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1. STATEMENT OF WORK . °

The‘ statement of wO‘rkv for this vprbject i'ncludes.data analysis and
sgpp_ortin_g research in codnection with the _'follewing broad .objectives‘:-

(1) Provide a precise 'ar'xd_ accﬁr_ate ‘ge'orjn‘etri‘c.: description "‘of .
the earth's surface. R S S ,

(2)- Provide a prec1se and accurate mathemat1cal desc rxptlon
of the earth's grawtatmnal f1e1d

(3). Determme time variations of the geometry of the ocean -
surface, the solid earth the grawty f1e1d and other geo- |

physuc al parameters
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2. ACC oMpLISHMENTs Dugmo THE 4_'RE,"POR.T PERIOD

" _ 2 1 Adjustment of the BC 4 WorldW1de Geometrlc

Satelhte Trlangulatlon Net

2, 11 Theoretical _-Developments .

- | As was mentloned m the last semi- annual report work was begun on
processmg the NOAA TYPE II data The only exxsting com_puter program at
that time was de31gned to use non- correlated data The TYPE fI-data being the
result of a polynom1a1 f1t to plate 1mages has an assoc1ated 14 x 14 varlance—
covar1ance matrlx and in order to use thls data 1t was necessary to write a new

program

The new lmear form of the mathematical model is

Xs ._,.' X's‘t"' R'cos o cos 6: '

.‘”, .

F2= Y, “— YG R sm o cos H " o BN Y
CFy = Z':-ZG—Rcosd o |

_where the subscrxpts S and G refer to satelhte and ground respectwely, and Ris
the range trom the ground statlon to the satelhte. The observatlons are o and 5.
The lmearlzed form of the mathematlcal model is basxcally the same as

'-‘descr1bed m The Ohm State Umver51ty, Department of Geodetic Sclence ReportNo 86

.(Pp 21- 27), which is AX+ BV +W 0,: R @)

"'?where the- matrlces A and B are the partxal denvatlves w1th respect to the parameters
and the observatlons respectlvely Whenever a. satelhte event 1s defined as the |
' observatlons to one satelhte posmon the A matrlx for one ground station and

" one satelhte posttlon 1s of the form »

-1 0 0

| e 0.0
A= |0+ .01 0-1 0 = [+I{-1] - (3
| L .

':b_ 0- +1 "jo_l[o""'-l'-



However, in case of correlated observatmns an event is defmed as all obser-
Vat1ons to the seven (7) satelhte posmons, and the A matrix for one ground

statlon and seven satelhte pos1t10ns takes the form

| A=l |l - I A o @
(21 x24)
B This is perhaps easier to understand if the linearized form of the mathematical
model is split up as follows_: ' ‘

CAX, +'A'2XS+BV+W'=0.‘ )
This is essentlally what was done in the orlgmal adJustment program But
when the model in the or1g1na1 program is spht up, the A matr1ces are elther
+I or -I and they cancel out in the mathematical development the only. change )
' being that of signs. For the correlated data, A1 is the left side of equatlon (3),'

and it will not canoel out,

Another change that had to be made was in the formatlon of the matrix

S
The problem arises because B_P‘IB’ is a singular matrix and_cannot be inverted;-

For the. case of one ground station and.one satellite position one can use the

following'
- M' = (BP'B)" = (B)’P(B)’ = (BY) PB, M

where



da. 36 3R |
| aF.. 3F.  3F.| .. oo
) B = — 2 2 . O ) . .

o 36 3R | - - (8)
3¢ 38 B3R |

©)

As can be seen in equatlon (7), the matrlx B must be inverted whlch means that

1t must be square. Thus even though the range R in equatlon (1) 1s not |

an observed quant1ty, it" must be cons1dered as such m order to

make Ba square matrlx. Thxs 1s of course compensated by 1nsert1ng zeroes o

in equation (9). ' | " ; _ _' I _'
The above development for M 1s descrlbed in the above mentxoned Report

In case of correlated 1mages the s1tuatlon is’ somewhat more- comphcated

The matrix B is now of dxmenswns 21 x 21 and of the form .

lo )

_ where each of the blocks isa3x3 as defmed in equatlon (8)

e

The matrlx P cannot be defmed qu1te as 91mply as in equatmn 9. The

or1gma1 var1ance-covar1ance matrlx is 14 X 14 and the P matrlx is 21 x 2L

This is handled as follows: -
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By usmg the matnces B from (8) and P from (12), equatxon (7 can be

solved for M* (the notation M is’ a m1snomer but this expressmn was used in .

Report No, 86 and we have contmued w1th the same notatlon)

desc ription fo the mathematlcal will be g'1ven ata later date.

rI_"he comp]ete



By using the techniques described abpuve, the reduced normal equations .
are formed as described in Report Ne 86. :

In addltlon to the generahzed approach descrlbed above a completely dlf—
ferent mathematical model has also been developed usmg the method of observation
equatlons. The prmc1pa1 advantage of the method of observation equatlons is that
here the original given correlation matrix _ts used. witheut any modifications which

e necessary‘in the generalized least squares approach.

2.12 Data Acquisition

As of the end of this reportxng per1od the followmg BC-4 data has been

recelved from the data . center

s

(1) Type I Data - 31 Tapes.
(ii) Type I Data - 15 Tapes.-

The tape wise details for type II data are as hsted below

Tape Serial _N.o. of 'eve_nts . 'Break up of events with -

No. on t_he tape - simultaneously observing stations

: i ‘| -2 stations | 3 stations | 4 stations
A-10806 87 3| 12 |
| a-10268 %0 %6 | i3 | 1
A-11082 e | d0 | 1 | s
A-03725 | 90 1 10 *‘_20 -
A-03719 | 90 | | 14 | 2
A-03727 | 90 62 | 25 3
A-03728 90 | e | 20 | 2
A-10897 88 | 71-' 17 1
A-03738 30 19 L1 .
A-95575 29 22 B
A-11519 - 60 40 20 -
A-12327 30, 28 | 2 -

A-12037 _66“2‘*'“313.~;;55;,1;; 5 -

A-12010 | 30 | IR T R E
A-14094 60 47 13 ;
1015 - | 801 | 200 14




2.2 Investiéations Related to the Problem 4of‘-"In‘1proAving Existing
Triangulation Systems by Means of Satellite Super-Control Points

2,21 Introduction _

Gcodctxc tnangulatlon has bcen acceptcd as an accuratc mcthod of
determmmg "precise” coordmates for the trlangulatlon stations of 1elat1vely |
short chains. This well accepted idea was also given in an a1txcle‘ ""How

'accurate lS Fnrst—Order Trlangulatlon?" FSxmmons, 1950 Pp. 53~ 561 with
the followmg mtroductory words: |

~ The questlon is often asked "How accurate is the posmon
of a triangul'mon station, " or "To what accuracy are the
distances between triangulation stations known?" These
B questwns are difficult to answer, principally because
" first-order trmngulatxon gives the optimum accuracy
- .in the measurement of great distances and there is at
-‘present no super yardstick to whxch 1t can be compared

Two modern_technologxcal, advanc_cments_, namely, s_atelhtes and
”eléctrc‘nic 'distacc’e rﬁeaéurinu (E'DM) ins’crumehts, hcve questioned the
‘ f1r<at order trmnoulatxon accuxacy, especmlly if trxanguhtmn is extended
to dxstances lonwer than 1000 km or more. In such extended trxannu—'
lation systers systema’clc errors’ hke hteral refractxon, propqgatxon of
.observatxonal errors, resxdual polar motton- effects on latitude, 10110'1tud0 _
‘and azzlmuth etc. [Mueller, 1969, pp. 61, 86- 87; Pellinen, 1970, pp.. 34~ Sa,. _
Wolf 1950, pp. 117], which -cannot be ehmmated a.ccumulate. Lately
the questmn haé been raised whether any vsxgmﬁcant mcrement to"accuracy
1s “ecascaded" from a 1:1 mlllion 1000 km net through a 100 km net to
local control over 10 km dlstances. _
- "The sa‘cclhte tmang'ulatlon and super—transcontmental traverse, being
of the h;ghes_t achievable accuracy of today, . i.e., ,super-c_or__utrol net of
"zcroth"‘ordei*, cdhstitﬁte a modern geodetic super structure, within |
which the classical gecdetic', triangulation .is:siuppcs'e.d to provide a geodetic

c¢ontrol densification.



Accordlng to the classlcal geodetlo oonoept, a lower order system |
’should be. tled to a higher ordcr system. Statletloally, thls meane that _
‘the varlance-covarlance of the hlgher order eystem, ns a lower llmlt
‘-for accuraoy. be at. least compatlble wlth the internal” preclslon of the
lowcr order eystem. .'For all practical reasons, the accuracy of the ,
' higher order systems should be eubstantlally better (by a factor of two oo
.to three) than the subordlnated system. thus supplylng a rlgorous con- C
| strnlnt ln the reduction of the lower order syetern [Schmld. 1969, p. .4]

The objccuvc ot‘ this lnvcstlgatlon is 0 answer the questlon- B
Whother any slgnlficnnt lncroment to accuracy could be transferred '
ﬂom a supcl -control not to the basio geodctlc net (flrst-order trlangu- '

| t latlon) B hlS ob;ective was accompllshed by evaluatlng the posltlonal

acu.u.tcy nnpmvuncnl: for smtlon Wyola (96),- whloh is nuu' thc mlddle,

| "of thc mvostlgatcd gcodotlc triangulation not. by using varlous st.ttlon

. onatraints over 1ts g,ccdetlc posltlon. o

2,22 Data and Accuracy Estimates g ,
" For the . purpose of the present lnvestlgatlon, the triangulation of
'the western-half of the. Unlted States has been consldered, as this. i8"

more accurate than that of the' eastern-half of. the Unlted States ‘
: [Slmmons, 1950 p-: -54]. The lnvestlgatlon is done on the chaln from S

,Moses Lake, Washington to. Chandler, Mlnneeote (Flgure 1), as these
two statxons are also common on both the continental satelllte net (CSN)
B and the super-transcontinental traverse (SI‘T) The data used were |
supphed by the Trxangulation Branch of Geodesy Divislon, and the

Geodctxc nosearch and Deweloprnent Laboratory, both oi the Natlonal
‘Oceamc and Atmospheric Admlmstratlon, Washington. '
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The details of Moses Lake Chandler trlangulatioh chain are as

follows

__'Piuxnl)(l ()[ stthorus L_: L “. FIS)L
,_.Nu_m_ b.u of bases [poCd L . C27T
S Geodimeter -~ 2

Laplncc stattons .: EER R ) 13
10bserved dxrections o | '. - | o ‘919,"j _

‘ .DlSt'lll(‘e bctwcen two st'mons [Mlmmum C273m
e o 2o [ Maximum - 190km

*"rgm length of thcchain_"'.-“ o 1858'1<m.

It is assumed that the. necessary reductlons have been apphed to

V,v the»observed data, a.nd the weight functlon P is "a prior:" known to be."

a suff1c1ent good accuracy. ' ' . o

Super—transcontmental traverse (SI‘T) runs across the western— .

half and the eastern—-half of the U. S A. (Flgure 2). Is speciflcatlons,

confxguration, reductlon of data and . mstrumentation are dealt w1th by

~ Meade [1967; 1969a; 1969b] | _ , |

Contmental satellite net (CSN) is, in general, planned in such a |

.way 8o that the statxons are around 120O km apart and. that these stations

‘are evenly dlstnbuted over the entire area. CSN-statxons are e1ther
‘the statlons of flrst-order triangulatxon net or these are connected to

 them. Its specxﬁcatwn and conhguratiou are dealt with in [Deker, 1967;
Mueller, 1964 Pellinen, 1970; Schmxd 1970]. The cont1nental satelhte

v net of the North Amerxcan Contment comprises of twenty stations which
can be an_chored in the three world net. stations; Thule, Greenland,
Moses Lake, Washington, and Beltsville, Maryland. ”'Furthermore,

v planned is a tie to a fourth world net ‘station ~ Shemya (Figure 3)
[Schmid, 1970]. | ,

, The following representatwe standard errors for observed data

of Moses ‘Lake- -Chandler triangulatxon chain has been suggested [Meade,_

©1970]: o
_ -12-
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~ Dircctions . ’0”4
A'zihuith . 0"8
Busc'[urapéd " 1'part in 500,000
| ceodimeter [ lppm for distance 5 15km .

L L. em for distances up to 15 ki

The mean of all section closures, which is the accuracy measure:
'fcr the mvestigated geodetic triangulation net, is given as 1 part in
© 317,000 [Adams, 1930]. The standard position errors of the end |
“jstations of super—transcontinental traverse, which represent 1ts accuracy
measure, using actual data sets as given by different investigators
differ too much from each other. vTh'e proportional ierro:r, whichl is the
standard position error divided by the distance of the station. from
traverse-origin, is used for this 1nvestigation. The proportional
"errors cf super-transcont.inental traverse are given as follows o
1: 740 ooo over 318 kihnneker long traverse, and 1:1,100, 000 over 1270 '
_kilometer long traverse [Foreman, _197_0],»1.670,000 over._270_ kilometer _
' long trayerse [Gergen', 1970] and 1:3,000,000 over 1858 kilometer long -
traverse‘ [ESSA 1969]. The preliminary accuracy (i e- proportional N
. error) of continental satelhte net, as obtamed from the supplied data,
_V corresponds to 1:385, 000 for Chandler station. Because of this wide

. ‘range in prehminary accuracy measures of these two super—control nets

investigations. using the following accuracies (station constraints), are
made: 1:300,000; 11:400,000; 1: 500 000; 1: 600 000 1 700 000; 1:1. M

1: 1 5 M 1:3 M. The use of these accuracy measures, which are
w1th1n the lumts of preliminary accuracies of the two super-control
nets, »w1ll determine a limit on the accuracy requlrement of the super-
control net, which would be: necessary to improve the geodetic triangu-

lation net.

