

behavior of the plasma flowing through a shock and specifying the

collisionless plasma turbulence which provides microscopic dissipation.

Two distinct approaches to this problem have evolved in the shock

literature: a fully turbulent shock model in which collisionless

dissipation dominates the structure [Fishman et al., 1960; Tidman, 1967;

Kennel and Sagdeev, 1967a], and fluid shock models in which plasma
- • • • -^ .

dynamics are governed by dispersive hydromagnetic equations and weak

collisionless dissipation . [Sagdeev, 1966]. .The large parameter range

and high variability of space plasmas permits ample room for application

of both methods.

In this paper the fluid approach is employed to investigate a fast

shock propagating strictly perpendicular to the magnetic field in a

high-3 plasma. The shock structure is a nonlinear wave train with ion.

cyclotron radius (ICR) oscillation lengths which trails in the downstream

flow. This nonlinear wave train decays by the three wave mode coupling

process into oblique fast and parallel Alfven waves, thus relinquishing

ordered shock oscillation energy to incoherent wave turbulence. The

irreversible energy exchange between waves is the collisionless
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dissipation needed to spatially damp wave "train oscillations and complete

the shock transition. . v ' . .

Kennel and Sagdeev [19675] first pointed out that finite-3 perpen-

dicular shocks should possess ion cyclotron radius wave train structure.

As recognized by MacMahon [1968] and hy Fredricks and Kennel [1968],

however, Kennel and Sagdeev used an incomplete set of ICR fluid equations,

and hence obtained the incorrect sign of ICR dispersion for the fast

mode. (They found the ICR wave train leading in.the upstream flow.)

Consequently the three wave decay of the wave train into perpendicular

magnetosonic turbulence proposed for the shock dissipation is invalid.

However, the physical discussion of wave train formation, the three wave

decay instability., as well as the basic analytical techniques employed

to investigate wave trains and turbulent dissipation presented in Kennel

and Sagdeev [1967b] are essentially correct and are recommended to the

interested reader. Therefore in this paper there is little need to dwell

extensively on the physics of wave trains~or to expound on calculational

details. .

Section 2.1 presents and briefly comments on the set of fluid

equations, Chew-Goldberger-Low hydromagnetics with first order ion

cyclotron radius corrections, used in the analysis. The linear dispersion

relation for the perpendicular fast wave is derived. For. wavelengths

comparable to the ICR, the wave propagates dispersively with phase speeds

less than the long wavelength hydromagnetic fast speed.

In the shock interior the fluid transition between upstream and-

downstream flow states is organized into a train of coherent or laminar

oscillations which are weakly damped by collisionless dissipation.

These wave trains consist of dispersively propagating waves whose phase
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speed matches the local fluid velocity; the relevant standing waves must
t

be on the same branch of the dispersion .relation as'the waves which form

the shock. Since IGR dispersion slows the fast wave speed, the wave train

with ICR oscillation lengths trails in the downstream shock flow. In

Section 2.2 a differential equation for the flow velocity through the shock

is derived. Here ICR dispersion balances the nonlinear hydromagnetic

steepening of the shock and establishes a steady shock flow. The scale

length of the leading velocity gradient in the shock and the downstream

oscillation wavelength is determined from the differential equation in

Section 2.3. The ICR wave train is found to be a valid description of the

shock structure only if the shock is weak, i.e., if the Mach number is much

less than two. Hence the present analysis does not apply to the strong .

bow shock interaction near the subsolar region of the magnetosphere. ICR

fast shock structure might occur in the weak shock region on the magneto-

sphere flanks or for shocks propagating in the interplanetary medium.

Section 3.0 analyzes the three wave decay of the nonlinear perpendic-

ular wave train into oblique fast and parallel Alfven waves. The matrix

elements coupling the three waves are derived in Section 3.1, following

the standard techniques [see Galeev and Karpman, 1963; Kadomtsev, 1965;

Sagdeev, 1966; Sagdeev and Galeev, 1969]. The growth rate of the decay

instability is estimated in terms of the wave train oscillation amplitude

in Section 3.3. The Landau or transit time damping rate of the oblique

fast waves is shown to be less than the decay growth rate provided that 3

does not greatly exceed unity. In Section 3.4 the.wave train spatial

damping provided by three wave decay turbulence .is found to be many ICR

scale lengths. Since Alfven waves are not Landau damped, Alfven turbulence

generated by the decay instability should persist far downstream from the

shock.
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2.0 ION CYCLOTRON RADIUS WAVE TRAIN FOR PERPENDICULAR FAST SHOCKS

