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ABSTRACT

Linear fluid equations are used to estimate wave train properties

of strong collisionless shocks. Fast shocks exhibit several dispersion

changes with increasing Mach number. For perpendicular propagation

into a finite-3 plasma, an ion cyclotron radius trailing wave train

2
exists only for Mp < 2. Oblique fast shocks have a leading ion

inertia wave train if M. < \ftA /M cos6/2 and a trailing electron
A *•* "•

inertia wave train if M. > ^wT/M cos6/2. If the downstream sound
/ \ T —

speed exceeds the flow speed, linear wave theory predicts a trailing

ion acoustic structure which probably resides within the magnetic

shock. For a turbulent shock model in which an effective electron-ion

"collision" frequency exceeds the lower hybrid frequency, ions decouple

from the magnetic field; the shock wave train now trails with electron

inertia and electron gyroradius lengths. Comparisons of this turbulent

model and observations on the earth's bow shock are made.



-3-

.1.0 Introduction

In the fluid theory of collisionless shocks the transition of

macroscopic plasma quantities from a steady upstream to downstream flow
«• . ~

state is described by a spatially oscillatory wave train. Oscillation

scale lengths are characterized by the natural plasma dispersion lengths,

familiar from the theory of linear wave propagation [Stringer, 1963].

Laminar solutions have been applied primarily to weak collisionless

shocks, partly because of analytical simplicity and partly because of

fundamental difficulties inherent in the fluid formulation [Sagdeev,

1966; Cavaliere and Englemann, 1967]. This paper considers extension

of fluid theory into the strong shock regime concentrating exclusively

on changes in the wave train dispersive structure. Such restriction

permits utilization of linear concepts to obtain qualitative and semi-

quantitative estimates of the shock structure.

Fluid shock theories have evolved on two distinct and clearly

separable levels: dissipative shocks in which Coulomb interactions

control the structure, and dispersive shocks in which collisionless

plasma properties dominate. For the present purpose the dissipative

limit is instructive since here the structure of strong shocks is

reasonably well understood. The transition between allowed Rankine-

Hugoniot states occurs over dissipative scale lengths such as the

resistive, viscous, or thermal diffusion lengths [Anderson, 1963]. Since

dissipation rates vary inversely with thickness, strong shocks, which

require intense overall randominzation, often possess a multiply

dissipative structure. For example, for fast perpendicular shocks in
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which the downstream sound speed exceeds the flow speed, a condition

required by the Rankine-Hugoniot relations for upstream Mach numbers

exceeding about two, the fluid-magnetic field resistive coupling fails

to provide the necessary dissipation. A thin viscous discontinuity or

subshock in which the fluid and magnetic field are decoupled and intense

viscous dissipation is generated develops within the broader resistive

structure [Marshall, 1955; see Fig. 1]. Similar dissipation discontinuities

occur in a variety of other fast and slow shock flows [Coroniti, 1970].

In the collisionless limit dissipation processes are assumed

sufficiently weak to permit wave dispersion domination of the shock

-Structure. .The consistent approximation of weak shocks reduces the

complications from nonlinear fluid behavior and allows some confidence

in the validity of wave train concepts based on the linear wave theory.

Weal; collisionless dissipation, such as results from micro-instabilities

and three wave decays [Sagdeev, 1966] is usually considered to be

driven by the wave train spatial gradients; the total dissipation is

accumulated over many wave train oscillations. Hence weak dispersive

shock models have generally avoided discontinuities within the wave

train structure.

Theoretical considerations of strong collisionless shocks have

previously stressed the development of fully turbulent flows in which

fluid effects are unimportant [Fishman et al., 1960; Camac et al., 1962;

Kennel 'and Sagdeev, 1967; Tidman, 1967]. Although dissipation again

primarily controls the structure, the nonlinear turbulent interactions

are so complicated that often no assurance of a complete shock transition

in the Rankine-Hugoniot sense is possible; i.e., the downstream state

remains unspecified. Therefore, given these difficulties with fully
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turbulent shocks, the possibility exists that fluid theory might prove

a useful guide to at least some aspects of strong shock structure.

Alternatively, strong turbulent dissipation has the tendency of making

the plasma behave like a fluid on macroscopic scale lengths; hence some

remnants of fluid structure might be expected for strong shocks.
t. • .

In analogy with multiply dissipative collisional shocks, strong

collisionless fluid shocks possibly contain dispersion discontinuities

or multiply dispersive wave trains. Strong shocks, however, require

strong dissipation. Since plasma turbulent dissipation should be tightly

coupled to wave train dispersion gradients, the separation between

dispersion and dissipation, which permits great analytical simplification

for weak shocks, is considerably more suspect for strong shocks. Recent

observations on the earth's collisionless bow. shock, however, provide

some encouragement for this approach. Fredricks et al. [1970] report

that the magnetic shock is often characterized by an electron inertia

length wave train-like structure; furthermore, strong electric field

wave turbulence, thought to provide considerable ion heating, is coupled

to the magnetic field gradients. Hence fluid dispersion remains even

in the presence of rapid turbulent dissipation. ,

The analysis of the nonlinear wave train structure including the

self-consistent turbulent dissipation is not yet feasible because of

both computational complexity and the absence of a complete theoretical

formulation for strong plasma turbulence (see Kellogg [1964] and

Bardotti et al. [1967] for some initial efforts). Therefore, the

philosophy of this paper is to continue utilization of linear fluid

arguments to obtain qualitative estimates on the nonlinear behavior of

strong collisionless shocks. In the vicinity of the shock Rankine-Hugoniot
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states, wave train amplitudes are small; here the two fluid theory of

linear waves can be used to predict dispersion scale lengths and the

sign of dispersion, i.e., whether the .wave train leads or trails. A

concomitant approach is to derive a linearized differential equation for

the wave train whose coefficients are then evaluated according to the

Rankine-Hugoniot relations. This method is somewhat less useful, however,

since a consistent set of fluid equations in differential form which are

valid over a wide range of dispersion scale lengths is difficult to

formulate. Although the nonlinear structure of the shock center is not

realized by these techniques, numerical computations, for restricted

shock parameters, have substantiated the general features of the wave

train structure predicted by linear theory [Cavaliere and Englemann, 1967],

Section 2.0 reviews the dispersion limitation to the steepening of

a finite amplitude compression pulse. Changes in the perpendicular

fast shock wave train arising from multiply dispersive wave propagation

are considered in terms of the ion acoustic subshock proposed by the

Texas group (Robson, 1969) and others (Paul, 1969).

Sections 3.0 and 4.0 discuss fast shock wave trains from several

points of view. In Section 3.0 an ion gyroradius length wave train is

derived for a finite-3 perpendicular shock. For Mach numbers less than

two, the predicted shock thickness becomes less than the ion gyroradius,

thus violating the small gyroradius expansion of the fluid equations;

a speculation on the structure of stronger shocks is presented. The

restriction of perpendicular propagation is relaxed in Section 4.0.

Oblique fast shocks exhibit a dispersion change from a leading ion

inertia to a trailing electron inertia wave train for upstream Alfven

Mach numbers exceeding /M /M cos6/2. Finally the ion acoustic subshock
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is reconsidered for oblique propagation; restrictions on its occurrence

in terras of propagation angle, plasma 3, and kinetic theory effects .

are discussed.

Section 5.0 attempts to simulate the possible effect of a strong

turbulent resistivity on the wave train dispersion. If the anomalous

collision frequency exceeds the lower hybrid frequency, ions are decoupled

from the magnetic field, thus removing ion inertia dispersion even for

oblique propagation. The strong shock magnetic structure is then

controlled by electron inertia and electron gyroradius dispersion, both

of which produce trailing wave trains.

