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ABSTRACT

Linear fluid equations are used to estimate wave train properties

of strong collisionless shocks. Fast shocks exhibit several dispersion

.

changes with increasing Mach number. For perpendicular propagation
into a finite-B plasma, an ion cyclotron radius trailing wave train

exists only for M 2_< 2, Oblique fast shocks have a leading ion

F

inertia wave train if MA < /ﬂ+/M_ cos6/2 and a trailing electron

_inertia wave train if M, > ¢M+7ﬁj cos8/2. 1If the downstream sound

-speed exceeds the flow speed, linear wave theory predicts a trailing

ion acoustic structure which probably resides within the'magnetic
shock. For a turbulent shock model in which an»effective electron-ion
"collision" frequency exceeds ihe lower hybrid frequency, ions decouple
from the magnetic field; the shock wave train now trails with electron
inertia and electron gyrofadius lengths. Comparisons of this tﬁrbulént

model and observations on the earth's bow shock are made.



. 1.0 Introduction

In the-fluiditheory of cbllisioniess shocks the transition of
macroscopic piasma quantities from a steady upstream to dOWnsfream flow
state is described by a spatially oscillétory wave train. Oscillation
scale lengths are cha:a;terized by thé natural plasma dispersion lengtﬁs,
familiar from the theofy.of linear wave propagation [Stringer? 1963].
Laminar solutions ha?e been applied primarily to weak'collisioniess
shoéks, partly beqauﬁe of analytical simplicity and partly Because of

fundamental difficulties iﬁhe:ent in the fluid fofmulation [Sagdeev,
1966; Cdvaliere'and_Englemaﬁn,'1967].- Thi§ paper‘considers extehsion
of fluid theory into the strong shpck(regime concentratiﬁg éxclusi?ely
on cﬁénges in the wave train dispersive structure. Suéh restriction
permits utilization of linear concepts té obtain qualitative épd semi-
quantitative estimates of the shock structure. |

-Fluid shock theories have evolved on two distinct.and ciearlx
sepafable levels: dissipative shocks in which Coulomb intéréctions
control thé structure, and dispersive shocks in which'éollisiOnless
" plasma properties dominate. For thg,preséﬁtfburposé the'dissipative
limitvis instructive since here~tﬁe-structure of strong shocks is
‘ reasonébly well undefstood. The transifion between allowed Rankine-
ngoniot states occurs over dis;ipative scélé lengths'such as the
_resistivé, viscous, or thermal diffusion lengths [Anderson,_1963]. Since
dissipation rates vary inversely with.thickness, strong shocks, which
require intense overall randominzation, often possess a multiply

dissipative'structure. For example, for fast perpendicular shocks in



which the downstream sound speed exceeds the flow speed, a condition

required by the Rankine-Hugoniot relations for upstream Mach numbers

. exceeding about two, the fluid-magnetic field resistive coupling fails

to provide the necessary dissipation. A thiﬂ viscoué discontinuity or
subshock in which the fluid'and magnetic field are decoupled and intense
viscous dissipation is generated deyelop$ withi; the broader resistive
strﬁétﬁre [Marshall, 1955§ see Fig. 1]. Similar dissipation discontinuities
occur,in_a varigty of other fast and slow_shock flows [Coroniti, 1970]...‘

In the collisionless limit dissipation processes are assumed

sufficiently weak to permit wave dispersion domination of ‘the shock

.structure. .The consistent approximation of weak shocks reduces the

complications from nonliﬁeaf fluid behavior and allows some confidence
in the validity of waﬁe train cdncepts based on the linear wave theory.
Weak collisionless.dis;ipation, such as results from micro—instabilities_
and three wéve'decays [SagdeeQ, 19661 is usﬁaliy considered to be
driven by the wave train spatial gradients; the total'dissipation is
accumulated over mény wave train oscillatignsi Hence weak dispersive
shock models have generally avoided discontinuitiés within the wave
train structure. |

Theoretical con;ideratidns of_strong collisionless Shocks_have
preViously stressed the development of fully turbulent flows in which "
fluid effects are unimportant [Fishman et al.{’1960; Camac et al., 1962;
Kennel 'and Sagdeev, 1967;‘Tidman, 1967].. Althqugh'dissipation again
primarily controls the structure, the nonlinear turbulent interactions.
are so complicated that often no assurénce of a complete shock traﬁsition
iﬁ the Rankine-Hugonibt seﬁse,is possible; i.e., the downstream state
reﬁains unspecified. .Therefore, given these difficulties &ith_fully

—
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turbulent shocks, the possibility exists that fluid theory.might prove
a useful guide to at least some aspects of strong shock.étruc£urel
Alternétiveiy, Stroﬁg turbulent dissipation has the tendenéy of méking
the plasma behave like a fluia on macrdScopic scale lengths; hence some
remnants of fluid structure might be exbectéd for strong shocks.

In analogy with mﬁltiply digsipative.Colliéional'shocks,~Stfong
collisionless fluid shocks pgssibiylcontéin dispersion discontinuities
or multiply dispersivé'ane traiﬁs. 'Strong shocks, howevef, require |
strong'diésipationi 'Since.plasha iurbulent dissipation should be tightly
éoupled,to wave train dispersion gradients, the separaiion between
~dispersion and dissipatidn;Awhich permits great analytical simflification
for weak shocks,,isvconsideféﬁly more suspect for strong shocks.. Recent
obseryations on the earth's collisionless.Bow.shoék, however, proﬁide
somé éncoufagemeﬁt for this approach.- Frédriéks et al. t1970] report
that tﬁe magnetié shock is often cha:actérized by an electron;ineftia
léngﬁh waveAtrain-like structure; furthermore, strong'electriclfield
wgve.turbulence, thought to providé considerable ion heating, is coupied‘
to the.magnetic field gradients. "Hence flﬁid dispefsioh rémaiﬁs éven_
in the'preSence of,répid turbulent dissipatibni

The analysis of the nonlinear wave;train‘strﬁcture inciuding the
self-consistent turbulent dissipéti&n.is not yet feasible because of
- both éomputational complexity "and the abseﬁce of avcomﬁlete theoretical
formulation for strong plasma turbulence (sec Kellogg [1964] and
~Bardotti et al. [1967] for some initial efforts). -Therefore,'the
philosophy of~ﬂ1ispaper is to continue utilization of linear fluid
arguments to obtain qualitative estimateé on the nonlinear behavior of

strong collisionless shocks. In the vicinity of the shock'Rankine~Hugoﬁiot



stétes,Awave‘tfain aﬁplitudes are small; here the.two fluid théory of
linear.wayes can be used to predict dispersion scale lengths and the
_sign of dispersion, i;e., kheiher the.wave-train ieads or trails. A
concomitant approach is to derive a.linearized differential equation for
the Qave tfaiﬁ whosé coefficients are then evaluated according to the
Rankine-Hugoniot ?elétions; Thisvmgthod is som;what.less useful, however,
since a consistent set-of'fluid equations iﬁ differential form which are
valid over a widé range of dispérsion scale lengths_is difficult to

- formulate. Alfhough the nonlinear structure of the shock center ié not
realizea by‘these techniques, ﬁumerical computations, for-restrictéd
.shock paramétérs, have substantiated the general fQétures of the wave
train structufe predicted by linear theory [Cavaliere and Englemann, 1967].