This section briefly reviews previous work on the ion cyclotron

. radius (ICR) perpendicular fast shock wave train [see Kinsinger and Auer,

1969; Goldberg, 1970], and makes specific the problem at hand. The time

dependent Chew-GoIdberger-Low (CGL) hydromagnetic equations correct to

first order in the small ICR expansion are presented in Section 2.1;

the perpendicular fast mode dispersion relation is determined. Following

standard analytical techniques, a differential equation for the time

independent wave train structure is derived in Section 2.2; the wave

train properties are examined in Section 2.3.

2.1 THE CGL-ICR FLUID.SET

For time scales long compared to the ion cyclotron period and space

scales"longer than the ICR, plasma dynamics are often reasonably well

approximated by moments of the Vlasov equation.- Of course, phenomena
• • . '*''

which depend on details of. the particles' distribution functions, such as

Landau and cyclotron resonance, and heat flow, cannot be treated by fluid

equations. By systematically expanding the Vlasov moments a. set of fluid

equations with first order ICR corrections can be obtained.to describe

motion .both-parallel and perpendicular . to the magnetic field. The formula-
. v • ' - ' • • ' • • . " • ' . • - . .

tion employed here is due to MacMahon [1965], and the interested reader

is referred to his paper for details. A common difficulty with equations

derived from a moment hierarchy is that they fail to close, i.e., lower

order moments depend on hi.gher order ones. This difficulty is avoided
•o ' " - ' - . •

for the degenerate case of shock .propagation perpendicular to the magnetic
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ficld [MacMahon-,,. 1965] and for small amplitude linear waves. The consid-

erations of this paper are restricted to these cases and, therefore, the

fluid equations presented below are a truncation of the full set.

The equation for the continuity of mass flow is

|£'+ V-(pv) =0 ' • • (2.1)

where p is the mass density and y_ is the fluid velocity. The

dynamical force equation is ' .

^ ^
P dt = - V-P +•—£— (2.2)

where P is the pressure tensor summed for ions and electrons, and

the superscript (1) denotes retention of first order I CR contributions.

J^ is the current density, B^ the magnetic field, and c is the

velocity of light. Gaussian units are used. The relation between J_

and B^ is specified by Ampere's equation ^ .

4TT
V x _B = ±1 J . . (2.3)

The electric field E_ is governed by the particularly simple Ohm's law

v_ x B^
E + - - =0 . . - (2.4)
™~ " C .

The neglect of contributions to Ohm's law from finite ion and electron .
' . -\ ' . : ." '

inertia, and resistivity is a further restriction on the calculations

± ± 2 ' - ' • " ' "performed here. When B = STI? /B > 1 , inertial. dispersion is a

smaller effect than ICR dispersion. Faraday's law

3B . .

completes the Maxwell se't.
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For shock investigations an equation expressing the conservation of

energy is required . .

,(D
B *- I t- r

_ , . ' + _ * tf . n,, V_' A _,
2 l»

. v
Sir v p

rn -x
+ p[ j + — urn+ c

p

= 0

2p

(2.6)

and ,(D are pressures perpendicular and parallel to the

magnetic 'field. Subsidiary equations for Iv and P.. are needed

beloiv, and v;ill be written here in a form appropriate only for perpendicular

shock and linear wave propagation

(V-v + V. -v)—
= 0

,(1)

2 dt

(2.7)

(2.8)

where V, is the perpendicular gradient operator. Contributions to

(2.6), (2.7), and (2.8) from zero order heat flow along B^ have been

neglected; these heat flow moments depend on the exact shape of the.

distribution .function and are not determined by the moment equations.

Their neglect represents the closure of the .moment hierarchy.

The quantities c and ^ ^
ffff

are the first order ICR heat

flows perpendicular to B^ . Only £~ is needed, and subject to the
*co • " • . "

same restrictions appropriate to (2.7) and (2.8), takes the form

v.pd) (2.9)
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P£ is the z'eroth order ion pressure; fl+ = eB/M+c is the ion gyro-

frequency; e is the electronic charge and M+ the ion mass.- In (2.9)

terms involving heat flow and fourth order moments have been neglected;

these terms can be significant for plasmas whose distribution functions

deviate greatly from Maxwe Hi an [MacMahon, 1965, 1968].

