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The work described herein was performed for NASA/LeRC under Contract
NAS 3-13315, titled "Contract for Regeneratively Cooled Graphite-~Lined Thrust
Chamber." Mr. R. A. Duscha was the NASA/LeRC project manager.

The program manager was Dr. N. E. Van Huff and the project manager
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I. SUMMARY
A. OBJECTIVES

The objectiye of Contract NAS 3-13315 was to demonstrate the
feasibility of operating a graphite~lined regeneratively cooled thrust chamber
with the FLOX-methane propellant combination. This was to be preceded by a
three-part program which included design concept evaluation and analysis,
thrust chamber fabrication, and facility preparation and injector checkout.

B. SUMMARY OF TASKS I THROUGH V

Task I consisted of the development of 12 conceptual designs and
their initial screening. This was followed by analysis of the six most
promising concepts, which are described below.

Concept I ~ Electroformed jacket, AGCarb liner.- This design
consists of a fibrous graphite liner over which is an
electroformed nickel shell containing coolant passages.

Concept II - Pyrolytic graphite insert, cylindrical shell.-
This design features a composite, replaceable liner of
various graphite materials, including a series of pyrolytic
graphite washers at the throat area.

Concept IIT - Axial segmented graphite.- This thrust chamber
is constructed of 42 axial wedge-shaped graphite sections
separated by nickel coolant fins.

Concept IV - AGCarb liner, nickel segmented shell.- In this
design, a fibrous graphite liner and electroformed nickel
shell are used as in Concept I; however, in this design,
the shell is in three segments, permitting the liner or any
segment to be replaced.

Concept V ~ AGCarb liner, copper milled passages.- This
design employs a fibrous graphite liner electroformed or
plasma sprayed copper with milled passages, a split copper
throat segment, and a cylindrical structural shell.

Concept VI - Channeled graphite liner, nickel shell.- 1In
this design, a bulk graphite liner is grooved on the out-
side diameter to form axial coolant passages. The outside
shell is electroformed nickel.

Concept I was selected for detailed design and fabrication. A program was
accomplished to further characterize the AGCarb gas-side material prior to the
completion of the design. This program tested AGCarb material specimens of



T, B, Summary of Tasks I Through V (cont.)

the exact configuration to be used to obtain mechanical properties data. The
specimens were fabricated by San Rafael Plastics Company and testing performed
by Southern Research Corporation (see Appendix A for test data).

Task I also included the design of an uncooled workhorse or ''streak”
chamber and a copper heat sink chamber which could be used for injector evalua-
tion. These designs were completed including heat transfer and stress analyses.

Task II consisted of the fabrication of the uncooled and regenera-
tively cooled thrust chambers. The workhorse chamber consisted of a stainless
steel housing which contained an ATJ graphite liner. Two extra liners were
fabricated for use as replacements. The copper heat sink chamber contained an
AGCarb throat insert which was intended to permit firing durations up to
8 sec. An equivalent all-copper throat was calculated to provide a 2- to 3-sec
duration capability. Two spare AGCarb throat inserts were fabricated.

Task IIT congisted of two subtasks: (1) Facility Preparation and
(2) Injector Checkout Firing. The first subtask included the buildup of a
propellant feed system on an existing test stand. This system contained a heat
exchanger to cool gaseous methane to -120°F (189°K). The second subtask con-
sisted of six test firings of the workhorse thrust chamber to check the facility
operation and ensure that the injector was functioning properly. Test firing
of the heat sink chamber was deleted to permit additional duration testing of
the cooled thrust chamber.

The tests with the workhorse chamber demonstrated proper functioning
of the facility and injector. Six tests were performed with a total duration
of 23 sec. There was no streaking or erosion of the thrust chamber. Slight
soot deposits were evident on the chamber wall.

In Task IV, one of the two cooled thrust chambers fabricated was
tested for a total duration of 540 sec. This test series consisted of 22 start
and stop cycles including a cycling test which consisted of eight pulses of
5 sec on and 2 sec off. The thrust chamber was inspected after each test and
throat measurements taken. The throat diameter measurements varied from 1 to
2 mils (0.0254 to 0.0762 mm) under prefire diameter measurements, indicating an
absence of throat erosion and slight varying soot buildup. Heavy socot deposits
were noted in the cylindrical section of the thrust chamber. These deposits
varied in thickness from a few mils up to 1/8 of an inch (3.17 mm). Variations
in thermocouple readings indicated a continual buildup and flaking off of layers
of soot occurred during the test firing. The lack of thrust chamber deteriora-
tion during the test series resulted in the decision to accomplish the demon-
stration using a single unit. The untested second thrust chamber was delivered
to NASA Lewis Research Center.

nNo



I, B, Summary of Tasks I Through V (cont.)

Task V included monthly reports, posttest analyses, and the
final report. Posttest analyses were limited to X-ray to determine throat
area thermocouple location and posttest measurements and visual inspection.

C. CONCLUSIONS AND RECOMMENDATIONS

(1) The fabrication and operation of a fibrous graphite thermal
barrier contained within an electroformed nickel coolant jacket was demonstrated
to be feasible using FLOX-methane propellants. The thermal, mechanical, and
chemical properties of the fibrous graphite composite material are sufficiently
well defined. Fabrication techniques for the fibrous graphite material and the
electroformed nickel processing are sufficiently state~of-the-art that further
development would be necessary only if there were substantial departures from
the size and geometry of the units tested. Changes in propellant which sig-
nificantly alter the chemical environment to which the graphite was exposed
could require further gas-side material development.

(2) It is recommended that further testing be performed with
existing hardware to define the failure limits of the design. This should
include testing at increased chamber pressure and higher mixture ratios to
increase heat flux while reducing coolant flow.

(3) Since the mechanical capability and thermal shock advantages
of the fibrous graphite - regeneratively cooled nickel thrust chamber are
established, it is also recommended that studies be initiated to investigate
the use of fibrous graphite in applications with propellant combinations other
than FLOX-methane. This investigation would have the twofold objective of
defining the chemical environment capabilities of fibrous graphite and improving
its corrosion resistance to combustion products of other propellant combinations.

'



II1. INTRODUCTION

A. BACKGROUND

The employment of high-energy propellants in liquid bipropellant
thrust chambers has resulted in indications that regenerative cooling of
metal-walled thrust chambers is inadequate at the higher heat flux environment.
The design limitations of conventional regeneratively cooled engines employing
tubular designs have been overcome by the use of nontubular coolant passages
in high conductivity materials such as copper and nickel. Although these
concepts permit the designer greater flexibility in tailoring flow rate and
velocity of coolant to suit heat input predictions, thermal barrier systems will
further improve heat flux capability.

Graphite and fibrous graphite composite materials have a demonstrated
ability to withstand temperatures of 5000°F (3033°K) while subjected to a HF environ-
ment. These properties result in these materials being prime candidate thermal
barrier materials. This program was structured to combine the features of non-
tubular construction with the use of graphitic thermal barrier materials to produce
a regeneratively cooled thrust chamber with a heat flux capability and reliability
beyond that attainable with metal or refractory-coated metal structures.

B. OBJECTIVES
The objectives of this program were to determine both analytically
and experimentally the feasibility and limits of combining regenerative cooling
technique with a passive high temperature, thermal resistant material such as
graphite.
C. DESIGN REQUIREMENTS

The design requirements established were as follows:

Thrust = 5000 1b

Chamber pressure = 500 psia

Area ratio = 100 (may be tested with reduced
expansion)

Propellants | = FLOX-liquid methane

Mixture ratio = 5.25

Coolant mode = Regenerative using fuel

Injector = To be supplied

Coolant temperature at inlet = 250°R (139°K)

A



II, C, Design Requirements (cont.)

Coolant temperature rise 1450°F (max) (1061°K)

Coolant pressure at outlet Two times chamber pressure

Coolant pressure drop Minimum

Gas-side wall temperature 4000°F (max) (2477°K)

I

Gas-side material Graphite or graphitic

D. APPROACH

The program was divided into five major tasks with subtasks as
shown. This enumeration was established as the project work plan. The
descriptions and discussions in the succeeding sections will follow the
sequence noted.

REPORTING CATEGORY

TASK I - DESIGN AND EVALUATION

Preliminary Conceptual Design
Design Evaluation

Uncooled Chamber Designs
Final Designs

N

TASK II - THRUST CHAMBER FABRICATION

Uncooled Chambers Fabrication
Cooled Chambers Fabrication

(o)W, ]

TASK III - FACILITY PREPARATION AND INJECTOR CHECK

7. Facility Preparation
8. Injector Checkout Firing
TASK IV

9. Cooled Chamber Tests
TASK V
10. Posttest Analysis

11. Monthly Reports
12. Final Report



ITT. TASK I ~ DESIGN AND EVALUATION

A. SUBTASK 1. PRELIMINARY CONCEPTUAL DESIGNS

Prior to development and screening of conceptual designs, candidate
materials were listed and their thermal and mechanical properties categorized.
The properties of the propellants were obtained and considerable study and
analysis were performed on published results of other NASA FLOX-methane programs.
Methods of analysis were established for the heat transfer and stress analyses
planned, and a preliminary heat transfer and stress analysis was performed on
the electroformed nickel-AGCarb liner design concept as a method of confirming
the models and computer programs.

Twelve design concepts were identified for further study. Perfor-
mance and fabrication considerations reduced these to six concepts which
included the desirable features of the original twelve. These are presented
in Figures 1 through 6 and discussed in the next section of this report.

B. SUBTASK 2. DESIGN EVALUATION

Program requirements included the analysis of candidate designs in
sufficient detail to permit prudent selection of two designs for fabrication
and testing. Each candidate was examined for fabrication feasibility, thermal
limitations, and structural adequacy. Problem areas and deficiencies were
identified for each concept and considered in a final rating to determine the
concepts to be recommended for design and fabrication. The results of. the
study indicated that three of the six concepts studied were feasible. One of
these was recommended for final design, fabrication, and testing. The three
designs are designated as: (I) Electroformed Jacket, AGCarb Liner, (II) Pyrolytic
Graphite Insert, and (III) Axially Segmented Graphite, Cylindrical Shell. The
final review by NASA resulted in selection of the AGCarb liner~electroformed
nickel concept for final design and fabrication. It was further agreed that,
in lieu of design and fabrication of a second concept, further characterization
of AGCarb mechanical and thermal properties was desirable.

The following paragraphs summarize the design studies of each of
the six design concepts. Each concept is identified and considered individually.
The structural analyses performed are not included in this report due to the
fact that theanalyses were preliminary and carried only to the point of deter-
mining basic feasibility and identifying problem areas. A complete analysis of
the final design, which illustrates the methods of analysis employed, is pre-
sented in Appendix B. '

1. Concept I. Electroformed Jacket, AGCarb Liner (Figure 1)

a. Description and Fabrication Approach

The design consists of an AGCarb fibrous graphite flame
liner encased in an electroformed nickel regenerative cooling jacket. Neither
the liner nor jacket are replaceable individually. A flat wrap parallel to the

[x)
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I1T, B, Subtask 2. Design Evaluation {(cont.)

surface is the preferred fabrication method for the AGCarb liner. This results
in a thin wall in the throat area which is not desirable from a handling stand-
point. There would also be a reduction in conductivity should a delamination
occur. For these reasons, a 60° to the surface layup angle was selected. TFor
ease of fabrication, construction is of four axial segments. The throat area
segment is made by compression molding. The others are made using 45° bias
tape wrapped 60° to the surface to area ratio 2.8:1 where a flat wrap parallel
to the surface is used. At area ratio 16:1, the regenerative jacket ends and
the liner becomes a free-standing, radiation-cooled nozzle.