-15-



’ 2 23 Computations and Results

‘ Durmg the earher period of this mvestxgation consxdcmble thou;,ht :
- was given to the selectxon and use of such formulas and methods which
_would not only provxde high accuracies, but also. minimize or eliminate
loss of accuracy in computations._., This resulted in using Helmert-
Ramsford-Sodano's lteratwe Solution for Inverse Problem, which xs
equally applicable for short and long lmes, and Con;ugate Gradient _
‘ Method (Cg- Method) for the adjustment of the trmngu].ation nets,
. 'where the original observation equation coefficient Matnx (A Matrix)
| is used thus- avoiding direct formation of normal equations where ‘
g _certam prOperties of the or1ginal A- Matrix are lost To mmumze
"the round—off errors, computations are. done in double*-precision with
| double prec1s1on storage [Muller-Merbach 1970] o .

_V ' From the two basic adJustment methods, 1.e., Method of Obser-~ :
ation Equations and ‘Method of Condxtion Equations, he former has _
been preferred for the present investigation due to reasons of simphcxtv
and clarity. The reasonmg of this preference has been dealth w1th in
[Grossmann, 1961, p. 174; Helmert L Teil 1880 p. 556; Wolf 1968,

o P 323] Due to the 1arge size of the tria.ngulation net under investi-

L gation and the availabihty of digital computers, iterative methods were

consxdered because (1) they are easxer to program, (2) they reqmre

. less storage space as the coefficient matruc of a tria.ng'lﬂation net is

very sparse, (3) they use directly the original set of equations through- :
out the process and hence roundmg-off errors do not accumulate from
_one 1terat1ve cycle to another. | o |

‘While searchlng for a suitable adJustment method, this 1nvest1gator
came across the Conjugate Gradient_ Method (Cg—Method)_ [Schwarz, 1968
and 1970;-W01f, 1968], ‘which has the following"distinct‘ advantages'_over'
, »oth»er iter'atiue methods, uch as Gauss-Seidl- Jaco’bi'-,’-'- RelaictionQ
and other Gradient methods - ‘
-16-



1, Orngmal A- Matrlx is used thus avoxding the formation of normal
equations, whexe certam uqcful clnracteristlcs of A~ Matmx, such as
very sm'ili coefficients may be lost.

2. 'Origmal A- Matrlx, which hns very few non-zero elements, is
easily stored in comparatively much lesq cornputer space using en
_Inde\—Matrix. _ ' o _

3. No "meqh-point'nu.rnberlng -tecllnique" rAs‘hkenazi‘ 19671 to keep

V the band-width of the . qystem a mimmum 13 necessary Thus stations

can be nddcd or t'tken out from the existing trlangulation sysicm with-
“out caring for their nmnbering
4. It is a finite iterative process. Theoretica;lly,the solution vector
- is obtamed in a maximum- of n—steps, n being the number of
“unknowns. Therefore, eigenvalues need not be calculated for
determining the convergence. However, experimentation shows
e that the solution vector is not obtained in n-steps, as the
k orthogona.hty between the residue-vectors is not maintained
Aexact,ly Consequently, the residue-vector r ) after n—1terations
is not zero. This deviation from zero depends upon the condi-
,: '_tion of the system, the poorer the condition, the larger will be
" the deviation. ’ '
6. Lach wpproximation x(’) to the solution vector is cIoser to the true

| solution x than the preceeding one, . '

7 . The abihty to start anew at any point in the computation using the las:

(’) as mitlal value 80 as. to mimmize the effects of round-off errors.

Followmg mathematical mod"el’, using method of observation equations,

is used: , _
Let L be the m independcnt observed quantmes, v' the resxduals to the
observed quantities (obtained from the ad]ustment) and XY, %, ... the n unknown

paramoteis to be determined. Each observation glves an_ observation equation,

-17-



Whose‘ general from is
Lo+ve = (59,2 .. L

wheve i = 1,2,3.. .‘. m and f repfcsents a linear or non-linear function. The

method of least squares howéiref demands that (1) f should be linear, i.e.,

a linear relation'qhip between the obqer\iations and the unknowns and (2) the

- number ot‘ observahons (m) should be grcater than those of the unknowns (n)

i.c.,m>n. In case of 2 non—lme.tr functlou f this is lmearwcd by uqmc

T’tyloa scucs about such good approxlm'lte values of the unknownq ‘<o, yo, Zo,

such that. the second and higher order terms can be neglected In thls B

case, equation (1) can be written as |
v,=a,.dx_+b1éy'+'c,dz‘+»...,+?L', o _' E (&)
where‘A

X=Xe+dX, Y=y, +dy, 2=2,+dz, or

™

Ly = £y (%, y Zo - .-')"--.Lf.
,Obser.vatien..vequat,ioe (2) ',c_an. be wrlttenm the_rtletrﬁc ferm ae.
.. Ax+ 1 | : ; : o .(4)v
It Wiil.be seen later_' 'tﬁ'a_t ﬁre have prefert;ed to uee.weighteci. 'coﬁ- o

_straints to the etation Chandler. These "y pnorx" welghted constramts .

on the station position generate observatxon equations of the form
vy = Fx - _ B . o 4(5)

where F is a rectangular 'matrix,-' Whose' elements are either zeros or

one.' Thuev the complete obsefvat_ibp equation e'ystem_can_ be written as.

-1:8‘-" :



where .
v

Due to angular and hnear (distance) observatlons, the observed data

in a trlang'ulation net are of a heterogeneous or dissumlar nature.

_Thls heterogeneous data have not only more than one dlmensxon but also -
'.dxfferent "a priori" sta.ndard errors.' To make thlS data homogeneous,

i. e., dimensmnless and of umt weight, it 'is divided by the corresponding
- "a prlorl" standard error o. " For reasons of. simplicity, the mathematical
| model used is assumed to be uncorrelated. The resultmg homogenized

observanon equatmn system ca,n be wr1tten as ,

_where ' | " e R -

and

V=v/o.s A=Alo; L=1/o, -
e o - (10)

Ve = Vx/0g; F =F/o, ‘

0y = standard error of L,; o, = standard error of Xy

YThe term "heterogeneous or dxssimilar" observations is used ‘when the
methods of their measurement are diverse; thus not only. angles and dis-
tances, but also distances and heights are heterogeneous observations
" [Wolf, 1968, p. 56]; [Schmid and Schmid, 1965a, p. 10] uses the term "hybrid
_systems" for "heterogeneous systems''.

'h‘19*_



»l Equation (8) is. used directly for adjustment by conjugate gradients method.
I"A complete algorithm for obtaintng solution vector . and N by Cg-Method |
is given later, which g'ives v Pv and Q,, or Q,, for a particular column

: _Using these quantities the "y posteriorl" variance of unit weight @23,
standard errors (m,, my) of unknowns, standard posltional error (m,) and N

the elemetrts 9 A, B of the error ellipse are computed [Wolf 1968,
’pp. 286 2921 | o S :

) ” . The geodetic triangulation net is adjusted as an- independem; or free

" net, as it is not connected with other nets. For its unambiguous deter-

' mmation, besxdes the observed data which include directions, bases (to
provrde the scale) and astronomical observations. i e. ’ longttude and
:az1muth (to provxde or1entat1on of the tirangulation net upon a mathe-v’ '
:matlcal surface, i.e., ellipsoxd), one fixed station is required to serve :
as. origm [Gotthardt 1968, p. 167 Grossmann, 1961, P 175] Moses

' 'Lake statlon is kept as. origin with its coordinates obtained from satellite

'_-.triangulation results, these coordinates have been assumed to. be the best ‘

"'known coordmates. As Moses Lake statwn is fixed, its corresponding

'f'x-vector 18 zero, 1.e., Acorrectlons d‘p and d)\ are zero.a_ For compu- _

"tational ease their corresponding elements of the A-matrix are sub-
= ‘.vatltuted with zero. . |

| Combxmng the. free trlangu.latton net w1th super-—control net of zero
order, i. e., contmental satelhte ‘net. and/or super transcontmental
B traverse means constraimng the scale and/or orientation of the triangu-

'lation net The effect of this combmation is comparable w1th "tenms
. racket and string effect " where the: rigid outer racket frame (super-
| control) oonstrams the loose strmgs (triangulation net) If the strings
arc already constrained there would be no ,"v1sible" 'effect of the o

addmoml constram from the rlgid outer frame This is also the purpose».- -
| of this mvestigation, i.e., to. evaluate whether the ex1sting geodetic :

. triangulation is suff1c1ent1y "constramed" or needs to be constramed by
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addltxonal super—control net. For the 'p'resent investigation triangulation
statlon Chandler, which is clommon on the three networks, prov1des
conStramt. _ | | |

A ('codct\c trnngulahon nct can be combmed w1th thc super—contl ol
net in Clthel of the two ways: . _ _

(1) By usmw the actual data, i.e.,. by usmg the actual
coo1dmates \v1th their stanchrd errors of Chandler as obtamecl
from CSN-and _STT w_lth the gecdetlc trmngulatxon, or,
(2) By adding a weivght constraint to Chandler with 1ts
coo1dm:1tes from the geodetxc trxangulatlon. ‘

-‘ For this mveshgatwn, the first way could not be used as. the super— '
contzol net coordmates of Chandler statxon are not compatzble with those -
obtdmed from geodetxc trlangulatlon. As such, the second .way has becn.
preferrcd by usmg the actual prehmmary accuracy estm\ates for Chandler,
which are 1 part in 385 OOO and 1 part in 3 mxlhon, as obtamcd from-
CSN ans S’T‘T, respectxvely. Further mvestigations are. made by using |
hypothetlcal standard posmonal error accuracy estlmates of ‘Chandler |

. statlon, whlch are 1: 400, 000 1:500, 000 1600 000; 1:700, 000; 3:11;
1:1, SM | These accuracy estxmates are w1th1n the actual prehmmary
accuracy estxmates of super control nets. Thus, usmd these various
.accumcws of supc1 control net, a fecling for the acouracy limit of s Uper~.
cont101 nct, wluch would be necessary to 1mprove the. mvcstlgated geoactm
trxantrulatlon, can be obtamed ' '
The Method of Conjugate Gradients ((‘g-Method) is a nonstationary

relaxatlon method
Nk +u=0 ‘ ' (11)

in n-iterative steps, where N is symmetric and positive defih_ite.-
Then the system (11) - known in geodesy as the Normal-Equations -

has a unique solution. However, it is not necessary to have normal
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equ'mons, as Cg—Method can be casily modified for dlrectly using the

- observatmn equ'mons without exphcit formation of normal equations.

A complete mathematical derxVation of Cg-Method w1t.h its program is
ngen by Saxena [1972a, 1972b] o

A complete algorithm of Cg-—Method for obtaming the solution _
_vector (x) and for - obtaining N usmg directly the homogemzed obser-. _
vation equations can be summarized in the following systematxc way |
""'{"'t’"Given* Homogemzed Observation Equation Ax + 1

Select. ‘ Imtia.l Trlal Vector k x‘f°.’ =0

Comput«, ‘ ’
(1:)‘ ;‘_-v(") A‘((o) +1
e »'Relmcatum btepq ]— 1, zl
. (2) r(‘ ‘) = ATV0) ..
Ak *)T(Ah(J )y

’(Vfc'u"j z ,2)‘

BN RN ~ (ARt ‘)’(Ah“ )
_'.L_fli'_:-.’-}() ) ’() SR (for j= 1) :
= (4)' [ R PP 1h(’ ‘) CC(for §z2)

e ) X o 1(3 l)fh(l)
M ':-u)*?‘f. (Ah(’)) (Ahm) e

(G)x(l) —'\(3 1) 4 )LJ h(l)
@ = A\(’) +1

[ERCIERE PP

. (8) ',Orthogonnhty Test 4
r(")T h(’) =0

r<4-,,*>-*_x‘£o_>‘. =0

S > S



o (171 :0)
AR PO ‘)llT O

. r(l)T h(’)

- cos 82 - nr.m_“-“h(’;“- =0

. v(-’) = V(J)

‘chack

Terminétion of Rterations..

Based upon the. thoory of Cg-Mcthod 'md the geodetlc reqmrements,

iterations should be tcmnmﬂ.ed as soon as any of the followmg conditlons are

' falfilled:
(n) -

(O}

()

©

if the improvement in the ‘solution 'vector between two consecutive

A' 1ter'1t10nq is ne;,hglbxly sm'lll, i.e., |x(-‘) <= 1’[ = 1 0- 10 seconds -
'(1 e. 1,0 10 second ml,oor)\ = 3. Omm), ‘ '
it e S0,

i (Ah(J)) ARty = 0

iE the gwcn number of 1terat10ns is rcached

(if the m\md off cr1 or (RFL) durm‘r 1terat10ns e\cceds 2 certain

accuracy lnmt, \\hlch 1s given by the vector dx[fcrcnce

= ATAxJ + AL = 'A'\( ) anid xbog.f Av)

1 where r, LA

\I_'_trug Teamp T

RFE = lA’(v(‘) v(‘> )l

-'“l‘hc'ite'rutihns should be t_crm'ina_ted if r(é_)Y' r{ <3. RFE.

For Obtaining N*- Inverse of Normal Equations

vaen 'Honiogeni'zéd observatibn equaéion coefficient ‘matr‘ix A,

Select Inttial trial vector qk( ) = - O; where qk is the k-th

column vector of Q( =N~ )
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'Compg_ te:
= (1)_"- (°)._= ey where e, is the k-th column vector of
the unit matrlx E. -
' E (2) €3-1, h“) s A1 are to be computed accordmg to
o equatmns g'iven in (A) above. .
: ._(3-)-‘;:'qk(3)‘ - q 3=ty + )\ h“) -
L@t s r‘?"’-'+-,MA”<Ah”«>')
. Test and Terminatlon of Iterations' S'ame as 'i'n' ‘(A) above'.' o
:The algomthm of (4) s programmed as a SUBROUTINE SOLN and
and (B) as a SUBROUTINE QSOLN Both subroutines can be used for

any feasuble sme of data, which can be accommodated on the avallable
computer, after changmg KM, Wthh is the PATSUM Basw Block S1ze
for RTR. | ' | ;

The main program used together w1th these subroutines has
dxmensmn statements and a data card for Number of Unknowns (NU), v
Number of Equatxons (NE) and Number of Columns of Index Matr;x (NT),

' Whlch can. be cha.nged if there is need for it. . _

The program 1s umversal in the sense that it can be used for
varymg data w1thout much change and that "mesh-pomt numbermg tech.mque"
is not requ1red ' Therefore, statmns can be added or taken out from the
tr1angu1atxon system without worrymg about the band-width and size of
blocks. These programs have been tested on systems from as small '
as 2 unknowns, 3 equat_lons up to as large as,.804 unknowns, 1397
equations. : o - _

_ Although the Cg-Method theoret;cally gwes the solutlon vector at
n-1terat1ve steps (n = number of \mlmowns), mvestlgatlons show that the
_ solutxon vector is not achleved in n-iterations due to round-off errors,
1ll-cond1t10mng of the system, dlsturbances of the orthogonality and of |
the conJugancy relatmns [Beckman, 1960, pp 69; Hestenes and Stiefel,
1952 pp. 411] The present mvest1gation, usmg the actual data- set
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shows that thelnum_ber of iterations required to obtain the solution

vector by Cg-Method .using directly the A-matrix Withoutvexpl'icitly

forming thc N-matrix dcpends_-tipon two factors:

system, and (2) accuracy of the solition vector requiréd.