Section 6.0 considers the observations on the earth's bow shock in

terms of the previous discussion, and concludes that turbulent resistive

decoupling of ions is probably required to explain the electron inertia

magnetic wave train. A speculation on the structure of slow shocks

predicted to occur in neutral sheet flows is presented.
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2.0 Steepening Limitation of Collisionless Shocks

Finite amplitude, long wavelength compression pulses steepen to form

shocks [Kantrowitz and Petschek, 1966]. The shock structure is determined

by whatever processes limit fluid gradients from becoming arbitrarily

large. In collisional shocks, steepening ceases when the pulse width

becomes comparable to dissipation scale lengths. In collisionless plasmas

steepening limitation arises from linear wave dispersion, which is reviewed

here following the arguments of Sagdeev [1966].

As the pulse propagates, nonlinear terms in the fluid equations

generate harmonics of the fundamental pulse wave frequency (o.O- or wave

number (k). If the harmonic-waves also satisfy the same non-dispersive

dispersion relation, phase speed w/k = constant, as the pulse fundamental

mode, the pulse propagates as an entity and steepening continues. Hence

whenever the small amplitude dispersion relation predicts non-dispersive

propagation over some range of to and k [as in Fig. 2 for o)/k =

(C. + CL ) and w/k = CL ], compression pulses steepen. As steepening

proceeds, however, harmonic modes with-wavelengths comparable to plasma

dispersion lengths are excited. Typical dispersion lengths are the ion

and electron inertial lengths, C/ou , the respective particles' gyro-

radii, R+ = C+/|n+| , and the particles Debye lengths, XD = c+/o)p .

The ± signs refer to ions and electrons, respectively; f^ = ± eB/M C

is the gyro-frequency, B is the magnetic field strength, C is the

2 I/9velocity of light; up = (4irNe /M+) is the specie plasma frequency,

N is the number density, e the electronic charge, M+ the specie mass;

C+ = (T~/M+) is the particle thermal speed, and T1 is the

temperature in energy units. Gaussian units are used throughout.
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To illustrate the dispersion limitation of steepening, consider the

particular example of the linear fast wave propagating perpendicular to

the. magnetic field. The dispersion relation when $~ = 87rNT~/B < 1 ,
• ' " 1 / "?

T /T < 1 , and u > |fi+ft | is approximately [Stringer, 1963]

7 7
2 CA C/

w A S
77 7 7 7

T" (1 +

2 1/7
and is sketched in Figs. 2a and 2b; C = (B /4irNM ) ' is the .Alfven

A +
- 1/2

speed and C = (T /M ) is the ion acoustic speed. Note that the

fast wave is multiply dispersive with both C/wp and Xn dispersion

lengths. From (2.1) the longest dispersion length attained by the

harmonic waves is C/Wp ; electron inertia decouples the fast wave from
. 6, ~ •

the magnetic field and decreases the phase speed below the fast hydro-

2 2 1 / 2
magnetic speed, w/k = (C. •«• CL ) ' = C .

*\ O I* • . .

(2.1)

Harmonic waves with kC/o^ ^ 1 , therefore , propagate slower than the

pulse and trail behind. Steepening limitation and the formation of a

steady state flow is now possible if the compression energy of steepening

is removed.by. wave energy convected out of the pulse. If thermal corrections

to (2.1) are neglected, 3" .« 1 , the steady pulse is the magnetic soliton

of thickness C/u [Adlam and Allen, 1958; Sagdeev, 1958; Gardner et al.,.

1958; Davis et al., 1958]. If the plasma is weakly dissipative, this soliton

is converted into a shock wave train [Sagdeev, 1966] consisting of trailing

dispersively propagating waves which, in the shock frame, phase stand in

the downstream flow. Since, by the steepening limitation arguments, the

wave train must convect energy away from the shock, the group velocity of

the trailing waves must be less than the phase velocity, 8w/9k < w/k .
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From (2.1) note that |~ % v — '—*£-•> — o — < r if 3* « 1 .
OK K ,, . ̂/-̂ - < ^ -v K(1 + k C /wp_ )

Asymptotically do\mstream the wave train amplitude, having been

weakly damped by dissipation, is sufficiently small that the waves

approximately obey the linear dispersion relation. Hence an estimate of

the wave train oscillation scale length, L , can be obtained by equating

the phase speed from (2.1) to the downstream flow speed IL predicted by

the Rankine-Hugoniot relations. (In Fig. 2a this criterion is satisfied

at the intersection of IL with the linear dispersion curve, provided,

of course, that 3co/3k < w/k at intersection.) Thermal corrections to

(2.1) for this estimate are small if IL > C or B_< 1 . Performing
*- O« £

the calculation yields

_ __ __ _ ____
2TT cop |M2 . , ,1/2

2 .

where the downstream Macli number M,, = U-/C,. . The spatial structure
*"2 2 F2

of the magnetic wave train is also sketched in Fig. 2a.

When kC/Wp » 1 , the fast wave increases its phase velocity to

the ion acoustic speed, Cg , and again propagates non-dispersively ,

w/k a Cc until Debye wavelengths are reached; for kXn > 1 the wave
o . . LJ

slows to the ion thermal speed, C . Therefore in the locally non-dispersive

region, co/k - Cc ,. further shock steepening can occur; indeed when
D

V < C , the shock must develop short scale structure at the Debye
2

length since the wave train phase standing condition can only be satisfied

by a trailing ion acoustic wave. Note from (2.1) that 3u/8k < w/k for

this wave. .On this basis the Texas group [Robson, 1969] has suggested

that a general feature of moderately strong collisionless fast shocks is

the presence of an ion acoustic subshock. Since the shortest length over
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which the magnetic field can change is C/wp » X , and also since the

ion acoustic wave is almost electrostatic [Formisano and Kennel, 1969],

the magnetic field is virtually unaffected by the ion acoustic wave train.

The subshock acts primarily to slow and heat the ions, and therefore can

be considered as the dispersion analogue of the dissipative viscous
t ' '

subshock.

The upstream flow conditions for which an ion acoustic subshock must

occur are determined by the perpendicular shock Rankine-Hugoniot relations.

Skipping the trivial algebra, Cc /U0 as a function of the upstream Mach
- - 22 2 2

number Mn and 3. = Cc /C. Cc = 2P/p , is given by
r. JL o. A, , o

c2

1
U 2 " M? + 2

4M - 1 -

L i a

27 Mp

2 ?
C +2)^ (1+

-

3 . ) _
(2.5)

Figure 3a Is a graph of CQ /U9 against M with' 3, as a parameter;
*2 * *'l 1

Fig. 3b sketches the critical Mach number, M . , for v/hich Cc . = IL
C L 3. t ^ o

against 3, . Shocks with M > 2.5 have ion acoustic subshocks for
1 hl

any upstream 3 . The Rankine-Hugoniot relations, Eq. (2.3), actually

yield an upper limit to the criteria U_ < C . The wave train will/ b2

generally have a nonlinear overshoot in the first oscillation [Sagdeev,

1966]; hence in the leading edge U < C^ will occur for lower Mach

numbers than given by (2.3). A sketch of an ion acoustic subshock

occurring in the leading edge of a C/wp magnetic wave train is included

in Fig. 2a.

The oscillation scale length for the ion acoustic wave train can be

estimated from the U? intersection with the linear dispersion curve.

Since for reasonably strong shocks B2 » 3, , the dispersion curve differs
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from that appropriate to upstream flow conditions; Figure 2b is a sketch

of (2.1) for $ > 1 . Setting U 2 = w2/k2 = C2 /(I •»- k2X.2 ) , the scale
2 . 2 S2 D-

length is

(2.4)

where M = U2/C

becomes

and X

5>i

/co
F

Substituting from (2.3) L

.
2lT

I, S$ Mr,ul Fl
+1 1

" (4M2 +1) (M2 +2
rl ^1

3(M2 -1)(M2 +2
» Fl Fl

)2 - [27̂ ^

)2 - [27MJ
r1

/(1+Bj)]

1

. (2.5)

In summary, this section has established the following points on

the utilization of linear fluid theory to determine wave train structure:

a) Hydromagnetic compression pulses steepen in regions of non- . -

dispersive linear wave propagation. A

b) Steepening is limited at pulse thicknesses comparable to dispersion

scale lengths. Wave trains are formed by dispersively propagating waves

which phase stand in the downstream flow and have 8w/8k < w/k , or in

the upstream flow with 8o)/9k > w/k .

c) Wave train scale lengths can be estimated by matching linear wave

phase speeds to flow speeds at the asymptotic Rankine-Hugoniot states.