This design is lightweight in that the AGCarb and nickel
jacket are at minimum thickness. The jacket is electroformed onto the graphite,
permitting the jacket to follow the liner contour exactly. The electroforming
also produces a joint of minimum thermal resistance. AGCarb was chosen for the
flame liner because it is readily fabricated in large sections and is less
brittle than the bulk graphites. AGCarb is an Aerojet-developed fibrous
graphite composite material having superior strength and higher density and con-
ductivity than other fibrous graphites. Nickel was selected for the cooling
jacket because of its compatibility with the methane and the combustion products,
its ability to be electroformed, and its good conductivity and reasonable
strength at elevated temperatures.

The fabrication technique to be followed will be to
electroform a layer of nickel over the AGCarb liner. The layer will be at
least 0.080 in. (2.03 mm) thick. Cooling channels will be milled into the
nickel layer. The cooling channels will be filled with a low melting tempera-
ture core material and then covered with a 0.060 in. (1.524 mm) or greater
layer of nickel after which the wax core material is removed. Flanges and
inlet and outlet manifolds will be attached by electron beam welding.

b. Thermal Analysis
(1) Thermal and Hydraulic Summary

The thrust chamber shown in Figure 1 is regenera-
tively cooled to an area ratio of 16:1. Coolant enters at an area ratio of 4
and flows aft through 75 channels which are 0.1 in. (2.54 mm) deep and 0.078 in.
(1.98 mm) wide to an exit area ratio of 16:1. At this point, the coolant turns
around and flows back up to the 4:1 area ratio through the same quantity of
adjacent channels of the same configuration. The depth of the channels carrying
the coolant at this point is reduced linearly to 0,040 in. (1.015 mm) at a
station slightly downstream of the throat. The channel depth is maintained at
0.040 in. (1.015 mm) from this point to the injector. At an axial station of
12.2 in. (0.31 m), the channel width is increased from 0.078 in. (1.98 mm) to
0.094 in. (2.39 mm) in order to minimize pressure drop. This larger channel
carries the fluid to an axial station of 10.1 in. (0.256 m) where the rib

13



II1, B, Subtask 2. Design Evaluation (cont.)

thickness reaches 0.120 in. (3,025 mm). At this point, the 75 0.094~in.-wide
(2.39 nm) channels are bifurcated into 150 channels 0.062 in. (1.575 mm) wide
to further reduce pressure drop. The pressure drop for this design is 170 psi
(1.172 x 103 N/mz). The maximum and minimum rib thickness are 0.160 in.
(4.075 mm) at the exit and 0.0445 in. (1.131 mm) at the throat.

Rib thickness in the chamber is 0.064 in. (1.630 mm).
The liner thickness has been sized to maintain gas—side wall temperatures at
approximately 4500°F (2750°K) and the nickel below 1250°F (950°K). The coolant
discharge temperature at steady-state conditions is 300°F (422°K). Coolant
mass velocity (w/A), temperature, and pressure profiles along the axis of the
chamber are presented in Figure 7.

(2) Steady-State Thermal Conditions

Thermal analysis of this concept was conducted in
two phases involving several design iterations. Liner thickness and coolant
velocities were first hand calculated for the chamber, throat, and exit nozzle
stations to determine the effect of AGCarb-101 thickness and orientation on
wall temperatures. The results of the chamber station analysis are presented
in Figure 8. Design variables considered in the analysis were: liner thick-
nesses of 0.25 to 0.35 in. (6.36 to 8.90 mm); fiber orientations of 30 and 60°
with the hot gas stream; and two states of interface contact, full thermal
contact and a contact coefficient of 5500 Btu/hr-ft2-°F (17,300 W/hr-m2) based
on data of Figure 9. The results of this analysis, shown in Figure 8, demon-
strated that maximum wall temperature was not sensitive to substantial varia-
tions in liner wall thicknesses and contact resistances. This analysis also
demonstrated that the 607 fiber orientation angle produced more favorable gas~—
side temperatures than the shallower angle.

Selection of the liner thickness was based on
previous test histories of Aerojet's AGCarb chambers wherein this material
experienced numerous thermal cycles to temperatures exceeding 5000°F (3033°K).
The thickness selected for the analysis was 0.35 in. (8.9 mm) in the chamber,
0.130 in. (3.3 mm) at the throat, and 0.60 in. (15.2 mm) at an exit area ratio
of 4.0, These resulted in gas—-side wall temperatures of approximately 4500°F
(2760°K), 4700°F (2860°K), and 4400°F (2700°K), respectively, at these loca-
tions, assuming that the electroforming process provides full thermal contact.

The selected liner configuration simplified fabrica-
tion by use of linear tapers between these calculated locations.

The 150/75 1-1/2 pass coolant channel arrangement
selection is based on the parametric analysis detailed in Figure 10 where it
is shown that the number of channels does not significantly influence thermal
profiles. The specific channel width conforms to standard tool sizes and the

L4
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III, B, Subtask 2. Design Evaluation (cont.)

depth is varied to provide the required coolant mass velocity. Bifurcations
and variations in the channel width were employed as the method of preventing
the rib width from becoming either too large or too small. It was desired to
hold the minimum rib width at about 0.050 in. (1.27 mm). The actual minimum
achieved in this design is 0.0445 in. (1.13 mm) at the throat station, The
maximum allowable rib width is a function of the heat flux and coolant velocity;
larger rib widths are both acceptable and desirable in the low flux zones in
order to make better use of the deeper coolant channels. Excessive rib widths
in the high flux zones would have caused locally high nickel wall temperatures.

(3) Transient Thermal Conditions

The three~dimensional steady-state and transient
thermal analyses conducted on this design consider the influence of the
parameters discussed on the resulting temperature profiles. The results of
the final thermal analysis for the selected design are presented in Figures 11
and 12. The first is a summary figure depicting the steady-state axial pro-
files on the various surfaces and interfaces which also defines the significant
dimensions employed in the analysis. Figure 12 provides the summary of the
transient analysis showing the rate at which the flame surface, nickel interface,
and coolant bulk temperature at the discharge end approaches the final steady-
state temperatures. Figure 13 is typical of the 15 thermal maps constructed,
which provide a detailed three-dimensional thermal profile for the design
described in Figure 11. Fach of these 15 maps represents the chamber cross—
section at an axial distance from the injector noted at the top of the page.

As can be seen from the format, these use direct computer printouts in pictorial
form.

(4) Transient Thermal Characteristics

Review of the transient temperatures for this design
(initial temperature at -200°F [145°K]) indicates that steady-state thermal
conditions are first achieved in the throat, with the forward and aft ends
trailing because of lower heat fluxes and thicker graphite liners. Since maxi-
mum inside to outside temperature differentials are experienced at steady-state
operations, a structural analysis of the transient is not considered necessary.

C. Summary

Since the fabrication of the AGCarb liner could encounter
delaminations during the graphitization process, three sets of components should
be fabricated to ensure that at least two sets survive the entire fabrication
cycle. The fabrication techniques used in producing the entire assembly are
state—of~the-art and problems are expected to be minimal.
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ITI, B, Subtask 2. Design Evaluation (cont.)

The thermal analysis performed indicates reasonable
temperatures can be maintained if the jacket and liner surfaces remain in
contact. If separation occurs, an increase in temperature will result due to
the addition of a thermal resistance at the interface. Available data on
contact vesistance indicate that a minimum contact pressure of 500 psi
(3447 % 103 N/m2) is required to permit a reasonable prediction of contact
resistance. The preliminary stress analysis performed indicates the contact
pressure to be 492 psi (3392 x 103 N/m2) in the chamber section and 200 psi
(1380 x 103 N/m2) in the throat. A transient analysis at one second predicts
values of 492 psi (3392 x 103 N/m2) in the throat and 818 psi (5640 x 103 N/m2)
in the chamber. This did not include the effect of a preload of approximately
34 psi (234 x 103 N/m2) due to the shrinkage of the electroformed nickel upon
cooling from the bath temperature of 130°F (328°K) to ambient. The predicted
thermal loads are based on the expansion properties of pure wrought nickel.
These agree with the room temperature properties of electroformed nickel as
published by Electroforms Inc. However, it is reported by Kura, et al. (Ref 1),
that other investigators have found the coefficient of linear expansions of
electroformed nickel at room temperature to be 3.1 x 1076 to 6.3 x 1076
in./in./°F (1.72 x 10-6 to 3.5 x 10=6 m/m/°K). This compares to 7.4 (4.12) for
pure wrought nickel. The use of pure nickel properties is therefore conserva-
tive in that lower interface pressures are predicted than might occur.

The stress analysis performed for this design indicates
margins of safety calculated to be all positive except in the nozzle area.
Those which are below 0.2 dictate a reassessment of properties data or local
redesign to gain greater margins.

2. Concept II. Pyrolytic Graphite Throat Insert,
Cylindrical Shell (Figure 2

a. Description and Fabrication Approach

This design features a composite replaceable inner liner
of various graphite materials which were selected for their specific thermal
and structural properties. The liner is contained in a precompressed state
(shrunk fit) within a cooled cylindrical metal shell. Shell materials con-
sidered are Nickel 200, Hastelloy B, and Columbium 103. The nozzle extension
is attached to the metal case by electron beam welding,

(1) Liner Material Selection

The liner in the chamber section is AGCarb-101
formed from a 45° bias tape wrapped at an angle of 60° to the direction of gas
flow. This is followed by: a short section of ATJS at the start of the conver-
gent section, a series of pyrolytic graphite washers in the throat section, and
additional bulk graphite downstream of the throat. The exit nozzle is formed
from flat-wrap AGCarb-101.



I1I, B, Subtask 2. Design Evaluation (cont.)

Grafoil is used at all joints except between the
pyrolytic graphite washers. The Grafoil is used to distribute joint loads
uniformly and take up tolerances of individual parts. During firing, each
washer undergoes a nonuniform expansion ranging from about 0.010 in. (0.254 mm)
on the flame surface to nearly nothing on the cooled surface. To allow for
this, a 0.012-in. (0.302 mm) copper disc is positioned between each pyrolytic
graphite disc as shown in the drawing. The main function of the shim is to
keep the washers tight at all times and allow for the expansion of the pyrolytic
graphite in the axial direction at the flame surface. Consideration is also
given to substituting Grafoil for the copper since Grafoil has higher tempera-
ture capability and can be compressed more than the copper.

