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THERMOCHEMISTRY OF TANTALUM-WALL COOLING SYSTEM

WITH LITHIUM AND SODIUM WORKING FLUIDS

by Leonard K. Tower*

Lewis Research Center

SUMMARY

Plots are presented which show the distribution of oxygen between liquid lithium and
tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures.
Additional plots showing the composition of the gas phase above the solutions of oxygen
and alkali metal are presented. The use of the plots is illustrated by an example tanta-
lum heat pipe filled with lithium.

INTRODUCTION

Liquid metals as heat-transfer media have been advocated for many applications.
Some of the alkali liquid metals, in particular, have vapor-pressure and heat-transfer
properties favorable for use in nuclear-reactor cooling systems (ref. 1).

Because of the elevated service temperatures and the high chemical reactivity of the
alkali metals, difficult materials problems in the liquid-metal cooling systems will be
encountered. A continuing review of such materials problems is being conducted here at
the Lewis Research Center in support of an experimental study of heat pipes for remov-
ing nuclear-reactor thermal energy. In reference 2, published solubility data for oxygen
in lithium and in sodium were used to construct chemical potential diagrams. The use of
the diagrams in assessing the chemical stability of systems containing refractory metal,
lithium, and oxygen is illustrated by an example involving hafnium, a possible constituent
of the containment structure.

Both niobium and tantalum can hold large amounts of oxygen in solution (ref. 3).
Oxygen exceeding about 200 to 500 parts per million in these metals is known to result in
corrosive attack by the lithium through a little-understood mechanism (ref. 4). For this
reason, caution must be exercised in removing oxygen from refractory metal by the
method of leaching or soaking in alkali metals.

In this report, the chemical potential data for oxygen in lithium or in sodium (ref. 2)
and data for oxygen in tantalum or in niobium (refs. 3 and 5) were used to estimate the



distribution of oxygen between lithium and niobium or tantalum. The information should
be of use in estimating the effectiveness of methods proposed for leaching oxygen from
tantalum or niobium and in setting limits on lithium purity for heat pipes.

The chemical potential diagrams from reference 2 are very tentative because of the
uncertainties in the solubility-limit data and arbitrary assumptions used in their con-
struction. The possible formation of a ternary oxide of refractory metal, alkali metal,
and oxygen was not considered. Such oxides are suspected as important corrosion fac-
tors in refractory-metal - alkali-metal systems (refs. 6 and 7). Because of the impor-
tance of liquid-metal cooling systems to nuclear-reactor technology, thermochemical
analyses such as the ones contained herein are required until more definitive experimen-
tal data are available.

ANALYSIS AND DISCUSSION

Reference 2 contains plots of the free-energy function

- (FT)O_
RT U2

for gaseous diatomic oxygen (O^/gO in equilibrium with solutions containing varying mole
fractions of dilithium oxide (Li0O^ in lithium or disodium oxide (Na0O) in sodium at sev-

oeral temperatures T. Here, FT is the free energy at the equilibrium condition, FT is
the free energy at 1 atmosphere pressure, R is the gas constant, and p is the partial
pressure in atmospheres (1 atmosphere - 1.013x10 N/m ).

For each liquid metal, two plots were presented in reference 2. In one plot, exist-
ing oxygen solubility data were used to determine the coefficient of a first-order term
for departure from ideal solution behavior. The form of the expression for this nonideal
behavior was essentially that of the regular solution (ref. 8). For the other plot, ideal
solution behavior was assumed so that the sensitivity of the plots to the assumptions
made in the analysis might be assessed. In the present report, only the plots for non-
ideal behavior derived from the oxygen solubility data will be used.

Distribution of Oxygen Between Lithium and Tantalum or Niobium

Reference 3 presents equations relating the concentration of oxygen dissolved in
niobium (Nb) and tantalum (Ta) to temperature and (AFT/RT)Q (eq. (1)) at equilibrium.
For oxygen in niobium,



RT/0,

- 21 2 + In x2 90300 m- 21.2 + lnx -— (2)
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and for oxygen in tantalum,

/AFT\ = 21 2 + In x2 - 89 80°
I Tjm I O( 1 a) rri

\ RT /o2
 T

where XO/T ^. v is the atomic fraction of oxygen in the refractory metal indicated.