Since the factor l/fi+ appears in (2.9), £, is formally of

first order; hence, formally, V«P J could be replaced by V'P^ ' ,

whereupon it is easily shown that g^ ' vanishes. ICK dispersion,

however, couples different degrees of freedom, and the lowest order ICR

corrections to long wavelength hydromagnetics are products of two ICR

.terms. Therefore in (2.9) V-PV' must be retained since

contributes to, and is actually the dominant contribution to, ICR

dispersion [MacMahon, 1968], .

If B_ is assumed to be in the z direction, the only components of

P required below are P and P. ; these are ~~
z xx xy ' .

_ p
' dx

du

dx

u and v are the fluid velocities in the x and y direction, respectively.

Before passing to the shock wave train, a useful exercise is to

determine the linear dispersion relation for the perpendicular fast wave.

.Linearizing about a stationary, uniform equilibrium of infinite spatial

extent and assuming harmonic perturbations of the form 6u(xyz,t) =

6u exp[ikx-ut] , (2.1) - (2.11) reduce to the dispersion relation
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Cp is the hydromagnetic fast speed, Cf. = [(B /47rp) •»• (2P^1Vp)]

.and R = ' ( P r _ /pft ) is the ion cyclotron radius based on the
T t£R + .

zeroth order ion pressure. The small ICR expansion of the fluid

equations requires that k»R+ < 1 > shorter wavelengths can only be

treated correctly by the kinetic theory [Fredricks, 1968],

As found by MacMahon [1968] and by Fredricks and Kennel [1968], ICR

2 2dispersion, k R - term in (2.12), decreases the phase velocity.below

the hydromagnetic fast speed. In the context of shock wave trains,

therefore, the dispersively propagating fast wave can phase stand,

u>/k = u = flow velocity, only in the downstream shock flow. (The down-

stream flow velocity must be less than Cp by the shock evolutionary

conditions [Kantrowitz and Petschek, 1966].) Hence linear wave theory

predicts that the 3 > 1 perpendicular fast shock wave train trails

behind the shock leading edge.

2.2 DERIVATION OF THE SHOCK WAVE TRAIN . .

.When dissipative processes are weak, the collisionless shock

transition from upstream to downstream stationary states takes the form

of a nonlinear.dispersively propagating wave whose phase velocity

matches the local flow speed. This wave train is described by a

differential equation which balances dispersion and weak dissipation

against nonlinear shock steepening. Since the analytical techniques

for obtaining the differential equation are standard [see Sagdeev, 1966-

.Cavaliere and Englemann, 1967; Kennel and Sagdeev, 1967b], only the

highlights are presented. A small viscosity is included in the analysis
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to simulate weak collisionless dissipation, a specific model of which'

is the subject of Section 3.0. •

Wave train solutions to (2.1) - (2.11) are sought which are time

independent in'the co-moving shock frame. The shock normal is assumed

to be in the x-direction, and is perpendicular to the magnetic field in.

the z-direction; plasma quantities are assumed to be functions of x, only.

Equations (2.1) - (2.6) now possess a first integral with respect to x;

in regions where the flow is spatially uniform, these integrals are the

familiar shock Rankine-Hugoniot relations which connect the upstream and'

downstream states. For (2.1) - (2.6), however, only five independent

relations between the six dynamical variables are obtained; hence an

additional conservation law is needed.

Goldberg [1970] has pointed out that for perpendicular propagation,

the equation for ?A , (2.8), provides the required conservation law.

In the shock frame (2.8) becomes . ._
; x_ • • . '

~ u+ 2o^(1) - x) = 0 . (2.13)

itfl) "" 'Since '"£. *x vanishes for a spatially uniform flov/, (2.13) yields

?tj u. a ?A /P = T(j = const.; for perpendicular shocks the parallel

temperature is unchanged. - . • '-

Since viscous dissipation is assumed small, second order terms in .

the coefficient of viscosity, y , are dropped in the derivation; in

addition, terms of order p(R+/L) , where L is a characteristic shock

scale length, can be neglected. With these approximations, (2.1) - (2.6)

and (2.13) reduce to the following wave train differential equation:
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4 p u dx
* d Au

dx P1U1

= u,

d Au
dx

\ (Au)2 +

1-1

Au (2.14).

u, denotes the upstream .flow-speed, and M = 'u /C is the magneto-
.. -1 hl

sonic Mach Number; Au = (u-iO/u, . . • .