The AGCarb-101 chamber liner is used because of its
demonstrated excellent erosion resistance, its availability in large sizes,
and because it results in a desirably thin assembly due to its low thermal con-
ductivity. Where the convergent section begins, ATJS is used because the
material thickness increase in this area results in the need for a higher
conductivity material to keep the surface temperature below 4500°F (2756°K).
At the point where the surface temperature significantly exceeds 4500°F (2756°K),
the material is changed to higher conductivity pyrolytic graphite. Bulk graphite
is again used downstream of the throat. The nozzle extension is a parallel-to-
surface wrapped - AGCarb liner with an electroformed nickel shell. The nozzle
extension assembly is welded to the chamber to provide a smooth flow path
between components as well as a minimum amount of material.

(2) Jacket Material Selection

The cylindrical jacket will be made from Nickel 200,
Columbium C-103, Columbium C-129, or a composite where the inner shell will be
Nickel 200 and the outer shell Hastelloy B. A combination of Nickel 200 for
the inner and outer shell with a reinforcing jacket of Hastelloy B or columbium
was also considered.

(3) Coolant Channels

The coolant circuit in this design consists of a
single-pass 150-channel arrangement. Coolant enters at a 16:1 exit nozzle area
ratio and proceeds toward the injector. Channel cross sections are 0.078 in.
(1.98 mm) wide, 0.050 in. (1.27 mm) deep at the inlet and remain constant to an
area ratio of 4:1 downstream of the throat. At this point, the coolant mass
velocity is increased by reducing each channel to a width of 0.062 in. (1.51 mm)
and a depth of 0.040 in. (1.02 mm). These dimensions are maintained constant
to the discharge end at the injector face in order to simplify fabrication.
Channel width in the forward chamber region could be increased to reduce coolant
pressure drop; this was not recommended because it increases fabrication costs
and reduces the structural safety factors. The coolant pressure drop for this
design is 153 psi (1055 x 103 N/m2).



III, B, Subtask 2. Design Evaluation (cont.)

b. Thermal Analysis
(1) Steady~-State and Transient Wall Temperatures
Thermal analysis of this design was conducted
employing the analytical procedure and models developed for Concept I. The

thermal design goals and actual design achievements are summarized as follows:

Thermal Contact

Goal Best Estimate Maximum
Maximum gas-side 4000-5000°F 5350°F (3240°K) 5150°F (3125°K)
temperature (2500-3040°K)
Maximum jacket 1250°F (950°K) 930°F (775°K) 1020°F (825°K)
temperature
Interface contact 1000 psi min 200 psi (l378x103 N/m2) nickel
pressure (6894x103 N/m?) 400 psi (2758x103 N/m2) columbium

Axial steady-state and thermal transient temperature profiles for the gas-side,
graphite-nickel interface and backside of the coolant jacket are provided in
Figure 14. An insert to this figure provides the coolant bulk temperature at
the discharge of the jacket as a function of time.

The configuration of this design is dictated by the
requirements for maintaining a cylindrical outer shell and a chamber diameter
compatible with 5.25 in. (0.1333 m) injector face diameter. The throat diameter
is in accordance with thrust and chamber pressure specifications. These cri-
teria result in a minimum diameter for the cylindrical shell of 5.950 in.
(0.1511 m), which in conjunction with the chamber contour result in a prescribed
thickness for the graphite liner in all locations except the divergent nozzle.

The thermal design options are reduced to selecting
the type of graphite to be employed at each station and the coolant velocities.
The thickest graphite sections are in the throat where the walls are 1.67 in.
(0.0422 m). A high thermal conductivity material such as pyrolytic graphite
was therefore selected for this location. With these restrictions and an assumed
contact coefficient of 5500 Btu/ft2~hr-°F (31,219 W/hr-m2-°K), gas-side wall
temperature in the throat region is predicted to be 5350°F (3227°K). Although
higher than desired, this temperature is not considered excessive. Analyses
showed that, if perfect contact between the graphite and jacket could be
attained, the predicted maximum graphite temperature would drop to 5150°F (3116°K)
and additional reduction in wall temperatures could be attained by increasing
the coolant velocity. This, however, would be at the expense of increased
coolant pressure drop and fabrication complexity.
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Thermal analyses were conducted for a nickel coolant
jacket. The maximum temperature predicted for this material is 930°F (722°K)
at an axial station of 10.6 in. (0.269 m) from the injector face. This tempera-—
ture could rise to 1020°F (822°K) if perfect thermal contact between the liner
and the shell were realized. The predicted temperatures also apply to a
columbium shell since its thermal properties are very similar to nickel. A
composite shell consisting of a nickel inner sleeve and a Hastelloy B outer
sleeve would run slightly hotter on the inner wall and slightly cooler on the
outer surface because of the lower thermal conductivity of the Hastelloy
material.

(2) Potential Problem Areas

An analytical uncertainty is encountered in this
design at the interface behind the pyrolytic graphite throat discs. The
uncertainty is in the degree of thermal contact which could be achieved because
of the low interface compressive loads predicted by the structural analysis.

(3) Thermal Advantages

The design employing the pyrolytic graphite throat
insert in disc form is considered to have the highest durability, be most
suitable for use at higher chamber pressures, and have the least pressure drop.
Durability is considered maximum because the substantial thickness of graphite
in the throat would preclude the possibility of changing the thermal charac-
teristics if small amounts of flame surface wear should take place. The design
can be uprated with slight modifications to very high chamber pressure by con-
verting the pyrolytic graphite washer throat to a combined regeneratively and
transpiration—cooled design. The pressure drop is lowest with this design
because the heat flux to the coolant is considerably reduced due to the large
radial heat conduction effects.

c. Summary

Fabrication of the cylindrical jacket and the liner
components as shown is relatively simple and no problems are anticipated;
however, as evident from the stress analysis, the nickel outer shell yields
and may result in a decrease in contact pressure after the first cycle, which
would result in higher temperatures in both the graphite and jacket. The
following options are available in the event re-analysis confirms that nickel
yields excessively:

(1) The use of columbium as both the inner and
outer coolant jacket shells.,
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(2) The use of a columbium jacket over the
nickel coplant jacket.

(3) The use of a Hastelloy B jacket over the
nickel coolant jacket.

The use of columbium complicates the joint of the cylin-
drical chamber to the nozzle. A relatively simple Nickel 200 to electroformed
nickel joint is shown. - With Option (1), electroformed copper would be used
over the AGCarb for the nozzle. Columbium and copper would be welded with
the electron beam process. This is not, however, easily accomplished and
would require some experimentation to develop the proper joint design, estab-
lish the strength, and develop the process. ' Options (2) or (3) were better
solutions to the joint problem where electroformed nickel would be electron
beam welded to Nickel 200.

The structural analysis indicates the use of nickel is
questionable; columbium provides adequate margins but increases costs and
fabrication problems. Hastelloy B was not analyzed, but a comparison of its
tensile and thermal expansion properties indicates it may be acceptable. The
joint at the cylindrical section to the nozzle extension was not analyzed. A
bolted flange joint with seals was considered but set aside in favor of the
relatively simple nickel-to-nickel welded joint shown.

3. Concept III. Axjally Segmented Graphite (Figure 3)

a. Description and Fabrication Approach

A unique concept is presented in the axially segmented
design. The chamber is made from 42 axial, wedge-shaped graphite sections
with cooling fins located between each graphite wedge.

This design is simple to fabricate in large quantities.
The graphite wedges can be cut from standard-size plate with little waste. The
cooling fins can be etched using Aerojet's platelet photoetching technique to
achieve the exact flow pattern desired. The fins can be sealed by diffusion
bonding or brazing a flat strip over the etched manifolds. Diffusion bonding
is the preferred method to preclude blocking channels with braze alloy; however,
the absence of available equipment of the required size would necessitate the
use of brazing, Plugging and other braze flow problems can be minimized by the
use of electroless nickel plating of the components to be brazed. The use of
electroless nickel as the braze alloy has been successfully used by Aerojet on
several recent programs. The advantage of the electroless nickel technique is
that the quantity and location of alloy can be controlled. Each individual
cooling fin can be X~ray inspected and water flowed to ‘determine the flow rate
at rated conditions prior to assembly into the chamber.
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After assembly of the graphite wedges and cooling fins,
the entire assembly will be covered with an electroformed nickel shell. The
shell acts to hold all the components in place, prevent external leakage, and
is the structural support for the assembly. Manifolds to feed each fin will
also be formed by electroforming. A significant feature of this design is
that, should the graphite develop cracks, heat flow and structural integrity
would not be affected. Insulation placed between the graphite wedges and the
electroformed shell will reduce heat flow to the shell. Candidate insulation
materials are the graphite felts.

The wedges and fins are held in place by steel bands at
at least four locations with the locations masked and the electroforming to a
thickness of 0.020 inch (0.51 mm) done between the bands. Following removal
of the bands the electroforming is continued. A machine cut can be taken to
achieve constant thickness or the first area to be electroformed can be masked
until a thickness of 0.020 inch (0.51 mm) was attained in the original band
areas. A slight preload is also attained in the electroforming process due
to shrinkage of the shell on cooling from 130°F (328°K) to ambient.

Consideration was also given to alternate fabrication
approaches. Using a conical chamber design, it is possible to fabricate a
shell by spinning. Assembly of the coolant fins and graphite wedges from the
inside would present a problem in that the taper would prevent the final seg-
ment or wedge from being installed.

Another method considered for applying an outer shell
is the ribbon wrap and braze technique accomplished by Solar on some NASA
chambers several years ago. Although reasonably successful, the technique
is not considered state of the art.

b. Thermal Analysis
(1) Design Analysis

The axially segmented design is cooled via 42
radially oriented fins that are compressed between an equal number of bulk
graphite wedges running the axis of 16;1 regeneratively cooled portion of the
chamber. The configuration of the 42 sections was based on a minimum graphite
thickness of 0.2 inches (5.08 mm) at the throat. Coolant enters trhe fins at
an area ratio of 16:1 and flows toward the injector through 42 coolant pass-—
ages (one in each fin), No bifurcations are required for this design. Fach
fin consists of a 0.030-inch (0.76 mm) wide coolant channel with a 0.020-inch

(0.51 mm) thick nickel or copper side cover plates with the coolant mass
velocity controlled by varying the effective channel height. FEach coolant
channel contains structural supports to prevent collapse of the side cover
plates under compression load. These supports, however, are not bonded so that
the hydraulic load within the coolant channels (1000 psi) (6894 X 103 N/mz) can
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III, B, Subtask 2. Design Evaluation (cont.)

force the walls against the graphite, ensuring good contact pressure when the
engine is running. Figure 15 summarizes the hydraulic characteristics of this
design. Two pressure and temperature profiles are shown. One corresponds to
the configuration of Drawing 1159044 (Figure 3) which is not optimized for
wall temperature in the divergent nozzles. The second curve corresponds to a
uniform wall temperature of 4500°F (2755°K).

