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ABSTRACT

The growth of a carrier wave propagating through a negative dif-

ferential mobility semiconducting sample is discussed under nonuniform

dc "bias conditions. A simple analytical expression for the overall

numerical gain is given in terms of current density and of the input

and output carrier wave velocities only. Applications to n-type GaAs

are discussed. •
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THE EFFECT OF THE NONUNIFORM DC FIELD ON CARRIER WAVES IN

.NEGATIVE DIFFERENTIAL MOBILITY SEMICONDUCTORS

It is well-known that growing carrier waves can be obtained in a

material such as GaAs which exhibits negative differential mobility.

The rates of growth of such carrier waves have been calculated by many

authors (see, for example, reference [1]), and the theory used to pre-

dict the performance of a unilateral amplifier and to predict the region

where the domains are formed. Most of these theories assumed that the dc

fields in the sample are uniform, although Shockley [2] showed some years

ago that in a semiconductor which exhibits negative differential mobility

the dc electric field is nonuniform. Therefore, an rf perturbation theory

based on the assumption of a uniform dc field is not necessarily accurate.

Recently, Williamson [3] took account of the nonuniform dc fields in a n-type

GaAs diode and carried out a computer calculation to determine the total gain

of an rf space charge wave excited at the cathode. He noticed that the

loss in the positive differential mobility region exceeds the gain in

the negative differential mobility region, unless the cathode field is

above about half threshold.

We shall show in this paper, from a purely analytic theory, that

when a space charge wave is excited at a perfect cathode there is no

net gain. We shall determine from a general analysis, conditions under

vhich net gain can be obtained.
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We consider first the dc field variation in a semiconductor of

infinite cross section and finite length in the x direction.

The semiconductor is extrinsic, let us say n-type with uniform donor charge

density pn . The carrier velocity v vs electric field E characteristic

is of the type shown in the insert of Fig. 1; i.e., the differential mobility

li, = dv/dE is > 0 for E < E. and is < 0 for E > E,; E indicates
u £ w

the absolute value of the electric field, and the subscript t stands for

threshold. The case in which the high electric field tail of the v(E)

curve displays a positive differential mobility is not considered here only

for simplicity sake, but the final formula, Eq. (5), is valid also for

that case.

From Poisson's and continuity equation it can be shown that the

dc electric field must satisfy the following equation

(1)

vhere e is the dielectric permittivity of the medium and J is the dc

current density. We are interested in determining the regions in which the

electric field is above or below threshold. To do this it is sufficient

to know the value of the field at the cathode E(O) . The sign of the

spatial derivative of the electric field dE/dx is given by the right

hand side of Eq. (l). We can distinguish two cases: (a) when the

current density is above its threshold value J > pQv, and (b) when

it is below the threshold value J < pQv. . For case (a), dE/dx is

positive everywhere, the electric field increases indefinitely starting

from E(0); if.the sample is sufficiently long it will always reach

threshold (see Fig. 1,dotted lines). For case (b), we have three
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possibilities depending on the value of E(o) with respect to E.. and Ep ,

where E, and E are the values of the electric field at which v = -J/PO

in the positive and negative differential mobility region respectively, as

is shown in the insert of Fig. 1. If E(o) < E dE/dx is positive at the

cathode, the electric field starts to increase but cannot go above E. ,

where dE/dx would become negative. The electric field is below threshold

everywhere. If E.. < E(o) < E dE/dx is negative at the cathode, the

electric field starts decreasing but cannot go below EI , where dE/dx

would become positive. In this case, the electric field is above threshold

only in a region near the cathode. If E(o) > E? , dE/dx is positive at

the cathode and the electric field increases indefinitely remaining above

threshold everywhere. These three subcases are summarized in Fig. 1

(full lines).
i

We now consider the propagation of a carrier wave in the same semi-

conductor. Using Poisson's and continuity equation for the rf fields

(time dependence exp(icct)) , one finds that the rf electric field must

satisfy a differential equation of this form

dE f
—" + HP (x) - ip (x)] E = I £/ev(x) (2)
dx

where Pr(x) = u>/v(x) , P±(x) = [J/.ev
2(x)] (dv/dE) , and Iff is the total

rf current density.

The total rf current density I is different from zero only where

.interaction with an external circuit is present. In a negative-differential-

mobility unilateral amplifier, interaction takes place only where the rf

signal is injected or extracted [̂ ,5]
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The solution of (2) can be written in the following form:
/

E (x) = E (0) exp[-F(0,x)J
rf r (3)

•f J [Irf/€v(xa)] exp[-F(x,x)]a

where F(x ,x) is a function such that

x
f
X
a

and T indicates the space intervals from 0 to -x where I . ̂  0 i In

writing (3) we used the identity F(x ,x) = F(0,x) - F(0,x ) , which can be

easily derived from (h). . •

The solution (3) has a straightforward physical interpretation. The

electric field of a carrier wave at a given x is the superposition of a

contribution due to the electric field E at x = 0 (surface excitation)

and of contributions due to elementary excitations I , dx /ev(x ) generated
t J> 3 3

at each x (bulk excitation). The function exp[-F(x ,x)] is the transfer
3 . 3

function between the input x and the output x . If p. and 3 were3. i r

constant with x , exp[-F(x ,x)] would describe a wave going from x
3. . 3

to x . Nevertheless, it is apparent from (3) and (t) that exp[-F(x ,x)]

can still be regarded as the propagation factor of a carrier wave also under

nonuniform dc bias conditions.