Linear dispersion curves appropriate to upstream or downstream Rankine-

Hugoniot conditions must be used for these estimates.

c) Since the linear dispersion relation is multiply dispersive,

perpendicular fast shocks possess a magnetic wave train with G/OJ lengths,

and for Mp > M .an ion acoustic subshock at Debye lengths. Because
r - t-i i L.
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of the wave train nonlinear overshoot, the Rankine-Iiugoniot relations

provide an upper limit on H . . Since it interacts primarily with

ions leaving the magnetic field unaffected, the ion acoustic subshock is

the dispersion analogue of the viscous subshock.
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3.0 The Perpendicular Ion Cyclotron Radius Wave Train

In the previous section the discussion of the perpendicular fast

shock was restricted to consideration of only electron inertia and Debye

length dispersion. As this shock steepens in a^fini te-3 plasma, however,

the longest dispersion length encountered is the ion cyclotron radius

(ICR). In Section 3.1 an ICR wave train differential equation is derived

for the linear perturbed plasma response about the asymptotic stationary

flows. For moderate Hach numbers the shock steepens to lengths shorter

than R+ thus passing beyond the validity of the fluid analysis. Kinetic

theory effects and steepening to shorter scale lengths are discussed.

^•* Derivation o_f_the ICR Wave Train Differential Equation

To investigate the perpendicular ICR fast shock wave train, the

analysis employs the Chew-Goldberger-Low hydromagnetic equations with

first order ICR corrections as derived by MacMahon [1965]. (A similar

approach has been used by Kinsinger and Auer, 1969; Goldberg, 1970.)

The range of validity for these equations requires 3 » M /M , assuring

R+ » C/Wp , T*/T~ » (M /M+)2 so that R+ » R and fi+/wp « 1 or
- . - . +

R » Xn , thus restricting consideration to quasi-neutral plasmas. In
+

addition, only shock scale lengths- L » R can be treated, consistent

with the first order ICR expansion of the fluid equatioiis. The wave

train structure is investigated only about the upstream and downstream

stationary Rankine-Hugoniot flows, thus permitting a linearized analysis.

This method examines the stability at the stationary points of the

nonlinear-wave train differential equation; shock transition requires

instability upstream and stability downstream.
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The coordinate system in the steady shock frame, used throughout,

this paper, is specified by shock propagation in the X-direction, along

which plasma quantities vary, with the magnetic field, B , in the

2-direction. The perturbed time independent fluid equations are

B 6 B
pUSU + 6 P (1J + -V - = y S_2£ , (3.1)

XX 4TT H dX ^ J

d 6V
pU 6Vy + 6 xy = T1 ~dTL (5<2)

6P?> pC«2 - 1 1

pU' 6U + 'U(6P L
( 1 ) * 6P^) + P±iJ 6U + U -~- +

U B 6B

. x + j-J: = ;iU ij-H. (3.3)

U 6B + B 6U = 0 (3,4)
- Z Z

6(U -4—+ q'!(1) - x) = 0 (3.5)

m
6PC1) = 6Pj

(1) - -4 -- 3-21 (3.6)xx A 2fi dx . • .

(3l '
_ _

xy 2fl dx

Following the notation of MacMahon [1965], superscripts (0) and (1)

denote zero and first order quantities, respectively, in the small ICR

expansion. ^ (||) denotes perpendicular (parallel) to the magnetic

field. 6 denotes a perturbed variable; the unperturbed quantities are

to be evaluated about either the upstream, subscript (1), or downstream,
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subscript (2) , flow conditions. U is the flow velocity in the X-direction;

V is the fluid velocity in the transverse Y-direction. P , appropriately.

sub- and super-scripted, denotes the pressure. 6q * * and Sq^*" . * x

are the first order ICR heat flows along X , and are retained since they

contribute to the same order as the pressure tensor ICR terms in the
e,

energy equation (3.3); zero order heat flow has been neglected. Effective

, and y = •=• ri + £ are included to
O

viscosity coefficients, r\ ,

simulate weak collisional or turbulent dissipation.

Neglecting products of ICR and viscosity terms, the above equations

reduce to a wave train differential equation for 6U

! R 2 d2 6U
4 + d~x2

yU . d__6_U~ ~

7
IT - C

- 61! = 0
Vp

(3.9)

R = (P ^ ^ is the ion cyclotron radius, and

C = [C + (2PJ ;VP) ] is the fast 'hydromagnetic speed. Solutions

.of (3.9) in the form exp(Xx) are

X = -yu + i
3 (0)+ 2 - R
2" .*> +

- u^ „ 2. -

• f ^^/P-

1/2

(3.10)

2
where terms proportional to y have been neglected. About the upstream

flow U exceeds Cp by the shock evolutionary conditions [Kantrowitz

and Petschek, 1966]; (3.10) then yields SU exponentially increasing

(corresponding to U slowing down) with a scale length

p<.uj-<- -

3 •*•!
4

P1CF. _

i/ 1

Mpl

(3.11)

where Mn = U,/C.
Fl J

About the downstream f low, IL < C , and (3.10)
fc r n
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yields a damped trailing ICR wave train, as predicted by MacMaaon [1968].

and Fredricks and Kennel [1968],

The above wave train analysis is valid as long as the small ICR

expansion of the Chew-Goldberger-Low fluid equations is preserved. For

2
weak shocks, M_ - 1 « 1 , (3.11) predicts L » R ; hence the ICR

Fl - *•
dispersive wave train should resolve the shock structure. If

Mj! - 1 > f (P/P^F •) < 1 > L < R+ and the *ove fluid analysis

breaks down.

3.2 .Discussion

A qualitative understanding of the wave train structure for stronger

shocks is obtainable by considering the linear dispersion relation for

the perpendicular magnetosonic wave. A collisionless kinetic Vlasov

treatment of.the full electromagnetic perpendicular dispersion.relation

has been performed by Fredricks [1968]; the result is summarized in Fig. 4.

The kinetic theory predicts electromagnetic cut-offs (k -»• 0) and electro- .

static resonances (k.-> °°) at harmonics of the ion cyclotron frequency;

also note the approximate resonance at the lower hybrid frequency. The

envelopes along the maximum group velocity points of each dispersion curve

are lines given by tu/k = Cp and u/k = Cg .

Now consider, as in Section 2.0, the predictions of the fast shock

wave train structure implied by Fig. 4. First note that no upstream wave

trains are possible since, at the intersections of LL with the dispersion

curves, 3w/3k = 0 , and energy would be convected into, not out of, the

shock. . The downstream flow speed intersects the curves at all cyclotron

harmonics, and here the group velocity condition for trailing wave trains

is satisfied. Hence, naively, the kinetic theory predicts a wave train



with a multiplicity of discrete oscillation lengths corresponding to each

harmonic of ft .

Several difficulties with the above arguments are apparent. First,

a finite Coulomb or anomalous collision frequency, which must be present-

in the downstream shock flow, would-tend to destroy to fine scale ion

harmonic structure; hence collisionless kinetic theory probably poorly

approximates the fluid behavior of the plasma. Second, consider a pulse

with thickness of order R or less which is undergoing steepening along

the approximately non-dispersive part, w/k = C , of the dispersion curves

in Fig. 4. Since the ions traverse the pulse width only once (U > C ),

the nonlinearly excited waves associated with steepening do not sense the .

full ion gyro-coupling to the magnetic field. To these waves the ion

orbits appear almost as straight lines; hence ion harmonic dispersive

structure given by the kinetic theory for infinite plane waves cannot

effectively limit the steepening of narrow compression pulses. The waves

generated by steepening should approximately obey the two fluid dispersion

relation of Stringer [1963] and Formisano and Kennel [1969], and remain

non-dispersive until electron inertia slows down the fast wave at frequencies

near the lower hybrid. From Section 2.0, the shock structure is a trailing

G/OJ wave train. Note that the maximum group velocity envelopes including

the dispersion of electron inertia at the lower hybrid frequency in Fig. 4 .

approximates the two fluid dispersion curves in Figs. 2a and 2b.