Section 2.0 reviews the diépersion limitation to the steepening of
a finite amplitude comﬁression pulse. Changes in the perpendicular
fast shock wave train arising frém mulfiply dispersive wave propagation
are considered in terms of the ion acoustic subshock proposed by the

- Texas group (Robson, 1969) and others (Paui, 1969),

Scctions 3.0 and 4.0 discussvfaSt shock wave trains from several
boints of view. In Section 3.0 an ion gyroradius length wave tréin is
derived for a finite-S pQrpendiculaf shock. For Mach numbers less than
two, the predicted shock thickness becomes less than the ion gyroradius,

‘thus violating the small gyroradius expansion of the fluid.equations;
a speculatibn'on the structure of stronger shocks is-presented; The
restriction of perpendicular propagation is rélaxed in Section 4.0.
ObliQue fast shocks exhibit-a dispersion change from a leading ion
inertia to a trailing:electfon inertié wave train for upstream Alfven

Mach numbers exceeding /M+/M_ cos6/2. Finally the ion acoustic subshock

-
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is reconsidered for oblique propagation;_restrictions on its‘bccurrence
in terms of propagétion angle, plasma B, and kinetic thebryAeffecfsz
ére-diécussed. |

Section 5.0 attémpts to simulate the pbssible effect of a strong
turbulent resistivity on the wave train dispersion., If the ahomalbus
collisioﬁAfrequency exﬁeeds the lower hybrid fr%quency, icns afé decoupled
from the magnetic field, thﬁ; remo&ing ion ineffia dispersion even for.
oblique propagation. “The strongvshock magnetic structure is_then'
contfoiléd by eiec;rbn inertia éndAelectron gyroradius dispersibn, both
of which.produce trailing wave trains. | |
| Section 6.0 considefglthe observations>oh the earth's bow'shoék in
terms of the previous discuééion,-andlconcludés that turbulent resistive
decoupling of ions is probably required to.explain the electron iﬁertia
magﬁetic wave tr;in. A sﬁeculation on thé structure of slow shocks

predicted to occur in neutral sheet flows is presented.



2.0 Steepening Limitation of Collisionless Shocks

Finite amplitude, long waveléngth compression pulses steepen to form
shqcks [Kantrowitz and Petsfﬁek, 1966]}. The shock structure is determined
by whatever processes limit fluid gradients from becoming arbitrarily
large. In collisionél shqﬁks, steépening ceases when the pulse width
becomes comparable to dissipation scale lengths. in collisionless plasmas

steepening limitation‘arises from linear.wave dispersion, thch is reviewed
‘here following the arguments of Sagdeev [1966].

| As the pulée propagates, nonlinear terms in the fluid-equations
»generate harmonics of the fundamental pulse wave frequency (uﬁ-o# wave
‘nunber (k). If the harmonic-waves also satisfy the sémé non—diSpersive
dispersion relation, phase speed w/k = constant, as the pulse fundamental
mode, the pulse propagates as an entity and steepening continues. Hence
whenever the small amplitude dispersion relation predicts non—dispérsive
propagation over some range of w and k [as in Fig. 2 for w/k'=

(C 2, CSZ)I/2 and w/k = Cg J, compressicn pulses steepen. As steepening

A
proceeds, however, harmonic modes with-wavelengths comparable to plasma
dispersion: lengths are excited. Typical dispersion lengths are the ion

and electron ipertial lengths, C/wp , the respective particles' gyro-
+

radii, R, = Ci/lﬂil , and the particles Debye lengths, Ap ='C+/u)p .
- +

i1+
1+

The % signs refer to ions and electrons, respectively; Q. eB/M+C

is the gyro-frequency, B 1is the magnetic field strength, C is the

: 2
p = (4nch/M+)1/" is the specie plasma frequency,

+ .
N is the nuwber density, e the electronic charge, M_ the specie mass;

velocity of light; w

+ o + -
C, = (T'/M+)l/2 is the particle thermal speed, and T~ 1is the

temperature in energy units. Gaussian-units. are used throughout.

~
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To illustrate the dispersion limitation of steepening, consider the

. particular example of the linear fast wave propagating perpendicular

L L -, . . . ' + X, 2
the magnetic field. The dispersion relation when B8~ = 8uNT /B <1 ,

T+/'I’~ <1, and w S |Q+Q_[1/2 is approximately [Stringer, 1963]

P
+
2 2 .
2. . c c.” » . .
sty t 6 1 s ——h | 2
K1 k) 1 kS T+ KA )

and is sketched in Figs. 2a and 2b. CA = (82/4nNM;)1/? Iis the -Alfven

speed and CS = (T“/I\iﬁ&)l/2 is the ion acoustic speed. Note that‘the

- fast'wgve is multiply dispersive with both C/w, and A, dispersion .

lengths. From (2 1) the longest dispersion 1cng;h attglned by thn

hdrmonlc waves 1is C/wp 5 electron inertia decouples the fast wave ffom

the magnetlc field and decreases the DhaSc spced below the fast hydro-

magnetic speed, -w/k = (CA2 )1/2 = F .
"Harmonic waves with kC/u¥ vl , therefofe propagate sicwer than the

pulse and trall behlnd Steepenlno llnltatlon and the formatlon of a

stcady state flow is now p0551b1e if tne compression energy. of steepcnlng

is removed.by wave energy convected out of the pulse. If thermal corrections

to (2.1) are neglected, Bi.<<'1 , the stegdx}phlse is the magﬁetic soli;oﬁ

of thickness 'C/wp [Ad}am'and Allen, iQéS;_Sagﬂeev, 1958; Gardner et al.,

. 1958; Davis et al., 1958]. If fhe plasma is weakly dissipative, tﬁis soliton

is converted into a shock wave train [Sagdeev, 1966] consisting of trailing

dispersiyely propagating waves which, in the sho;k framé, phase 'stand in

the downstream flow. Since, by the-stéepgning limitation arguments, the

wave train must convect energy away from the shock, the group velocity of -

thé trailing waves must be less than the phasc velocity, dw/dK < w/k .



. : +
From (2.1) note that 99 %- 1 < %- if B << 1.,

FoRa ety f

Asymptotically downstream the wave train amplitude, having been

. weakly damped by dissipation, is‘sufficiently small that the waveé
approximately obey the linear dispersién relation. Hence an estimate of
the wave train oscillation scale length, L , can be obtained by equating
the phase speed from (2.1) to the downstream flow speed U2 predicted by
fhe Rankin¢—Hugoniot relations. (In.Fig. 2a this criterion is satisfied
at the intersection of U, .with the linear dispersion curve, pfoviéed,

of course, that 3dw/dk < w/k at intersection.) Thermal corrections to

(2.1) for this estimate are small if u, > CS or 82 <1 . Performing
the calculation yields o
L . MFZ' |
o ¥ i (2.7
7w T2 177 2.2)
b g - 1
2
where the downstream Mach number HF = U2/CF .  The spatial structure
, 2 2 ,

of the magnetic wave train is also sketched in Fig. 2a.
When kC/w, >> 1, the fast wave increases its phase velocity to

the ion acoustic—speed, CS ; and again propagates non-dispersively,

w/k = CS until Debye wavelengths are:reached; for kAD > 1 the wave

slows fo the ion thermal speed, c,- -Therefore in the locally non-dispersive
region, w/k = CS ,Afurgher shock steepening can occur; indeed»whén

' U2 < Qsz , the shoék must develop short scale structure at the Debye. |
length since the wave train phase standing condition can only be satisfiéd
by a trailing ion acoustic wave. Note from (2.1) that 3w/dk < w/k  for
fhis wave. On this basis the Teias group [Robson, 1969] has sUégested‘

that a geheral feature of modefately strong collisionless fast—shocké is- .

the presence of an ion acoustic subshock. Since the shortest length over
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, and alsc since the

which the magnetic field can change is C/wp >>-AD

ion acoustic wave is'élmost electzoétatic'[ﬁ;rmisan; and Kennel,vl969],
;the magnetic ficld is.virtualiy unaffected by the ion acoustic wave train;
The subshock acts primafily to slow andAheat the ions, and therefore can
Bé'considered as the dispersion analogue of the dissipative viscous
sﬁbshock. | ‘ o

The upstream flow conditions for which.an ion acoustic subshock must

occur are determined by the perpendicular shock Rankine-Hugonict relations.

" Skipping the trivial algebra, CS /U2 as a function of the upstreah Mach
: ] ’ .

number M and B, = C2 /C2 C 2 2P/p , is given by
F 1 S." A, , S > :
1 1 1 ,
¢z | S 27 MY
S2 1 - 2 F1 -
5 = 4MF -1 - 5 > . (2.3)
U MS o+ 2 1 (M, +2)7 (1+B,) '
2 F1 . : Pl 1

Figure 3a is a graph of CS /v, against'MF with B, as a parameter;
o 2 .

