SIMPLIFIED THERMOCHEMISTRY
OF OXYGEN IN LITHIUM AND SODIUM
FOR LIQUID METAL COOLING SYSTEMS

by Leonard K. Tower

Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1972
Title and Subtitle

SIMPLIFIED THERMOCHEMISTRY OF OXYGEN IN LITHIUM AND SODIUM FOR LIQUID METAL COOLING SYSTEMS

Abstract

Plots of oxygen chemical potential against composition of lithium - oxygen solutions and sodium - oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

Key Words

- Lithium - oxygen solution
- Sodium - oxygen solution
- Liquid metal coolants

Distribution Statement

Unclassified - unlimited

For sale by the National Technical Information Service, Springfield, Virginia 22151
SIMPLIFIED THERMOCHEMISTRY OF OXYGEN IN LITHIUM
AND SODIUM FOR LIQUID METAL COOLING SYSTEMS
by Leonard K. Tower
Lewis Research Center

SUMMARY

Plots of oxygen chemical potential against composition of lithium - oxygen solutions and sodium - oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality.

The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

INTRODUCTION

The use of liquid alkali metals as high temperature heat transfer media is being extensively investigated. Familiar applications include forced convection cooling loops in nuclear reactors. Recently, heat pipes containing alkali metals have been proposed as a means of removing reactor heat (ref. 1).

Because of the elevated temperature in these systems and the high chemical reactivity, some rather difficult materials problems are encountered. For instance, corrosion of containment vessels by the liquid is observed. Solution of the vessel wall by the liquid metal has been studied (ref. 2) and found to be aggravated by small amounts of oxygen dissolved in the wall material (ref. 3). The formation of a soluble ternary oxide of the refractory and alkali metals is suspected as part of the corrosion mechanism (refs. 4 and 5) for some refractory metals.

Because oxygen in liquid metals at elevated temperatures is apparently a cause of corrosion, various schemes have been proposed for alleviating the problem. The alloying of oxygen-gettering elements with the metals used in containment vessel walls (ref. 6) and the use of gettering traps have been proposed.
The success of such methods depends on the relative chemical potentials of oxygen in the liquid metal and in the gettering materials. An estimation of the chemical potential of oxygen in the liquid metal becomes necessary in assessing the feasibility of gettering methods.

No direct measurement of the chemical potentials of oxygen in the liquid metals is known to exist. This information must therefore be inferred from solubility limit data for oxygen in the liquid metals. This task is undertaken in the present report for lithium and sodium, two coolants of considerable interest for nuclear reactor application.

The present report contains plots of chemical potentials for oxygen dissolved in lithium and in sodium as functions of temperature and concentration of oxygen in solution. For each liquid metal two such plots were prepared. The assumption of ideal solution behavior was made in constructing one plot. For the other plot existing oxygen solubility limit data was used to determine the coefficient of a first order term for departure from ideality. The form of the expression used for this nonideal correction was essentially that of the regular solution (ref. 7). The use of the chemical potential diagrams in assessing chemical stability of a system containing refractory metal, alkali metal and oxygen is illustrated by an example involving hafnium.

Because of the uncertainties in the solubility limit data analyzed and the arbitrary nature of some of the assumptions, thermochemical data herein for the nonideal case is at best very tentative. The ideal case has been included for comparison so that the sensitivity of the computed thermochemical results to the assumptions made in the analysis can be assessed. The potential importance of liquid metal cooling systems to nuclear reactor technology makes such tools as devised here for the analysis of thermochemical problems necessary until more definitive information is available.

ANALYSIS AND DISCUSSION

Coordinates of temperature - composition phase diagrams have sometimes been used to determine the thermochemical properties of solution phases. Various analytical methods have been devised for this task, some of them suitable for binary metallic systems (refs. 8 to 10) and some for multicomponent systems (refs. 11 and 12). The methods consist of determining the values of constants in Taylor series or similar expansions relating the chemical potentials of the solution components to composite-variables.