(1) condition of the

Us'i'ng the rcddcti‘c tridng*ulation data (573 unknowns, -96’3 equé.tions)-,

thc program went up to 5778 iterations without g1v1ng any 7 decimal

accurate solutlon vector, whlle 4 decimal accurate solutlon vector was

. obtamed after 1161 1terat10ns, i.e., 2. 1 tunes number of unknowns

‘ (Table 1).

1. 2 n—lteratmns (Table 1)

Each column ‘vector qk of N* is generally computed in less than

Table 1.
_ : : . , A _" Covariance Vector -
Experiment Number of - Solution Vector for Coluinn 8
Number*. | Unknowns | Equations |Itcrations | ‘T_ilho**‘_ o Itof{lt'ions Time=*
: L : m . sec m sec
1 573 963 | 1161 |9  37.13| 640 |3  45.96
2 573 965 ;_f1177o 9 :23,27';' 657 |3  31.91
3 573 '965]7 1175 - 15 45.97 659 12 2,59+
4 573 | 95 | 1176 |9  22.32| 682 |3  4f.64
5 | 513 965 | 1164 |5  53.444 674 |2 .70+
6 573 965 1162 5 . 41.16% 675 2 0.00%
T 573 965 1166 |9  09.46| 631 |3  20.03
8 573 965 1159 |9  24.20 | 648 |3 19,29
9 573 965 1169 {9 - 20.41| 608 |3 1151

#Refer to Table 2.

®rime is the r'xooutlon time on H-Compiler, Optlon = 2 (IBM "60/75) except

Lhosc marked with a. plus (+) qxgn, whxch is the chutlon time on H-Compiler,

Optlon = 0 ([BM .s70/ 165).
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The results -of the invéétigation .a"x'f‘e given in Table 2 and *31,-Awhere'_

in the improvement of.-thé particitilarx geodétic ti'!ang'ulation by Su‘per—

control net is visible only when its accuracy is at ieast ‘1_»' part-in 500, 000.

Table 2.

Experiment -Accuméy _ . WYOILA ©5) ,

o Lo Som, 5 1 Remarks
Number . 1in . 1 Qu | Q.| m2 fmiyz, I :
1 | 2.42! 6.0]{0.5 |35.2|2.9 |Free Net
2 300,000 | 2.41| 6.7|0.5 |38.9 | 2.9
3 400,000 : 2.41} 5.9! 0.5 | 34.3.{.2.9
4 © 500,000 | 2.41] 4.1[ 0.5 |23.8 | 2.9
5 600,000 | 2.41] 4.1] 0.5 | 23.8 | 2.9
6 700,000 | 2.41} 4.1} 0.5 | 23.8 | 2.9
(. 11,000,000 | 2.41} 3.7/ 0.5 | 21.5-| 2.9
8 1,500,000 | ‘2.41; 3.2! 0.5 | 18.6 | 2.9
9 3,000,000 | 2.41! 2.1] 0.5 | 12.2'| 2.9
R I (OO { : : d

: w o a
Qs> Qyy and m /7, my are

given in 107%
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“rrable 3.

WYOLA (95)

P v —

.E ‘

[ ) : . .
| & 8| Accuracy | - Positional Improvement
Q:i g1 . | Relative to Experiment 1

XZ| 1in , - - " v

= ' : .M, omy | m, Meters %

1 |FreeNet |1.83{0.37| 1.9 |

2 | 300,000 |1.93{0.37| 2.0 | -0.1 -5

3 | 400,000 |1.81{0.37| 1.8 0.1 5

4 | 500,000 |1.51/0.87| 1.5 | 0.4 - 21
s | 600,000 |1.51{0.37]| 1.5 0.4 21
16 | 700,000 |1.51{0.37| 1.5} - 0.4 21

7 }1,000,000 | 1.43{0.37| 1.5 | 0.4 o1
' 8 1,500,000 | 1.33}0.37| 1.4 0.5 26
9 (3,000,000 | 1.08|/0.37| 1.1 0.8 42

‘Standard Errors of Unknowns. (m,, m,) and Standard Positional -

.Error (m,). are given in meters. .
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Worth rnentioning is that the longitude iterm's, -which are Q,, and

# in Table 2 remain practically uneffected. This'could be expiained

m
by the fact that station Wyola is very close to Laplace stations, which
control the azunuth error accumulatlon and thus control the longitude
terms. .
: It is. mterestmg to note from Table 3 and Flgure 4 of the inves-
. tigated geodeétic triangulation chain lies _between 1:300,000 and 1:400, 000,

‘which is quit'e in agreement with its presumed accuracy of. 1:317,000.

2.24 Summary and Conclusions '

The super—control net, i.e., contmenta.l sa.telhte net or. super- -
‘ transcontmental traverse, can provide a useful constramt to the inves-
tigated geodetic trlan_gulat_ion net; and thus can unp_rove it _o_n_ly_ when the
.accuracy of _super—control; net is at. least 1 part in '5.0‘0., 000; in this case,
this corresponds t_o'.'i3‘.,7 m sta.ndard position 'error "-for V'tiie"_station
_Chandler. v_ _ ' |
’l‘he prehmmary accuracy of super-transcom:inental traverse is
already better than this limiting accuracy of 1’ part in 500, 000. The
prehmmary accuracy of continental satelhte ‘net 1s, however, lower than
the hmltmg accuracy of 1:500, 000 the preluninary standard posmon :
error for Chandler as obtained from contmental satelhte net corresponds .
to +4,8 m, 1.e., 1:385,000. The future will show whether the limiting
e.ccuracy eould' be achieved' by continental satellite net, especially because
. Dumerous “spatial triangulations of CSN have produced accuracies w1thm
the range of 1 part of~400 000 a.nd 1 part in 700, 000 [Schrmd 1965, p. 22]
Schmid [1970 pp. 23-24] indicates that contmental satellxte net will
fall short on an optlmum solution with respect to both its coverage and

its ac_curacy. The three-d1mensional positions of CSN-statlons will
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_probably_be det_:ermiheq_ to ne better than +4 meters in ail_ eomponents,

: which deee not eeem to be good,_.:e’nough at least for this | particular

investigation.. ‘ | . | } _ _
I might be useful to have a "block constrain' instead of '"chain

- rconstram", that is, to ‘use four well separated satellite staxxons namely

003, 102 112 and 134 (Figure 1) _
Super—transcontmental traverse can provide a better constraint, if

more than two of its statxons are common to the stations of geodetm

trlangulatlon net. Also, - é, *block constrain",' as explained above, mxght o

"be more useful instead of a "chain constrain".
The development tendencies of instrumentation indicates that the
future super-control nets will use VLBI (Very Long Baseline Inter-

ferometry) and Laser ranging systems.
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2.3 Geodétic Sateilite Observations in Nofth Ainerioa .(Solutioh NA9)

The coordinates of several trackmg stations t1ed to the NAD datum were
computed through avallable observatmns to the GEOS—I satelhte Up to date
the NA6 adjustment ['Muell_er, Reilly and Schwasz, 19697 and NAS8 adjustment
!'Mueller, and Reilly; 197 1] had been published. The létter solufion was performed
u‘sihgheight constraints deduced -fxfom the SAO69 gooid FG_aposohkin and Lambeck, |

Récently a new de"t‘ail_éd geoidal map Wit_h claimed .accuracies of £2 vm,v v
(on land), based on grauimétric and satellite da‘tav was presente’d [Vincent, Strange
and Marsh, 1971] With the new ge01d and the orthometric helghts given in
NASA, 1971] more rehable helght constramts were calculated as follows:

From the initial valu_es of the _shxfts SAO-NAS8 (computed u_smg t_he published .
shifts SAO-NAD and NAD—NA’S in FMu‘ellékr'and Rei_lly, 19711) and bvy an iterative
process solf-explained in_Figuré,,ll, 't'hev inifial NAS‘}‘rectangular ooordinates were
shifted to the SAO origin and the geodetic coo’r_diné.te's c"'omputed'. The ellipsoidal
heights then wére constrained using the undulations fr‘o’rh Wincénf Strange and
Marsh, 1971]. W1th the orlgmal <pand A and this new he1ght a new set of rec-
tangular coordmates was obtamed Followmg th1s procedure 1teratxve1y,
geveral shifts of this kmd to the "geocenter" were performed until the sum of
the undulatlon differences was very small, Through this process "best" Shlft
to the geoc_entér was obtaiued;' This shift uvas also uséd to oor_npute the pre¥ |
liminary coordinates to obtain the reduced normal equations for the MOTS and |
PC-1000 optical data in the so.lutifo_n MPST7 (fMueller and Whiting, 1972] and
Section 2. 4). | a | |

At all stations, a weighted height cohstraint was i_mpOsed, uf.ter.shifting
(with the above obtained values) to the __ffl-nal "geocentric (GC)" coordinates. Also,'
as in the NA8 adjustment, ‘a distance constraint wa's‘ﬂimp.o'se'd between stéti_onsv
3861 and 7043, Due to a recent correotio_h: in their coordinates a difference of

3m from the préviously used value was taken into consideration (Meade, 19721.
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Finally, unlike in the NAS8 solution, "inner 'ad‘jus’t_‘rvnent constraints" were
also_ imposed:in vorder to define, the origin of the system in its most favorable
position ’f‘rem the .error'propagation point of view [Blaha, 1.97 1]. :

, The'eoofdinates:of the NA9 soll_ution are presented in Table 1 with cor-
responding_standard deviations.. The eoordinates transformed to the NAD datum
~are in Table 2. o | | :

.Table 3 shows the cdnstrained heights at each station and the final undula_—'
tions compared with those publi-shed by Vincent et‘al - In column. AN and in |
parenthesis, the d1fferences published prewously in [Vincent,. Strange and Marsh
1971] are __shown. It can be seen from Table 3 that only two stations show sub-
stantial disagreements (3903 Hérdo__n, Virginia and 3.40.7‘ Trinidad). It seems
clear that the orthometric height as given in I',NASA‘,‘ 19717 for the stati.on‘ 3903
has a gross error, Appropriately, the NASA Directory of Tracking Stations '

~ points, out in the de_scription of the'refe_r‘.red.station: v."cpt)rdinates umierifie_d, -
survey 'details are lackin'g " The discrepancy with respect to station 3407 may
be due to the fact that it is situated in the Caribbean, where large gemdal

7 grad1ents are present. _

Table 4 shows the transformation parameters between the different systems._”
L1sted on the first page are the 3 parameter—transformatlon solutions (only shifts
con31dered), and the general 7 parameter solution. In th1s latter transformatlon
the rotations were first computed through direction cosines 'in'dependent of |
translations and scale'factor (see Section 2. 5). These retation"pafameters eon—
strained with their varlances were used in the final solutlon shown Pp. 2- 5 of -
Table 4 with the resulting variance-covariance matr1x and the correlatlon co-
efficient matnx for each transformatlon In the variance-covariance matrix the

: angular units are in radlans

-36-
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AY =189.3m
AZ =158, 0m
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N,

',(X,;Y,?.Z)NAB'
(X,Y, Z).NA91 T
XY Z* = (XY, 2\,

Xer1r Yooy Zygf |

SAO - NA8 = (SAO-NAD) + (NAD - NA8)

NA8 - SAO = NAS + (SAO - NAS)

| X0} (a, blswo [0

Yo )‘°A
Zo ho
= undulations interlopated f rc‘)mgeoidal mapin [4]

H = orthometric height from (5]

@] (a,blsao [ X*7
Ao Y
e | 1 g

| } X, 0¥, 87

NAS >NAS, = NAS + (NA8, - NA8)
X7 (a,b)sao [0
Yi _—_> )i
.7, b
017 (@, blsao [ Xpn
Ay et Yy,
h* Ly
" Figure 1
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}

Program | Xy, (2,b)se (20
".INVTRF" ' Yooy | | My |
V D415 Agp1s hu—x Tk Zzﬂ Lhyy,

le1+1- = hyy ‘Hl

- lAN: Ny - NG]

Zan =0 [F &

T
"Geocentric"
(HGCH)
- System .
) XH-I: Yiﬂa Z.H-l
Program RE o AZ = 49.8m
"DATMTR" (X, Y9 Z)NAD o } ‘DY = M -145.2m
NAD ._' "GC" . (XH-U ¥1+1’Zi+1)GC AZ =. -211.1m
Program . AX = 5,0m
"DATMTR" (X’Y’Z)““Bi} AY = -0.4m
nap - nag | BV ) ap o g gy
NA10 = NAD

NA10 » NAD = NALO + (NAD - NAIL0

X Y, 2)

| Prdgram X7 (@b [0
"INVTRF" Y [———|
o % b | L3 Rl

©

Figure 1 continued
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- Re: Table 3

Re: Table 1

Re: Table 2

@

h

New Height |

Constraints |

Program
"OSUGAP" o

Solution of

(Xs Y_y Z)NAD

Normal Equat}

"DATMTR"

—‘ " . P .
Program

NAD - NA9|

@, )\ h

NAS > NAD |

(X,Y,7)

"INVTRF" .