. 1
Fig. 3b sketches the critical Mach number, M__. , for which C_, .= U, -
' , . erit 82 2
against 81 .  Shocks with MF > 2.5 have ion acoustic subshocks for
1 .

any upstream B . The Rankine-Hugoniot relations, Eq. (2.3), actually.

yield an upper limit to the criteria U2 < C82 f The wave train will
generally have a nonlinear overshoot in the first oscillation [Sagdeev,
1966]; hence in the leading edge U < CS will occur for lower Mach
numbers than given by (2.3).- A_sketéh of an ion acoustic subshock
occurring in the leading edge of a C/wP magnetic wave train is included
in Fig. 2a. | ) |

The oscillation scale length for the ion acoustic wave‘train_can be
estimated from the Ué intersection with the linear dispersion curve.

Since for reasonably strong shocks 82 >> Bl , the dispersion curve differs

-
Y
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from that appropriate to upstream flow conditions; Figure 2b is a sketch

of {(2.1) for B, > 1. Setting U 2 wz/k2 = C2 /(1 + kzkg J , the scale
27 7 & 2 s, D |
length is
.L _ AD _Msz
—- = £
5 71772 (2.4)
|1 - My |
2
' ‘M. = ' s ' A : ; .
where “Sz vUZ/CSZ' an@ AD_ @ Csz/wp+ . Substituting from (2.3) L
~ becomes L 2
' V3 M @i® +1) 02 +2)% - e 7480
L U F, . o F F ; F o1 N
‘L .1 N 1 1 1 B 2.5)
2T Wy, 2 1721 .2 2 2 it ' )
M ] - N - V]
. | P (MF + 2) L S(HF 1)(dF +2) [27HF /(1+61)]

1 1 1 1 1

InASUmmary;'this section has éstablished the-following points on
the_ttilization of linear fluid tﬁeory to detgrmine wave train structure:

a) Hydromagnetic compression pulses steepen in regions of non--
dispe¥sive linear wave prqpagatién. |

'b) Steepening is limited at pulse thicknesses comparablé to disPersibn
scalellengths. Wave trains are formed-by.dispersively propagating waves<
whi;ﬁ phase stand in the downstream flow and have 8w/dk < w/k , or in
the upstream flow with dw/3k > w/k .- |

.c) Wévé train scale length; can. be éétiﬁated'by matching linear wave
phase speeds to flow speeds at the asymptotic RankinefHugoniot states.
‘ Linear dispersion curves appropriate to upstream or downstream Rankine-
Hugoniot conditions must be used for these estimates.

c) Since the linear dispersion relation is multiply dispersive,
perpendicular fast shocks possess a magnetic wave train with C/mp lengths,

and for MF > Mcrit , an ion acoustic subshock at Debye lehgths. Because
1 .



of the wave train nonlinear overshoot, the Rankine-lugoniot relations

nteracts primarily with

Iie

. Since it

]

rovide an upper limit on M .
}Y n upp F erit

. ions leaving the magnetic field unaffected, the ion acoustic subshock is

the dispersion analogue of the viscous subshock.
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- 3.0 The-Perpendiculdr Ibn'CyClotronARadius Wave Train

In the previous section the discussion of the pérpendicular faét
shock was restricted to consideration of only electron inertia and Debye
length dispersion. As this shock steepens-inva'-finite-sv+ plasma, however,
tﬁe»longest dispersicn leﬂgth encountered is the ion cyclotron radius
(ICR). 1In Section 3.1 an Icﬁ wave train differential equétibn is derived
-for the linear perturbed plasma response about thé asymptotic stationary
flows. For moderate'Mach numbers the»shock steepens to lengths shorter
than R, thus passing beyénd the validity of the fluid analysis, Kinetic

theory effects and steepening to shorter scale lengths are discussed.

3.1 Derivation of the.iCR Wave Train Differential Equatiqg;

To investigate the berpendicular ICR fést shock:wa§e frain, the
analysis employs the Chew—Goldbgrger—Low nydromagnetic equations with
first ordef ICR corrections as derived by MacMahon {1965]. (A similar -
appfdach has been used.by Kinsinger‘and Aﬁer,'1969; Coldberg, 1976G.)

The range of validity for these equations requires gY >> M_/M,_ , assuring
R, >> C/wP ‘, T+/Tfr>> (M_/M+)2 so that R, >> R and- Q+/wp_ << 1 or

- - : +
R, >> AD ,, thus restricting consideration to quasi-neutral plasmas. In

+
E addition, only shock scale lengths- L >> R+ can be treated, cons;stent

. with the first order ICR expansion of the fluid equations. The wave

. train structure is investigated only about the upstreamvand.downstream
stationary Rénkine—Hugonipt-flows, thus permitting a linearized éﬁalysi;.
This-method-examinés the stability at the stationary point; of_the-,"

nonlinear-wave train differential equation; shock transition requires

_instability upstream and stability downstream.



The coordinate system in the steady shock frame, used throughout
this paper, is specified by shock propagation in the X-direction, along
_which plasma quantities vary, with the magnetic field, BZ , in the

Z-direction. The perturbed time independent fluid equations are

B & B
(1) z z d U _ :
PUSU + 8 P o0 ¢ ™ = S G.1)
. d &v
1 . .
pu 5Vy + 8 Piy) = Tr"}ﬁ;gi : , ‘ (3.2)
(1) 1
p p
2 o een (1) (1) (1) Ml 0oL
pU 6U+U(6P& +GPXX)+P‘L.6U+U 5=+ 6U
: uy B, 8B,
< &(1) w(l)y |, o>, 1 oo d U . A
+ (03“‘ + 6(’1"’ ) X + .‘TT—'_’*‘—--"'— = ‘,JU ~d_)—(—— (3.3)
UdéB_ + B dU = 0 ' —_— ' (3.4)
'z z ' 4
(1) _
8 (U -»‘%~——+gi(l) - =0 | - (3.5)
(0)+
p d &v ,
1) _ Q) d y . ' A
prx - 63& - 2Q, dx } v,(sﬂéj
W P(O)+ ;
NN d 68U _ .
Yo T T & | (3.7)
L (0)+ (1)
2p d 8p
(1) 2 4 Xy : :
Sq7y * T OmE, dx _ _ (3.8)

Following the notation of MacMahon [1965], superscripts (0) and (1)
denote zero énd first order quantities, respectively, in the small ICR
expansion. la o denétes perpendicular (parallel) to the ﬁagnetic_‘
field. & denotes a perfurbed variable; the unperturbed quantitieé are

to be evaluated about either the upstream, subscript (1), or downstream,
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subscript (2), flow conditions. U is the flow velocity in the X-direction; .

Vy is the fluid velocity in the transverse Y-direction. P

. sub- and super—scripted; denotes the pressure. qu(l) X

are the first order ICR heat flows along X , and are retained since they

contribute to the same order as the'pressure tensor ICR terms in the

energy equation (3.3); zero order heat flow. has been neglected. - Effective

viscosity coefficients, n , C , and u = %5n + [ are included to

simulate weak collisional or turbulent dissipation.