In a study (ref. 13) related to the present one, the thermochemical properties of a system containing cesium and oxygen was computed from an experimental phase diagram (ref. 14). This diagram covered a far greater composition range than the solubility limit data available for oxygen in lithium and in sodium. The method of references 8 to 10 as used in reference 13 is not suitable for oxygen in lithium and in sodium.
A very elementary approach will be employed herein. The first assumption made is that the components of the lithium - oxygen and sodium - oxygen systems are Li, Li₂O and Na, Na₂O. Experimental evidence shows the presence of O⁻⁻ ions in liquid alkali metal systems containing oxygen (refs. 15 to 17). Even a small concentration of such ions might affect the electrical conductivity (ref. 17) or play a role in the kinetics of the corrosion mechanism (refs. 15 and 18). The absence of any quantitative data for concentrations of O⁻⁻ relative to total oxygen in liquid lithium or sodium precludes considering the effect here.

The second simplifying assumption is the applicability of the so-called regular solution approximation in a modified form. Regular solution behavior has been found in many binary systems involving metallic species (ref. 19). In systems exhibiting this behavior, \(\mu_a \) and \(\mu_b \) of species \(a \) and \(b \) are given by

\[
\mu_a = \mu_a^0 + RT \ln(1 - x) + Lx^2
\]

\[
\mu_b = \mu_b^0 + RT \ln x + L(1 - x)^2
\]

where \(\mu^0 \) designates the free energy of the pure liquid at the temperature \(T \) in question, \(x \) is the atom fraction of \(b \) in solution, and \(R \) is the gas constant. Ideal solution behavior occurs when the interaction parameter \(L \) is zero.

Sometimes nonideality in solutions is handled by defining activity coefficients \(\gamma_a \) and \(\gamma_b \) such that (ref. 20)

\[
\mu_a = \mu_a^0 + RT \ln \gamma_a \ y
\]

\[
\mu_b = \mu_b^0 + RT \ln \gamma_b \ x
\]

where \(x = 1 - y \). The parameters \(\gamma_a \) and \(\gamma_b \) generally vary with \(x \). If \(\gamma_a \) is constant as \(y \to 0 \), Henry's law is said to be obeyed in the limit. If \(\gamma_a \to 1 \) as \(y \to 1 \), Raoult's law for ideal behavior is obeyed in the limit. Similar considerations apply to \(\gamma_b \). The behavior of equations (1) and (2) in the foregoing limits is seen to be nearly the same as that of equations (3) and (4). The principle difference is that \(L \) either is assumed constant or has a temperature dependence of the form \(L = L_0 + L_1 T \) (ref. 19).

The modification adopted here consists of setting \(L_0 = 0 \). Equations (1) and (2) then become

\[
\mu_a = \mu_a^0 + RT [\ln(1 - x) + Bx^2]
\]

(5)
This modification will be shown to be advantageous in handling the experimental data for oxygen in lithium.

Oxygen in Lithium

Measurements of the solubility of oxygen in lithium are reported in reference 21. Solid dilithium oxide was placed in contact with lithium. The amount of oxygen remaining in the lithium after filtration was then determined by analysis. Table I presents the results from reference 21.

The oxygen concentrations are also converted in table I to equivalent mole fractions x of dilithium oxide (Li_2O) in a solution of Li_2O and lithium. This is consistent with the assumption herein that all dissolved oxygen is in Li_2O.

At the condition of saturation, Li_2O in the solid phase must be in equilibrium with Li_2O in solution, and the free energy $\left(\frac{\Delta F^0}{T}\right)_{\text{Li}_2\text{O}(c)}$ of crystalline Li_2O must equal the chemical potential of dissolved Li_2O.

Equations (2) and (6) for b as Li_2O were evaluated for parameters L and B from the x data in table I. Free energies of fusion, $\left(\frac{\Delta F^0}{T}\right)_{\text{Li}_2\text{O}(c)}$, for Li_2O from reference 22 used in the computations represent an extrapolation into the supercooled region for $\text{Li}_2\text{O}(l)$ since the temperatures are below the freezing point. The resulting L from equation (2) and B from equation (6) are listed in table I.

The mean value of B for the data in table I is 1.835 with a standard deviation of 0.221. No single satisfactory mean value of L can be determined from the data. If L is permitted to vary linearly with temperature, a much better fit can be achieved, the correlation being $L = -1950 + 6.96 T$. At the melting point of Li_2O, 1843 K (refs. 17 and 19), the value of L is about 9970.