"~ Program |

|y

Program

"DATMTR"

HGCH __ NA9

(XG’ YQa ZG)

NA9 > "GC'"

®

| AX = -6.Tm -
| XY, Z)we Y ooaY = o2m
.(‘X, Y,Z)NAD_. - AZ =

0.4m
NA9 »NAD "= NA9 + (NAD - NA9)
X (2, bjwao [ 0"
1,
zd - Lnl

o = -51.7m_
(‘X9 Y’VZ.)NAB § AY = 144.111’1
| (X,Y, Z)gc AZ = ,21-0' 5‘1fn s

NA9 - "Ge" = NA9 + (_"GC" - NAg)

Figure 1 continued
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- Program X5 ] (2,b)sa0 [0
MINVTRF" | ] Yo | = | 2
Gg» Ag» by ; Z hy

Re: Table3 [N = h -H|

Figure 1
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Table 3

Hexght Constraints and Undulatlons
(all umts in meters)

: R .Constramts - N ' o
Number -~ Station  h | o ["GC"* | [Vincent et al, ]| AN
1021 |Blossom Pt., Md. _ 91 3 |-27 _ -26 - 1.(=17
1022 |Fort Myers, Florida . 23| 3 |- 16 -18 2 (1)
1030 |Goldstone, Calif. 898 3 |-23 | -27 4 ( 8) |
1032 [St. John's, Nswf. 102 | 5 | 12 13 | -1
1033 |Fairbanks, Alaska. 165 |10 16 | . : :
1034 - |E. Grand Forks, Minn.| 256 | 3 |- 13 . -18 5 (11)
1042 |Rosman, N.C. 916 | 3 |-23- 22 | -1 (-3
13106 |Antigua, W,I. ' 8] 3 |-45 | -40 S5 (- 2)
3334 |Stoneville, Mississippi | 45 | 3 |- 20 | - -19 - | -1
3400 |Colorado Springs, Col.| 2184 | 5 |- 4 - -10 6
3401 |Bedford, Mass., - 89 | 5 | -27 | -21 -6 .
3402 [Semmes, Alabama . 84| 3 |-21 -18. 1 -3 (-12)
3404 |Swan Island .79 I_ 7 1= 32 I ,
3405 |Grand Turk, B,I. 0| 5 |- 51 =47 | -4 (=27
3406 |Curacao, N. Antilles 44 | 5 |- 30 -26 -4 :
3407 |Trinidad, Tobago | 285 | 5 |-50 | -3¢ | -16 .
3648 |Hunter AFB, Georgia 19 3 1-19 | - -24 5 (- 5)
3657 |Aberdeen, Maryland 7| 3 1-27 | -26 -1 (-4
3861 |Homestead, Florida | 16 | 3 |- 22 -22 0
3902 |Cheyenne, Wyoming 1882 | 5 | - 8 -10 . 2
3903 |Herndon, Virginia | 132 | 3 [-100 - -26 -74
5001 |[Herndon, Virginia =~ | 132 {3 {-27 | = -26 -1
5333 [Stoneville, Mississippi 45| 3. |- 17 | -19 o2
5649 |[Hunter AFB, Georgia 23 | 5 |- 23 -23 0
5861 |Homestead; Florida | 22 | 3 |- 27 -22 25 (- 5)
7036 |Edinburg, Texas S 72 3 |- 8 - 11 3.
7037 |Columbia, Missouri 270 3 |- 17 - 24 , 7 (10
7039 |Bermuda 26 | 3 |- 38 - -36 -2 (- 2)
7040 |San Juan, P.R, 57 | 5 |- 40 -41 1 ( 5)
7043 |Greenbelt, Maryland 56 | 3 |- 30 -26 - 4 (-15)
7045 |Denver, Colorado ~ | 1787 | 3 |- 7 | . -13 6 (16)
7072  |Jupiter, Florida 26 | 3 |-23 | -24 1 (1
7075 |[Sudburg, Canada : 276 3 |-28 | -31 3-( 20)
7076 " [Kingston, Jamaica 473 | .3 |- 20 -23 3 ( 20)

*The geocentric coordinates were obtained from the NA-9 by addmg the fo]]owmg
shifts AX = -51.7m,  AY = 144.1m, AZ = 210.5m.
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Table 4

Transformation Parameters

"GC""Qng . ,>\

*Rotation parameters constrained (see Section 2.5)

-46-

. NA9-NAD NA9-"GC" | NA9-SAQ
No. Stations | . 32 34 11 32
quX(m; 6.7 £1.3 51.7 +0.7 3.3 + 2.6 |-44.8 :L.3
R 2|8Y(m) |- 0.2 £1.1 [-144.1 +0.8 |-148.3 * 2.6 |[144.8 1.1 |
- & AZ(m) |- 0.4 1.2 |-210.5 £0,9 |-175.0 + 2.6 |209.8 1.2 -
| AX(m) |- 1.9 £3.0 | 39.1 1.7 24.9 & 9.4 |-37.8 £2.6
tg} AY(m) | -20.9 5.0 | -144.4 2400 ) 22000 +11.7 |124.3 5,0
£ |azm) | 23.5 4.3 |-202.5 2.8 -173.5 111 |227.7 4.0
8 16,¢") |- 0.80+0.09 |- 0.37+0.04 |- 0.66% 0.20 |- 0.35=0.07
E lo,("y | 0.5620.07 |- 0.2220.03 0.14% 0.24 | 0.84+0.06
3 8, () - 0.25+0.11 |- 0.22 £0.05 0.94 % 0.35 - 0,10 £0. 09
Tl e(x10%) | - 4.82£0.89 | - 0.48+0.72 |- 6.78 % 1.88 |- 4.28 £0.89



_Table 4'continued

. - v

SOLUTION FOR 3. TRANSLATIUNv 1 SCALE AND 3 ROTATION PARAME

ADL*_____AdL~*.~_JNZ . €. e,_,. eu_WM s By

)
L

=37.78  ;24.3§  227§§6 —4.28 -0.35' _0a84 0,10

T VARIANCE = COVARTANCE MATRIX

?_0 3100“06 05675@‘96 .0;3580—09N%

0.4090-05 _0.2420-060.378D-07 -

....... _0.1_1_03_0.__(10 042.. )+

iH .

wwwwwww .aiazsﬂunl.mgillinwgaﬂf

s ,%;""VQMZS?Q‘:_Oﬁ _0.3820-06_ Q.11
| ‘lQ...LZ....Q.:.&éLD__L_&_____L__A.ZDJS
“,.“_anma__cm_ _____ Q._Z&ZQ__Q.Q__mo_.Z‘L&Z,Q:_Q_é_._.._...&ng 14 0.1170~12. 0.2040-13 -

- ~___...(24,.3.5 SD._O_(:___Q_LS_I.B_D._.O.Z O_LJ._.U.Q_Q 6__9___3_1 2 D-J 5 0 .2040-13 Q] ‘_L ~1 1

=0 4540-06 —0 5970’06 —0 9600-06 Q BOD 16 =0 7020-—1q =0 2600—1),39@

_COEFEICIENTS OF CORRELATION

-
3

Ll

' 0.278D+00 0.1C30+00 -

01 -0.2720-01  0.130D-02

_.“u*wQ&]éiﬂxQQ o 1420+oo 0. 27ao+oo5-o z72c-01 ..0.1000+01 0.2210+00 -

".Q..Q.ﬁ,l2.D+OO_..-_Q..Q.28,-Q3'—Q..O~.:.OQ.4§.§SD!AQQ . 0 257D Ol -0 47904'00 *0-22 60*0

~. AU S oo e e s : _-47- © s« e m e et ~ + < . ——es

09800~ l

"‘.ﬂ*.n*ﬁﬂiu_azﬂ“legguigkw,Qwi_mgﬁo“*;0‘9230+oo 'O};42Q+Q9;m9ﬁ1139791.~<

Tchs'

i e " o e e . T S D e S S s W o i S A A . e S P i A S i e S e o

METERS ~METERS METERS "(x10®)  SECONDS SECONDS SECONDS

0.4540~06
597006
96GD-06

0.7C20-12

= C.2600-12

183L0-12.

_0.7650+00  0.5170400 —0.4120+00

.2310+C0

5580+ Q0

0.2570-01

0.4 790400

) j_39+oa{~g.1; 0=0: 02 0.221D400  G.100D+01 =0.2260+00

_0.1000+01



Table 4 continu_éd A

RUTATION PARAMETERQ CC‘NSTRAII\ED

~ SOLUTION FOR 3 TRANSLAT!ON, 1 SCALE AND 3 ROTATION PARAMETERS

METERS 'METFRS METERS (x107®): s&cowos SECONDS  SECONDS |

_24?8§j??5¢e00>-173;56’ 6270 ous6, 0.14  0.94

VARIANCE —=COVAPIANCE MATRIXMV

08870402 o.1§59}qu o,;gopfqz,iﬁ.lszo—os 0.1110-04 . 0.7010=05 ~0.5150-

O‘L_§D+_2 0;13g0#03 -0. 111b+02"d ,1780-04 __0.3940-05 0.1340-05 ~0.1100~

08

/)L

0..2800402 —OnLLthQZ_MQMJZ4D+Q§H:Q,l290 04 0.3810-05 0.7500-06 ~0.1420-04

ff.a 4011 .llbD—l~, C.7660-14 -C.22

.ﬂ*“:a41§zﬂ.g§~_pnllﬁg.gs_MQT,;

oD

l’\

-13

.0,111D-04 0. 394D+05 0.381D=05_ 031160313; o 19zr 11 0.4050-12 ~G.5110-12

wwm”_Q,]QlQinmmo 1340—05 0. 8500406.“6‘766E*14 0. 4o=c—12 0.1350-11 ~0.3040-12

-0 5150—05 -0, 1100—04 -o 1420 04 —o .2300-13 -0.8110-12 -0.,3040-12 - Q,zaapsly_

_COEFFICLENTS .OF CORRELATION

B Q,LQQD+Q1 _ 0. 149o+oo 0. 26bD+00 -0.858C~ 0L _0.848D+00 0.64CD+00 =0.3220+00

Q2 1490400 -AQQQiQL_NQMﬁ47D°01 0 8060+ 00 OxéﬁgthQi,QLQSQprl -0.5530+00

Qe 2660+00 -0 8470—01 Qe 1000+01 =0 615400 042460400 0,6550=01 -0.74RL+00

Nw:Q;&i&Q:Ql O aqgokoo o 6150400 _o.1ooo+o1 0.4440-02 0.3500-02 -0.721C-

ﬂggﬂﬁﬁbtggmwQ%ZQgpfoo_ 002460400 __

S

,,,,,, 06400400 Q.9800-01  0,6550=01 0.3500402 04251D+00 _C. 1oou+01 =0, 1340400

02

44C-02  0.1000+01 0. 2510400 -0.344D+00

*"‘:QJQZQDTQQW:Qa§§éQ*QQg—0&Z$50fdc 20.7216-02 =0.3440+00 -0,154D+00 0.1900+0]
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SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3

——

RDTATI“N PARAMLTEPJ

'“@;_1.‘ s iR R .5{11 T T
- AX AY AT T e 8 By By
_'METERS METERS METER§3 1_u1U€)' seconos SELOND< SECONDS
2345} —4.32, 'JO.SOT 0.56____=0.s

i349b?h691

0. 5240 Q6

~0% oﬁbU—UA'

_0407C 05

1;4910—05

-"w_;:QL¢g2Q:Q§~-7ff: f;.797o 12 -o 20-13

'qgééqa-0¢-

0§§5SE:QQW

O 1430~0ﬁ

f,mnggageQe;

0.447D-15

c-9900-06

Of

1:720-12

0'2990—13

L 0.4470=15 _0:2950~13

C. 106D-12

."Oo 3809.::“,1‘,,3 .

0;14404;3JAQ;103Q512

_‘O 8740-0¢.

—0.1&10— 5
Dolagl-13
~0.1030~1¢

~0.380D-13

- 1ENTS OF CORRELATION .- ;

Q. 35éd+bo ;b 132c+oo"\b£§929*°°

0.542D+00

051690400

T_Q—o 4650+00 0. 9oar+oof

0. 1ooo+o 3—0 .7590+00 043140400

0.117D+00

-1»;?_0 7590+0'v Q£1QQP*01 ~Q53290401

Q. aozo+oo 0“1599+eo’ 0. %14D+oo 0.329C=01 _0.1000+01

0.154D-02

C.221D+00

O 5425+00 QgB

e et

0.1000+01

401[ 0.1170+oo ;6;1$4c;bzm

0. 311c—01'eo;419Q£po

022210400

~0,22€D+0C

.WMH:Q%ﬁgggxgpﬁ-é;3 n#eo =0, e330+oo
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b A o it e < ) ae = e e

=0.4220+00

-0.324D+00

~045 330400
0.3110-0l

~(.279D+CuU

=0 ezcb6L+0OV

C.100n+¢1

0.2680-12



....... 1Llﬂ£;£ggnﬁuued .
“ROTATION PARAMETEKSS CCNSTRAINtD
B NA9-"GC"m '
" SOLUTION FOR 3. TRANSLATIDNq 1 SCALE AND 3 RCTATION PARAMETERS
Nk BY N e & 8, 6
METERS: METERS METERS (ug%)- SECONDS SECONDS  SECCNDS
39,14 =144.40 =202a51  =0.48 _ _ =0.37__ =0.22 . =022
"1v-yARIANCE.f"COVARIANcs,MZ?éix'“

M&W&wﬁ Q6. 0.200 D_, (0] <%
- w.—~Q,_13~O,D,“.Ql__ Q_..l.b.QD +02. —0.838D1 *_9_1_,, Q_-.:. 19 D- 02...0 9»51 4 0-07
S— _Qa_l_?lﬂiﬁl...wﬁﬂ.tmw(l.lbﬁ (L_Ql_,..(l,l 130- O 5. ~A__O 923 D 07

.“.“QAEAQD_Qh__QA2lEﬂ_ﬂi.,ﬂ&lllﬂ_ﬂi__ﬁ4i22D lZ.wQ¢§AED lﬁ.m_eliﬁﬁzl4ﬂwg;3§2Qil
-0 3’50-13.