Neglecting products of ICR and viscosity terms, the above equations

reduce to a wave train differential equation for d¢U

2 2
3,2 a? su L, MU . douU v- CF__GU = 0
4 "+ dxz : R£0)+ .dx p'§0)+/p -
R+ = (Réo)+/pﬂ+‘)1/2 is the ion cyclotron radius, and
. CF = [CA2 + (2P§1)/p)]1/2 is the fast hydromagnetic speed.
of (3.9) in the form exp(Ax) are
U2 SC 2 }/2
A = L ¢ L) F
T 3,0+ 2 TR 3, (0)+

Solutions

- (3.9)

(3.10)

where terms proportional to uz have been neglected. About the upstream

flow U exceeds C_ by the shock evolutionary conditions [Kantrowitz

F

and Petschek, 1966]); (3.10) then yields &uU exponentially increasing

(corresponding to U slowing down) with a scale length

p(O)+ 1/2
Lo |3 ZL &
et |l -t/
1 1
whe;e MFl = Ul/CFl . About the d?wnstream flow, U2 < CF2

.
N

(3.11)

, and (3.10)



yields a damped trailing ICR wave train, as predicted bylﬂacﬁéhon~[1968},
and F;edricks and Kennel [1968]. |

The above wave érain analysis is valid as long as the small ICR
expansion of the Chéw-Goldberger—Low fluid equations is preserved. For

weak shocks, Mi - 1<<1, (3.11) predicts L >> R, ; hence the ICR

: 1 :
dispersive wave train should resolve the shock structure. If
w2 - 15> 3 ™02y <1, L <R, and the above fluid analysis
Fy 4 V& 1F, + - ,

breaks down.

3.2  Discu§§i93

A qualitative understéndipg of the wavé frain structure for stronger
shbcks is ‘obtainable by consiééring tﬁe linear dispersion relation for
the perpendicuiap magnetosonic wave.’ A collisionless kinetic Vlasov
treatﬁ¢nt 6f,the full electromagnetic perpendiculér dispersion. relation
has beén performed by Fredricks [1968]; fhe result is summarized in Fig. 4.
Tﬁe kinetic theory predicfs eléctromagnetic cut-offs (k + 0) énd electrq— )
static'resbnances (k. = ) at harmonics of the ion cyclotron ffgquency;-
alsoxhote the approximate resonance at the lower hybrid.freQuéncy.A Thé
enve lopes élong the maximum group velocity points of eéch'diSpersion curve

“are lines given by w/k = CF and w/k = Cq .

Now consider, as in Section 2.0; the predictions of the fast shock
:wave train strﬁcture implied by Fig. 4. First note that no upstream wave
;rains are possible since, at the intersections of U1 with the dispersion
curves, dw/dk = 0 , and energy would be convected into, not out of, ther
shock. . The downstream flow speed intersects the curves at all cyclotron

harmonics, and here the group velocity condition for trailing wave trains

is satisfied. Hence, naively, the kinetic theory predicts a wave train
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with a rultiplicity of discrete oscillation lengths corresponding to each
harmonic of Q+ . |

Several difficulties with the above arguments-are apparent. Firsf,
a finite Coulomb or anomalous cbllision frequency, which:must be presehi
in the downstream shock flow,_wduld-tend to destroy to fine scale ion
harmonic structure; hence coliisionless kineticytheory probably poorly
approximates the fluid behavior of the plasma. Second, cdnsider a pulse
with thickness of order R+. or less which is undergoing steepening along

the approximately non-dispersive part, w/k = C of the dispersion curves

F

in Fig. 4. Since the ions traverse the pulse width only once (U > €.

the nonlinearly excited waves associated with steepening do not sense fhe

full ion gyro-coupling to the magnétic field. To these Qaves the ion

. orbits appear almost as straight lines; hence ion harmonic dispersive

structure given by the kinetic theory for infinite plane waves cannot.
effectively limit the steepening of narrow conpression pulses. The waves
generated by steepenihg should approximately obey thé two fluid‘diSperSion
relaﬁion of Stringer [1963] and Formisano and Kennel [1969], and remain 
non~dispefsive until electron inertia slows down the f&st wave at frequencies
néar thé lower hybrid. :From Secfion 2.0, the shock structure is a tréilihg
C/wP ‘wave train. NOte-tﬁat the maximum group velocity enveIOpes inciuding

‘the éispersion of electron inertia at the lower hybrid frequency in Fig. 4
approximatés;tﬁe tﬁo fluid dispersion curves in Figs. 2a and 2b. ‘ _

In summary, for weak perpendicular fést shocks Mz -1 <« %f(géo)+/pCF2)','

Fy

L >> R _, and the ICR trailing wave train derived from the Chew-Goldberger-
Low hydromagnetic eguations with first order ICR corrections probably
describes the shock structure reasonably well. For stronger shocks, ICR -

dispersion fails to limit steepening; steepening continues until a C/wp";

-
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or'possibly' XD wave train is formed. Tinally, even thpugh'ohly
pérpendicular propégation has been considered, the ineffectiveness ox
weakness of ICR disﬁérsion to limit strong fast shock steepening
probably also holds for oblique strong shocks. Hence in the following

sections ICR dispersion will be neglected.
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4.0 Oblique Fast Shocks

If the restriction of perpendicular bropagation is relaxed,'ion
inertia &ispersion becomes competitive with electron inertia for angles
0> /2 - /ﬁj7ﬂ:-; The Mach number dependence of this transition is
diséuSéed in Section 4.1 using thé linear dispersidn relation. Section
4.2 reconsiders the ion acoustic subshock for oblique propagation;

high-8 and kinetic theory effects are also discussed.

4.1 Oblique Magnetic Fast Shocks

Since the wave train differential equation for the whistler‘shock
‘has been extensively énalyied by sev¢rai aufhors [see Sagdeev, 1966;
| Cavalierc and Englemann, 1967}, the two fluid linear whistler dispersion
relation will be employed here to determine the wave tréiﬁ structure.
The strong shock limit is stressed.

If IQ;I/wP << 1, the phase speed of the fast wave is approximately

given by [Stringer, 1963; Fbrmisano and Kennel, 1969],

-

2 2 2 .2
w2v_ k2C2 CA, cos“ B ) CA . CS sin” 0
5T : 3
KW a sk )? r et e BE
e ¥ P. "'
+ .
NI I MRS W I
: T (Q+k"A )
b
where 6 1is the angle between the flow félocity and the magnetic field
direction. Figure 5 is a sketch of w/k against Kk ; intersecticns ofi
w/k with possible upstream, Uy and Ui , and downstream, Ué and U}

2."




-21-

flow speeds are included. In order to clearly separate magnetic and
temperature effects in (4.1), B is taken somewhat less than unity so

. that in the range k =0 to kAD <1, the first two terms in (4.1)

dominate the dispersion relation. HNote that since for strong shocks ICR

. . . . . + . .
dispersion was neglected in {4.1), £ is not restricted to be

3

<M /M, as in the calculations of Cavaliere and Englemann [1967].

If 6> w/2 - VM_/M+ , ion inertia dispersion, C/wP , in the first
term of (4.1) exceeds that of electron inertia and increases the fast

wave phase speed above the hydromagnetic speed, CF . At the first

1 with the dispersion curve, the whistler stands in

. interscction of U
the upstream flow and forms-a leading wave train. Note from (4.1) that

3w/2k > w/k if"kC/wp << 1 ;'heﬁce wave energy propagates upstream'

out of the shock. The oscillation length, found by setting w/k = U

neglecting C/wp terms, and solving (4.1) for k , is given‘by._r

cosB S
;ﬂ'w 2 11/? wC (4.2)
o, - TP
A +
1 -
where MA' = Ul/CA , the Alfven Mach number. The magnetic wave frain(

. 1 1.
is also sketched in Fig. 5.

From (5.1) the maximum whistler phase velocity is w/k = (C, cos6)/2 ,
attained when kC/wp =1 Ca_='(Bz/4WNM’)1/2 .  Therefore the maximum

- upstream Alfven Mach number for which the whistler forms a leading wave

train is M, = /ﬁ:7ﬂj (cosB,/2) ; the scale length is L~ 2m (C/wp )
1 N
For U1 > (Ca cosel)/z , the only wave train possible is at the

1

interaction of the downstream flow speed. (The second U1 intersection
is disallowed since, dw/dk < w/k , energy would be blown back into the

shock.) If U, > CS , which probably restricts MA < 2to3 or

5
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‘cosel < (2 to 3) x 2] /M+ , the linear dispersion relation predicts a
-~ trailing magnetic wave train. .The scale length, obtained by solving (4.1)

for k and taking the root of the bi-quadratic for U? < (Ca cos6,}/2 ,
‘ . ) . A 2 e

is approximately

M
| Y Y - |
7 e b h ) (4.3)
S 2P

or LS n(C/wP ) .