Allowable values of L and B are limited by theoretical considerations discussed in the appendix. The maximum allowable value of B is shown there to be 2. The maximum allowable value of L at the melting point is about 7300. Since the value of L extrapolated from the experimental data exceeds this, the B formulation of equations (5) and (6) was used herein with $B = 1.835$.

The solubility limit x_{sat} for Li_2O in lithium computed from equation (6) using this B with $\left(\frac{\Delta F^0}{T}\right)_{\text{Li}_2\text{O}(c)}$ from reference 22 is shown in figure 1 against reciprocal temperature. Also shown are the experimental data points from reference 21 used in determining B. The ideal solubility limit determined from equation (6) by setting $B = 0$ is shown. In the temperature range of the experimental data about two-thirds of a decade separates the ideal and nonideal solubilities.
Equations (5) and (6) with $B = 1.835$ together describe the thermochemical properties of the Li - Li_2O system. For convenience in studies involving the presence of oxidizable materials, the thermochemical base is changed from $\text{Li}_2\text{O}(s)$ and Li(s) to an atmosphere of diatomic oxygen in equilibrium with the Li - Li_2O solution. For the reaction

$$\text{Li}_2\text{O}(s) \rightleftharpoons 2\text{Li}(s) + \frac{1}{2} \text{O}_2(g)$$ \hspace{1cm} (7)

thermochemical equilibrium requires that

$$\mu_{\text{Li}_2\text{O}(s)} = 2\mu_{\text{Li}(s)} + \frac{1}{2} \mu_{\text{O}_2(g)}$$ \hspace{1cm} (8)

Here,

$$\mu_{\text{O}_2(g)} = \left(\frac{F_T^0}{RT} \right)_{\text{O}_2} = \left(\frac{F_T^0}{RT} \right)_{\text{O}_2} + RT \ln p_{\text{O}_2}$$ \hspace{1cm} (9)

where the pressure p for thermochemical purposes is in atmospheres (1 atm = 1.013 × 10^5 N/m). Combination of equations (5), (6), and (9) yields

$$\ln p_{\text{O}_2} = \left(\frac{\Delta F_T^0}{RT} \right)_{\text{O}_2} = \left(\frac{\Delta F_f^0}{RT} \right)_{\text{Li}_2\text{O}(c)} + \left(\frac{\Delta F_T^0}{RT} \right)_{\text{Li}_2\text{O}(c,l)} + \ln \left(\frac{x}{1 - x} \right) + B(1 - 2x - x^2)$$ \hspace{1cm} (10)

where the standard state free energy of formation of $\text{Li}_2\text{O}(c)$ is

$$\left(\frac{\Delta F_f^0}{RT} \right)_{\text{Li}_2\text{O}(c)} = \left(\frac{F_T^0}{RT} \right)_{\text{Li}_2\text{O}(c)} - 2\left(\frac{F_T^0}{RT} \right)_{\text{Li}(l)} - \frac{1}{2} \left(\frac{F_T^0}{RT} \right)_{\text{O}_2}$$ \hspace{1cm} (11)

Values of $[(\frac{F_T^0}{RT}) - (H_{298}^0)]/T$ for $\text{Li}_2\text{O}(c)$ and Li(c,l) were taken from reference 22, while $[(\frac{F_T^0}{RT}) - (H_{298}^0)]/T$ for $\text{O}_2(g)$ and $(H_{298}^0)_{\text{Li}_2\text{O}(c)}$ were from reference 23. A plot of equation (10) appears as figure 2(a) herein. Figure 2(a) shows $\left(\frac{\Delta F_T^0}{RT} \right)_{\text{O}_2}$ against mole fraction of Li_2O in solution, for several temperatures.

By setting $B = 0$ equation (10) was also evaluated for the ideal case. The results are shown as figure 2(b). Comparison of figures 2(a) and (b) reveals that $\left(\frac{\Delta F_T^0}{RT} \right)_{\text{O}_2}$ is higher (less negative) by about 4 units in the nonideal case. This amounts to about
23 000 joules per mole (5500 cal/mole) at 700 K and about 59 000 joules per mole (14 000 cal/mole) at 1800 K.