In summary, for weak perpendicular fast shocks M_ -1 « j ($£ /P^p ) '

L » R , and the ICR trailing wave train derived from the Chew-Goldberger-

Low hydromagnetic equations with first order ICR corrections probably

describes the shock structure reasonably well. For stronger shocks, ICR

dispersion fails to limit steepening; steepening continues until a C/u)p
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or possibly X wave train is "formed. Finally, even though only

perpendicular propagation has been considered, the ineffectiveness or

weakness of ICR dispersion to limit strong fast shock steepening

probably also holds for oblique strong shocks. Hence in the following

sections ICR dispersion will be neglected.
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^• ̂  Oblique Fast^Shocks

If the restriction of perpendicular propagation is relaxed, ion

inertia dispersion becomes competitive with electron inertia for angles

6 > ir/2 - /M /M . The Mach number dependence of this transition is

discussed in Section 4.1 using the linear dispersion relation. Section

4.2 reconsiders the ion acoustic subshock for oblique propagation;

high-B and kinetic theory effects are also discussed.

4.1 Oblique Magnetic Fast Shocks

Since the wave train differential equation for the whistler shock

has been extensively analyzed by several authors [see Sagdeev, 1966;

Cavalierc and Englemann, 1967], the two fluid linear whistler dispersion

relation will be employed here to determine the wave train structure.

The strong shock limit is stressed.

If (ft |/to « 1 , the phase speed of the fast wave is approximately

given by [Stringer, 1963; Formisano and Kennel, 1969],

, 2,,2 CA cos26 C. Cc
2 sin 6

k C A A S
2 f. ,2.2, 2 ,2 • 2_2to (1 + k C /to ) 1 + k C /

? 2 ?* *• * i *• % "

'"p 1 + k X
D

1 + .. . ,
- 2 2L T a + k2x;. ) J (4.1)

where 6' is the angle between the flow velocity and the magnetic field

direction. Figure 5 is a sketch of u/k against k ; intersections of

to/k with possible upstream, IL and U' , and downstream, IL and U' ,
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flow speeds are included. In order to clearly separate magnetic and
+

temperature effects in (4.1), 3 is taken somewhat less than unity so

. that in the range k = 0 to kX. < 1 , the first two terms in (4.1)

dominate the dispersion relation. Note that since for strong shocks ICR

dispersion was neglected in (4.1), 3 is not restricted to be
i »>

i < M /M as in the calculations of Cavaliere and Englemann [1967].

If 6 > TT/2 - v$i /M , ion inertia dispersion, C/ojp , in the first
'. •+

terra of (4.1) exceeds that of electron inertia and increases the fast

wave phase speed above the hydromagnetic speed, Cp . At the first

intersection of U. with the dispersion curve, the whistler stands in

the upstream flow and forms. a leading wave train. Note from (4.1) that

3o)/9k > "u/k if kC/o)p « 1 ; hence wave energy propagates upstream

out of the shock. The oscillation length, found by setting w/k = \J

neglecting C/wp terms , and solving (4.1) for k , is given by

Cos9.. ( 4 2 )
2" (.M^-D1/2 V '

where M = U /C , the Alfveh Mach number. The magnetic, wave train
Al l V

is also sketched in Fig. 5.

From (5.1) the maximum whistler phase velocity is w/k = (C cos6)/2 ,
3.

• 2 1/2
attained when kC/w = 1 ; C = (B /41TNM ) . Therefore the maximum

r a •"

upstream Alfven Mach number for which the whistler forms a leading wave

train is M. = ^M~7W (cos6 /2) ; the scale length is L ^ 2ir (C/wp ) .
A.. r ~ J. • *

For U. > (C cos01)/2 , the only wave train possible is at the
1 . ax l

interaction of the downstream flow speed. (The second U, intersection

is disallowed since, 9o)/3k < w/k , energy would be- blown back into the

shock.) If U > Cc , which probably restricts M < 2 to 3 or
2 S2 Al
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cos6, < (2 to 3) x 2*̂ T~/M , tlie linear dispersion relation predicts a
i *~ > .

trailing magnetic wave train. The scale length, obtained by solving (4.1)

for k and taking the .root of the bi-quadratic for U < (C cos07)/2 ,

is approximately

HT~ MA
L /M A2 ' Tfl_ ^ / _ ___£_ __ " f A
2TT / M+ COS02 Up l •

or L $ Tr(C/Up ) .

For stronger shocks, U > (Cm cosG )/2 > (2 to 3) x C. , • IL < Cc .
JL d* J. A - t. ^

Furthermore, even if U, < (C cos6 )/2 so that a C/Wp. wave train .
1 al 1 P

+

leads, U < Cc can occur. In previous magnetic wave train analysis
• 62

crossing of the downstream sonic point, corresponds to what has been called

the breaking of the wave train [Cavaliere and Bnglernann, 1967; see also

Section 5.0]. Note that the sonic point can occur locally in the wave

train and need not always occur at the asymptotic downstream flow; nonlinear

overshoots can also give U = Cg locally. A collisional or turbulent ion

viscosity, or the ion acoustic subshock wave train is required for a

complete shock transition. However, since reduction of U to CL must

be accomplished by magnetic and density compression, the magnetic shock

structure should be approximately that predicted by wave trains. For the

C/o)p wave train, many leading oscillations are probably necessary for

U < Cc to occur locally in the shock (see Fig. 5). In the trailing wave
o

train U probably decreases through C« in the leading edge (see Fig. 2).

The initial magnetic gradient should possess a C/u>p characteristic

length [Sagdeev, 1966]. Since the ions are decoupled from the magnetic

field at the sonic point, whether or not a complete or even a partial

wave train exits downstream is inclear; further analytical or numerical

.work is necessary to resolve this difficulty.
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In summary, for low Mach" numbers' M < *̂ T"/M" cos8../2 , the shock
/> t T — JL

structure is a leading ion inertia wave train. For stronger shocks, a

dispersion change to a shorter scale length occurs; the wave train now

trails and has an electron inertia length. If U = C,, anywhere in the

shock flow, a dissipation (viscous subshock) or dispersion (ion acoustic

subshock) discontinuity results; structure .of magnetic wave trains for

U < C~ is unclear.

4.2 Oblique Ion Acoustic Subshock^

Whether or not an ion acoustic subshock occurs for oblique shock

..flows depends on the downstream propagation angle 6? and the plasma 3 .

The fast shock evolutionary conditions require that U0 > CT = C cos9_ ,
2 ~ 12 A2 2

the intermediate speed [Kantrowitz and Petschek, 1966]; hence for .6 < 1 ,

U9 < C results only if 0 > cos (C /C ) . For moderately strong .
~ o s) «u o - A r ,

shocks, Mn > 2 to 3 , however, 69 probably exceeds unity so that
1

U0 < Cc occurs at all propagation angles.1 S2 •

An additional constraint on the appearance of an ion acoustic subshock

2is that 3, or 32 < (M + /M )(cos 0/2) , since at higher pressures the

maximum whistler phase speed w/k = C cosG/2 < Cc ; if 6 = ir/2 , thisa 'O

constraint becomes 3 < Al /M . Here the dispersion relation (4.1) no

longer describes the fast vs'ave but becomes the intermediate wa.ve dispersion

2 • '
relation if the last two terms are dropped; for p > (M+/M_)(cos 9/2) ,

the fast mode is approximately an isotropic ion acoustic wave and remains

non-dispersive up to kXf ^ 1 [Formisano and Kennel, 1969]. The ion

acoustic wave train is now just the electrostatic shock derived by Moiseev

and Sagdeev [1963] in the 3 •*• °° limit.