The first term in (2.14) represents ICR dispersion and will yield

an oscillatory trailing wave train. The•first derivative term repre-

sents weak viscous dissipation. The right hand side of this second order

equation can be interpreted as a nonlinear driving force; setting this

term equal to zero yields the Rankine-Hugoniot relations for u . An
o - . - •

analogy between (2.14) and weakly damped particle motion in'an anharmonic

potential well is presented in Sagdeev [1966] and in Kennel and Sagdcev

[I967b]. The next section discusses an alternative method for obtaining

the wave train properties. . "- .

2.3 STRUCTURE OF THE ICR WAVE. TRAIN

The wave train differential equation is nonlinear since both the

coefficients of the differential operators and the driving force are

nonlinear functionals of the velocity. : Equation (2.14), however, does

possess two stationary points located at the upstream and downstream

.solutions of the Rankine-Hugoniot relations [zeros of the right hand side

of (2.14)']. A general technique for determining the qualitative features

of the nonlinear equation is to linearize about the stationary points

and examine the stability of the linearized solutions. For wave trains

shock transition requires that the perturbations be unstable (stable)
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upstream (downstream) [see Sagdeev/ <1966; Cavalicre and Englemann, 1967],

The linearized solutions determine whether the wave train oscillations

occur in the upstream or downstream flow and provide estimates of the

shock scale lengths.

After some manipulation, the linearized version of (2.14) for the
*

perturbed velocity 6u .becomes ,

d6u

dx
dx

!lli,(»)*/« (2.15)

where the coefficients of 6u are now to be evaluated about either the

upstream or downstream flow. If terms of orders p are neglected,

solutions to (2.15) in the form 6u « exp(Xx) are

A = -uu
3 D(0)+ „ 2 R

-ll/2

3 (0)+ (2.16)

plUJ+1
3 «L

L4 pcF
2J

l" Rt

•V2-i|1/2

Since .M -1 > 0 upstream, (2.16) yields u decreasing exponentially
; -.. *!
from u, with a scale height given by

(2.17)

Hence ICR dispersion determines the thickness of the leading edge.

2Downstream M_ -1 < 0 , and solutions of (2.16) are damped oscillations

with wavelengths given by (2.17) evaluated about the downstream flow

and damping length ̂  j P£ \ /uu • Therefore as predicted by the

linear wave dispersion relation [Macraahon, 1968; Fredricks and Kennel,

1968] ICR dispersion forms a trailing shock wave train.
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The first .order ICR-CGL fluid equations provide an accurate

description of the .shock structure if, and only if, the shock .thickness

L « R . Therefore from (2.17) the upstream Mach number is limited to

values MF -1 « ^ P£ /pCp < 1 , so that ICR dispersive shocks must be

weak. Coroniti [1970] has shown that stronger high-B fast shocks

steepen until thicknesses of order the electron'intertia.length C/w

(w = 47rNe /M ) , are reached; for solar wind plasmas, C/w « R . .

The shock structure is now described by a trailing C/w length wave

train. '

In'summary, the ICR-CGL hydromagnetic equations describe plasma

behavior over scale lengths long compared to R . A closed set of

Rankine-Kugoniot relations for perpendicular shocks exists with T^

constant across the shock. When ICR dispersion is balanced against

nonlinear steepening± a trailing wave train with R scale lengths

resolves the shock structure. This shock solution is valid only for

2
weak shocks, Mp-l << 1 • In the above analysis weak collisionless

dissipation was assumed to provide an irreversible shock transition.

The next section considers a specific model, the nonlinear three wave

decay process, for this dissipation. . .
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3.0 THREE WAVE DECAY. INSTABILITY OF A NONLINEAR PERPENDICULAR FAST WAVE

3.1 INTRODUCTION

A nonlinear wave, such as a wave train, does not always constitute

an equilibrium state since the oscillation amplitude is far from the

thermal level. Two perturbation waves, either thermal or nonthermal.