Oxygen in Sodium

Many determinations have been made of the solubility of oxygen in sodium. Reference 16 summarizes and discusses data of many investigators taken prior to 1966. This body of data together with subsequent information was evaluated critically in reference 24. The following standard equation for the solubility of oxygen in sodium was recommended as a result of the evaluation:

\[
\log_{10} s = 6.239 - \frac{2447}{T}
\]

(12)

where \(s \) is weight parts per million of oxygen in sodium. Converted to mole fraction \(x \) of sodium oxide in solution equation (12) gives

\[
\log x = 14.37 - \frac{5634}{T}
\]

(13)

By using equation (13) together with equation (6) and values of \((\Delta F^0)_{Na_2O(c,1)}\) from reference 22, \(B \) was evaluated at several temperatures encompassing the range covered by the many investigators whose data contributed to the construction of equation (12). These temperatures and the corresponding values of \(B \) are 400 K, 1.75; 500 K, 1.92; 600 K, 2.13; 700 K, 2.33; 800 K, 2.53. The mean of these values of \(B \) is 2.13.

While \(B \) is understood to be a constant, the values determined from the curve fit of reference 24 show a decided trend with temperature. Another approach would have been to solve for \(B \) for each data point used in constructing equation (12) and to take the mean. The amount of scatter in the data together with the number of assumptions involved in the present analysis makes such an effort unwarranted.

The mean \(B \) of 2.13 deduced from equation (12) exceeds the maximum allowable value of 2 discussed in the appendix. For the Na - Na\(_2\)O studies herein a value of \(B = 2 \) will be adopted.

Figure 3 shows the solubility limit \(x_{s\text{at}} \) against reciprocal temperature for Na\(_2\)O in sodium, computed from equation (6) using a \(B \) of 2 and \((\Delta F^0)_{T/Na_2O(c,1)}\) from reference 22. The ideal solubility limit found by setting \(B = 0 \) in equation (6) is also shown, together with equation (13) from reference 16.
Figure 4(a) is a plot of $(\Delta F^0_R/RT)_{O_2}$ against mole fraction of Na_2O in solution with sodium at several temperatures for oxygen in equilibrium with the solution. The data were computed for $B = 2$, the nonideal case, using equation (10), with thermochemical data from reference 22. Figure 4(b) is the corresponding plot for $B = 0$, the ideal case.

Example Using Oxygen-Contaminated Lithium in Contact with Hafnium

The use of figures 2 and 4 in evaluating the chemical stability of a system containing a refractory metal in contact with oxygen-contaminated lithium can be illustrated by an example involving hafnium. Hafnium is a common constituent of alloys that are being considered for structures containing liquid alkali metal coolants. The hafnium in part is intended as a getter to counter oxidation of the other alloying constituents.

The equilibrium between $HfO_2(c)$ and $Li_2O(s)$ is expressed as

$$2Li_2O(s) + Hf(c) \Leftrightarrow HfO_2(c) + 4Li(s) \tag{14}$$

which requires that

$$2\mu_{Li_2O(s)} + (F^0_T)Hf(c) = (F^0_T)HfO_2(c) + 4\mu_{Li(s)} \tag{15}$$

Equilibrium (14) can be expressed as the sum of the following equilibria:

$$2Li_2O(s) = 4Li(s) + O_2(g) \tag{16}$$

$$Hf(c) + O_2(g) \Leftrightarrow HfO_2(c) \tag{17}$$

The condition for equilibrium (16) to exist is given by equation (8), which can be reexpressed as

$$2\mu_{Li_2O(s)} - 4\mu_{Li(s)} - (F^0_T)O_2(g) = (\Delta F_T)O_2(g) \tag{18}$$

For equilibrium (17) to exist,

$$(F^0_T)Hf(c) + (F^0_T)O_2(g) = (F^0_T)HfO_2(c) \tag{19}$$
Subtracting \((F^O_T)_O2(g) \) from both sides of equation (19) gives

\[
(\Delta F^O_T)_{HfO_2(c)} = (\Delta F^O_T)O_2(g)
\]

where \((\Delta F^O_T)_{HfO_2} \) is the standard state free energy of formation for \(HfO_2(c) \). When \((\Delta F^O_T)O_2(g) \) in equations (18) and (20) are equal, these equations can be combined to obtain equation (15), the condition for equilibrium (14). A line of \((\Delta F^O_T/RT)O_2(g) = (\Delta F^O_T/RT)_{HfO_2(c)} \) (see eq. (20)) is plotted on figure 2(a) for nonideal solution behavior, and on figure 2(b) for ideal solution behavior. The \(HfO_2 \) data are from reference 25. The line and its \(x \) coordinate will henceforth be designated as \(x(HfO_2) \).