A further consideration on the occurrence of the ion acoustic subshock
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is the relation of IL to the ion thermal speed, C . Figure 6 "for

- t o - - > -|-Q j cosO and Fig. 7-for- j a _ j c o s Q - > o>p are sketches of the —

dispersion curves for the three quasi-hydromagnetic waves which propagate

below the electron plasma frequency [Stringer, 1963]; the curves are

drawn for cosQ < C^/C. , B~ < 1 , and C > CT . If £ > 1 , Figs. 6
o A. - • Jl

*• • .
and 7 are modified by moving the sonic line C^ closer to the C,. line,

thus reducing the region of C/u dominance in the dispersion relation.

Note that in the .vicinity of kA "V 1 , if w > Jfi (cosO , the fast

wave first speeds up to CQ and then slows to C . If JQ |cos9 > u) ,
C 5 " * * • * , i

the intermediate wave, 'which is an isotropic sound wave for kC/to » 1
• . •*•

and kA « 1 , slows to C and then intersects the fast mode near

to r^ |fi |-cos6 ; the fast wave passes non-dispersively through C<- and then

speeds up to C+ .

Two points merit discussion. First, for the fast shock to steepen

to an ion acoustic subshock, the linear fast wave dispersion relation

must possess a non-dispersive region with w/k - GS . Therefore from

1/2 -
Fig. 6, only shocks in plasmas with uu > [P. (cos 6 or Wp > |fl+ft j

if 6 = ir/2 have ion acoustic subshocks. Second, the downstream flow

speed for Mp » 1 is constrained by the Rankine-Hugoniot relations to

be at least ~. -^ U, , but the temperature jump across the shock has T _ - » • « >

for M„ .'•> °° [Anderson, 1963]; .hence [) ^ C+ is possible for strong

shocks. The fluid dispersion curves in Figs. 2, 6, and 7, are non-dispersive

for w/k = C+ , and further shock steepening might be thought possible.

However, the kinetic theory predicts heavy ion Landau damping when w/k = C+

[Stix, 1962], so that ivhether the waves with w/k ^ C+ generated by

nonlinear steepening can propagate is extremely doubtful. Furthermore

the ion acoustic wave is also ion Landau damped unless T /T » 1 .

Therefore the ion acoustic subshock is likely to occur only if
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con > r | Q |cosQ ' or |fi fi'-j-1/2- , r ~ U_ » C and T'/T* » i . Strong
f — ' . + — O £. T"

•f

shock flows violating these criteria probably have fully turbulent

structures, although possibly in conjunction with a magnetic wave train.

4.3 Discussion . .
t

The fast shock wave train structure exhibits 'three dispersion changes

or discontinuities with increasing shock strength. For 6 = • ir/2 and

2 3 f01+ 2MP -1 > j (P^ ^ /PCp ) ICR dispersion ceases to inhibit shock steepening,

and short scale length C/top or A wave trains develop; if 6 r

and 3 > 1 so that R > C/ojp , a magnetic ion inertia wave train is

also possible. The whistler magnetic wave train changes from leading with

C/w to a trailing with C/wp lengths when M. > y^T7~M cos8/2 .

Finally for Mr > 2 to 3 , U0 < Cc , and the ion acoustic subshock
r £ &y

proposed by the Texas group is possible if Cg > L/9 » C+ , u>p > | f2_|cos9

or |fi ft | and T /T » 1 . . ,
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5.0 Strong Turbulence Modification of. Wave Train Dispersion

In plasmas where the Coulomb collision mean free path greatly exceeds

even the longest dispersion scale lengths, collisionless plasma turbulence

must provide the necessary shock dissipation. Collisionless turbulence

often requires strong gradients, either in Cartesian or velocity space,

as sources of unstable.free energy [Sagdeev and Galeev, 1969]. In addition

to whatever background turbulence exists in the flow, wave train gradients,

especially in strong shocks, should generate intense turbulent dissipation.

Wave dispersion properties, and hence wave train scale lengths, however,

may be modified by strong turbulence. In this section this dissipation

modification is illustrated, albeit not self-consistently, by a model

shock flow in which an effective or turbulent electron-ion collision

1/?
frequency, V _ , exceeds the lower hybrid frequency fi. „ = |'fi fi | .

C 3T IT ' " • . Ijfi * ** -

Note that the usual two fluid equations require v ff « fi. [see Cavaliere

and Englemann, 1967]. Since ions are now effectively decoupled from the

magnetic field by collisions, ion inertia and ICR dispersion will not

limit shock steepening or form wave trains; hence the shock wave train

structure should be controlled by electron dispersion.

To obtain further insight on the collisional suppression of ion

dispersion, consider the cold plasma oblique fast shock wave train analysis

of Cavaliere and Englemann [1967]. The ratio of the growth or dissipative

length, L , of the leading ion inertia wave train to the dispersion
c* .

scale length L was found to be
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L (U/V _.) [cos 2 0/M. 2 (M.^- l ) ] CM /M ) fi... cos8 /M /M
_s= eff A A * ~ - _t!i_ _JL_L_ rr n
i 7 1 / 7 \ ) 7 1 / 7 " • ' '

[cos6/(MA - l) i / Z] (C/Up ) eff M^M^-l)1^
•j-

From the discussion of Section 4.1, the maximum value of (cos0 •M~/vl ) / M .

for ion inertia dispersion to dominate the wave train is 2; hence the

growth length becomes shorter than the dispersion length if v ff/tt, u ~e r x Ljii
7 1 / 7 . 7

2/(M. -1) ' . Therefore for sufficiently strong shocks, M. -1 » 1 ,
f\ . i\

and v _ ~ fi ion 5.nertia scale length effects are suppressed by

collisions, and the wave train structure must be controlled by electron

dispersion. Weak shocks under the above conditions are probably adequately

described by hydromagnetics. ICR dispersion is eliminated if v -_ > ft

since, by the usual arguments leading to the MHD equations, the ion

pressure tensor will be approximately isotropic.

The equations describing the strong shock electron, dispersion

structure are the exact conservation relations for the fluid mass,

momentum, and energy, whicii, if viscosity is neglected, do not involve

the dissipation directly, and Ohm's law, which describes the interaction

of the fluid and magnetic field including dissipation. In two fluid

theory Ohm's law correct to order M-/M can be written

+
M_ - (V- \O = e

dV M VM V _-J+ - eft—- M -j- - £ V'P ^— (5.2)+ dt N ~ Ne v J

±
_V is the fluid velocity, _V the specific particle velocity,

J = NeQ/ -V"). the current density, and E^ the electric field.

To formulate Ohm's law consistent with v > fi , Eq. (S.2) must

be ordered. Since electrons, because of their small inertia, carry the

predominant part of the current, J_ ̂  -Ne _V . If the current carrying
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_ _- - - - .£• '4 .

electron velocity V_ is o£- order /M_ f_/M_ V_ and .E ^ V B/C , the
_>-.

terms in (5.2) can be ordered as ..

1 1 1 Veff
T = : * TTT ' ?TT ' o " . 15 . 3 jTTT ?TT ' oLH V * "LH

or

+ +- _ vgff. T (5.4)

where T is the time required to go a scale length T ̂  L/U . On

electron inertia scale lengths. T ̂  C/o>p U 'v M /ft ; hence ft T ̂  r̂ T/M"" « 1
' * f f\ l_ll 1 "" '•* T

Therefore from (5.4) and (5.2) consistency requires that over short

electron dispersion lengths

NM ~ + V-P+ ~ 0 . (5.5)
+ dt

and

dM ~ (V -V ) = e
VXB M V ...