O ?GOD*Q& 0,8140~07 Qe 993D-Q] ~O 84SD~15.

0,40697025.9,2719—97. Q.1190-14__0.741D-14 .

| 0.1260-06 ~0.1310-05

0.406D0-07 —0.170D-06

0.271D-07 -0.2570-05

An

le&lDﬁlél—u.193D—13

02630~ 13 -0 °‘¢D~’4

;n;;gipaop‘-o,1jonf06;-g;2570—0§ 0.232D=15 —01193D“LEW'U.QLZQ:L§_ o.>ooo—1s

0.4690400 -0.3550+00

0.6250-01 =0.1500+00

0.1029-01 0.1:40=-02

COEFFICIENTS OF CORRELATION
,QLLQQD1Q1~_Q&1&1D+DO 0¢335ﬂmﬂﬂ =0.2920+00 __0.6620400
_M_Mma‘lsznﬂnn_~otloam*glng.7§§D+oo 09640400 0.1110+00
03850400 -q.zggpfqo‘ 0,100D+0L_=0.865C400 o.;950+oc
N:.o;,.zs;mfog_“.o‘.sm__:_o_._.ab_sngag,;@_o.@.m‘c_‘;-_:,g@i;t):gz f
,m__;Q‘ﬁhzniﬂﬂ_~DllllD~QD_wﬁilQSDtﬂﬂurQA§~ZL‘07,EQ;lQQEth;

W&M.&&Lﬂ.&—ﬁl 0.2495+00

0.2490400 ~0.471D+ oo

€.1000+01 -0.2510D+00

- _.,-,WO_.,35,5_D:!_D.U =0 IQQDLQ.Q_:Q 41 S.D!'.Q.Q.__.Q.c.l‘z‘fﬁ—t)d —O .471C+00 -0.2510+00 0.100C+01
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2 4 Free AdJustment of a Geometrlc Global Satelhte Network
(Solutlon MPS’D ‘

2.41 Introduction: , B ,
" The basic purpose of this experiment was to compute reduced
normal equations from the observational data of several different
systems described below to combine them eventually with the normal
equations of the Wild BC-4 observations taken in the DOD/DOC
cooperative worldwide geodetic satellite program and provide station
' coordinates from a’ sin_gle least squares adjustment.  The solution
described ‘in this paper is a partial one obtained without the use of -
the BC-4 data. The observational systems combined were the
Baker-Nunn simultaneous camera observations from- the SAO world-
“wide network; the C-Band range observations from the NASA net-
work; the MOTS and PC-1000 optical observations in North America; .
miscellaneous camera ocbservations in Europe which were included
in the SAO69 solution; and, lastly, a group of optical observations
where Baker-Nunn cameras observed simultaneously with- MOTS
and/or PC- 1000 cameras in the prevmusly mentmned group

2, 42 Descr1gt10n
: : Smlthsoman Data

A set of opt1cal observatmns were obtamed from the Srmthsoman
’Astrophysmal Observatory. ‘These included 14,356 simultaneous obser-
vations from 28 stations in the SAO69 Network. - For each observatlon
the track angle was prov1ded along with the uncertainties along and

' across the track. The variances and covariances, in terms of right

ascension and declination, were computed as descr1bed in [Girnius and -
Joughin, 1968] : :

MOTS and PC-1000 Data

The set of opt1cal observations used here were the same as those
used in the NA 6 adjustment described in [Mueller, et al., 1969).. The
observations had been previously screened and a set of reduced normal-
'equatlons, referenced to the North Amerlcan Datum, obtained.

In the meantune [Vmcent et al., 1971] pubhshed a gemdal map
based on gravimetric and satellite data. By an iterative procedure a
new solution was computed whlch constrained the new. undula-
tions, and thus a set of geocentric coordinates were obtained. With
these coordinates as:initial values, but with the original set of



observatxons, new . reduced normal equatlons were computed to be uscd
in the solutmn described in this paper.

v .C-Band Ob_servet.ions -

The C-Band solution is a least squares adjustment of the range
observations from twenty-eight C-Band radar stations operated by NASA
in a worldwide network, which resulted in distances between the stations
and a set of coordinates of the stations on the SAO C-6 ellipsoid along
with their standard deviations [Brooks and Leitao, 1970}. Upon requecst,
NASA/Wallops Island kindly sent us the correlation matrix for these
solutions, which ecnabled us to reconstruct the full variance-covariance
“matrix. : :

' Some of the stations in this adjustment could be. related through.
ground triangulation to nearby Baker- -Nunn, . MOTS or PC-1000 cameras,
thus the mterstatlon distances provided indirectly the scale of the
solution. ‘The C-Band data was treated as though they were length

- observatiors between the stations and developed a program that com-
puted the rormal equations that would correspond to these length- '
_observatiors ut1hzmg also the reconstructed variance- covarmnce
‘matrix. - -

The oomputed lengths are listed in Table 1.

‘Table 1

St_at_ions .' - . Length (m)
Merritt Island (4082) to Pretoria (4050) | 10,909,592
Merritt Island (4082) to Kauai (4742) 7,362,142
Merritt Island (4082) to Bermuda (4740) 1,593,106
Merritt Island (4082) to Grand Turk (4081) . | 1,230,691
Merritt Island (4082) to Antigua (4061) 2,288, 026
Kauai H.I. (4742) to Vandenberg AFB (4280) | ' 3,977,684
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Mixed Optical Observations.

We also received from the NASA, National Space Science Data
Center a magnetic tape containing rccords of optical -observations on
GEOS-I from November of 1965 to August of 1966. These included
2322 simultaneous observations between Baker-Nunn cameras, MOTS
cameras and PC-1000 cameras locmtod on and around the North
American contment - :

_ It being intended to combine the normal equations developed from
the above observations with""a sect of normal equations developed from

a much larger set of SAO, MOTS and PC- 1000 described above, observations

the poss1b1l1ty of duphcatmg observatxons had to be cons1dered '

In the case of t_he_ maJorlty of the MOTS and PC-1000 and all of
the Baker-Nunn-observations, the few duplicated observations were
overwhelmed by ‘the large number of other observations at these
‘stations. Howc\ier a number of MOTS and .PC-1000 stations in the
Caribbean area contributed only a few obscervations to the North -
American -normal equatmns. Any duplicat:d observations here would
have had an inordinate effect. Therefore, all such observations were
eliminated. - : ‘ :

2.43 Constraints

Inner Adjustment Constraints (Free Adijustment)

The large number of optical observations effectively determined
the orientation of the total network while the C-Band observations
provided a scale. Only the origin remained undetermined. To
define the origin of the system in its most favorable position (from .
the error propagation point of view) we imposed "Imner Adjustment
- Constraints'" compelling the trace of the variance-covariance matrix
to be a minimum [Blaha, 1971]

S Lenj;‘ch Constraints

The C-Band observations described earlier introduced scale into
 our adjustments. - They also provided much needed extra conncctions
from Africa across the Atlantic and to the Ca1 ibbean Islands, and
the length Kauai to Vandcnbe1g Air Force Base gu,atly stwn;;thcncd
the geometry in the western United States.. : :

In addition to the C-Band scale we also introduced a weighted
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chord length constraint between Homestead, Florida and Gr,e_enbelt;
Maryland derived from updated Cape Canaveral datum coordinates of these
two stations determined from the high prec1s1on geodlmeter traverse

_in the eastern United States . S

, Height Constramts

_ At all statxons, a welghted hewht constraint was 1mposed -The .
heights above mean sea level were obtained from [NASA, 1971} and
to these, the undulations ‘referred to the SAO 69 ellipsoid were added:
The 'undulations were determined from a number of sources. ‘Between
‘North America -and ‘Europe ‘the geoid of [Vincent, et al., 1971] was
used. In this report, the undulations of some sta’cious'were also
tabulated (computed). These tabulated values were constrained with
‘weights. corresponding to a standard deviation of 3m. - Other station
undulations were interpolated from the geoid map itself and, allowing
- for interpolation errors, received assigned standard deviations of 5m
except in those areas near the Caribbean where, because of- larg

" - geoidal gradients, a standard. deviation of 8m was estimated. . For

stations in other parts of the world (not covered by the above geoid
“map) the’ undulations were obtained from the SAO 69 geoid map, and
standard deviations from 8m to 15m. were assxgned depending upon
the number of gravity measurements available in the surrounding
area. All heights constrained (H) are shown in Table 2.

- These height constraints, which are in effect independent obser-
vations, . provided a valuable. strengthening of an otherwise weak
‘geometric. network. A test adjus*ment was run (MPS9) in which all
previously descmbed constraints were held except the height constraints .

and in this adjustment the final standard deviations of the coordinates '
were more than doubled and at poorly dctermmed stations more th'm
tmpled. . '

Relative Position Constraints

These weighted constraints were used to tie together the C-Band
radar stations with nearby camera stations through the connecting
triangulation, and also helped to connect the Baker—Nunn statlons w1th
nearby MOTS and/or PC 1000 stations.

In every case, Cartesian coordinate dlffcrences wcrc computcd
on the local datum and the weights detéermined fromi st wndard
deviations computed from a formula given in [Simmons, 1950].
This estimate was used in all cases except between Mcrritt Island
and Jupiter, Florida, where the uncertainty was estimated to be
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Height Constraints and Undulations

Table 2

- (all units in meters) ,

: o . 'Constraiﬁts . N. ,
_Number| - Station 7 H p o MPS7 I'Vincent et al., 19711
1021 Blossom Pt.,, Md. - 20 | 3 - 30 -26 |

1022 |[Fort Myers, Fla. |- 13 | 3 -18 - 18
' 1030 |Goldstone, Cal. 902 | 3 27 - 27
1032 jSt. John's, Nswf. 82 | 5 12 14
1033 | Fairbanks, Alaska 188 15 ‘4. -
1034 |E. Grand Forks, Minn.| 238 3 - 15 - 18
1042 |Rosman, N.C. 887 3 - 24, - 22
3106 |Antigua, W.L. - | 3 | -a - 39
3334 |Stoneville, Miss. 20 | s - 20 ~19
3400 ‘Colorado Springs, Col. : 2173. 5 - 8 -11
3401 'Bedford,' Mass. ‘ - 63 5 - -28 - 20
3402 [Semmes, A}ébama 55 .3 - 24 - 18
340{1- | swan Island_‘_ . ; 81 15 | - 38 " ‘.
3405 |Grand Turk, B.L - 29 3 | -39 - 31
- 3406 | Curacao, N. Antilles - 19 8 - 29 - 26
3407 |Trinidad, T. & T. 221 8 - 59 - 34
3648 | Hunter AFB, Georgia | - 12 3 25 -24
3657 "_Abc_:r_deen, Md. | - 20 3 ;26__ - 26
3861 |Homestead, Fla. - 22 3 - 24 - 22
3902 | Cheyenne, Wyo. - 1872 5 T -10
3903 | Herndon, Va. 142 |5 - 33 - 26
4082 |Merritt Island, Fla. |- 12 3 | -7 - 23
4280 |Vandenberg AFB, 'Cal.-‘ 91 -3 - 30 - 32
4050 | Pretoria, S.A. 1604 | 6 | -1
4742 |Kauai, H.I, 1157 |9 - 4
7036 |Edinburg, Texas 48 | 3 - 11 - 12
7037 { Columbia, Mo. 249 3 - 20 - 2‘4
7039 |Bermuda - - 5 3 - 37 - 36
7040 | San Juan, P.R. 9 3 - 41 - 41
7043 | Greenbelt, Md. 27 3 - 29 - 206




Table 2 (continued)

"~ Constraints | .. N

Number|  station [T H | o | MPS7T | [Vincentetal.. 19717
7045 |penver, Col. - | 76T - 13 -1 | ‘
7072  {Jupiter, Fla. - 10 - 26 S 294
. v ‘ -3 | -3
~22 -23
a8 47
S 54
s | 52

7075 |Sudbury, Camada = | 251 -
7076 _Kihsgtoij, Jamaica . _ 423
8009  |Delft, Holland® ';.72_'_
8010 * |Zimmerwald, Swiss, : 95-7 '.
8011 i\.'IaIvcrn, England . 165
8015 Haute Provence, Fr. | 702 '_ 59 |
8019 ’_Ni'c‘e; France _ 432 '_4‘5' 55
. Fra 41

8030 -{Meudon, France Col4 o ‘
' - 16 - 18

9001 |Organ Pass, N.M.- 1633,

9002 |pPretoria, S.A. - | 1564 |
02| . | . s
41 |

- 45

| 1

'
SR

‘ 9(”)04‘ : Sz;h F"e'rnando, SDAin . 81 -
| 9005 ~".1‘c>l_{y'o,. Japan o 99
9006 |Naini Tal, India~ | 1874

GO O O W O LUl o U o G Lo o Lo e

9007 |Arequipa, Peru | 2477
90‘08 bs'hi'raz, Iran 1588 1

o

9009 |Curacao, N. Antilles | - 19 _
9010 - |Jupiter, Fla. |- 9 -2 |24

901:1_‘: 'Vbiill'a_Dolo‘i*e_s,fArg."'_ 1 618 R |
| 9012 |Maui, Hawaii - | 3036 | 19 _.

e e o W W
o

" 9021 |Mt. Hopkins, A"ri_z“j'_ 2362 :
- 9028 ‘-'Addis_ Ababa, Ethiopia | 1911 | 10 | 52 -
9029 |Natal, Brazil . | 37 | 10 | -12
9031 'cdmbddroRivadavia,Af@;. o1 |15 | -9 | |
I s
w | 54

9051 |Athens, Grécee . - | 242" |-
9091 '-il)i(5115!sos;-(}1'eéce i 454
- 30

. 9424 |Cold Lake, Canada = | 684 | -
-2 | c28

9425 |Edwards AFB, Cal. = | 756

W . o L o

9426 ‘I_I'arestua, ‘Norway = : 622 : :
1 9427 J’()hnstorj'~ Island - | 17 {10 | 28 | | :
9421 [Riga, Latvia | .32 | 3 . 22 24

17 9432 - I,‘xthrbcl‘, US'SRV_- . o 936 ] 3 45 47

_E8/-




one part in 750,000. The relative constramts used and their wexghts
(1/0®) are all given in Table 3.