For \(Na_2O \) in solution (fig. 4) the line for \(x(HfO_2) \) cannot be plotted since its small magnitude places it too far to the left. The effectiveness of hafnium in gettering oxygen from sodium is thus illustrated to be much greater than in gettering oxygen from lithium.

For \(Li_2O \) concentrations to the left of the line \(x(HfO_2) \) on figure 2, \(HfO_2(c) \) will not be stable, while to the right of the line it will be. To determine on which side of the line \(x(HfO_2) \) a given \(Li - Hf - O \) system lies, an inventory must be made of the total moles of lithium \((N_{Li}) \), of hafnium \((N_{Hf}) \), and of atomic oxygen \((N_O) \) in the system. All phases and all compounds must be considered in the inventory. For this example the gas volume will be assumed small enough to contain negligible material.

A simple criterion for the stable existence of \(HfO_2(c) \) can be readily derived. In the presence of stable \(HfO_2(c) \) the excess oxygen forms \(Li_2O \), the number of moles of which are

\[
N_{Li_2O} = N_O - 2N_{Hf}
\]

Of the total amount of lithium, \(N_{Li} \) in the system, the amount as free lithium is

\[
N'_{Li} = N_{Li} - 2N_{Li_2O}
\]

The number of moles of solution is

\[
N_{Sol} = N'_{Li} + N_{Li_2O}
\]

The mole fraction \(x \) of \(Li_2O \) in solution is then
\[x = \frac{N_{Li_2O}}{N_{Sol}} = \frac{N_O - 2N_{Hf}}{N_{Li} + 2N_{Hf} - N_O} \]

(24)

For \(HfO_2(c) \) to be thermochemically stable

\[x \geq x(HfO_2) \]

or

\[\frac{N_O - 2N_{Hf}}{N_{Li} + 2N_{Hf} - N_O} \geq x(HfO_2) \]

(25)

If criterion (25) is not satisfied, \(HfO_2(c) \) cannot be stable. In such a case the concentration \(x \) will be less than \(x(HfO_2) \).

The example for \(HfO_2 \) can be extended to other hafnium oxides and to solutions of oxygen in hafnium when currently unavailable thermochemical data become available. Recently the compounds \(Hf_3O(c) \) and \(Hf_6O(c) \) have been identified (ref. 26). Lines for these compounds should lie to the left of \(HfO_2(c) \) in figure 2. Solid hafnium can contain up to 7 percent oxygen in solution (ref. 26). The lines of \((\Delta F_T/RT)O_2 \) for varying concentrations of dissolved oxygen in hafnium will lie still further to the left of \(x(HfO_2) \) in figure 2.

Hafnium as a minority element in some refractory metal alloys such as T-111 (tantalum - 8 tungsten - 2 hafnium) is in a single phase solution. For this case \((F_T^{0})Hf(c) \) in equation (15) must be replaced by a chemical potential pertaining to hafnium in the metal solution. An additional complication is the possible formation and solution of \(Li_2HfO_3 \) in lithium (ref. 2).

The foregoing example, despite the dearth of thermochemical data for hafnium oxides and for oxygenated lithium, illustrates the procedures involved in estimating the effectiveness of getters for removing oxygen from alkali metals. The constructions in figure 2 provide a first order estimate of this gettering effectiveness for the Hf - O - Li system.