> (C ':> . < UL -
1 (Lal cosel)/Z (2 to 3} x LA s U2 < CS2 .
< o ) .

1 (Cal cosel)/z so that a C/wp+ _wave‘traln
leads, U <C can occur. In previous magnetic wave train analysis’

For stronger shocks, U

Furthermore, even if U

2 82 ,

crossing of the downstream sonic point corresponds to what has beén called
the breaking of the wave train [Cavaliere and Englemann, 1957; sece also
Section 5.0]; Note that the sonic point can occur locally in the wave

train and need not always occur-at the asymptotic downstréam'flow;'honlinear
overshoots can also give U =ACS locallyf A collisional or furbuient ion
viscosity, br the ion acoustic subshock wave train is required for a
complete shock transition. However, since reduction of U to CS must

be accomplished by magngtic and density compression, the magnetic shoék
structure should be -approximately that prediéted by wave trains. For the

C/w wave train, many leading oscillations are probably necessary for

P
+

U < CS to occur locally in the shock (see Fig. 5). In the trailing wave

Ctrain U probably decreases through Cs in the leading edge (see Fig. 2).

The initial magnetic gradient should possess a C/wP characteristic

length [Sagdeev, 1966]. Since the ions are decoupled from the magnetic
field at the sonic point, whether or not a complete or even a partial C/wb.

“wave train exits downstream is wmclear; further analytical or numerical .

.work is necessary to resolve this difficulty.
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In summary, for low Mach numbers MA < VM+7ﬂ’ cosel/Z', the shock

structure is a leading ion inertia wave train. For stronger shocks, a

3
, dispersion change te ‘a shorter scale length occurs; the wave train now

trails and has an electron inertia length. If U = CS anywhere in the

shock flow, a dissipation (viscous subshock) or dispersion {ion acoustic

subshock) discontinuity results; structure of magnetic wave trains for

U < CS is unclear.

4.2 Oblique Ion Acoustic Subshock

Whether or not an ion acoustic subshock occurs for oblique -shock
.flows depends on the downstream propagation angle 62 and the plasma 8 .

The fast shock evolutionaxy conditions require that U2 Z_CI = CA 00582 s
: : 2 2
the intermediate speed [Kantrowitz and Petschek, 1966]; hence for 82 <1,

U, < C, v7results only if 0. > cos—l(C. /C, ) . For moderately strong
2 52 2 52 A, : - ©
-shocks, MF > 2to 3, however, 82 probably exceeds unity so that
_ 1
U2 < CS occurs at all propagation angles.
2 .

An additional constraint on the appearance of an ion acoustic subghock
is that Bl or 82 <(kh/M_)(c0520/2) 5 since at higher pressures the
maximum whistler phase speed w/k = CacosG/Z < CS 3 if .6 = w/2 , this
constraint becomes B < /ﬁ:7ﬁj'. Here the dispersion relation (4.1) no
longer describes the fast wave but becomes the intefmediate wave dispersion
.relation'if the last two terms are dropped; for 8 > (N+/M_)(C0526/2) ;A
the fast mode is approximately an isotropic ion acoustic wave and.remains
non-dispersive up to kXD ~ 1 [Formisano andeennel, 1969]. The ion
acoustic wave train is now just the electrostatic shock derived by Moiseev
and Sagdeev [1963] in the B + e lipmit. |

A further consideration on the occurrence of the ion acoustic subshock

-
~



is the relation of U, to the ion thermal speed, " C_

Figure & for

are-sketches of the-— -

T do | ;- 7 ey L a-s
Wy > [a_icose and-Fig. 7 for jo_{cose~> w,,

dispersion curves for the three quasi-hydromagnetic waves which propagate

below the electron plasma frequency [Stringer, 1963]; the curves ar

' :
drawn for cosf < CS/C g7 <1, and c, > CI . If B>1, Figs. 6

A

®

and 7 are modified by moving the sonic line Cg closer to the Cy line,

dominance in the dispersion relation.

thus reducing the region of C/mP

Note that in the wicinity of kAD v, if w, > lQ_IcosO , the fast

P
. : _ o .+ : :
wave first speeds up to Cg and then slows to C_ . If lﬂ_lcoss > w0y
the intcrmediate wave, which is an isotropic sound wave for kC/wP >> 1

. . <+

and kAy << 1, slows to C, and then intersects the fast mode near

+

w v |Q |cos ; the fast wave passes non-dispersively through Cg and then

speeds~up to C+

Two points merit discussion. First, for the fast shock to steepen
to an ion acoustic subshock, the linear fast wave dispersion relation -

must possess a non-dispersive region with w/k = Cg - Therefore from .
Fig. 6, only shocks iﬁ plasmas with W > [ |cos® or A& > Iﬁag_ll/z'
if 0 = m/2 have ion acoustic subshocks. Second, the downstream flow

speed for -MF >> 1 is constrained by the Rankine-Hugoniot relations to

> 1

- be at }east ~.E-Ul

for MF.+ o [Anderson, 1963]; _héncé U

, but the temperature jump across the shock has Tz > @
s " C, 1is possible for strong
- shocks. The fluid dispersion curves in Figs. 2, 6, and 7, are non-dispersive

for w/k = C_, and further shock steepening mighf be thought possible.

However, 'the kinetic theory predicts heavy ion Landau damping when w/k = C_

[Stix, 1962], so that whether the waves with w/k ~ C, generated by

nonlinear steepening can propagate is extremely doubtful. Furthermore

: . et ’
the ion acoustic wave is also ion Landau damped unless T /T >>1

Therefore the ion acoustic subshock is likely to occur only if




o >712 feose” or o0, ¢ Zu, >, and TT/TT >> 1. Strong

shock flows violating these criteria probably have fully turbulent” ~

. Structures, although possibly in conjunction with a magnetic wave train.

4.3 Dpiscussion

3

The fast shock wave train structure exhibits 'three dispersion changes

or discontinuities with increasing shock strength. For 6 =-7/2 and

2 3
M -1 > 2
“Fl 1 i
"~ and short scale length C/wP or AD wave trains develop; if 6. # n/2

(Hfo)+/pCF2) ICR dis?ersion ceases to inhibit shock steepening,

+ . . . L
and B > 1 so that R+ > C/wP , a magnetic ion inertia wave trein is

. S + _ : ,
.also possible. The whistler magnetic wave train changes from leading with

C/wP to a trailing with C/mp lengths when MA >~¥M+/ﬁt' cosB/2 .
_ + _ 1
Finally for MF >2to 3, U2 < CS , and the ion acoustic subshock
. . . X 2
proposed by the Texas group is possible if Cg > Uy, > C o,y > |2 |coss
. R v 2 FA + . » -

or |Q+Q_|1/ 2 and TT/17 >
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5.0 Strong Tu}bﬁlegce Modification of Wave fréin7biéper$ién
In plasmas whére the Coulomb collision méan free path greatly exceeds

evén'the longest'dispersion'scale lengfhs,,collisionless plasma turbulence
_ must'proﬁide the neces$a£y shock dissipation. Cpllisionless turbulenca'
often féquires strong gradients, either in Cartesian or velocity space,
as sources of unstable4frqe energy [Sagdeev and Galeev, 1969]. In addi{ion
to whatever backgfound turbulence exi$t$ in the flow, wave train gradients,
espe;ially in strong sﬁocks, should generate inténse turbﬁiept dissipation.
Wave diSpérsioﬁ properties; and hence wave train scale lengths, however,
may‘be hodificd by strong'tﬁtbulénce. In this.section:thié dissipation
.moaificafion is iilustrated,valbeit ﬁot Seif—consistenfly, byua model
shock'flow in whicﬁ an effective 6r'turbu1ent electron-ion collision

‘ } o172

frequency, exceeds the lower hybrid frequency Q. = 12,0 .