Lines of (AFrp/RT)^ for tantalum at fixed x ^ / — ^ are superimposed in figure 1 upon
i v-'o ^v -^ **•/

a plot from reference 2 (AFrp/RT).^ against x and T for Li0O in lithium. Here, x
i U2 &

is the mole fraction of Li«,O in lithium. Lines of (AFrp/RT),-. for niobium (eq. (3)) lie
tt 1 ^9

very close to those for tantalum and are not shown. For any temperature and concentra-

tion xo(Ta} °^ oxv&en in tantalum, the mole fraction x of Li«,O in solution with Li is
read on the abscissa. The ordinate then gives values of the equilibrium diatomic oxygen

partial pressure p^ through equation (1).u2

In figure 2, the data of figure 1 are replotted as lines of constant temperature, with

XQ/Ta\ as the ordinate. Also shown in figure 2 are lines for niobium, rather than tanta-

lum, in contact with the alkali metal, in which case the ordinate is interpreted as

xO(Nb)'
Figure 2 illustrates the gettering capability of lithium for oxygen. For equilibrium

at 1800 K, the ratio of oxygen in tantalum to that in lithium is about 10"3. At 1300 K,

the ratio of oxygen in tantalum to that in lithium is about 10" .

In reference 9, some isolated theoretical and experimental values of the ratio of

oxygen in refractory metals to oxygen in alkali metals (distribution coefficient) are pre-

sented. For the system Ta - O - Li at 800° C (1073 K), a value of 3xlO~8 is calculated,

which is essentially in agreement with figure 2, while the experimental value estimated

from corrosion studies is listed as 0.1. If the theoretical value were actually encoun-

tered in practice, its observation would require the measurement of less than 3x10"

parts per million of oxygen by weight in tantalum. Such a task would, no doubt, prove

impossible. In fact, the theoretical and experimental values for the refractory-metal -

alkali-metal combinations in reference 9 are only in reasonable agreement when the dis-

tribution coefficient differs from unity by less than about 2 orders of magnitude and is

thus amenable to experimental determination.



Distribution of Oxygen Between Sodium and Tantalum

Figure 3, from reference 2, is a plot of (AF^/RT)^ against x at various temper-I 02

atures for Na«O in sodium. Lines of constant xQ/rpa\ (eq. (2)) are also plotted in fig-
ure 3. The lines of constant X/% for Ta - O - Na in figure 3 have an entirely differ-
ent trend than those for Ta - O - Li in figure 1. Also, for given XO/T » they are located
at far lower concentrations x of alkali metal oxide in alkali metal. The data are re-
plotted in figure 4 as lines of constant T with X / T ^ O X as the ordinate and xQ/j^a\ as the
abscissa. For equilibrium from 800 to 1600 K, the ratio of oxygen in tantalum to that in

2
sodium is about 10 . The gettering capability of sodium for the oxygen in tantalum is2
thus poorer than that of lithium by a factor of 10 to 10 . This result is consistent in
direction with the measured heats of formation of the compounds Na^O and LigO (ref. 8).

Vapor Composition

The foregoing analysis has been concerned only with the liquid lithium or sodium
phase and the solid tantalum or niobium phase. In many real situations, a gas phase of
appreciable volume may also be present. The elemental composition for the vapor will
generally differ from that for the solid phases. In the operation of systems such as heat
pipes, a fractional distillation of the components of the condensed phase will have to be
considered. In addition, if the vapor volume is very large relative to the volume of con-
densed phases, an accurate inventory of material in the system should include the species
in the gas phase.

Any species j in the vapor phase can be expressed in terms of oxygen, refractory
metal, and alkali metal atoms by a general formula typified for the Ta - O - Li system
by (X Li, Ta,, . Thus in Li0O, n.~/T . ^ = 1> nT^n r»\ = 2, andnO(j) nLi(j) nTa(j) 2 0(L12°) Li(Li20)
nTa(Li O) = ®' The Density °f any species j in the gas phase, by the ideal gas law, is

2t

Mj (4)
P* = Pi — ^ 'J j RT

where R is the universal gas constant in suitable units, and M is the molecular weight
of species j. The contribution of species j to the total oxygen density is

M

the contribution to the lithium density is

4
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^-

and the contribution to the tantalum density is

Mnpo
- -35 (7)

Mj

The total oxygen density is then

the total lithium density is

DLi=ZPLi(j

and the total tantalum density is

Li(j)
J

j

The sums are over all species j in the gas phase.
Combination of equations (5) to (10) yields

MO ^ Mp

RT t-~i ^J' J RT
j

nLi(j)PjRT L-~i u; J RT
j

and

Ta
Tla Y n

RT / > '°u; J RT
j

where the effective partial pressures of oxygen, lithium, and tantalum are



nO(j)pj' PLi = EnLi(j)Pj' and PTa = EnTa(j)pj' respectively. For P in
j j j

2 2torr (1 torr = 1.333x10 N/m ), D in grams per cubic centimeter, M in gram atomic
weights, and T in degrees Kelvin, R = 62 363 (torr)(cm3)/(mole)(K).

The evaluation of the set of equations (4) and (5) involves first the specification of x
and T. Figures 1 and 3 or the computations leading thereto furnish p0 . From refer-U2

ence 2, the following expression for the partial pressure of the alkali metal M(M = Li, Na)
above a liquid solution of the metal and its oxide M0O can be obtained:

£i

x) + Bx2 (14)

where P^m is the vapor pressure of pure liquid. Values of P™/;} for Li and Na are
available from reference 8.