The problem of temperature stratification along the
radius of the coolant stream was circumvented by placing continuous intra-
channel mixing devices along the flow path as shown in Figure 16. The mixing
device consists of a 0.005-inch (0.127 mm) high vane on the side walls which
produces an upward flow along one side of the channel and a downward flow on
the other, causing a slow rotation of the flow within each fin. This device
would result in increased pressure drop. The use of copper for the fin
material would help minimize temperature stratification.

(2) Steady State Analysis

Analyses were conducted for ATJS and AXF-5Q grade
graphites. Transient and steady state axial temperature profiles for this
design are presented in Figure 17 using AFX-5Q properties. Maximum gas—side
wall temperatures are calculated to be about 4500°F (2755°K) in the chamber,
4600°F (2811°K) at the throat, and 3000°F (1922°K) at the 16:1 exit plane.
The maximum temperatures of 5000°F (3033°K) for the region upstream at the
throat result from the assumption of a linear variation in graphite thickness
between the chamber and the throat and simultaneous changes in the coolant
mass velocity (see Figure 15). This linear variation is not a fabrication
limit for this concept and, in the process of optimizing, the wall thickness
and coolant channel height would be reduced to provide a temperature value
equal to or less than the throat temperature.

Maximum backside temperatures for this design are
predicted to be 750°F (672°K) at the midpoint of the chamber. The temperature
of the nickel case can be controlled by placing a low conductivity material
between the graphite and the electroformed case while maintaining good con-
tact between the case and the fins. The temperatures shown in Figure 17 are
based on an analysis without such insulation and therefore represent a maxi-
mum temperature.

Calculations made to determine contact pressures
indicated pressures of 500 to 1000 psi (3447 X 103 N/m2) (6894 X 103 N/m2) in
the throat area and 200 to 300 psi (1378 X 103 to (2068 X 103 N/m2) in the
chamber section. This analysis conservatively neglected the effects of three
factors, all of which tend to increase interface pressures. These are: (1)
tube expansion under internal pressure of coolant, (2) preload due to con~
traction of the electroformed nickel upon cooldown from a bath temperature of
130°F (328°K) to ambient, aud (3) preload obtained in assembly by wedging the
last kevstone fin into place.
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ITI, B, Subtask 2. Design Evaluation (cont.)

An additional gain can be made in interface pressure
by substituting copper in place of nickel as the fin material. Two advantages
are realized by this action: one is the increase in expansion due to the
higher coefficient of copper (9.8 X 10-6 in./in./°F) (5.44 X 10-6 m/m/ °K)
(4.12) for nickel, and the second is the theoretical improved heat transfer result-
ing from increased surface contact due to the lower yvield strength of copper.

In comparison with other concepts, the fabrication
operations of this concept probably require tighter controls. This can be
interpreted as a somewhat higher development risk factor which may be out-
weighed by an improved potential for high PC and larger chambers.

(3) Transient Analysis

The transient analysis shown in Figure 17 shows
that this design has a long start transient. The slow heating rates are due
to the thick graphite walls employed in the chamber and in the exit nozzle.
Design optimization would require a tradeoff between coolant bulk temperature
rise and pressure drop at steady state operation and time to achieve steady
state conditions. In the current configuration, the graphite wall at the
16:1 area ratio is 1.315 inches (33.4 mm) thick and has a flame surface
temperature of 3100°F (1977°K). Figure 17 shows the nozzle to heat very
slowly downstream of the throat. Increasing the wall thickness to provide a
4500°F (2755°K) surface temperature is calculated to reduce the pressure drop
at steady state conditions from the current value of 215 psia (1,482 X 103 N/m2)
(1,034 X 103 N/m2); however, this would make the engine heavier and slower re-
sponding. A possible solution to this is to employ a thinner AGCarb-101 in
the exit nozzle or place an insulator between the fins and the graphite.

This design is capable of operating at chamber
pressures higher than 500 psia (3,447 X 103 N/m?) because the graphite liner
could be made thinner and the coolant pressure drop is not excessive. Very
high pressure operation could be achieved if small amounts of film coolant
are added at the start of the convergent nozzle. In fact, if the throat re-
covery temperature were reduced to 5000°F (3033°K) by local film cooling, the
pressure level at which the engine could operate would be controlled completely
by structural considerations.

c. Summary

This concept has many more component parts than other
concepts considered. However, cost estimates from machining, photoetching
and brazing vendors show that, in spite of the number of pieces involved, over-
all costs are reasonable. All bProcesses are state of the art and experi-
mentations to develop the assembly technique would be minimal. The machining
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ITI, B, Subtask 2. Design Evaluation (cont.)

of the graphite wedges would require close dimensional, flatness and parallelity
tolerances. This requirement increases the cost of fabrication considerably

and makes this a major cost item. It is felt, however, that the use of tape
contolled machine tools with automatic gauging devices would provide a means

for reducing machining cost to a more reasonable figure when quantity pro-
duction is considered.

The raw material for the graphite wedges, AFX-5Q pro-
duced by Poco Graphite, Inc., is an equally high cost item. A reduction in
cost on a quantity basis cannot be predicted at this time; however, the
potential exists. The key to the apparent feasibility of the design is the
relatively high thermal expansion of AFX-5Q. No competitive graphite product
has the thermal expansion required to obtain high pressure at the fin-wedge
interface.

Small disparities due to local warpage or distortion
occurring during brazing of the fins would be eliminated by Blanchard grinding
both sides. This operation is not expensive and would not affect performance
as thickness is not critical to heat transfer where nickel or copper are used.

. The thermal analysis indicates all temperatures to be
within design limits. Thermal gradients are less in this design than in the
other concepts considered and, due to its configuration, the potential exists
to hold average temperature lower than competing designs. Success, however,
would be highly dependent on the ability to hold the mating surfaces in
intimate contact at a minimum of 500 psi (3,447 X 103 N/m2) loading.

4. Concept IV, AGCarb Linner, Nickel Segmented
Shell, (Figure 4)

a. Description and Fabrication Approach

This design consists of an AGCarb-lined thrust chamber
with a nickel regenerative cooling jacket and has replaceable liner and cooling
jacket segments.

The AGCarb liner is continuous from the injector to an
area ratio of 16:1 in the nozzle extension. The cooling jacket is designed
in three pieces to surround the liner like a clam shell. The pressure vessel
loads are carried by restraining bands which hold the shell segments together.
Because the AGCarb material is slightly porous, the assumption was made that
the shell must be leak tight. The joint between segments are sealed by a
copper crush gasket backed by a steel stiffening strip. The retaining bands
are spaced one inch apart between centers. An AGCarb flat-wrapped nozzle ex~—
tension is attached by bolting to the cooling jacket at 16:1 area ratio.
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IT1, B, Subtask 2. Design Evaluation (cont.)

Nickel was selected for the cooling jacket segments
because of its high thermal conductivity and reasonable strength at the
temperatures to be encountered.

Two fabrication approaches were considered. One requires
close tolerance forming of the inner and outer wall from sheet materials.
After machining channels in the inner shell, the two are brazed together. To
meet the tolerances that would have to be held to permit even a reasonable fit
to the graphite liner, the inner contour would have to be machined. This could
result in thick and thin areas, depending on the accuracy held in the forming
and brazing operations. The second approach is to electroform the jacket on
a mandrel that has been machined to the same contour template used in machin-~
ing the graphite liner outside contour. With this approach, deviations up to
3 mils (0762 mm) could be expected; this is considered unacceptable.

A solution to the match machining problem is to use the
liner as the electroforming mandrel, employ a mold release and three plastic
strip separators. The three segments would then be stripped from the mandrel,
leaving only a loss of approximately 5 X 10™2 inches (0.1270 X 1075 mm) radially,
representing the mold release material. While this approach alleviates the
contact resistance problem for the first assembly, there would be a contour
matching problem when the liner was replaced. The replaceability feature of
the concept would therefore be lost eliminating advantages over the concepts
which electroformed directly on the graphite liner.

b. Thermal Analysis

Ideally, thermal profiles for the segmented shell design
are quite similar to those shown in Figures 11, 12, and 13. The only difference
is the degree of thermal contact which could be achieved between the AGCarb-

101 liner and the segmented coolant jacket. As shown in Figure 9, only slight
temperature differences are realized if a good mechanical, rather than metal-
lurgical, contact is attained at the interface. If this contact could be
attained, this design would be thermally acceptable.

c. Stress Analysis

Preliminary analysis indicates the need for circumfer—
ential retaining bands at least every inch as shown in the drawing. The axial
seal design was reviewed and leakage was predicted at 500 psi (3447 X 103 N/m2)
unless more bands or heavier longitudinal stiffener were employed. Fabrication
analysis predicted that maintaining contact between the liner and the shell by
precision machining to match the contours would have little chance for success.
For this reason, stress analysis was suspended.
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IIT, B, Subtask 2. Design Zvaluation (cont.)

d. Summary

The fabrication of the segmented jacket concept is
simple and no major problems are anticipated. The heat transfer analysis
performed for the AGCarb liner, electroformed nicket Jjacket concept applies
also to this concept with the addition of a contact resistance factor that
results in an increase in liner average temperature of approximately 300°F
(422°K) based on the assumption that a precision fit has been obtained in the
matching contours. This is not considered to be a reasonable assumption since
a method of match-machining to a no-tolerance condition is not available.
Although the replaceability feature of the concept is attractive, the above

mentioned heat transfer situation resulted in the basic concept being judged
not feasible.

5. Concept V, AGCarb Liner, Copper Milled Passage (Figure 5)

a. Description and Fabrication Approach

This copper jacket design is similar to the electroformed
nickel concept shown except that the fabrication approach has been changed in
an attempt to reduce the dependence on electroforming.

In this design, the AGCarb is covered with a layer of
copper by either electroforming or plasma spraying, channels milled into the
copper, and a stainless steel cylinder brazed over the outside to close the
channels. TIn the throat section, a split copper ring is used to fill the area
between the copper channel area and outside jacket. In the original concept,
the coolant channels followed the cylinder wall, with the copper split ring
conducting heat to the coolant. Thermal analyses indicate the copper would
melt. The approach shown in Figure 5 is an attempt to salvage the original
- concept.

b. Thermal Analysis

Thermal profiles for this design are similar to those
presented. in Figures 11, 12, and 13. The similarity exists because the thermal
characteristics of the graphite liner and the coolant velocity control the
temperature profiles, while the thermal properties of the metal shell provide
only second order effects.

C. Stress Analysis

Analysis performed on the AGCarb liner electroformed

nickel design indicates a marginal condition insofar as contact pressure is
concerned. Since the expansion of copper is greater than nickel, this con-
dition would be aggravated. For this reason, no further analysis was performed.
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d. Summary

The attempt in this design to employ a stainless steel
outer shell of cylindrical shape as a means of obtaining a milled channel design
which was not entirely dependent on electroforming resulted in higher estimated
costs to produce than the electroformed nickel AGCarb liner design as well as
fitup problems and greater weight. Additionally, the stress analysis performed
on the nickel design indicated a marginal but feasible condition in regard to
interface contact pressure in the event of separation. The copper will
separate from the liner during brazing due to the aAT of the two materials.
Also, since the o of copper exceeds that of nickel, it was concluded that the
contact would be close to nonexistent at steady-state conditions. It was con-
cluded that this design is not feasible.