- eff-
(5.6) '

Since the mass velocity V_ ̂ V » (5-5) predicts that the ion motion

is decoupled from the magnetic field., i.e., the ions obey hydrodynamics.

Furthermore (5.5) coupled with the momentum equation implies that

- V-P" ~ 0 (5.7)

or that on C/w scale lengths, current forces are balanced primarily

by electron pressure gradients. In (5.6), which replaces the full Ohm's

law, the only scale length which appears is electron inertia. The

ordering condition ft., .L/U < 1 , however, requires that the flow scale
L*rl

-1/2 ' -
length, L ̂  U/fi. .. ̂  C/w ^ 3 ' R ; hence if 3 ^ 1 , electron

Lrl f — —

cyclotron radius (ECR) corrections must be included in the wave train

analysis-.̂
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The wave -train will again be investigated by considering only the

linear response about the asymptotic stationary flow. To further simplify

the calculation, the ion pressure tensor is taken isotropic, and the

electron parallel and perpendicular pressures are assumed equal, both

probably reasonable due to the high collision frequency; ECR corrections

to P are retained, however. In addition, only very oblique fast shocks

are treated so that cos9 - B /B « 1 , although 6 is not restricted in
Jv

the range ~- - v$1_/M '< 6 < o- ; consequently U « CT = C cosG also holds.

With these approximations the perturbed fluid equations neglecting

viscosity and zero order heat flow are

m B 6 B
pU .6U + SP^J + -54F-^ =0 (5.8)

m B 6 B
pU 6V +' 6PUJ - -£—;—£• =0 . (5.9)^ ... y . xy 47T ^ • j

, ' B 6 B y
,PU 6VZ. + 6P^

J - -̂ —-1 =0 . (5.10)

pU[U6U + V- 6V ] + (U6P + P 6U) + U5P + P <5U
z z 2 xx xx

U B 6B .

-x , 0 (5.11)

2 d26B 2 doB
^_ u - =i- + ~- v r- —p-^ = U6B + B 6U - B 6V (5.12)
2 ,2 2 eff dx z z x z v • J

up dx wp

2 d26B 2 d6B

V u -7/ + -T \f.t -d/ - u6By - Bx6vy ^-15^Up dx up
 }

U.B = U B - [B 2(B -B ) ] /4TrpU (5.14)
A Z - Z X £ 2 1
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B d<$V '

6p(l)
°Pxy

B B 2 d6Vx z

1 ^4 "4 ̂ f CS.18)l N M « ^ B d x ^

dSB
6V ~ = -— __ ___ —

y 47rNe dx

, C d<SBy6v - - — - __ __ f~z 4TTNe dx

U" = U ; SU~ = 6U . . (5.21)
. '* • '

In the above equations V = B = 0 at the Rankine-Hugoniot stationary

points was used.

Equations (5.8) through (5.21) are straightforwardly reduced to a

pair of wave train differential equations for SB and 6B except

for the elimination of <5u from (5.18). Since (5.18) is an ECR term,

presumed small, and by the assumption of U » Cj , a sufficient

approximation, in (5.18) only, is to take <$U ~ - (U/B^)- 6B., . The

results are

(B//4TTP) 2

4 ax2" u 2 _ c s
2

. (U2-C 2) (U2-C2

- ^ - . 6 8 (5>22)

(U -C ') Z
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4
d26B

dx

,2 v __ ~d6B

2
L°P

_
U dx

U2 - C 2
_ L

2 ~ y (5.23)

where R = P1 ^~/2|fl | MM is the electron cyclotron radius: C and

C~. are the fast and slow hydromagnetic speeds defined by

F

2
SI.

c 2 + c 2
_ CA CS +

"• . 2

CA * CS
2

\2

- cA
2 cc

2 cos2e
A S

1/2

(5.24)

Note that 5B and 6B are decoupled, a consequence of the very

oblique approximation. -

Solutions of (5.22) describe an exponential rise in B at the
z

leading edge of the shock and a trailing C/cop - R wave train, each

with a scale length given approximately by .

L % —

c2

w2 *

5
3

(P(0)-/P)(BZ
2/B2) ,

U 2 - C /

K (Bz
2/47ip) ^ 2

_

[(C |M -
(5.25)

S

v;here L is to be evaluated at the upstream or downstream flow conditions,

respectively. The damping length for the trailing wave train is

. 2

i *\j

c2

2

LD

| (P ( 0 )"/P)(B7
2 /B2) + (B 2/4Trp) _^ z z p ^

2 2 -
U - C*o .

1/2

O 9 (5.26)

evaluated for downstream conditions. Note that the familiar wave train

"breaking" occurs when U < CL since the pseudo-potential term on the
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right hand side of (5.22) chtinges sign and L becomes imaginary. Either a

turbulent viscosity or a Debye length ion acoustic subshock is required to

further describe the downstream shock structure. Equation (5.23) does riot

yield a complete shock transition for B , and probably just represents the

damped rotational intermediate wave which is decoupled from the fast wave when

ion inertia dispersion is neglected. Hence the magnetic shock should be

primarily compressive.

. . The above analysis is undoubtedly a poor approximation to the ion

dynamics since changes of the ion fluid on either long, C/wp > R > or

very short, X. , scale lengths are not included. The shock structure

observed in the magnetic field arid electron fluid, however, should be

reasonably well described by the C/w- - R trailing wave train up to,

and maybe .also beyond, the sonic point.

In summary, if strong plasma turbulence creates an effective collision
i

frequency v __ > 12... , only electrons couple to the magnetic field ande r r L/H •

provide magnetic dispersion. Strong fast shocks have a C/wp - R_

trailing.magnetic wave train. Although the above calculation was

restricted to very oblique fast shocks, the qualitative features of the

wave train structure are probably valid for a larger range of propagation

angles. Furthermore note that M > • /-Tf/fT .cosO/2 was not required to

obtain a C/to - RM scale length wave train.



6.0 Discussion

6.1 Summary .

By use of essentially linear arguments the- following estimates on

the wave train structure of :f as.t shocks have been derived: ' •

a) Weak perpendicular finite-3 shocks, M -1 < j (P^ /pCp ) < 1

have a trailing R wave train. For stronger shocks, probably including

oblique propagation, ICR dispersion does not limit steepening; wave

trains for both 3 < 1 and 3 > 1 will not involve R scale lengths.

b) Oblique magnetic whistler shocks have leading ion inertia wave

trains if M < /M /M cos6../2 and trailing electron inertia wave

trains if MA > v^T7"M~ cos8./2A. • . * - I

c) When M > 2 to 3 , the Debye length trailing ion acoustic
1 2siibshock proposed by the Texas group occurs if 3 < (M /M ) (cos 6/2) and

| cos 9 , or for 0 = ir/2 , 3 < /M~/W- and wp > fi ,

C > U » C , and T~/T » 1 . As in its dissipation analogue, the
b2 Z +

viscous subshock, the -ion acoustic subshock decouples the fluid from the

magnetic field and acts primarily to heat the ions without affecting the

magnetic shock structure.

d) Strong turbulent dissipation modifies plasma dispersion

characteristics. For v _,. > Q ,. and strong fast shocks, ions are

decoupled from the magnetic field and magnetic wave trains trail with

C/ - R scale lengths. Here numerical computations [Kellogg, 1964;

Bardotti, et a l . , 1966] are necessary to treat the turbulence generated

by wave train gradients self-consistently . .
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The fluid arguments suggesting that strong shocks might have short

scale length wave trains are probably somewhat oversimplified. In uniform'

plasmas short wavelength oblique linear waves" are often heavily Landau

or cyclotron damped. Therefore in order for a shock to steepen into a

short dispersion length wave train, the nonlinear excitation or growth

rate of these modes must exceed the linear, and possibly nonlinear, damping

rates. Failure to do so may constitute a criterion for the development

of a fully turbulent strong shock. It should be noted that Debye length

wave trains for an electrostatic ion acoustic shock have been observed

in the laboratory [Taylor, et al., 1970]. Furthermore short C/u

magnetic scale lengths have been observed.in the earth's bow shock.