' 2.44 The Adjustmént

The four sets of normal equations (See Section 2. 42),
and the prev1ously explained constraint equations were added together o
a.nd a single solution was obtained for the combmed systems

We decided to run three different ad]ustments to investigate the
‘effects of the constraints we were using: MPS7 was ultimately
chosen as the best adjustment. @ contained all the constraints
previously explained, inner adjustment plus height constraints.
MPS8 included the height constraints but without inner adjustment.
MPS9 was run with inner adjustment constraints but without holdmg
the heights. :

 After MPS7 was run, we immediately computed the undulations
(N) at selec‘te_d' stations and compared them with the values given in
[Vincent, et al., 1971]. This comparison is given in Table 2. There
are some discrepancies, but generally the fit is good, md1cat1n<T that
despite the free adjustment, the height constraints had held (thus our
origin is reasonably.close to the center of mass).

The results of the MPS7 adjustment are tabulated in Appendix 1.

The number of degrees of freedom was 10586; the quadratic sum of »
all the residuals 12201; and the standard deviation of unit weight 1.07.

2.45 Comparxsons w1th other Solutions

Table 4 summarizes the transformation parameters (systematic
differences) between the MPS7 coordinates and those published in
[Gaposchkin and Lambeck, 1970}, and in [Marsh, et al., 1971}, for
the global network and for both the European and American nets.
Two sets of parameters are listed. The first was obtained through
the assumption that only translations exist between the sets of
coordinates. In the second solutlon the rotations were first computed
through direction cosines independent of translations and scale factor.
Subsequently the general seven-parameter transformation was carried
out with the three rotation parameters constrained with their variance-
covariances obtained in the direction cosine solution. Appendix 2 gives
the general solution and variance-covariance and correlation coefficient
matrices obtained in each case.
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APPENDIX 1.
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2.5 Determination of Transformation Parameters with Constraints

, The félatiq’nship betweeﬁ any two geodetic referenc'e systems would. generally -
consist of Seven parametere - three translations (dX dy, : dZ) befWeen the two
or1g1ns three rotatlons (wy w, €) of the Euler's angle type between the two sets
of axes and the scale factor (AS), if any.

A general transformatmn for the seven parameters is g1ven below rBadekas
1969): |

Ax lw—a_bU U

X\ X , :
{&l = Y] - {By] - |-w 1 €}V -ASIV] =0 (1)
& Z Az Y -€ 1[{W W

O ‘ t : 1

where w Y and € correspond to rofations about Z, Y and X axes respectively - the
posmve d1rect1on of rotations taken in counterclockwme mode from UVW- systcm to

XYZ —system The above equation can then be further mod1f1ed as below
10 0-U .-V”w-]‘o [ax] - [X-u

+ 1 0-1 0-V U 0-W||AY| +|{Y-V|=0 (2
0 0-1-wW 0-U V]|AZ Z-W| ’

'O (=2
O = O
= o ©

However, in the above transformatidn, if the geodetic reference systems are
properly defined for Laplace condition ( parallelism of minor axis of the
reference ellipsoid and earth's rotation axxs) the three rotations amsmg out due to
the 1mproper orientation of the system are generally never more than a few
seconds of arc while translations may amount up to 200 to 300 meters, Thus due

to the presence of high correlation between the rotationsv_ and translations, satis-
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factory estlmates for rotatlons are d1ffxcult ina combmed gene ral trans-
formatmn. | | . _ | L “ v R
_ : An alternatlve method separates the determmanon of the rotatmns inde- |
pendent of the translations and the scale factor [Bursa 1966] The mathema-
~t1_cal model is as follows _

Tfé)- Tf)+ w- €cos T( )tan b4k 28 zb sm T(l)tan 6(1) =."0.,"_ :

N o S . G

1£1)_ (2) ’ + € sin T(l) : + d) COS T( )

where T, and 51,, are defmed as the geodetlc hour angle and dec lmatlon of the

- (i-k)th d1rect1on of the observed point at. kth statlon and the obsarver at ith stat1on

The indexes 1) and (2) denote the two systems w1th transforma11on proceedmg from

system #1 to system #2.

If we take Ay, Bik, Cu; as the d1reot1on cosmes of the (1—k)th dlrectlon

Ry as the length, then for the fxrst system we get

f Am'_;r- o

. ‘ Uk - Ug ‘
Ay = XK=
L e o Ry - .";:'{-'.V:HR”‘
. ‘Rge Rtk ‘
& Ry 0 Ry
-and » L
- | By
Ty = - arc tan R
8y = arc tan S LT
g ' (AE“*Buc)% T

In the above relatlons (3 4 and 5) the elements of tr.mslatx on do not enter

the p1cture and a similar set of relatmns as: per (4) and (5) abow can be estabhshed

for the second system
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~ The equation (3) then can be written as below:

-1 0 1 0} jvyy |1 sin T( )tan 6() -cos T(l) tan 5(1 T(l) ‘ (2)
0-1 0 1] |vsl + [0 cosTf sinT® ol + [6- 5(2) ©
- - - ik : 3 :

Using the variance-covariances matrices X and ZU in respect of ith and
kth points for the XYZ and UVW systems, the variance-covariance matrices
E‘ra were computéd for the two systems through propagation of errors as per the

following relation [Uotila, 1967]:

() _ |SU0f . |
Zis = Glogy|¢ | O
whe.rev
BR T“) aTik) o1l a1®) Azl
3U, 5V, 3W, 23U, Vg aWk
1
268 2887 288 280 280 25Y
23U, 3V, oW; 3l Ve OW |
~and
3Ty _ 3Ty AV
dU, d U, - AUg + AV
3Ty . 3Ty _ AU,
3V, 3V, AUE + AVg
9Ty _ 0Ty 0
36y _ by _ By OWyy
3y o Uy ' R /DU + AVg
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AV, AW,

36y . Db _ -
3V, dV, R /AUZ + BVE -
36y _ by o JBUk + AVE
W, 3 W - R§

R = AU} + _AVE +,AW§7;-

Obtalmng similarly E( 3 the combmed varlance—covarlance matrix’ to bc
used with the equatlon (6) would be given by ' ‘ V
59 o
0 'ib$é_’,

A The above transformatlon model was used to study the relatl OnShlp between
vamous datums W1th the recent free ad)ustment of a Geometrxc Global Satelhte
lNetwork Solutlon MPS7 (['Mueller, Whltlng, 1972] and Sectlon .4). Firstly, the
‘three rotations. were obtamed 1ndependently of the translatxons thh thexr variance-
covariance matnces Secondly, usmg the same set of common pomts a general
transformation for seven parameters (mcludmg the three translatlons and the
scale factor) was obtained unhzmg the rotatlons m a constramed solu'uon This -
transformatlon was carried out m three broad groups based on the area-wise
‘study i. e , global European and North Amerlca W1th the followmg datums:

() Goddard Space thht Center Reference System (GSFC) rMqrsh Douglas

and Klosko, 1971] ‘
'(:i-i) Smithsonian Astrophysmal Obsexvatory s Global Reference System
(SAO) [Gaposchkin and Lambeck, 1970]
(iiiy European Datum 1950 (EDSO)
(iv) North American Datum 1927 (NAD) _ _
Table 1 glves the results for three rotatxons as obtamed mdependently of trans- |

lations, while Table 2 gives the c_o_nstral_ned solutlon foﬂr seven parameters. Table 3

shows the results of a non-constrained general transformation for a comparative study.
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The comparison shows that the constrained solu_tions show an overall
improvement in all the transformations., The standard deviatiori_s in all the_cases
are siﬁaller and the varian'cesvof unit weight show a better fit in the constrained

golution as against the non-constrained transformation.
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2.6 The Impacf;bf Computers on Surveying and Mapping

Keynote Address Preserited by Ivan I. Mueller at the Annual Meeting‘ of the Permanent
Committee,International Federation of Surveyors, Tel Aviv, May 29-June 3, 1972

Most keynot‘e speakers usually start with the statement that they are honored
and privileged for the opportunity to present their views. I will not be an
‘exception to this custom because I truly feel honored and privileged being
» selected_ by the organizing committee to deliver o,he of the keynofe addresses
at this meeting. Over the years, the International Federation of Surveyors has
consistatitly sponsored a full range of valuable meetings dedicated to the exam-
ination of important problems facing this very diversified profession.. Among
the most innovative of the convocations called have been those associated with-
the meetings of the permanent committee. _ : _

What then is the purpose of_-'a keynote addresé ? 1t is generally understood to
have a double aim. The first is to arouse unity and enthﬁsiasm_in the audience.
But I need not concern myself with that, because I am sure that everyone here
iéiequally excited at the potential of computer usage in surveying and mapping
and at the new vistas visible on the horizon of 'this ancient profession. The
other purpose of a keynote address is to present the issues inherent in the theme
of the meeting. I shall try to present these issues, first as they are related .
to the computers, then how these machines affected traditional areas within our
proféssion, what new exciting areas came into existence because the machines
happened to be around, and finally what are thoée_ new vistas just around the

horizon which are visible to this observer.

The Computer

When the computer was invented in the fifties, there was a great diversity of
| opinion on its usefulness, from skeptics who procla’imed'it a foy to the more
adventuresome prophets‘who predicted phenomenal growth and widespread appli—
cation. Refléctiﬁéno?v on some of th'dse' early prophecies, it is obvious that
they were vague about specific applications, real 'beriefits, actual costs and the

technologicél‘advnnces required to make the computer practical. And yet, the
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'u,sefulness has outstripped the dreams of the most adventuresome prophets.
Undoubtedly, most pe‘opl‘e's ideas (not ours of course) about computers are
associated with erroneous electricity or bank accounts, TV science fiction,
moon shots or tax collection. Contrary to these beliefs clomput,ers have a
greaf deal morev to offer. They work as calculators too, as rep091tor1es of

' mformatmn as oontrollers ‘as alds to decision making in such contexts as

_ bankmg systems, reservation systems, air and road traffic control. The use of
'computers asvsim_ulators is an application which is growing in importance:
Examples inclode training astrona_uts, observing the effects of car crashes,
pleying war games instead of real ones, and business strategies. Computers
have also penetrated the field of art to the dismay of some of us: -Attempts have
been made, with varying success, to use the computers as language t_ranslators,
as writers of poetry ap_d proSe, as producers of vieual art, to create ballet |
routines, a_od both write and synthesize music. There is plenty of ec_ope here
for those of us who enjoy a 'd.ebate ‘guaranteed to have no_c‘onolus ive outcome.

On the serious éide, beeause» of its varied applicetions, the computer demand_s
from society, including the surveyors, decisions as important as any it has made,
>certa:ir.11y as important as those forced on our predecessors by the industrial
revolution, it is sad that the level of discussion, even in some "professional”
_circies, has so far been so puerile, to understanding of the issues so limited
and so inadequate.

With this in mind, alvlow me, in a few minutes to review the progress over the
past two decades to see how the use of computers has developed and then to
examine current trends.

The first decade of computer developmeﬁt, inthe 1950's, saw the use of
machinery largely as an aid to scientific research-? inany research projeots in
: physms chemistry and engineering demand elaborate calculatlons - the design

of an aircraft wing or engine, for mstance or the de31gn of a nuclear reactor.
| As a matter of fact, there is one project - atomic bomb development - which has

always demanded more and more calculations in order to progress with as little
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testing as possible_. It is easier and also rather more socially acceptable to
simulafe an explosion on a éomputer, however large and expensive, than to
' explodé a live bomb; Thig one use played an important part in the development

of very large and very fast computersduring that first decade. It was not unfil v
after 1960 that shch machines found their way into othe_r than atomic résearch
laboratories. The second,décade of computer developmeht, in the 1960's,

saw the development of the computer as an el_ectronic. office, a data h_'a‘ndle_r‘and _
pro.ce_s‘sor. The computers initially used in this era“ were designed not as |
calc'ulating engines. for scientific use but to make the processing 6f card files
cheaper and easier. The jobs being done were thogse which are carried out

within the administrative and accounting departments of a business. Such jobs
.plac,ed more emphasis on the storage capacity available in the machine than on

its calculating speed - in'contrast to the research applications in the first decade,
As ‘the' _usérs became more confident in and more used to computers, new |
applications appeared us-in'g both the calculating capacity of the machinery and
~ its data handling capabili'ties."' | '

I_n.ldoking back, it becomes relatively easy to separate the démarcation points

between post generations of computérs. _’,Historica_lly,,‘ tﬁese havé occurred following
advances in hardware technology: "vacuum tubes for the first generation around
' 1950/51, transistors for the second (between 1958 - 60), and integrated tré.nsis_tor
circuits for the third between ‘1963 and 1965. Létely, however, the introduction

of many bthér new features - in pei‘ipherals , communications, remote terminals,
operatihg systems, and the like - have made the distinction between the generatioﬁs
increasingly fuzzy. We have now passed the eve of the fourth géneration computers
which is best chara_cterized by the ability to pro_vide_information which is constantly
on the tap, In other words, while the roles of the first three generations were
computations, data and information processing, the current generation also pro-
vides on-line information. The rapid evolution through.the fourth generation -
spurvredvon primarily by the immense proliferation of tﬁinic’omputers - is under-

way and one can now begin to imagine the hardware and software components

~ -103-



" which w1ll characterlze the fifth generation pro;ected to. be born between 1975
and 1978. |
I will not elabcrate on'the technical aspects of these future babies of the
. computerindnstry. | Let_ me just say 't,hat these new machines are _being’ viewed
as man's ."intell_i'ge_ntv"aSsistants. Many of them will be portable, hand carried
~or in the car a.nd in the home, that ca.n be plugged"into telephone and electric
“outlets or even carry their OWn power supply. . This will tie the computer
completely to the telecommunicatlons systems allowmg the computer to
.. 'remote’ its power to where 1t is needed Indeed the telephone will become -
| :.probably the most wxdely used termtnal of the 1970's - incorporating voice
output and touch tone input. Such an availability of computer power can have
- nothing less than an immense impact on society, greater perhaps even than .
the impact television has had. . .
New major innovations are hkely to occur also in the software area, For
instance,the cost of programming, which has been held almost constant (per
line of code) throughout the past .t_‘hree generations, should .be ‘reduced by more -
“than a factor of ten. in fourth generation_systems. This should come_ as a direct
result of 'interactive programming using time shared facilities A further factor
of ten reduction in costs can be expected with the fifth generation. Wlth the _.
"remote termmal and the packaged programs (to which I will return a little later)
will come a truly conversatxonal use of the computers. Many such systems are
. now being designed and use languages suitable even for the non-professional. By
the end of the fifth generation - by the early 1980's - literally anyone will be able
to.use a computer and many programs s_hould be available for helping us perform
our daily tasks., Computers and terminals could then become as common as
telephone and television today, ‘ - '
In pass ing through the second and thlrd generatlons of computers there was
: approx1mate1y a four fold increase in the number of computers in use per generation.