fluctuations, can couple to or scatter off the nonlinear wave spatial

gradients [Galeev and Karpman, 1963; Kadomtsev, 1965]. If these mode

couplings resonantly extract energy from the nonlinear wave, thus

amplifying the perturbation waves, the nonlinear wave amplitude can

decay faster than the rate set by particle-particle collisions. A

nonlinear wave train, therefore, can parametrically excite incoherent

wave turbulence which, in general, will not phase stand in the shock

flow, and which provides a form of irreversible collisionless dissipation

that damps the wave train amplitude. Particle distributions adjust by

damping the turbulent waves, eventually, relaxing to a uniform downstream

'State. ' . • . ' . . . ' . ' " • . " • . " ' ' - • - . ' . - •

The three wave decay instability is possible only if the wave

frequencies and wave vectors of the interacting modes satisfy the following

resonance conditions .[Sagdeev and Galeev, 1969]

' (Dj's UQ + U2 (3.1)

*1 = *o * -2 (3<2)

to,,, k~ refer to the nonlinear wave, and u , k, and w-, k~ are the

two perturbing waves.- In analogy with quantum mechanics, (3.1) and
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(3.2) express the conservation of wave energy and wave momentum- in the
/' . -

'interaction. In addition to (3.1) and (3.2) the matr ix-elements coupling

the three waves must be non-zero and have the appropriate sign for

instability.

A general theorem governing possible decays is that three waves on
. • t,

the same branch of the dispersion relation can mode couple only if to

increases with increasing k_ (see Sagdeev and Galeev [1969] or Kennel

and Sagdeev [1967b] for proof). Therefore, from (2.12), decays between'

three perpendicular high-3 fast waves are disallowed [MacMahon, 1968],

The fast mode, however, can unstably interact with waves on other branches

of the dispersion relation provided that the decay is not forbidden by

polarization restrictions.1

This section considers the decay of the perpendicular' ICR wave train

into slightly oblique fast waves and Alfven waves propagating parallel

to the magnetic field. The motivation for treating this-particular case

is that Alfven waves are undamped in high-3 plasmas.[Barnes, 1967], and

therefore could possibly be observed in the. downstream flow by space-

craft. Other decay modes are not considered but could contribute to the.

total shock dissipation. The matrix elements for the interaction are

derived in Section 3.2. The growth rate for the decay instability is

determined in Section 3.3. Section 3.4 estimates the wave train damping

length. • ; "

3 . 2 T H E MODE COUPLING MATRIX ELEMENTS ' . - - : - . - -

Since the ICR shock must be weak, IL, - 1 « 1 , the downstream

wave train oscillation amplitude is small. Therefore locally the wave

train should approximately obey the linear wave dispersion relation,
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and the wave polarizations can 'be interrelated by linear theory. For

the perpendicular ICR shock wave train,! the polarizations are • 6V , 6V ,x y
6p, 6B , and 6P ' ; the temporal and spatial dependence is of harmonic

form exp[ ik jX- iw t] . The slightly oblique fast mode is denoted by
0 m

—\> k_i» pi> £1 » ancl oscillates as exp [i (kj^ x + k.. z) - iw t] .

Similarly the Alfven wave polarizations are V , b , which vary as
X2 y2

exp[iku z - i"2t] .

From (3.2), the wave vectors of the three interacting modes must

satisfy k. = k, = k, and k.. - kn = k.. . .For slightly oblique
o -h • •*• i 2

propagation of wave (1), k . » ku , an assumption whidi permits

considerable simplification in determining the matrix elements coupling

the three waves.

The calculation follows the method of Sagdeev and Galeev [1969] .

The dispersion relation for each mode is determined from Eqs. (2.1) -

(2.9) retaining the resonant nonlinear coupling of the perturbation waves

to the large amplitude wave; the resonant couplings are of the form

6V V for the Alfven wave and <$V* V for the oblique fast mode
x *i x y_

* • 1 . *• ' 2
(* denotes complex conjugate). Other nonlinear terms such as V or

' • .- ..-.•'•' . .',. , " •- xl
V V are neglected. The linear wave polarizations are then used to
xl /2
eliminate all the variables in terms of V , V , and <SV . The wave

xl y2 X

polarizations are nonlinearly coupled by matrix elements, the relative

signs of which determine the stability of the interaction. Since the

analytical procedures are standard, the calculation is outlined only for

the Alfven wave; the result for the fast mode is simply stated. Further-

more assuming k » k , ICR terms of order k R « 1 contribute

negligibly compared to k,R+ < 1 terms and are dropped.
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Substitution of the above polarizations into the /-component of