CONCLUDING REMARKS

Plots of oxygen chemical potential against composition were presented for solutions of oxygen in lithium and in sodium at several temperatures. Because of the uncertainties in the experimental data used to construct the diagrams for nonideal solution behavior and the assumptions required, plots were also presented for ideal solution behavior.
Comparison of the results for the ideal and nonideal cases gives an indication of the sensitivity of the thermochemical results to the assumptions made in the nonideal analysis. The potential importance of liquid alkali metals in nuclear reactor cooling systems justifies the use of the tentative data presented herein in analyzing problems involving oxygen contamination until better data can be derived.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 7, 1972,
503-25.
APPENDIX - UPPER LIMITS OF L AND B

Upper limits of L and B are imposed by thermochemical requirements. At fixed temperature

\[\mu_b \leq (F^0_T)_{b(c)} \] \hspace{1cm} (A1)

for \(x \leq x_{\text{sat}} \). Otherwise, the purported \(x_{\text{sat}} \) must be conceded to be erroneous and the saturation line at that temperature shifted to a smaller value of \(x \) where \(\mu_b \) does indeed equal \((F^0_T)_{b(c)}\). Figure 5(a) illustrates the situation which would exist in such a case. This figure is drawn in such a manner as to suggest that one requirement for the saturation point \(x_{\text{sat}} \) is that the variation of \(\mu_b \) with \(x \) be monotonic at \(x \leq x_{\text{sat}} \).

For equation (2) to be monotonic,

\[\left(\frac{\partial \mu_b}{\partial x} \right)_T \frac{RT}{x} - 2(1 - x)L \geq 0 \] \hspace{1cm} (A2)

for \(x \leq x_{\text{sat}} \).

A possible variation in \(\mu_b \) which satisfies inequality (A1) but not inequality (A2) is sketched in figure 5(b). The situation depicted requires that a point of inflection lie between two real roots of inequality (A2). For a point of inflection

\[\left(\frac{\partial^2 \mu_b}{\partial x^2} \right)_T = -\frac{RT}{x^2} + 2L = 0 \] \hspace{1cm} (A3)

the only positive abscissa of which is

\[x = \sqrt{\frac{RT}{2L}} \] \hspace{1cm} (A4)

The locations of the maxima or minima of inequality (A2), where \((\partial \mu_b / \partial x)_T = 0 \), are

\[x = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - \frac{2RT}{L}} \] \hspace{1cm} (A5)

If the point of inflection is to lie between the roots of \(\partial \mu_b / \partial x \) as depicted, equations (A4) and (A5) require that
\[
\sqrt{\frac{RT}{2L}} \geq \frac{1}{2} - \frac{1}{2} \sqrt{1 - \frac{2RT}{L}} \tag{A6}
\]

or

\[
\sqrt{1 - \frac{2RT}{L}} \geq 1 - 2 \sqrt{\frac{RT}{2L}} \tag{A7}
\]

Squaring equation (A7) gives

\[
1 - \frac{2RT}{L} \geq 1 - 4 \sqrt{\frac{RT}{2L}} + \frac{2RT}{L} \tag{A8}
\]

and

\[
4 \sqrt{\frac{RT}{2L}} \geq \frac{4RT}{L} \tag{A9}
\]

Squaring again and rearranging result in

\[
\frac{L}{RT} \geq 2 \tag{A10}
\]

However, for real \(x\), equation (A5) requires that \(L/RT \leq 2\). Except for the special case \(L/RT = 2\), \(x = 1/2\) these are contradictory requirements. The conclusion follows that the situation in figure 5(b) cannot exist for chemical potentials obeying equation (2). The variation of \(\mu_b\) with \(x\) must therefore be monotonic, with inequality (A2) applying for \(x \leq x_{\text{sat}}\).

From inequality (A2)

\[
L \leq \frac{RT}{2x(1 - x)} \tag{A11}
\]

The minimum value of the right side, occurring at \(x = 1/2\), is \(2RT\). Therefore, the maximum allowed value of \(L\) is \(L \leq 2RT\).