6'2 The Earth's Bow Shock

Although laminar low Mach number shocks have been studied in the

laboratory for many years [Paul, et al., 1965; Kurtmullaev, et al., 1966;

Robeson, et al., 1968], high Mach number, high-3 collisionless shocks are

presently accessible only in space plasmas. The bow shock formed by the

interaction of the super-ismgnetosonic solar wind with the earth's

magnetosphere has recently been probed by the high telemetry rate satellite

OGO-5 [Fredricks, et al., 1968]. Although highly variable, the shocks

examined by Fredricks, et al . , [1970] are often characterized by: (see

Fig. 8) .

1. A magnetic field precursor with scale lengths ^ C/Wp ;

2. a large magnetic jump followed by several oscillations both

with gradients ^ C/Wp ;

3. .large amplitude electrostatic turbulence with frequencies ^ ojp
+

which maximize at the C/up gradients in the magnetic field and are
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thought to be generated by either the ion acoustic or Bunemann current

instabilities;

4. rapid proton thermalization occurring in regions where the

electrostatic wave amplitudes maximize.

Theoretically, the most puzzling aspect of these shock observations

is what appears to be a C/OL trailing wave train in the magnetic field.

For typical solar wind flow conditions, M ^ 4-10 , $~ 'u 1 , Q J TT/2 ,

the criteria for a C/wp dispersion discontinuity discussed in Sections

4.1 (M > AI /M cosG/2) and 3.1 (6 = ir/2 , M ~ 1.5) are generally
f\ * ™~ i"

not satisfied, although exceptions almost certainly occur.- Hence on the

basis of phase standing arguments ion inertia should dominate the longest

scale length wave train.

A possible explanation of the C/UL scale length is the turbulent

dissipation modification of plasma dispersion characteristics. For the

current driven electrostatic turbulence observed in the shock precursor

and wave train structure, Sagdeev [1965] has estimated the effective .

collision frequency as v __ ~ cop /10 . In the bow shock B *\< 10 gauss

and N ̂  10 cm , OL /10ft,.. ̂  10 ; hence, by the arguments of Section 5.0,

the ions should be decoupled from the magnetic field, and the magnetic

wave train should be characterized by the electron dispersion lengths

C/w - R . Ion turbulent decoupling might commence in the precursor,

thus permitting a C/ov, - R wave train in the center of the shock, or

it might be a feature of the solar wind. Recently Forsland [1970] has

investigated electron heat flow "current" instabilities in the solar wind

as a means of turbulently heating ions. If the dissipation rate from

these instabilities is also of order up /10., the ion fluid behaves hydro-

dynamically in the solar wind; the electron fluid then carries the magnetic

field and̂  provides the only magnetic wave train dispersion lengths.
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6.3 Slow Shocks in Neutral Sheet Flows

A popular hypothesis in space and cosinologicai physics is that

magnetic energy can be rapidly converted into particle and flow energy at

x-type neutral-points [Levy .et al., 1964; Axford et al., 1965; Sturrock,

1967]. Petschek [1964] and Petschek. and Theme [1967] have proposed a

hydromagnetic flow in which most of the magnetic field annihilation occurs

across standing slow shocks bounding the neutral sheet. It is somewhat

disturbing that although .the neutral sheet in the tail of the magnetosphere

has been probed by many satellites, no direct evidence of the predicted

slow shocks has been found. Furthermore typical neutral sheet thicknesses

are quite thin, ̂  600 km [Ness, 1965] or on the order of C/up or R .

Therefore if slow shocks indeed exist in the tail of the magnetosphere,

an ordinary two-fluid hydromagnetic model for slow shocks, which would

predict shock thicknesses C/wp or B.^ , appears to be inadequate to

account for the observed thin neutral sheets.-

To obtain rapid magnetic field annihilation in collisionless.slow

shocks requires a large turbulent resistivity which probably can only be

provided by ion acoustic or Bunemann current instabilities driven by steep

magnetic field gradients. A reasonable speculation is that if the

turbulent collision frequency satisfies v ,, > Q , the slow shock

structure is dominated by short scale length electron .dispersion with the

ion fluid decoupled from the magnetic field (Section 5.0). If the ECR

term is-neglected, Eq. (5.22) also describes a lcw-$ oblique slow shock

v/ave train. At the leading edge B decreases exponentially with a

scale length

CS MSL C

C i/2
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where Mc. = U/G ; downstream the wave train trails with a wavelength
oL* o Li

given by (6.1) evaluated about the downstream flow. Of course, if

3" ~ 1 , ECR corrections to (6.1) must be included; the ECR term in (5.22)

2 2
is incorrect for slow shocks since terms of order B /B have been

Jt

dropped. In the tail of the magnetosphere C/a)p ^ 5 km so that a

complete slow shock wave train could easily X'eside within the "thin"

neutral sheets observed by satellites.



-38-

Acknow1e dgments

It is a pleasure to acknowledge many useful and illuminating

discussions with Professors C. F. Kennel and IV. B. Kunkel. This work

also benefited from many conversations with Drs-. R. W. Fredricks and

F. L. Scarf.

This work was supported in part by NASA Grant NCR 05-007-190 and

the National Science.Foundation.



-39-

References

Adlam, J. H., and J. E. Allen, Proc. 2nd U. N. International Conference

on Peaceful Uses of Atomic Energy, 221, 1958.

Anderson, J. E., Magnetohydrodynamic Shock Waves, M.I.T. Press, 1963.

Axford, W. I., H. E. Petschek, and G. L. Siscoe, J. Geophys. Res. 70_, 1231

(1965).

Bardotti, G. , A. Cavaliere, and F. Englemarm, Nuclear Fusion 6, 46, 1966.

Camac, M. , A. R. Kantrowitz, M. M.-Litvak, R. H. Patrick, and H. E. Petschek,

Nucl. Fusion Suppl., Part 2, 423, 1962.

Cavaliere, A., and F. Englemann, Nucl. Fusion, 7_, 137, 1967.

Coroniti, F. V., J. Plasma Phys., 1970.

Davis, L., R. Lust, and A. Schluter, Z. Naturforsch., 15a, 916, 1958.

Fishman, F.. J., A. R. Kantrowitz, and II. E. Petschek, Rev. Mod. Phys.,

3.2, 959, I960.

Formisano, V., and C. F. Kennel, J. Plasma Phys., _3, 55, 1969.

Forsland, P. W., J. Geophys. Res., 75_, 17, 1970.

Fredricks, R. W., C. F. Kennel, F. L. Scarf, G. M. Crook, and I. M. Green,

Phys. Rev. Letters, 21, 1761, 1968.

Fredricks, R. W. , and C. F. Kennel, J. Geophys. Res., 73_, 7429, 1968.

Fredricks', R. W. , J. Plasma Physics, 2_, 365, 1968.

Fredricks, R. W., G. M. Crook, C. F. Kennel, I. M. Green, F. L. Scarf,

P. J. Coleman, and C. T. Russel, J. Geophys. Res., 1970.

Gardner, C. S., H. Goertzel, H. Grad, C. S. Morawitz, M. H. Rose, and

H. Rubins, Proc. 2nd U. N. International Conference on Peaceful Uses

. of Atomic Energy, 31, 230, 1958.



-40-

Golciberg, P., Physe Fluids, 1970 ' '

Kantrowitz, A. k. , and II, E. Petschek, in PI.as:ma Physics in Theory and

Ag£licati.on,< ed< 'D>' w« B* Kunkel, 148, McGraw-Hill Book Co, ,

New York, 1966.

Kellogg. P. J., Phys. Fluids 7_> 1555, 1964.