With PJ.J and PQ known, the remaining pressures required are given by
2

PMO

where the equilibrium constants K, with the exception of Ky. Q, are from reference 8.
Lt

In computing KL- Q, the free-energy data for Li(g) and LioO(g) were from reference 10,
Lt

while those for On were from reference 11. For gaseous tantalum-bearing species, the

partial pressures in atmospheres are (from ref. 3)

and

= 1.35X106 JpT exp "U 513 (20)
Y U2 T



n
where PT Q and PT Q are in torr (1 torr - 1.333 N/m ) and pQ is in atmospheres

2* £

(1 a tm= 1.013X105 N/m2).
With the use of equations (4) to (20), pQ from figure 1, and B = 1. 835 (from (ref. 2),

ft

computations of Pj ., PO, and P~, were made for the system Ta - O - Li. Figure 5
shows log^Pp-and log.Q PLi against x for several temperatures. For all conditions
of T and x shown in figure 5, PQ was greater than P™ by a factor of 10 and, there-
fore, PTa is not shown.

Figure 6 shows log,Q PQ and logjQ Pxra against x at several temperatures for the
system Ta - O - Na, computed with the use of B = 2.0 (from ref. 2) and PQ from fig-

£

ure 2. For the conditions of T and x shown in figure 6, PQ was greater than PT& by
a factor of 10 or more. No data for the molecule NagCXg) appear in reference 10, and
computations have suggested that this molecule does not exist (ref. 12). The species
NagO(g) was, therefore, not included in the sums PQ and PNa-

Figures 2 and 5, or 4 and 6, suffice for determination of the distribution of total
alkali metal and oxygen between the condensed and gaseous phases. The total inventory
of tantalum, alkali metal, and oxygen must be specified, together with the gas volume
V . For instance, suppose a system contains NLi moles of lithium and NQ moles of
oxygen in all phases,

V _PT ,

N0 = xO(Li)Ns + -*fir + NTaxO(Ta)

where xQ(T,n is the atomic fraction of oxygen in solution, and N is the moles of solu
tion containing oxygen and lithium. Elimination of N between equations (21) and (22)s
gives

V P \ V P
NTax (23)

TaRT /I + x RT

where the atom fraction XO /L .X of oxygen in solution has been replaced by x, the equiva-
lent mole fraction of LigO in solution. For any specified NQ, NLi, NTa, V , and T, an
iteration involving figures 2 and 5, with the constraint of equation (23) imposed, yields x,
xO(Ta)' PLi' and PO' *" most practical cases, the following initial assumptions can be
made, which greatly simplify the solution and render an iteration unnecessary:



(24)

RT

For example, consider a tantalum-walled heat pipe operating at 1600 K, with 1. 02-
centimeter (0.4-in.) outer diameter and 0.102-centimeter (0.04-in.) wall. A tantalum
screen of 0.71-centimeter (0. 280-in.) outer diameter and 0.018-centimeter (0.007-in.)
thickness with 50-percent open volume is inside. The entire passage between screen and
tube, as well as the pores of the screen, is filled with lithium. The length of the pipe is
sufficient to permit the tantalum in the end caps to be neglected. Assume 1000 parts per
million of oxygen by weight in the system. , Then, per centimeter of length, Nn =

04 9 vJ
3. 28x10 gram atomic weight of O, NT . = 1.09x10 gram atomic weight of Li, Nrro =02 J-ii ia
2. 85x10 gram atomic weight of Ta, and V = 0. 81 cubic centimeters.

If the conditions specified in the inequalities (24) are assumed, equation (23) yields
x » 3.01xlO~2. From figure 2, xQ/Tax « 4.5xlO~6, and from figure 5, Pj^ « 740 torr,
and P~ ~ 3.4x10" torr. Conditions (24) are therefore satisfied. From equations (11)

s in
and (12), D^. = 5.5x10 gram per cubic centimeter, and DQ - 5. 5xlO~ grams per
cubic centimeter.

CONCLUDING REMARKS

The distribution of oxygen between liquid lithium and tantalum or niobium, and be-
tween liquid sodium and tantalum at high temperature was shown. The composition of
the gas phase above solutions of oxygen and alkali metal were presented. The plots were
used in an example concerning a tantalum heat pipe filled with lithium. The plots are
tentative because of uncertainties in the experimental data used in their construction.
The importance of liquid-metal cooling systems to nuclear-reactor technology requires
the use of such analyses as the one herein until better experimental data are obtained.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 7, 1972,
503-05.
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Figure 1. - Chemical potential diagram for Li-^O solution in equilibrium with tantalum containing dissolved
oxygen.
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