‘ ?eff ’ » , _
Note thatvthc usual two fluid equations require Ve ff << QLH _(see Cavalieye»f“
and Englemann, 1967]. Since ions aréﬁndw effectivelybdecoupled from the.
magngﬁic field by colliéioné, ion inertia and ICR&dispefsion will nof
limit shock steepening or form wave trains;‘hence the shock'wave.train
structure should be controlled by electron disperéion.

To obtain further insight on ;hercdlliéional sﬁppréssion of.ionv
~dispersion, consider‘the cold plasma obiique-fast shoék wave train analysis
‘of.Cavaliére and Englemaﬁn [19671. The ratib of the gréwth or dissipafivg.

}ength, Lg , of therleading jon inertia wave train tovthg dispersion

scale length L was found to be



- Zare 2o 2551 v s Cin AT
L (U/veff) [cos G/AA (MA -1)] \M+/N_) _ QLH cos0 /d+2H_

-
%]
—
L —

£ -
L Cfeosur fon1M ¢ _ Vocr o 2 172
fcosd/ (M, "-1}7" "] (C/wp ) eff M, (M, "-1)

*

From the discussion of Section 4.1, the maximum value of (cos® Vﬂ;7m_)/Mp

for ion inertia dispersion to dominate the wave train is 2; hence the

¢ Z
e’ Un

2, >> 1

growth length becomes shorter than the dispersion length if v

; 2 1/2
hY -1)
2/(1’1}\ 1) B

H

Therefore for Sufficienfly strong shocks, MA

and Ve ff 2 QLQ ion inertia scale length effects are suppresscd by
collisions, and the wave train structure must be controlled by electfon ‘
dispersion. =Weak shecks under the above .conditions are probably adequately
described by hydromagnetics. ICR dispersion isveliminated if Y > Q+
since, by the usual arguments leading to the MHD equatioﬂs, the ion
pressure tensor will be approximately isotropic. |

The eqﬁations descxibing the strong sh0ck.electron.dispersion
structure are the exact conservation relations for the fluid mass,
momentum, and energy, whiéh, if viscosity is neglected, do not involvc
the dissipation directly, and Ohm's léw, which describes the intevxaction.
of the fluid and magnetic field inciuding dis;ipatioﬁ. In two fiuid
theory Chm'g law correct to order bt/hu can be written

VxB dv M Verel

d (!T_Xf) =e | E+ — | -M - - e

- dt

M C + T3t

V is fhe fluid velocity, !% the specific particle veloéity,
J = Ne(!f4!f) the curfent density, and E the eiectric field.

To formulate Ohm's law consistent with veff > QLH , Eq. (5;2) must
be ordered. Since electrons, because of their small inertia, carryathe_.

predominant part of the current, J v -Ne yf . If the current carrying



. S .- = . . T + e + ..
electron velocity V ~is of oxder VM /M_V ~and E v V B/C, the

_ terms in {5.2) can be ordered as

. Y .
1 1 1 eff :
a—==1:1: z—: : - _ o (5.3)
QLHT T AT hu
or -
MM =91 QT 11 M Vege T a (5.4)

where T is the time required to go a scale length TV L/U . On

electron inertia scale lengths T v C/w, U™~ M /Q - hence QT % vﬁf?ﬂ:’<< 1.

A LH

Therefore from (5.4) and (5.2) consistency requires that oﬁer,short

“electron diépersion lengths
R\ . ' , | .

MM, g+ VP T 0 N | - (5.5)

“and .
xB |- M ]
VxB ““\)eff:—

) = e _E_+ < T TNe ~ e ' (5.6) ’

=
B>

=

|<

. . L. + . . .
Since the mass velocity VvV , (5.5) predicts that the ion motion
is decoupled from the magnetib field, i.e., the ions obey hydrodynamics.

_ Furthermore (5.5) coupled with the momentum equation implies that

JxB
- - Vep

Cc.

144

0 o : (5.7j

or that on C/wP scale lengths, current forces are balanced primarily

by electron pressure gradients. In (5.6), which replaces the full Ohm's
law, the only scale length which appears is electron inertia. The
ordering condition QLHL/U < 1, however, requires that the flow scale

length, L ~ U/Q N'C/wp v 8:1/2 R_; hence if B "~ 1 , electron

LH

cyclotron radius (ECR) corrections must be included in the wave train

analysis._



The wave train will again-bé investigated.by considering only the
linear response abdut the asymptotic stationary flow, To further-simplify
' ’the calculatién, the ion pressure tensor is taken isotrobié, and the

“electron parallel and perpendicular pressures are assumed equal, both
probably reasonable due to the high collision frequency; ECR corrections
to E- are retained, however. In addition, oniy very oblidueAfést shocks

B_/B << 1 , although 6 is not restricted in
X

are treated so that cosd =
the range g-~ MM, < 8 < g-; consequently U << Cp = C, cos® also hold

With these approximations the perturbed fluid equations neglecting

viscosity and zero order heat flow are

B & B .
z z

| (1) N ' o |
pUTGU + 6PXX * o = 0 - (5.8)
S ; B & B
Wey o+ gp) L XY s
PUBYy * 8P - == O (5.9
' . B 6B - : i
' (1) Xz
pu sz,f apxz YT 0. (5,1@)
o - ' Ne)
pulusy + v ov ] + 3 uep™) w M) syy v usp (D 4 p ) gy
ST z z° 2 4 XX XX
' UiBZ SBZ : :
(1) 1 TS 100 RENFSL N6 ) N 11
+ VZOPXZ + -‘*———4‘7?—~—j7" (6_(1; + 6—(1-& ) X = 0 (5.11)
. 2 .
C2.v d 6Bz c2 déB,
7~ U 7~ Y 5 Vesf dx USB, + BzaU B BXGVZ (5.12)
w dx w
P__ P_
2 .
C2 - d GBy C2 dﬁ%z : : :
5= U= Ty Ve gy = USBy, - BOVY (5.13)
w dx w .
P._ P_
_ ' 2.
Ule = U BZ - [Bx (bz-Bz }]/4mpU (5.14)

£1 | i

3.
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(5gi('l) + 69_"(1)) * X =
-d8B_
v - =.C %
Yy 4wNe dx
N déB
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2 4miNe dx
U_ = U 5 SU-. =

- In the above equations Vy
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points was used.

Equations (5.8) through (5.21) are straightforﬁardly reduced to'a
pair of wave train differential equations for 582 and SBy excépt'
fqr,the elimination of iéU from (5.18). Since (5.18) is an ECR ternm,
‘presumedvsmall, and by the.assumption'of U>>¢, a‘sufficient"

approximation, in (5.18) only, is to take &U = - (u/B.) 88, .

results are

2

(8 °/8%) + (8, %/4np)

0,_at'thé'RankiheuHugoniot stationary

93~ d GBZ
wg dx2

ENCRATS

U -C

_(UZ-CFz)(Uz—C

2 2 2

116)
.17)
.18)
.19)
.20)"

.21)
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’ 2 s - g . .
y 2 Vess ass _ u - ¢ o -
, v . dx - T3¢ o - (5.23)

~ where R_2'='P(0)-/2[Q_[2NM_ is the electron cyclotron radius; C_ and

F
CSL are the fast and slow hydromagnetic speeds defined by
c 2 | 2
F 2 2 2 2 1/2
A *Ss A * Cs 2 2 |
= + —— - C,”C.” cos™0 {5.24)

2 2 _ A S .