To compute the terminal gain of a device one should perform the integra-

tion in (3). The value of the terminal gain will depend on the actual length

and location of the regions of interaction with the input and output circuits.

In this letter we will confine our analysis to the general problem of the

growth of elementary carrier waves through nonuniformily biased semiconductors,

The overall numerical gain of a carrier wave traveling from x
**

(rf input) to x, (rf output) is G(x ,x.) = Re exp[-F(x ĵ )]̂

- I (j/ev2)(dv/dE)dx] . Using (1) to eliminate dE/dx , the integral
•'xa



can be performed analytically and the gain results

- PÔ )
Lj - PQv(xa)J

(5)

We can discuss this equation making use of the above analysis on the dc field

distributions (see Fig. 1 for a summary). The results are given in the

following table.

vC^) < v(xa)

vC^) > v(xa)

J > povt

gain

loss

J < povt
•E(O) <*zl

loss

El < E(0) < E2

loss

gain

E(0) > E2

gain

The use of Eq. (5) does not give a complete picture of the variation

of the gain with current, as v(x, ) cannot be chosen arbitrarily, for

v(x.) is a function of E(x ) , J and the distance t = (x, -x )

Nevertheless without solving the probelm in detail, it is possible to

draw some interesting conclusions on this point. We will limit ourselves

to consider only cases for which the dc field at the input is such that

E(x ) > E and the dc current density J is > Pn v(x ) . These condi-
9 \f ™"~ xJ ct

tions are'often satisfied in practice, for the electric field goes above

threshold in a short distance from the cathode and the injection of the

carrier wave can be over comparatively wide region fU] or at a point suffi-

ciently far from the cathode [1,6] to have gain. We take v(x ) fixed and

look at the variation of G(x ,x,) with J and I . When J ->pQv(x )

the dc fields tend to become uniform (see Eq. (l)), (3. becomes constant

along the sample and, with a finite value of I , G(x ,x, ) -» exp[-(dv/dE)a D x-xa

pt/ev(x )] . The gain is bounded for any finite I . The maximum of
\J <i

G(x ,x, ) does not have to occur at J = Pnv(x ) but depends on the detailed

shape of the v(E) curve. For any given dc current density such that
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J > Pnv(x ) y the gain is an increasing function of I reaching a satura-
u a

tion value G ^ = [v(x )/v ]lJ-p v ]/lJ-p v(x )] where v is the high
sac a oo u CD u a . »

electric field limit of the velocity (see the insert of Fig. 1).

To illustrate these results we will consider the case of the n-type GaAs

Following reference [1] we assume that v = v /[O.U5 + 0-55 (E/E )] for

1 < (E/Et) < 3 and v = 0.5 vfc for (E/Efc) > 3 . Figure 2 shows the

computed dependence of G(X ,x, ) on £ when the rf is injected at thresh-

old point, i.e., where v(x ) = v , for different values of (J/p v )

As might be expected, the gain saturates both with J and I because

v(x,) -» v /2 for E » E^ . The dotted line, which is the envelope to

the G(x ,x, ) vs £ curves, gives the maximum gain achievable for any

given t by changing J

Finally, we can note that the gain does not depend on frequency, since

Eq- (5) contains only dc quantities. We can also write Eq. (5) in terms of

the dc free charge density at the input p(x ) and at the output

P(xb), G(xa,xb) = [p(xb) - pQ]/[p(xa)-p0] . In this way G(xa,xb) assumes

the form of what can be called dc gain: the ratio of the net dc charge

density at the rf output to the net dc charge density at the rf input.

Let us now consider an implication of these results. They

indicate that for a unilateral carrier wave amplifier biased above thresh-

old, i.e., J > p v , the input signal must be injected at a point where

the carrier drift velocity is larger than the dc velocity at the output of

the diode. This implies likewise that the dc charge density at the input is

less than the dc charge density at the output.

We are indebted to Professor G. S. Kino for suggesting the problem

and discussing the results of this note.
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FIG. 1—Electric field E vs distance x for different values of boundary condition E(O) , with
current density J > pQv. (dotted lines) and J < PQV (full lines). The insert shows the
v(E) curve of a medium displaying negative differential mobility at electric field values
larger than the threshold field E, . For the meaning of E, and E0 see the text.
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FIG. 2—Gain vs normalized length £ /(e Et/pQ) of a n-type GaAs
diode for different values of the normalized current density