Throughout the1960' there was a ten fold increase. Assummg that these trends
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continue, then by 1975 - at the onset of the fifth geueration ~ there will be more
than 200, 000 computers in use around the world. By 1980 there could be over
500, 000. But if we count the remote termmals, then these numbers grow by a
further factor of ten. Moreover, if we include all the telephones _us,_ed for

remote access to computers ‘then practically everyone with a telephone will

have access to a computer by 1980. _

What are the uses of all these computers? In additionto aoplications m our V
own profeseion there are of course countlees applications. Let me select for
illustration orobably the most sophisticated one; the applications in management
-science':, _ A | ‘

The major object of modern computer applications in this field, is the setting
up of a computeriied .data beee to'enable better _énaivsis to be made of alternative
uses of reeources. At' present, many important decisions are_taken on 'madequate
data or on information which is out of date. Ina stable e.nd well-established
business thts may be of little consequence, but for firms in rapidly changing
markets or involved in rapid growth' or technological change, timeliness of data
can be vital. Rapid and convenient access to the data base is therefore requzred
and it is necessary that the whole system be desngned so it can react to the users
urgent demands. Modern computer techniques enable the user to converse w1th
the computer over a terminal. The user can ask questions .of the computer,
which can then, by cjuestioning the user, ellicit further information to retrieve
the answers required from its memory. In this way, the data base can be
searched, aud the result of a requested analysis can be made instan_taneously,
avatlable. | ,

The nature and complex1ty of the analysis required may dlffer consuierably,
so tha.t 1t would be inefficient to have the most powerful processor tied up wholly
thh one user. The equipment needed to implement such an enquiry system is thus,
not one computer, but a collection of units, some of whxch are devoted mamly to

manipulating data, some to the calculations _needed for analysis of the data, some
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 to up- datxng the flles as new data arrives, and some to conversmg with the
users, . As the users and the data sources may be physwally distributed over
a,_-wlde geographic area, the whole complex must be connected by communications
channels, and thus, becomes a computer-network, - At present such networks
are being built for,several applications. Several already exist - for instance,
' to carry out airline and hotel.‘re'se‘rvations on a world-wide basis., Others are - v'
being installed to‘ lmk hospitals_ into the data base containing information on
_ patients, availability of beds, ’ etc.. There is no intrinsic reason whv, in due |
course, s1ngle overall systems should not serve the needs of all the users in
any techmcal or geographical group desired Several. computer bureau operators
with machines in different countr1es are planmng to link their machmery so
they can work on whichever machme is most readzly available or most economic
at the time. Such arrangements could well form the basis for an m_ternatlonal
, computer-network |
The estabhshment of such a network naturally will contain some inherent
dangers for the 1ncl1vidua1, .pmma_rily r_elated to his status within the community,
who can be affected withont his knowledge. In o_rder to bring about beneficial
applications, _the__computer_must have data - not only about money and materials
’vﬁand the rest of the physic_al environment in which we live, but also about people
' and their attituoes 'and‘circ':umstances “Until recently the clerical effort needed

to cross-reference all these files has fortunately been prohtbltive But once -

- these data f1nd theu' way into a computer system, cross connectlons could be .

made in a matter of second. Thus on applymg for an msurance benefit you
might find the amount of your last unpald parking fine deducted automatically,

or perhaps find yourself arrested to answer a charge of speedmg. Would we ’
be happy under anefficient'tyranny - one in which every rnovement and action

of thevciti_zen was recorded, analyzed, cross-checked instantaneously and no
incident, 'no matter how trivial, -ever forgotten‘? Yet, such is the mechanism we
now have the capacity to create. It is not a far stretch of the imagination from

here to see that Orwell's 1984 predictlons on surveillance could also be fulfilled
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and on schedule.
. It is not, of course, the computer itself which creates social problems,
_but the human beings into whose hands it is placed. The computer is a tool
and it can be uéed or abuged by man at his discreti_on. , C,ompare-d with such
tools as nuclear energy, the computer does seem to possess more‘ potential for
gbod than harm. .
Whet_hér this picture appeals to you or frig_htens»you, I have no way of knowing.

A recently published book entitled Future Shock, concerned itself with the plight

of ‘m'odern ma.n attempting to cope with "an environment so ephemeral, unfamiliar
and complex as to threatén millions with adaptive vbrea‘.kdown. " The book is an
.indicat_idn 6f thé aﬁpreh.ension with which some people view the future énd it is
w'orthwhile» for those of us who,ére contributiﬁg agents of technological' evolution

t§ do some hard thinking about v}here we are going. - to alleviate the fears ofl
: soAme, and help all prepare for the coming advance in'_teéhnologies. | B

Let us now take a look at how the availability of the generations of computers

affected sgrvey-ing and mabping. Obviously, this r_eview will have to bé a _selec’civ’e
- and a subjective one. I will be abie to Ihentioh only the x-no'st specté.cular examples

and only thqse which are likely to be in the interest of this convocation, and of .

course, only those which are in my area of competence.

The Shape of the Earth and its Gravity Field

I _should make it ciear af the outset, that I am not concerned with local ir-
regularitiesv in the earth's surface, the mountains and the valleys. 1 shall be
discussing the mean sea level surface of f:he earth, carried through under thé
land, the surface usually called the geoid; This geoid, being a surface on which
the potentlal of the earth's gravity field is consta.nf, will, at the same time serve
as a pictofia,lv representation of the variations in the gravity field of the earth as
well, ' |

In the United States, a historical review on the subject in "which shape the
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earth is in, " probably would start from the time when the Declaration of =
Indepe‘ndence _f_rprh ,En'gi'ar‘ld was signed in 1776. In this country, however, one

is obliged to start with the pre_histori_c tnan, who, if hé thought about the subject
at all, presumably concluded that, apart from local bddities like rocks or »
mountains, the earth was flat .This is also the view held today by the Flat—Earth
-Society, also in England ,

_ The idea of a nearly-spherica.l earth was surprismgly late in becommg
established or so it seems to us, W1th the advantage of hinds1ght Neither the
. Babylonians nor the Egyptians favored thls idea, and the credlt goes to Pythagoras
and hlS school in the sixth century. B.C. I.should add that the {dea was derived not
from observations but from their conviction that the sphere was "the perfect"
‘ shap'e.‘ Three—hﬁnctred years later Eratosthenes did more than adotmt the idea_,'
he actually measurad the earth's circumferencé, using the propagation velocity
of a camel cai'avan as his scale, _ ‘

It was not until' the seventeeath céqtury that th_e shape of the eafth was improved
upc}n. The first indtcatioﬁ that the -earth may be flattened at the poles was obtained
in 1872 by Jean ﬁicher'é_ Freach ‘expedition to South America, wh_ére he found
- tltat his pendulum ’cloAck ac'curate. in Pafis was lobsing time at Cayenne. Flrst
numerlcal estimates on the ﬂattening came from Newton in his "Prmcxpla" .

published in 1687, but practlcal.me_asurements to establish the value of the
| flattening were made by the Cas'sinis‘, who measured .arc length in vFrbance,
and who came to the conclusions that the earth was flattened indeed, b_ut not at
‘ t,hev poles, but _'rathe':g at the equator,' thug, it looked like an egg or a lemon. This _ |
~ was in 1720, and .,'__f‘i'erce controtre'rsy followed: Was thg‘éarth flattened or elon-
gated at the_pdléa? Who was .right_, Newton or the Casainis? The French
Academy sent the -tw'o' fainous_ expeditions o_f Maupertuis to Lapland, and La
Condamine's to Peru. After ten years of labor and an equal number of years -
spent in quarrels, the conclusions tended to confirm Newton's idea, 'and-

Voltaire congi'atulated the expédltion_s_ saying, "You have successfully flattened
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thelpo_les and the‘ Cassinis. " Not much h'appened‘aft.er the fegarding the shape of
the earth, until the middle of the present centﬁry, when first analysing gravity
measurements on a global basis,- and after 1957, analysmg the orbits of
artificial satellites, a complete new picture of the earth's shape emerged.

These a,nalyses, of courgse, were made possible only because by that time, the
computers came into existence. ' | _ '

I shall not describe how from the perturbations to satellite orbits, caused .
by the various possible odditles in the earth's shape, these oddities can be deter~
mined. It should suffice to say that a new value for the flattening has emerged,
mdlcatmg that the earth's equatorial diameter exceeds the polar diameter by
42.177 kni, which is a full 170 meters different from the previously adopted
value, This difference may cot seem much for most of us, _bu_t it is important
for the 'geophys:icist, who.maiy conclude that the earth's interior has great
strength, and the assumption that it can be tre_alted as if it were a fluid, an
asSilmption which in the past, was widely made, is illegitimate;'_

‘The more accurate value for the flattening is, however, only a .\'rery small
part of the information obtained from satelhtes Without going into technicalities
let me 31mp1y 111ustrate the improvement by the fact that in the pre‘satelhte era
the shape of the earth and its g:awty field was described by four basic parameters,
_ wiiile today, the number of known parameters exceeds two-hundred and fifty. This
A new informatioxi pictcrially represented as the aforement.ioned geoid above the
ellipsoid shows th_at the most prevailing features are the hea_lth_& depression ,
afonind the Scuth Pole, a bulge south of the equator, and also around the North Pole,
indicating, in the language of the press, that‘ the eart_h is "pear¥shaped. " This
.- discovery cé.me as a relatively great surprise to most of us, ‘butit sho'uld‘have
been no surprise to Christopher Columbus, who gave it as his opinioﬁ "that
it has the shape of a pear that is very round, except where the Astem is, wixich_ is |
higher..." Other important features are the de_preesion south of India, (113m),

the elevation near New Guinea, (81m), and the elevation centered in England
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and the south Atlantic. N |
To sum up, satellites and the 'computers have brought us: from the earth of
1957, which was merely ‘a-sphere: flattened at the poles, and flattened by the
“wrong. amount to a comphcated figure whlch when seen in the round looks
perhaps like a. potato W1th dlps and humps all over it. ,
' By-products of. this satelhte-orbit analysis are the coordmates of the trackmg
_stations with respect to the center of the earth,” In the pre-satellite era, such
information, which is vital_in relating the numerous geodetic systems of the
world, practically did not exist. Today, geoce’ntriclcoordinates are known
for about 150 statlons fairly evenly.distributed around the globe |
Satellites also help in mapping, as geometric trtangulatlon points in the sky

in connection with the method called

Satellite Trlatgulation or Trilateration

ThlS method found wide range apphcatlons in connectmg another 150 - 200
"trackmg statlons in the relatlve sense both on a contlnental and on a global
basis. Better known projects in this category are the p_rogz_'ams under the coor- '
dinatio_h of .t_he_ Eastei'n and jWeetern_ European 'Subeommiss,io.ns for Satellite |
Triangu‘lation of the Internatlonal Association of Geodesy; the US National
Geodetic Satellite Pi'ogra‘m now in its final stages, including observations by
| the Smithsonian Astrophysical Observatory, The National Geodetic Survey,
(formerly Coast and Geodetic Survey), NASA and various other agencies; the
French coordinated ISAGEX Program; other French works .in southern Europe |
and northern Africa; and some other local national network_deVelopments in
'_N'orth and South America. '

1 will not attempt to offer you a glimpse at the software used in the calculations

L related to satellite geodesy, mainly because some of them are rather lengthy.

The fact that some of these programs took 100 man years to develop is an indi-

cation not only of the complex1ty of the problem, but also of the need for better
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programmmg methods Clearly, when one needs to work with several
ten- thousand observations in .order to determine several hundred unknown
quantxtle_s,, hke station _co_ordtnates, grawtatlonal parameters, and at the same
time, attempts to recover at least some of the systematic errors burdening
the observations, the computer software and hardware W111 have to be 1mpressxve
mdeed ' |

This leads us to an apnlication where the impectvofy compute'x_is is and will .
probably be the greatest both in its economical asne_cts and also in the number

of people affected. This application is generally known in suﬁeying circles as: -

Adjustment Computations

Adjustment in the surveying and mapping terminology is the method used to '
derive'un'ique and "best" ’values for parameters from redundant measurements
~of those parameters, or parameters related to them by a known mathematical
relat1onsh1p Ttis a devwe which should be used by everyone in the professmn '
involved in the evaluation of survey data from levelmg to satelhte laser ranging
vor, from cadaster surveys to lunar mapping. The fundamentals of this science
were laid down by Karl Friedrich Gauss in the elghteenth century at the age of 18.
Every geodesist and photogrammetrist of note since then, has contnbuted to
the hterature by refining (or confusing) some aspects of the toplc

Without gomg again into the technical details to the ‘extent poss1b1e let me
remind you that in the pre-computer era, up to-the early fifties, one did not |
enter lightly into an adjustment computation; one looked very closely at the
.model; one ehecked and double-checked the input data, and in very special cir-

i cumstances,. one might undertake the extra computations necessary to check the
possible correlations between the unknown parameters, or to eompute the error

| -_e,llipses for certain selected points of special interest, In other words, .it was _

not practically feasible to put adjustment computations on a sound etatistical basis."