6. Concept VI. Channeled Graphite Liner, Nickel Shell
(Figure 6)

a. Description and Fabrication Approach

The channeled graphite design is aimed at being light-
weight and as simple as possible. It consists of a graphite liner which is
grooved on the outside diameter to form cooling passages. The outside shell
is electroformed nickel. The significant advantage of this design in terms
of heat transfer is the elimination of an interface (contact resistance)
between jacket and liner which exists on the other designs.

AXF-5Q and ATJS graphite are the candidate liner materials;
AXF-5Q (POCO) is not available in the size billet required although the company
states that larger size billets will be available in the future. The other
candidate material, ATJS, manufactured by Union Carbide, is available in cylin-
drical sizes 17 in. (0.432 m) in diameter and 14 in. (0.356 m) long and in
rectangular sizes 24 in. (0.610 m) by 20 in. (0.508 m) by 9 in. (0.228 m).
These would be adequate for a test chamber with an area ratio of 4:1 but would
not make the flight size design with area ratio 16:1.

Fibrous graphite was another possible material but,
because of its low conductivity, would be thin (about 0.125 in. (3.18 mm) at
the throat); machining the cooling channels would weaken the material signifi-
cantly. The porosity problem of graphite would be solved by pyrolytic graphite
infiltration of gas-side and backside surfaces. It may be possible to com-
pression mold a fibrous graphite such as AGCarb with the plies normal to the
chamber axis. This would increase the thickness of the material and minimize
the weakening of the structure attendant to machining coolant channels on its
back surface.

An electroformed nickel jacket 0.060 in. (1.52 mm)

thick closed the machined channels in the graphite. TFlanges and manifolds
are attached by electron beam welding.
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I11, B, Subtask 2. Design Evaluation (cont.)

b. Thermal Analysis

Thermal profiles for this design are quite similar to
those calculated for axially segmented graphite designs (presented in
Figures 15 and 17) since both designs employ bulk graphite and provide good
thermal contact between the graphite and the coolant. Detailed thermal
analyses were not performed for this design because it was rejected for other
than thermal reasons.

C. Stress Analysis

Preliminary stress analysis and design review of this
concept indicated that a crack or local failure of the graphite liner would
probably result in a catastrophic failure. The coolant channels in the
graphite create stress raisers to some extent and, in fibrous graphite, the
fibers would be interrupted, causing loss of hoop strength. A marginal situa-
tion also exists in maintaining a compressive rather than tensile load at the
graphite to nickel interface. The AT between the graphite and jacket is less
than where the coolant is entirely in the jacket. The relative movement due
to thermal expansion of the two components, therefore, is greater and tends to
approach a tensile rather than compressive load. Separations at the interface
would undoubtedly occur due to the combination of tensile and axial shear
stresses to permit interchannel leakage and loss of velocity in the throat
area.

d. Summary

For the reasons noted in ¢ above, this concept is not
considered feasible.
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III, Task I - Design and Evgluation (cont.)

C. SUBTASK 3. UNCOOLED CHAMBER DESIGNS

1. Basic Design Description

Two workhorse thrust chambers were designed: a streak chamber
to obtain compatibility information on the injector and to check the facility,
and a heat sink chamber to obtain thermal data and characterized engine startup
transients. Each design was thermally and structurally analyzed to verify its
integrity and to assure that a maximum amount of usable data would be obtained
to aid in the evaluation of flight designs. The completed designs are shown
in Figures 18 and 19.

The streak chamber was a graphite liner of ATJ material in a
steel retaining shell. ATJ was chosen because of its mechanical properties
and availability in the size required. Its moderate density would result in
its showing any injector-induced streaking. The liner was designed to be
replaceable to enable reuse of the steel shell. One shell and two liners were
fabricated. The graphite thickness was selected on the basis of providing
sufficient heat sink to permit a run duration of 8 seconds. This duration was
considered to be sufficient to characterize the chemical and gas dynamic
compatibility of the injector. The results of the thermal analysis for this
design for 6 seconds and 8 seconds are shown in Figure 20.

The copper heat sink chamber was designed to obtain engine
performance and thermal data. The copper thickness was selected to provide
sufficient heat sink for 6 seconds of operation; however, the desired duration
could not be achieved in the throat section using copper alone. A throat
insert of AGCarb fibrous graphite was used as a heat barrier to the copper at
the throat to achieve 6 seconds run duration. The graphite insert design did
not simulate the operation of the regeneratively cooled hardware because the
copper backup undergoes greater temperature gradients and expansion than the
regenerative jacket. One complete copper assembly was fabricated along with
two spare graphite inserts.

The copper in the throat section was a brazed assembly of
four parts. Gaps were provided between the parts to reduce two—dimensional
heat flow which would affect thermal data. Thermocouples were incorporated
to measure gas-side temperatures of the copper and backside temperatures of
the graphite. The gas-side thermocouples were brazed in place; backside
thermocouples were spring loaded to conform to the movement of the throat
insert. The predicted temperature response at the throat is shown in Figure 21.

2. Structural Analysis

Structural analyses of the two workhorse chambers were
conducted to determine their capability to withstand the mechanical and thermal

environments to be imposed during six cycle -six second duration repetitive
use.
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IIT1, C, Subtask 3. Uncooled Chamber Designs (cont.)

The bulk graphite liner-stainless steel shell configuration
(ref Drawing No. 1159375) had a minimum margin of safety of +0.10 in the ATJ
graphite throat section. The margins of safety are listed in Table I.

The AGCarb liner-copper shell workhorse engine (ref Drawing
No. 1158763) was determined to be an acceptable configuration. Although the
thermal limits resulted in the AGCarb liner being subjected to a high radial
thermal gradient, any less severe thermal gradient compromised the purpose of
the engine. The calculated meridional tension stresses on the backside of the
AGCarb liner indicated that one or two circumferential cracks were likely.
A shear 1lip was incorporated in the copper throat support to prevent spalling
and ejection of the aft portion of the AGCarb insert. The combination of the
copper shear lip and an 0.020 in. (0.508 mm) longitudinal gap at the forward
end of the AGCarb insert was intended to prevent excessive longitudinal
separation as circumferential cracks developed. The margins of safety are
shown in Table II.
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Component

Stainless steel
shell

Forward flange
bolts

Forward flange

Aft flange bolts

Aft flange

Aft flange tab

ATJ graphite
throat

ATJ graphite
forward throat

ATJ graphite
throat

TABLE T

SUMMARY OF MINIMUM MARGINS OF SAFETY

WORKHORSE CHAMBER NO. 1159375

Type of Stress

Hoop tension

Tension

Bending

Tension

Bending

Bending

Hoop tension

Merid.

tension

Effective compression

Applied
Stress

10,000 psi
(68.94x106 N/m2)

2080 1b
(934 kg)

3750 psi
(25.85x106 N/m2)

1960 1b
(889 kg)

3050 psi
(21.02x106 N/m?)

9300 psi
(64.12x100 N/m2)

500 psi
(3.44%x106 N/m2)

2500 psi
(17.23%100 N/m2)

8300 psi
(57.22x106 N/m2)

Allowable
Stress

30,000 psi
(206.84x106 N/m2)

4000 1b
(1814 kg)

25,500 psi
(175.81x100 N/m2)

4400 1b
(1995 kg)

25,500 psi
(175.81x100 N/m2)

25,500 psi
(175.81x100 N/m2)

3450 psi
(23.79x100 N/m2)

2750 psi
(18.95x100 N/m2)

9100 psi
(62.74x106 N/m2)

Margin of
Safety
+2.

+0.

+5.

+1

+7.

+1.

+5

+0.

+0.

00

92

80

.25

40

75

.90

10

10



Component

Copper barrel
section

Forward flange
and throat
bolts

Forward flange

AGCarb throat

AGCarb throat

AGCarb throat

TABLE IIX

SUMMARY OF MINIMUM MARGINS OF SAFETY
COPPER WORKHORSE CHAMBER NO. 1158763

Applied Allowable Margin of

Type of Stress Stress Stress Safety

Hoop tension 2360 psi 3300 psi +0.40
(16.27x106 N/m2) (22.75x100 N/m?)

Tension 740 1b 1650 1b +1.22
(335 kg) (748 kg) ’

Bending 1520 psi 3300 psi +1.17
(10.48x106 N/m2) (22.75x106 N/m2)

Hoop tension 3700 psi 9200 psi +1.48
(25.51x100 N/m2) (63.43x10° N/m2)

Merid. tension See Summary

Hoop compression 5700 psi 7300 psi +0.28

(39.30x100 N/m2)

(50.33x106 N/m2)
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IIT, Task I - Design and Evaluation (cont.)

D. SUBTASK 4. TFINAL DESIGN

Work under Subtask 2, Design Evaluation, culminated with selection
by NASA of one cof the three design concepts recommended by Aerojet as attrac-—
tive and feasible based on the analyses performed. The concept selected was
the fibrous graphite (AGCarb) liner with an electroformed nickel coolant jacket.

In discussions with the NASA project manager prior to start of final
design, it was agreed that final design effort should include analyses with the
objective of (1) reducing the predicted gas-side temperature of the liner and
(2) simplifying coolant channel configurations by eliminating bifurcations and
employing a constant width channel in a single pass system. It was agreed also
that, to increase confidence in temperature predictions and stress analyses,
additional AGCarb thermal and mechanical property data were required. Certain
specific property data related to the exact wrap angle were considered desirable
to confirm values previously factored and extrapolated from existing data. The
final design task was therefore divided into four phases:

(1) Final design using existing thermal and mechanical
properties data for AGCarb.

(2) Material characterization of AGCarb for specific
properties related to configuration.

(3) Structural analysis using new AGCarb properties
and revision to design as required.

(4) Review of new thermal property data and changes in
design to conform as required.

The paragraphs immediately following summarize design efforts under these
headings.

1. Final Design Using Existing Thermal and Mechanical
Properties Data for AGCarb

a. General

The thrust chamber configuration considered in this
analysis was based on the design concept shown in Figure 1 and described under
Design Evaluation. To permit testing at sea level, the nozzle was terminated
at area ratio 4:1. The methane coolant temperature for this version was
adjusted to simulate nozzle cooling to area ratio 16:1. This was to be accom-
plished by cooling methane to -120°F (188°K) rather than using the -210°F
(139°K) methane employed for a flight configuration. The 90°F (305°K) tempera-
ture increase represents the bulk temperature rise between area ratio 16:1 and
area ratio 4:1.
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III, D, Subtask 4. Final Design (cont.)