C

Note that -GBz .and. GBy “are decouplgd, é consequence of the_very
“oblique approximation. |

Solutions of (5.22)'describe an exponential‘rise-in Bz ét the
leading edge of the shock.and a frailing C/mp- - R 'wave train, each

with a scale length given apﬁroximately by

- 1/2
5 (0)- 2,.2 2
3 CTTE /) ¢ a0
“g - Csz- o )
L~ - o — (5.25)

[(CFZIMFZ-I’)/(Uz'Csz)]l/z

where L 1is to be evaluated at the upstream or downstream flow conditions,

respectively. The damping length for the trailing wave train is
. 1/2
5 0)- 2,2 2, :
2@ /0287 + 1% /4m0)

C 3 Z z 2
2 + . R

2 2 2 -

Wp u- - CS _
L, ~ I ' S— (5.26)
D 2,2
(c /wp-) (Ve £/U)

evaluated for downstream conditions. Note that the familiar wave train

"breaking'' occurs when U < C¢ since the pseudo-potential term on the

S




s

cight hand side of (5.22) changes sign and L becomes imaginary, Either a
turbulent Viscosity'or a Debye length ionm acoustic subshock is fequifed to
further describe the downstream shéck structgrg. Equétion (5.23) dogs not
yield a complete shock transition for By , and probably just represents the
damped rotat%onal intermediate wave which is decoupled from theAfast'wavé wvhen
ion inertia disPersion‘is neglected. ‘Hence the magnetic shock should be
primarilf compressive,

The above analysis is undoubtediy'a péor approximation to the ion
ayhamics,sinée changes Qf thg ion fluid on either long, C/wp+ 3 R, or
vé;y shpft, AD:’ scale lengths.afe not included, The shock structure
observed in the magnetic fieldvénd e1ectron fluid, howevér, should b¢
, reasonab;y.well déscribéd by the C/qu - R_ trailing wave train up to,
and maybe also beyond, the sonic point.' |

In summary, if strong plasma turbulence creates an effective collision

! .
.fiequéncy Qeff >‘QL” » only electrons cpﬁple to the magnefic fié}dvand
»ﬁrovide magnetic dispersion, Strong fast sﬁocks have a C/w, - R_
trailing:magnetic wave tfain; .Although the above calculation was
restricted to very oblique fastrshocks¢ the qualitative features of th¢
wévg train structure are probably valid for a_Largef range of propagation

angles, Furthermore note that M >'/*M;/M: c0s8/2 was not requircd to-

A

obtain a C/wp - R_ scale length wave train.



6.0 Discussion

6.1 Summary
By use of essentially linear arguments the. following estimates on
the wave train structure of :fast shocks have been derived:

-~

a) Weak perpendicular finite—ﬁ shocks, MF -1 < (R£O)+/9CF2) <1,

Nl

have a trailing R~ wave train., For strongef shocks, probably including
‘oblique propagation, ICR dispersion does not limit steepcning; wave
trains for both 8 <1 and B > 1 will not involve R, scale 1éngths.

b) Oblique magnetic whistler shocks have leading ion inertia wave
trains if MA < /ﬁ:ﬁﬁj cosel/Z and trailing electron inertia wave
3 .
Fa
trains if M, > /M /N cosH. /2 .
Ay 1
c)  Uhen MF > 2 to 3 , the Debye length trailing ionfacoustic
: , 1 S ’ ' B B
subshock proposed by the Texas group occurs if B < (M+/M_)(c0526/2) and

0. > - . = T 1 /M ; .
wp+ IQ_Icose , or for 6 = 7/2 , B.< /ﬂ;/h_ and  w, >v QLH ,

. - ot o
CS > U2 >> C+ ,and T /T >> 1 .  As in its dissipation analogue, the
2 ' )

viscous- subshock, ‘the -ion acoustic subshock decouples the fluid from the

v

magnetic field and acts primarily to heat the ions without‘affecting the

magnetic shock structure.

8

d)  Strong turbulent dissipation modifies plasma dispersion

characteristics. For Verf > QLH and strong fast shocks, ions are

decoupled from the magnetic field and magnetic wave trains trail with
c/ p - R scale lengths. Here numerical computations [Keilogg; 1964;.

Bardotti, et al., 1966] are necessary to treat the turbulence generated

by wave train gradients self-consistently.



The fluid arguments Suggesting that étrong shocks mightrhavé'short
scale length wave trains are probably somewhat bversimplified. lh ﬁniform’
,plésmas short wavelength oblique linear waves are often heavily Landau -
or cyclotron damped. Therefore in order féx_a<shock to steepen into a.
short dispersion length wéve train, the nonlinear excitation or growth
rate of these modes must exceed the linear, and possibly'nonliﬁear,fdamping
rates.- Failure fo dovso may constitute é cfiterionvfor tﬁé de?elopméﬁt‘
of‘a fully turbulent-sfréng shogk. It should be noted that Debye length
wave trains for an~eiectrostatic ion acdusti; shock have been chserved

in the laboratoxry [Téylor) et al., 1970}. Furthermore short C/wp

magnetic scale lengths have been observed in the earth's bow shock.

6.2 The Earth's Bow Shock

Althougl laminar low Mach number shocksvﬁave beén studied in the
;laborétory for many years [Paul, et al.,-1965; Kurfmullaev,*ef'al,, 1966;
Rﬁbéson, ei al., 1968}, high Mach number, high-8 coliisionlesé'éhocksvare,'
presently‘accessible only iﬁ space plasmas. The bow shock formed_by'the
intefaction of the super-magnetoéonic solar wind with the ¢ﬁfth;s
‘magnetésphére has rccently been probed by the high telémetry rafe safeiiité
0G0-5 [Fredricks, et a1}; 1968]. A;though'highiy-variablé, the shocks
examined by Fredricks, ‘et al_,-[iﬁ?O] are oftén characterized by: ' (see
R Fig. 8)vi | |

1. A magnetic fieldvprecursor with scale-leggths N C/wP R

2.  a large magnetic jump followed by several dséillatio;s both
with gradients "™ C/wP ; |

3. .large amplitude electrostatic turbulence with frequencies " oy,
: . +
which maximize at the C/w,  gradients in the magnetic field and are




-35-

thought.to be genefatéd-by either the ion acoustic or Bunemann‘currént
instabilities;

4. rapid protoﬁ thermaiization occufring in regions where the
electrostatic wave amplitudes maximize. 

'

Theoretically,-the most puzzling aspect of these shock observations
is what appears ﬁé be-a C/wp | trailing wave t;ain in tﬁé magnetic field.
For typical solar wind flow c;nditi'ons, MA”\' 4-10°, Bf a1 V, e £ n/2 ,
the criteria for a _C/wp dispersion discontinuity discussed in Sections
4.1 (MA > Vﬁ:7ﬁj'c056/25 and 3.1 (06 =T7/2 , Mg 2 1.5). are.genefally
not satisfied, although exceptions almost certainly occur.: Hence on the
‘basis of phase standing arguments ion inerfia should dominate the longest
scale lqngth'wavé'train.

A‘possible explanatiqn of the C/ubb scale length is the turbulent
dissipation modificatién of plaéma dispe;sion charécteristics. For the
current driven electrostatic turbulence observed in the shock precursor
and wave train structure, Sagdeev [1965] has estimated the effective
Follisién frequenéy asv Veff & wp+/10 .,_In'the bow shock B ~ 10-4 gauss
and N ~ 10 cm'§ , wp /102, V10 hence, by the argdments.of Section 5,0,‘
the ions should be~dec;up1ed from the magnetic.fieid, and the magnetic

wave train should be characterized by the electron dispersion lengths

C/u)P - R_ . TIon turbulent deCOupling might commence in -the precursor,

thus permiiting a C/u)p - R_ wave train in the center of the shock, or

it might be a feature o; the solar wind. Recently Forsland [1970] has

‘investigated electron heaf flow "current" insfébilities_in the solar wind

as a means of turbulently heating ions. If the dissipation rate from

these instabilities ié also of order wy, /10, the ion fluid behaves hydro-
+

dynamically in the solar wind; the electron fluid then carries the magnetic

field and provides the only magnetic wave train dispersion lengths.



6.3 ‘Slow Shocks in Neutral Sheet Flows

A popular hypofhesis-in space and éosmongi;alﬁphysics'is-that
'magnetic.energy can bé rapidly converied into‘pafticle and flow energy at
- X-type neutral points [Levy et al., 1964; Axford et al., 1965; Sturrock,

1967]. Petschek [1954] and Petschek and Therne [1967] have proposad a
hydromagnetic flo& in which most of the magnetié field aﬁnihilation occurs
across standiﬁg élow shocks bounding the neﬁtral sheet. It is somewhat
disturbing that although .the neutral sheet in the tail of the magnetoéphere
~has been probed by many sateilites, no direct evidence of the prediéted
slow shdckg has been found. Fﬁrthermore typicai neutrél sheet thicknesses
‘are quite thin, v 600 km [Ness, 1965] cr on the order of C/w or-.R+'.