Kennel, C.' F. , and R. Z« Sagdeev, J. Geophys. Res. 72, 3303, 1967,

Kinsi.nger, R. E., and P. L. Auer, Phys. Fluids, _12_, 2580, 1969.

Kurtmullaev, R. K.,.Yu. E. Nesterikhin, V. I. Pilsky, and R. Z. Sagdeev,

in Plasma Physics and Controlled Thermonuclear Fusion, Vol. 2,

367, IAEA Vienna, 1966.

Levy, R. H. , H. E, Petschek, and G. L. Siscoe,. AIAA J., 2_, 2065, 1964.

MacMahon, A., Phys. Fluids, IB, 1840, 1965.

MacMahon, A., J. Geophys. Res, 73, 7538, 1968.

Marshall, W. ,-Proc. Roy. Soc., London, A232_, 367, 1955.

Moiseev, S. S. , andR. Z. Sagdeev, Plasma Phys. (J. Nucl. Energy, Part C)

5_, 43, 1963.

Ness, M. F., J. Geopliys. Res. 7£, 2989, 1965.

Paul, J. W. M,, in Co 11i s ion-F re e Shocks in the Laboratory and Space,

ESRO SP - 51, 97, Dec. 1969.

Paul, J. M. W., L. S. Holmes, M. J. Parkinson, and J. Sheffield,

Nature 208, 133, 1965.

Petschek, H. E., in Proc. AAS-NASA Symp. Phys. Solar Flares, NASA SP-50;

cd. by W. N. Hess, 425, Washington, D. C., 1964.

Petschek, H. E. , and R. M. Thome, Astrophys. J. , _147_, 1157, 1967.

Robson, A. E. , in Collision-Free Shocks in the Laboratory and Spg.ce, ESRO SP-51

159, Dec. 1969.

Robson, A . . E . , J. Sheffield, and R. J. Bickerton, Bull. Am. Phys. Soc.,

15, 293, 1968.



-41-

Sagdeev, R. Z. , Plasma Physics and ̂ the Problem of_ Controlled Tnermonuclear

Research, Vol. 5, 454, 1958.

Sagdeev, R. Z. , Annual Symposium on Applied Mathematics^ Courant Institute,

New York University., 1965, .

Sagdeev, R. Z. , in Reviews of Plasma Physics, Vol. 4, 23, Consultants

Bureau, New York, 1966.

Sagdeev, R. Z., and A. A. Galeev, Nonlinear Plasma Theory, W. A. Benjamin.

New York, 1969.

Stix, T. II., Tlie Theory of Plasma V/aves, McGraw-Hill, New York. 1962,

Stringer, T. E., Plasma Phys. (J. Nucl. Energy, Part C), 5_, 89^ 1963.

Sturrock, P., Proc. of the International. School of Plwsics, Enrico Fermi

Course XXXIX, Academic Press, New York, 1967.

Taylor, R. J., D. R. Baker, and H, Ikezi, Phys. Rev. Letters, 24, 206, 1970,

Tidmau, D. A., Phys. Fluids, 10, 547, 1967.



-42-

Figure Captions

Figure 1. ,. .

Sketch of the shock structure in velocity and magnetic field for a

collision dominated hydromagnetic perpendicular fast shock. The magnetic

shock is characterized by the magnetic Reynolds length r = C /4mJU ,

where a is the conductivity based on electron-ion collisions. If

U0 < C , a viscous subshock occurs in the downstream flow; ion-ion
2 S2
collisions slow and heat the plasma across the viscous Reynolds length

, where y is the coefficient of viscosity.

Figures 2a and 2b. .

The perpendicular -fast- linear wave dispersion relation, u vs. k. ,
1/9 +

is sketched for o^ > |ft+Q | and for g~ « 1 (Fig. 2a) and

3~ > 1 (Fig. 2b) . Possible intersections of the downstream flow speed

U2 with the dispersion curves are included. Shock steepening occurs in

2 2 1/2locally non-dispersive regions, w/k = (C. + Cc ) - = Cr and w/k = Cc ;
A o r o

steepening is limited by dispersively propagating waves with kC/ov ^ 1

•or kX ^ 1 . The magnetic shock is described by a C/uu length

trailing wave train. If IL < C , U_ intersects the dispersion curve
£• o« f.

near kX *v» 1 ; an electrostatic Debye length ion acoustic wave train

occurs in the flow velocity and temperature, but probably not in the

magnetic field. For reasonably strong shocks, Mp -1 ̂  1 or for 3 ~ ̂  1

the appropriate dispersion curve for estimating wave train scale lengths

is Fig. 2b; note that the region over which C/wp dominates wave

dispersion is reduced.
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Figures 3 a and 5b. •

The ratio of the downstream sound speed to flow speed, Cc /U , as
2

determined by the Rankine-Hugoniot relations for a perpendicular fast

shock is plotted in 3a against upstream Mach number Mp , with 31 as

a parameter. In 3b the critical upstream Mach number, M . , for which1 _ _ l ' crit '

U9 = Cc is plotted against" 3, . An ion acoustic or viscous subshock
^ o« i , •

results when U0 < C • ; . for Mr > 2.5 , U_ < C for all upstream 3's
f- i>.~ r, ^ o^

Figure 4. .

The perpendicular fast wave dispersion relation as determined by

Fredricks [1968] from kinetic theory using the full Maxwell equations" is

sketched. Electromagnetic cut-offs (k •*• 0) and electrostatic resonances

(k •*• ») occur at harmonics of the ion cyclotron frequency, nfi . The

envelopes of the maximum group velocity points on each harmonic branch

are given by the lines w/k = C and cu/k = €„ . Note the approximate

resonance at the lower hybrid frequency, fi.,. , sketched here to lie

between (n+1) ft and (n

Figure 5.

A sketch of to/k against k for the oblique whistler dispersion

relation. Ion inertia dispersion, C/ux, , increases the phase velocity

up to the to/k = C cos8/2 ; electron inertia dispersion, C/wp , then
3 *

decouples the wave from the magnetic field and decreases u/k to C_ .

Debye length dispersion, A , further reduces w/k to the ion thermal

speed C+ . If the upstream flow speed U, intersects the dispersion

curve near kC/o>p ^ 1 , the magnetic shock structure is a leading C/u
+ +

wave train. For U. > C cos6/2 no waves stand upstream, and the magneticJ. a .



-44-

shock has a short scale < C/w trailing wave train. If U < CQ occurs

locally somewhere in the shock flow, the velocity and temperature have an

•ion acoustic subshock wave train with X_ lengths.

Figure 6.

A sketch of the three quasi-hydromagnetic waves which propagate

below the electron plasma frequency [see Stringer, 1963]. The dispersion

curves are drawn for w > jfi j cos8 , $ £ 1 , and Cc > CT > C
. F+ " ' 5> 1 t.

Near k>>n ^ 1 , the fast wave phase speed first increases to Cc and

then decreases to C+ .

Figure 7.

Same as Fig. 6 except that (ft | cos6 > wp . The intermediate

wave, w/k = Cg for kC/u » 1 , decreases its phase speed to C+

near kXn ^ 1 and then intersects the fast branch at w *\> I f i l cos0 .u
The fast wave passes non-dispersively through Cc , and then speeds up

O • .

to C^ .

Figure 8.

Data from a single crossing of the earth's bow shock on March 12,

1968, as observed by OGO-V [Fredricks, et al., 1970]. Tlie first graph is

the total magnetic field |ji| in units of 10 Gauss. A short wavelength,

^ C/Wp , magnetic'precursor leads the major increase'in the field strength;

a wave train-like series of oscillations with scale lengths again 'v C/tjp

trail in the downstream flow. The second graph is the ion flux, J+ ,

from the Lockheed ion spectrometer. Ion thermalization occurs at the

magnetic jump. The third graph is the AC electric field spectral amplitudes

plotted against frequency; the numbers correspond to those in the first

graph of |B| . The maximum electric field amplitudes occur at the

maximum gradient of |B| . ,
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