Ohm's law, (2.4) and (2.5), and use of (3.1) and (3.2) yields the

following equation for b

b exp[ik z-u t] =
/o " ^

r Vy2v k
2

- (6V*b +V2 y 2i y SB*) exp[ikyZ-iw t]

+ nonresonant terms (3.3)

B is the equilibrium magnetic field strength. The nonresonant terms

vanish after the phase averaging. The lowest order linear polarizations

for 6B , 6V , b , and V are given by
y z y •

k,6v nx 0
(3.4)

k ,R « 6V•
5V = i (3.5)

k. 'V B.i x. 0
(3.6)

k , 2 R - 2 n VJ. + + x.
V = i -
/I •)

(3.7)

2 1/2where C = (B /4Trp) ' , the Alfven speed.

(3.7) into (3.3) yields .

Substitution of (3.4) -

k V BAU y2 0
k k.fl B.k,2R 26V*V

13 4. + 0 4. + . x 3

^Vl^
(3.8)



-19-

2 2Note that since' the oblique fast mode has w, 'x- k.f , k,, C /u,
1 •& F ' " A/ • 1

2 2
kjl /k^ . « 1 , and the nonlinear contribution to (3.8) is small .

Performing .an identical analysis on the y momentum equation yields

for -V

ik B.b k Bnbn u v l
4TTP() •

' 6B*
2

Bo
k •

6p*'
po .

+ ik. (V 6V* - V 6V*)
JU X y y xj

(3.9)

The last two nonlinear terms, arise from- V_*W . The perpendicular fast

wave polarizations satisfy 6(B /p) = 0 ; hence the nonlinear term
Z

proportional to b vanishes identically. Substituting (3.5), (3.7),

2 2 2and (3.8) into (3.9) and neglecting terms of order k C /w « 1 ,
H A A ' .

yields the follov/ing simple result

k 2 C 2

— 6V*V
w n xx ,

(3.10)x * y

The coefficient of V is just the linear Alfven wave dispersion" • • y ? ' ' ' . " . . • • . ' • ' .
2 2

relation. Note that the nonlinear terms are proportional to k_^ R+ .

_A more convenient and transparent form of (3.10) is obtained by

reformulating the above analysis in a Hamiltonian representation [Sagdeev

and Galeev, 1969]. The time dependence of the wave amplitude is" now

assumed to have the form V = V (t) exp[.ik z-iu t] where V (t) is.
X 2

 V
2

 n ^ . 2
considered as slowly varying. Use of the linear dispersion relation

for cu2 then permits (3.10) to be written as

3V (t)

at
^k 2R 2 r U) -,

•L- 2 - — w_Wl 6V*V
ajQa3 u2 |_ aj^ J 2 1 x

(3.11)
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v.'here ,wf) = w -co was used. < .' ' .• ;

An identical analysis for the oblique high-3 fast mode yields for

V ft)
Xl

3V (t) , 2n 2. 0 i 2,, 2x, ' . .k,. C. k. ft k, R

2 2 2
where terms of. order k.. C /w « 1 and k R « 1 have been

neglected. A similar equation for the time rate of change of 6V

could be obtained.

3.3 DECAY INSTABILITY GROWTH RATE

Now consider.the simple case where the wave train amplitude greatly

exceeds both perturbation amplitudes, 6V » V . ,V . If the growth
1 J **i

time for the instability is long compared to a flow time across a wave

train scale length, the time dependence of 6V in (3.11) and (3.12)

can be neglected in the determination'of the initial decay instability

growth rate. Of course after many e-folding times of the instability,

6V will be reduced to the perturbation amplitude level; however, by
". • - •

this time the shock transition will be completed. Note that the nonlinear

limit cycle of the decay instability, i.e., when all three modes share

equal amplitudes [Sagdeev and Galeev, 1969], need not be considered since

the pertui'bed waves are convected downstream out of the shock region.

If Vv (t) and V̂ r (t) vary as exp[yt] , (3.11) and (3.12)

reduce to

Xl

. 2,, 2. 4 . n (0)+. ,, 2_ 2
2 _ _ \ CA k^ ^Pi /PQ^ ^

T . ~ " o
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Instability results only if sign (w,w ) < 0 .'or from (3.1) if- .

W0 ** 'Wl ' * lw?l • -Mencc the initial large amplitude, wave decays to.

waves of lower frequency or, by the quantum analogy, the decay occurs

only to lower energy states.