The chamber and coolant conditions established for the
analysis are:

Maximum nickel temperature 1200°F (922°K)

Maximum graphite temperature 4700°F (2866°K)

Chamber pressure | 500 psia (3.45X106 N/mz)

Mixture ratiob 5.75

Thrust 5000 1b (22,240 N)

Coolant supply temperature ~120°F (189°K)

Coolant supply pressure As required to obtain 1000 psi
(6.87x106 N/m2) discharge
pressure

b. Parametric Studies

The studies were begun by parametrically investigating
the effects of various coolant channel design parameters, such as land-width
and channel-width, on the nickel channel and AGCarb-10l1 liner temperatures.
Typical curves for the high heat flux throat and chamber regions are shown in
Figures 22 and 23. From the results of these parametric studies, a nickel
channel design providing for 100 coolant channels and a coolant flow area of
0.130 in.2 (8.385 mm2) at the throat was selected. The parametric studies
also showed that AGCarb-101 liner thickness ranges of 0.130 in. (3.302 mm) to
0.150 in. (3.810 mm) at the throat and 0.250 in. (6.35 mm) to 0.300 in.

(7.62 mm) in the chamber region were necessary to maintain the nickel shell
temperatures at acceptable levels at these chamber locations.

The parametric studies assumed that the channel width
would be maintained constant throughout the chamber. Since the parametric
studies indicated this to be a feasible design approach, a channel width was
selected for the design. A width of 0.0325 in. (0.826 mm) was found to satisfy
thermal requirements and also provide a sound mechanical structure besides
being a standard milling cutter size.

C. Channel and Liner Design Selection

With the number of coolant channels and the channel
width fixed, only the channel height could be varied to change the local
methane velocity in the coolant passages. Varying channel height is employed
to increase the methane velocity in the high heat flux zomes of the chamber
. where increased methane cooling is required. Tailoring the coolant velocity
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11T, D, Subtask 4. Final Design (cont.)

Design B; however, the Design B linear channel height taper upstream of the
throat produces high nickel channel temperatures upstream of the throat.

Design C, which provides for a constant channel height and liner thickness in
the high heat flux region, is seen to produce flat graphite and nickel tempera-
ture curves throughout the high heat flux throat region. It was concluded

from the temperature curves that a chamber design incorporating the features

of Design C would be the most efficient thermal design since it eliminated the
liner and channel temperature peaks in the high heat flux throat region.

d. Recommended Design

The chamber design recommended for fabrication is shown
on Figure 25. The channel dimensions, land width and liner thickness in the
chamber, which have been divided into four heating =zones, are tabulated. As
shown, this design provides for 100 coolant channels that are a constant
0.0325 in. (0.826 mm) wide. In accordance with the discussions in b and ¢
above, both the channel height and graphite liner thickness were tapered to
tailor the local cooling design to the heating conditions throughout the
chamber.

Beginning at the forward end of the chamber, the channel
height and liner thickness are maintained constant at 0.150 in. (3.810 mm) and
0.30 in. (7.62 mm), respectively, throughout the cylindrical length. The
constant channel size and liner thickness were selected to cool the most severe
heating conditions encountered in this portion of the chamber and ignores
injector barrier cooling effects*. 1In the contraction region of the chamber,
the channel height and liner thickness are tapered linearly along the contour
to the beginning of the high heat flux zone which begins at axial distance
11.25 in. (0.286 m). The channel height of 0.040 in. (1.02 mm) and liner
thickness of 0.13 in. (3.30 mm) at this location are then held constant beyond
the throat to axial distance 13.8 in. (0.351 m). 1In the expansion zone, the
channel height and liner thickness are again tapered to values of 0.150 in.
(3.810 mm) and 0.45 in. (11.43 mm), respectively. The final design engineering
drawings conforming to the recommended design (Figure 25) are shown in
Figures 26 through 28.

The predicted thermal parameters for the recommended
100-channel design are summarized on Figure 29. The maximum liner and nickel
channel temperatures are 4700°F (2866°K) and 1150°F (894°K), respectively.
The coolant pressure drop was calculated as 268 psi (1848 x 103 N/m2) and
included a 22 psi (151 x 103 N/m2) velocity head loss at the injector end of
the chamber. The 246 psi (1696 x 103 N/m2) frictional pressure drop was

*Neglecting barrier cooling will permit the chamber to be tested with
injectors which do not provide barrier cooling.
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LOCATION:

Graphite Liner
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LOCATION:
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in. mm
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.0325 .825
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IITI, D, Subtask 4. Final Design (cont.)

calculated using a conventional isothermal friction factor approach and may
be conservatively high compared to AP calculations which include the effects
of coolant temperature drop in the viscous boundary layer.

2. Material Characterization - AGCarb Fibrous
Graphite Liner

The liner (Figure 26) consists of four segments. The two
forward segments are tape wrapped with 45° bias tape 60° to the chamber contour.
The throat segment is compression molded split discs of carbon cloth rotated so
splits are not coincident. The aft section is tape wrapped similar to the
cylindrical section. Existing thermal and mechanical property data (Ref 2)
were based on flat panels with properties tested with or against the grain.

Due to the uncertainty of factoring these data to obtain value for the 60°

tape wrap segments and the heterogeneous pattern of the throat segment, a test
program was planned to obtain these values by direct testing. The test plan
shown below carries the original test numbers. Missing numbers represent tests
cancelled because of cost limitations.

Test Specimen No. of Tests - Temperature
No. No. Type Data RT 3000°F 5000°F
1 1 Tensile Ultimate 3 3 3

(chamber hoop) Modulus
Poisson's ratio
Stress—strain
curve

4 4 Compression Ultimate 3 3 3
(throat hoop) Modulus
Stress—~strain
curve
Poisson's ratio

5 12 Tensile Ultimate 3 3 3
{throat hoop) Modulus
Poisson's ratio
Stress~strain

curve
7 13 Block compr. Ultimate 12 12 12
Modulus
Stress—strain
curve
14 9,14 Therm. Conduc. Btu/in./sec/°F 1 1 1
(chamber radial)
15 10,15 Therm. Conduc. Btu/in./sec/°F 1 1 1

(throat radial)
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ITI, D, Subtask 4. Final Design (cont.)

The specimens were fabricated by San Rafael Plastic Company
in the size and configuration shown on Figure 1 of Appendix A. Figure 30
(foreground) shows some specimens prior to final machining. Figure 31 shows
specimens as shipped to Southern Research Corporation, who was selected as a
testing source due to their 5000°F (3033°K) temperature capability. Results
obtained by Southern Research Corporation are summarized in this report under
Appendix A. The mechanical properties values reported were used in performing
the structural analysis described below and in Appendix B.

3. Structural Analysis

A structural analysis of the final design was completed by
the ALRC Structural Engineering Section. A summary of results is made below
and the complete analysis is included in this report as Appendix B.

Summarz

(1) The structure will develop marginal hoop compressive
stresses in the AGCarb throat liner. However, the AGCarb is in a state of
compression and is contained by the nickel shell with the local shear stresses
within allowable values. Therefore, the condition is considered acceptable.

(2) The structure will develop excessive shear stresses in
the aft AGCarb liner at the aft retaining flange. Since this is a very local
condition, it is anticipated that the liner will probably delaminate locally
(interlaminar) but not completely fracture. A possible means of alleviating
this local excessive stress condition would be to provide an axial expansion
relief, e.g., a Grafoil material insert.

Due to scheduling problems, chamber fabrication was started
before completion of the final stress analysis and had proceeded beyond the
point where a design change could be made. (Post test examination indicated
no evidence of the predicted local shear failure.)

4, Thermal Data Review

Thermal data from the AGCarb testing were compared to the
values used in the original analysis to establish the graphite liner wall
‘thickness and found to be within what was considered measuring error range.

The chamber wall temperature profile using the new data was compared to original
predictions, Graphite gas-side temperature at the throat was nearly identical.
At 2 in. 80.051 m) upstream of the throat, the revised profile was approxi-
mately 70°F (36°K) higher. Since these differences were not considered
significant, no revisions were made to the engineering drawings.
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Figure 30.

Test Specimens After Graphitization and Before Machining
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31.

Test Specimen as Shipped to Southern Research Corporation



IVv. TASK IT — FABRICATION

A. UNCOOLED CHAMBER FABRICATION

The designs of the streak chamber and the copper heat sink chamber
are described in Section III,C. Figures 18 and 19 depict the final designs.
Fabrication of these test chambers was straightforward and required no unique
methods. No problems were encountered in fabrication or assembly. Extreme
care was taken in fitting the AGCarb insert into the copper chamber throat to
ensure that maximum contact would be obtained at the copper-graphite interface.
This was accomplished by machining identical tapers, pressing the insert into
position, rotating to lap the surfaces, then trimming the insert to length
after fitup.

B. COOLED CHAMBER FABRICATION

1. - Approach

The Work Plan submitted at program start in conformance with
contractual requirements stipulated that make or buy decisions for fabrication
of cooled chamber components would depend on the configuration selected and
the materials used. It was planned that, if AGCarb was selected as the liner
material, fabrication would be by an outside subcontractor performing under
Aerojet specifications and surveillance. Likewise, if electroformed nickel
were to be used, the work would be performed by an outside electroforming shop
under Aerojet specifications and surveillance. Contracts were to include
provision for continuous engineering surveillance by Aerojet personnel during
fabrication.

When the AGCarb liner-electroformed nickel jacket concept was
selected as the primary concept, an overall manufacturing plan was developed
incorporating the fabrication and quality control specifications noted above
with other control and contractual documents and a tooling plan. The essen-
tial control documents, their functions and interrelation are explained in the
following sections.

2. Subcontractor Selection

During the preliminary design phase, discussions were held
with several potential subcontractors and informal proposals received.
San Rafael Plastics was selected for AGCarb fabrication on the basis of pre-
vious work done for Aerojet and their contributions to the proposal and the
design.

A survey of potential electroforming sources and discussions
with these companies with NASA personnel participating resulted in selection
of Electroforms Inc., Gardena, California, as the electroforming subcontractor.
Since several machining operations were anticipated between stages of electro-
forming, it was considered prudent to have the electroforming vendor responsible

(@)}
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iV, B, Cooled Chamber Fabrication (cont.)

for both intermediate and final machining. Machining of the slots also
required special skills and equipment; an agreement was made after a surveil-
lance visit to permit the subcontracting of slot machining to Huevil Profiling
Company, Gardena, California.

3. Fabrication Control

a. Parameters

Critical aspects of the selected design were considered
to be (1) maintenance of a complete bond and/or intimate contact between the
nickel jacket and the fibrous graphite liner and (2) close dimensional control
of the coolant channels in the machining and subsequent electroforming of the
outer shell. The first of these is critical because any loss of interface
contact or any discrepancy that tended to lower interface pressure at tempera-
ture would increase contact resistance and thereby appreciably increase the
graphite liner temperature. This aspect was discussed in the design evaluation
section of this report. Close dimensional control of channel size is critical
because of the relationship between coolant velocity, AP, and temperature rise.
Experience with the electroformed chamber constructed and tested under NASA
Contract NAS 3-7971 (Ref 3), where pressure drop exceeded that predicted by a
factor of 3, plus some subscale work under other programs indicated that the
process of electroforming over the core material, which is subsequently
melted out, is suspect in that any of three discrepancies that could occur
would increase AP. These are (1) loss of channel height dimension due to
erosion of the wax filler during cleaning for final electroforming, (2) exces-
sive surface roughness of the channel closeout nickel due to roughness of the
core material, and (3) loss of coolant flow due to core material that is not
entirely removed in the melting and flushing steps.