Precisely the same arguments, applied to equation (6), give \(B \leq 2\).
REFERENCES

TABLE I. ANALYSIS OF SOLUBILITY DATA FOR OXYGEN IN LITHIUM FROM REFERENCE 21

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>Oxygen in lithium, wppm</th>
<th>Mole fraction of Li₂O in solution, x</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>58</td>
<td>2.516×10⁻⁶</td>
<td>2185</td>
<td>2.102</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>3.210</td>
<td>1932</td>
<td>1.858</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>3.687</td>
<td>1788</td>
<td>1.720</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>3.990</td>
<td>1706</td>
<td>1.641</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>4.164</td>
<td>1662</td>
<td>1.598</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>4.381</td>
<td>1609</td>
<td>1.547</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>4.728</td>
<td>1529</td>
<td>1.471</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>5.248</td>
<td>1421</td>
<td>1.367</td>
</tr>
<tr>
<td>300</td>
<td>176</td>
<td>7.634×10⁻⁶</td>
<td>2190</td>
<td>1.923</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>8.241</td>
<td>2103</td>
<td>1.846</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>8.371</td>
<td>2085</td>
<td>1.830</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>8.892</td>
<td>2016</td>
<td>1.770</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>9.195</td>
<td>1978</td>
<td>1.736</td>
</tr>
<tr>
<td></td>
<td>214</td>
<td>9.282</td>
<td>1967</td>
<td>1.727</td>
</tr>
<tr>
<td></td>
<td>214</td>
<td>1.028×10⁻⁴</td>
<td>1851</td>
<td>1.625</td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>1.097</td>
<td>1776</td>
<td>1.560</td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>2.366</td>
<td>2.366</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>348</td>
<td>1.510×10⁻⁴</td>
<td>2483</td>
<td>2.005</td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>1.596</td>
<td>2415</td>
<td>1.950</td>
</tr>
<tr>
<td></td>
<td>374</td>
<td>1.622</td>
<td>2395</td>
<td>1.934</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>1.661</td>
<td>2365</td>
<td>1.910</td>
</tr>
<tr>
<td></td>
<td>392</td>
<td>1.700</td>
<td>2337</td>
<td>1.887</td>
</tr>
<tr>
<td></td>
<td>396</td>
<td>1.718</td>
<td>2324</td>
<td>1.876</td>
</tr>
<tr>
<td>400</td>
<td>477</td>
<td>2.069×10⁻⁴</td>
<td>3165</td>
<td>2.366</td>
</tr>
<tr>
<td></td>
<td>529</td>
<td>2.295</td>
<td>3027</td>
<td>2.262</td>
</tr>
<tr>
<td></td>
<td>604</td>
<td>2.620</td>
<td>2849</td>
<td>2.130</td>
</tr>
<tr>
<td></td>
<td>729</td>
<td>3.163</td>
<td>2598</td>
<td>1.942</td>
</tr>
<tr>
<td></td>
<td>730</td>
<td>3.167</td>
<td>2566</td>
<td>1.941</td>
</tr>
<tr>
<td></td>
<td>761</td>
<td>3.302</td>
<td>2540</td>
<td>1.899</td>
</tr>
<tr>
<td></td>
<td>766</td>
<td>3.323</td>
<td>2532</td>
<td>1.893</td>
</tr>
</tbody>
</table>
Figure 1. Solubility limit for Li$_2$O in liquid lithium x_{sat} against reciprocal temperature $1/T$.

Ideal, $B = 0$

Nonideal, $B = 1.835$

Data from ref. 21
Figure 2. - Chemical potential diagram for diatomic oxygen in equilibrium with a solution of lithium and Li$_2$O.

(a) Nonideal case, $B = 1.835$.

Mole fraction of Li$_2$O in solution, x

Temperature, K

Solubility limit, x_{sat}
Figure 2. - Concluded.
Figure 3. - Solubility limit for Na₂O in liquid sodium x_{sat} against reciprocal temperature $1/T$.

- Ideal, $B = 0$
- Nonideal, $B = 2.0$
Figure 4. - Chemical potential diagram for diatomic oxygen in equilibrium with a solution of sodium and Na$_2$O.

(a) Nonideal case, $B = 2.0$.

Mole fraction of Na$_2$O in solution, x
Mole fraction of Na₂O in solution, x

(b) Ideal case, B = 0.

Figure 4. - Concluded.

(a) Monotonic variation of μ_b for $x \leq x_{sat}$.
(b) Nonmonotonic variation of μ_b for $x \leq x_{sat}$.

Figure 5. - Some modes of variation of μ_b with x.
"The aeronautical and space activities of the United States shall be conducted so as to contribute to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546