To further determine the growth rate, k(1, to., and u must

be estimated. Setting to0 = -k..C. , k.. > 0 , u = M k,Cr , from (3.1)£ i) A • 9 • U r,~ t-s> r

and (2.12) to. becomes to. = M_ k C. - k.r. = k, Cr [1 - (3/8p) (pf0 /̂C '
1 i * o ** "A *.'.» r ' «J^ h

2 2
where k , R+ < 1 was assumed. .No te that wi/^ < - U 2 ' ^ence ^e

perturbed...waves are convectecl downstream. From the Rankine-Hugor.iot

relations for a. perpendicular shock [Anderson, 1963], M_ is given by
.'2

-i)

-1) + 3

1/2 3 - M:

2-

(3.14)

if MK -1 « 1 . Eliminating Mp then yields
1 ' 2

C (0)

3 P^

POCF

2 2

(3.15)

as an order of magnitude estimate for k .. and |w /to

train amplitude is estimated as &\'̂  ̂ (6p/pQ) (WQ/̂ )

The wave

M c (M; -i) -v
f2 f rx

-1) . Substitution for wfl, 5Vx> and 12o)2/.u311 into (3.13)

yields as a very rough estimate
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The above calculation assumed that oblique fast and Alfven waves

were present in the noise.fluctuation spectrum and could be parametrically

amplified, by three wave decay. Oblique, fast waves,..but. not Alfven waves,

have resonant Landau or transit time damping interactions with thermal

ions and electrons [Stix, 1962; Barnes, 1967]. If the nonlinear growth

rate (3.'16) is less than the Landau damping decrement, then little or no

energy c'an be coupled into fast waves by nonlinear mode coupling, and the

three wave decay instability probably does not provide the shock dissipa-

tion. The oblique fast, wave Landau damping rate is approximately [Stix,

1962]

(3.17)

2 - ' ~where C+ = 2T /H+ , the specie thermal speed. Substitution of (3.15)

for k , use of the downstream phase standing condition w = M k C =
** • ' . V» I * *y <£j V

^M1 " f
2 2k • R in terms of M , and elimination of Mp by (3.14), yields for

toestimate and

k C-A £F exp
4C

-(3.18)

The ratio of the nonlinear growth to the linear damping rate then becomes

(0)+
2 2 2 4C,

2 2
(3.19)
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Since C /C 3" ^ v'^T/M 1/rfF » 1 unless; 3 ^ M /M , , electron
— f\ •{- — . • - • { - — - . . -

Landau damping does not suppress the nonlinear decay instability.. Ion

Landau damping is also small provided the exponential factor is large, or

2 -
M,, -1 « 2/>̂ ?' . Hence three wave decay is an effective dissipation

1 ±
process "for the perpendicular fast shock if 3~ ̂  1 , but becomes

. - . . . • + • « .
considerably weaker for higher 3

3.4 ESTIMATE OF THE WAVE -TRAIN DAMPING LENGTH . • '

'• The three wave decay instability extracts energy from the ordered

oscillations of the wave train and generates incoherent wave turbulence

in the downstream flow. Hence the 'wave' train should, persist for a length

LR ^ M CP/Y., before being damped to the fluctuation level. Using (3.16)

L.} can be estimated as

. , _ _ _ ( , 2 0 v
D - "- ' '

From the downstream phase standing condition, UK = .Mp k, Cp and (2.12)

and (3.14), k, is estimated as k .2R 2 ^ 4 (Pcr2/Pi(° ) CMr -1) ;
«3P «Sa "*" -J *' «5o

Ln then becomes of order

D 2 ... (M. _
r

1/2

o " -,/7 • (3.21)
^* i \ *'/ ̂

1

2
For M p - ~ l <<: 1 > the wave train should exist many ion gyro-radii in

1 • ' : ' • . . ' • . . - • ; .
the downstream flow.

If no other particle dissipation processes, such as current

instabilities, are involved in the shock structure, shock heating of the

particle distributions occurs primarily by. Landau damping of oblique

fast waves. The particle thermalization length should be of order
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± I ±1
LT ^ M CF/|YL I , or substituting (3.18).