The number of unknown parameters was also limited, since the computations
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for one medium-sized netvvorl; J,(SO - 1_(_)0 4“nk_n'owns) were likely to require

several man-months of time, thus, it was a very expensive undertaking indeed.
The use of statistical methods for planmng a network to make sure that it is

the most economical and most favorable from the pomt of view of the propagatmn
of erro_rs was almost out of the question because of the costs involved. For

this reason, in a- given c_ountry, very fewjorga_nizations were:' doing adjustment
computatmns. | | o

- Today, thanks to the computers. this situation is part of hlstory Very large

i numbers of organizations are_doing adJustment computations using computer
progr'ams,‘ efther developed by themselves or procured from other organiza--
- tions. These programs are (or should be) based on correct statistical theory

‘ and techmques, and runmng them, even w1th a very large number of unknowns, -

costs very little. :
Advances in thxs regard were most spectacular in that part of the mapping
industry which deals in photogrammetry, where the wide applications of aerial

triangulation or analytical photogrammetry using block-adjustment techniques -

with a great number of. unknowns is part of the daily routine,. Another spectacular

area where adJustment computations are routinely used to full capamty 1s
satelhte geodesy, where the number of unknown- parameters, mostly highly

correlated and to be adjusted for in one huge snmultaneous ad)ustment may

- reach several thousa.nd

It is mterestmg to note that a sigmflcant number of rather sophlstlcated

' "package programs" written for different purposes, like aerial triangulation,

horizontal control satellite triangulation or orbit determination, have been w1dely

distributed and used by a great number of organizations other than those who '
designed the programs ‘Itis a small step from here to arrive to the pomt where
the average surveyor can pick up his phone and dial the computer or go to his
remote terminal specify his object, read the input data in the specxfled manner, -

and receive his results with all the s_tatistlcaltrimmmgs faster and cheaper
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than he ever dréamed of. He has a powerful deSign'tool'at his. command; he

can now make full Ause"'of law of error propagaﬁion and optimize any system he
is designing; he can builﬂ in consfrairits; he c,anﬂte‘s't options and fihd fhe

option that meets hié specifications with the least effort and cost. At fhe .cor'1‘-—
clusion of the pro'ject,A he can do an evaluation and test the asSumptions that it

was necessary to make about his instruments. If data from a variety of sensors

" have been combined in an adjustment, he can test the distribution of residuals

for normality; he can test his mathematical model, his weighing'procedure.
In theory, 'this always has been possible, but until modern computer facilities

became available, it was out of the question as a regular tool.

Equipment Oriented Areas'

" There are also equipment oriented areas where the availability of the gen—'
erations of computers (directly pbar't of, of ti‘ed‘to, the s__e'ns»or-systém) affected
surveying and mapping. To mention a few, let me start with the AN/USQ-28
Mappilng' and Sufveying System, which comprises the mosi advanced group of
equipment integrated to clollect accurate ra\)v data for mapping purposes. It
was spécifical_ly designed to acquire photbgrabhy suitable for 1:50, 000 scale ‘
topographic mapping in areas whveregrov..md control ‘ié insufficient.v .The' sy’ste;m‘
is built into a Boeing 707 aircraft and consists of precision mapping cameras,
an inertial navigation _sys.ten.x,electronic distance n_ieasuring equipment, a terrain_
profile re_cbrder, and other auxiliary equipment. All data,'A with the ekception of
the photography, are recorded on magneﬁc tapes for direct input into digital equip- .
ment to speed the data reduéti'on process. Itis a ﬁ)ity that as of this momenﬁ,’
the system is not operating because there seems to be lack of money to pay for
the operation of the aircraft (for gasoline!). = |

Another exé.mplé is the progress that has beén made" in automated éomputation
equipment. These computer-driven machines use imégé sensing and correlation

techniques to produce horizontally correct images while éimultaneou’sly detecting
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and recording. h’eight tnformatlon. This equipment is supposed to reduce map
compilation time by 75%._ _ _ |
Another development of mgmficant mterest is the automatic or semi-
automatic coordinate._readers., This equipment is designed to measure,for .
ex.a.mple__,the c_oordinat,es of star images on photographic plates obtained for
. astronomic or satellite geodetic applications. .The.instruments have a pre;
programmmg feature‘ which moves a detecting head to the approximate location
of each required star image. The detection head then centers itself precisely
over a gtar image at which point the coordmates are measured and recorded
on punch cards for input in the computer program. .
Another and rather _esoteric computer application in this equipment. oriented

_ category is the Apollo mapping:system for accurate lunar mapping. The main ’
purpose of the system is similar to that of the USQ-28 mapping system mentioned
earlier, i.e., to provide maps m areas ‘where ground control is insufficient,
The. lunar orbiter and Apollo programs through Apollo 14 ha\re produced phenom-—
enal photography to support landmg site selection and surface operations How-
- ever, the new metric camera system which was flown first on Apollo 15, then

on Apollo 16 and which will be also on board the last manned flight to the moon,
offers an order of magnitude improvement towards lunar mapping, the deter-
mmatmn of the lunar ..gravity field, and of the motion of the moon in space.’ It
‘is again a pity‘ tha_tjvthle system is included only in the last three missions, and
was'left out lj.'_rom the previous seven missions, Of course, the astronauts on
Apollo 7 - 10.vvere' rather busy preparing the landing of Neal Armstrong onApollo
: _1:1, ‘but only NASA knows why the system was not flown on Apollo 12 - 14, The
. area c'overag’e‘would' have been certainly better. '

~ This system consists ol‘ three cameras, a laser altimeter and timing equipment.
The' first camera-is,a 3-inch metric mapping camera which photographs the lunar
" surface while the second stellar camera built into the same housing takes simul-

taneous pictures of the star field just above the lunar horizon to aid the deter-
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mination of the orientation of the mapping c,amer_al., ‘The lase'r eltimet,__er is
synohronized to fire simultaneously and pro?ides the'distance from the camera
to the lunar ground for each photograph. All this information together with

'the earth-based tracking data should give suffioient information on the position
and orientatioll of the mapping 4camera_ (to about 2.5 m relative). Tlxe third |
24 inch oanoramic camera provides very high resolution photogr_aphs (2m at
the nominal 110 km eltitude). .

As I mentioned, the main application of the system is to establish geodetic
control on the moon and provide maps for the areas covered. In addition to. .
'these; i_nf_ormatlon is expe,cted' on the rotation of the moon about its la‘:‘cis, ‘com-
monly known as the phenomena of libration. .The data will also be analyzed in .
con]unctlon w1th the laser distances measured between earth—based observatorles
and the reflectors placed on the moon surface by Apollos 11, 14, and 15, and =
Luna 17. This combmatmn of data should be most helpful to 1mprove on the lunar
ephemeris, i’e on the knowledge of the relatlve motion of the moon around the

earth, which lately seems to be part of geodesy also,

' ,The Fuiture

From here, there -is’only.a short Step into the future. What will the next
decade bring? I already described what is expected from the computers a.nd how
they will change the job of the surveyor in the a_dJustment/axjea. Let us see
briefly that in addition to the roxitine mapping and'su_rveying'activities, what
miracles the surveyor is to perform during the next -decade or so. First of all_;
he is going to get some new cuStorhers: the geophysici_sts ancl the oceenographers.
~ He will need new tools, because their demand for. a full mag'niltude ancl better
positions (from 10m to 1 m to 10 cm) than what is available today eﬁoe&ede present
- capabilities. Most of these instruments are already in the development stage.
and undoubtedly will be reacly for applications in the not too distant future. Let

us take a quick look at these machines:
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. _First of a.ll,v existing laser distance measuring devic_es will be _improved to '
the point Where the only factor limiting the accuracy of the observations will

be the uncertamties m tropospheric propagatlon which is expected to be reduced
to about 6cm (from the present 15 - 30 cm). ' .

On the radio frequency systems with prospects of 1m or better accuracy,
Very Long Ba_se-Lme Interferometry (VLBI) seems tovoffe,r the greatest
versatility 'This technique de'pends uponlocal frequenc'y standards of high
quality - preferably hydrogen masers - at two or more radio antennae separated

: by distances on the earth as great as allowed by the common visibility of a radio
A source, like a quasar or a water vapor source, The frequency standards provide
. time »refelren'ces for magnetic tape recordings of signals from these galactic
energy sources The tapes are later correlated at a central computmg facility,
and the time difference for arrival of the same ‘wave is determmed From thxs
it w1ll be posmble to calculate the distance between the two antennae to an '
accuracy of about 15 cm and the direction between them to about 0. 001 arc second,
| provided.. that_ the ‘posi_tio.n of the energy source is known.

Satellite to satellite (range rate) trscking_ also will .of'fer substantial advantages
over current techniques limited hy our dirty window towards space, the atmos-
phere. Very hlgh satellites will track a low satellite continuously through the
.vacuum of the universe with very hlgh precision. _
| Such continuous tracking technique, coupled with the so-called "drag~free"
-satelhte W1ll further improve our knowledge of the gravity field of the earth and
the ge01d The essent1al element of such a system is an unsupported mass
" contained in a spherical shell. A control system in the satellite senses motions -
‘:i‘_of the shell relative to the proof mass and actuates small thrusters that force
- the shell to follow the proof mass without touching it. Hence, the proof mass
follows an orbit inﬂuenced only by gravitational force.

Ir_nprovemen_t in the knowledge of the gravity field, the shape of the geoid is

also expected through the satellite to ocean radar altimeters, measuring contin-



uously the-distan’ce between sea level and the sate_llite. The first of these devices
will be flown probably in 1974 on an experimental basis. _
_Frem these new instrum'ents., a wealth of information will be made available
_ to the.earth scientists, Who, in turn, will be able to produce unpredictable
but certain.ly substantial advances about the rotational motions of the earth,
txde mteractlons, temporal var1at10ns in the grawty field, contmental drift and.
other large scale deformations of the earth crust and mantle, "The mteractxons
of these motlons and deformatlons appear to be responsxble for a wide variety of
effects, including large earthquakes mountam buildmg, generatlon of tsunamis.
(tidal waves), and confinement of nearly all active volcanoes to only a few narrow
belts. The satellite born radar altimeter even_tual'ly will nrovide valnable ocean-
ographic information on tides, storm surges, genef-al ocean circulation, and
other dynamical processes affecting sea level, |
Most of thes_e- problerns are global in nature, thus, require observations
gibbally ‘distr‘_ibuted. The interaction between the several dynamic subsystems of-
the earth demands ceordination of the 'observations.‘ Hence, for maximum effec—
t1veness technological mtegratlon and mternatlonal cooperatmn are essent1a1 to
a progressive investigation of these topics. | _ |
| Is the Internatmnal Federation of Surveyors wﬂhng and ready to partwlpate in
this cooperation? It it ready and willing to take this challenge and serve the new
customers? |
What else is commg? ~ Automated data banks with natlonal and mternatmnal lmks
o - Automated data reductxon systems
- Remote sensing satellites for environmental monitoring,
ocean sensmg and for land use and resources management, producing 15, 000,000
bits of information per second - equivalent to an Encyclopedia Britannica every
couple of minutes, We certainly will be able to verify the conjuncture that as civi-
lized man evolved from his primitive ancestry, he developed an appetite for large

masses of data, recording observations about his individual or collective activitics
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with ever greater precision and detail.

ancludin'g Remarks

On..the sAurfa.ce, it wouldvseém-that surveying presents no serious issues‘as
a technology. Itisa uééful tool in the service of mankind and extends the capa-
bilities of sci_ence. | Unlike some technologies, surveying does not pollute. On
the contrary, it may help to preserve the quality of the environment, It is not
likely to be wasteful _eéonomi_qally. .' inétea.d,- it »‘cou.ld stimulate and' guide resource
'developm,erit. as well,as. scientific régearch in the earth sc{ericés . ’Whé,t' i{s- more,
- it has some popular' attributes. : It requires a private and p’ublic sector team.
~ effort, and is muli:i-*iiisciplinzir’y as Wéll as multi-inéiitutibnal and muiti-—national.
| ‘But, 1f we were to conclude from such reasoning that no major issues are
| involved, we would be badly mlsta.ken. The rssues are not technologlcal, but
sociological, In my view, they effect the unity of the professiori of surveying
‘and mappmg S | | h |

Let me quote a recent ed1toria1 from the transactlons of the AGU on the
"Surveyor Geodesist" '

t For over two thouSa_.nd years, the land surveyor and the astronomer
often joined by the mathematician, collaborated in the development
of geodetic science. This symbiotic relationship, which reached its
zenith in the last three hundred years, resulted in inferences of geodetic
significance from observational data and also led to the establishment
of the science on a rigorous mathematical foundation, The surveyor,
to some degree and to a limited accuracy, participated in this develop-
ment in the small; but, today he is severely hampered by the restrictive
limits to his data base, by the limited scope of his observing instruments
and computing methods, and, in no small way, by the deemphasis in
surveying education at the university level. In addition, photogram-
metric methods and, in more recent times, developments in space
. technology have made enormous inroads into his areas of competence.
In fact, the phenomenal geodetic fallout from the space program has so
obscured the place of the surveyor in the geodetic scheme of things that
there is a tendency to downgrade his continued vital contribution to the
_science. Hence, more and more the average surveyor finds- himself
‘outside the geodetic mainstream, relegated to a supporting role as a
‘provider of cadastral and lower order engineering data.
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The new team combines the expertise of the mathematician, the
physicist, and the space scientist. From space-oriented observations,
this group of scientists has obtained data in regions inaccessible to
the surveyor and has obtained results that the geodesist using classical
techniques could never hope to achieve. As the space scientist refines
his measurements and increases his sampling rate, thereby providing
-more precise data at ever decreasing wave lengths, the geodesgist finds
that among many applications he can support the oceanographer in
resolving ocean surface problems; the tectono-physicist and the
seismologist in measuring continental drift and crustal movement;
and the astronomer in determining polar motion and variations in earth
rotation, : .

Will this expanded geodetic role further divorce the surveyor from
the geodetic community ? Not necessarily; a great deal depends upon
the willingness of the profession to broaden its horizons. The new
users of geodetic information require baseline information at accuracies
comparable to and sometimes exceeding those the surveyor is accustomed
to providing on a day-to-day basis. The surveyor needs to seek out his
new customers and needs to become aware of his problems; he needs to
Upg-rade his field operations, using the most precise instrumentation
and adjustment techniques; and he most certainly must insist upon
improving and expanding the university curriculum in surveying."
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