P

+

Therefore if siow shécks indeed exist in the tail of the magnetosphere,
an ordinary two-fluid hydromagnetic model for slow shocks, which would

predict.shock th%cknesées C/(bP+ or R _, éppears to be inadequate té
account for the observed thin neutral sheets.

To obtain rapid magnetic fielq annihjilation in collisionless.slow
shocks fequires a large turbulent resistiQity which probably can only be
provided by ion acoustic or Bunemann current ihstabilities driven by steep
‘magnetic field gradients. A_reasonablé speculation is that if the

turbulent collision frequency satisfies Veff*> Q the slow shock

_ LH °
structure is dominated by short scale length electron.diSpersion with the
ion fluid decoupled from the magnetic field (Section 5.0). If the ECR :
term is-neglected, Eg. (5.22) also describes a low;é obliquelslow shock:
wave train. At the leading edge -Bz' decreases exponentially with a

scale length |

é MSL C

L v == -
C. 1.2 /7 w
Folug, -1 P

(@]

(6.1)



where M. = U/C

SL downstream tiie wave train-trails with a wavelength

sL
 givenvby'(6.1} evaiuated-about the downstream flow. - Of course, ‘if

’B_ 2 1, ECR correcfions to (6.1) must be included; the ECﬁAterm in (5.22)
is incorrect for slow shocks since terms of order BXZ/B2 have been
dropped. In the tail of the'magnetosbherev C/wP ~ 5 km so that a

complete slow shock wave train could easily reside within the "thin"

neutral sheets observed by satellites,.
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" Figure Captions

.Figuré'lf

Sketch_of-the.sﬁock structure in velocity andrmagnetic field'for‘a
. collision dominatéd hydromagnetic perpéndicularhfast shock. The magnetic
"shock is characterized by the magnetic Reihéldéllgngth; rﬁ'= C2/4ﬂ0U ,

where 0 1is the conductivity based on electron-ion collisions. If

2 S2

‘U, <C , a viscous subshock occurs in the downstream flow; ion-ion
"collisions slow and heat the plasma across the viscous Reynolds length

Tg = W/pPU , where u  is the coefficient of viscosity.

Figures 2a and 2b.

The perpendicular .fast. linear wave dispersion relation, w.vs. k. ,

1/2

is sketched for wp > |Q+QL| ~and for Bi «< 1 (Fig. 2a) and

+ . : : : Co
. B > 1 (Fig. 2b). Possible intersections of the downstream flow speed

U, with the dispersion curves are included. Shock steepening occurs in

2, csz)l/2 =C. and wk =C

locally non-dispersive regions, wk = (CA .

s
steepening is limited by dispersively propagating waves with kC/§¥ |
or le “~ 1 . The magnetic shock is described by a C/wp length

trailing wave train. If 'U2 < CS s U2 intersects the dispersion curve
: : 2 _

ngar ,kAD- A1 ; an electrostatic Debye length ion acoustic wave train
occurs in—the flow velocity and temperature, but probably noi in the

. magnetie field. For reasonably strong shogks, ‘MFZ-I ~ 1 or for Bli LV B
the appropriate dispersion curve for estimating wave train scale lengths

is Fig. 2b; note that the region over which C/wP dominates wave

dispersion is reduced.
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Figures 3a and 3b,

The ratio uf the downstream sound speed to flow speed, CS /Ué , as
2 “

" determined by the Rankine-Hugoniot relations for.a perpendicular fast

~ shock is plotted in 3a against uﬁstream Mach number M_ , with '61 as

; F.’
a parameter. In 3b the critical‘upstream Mach number, Mcrit" for which
U, = Cg is plotted against’ Bl . An ion acoustic or viscous subshock
2 B S |
results when U, <C. ;. for M, > 2.5, U, <C for all upstream B's
2 s F, .°° 2 s,

2. 1
Figure 4. o
' The perpendicular fast wave dispersion relation as\determioed by. .
“Fredrieks‘[1968]'from kioetic”theory using fhe'full Maiweli eqoation§”is
sketched.- Electromagnetic cot4off$ &k - 0) and electrostatic resonances
k +~ co) occur at harmonlcs of the ion cyclotron frequency, n9+ . The
envelopes of ‘the maximum group veloc1ty p01nts on each harmonlc branch
are g;ven by the llnes w/k = F and w/k = S . Note the approx1mate
resonancefat the lower hyorid frequency, QLH , sketched herelto }ie

between (n+1) Q+ and g(n42)9+i}

Figure 5.

A sketch of w/k against k for theioolique whistler diepersion
relation. Ion inertia dispersion, iC/QP -; increases the phase velocity
. up to the w/k-= C 0056/2 ; eleetron inertia'dispersion C/wp ,:then'
decouples the wave from the magnetlc f1e1d .and decreases w/k -to C
Debye length dlsper51on,. AD , further reduces w/k to the ion thermal
speed C, . If the upstream flow speed U intersects the dispersion
curve near 'kC/wp ~ 1 , the magnetic shock stroeture is a leading C/wP

+ ’ +
wave train. For U1 > Ca cos6/2 no waves stand upstream, and the magnetic
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shock has a short scale < C/wp trailing wave train. If U < C, occurs:

locally somewhere in the shock flow, the velocity and temperature have an

-1lon acoustic subshock wave train with AD lengths.

Figure 6.
A sketch of the three quasi-hydromagnetic waves which propagate
below the electron plasma frequencyi[see Stringer, 1963].  The dispersicn

curves are drawn for

P, S

Near k), ~ 1 , the fast wave phase speed first increases to C and
. D : i S

> IQ_[ cos6 , B<1, and C. > CI >C, .

then decreases to C+ .

” Figure'7.'

Same as Fig. 6 except that [Q | cos® > w The intermediate

p
4

P, >> 1, decreases its phase Spged to C_
near kAj v 1 and then intersects the fast branch at w v (9] coso .

“wave, w/k = Cs for kC/w

. The fast wave passes non-dispersively through C. , and then speeds up

S s

to C+ .

- Data from a single crossing of the earth's tow shock on March 12,
1968, as observed by 0GO-V [Fredricks, et.al., 1970]. The first graph is
the total magnetic field |B] in wnits of'lO‘S'Causs.' A short wavelength,
N'C/mp , magnetic precursor leads the major in;rease"in‘the field strength;
a wavé-frain-like series of oscillations with scale lengths again n C/wP _
trail in the downstream flow. The second graph is the ion flux, J,_, )
from the Lockheed ion spectrometer. Ion thermalization occurs at-the
magnetic jump. The third graph is the AC electric field spect#al gmplitqdés
"plotted against frequency; the numbers correspond to those in the fifs;

. graph of |§J . The maximum electric field amplitudes occur at the

maximum gradient of lBI .



Multiply dissipative perpehdi‘éulydr fast shock with viscous
a -~ subshock -
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- Figure 1
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Perpendlculo, fast wave with kinetic Tbeory
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Obllque whistler mode dispersion relo.lon

w/kK vs k
w/k ¢
(MA,> M,/NL cos 9/2)
ce cosB/2t | . Chup,_magnefic wave

CF- ~ subshock  if 5
L Uz < Cs2 '
| M2 N\ )
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c, | |
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| Oblliqu'e qucsi'—hydromogheﬁc modes for

wp, > l@-]cos 6

w
A=l
- cos 8 <cglop
§1,cos G- W
o LA . _ .
kc/a)_p+’f*'i kc/wé;fv“; o _ khp~1

Figure 6



{1, cos 8-

Oblique quasi-hydromagnefic modes for
| Q. fcos 8>w,

Ps

Bs |

'_Qosé < l‘CS/CA- |

kehup, ~1 Kohup ~1 Kip!
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