1
—2

1/2 AC,
(3.22)

2£
Note that by (3..19) LT > L_ ; hence particle dissipation persists

further downstream than does wave train dissipation.
. •' ' ±

Since Alfven waves are undamped, after many L« or L ~ lengths

downstream the wave -spectrum will be dominated by transverse magnetic

oscillations. •

3.5 SUMMARY

The parametric amplification of oblique fast and-parallel Alfven

waves at the -expense of 'the wave train amplitude produces the shock

dissipation required by the Rankine-Hu'goniot relations. In the downstream

flow coherent wave train oscillations gradually become disordered and

finally damp to the fluctuation level. Oblique fast wave turbulence is

Landau damped by ions and electrons, thus producing downstream.particle

thermal!zation., until only Alfven turbulence remains. The relaxation

lengths for the wave train and particles are many times R+ ; hence the

complete shock transition.region.should be much broader than the initial

gradient.of the magnetic field at the leading edge. Landau damping of
' V ' ' " ' . '• • •

oblique fast waves probably restricts'.the particular decay instability .

• ' • ± . - ' . ' - .
dissipation considered, here to shock flows in which 3 does.not greatly

exceed unity. .The spatial structure of.the shock is sketched in Fig. 1.



4.0 DISCUSSION

The three wave, decay model of.collisionless dissipation probably

greatly oversimplifies the turbulent relaxation.of the downstream shock . .

f low. Clearly ; decays into other modes of hydromagnetic turbulence are

possible and would also contribute to wave train dissipation. Hence

the daruping length determined from a single decay instability only .

represents an upper limit to the shock length.

Heat transport, in the downstream flow might also be quite complicated.

If particle thermalizatiori proceeds by the linear Landau damping of

oblique fast wave turbulence, the quasi-linear theory predicts that the

resonant diffusion is entirely in parallel energy [Kennel and Englemaan,

1966]. The -Rankine-Hugoniot relations, however, require that T.. remain

-unchanged across the shock; hence additional turbulent dissipation is

needed to convert acquired parallel energy into perpendicular energy.

± ± ± ~
For T.. > T, and B large, parallel propagating fast waves are

unstable to the nonresonant fire-hose and to a resonant ion instability

[Kennel and Sagdeev, 1967a; Kennel and Petschek, 1966]. Kennel and

Scarf [1968] have shown that the ion resonant growth rates are exponentially

enhanced if the electrons are also Tj~ > TjJ anisotropic; the instability

noii? can affect the .main bulk of the ion distribution, thus greatly
\

increasing the turbulent dissipation. The downstream wave spectrum,

therefore, is likely.to exhibit a variety of turbulent modes each attempting

to drive the plasma toward a stationary configuration. . -

The decay instability considered here predicts that Alfven wave

turbulence should persist far downstream from the shock. Detection of
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these .waves, however, does not itself-.constitute a verification, of ..the'.. .

proposed dissipation model since the fully tui'bulent-shock theories of

Kennel and Sagdeev [1967a] and of Camac et al. [1962] also predict

downstream Alfven turbulence. Direct observations of the internal shock

structure are required to differentiate between the various theories.

Typical solar wind flows'have moderate to high Mach. numbers

MP ^ 4 to 10. Therefore in the spatial region surrounding the bow of .

the magnetosphere where the shock is strong, trailing ICR wave trains

of the type discussed here will not generally be part of the shock

structure. Fredricks et al. [1970] have.reported that near the sub-solar

region the bow shock is characterized by electron inertia lengths, C/w . ,

• • ' • ' • ± ' ' " • ' "
which are much less than R when 3 ^ 1 . Far out on the flanks of

the magrietosphere, however, the shock strength is weak. Also shocks

propagating in the interplanetary medium might be -weak".. Hence the

trailing ICR fast shock structure could be detected in these regions by

high telemetry rate satellites. . . _ . . " ' .
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FIGURE CAPTION

Fig. 1. The spatial structure of the magnetic field in the ICR fast

shock is sketched against distance through the shock. Upstream

is to the left, downstream to the right. At. the leading edge

B increases exponentially with a scale height L ̂  R Y V/ave

train oscillations, also with R scale lengths, trail in the

downstream flow. The wave train decays into oblique fast.and

-parallel Alfven waves"by three wave mode couplings, thus

providing irreversible collisionless dissipation. Wave train

oscillations are damped over a length L.. » R . Ion and

electron thermalization proceeds by the Landau damping of

oblique fast waves. Undamped Alfven-waves should be observed

far dovmstream.
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