Another critical area in the manufacturing process is
the dimensional control of the inner shell thickness, rib height, and outer
shell thickness. Since these dimensions were not directly measurable due to
the method of fabrication, they were controlled by basic dimensions and
tooling templates.

To control the overall fabrication process including the
critical aspects noted above, several control documents and mechanisms were
initiated. These included purchase order contracts, process specifications,
engineering drawings, master tooling template, manufacturing flow chart, and
discrepancy analysis. The function of the purchase order and engineering
drawings needs no explanation; however, a brief explanation of the other
controls is made in the following paragraphs.
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IV, B, Cooled Chamber Fabrication (cont.)

b. Process Specifications

(1) A specification covering the manufacture of AGCarb ©
materials was prepared and made a part of the contractual document negotiated
with San Rafael Plastics for fabrication of chamber liners (see Figure 26).

(2) 1In order to control chemical and mechanical proper-
ties of electroformed nickel, a development specification, AGC-44259, was
written and made a part of the contractual document with the electroforming
subcontractor. The specification, as written, was adequate to handle the
major aspects of quality control; however, problems in welding the electroformed
nickel suggest a revision is needed to require closer control over elements
detrimental to welding. The welding problems are discussed in the next section.

c. Manufacturing Flow Chart

The fabrication process followed the sequence depicted
in the Manufacturing Flow Chart (Figure 32). The philosophy of the fabrication
sequence was based on (1) the use of internal mandrels that were fixed and
stayed with the assembly through all the electroforming and machining opera-—
tions; (2) the use of master tooling templates; and (3) machining of the
graphite ID to final contour after electroforming, OD machining, and removal
of the mandrel.

The inspection operation, symbol [fx in the flow chart,
refers to critical inspection points as determined by the discrepancy analysis.
A summary of the discrepancy analysis study is shown in Figure 33. The histori-
cal summary of the actual fabrication problems to follow will permit a com-
parison to anticipated problems.

d. Master Tooling

Referring to Figures 27 and 28, it can be seen that
dimensions are established by a system of coordinate dimensioning. The X
coordinate represents the chamber axis and the Y coordinate the radii from
the axis., To effectively coordinate all machining operations and ensure that
dimensional tolerances were held, a master contour template to the graphite
inner contour was constructed. All other templates were coordinated to this
master. FEach had the end of the part scribed to locate it axially to the :
reference surface of the mandrel.

[V

4, Historical Summary

a. Introduction
This section provides a historical account of the

fabrication operation with the object of highlighting problem areas and
presenting solutions and recommendations to provide a guide for subsequent
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Possible Discrepancy

Dimensionally undersize

. Alcohol penetrant shows

cracks or delaminations

Channel dimensionally out of
tolerance

Filler material excessively
rough or below rib height

Individual channel low flow

Individual channel low flow

AP excessive

Liner out of round, so liner

thickness out of tolerance

Alcohol penetrant shows
cracks or delaminations

Individual channel low flow

AP excessive

Anticipated Disposition

Compensate on ID.

Minor - Repair with C-34 cement.
Major - Use spare throat section.

Slightly undersize.-~ Refer to heat
transfer studies; allow max. graphite
temp 5000°F, max. Ni temp 1500°F,

max. AP 400 psia. Oversize - Operate
with increased fuel flow.

Refill and reprocess.

Flow 24 hours with hot solvent. Use
a wire or "pipe cleaner'". X-ray.

If local area, remove closure locally
and repair by electroforming. If no
X-ray indication, machine off total
closure and reprocess.

Repeat mechanical steps in C4 above.
Calculate maximum temperatures; com—
pare to allowable.

Repeat mechanical cleaning in C4 above.
Calculate maximum temperatures and
compare to allowable. Increase inlet
pressure (max. 1400 psia). X-ray and
make local or total repair.

Calculate maximum temperatures at
thicker than print areas. If excessive,
stress relieve at 350°F for 4 hours.
Reinspect. If still excessive, press

to round out.

Minor - Repair with C-34 cement.

Major - Part will function with fairly
large delamination as it will close up
on firing and heat transfer is only
slightly affected. A major loss of
material would require local insertion
of repair AGCarb material.

Compare data to that obtained on C4
and C5 inspections. Increased AP

or obstructions can be attributed to
contaminants incurred during process-—
ing. Repeat mechanical cleaning of
C4 above. X-ray and make local
repair.

Repeat mechanical cleaning of C4
above. X-ray and make local or
total repair.

Figure 33. Discrepancy Analysis



IV, B, Cooled Chamber Fabrication (cont.)

design efforts using the materials and fabrication techniques employed. The
manufacturing plan depicted in the Manufacturing Flow Chart was followed quite
closely. Documentation required by the engineering drawings and specifica-
tions was maintained in a central file for review if required during the post-
test analysis subtask. Some expected discrepancies occurred. Several unantici-
pated problems arose and were solved by joint action between the subcontractors
and Aerojet. The NASA project manager was advised of all problems as they
occurred and participated in the solutions. Although the account that follows
notes several problem areas, it should be emphasized that the subcontractors
involved (San Rafael Plastics Co., who produced the AGCarb liner and machined
the liner ID after electroforming, and Electroforms Inc., who did the elec-
troforming and related machining) were extremely diligent in their efforts to
ensure the success of the program.

b. Fabrication of AGCarb Liner
(1) Fabrication

The thrust chamber liners were fabricated to
Drawing 1159524 shown in Figure 26 and the specifications referenced on the
drawing. In addition, the subcontractor manufacturing plan was reviewed and
approved before start of fabrication.

As noted on the Manufacturing Flow Chart (Figure 32),
the liner construction was of four segments; the two forward segments and the
aft segment were tape wrapped and the throat segment compression molded. The
photographs in Figures 34 and 35 provide a pictoral account of some of the
in-process fabrication steps. Figure 34 shows the throat segments as made from
disk cutouts premolded and machined to varying angles to centerline. Figure 35
shows the three throat segments cured and rough machined prior to carbonizing.
Figure 36 shows the cylindrical segment in the same condition and Figure 37
shows the position of the segments in an assembly following the carbonizing
operation. Following carbonizing in which the resins are decomposed to
essentially pure carbon, the parts were sent to Union Carbide for their pro-
prietary "Code 88" graphitizing treatment at 5000°F (3033°K). The resultant
product is AGCarb-101, Aerojet's designator for fibrous graphite.

Assembly of the components was preceded by rough
machining the 0D and finish machining the ends for fitup to each other. After
bonding, the ID was machined to suit the mandrel and the 0D was machined to
final contour using the master contour template and the internal mandrel.
Figure 33 shows the bonded assembly before installation of the internal
mandrel.
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1V, B, Cooled Chamber Fabrication (cont.)

(2) Problems in Liner Fabrication

_ As anticipated, delaminations were indicated in
several components by the alcohol penetrant and X-ray inspections performed.
No extensive delaminations were noted. Some indications appearing in
inspections prior to rough machining were not evident in later inspections.
At the last inspection before assembly, a delamination was noted in one exit
section. Final machining of the ID exposed this delamination to where it
became easily visible to the eye as can be noted in Figure 39. Although this
delamination was somewhat more extensive than anticipated, the delamination
was not considered critical because (1) heat flow to the cooling jacket is
not affected by delamination due to the 60° to surface comstruction and
(2) this area is in axial compression during firing and tends to close up.
As can be seen in postfire photographs, the delaminations did not enlarge.

Other problems in liner fabrication were in rela-
tion to shrinkage allowance in the axial direction. One throat section and
one cylindrical section component on final machining did not have sufficient
stock. Since a spare throat section had been fabricated for such contingencies,
the spare was used. To complete the cylindrical section, a 0.30 in. (7.62 mm)
piece of bulk graphite was bonded to the forward end of the cylindrical section.
This dummy piece was subsequently machined off after electroforming.

An obvious conclusion is that more shrinkage
allowance must be added in the axial direction. Excess material can be
machined off but, due to the length of the fabrication cycle, a requirement
to fabricate new parts covers an unacceptable schedule situation.

c. Fabrication of the Electroformed Nickel Jacket
(1) Fabrication

Figure 40 shows the liner and mandrel after OD
machining mounted in the holding rack prior to initial electroforming opera-
tion at the Electroform Inc. plant. Note the Plexiglas current shield at the
forward end and the masking on the mandrel end plate at the .aft end. The
chamber was positioned vertically in the plating tank and agitated horizontally.

The first electroforming operation plated nickel
on the graphite liner to a height equivalent to the top of the ribs (Figure 27)
After machining to the proper contour, the nickel was dye penetrant inspected.
A crack was found in the metal about 0.50 in. from the aft end (see Figure 41).
This area was removed by machining. Although not visible, it was assumed
that a slight separation existed in the graphite and that the nickel had failed
to bridge. Repair plating was done at a lower current density until it was
evident the plating was continuous. Dye penetrant inspection after this
repair showed no indications.
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Figure 39.

SN 2 Showing Delamination in Exit Section
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Figure 40.

Graphite Liner in "Setup"

Position

for Electroforming
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IV, B, Cooled Chamber Fabrication (cont.)

Figure 42 shows chamber SN 1 after electroforming
and machining to the rib height and contour ("K' diameter, Drawing 1159525).
Milling of the coolant channels was accomplished on a vertical milling machine
with a Man-Au-Trace cam follower which traced the slotting template. Figure 43
shows the slotting operation equipment with the slotted chamber held between a
dead center and an indexing head. Figure 44 shows the coolant channels milled
and filled with low melting point core material.

v Following machining of the coolant channels, the

chamber was prepared for electroforming of the outer shell. This is a
critical operation in the processing as any discrepancy can result in lack of
bond between the ribs and the outer shell. The basic process steps are:

(1) Fill channels with meltable core material.

(2) Clean rib tops by light vapor blast.

(3) Chemically clean and rinse.

(4) Cathodic treatment.

(5) Nickel plate.

(6) Machine using appropriate tracer template.

(7) Machine end configurations.

(8) Dye penetrant inspect.

(9) Remove core material.

(10) Flow test.

The machining of the manifold interface surfaces
(Step (7)), which are limited to 0.004 in. (0.1016 mm) gap, was accomplished
using the completed manifolds as a gauge. Using this approach, initial
tolerances can be considerably looser than if the components were made inde-
pendently but toleranced for maximum clearance.

(2) Problems in Electroforming Fabrication

The dye penetrant inspection operations specified
in the manufacturing plan turned up one discrepancy which required rework and
which if not discovered could have caused a catastrophic failure. This was
the crack in the aft section of the chamber described in a previous paragraph
and shown in Figure 41. Other discrepancies attributable to electroforming
operations were discovered during subsequent fabrication and testing operations.

During welding of the manifolds to the chamber by
the electron beam process, excessive out-gassing of the nickel was observed.
Weld appearance was poor with excessive surface porosity. To obtain a

83



"z °In314

I939weIq M, O3 POUTYDBR INO3uo) Isquey) PawiogoalddTd

%8



S8

Figure 43.

Milling Coolant Channels



SuTWI0JOIIDOTH IN0ISOT) ©I103jeg SIOTS UT TeTISIBR 210D YITA I3quey)

“yy °2In3Td

86



IV, B, Cooled Chamber Fabrication (cont.)

satisfactory joint, a procedure of welding in three passes was developed. The
first pass was made to approximately 1/2 the joint depth. After repumping

the welding chamber down to 10=%4 Torr during which time the joint cooled to
ambient, the second pass was made to the full joint depth. After re-establishing
vacuum and cooling, the third pass was made to 1/2 depth. The three-pass
procedure described had the effect of reducing porosity to acceptable levels

and no leaks or failures were observed; however, it is felt that improvements

in the electroformed nickel chemistry in the identification and elimination of
constituents detrimental to welding should be the subject of additional
investigation.

A discrepancy occurred in the area of the aft flange
on SN 1. 1In leak testing at 50 psi (0.344 x 106 N/m2), leaks were found 360°
around the flange approximately 1/8 in. (31 mm) inside the weld. Based on
appearance and location, this discrepancy was assumed to be a lamination in
the nickel that was opened by heat of welding. No indication of this lamina-
tion was evident at the dye penetrant inspection performed before welding.

A machining error resulted in a 0.030-in.-deep
(0.76 mm) undercut in the inside of the aft flange of SN 2. Examination of
this area disclosed visible cracks at the root of the undercut.

Repairs for both thrust chambers were made by
building up nickel on the face of the aft flange. Figures 45 and 46 illustrate
the repair procedures adopted.

Leaks best described as weeping were observed in
both chambers when pressure tested at 1900 psi (13.1 x 100 N/m2) with water.
Dye penetrant inspection performed earlier showed no indication of the exis-
tence of porosity. Twenty-two holes were located and repaired by GTAW
welding on SN 1. Only two weep holes were found on SN 2 and were not repaired.
The photograph in Figure 47 is SN 2 after final machining prior to
instrumentation.

d. Final Assembly

An important aspect of electroforming fabrication and
final assembly of the thrust chamber was to ensure that coolant channels were
to drawing requirement for size and free of filler material, chips or foreign
matter that would prevent full and uniform coolant flow. Referring to the
Manufacturing Plan (Figure 32) and the Discrepancy Analysis (Figure 33),
several critical inspection points are noted. Flow testing and inspections
were accomplished as planned; however, the pattern flow test in which it was
planned to check the trajectory of each channel was determined to be inconclu-
sive as the water coalesced and individual channel flow could not be observed.
To ensure that each channel was open, a 0.032-in.-dia wire was passed through
each channel. No evidence of core material or foreign matter was observed.
Figure 48 illustrates the results of the pattern check flow test.

87



88

Crack is 360° approx.

¥ ; ] " 1/8 in. inside weld

EXISTING
Blend as required for EF
\ Blend .12 R x .060 Deep
!
Do not grind weld below
flush with parent metal
STEP 1

60° Electroform (EF)
Repair

Full R

STEP 2

No scale

Figure 45. Electroform Repair, Aft Flange SN 1
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R
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Remove crack.
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Figure 46. Electroform Repair, Aft Flange SN 2
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Figure 48.

Pattern Flow Test



IV, B, Cooled Chamber Fabrication (cont.)

Welding of the flange and torus assembly to the chamber
was accomplished as planned except for a change in procedure, noted previously,
necessitated by excessive out-gassing of the nickel.

Leak testing was accomplished after the electroform
repair described. Final flow testing was accomplished using the inlet and
outlet plumbing fabricated for test firing. Flow testing was done with
ambient water at a planned 4 1b/sec (1.81 kg/sec) and 135 psi (9.3 x 100 N/m2)
back pressure. The pressure drop through the manifolds and thrust chamber was
176.7 psi for SN 1 and 182.5 psi for SN 2 (1.22 x 109 N/m2 and 1.26 x 106 N/mZ2,
respectively).

Both chambers were subjected to ultrasonic testing to
determine the extent of unbonded areas, if any, at the interface of the outer
jacket and the rib lands. Results indicated apparent unbonded areas of approxi-
mately 1.0 in. length on one rib on SN 1 and on five ribs on SN 2. The dis-
crepancies were located approximately 1.5 in. upstream of the throat. A standard
was not available for proper calibration of the ultrasonic equipment prior to
examination. For this reason, the validity of the readings has not been substan-
tiated. Stress analysis of the unbonded areas indicated that a high margin of
safety exists with 1.0-in. unbonds.

Final assembly was completed per the planning. Twelve

thermocouples were installed as required on Drawing 1159636 and the thrust
chamber was moved to the test area, J-4, for test firing.
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V. TASK ITI - FACILITY PREPARATION AND INJECTOR CHECKOUT

A. FACILITY PREPARATION

The FLOX/methane hot test firings were planned for sea level
conditions in Test Stand J~4, a steam ejector altitude facility utilizing a
98% efficient rocket exhaust scrubber system. The scrubber effluent is
caught in a 200,000-gal (1136 m3) holding pond and treated with limestone
prior to release.

The proepllant handling and flow system was completed to the
test stand shown in Figure 49.

The FLOX propellant is supplied from a 1000~gal (4.54 m3), 2160
psi (14.89 x 109 N/m2) working pressure, triple jacketed, stainless steel tank
through a 1.5-in. (0.038 m) LN2 jacketed line and two flow meters with a l-in.
thrust chamber valve.

The methane propellant is supplied from a 100,000 standard cubic
foot tube trailer with a working pressure of 2600 psi (17.92 x 106 N/mz) in
parallel with a 1000-gal (4.54 m3), 2160 psi (14.89 x 106 N/m2) working pres-
sure and a Corbin compressor. The methane is fed to the injector through a
2-in. (0.051 m) stainless line, 2-in. (0.051 m) pressure control regulator,

a 2-in. (0.051 m) gas flow meter, and a 2-~in. (0.051 m) cavitating venturi
with a 1-in. (0.025 m) line with a 2-in. (0.051 m) pressure control regulator,
through a pool boiling type heat exchanger which uses LN9 as the cooling media.
The coolant level in the heat exchanger was varied to change the temperature
of the coolant. A calibrated flow orifice was used to maintain the required
600 (4.14 x 106 N/m2) psia coolant pressure out. The pressure control
regulator was also used to control the coolant flow rate.

The test stand support equipment and systems includes a water-
filled actuation tank pressurized with gaseous nitrogen for thrust chamber
valve actuation. The injector purges are gaseous nitrogen supplied through
0.5~in. (12.7 mm) lines. A LNy bath is utilized to chill the backside of the
injector to -400F (233%K) prior to firing and is secured for the test.

Prior to conducting the cooled chamber tests, heat exchanger flow
tests were conducted at various levels of LNy coolant to determine propellant
temperatures. A helium purge is maintained on the heat exchanger during fill
with LN and pretest preparation to prevent freezing of atmosphere in the
coolant tubes.

B. INJECTOR CHECKOUT FIRING
The graphite-lined workhorse chamber (Figure 18) was designed and

constructed-to serve the dual purpose of demonstrating facility capability and
determining injector performance in relation to possible detrimental streaking.
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V, B, Injector Checkout Firing (cont.)

Testing was completed as shown in Table ITI with no evidence of corrosion or
streaking on the graphite liner. The temperature of the steel shell was
monitored during testing and for soakback after shutdown. The temperature
stayed well below predicted levels. During the last test, the trailing edge
of the graphite liner at the exit plane was ejected. The failure was by a
clean fracture about 0.5 in. (12.7 mm) from the exit plane. Figure 50 shows
the streak chamber in position for testing. Figure 51 shows the surface
exposed by the failure and the buildup of soot in the throat area. The
material on the outer perimeter of the exit flange is a trowelable material
used to protect the metal flange from the radiant heat of the exhaust. The
No. 12 denotes the 12 o'clock position of the chamber during testing.

Four test firings were planned:

Test O/F Test Duration
No. Test Objective Mixture Ratio sec

1 System check 5.25 1

2 System check and leak check 5.25 3

3 Streak check 5.25 6

4 Streak check 5.25 6

The results are summarized in Table TII.

The copper heat sink chamber was installed on the tést stand
and leak tested at 50 psig (0.34 x 106 N/mz). Leaks were discovered in the
spring-loaded thermocouples and between the chamber sections at the O-ring
seal. Subsequently, a new seal was installed and the thermocouples removed and
holes sealed; however, leakage still occurred at the seal joint. To avoid
delay in the test firing schedule, the first cooled chamber (SN 2) was installed
on the test stand. Initial success in its test firing resulted in a decision
to delete heat sink chamber testing in favor of added duration, cooled test
firings.

95



puelg 1S9I U0 I2qWey) JSIOYNIOoM paurI-o3Tydeisn

*0¢ 2an814

96



L6

Figure 51.

Graphite~Lined Workhorse Chamber, Posttest



TABLE III
TEST RESULTS, GRAPHITE-LINED WORKHORSE THRUST CHAMBER

P
Test Duration = > Mixture
No. sec psia W/m x10 Ratio Remarks

1 0.62 - - —— Malfunction of FLOX pilot valve
caused premature automatic
shutdown.

2 1.52 445 3.07 4.56 No streaking, no throat
erosion, slight sooting.

3 3.52 440 3.03 4.56  No streaking, no throat
erosion, slight sooting.

4 6.52 480 3.31 4.68 No streaking, no throat
erosion, slight sooting.

5 2.87 - - - Premature shutdown due to
failure to open fuel safety
valve.

6 8.52 498 3.43 5.75 No streaking, no throat

erosion, very slight sooting.
Shear failure of graphite 0.5
in. (12.7mm) from exit.

All values are taken at F82

F82 = fire switch 2, shutdown of run



VI. TASK IV - COOLED CHAMBER TESTS

A.  TEST CONDITIONS

Two thrust chambers were completed to Drawing 1159636, including
instrumentation. SN 2 was selected for the first planned series of tests to
permit evaluation of the effect of delamination of the fibrous graphite liner in
the divergent section (see Figure 39). The first test was a cold flow only,
planned as a coolant system checkout with special regard to the function of the
heat exchanger. Both ambient and cooled flow testing indicated the pressure
drop of the methanme coolant was higher than predicted. Due to the uncertainty in
predictions and an inlet pressure limit of 1500 psia (10.3 x 100 N/mz), the re-
quired pressure at the exit manifold was reduced from 1000 psia (6.89 x 106 N/m2)
to 600 psia (4.13 x 106 N/m2). This was accomplished by changing the down-
stream orifice. 1Inlet pressure was varied to obtain the desired flow rate.
Overcooling was planned for the first hot tests.

Nominal test conditions were established as:

Thrust 5000 1b (22,240 N)
MR 5.25
Oxidizer, FLOX 82.67% F2

Fuel temperature, methane Ambient

PC 500 psia (3.44 x 106 N/mz)
Sea level
Coolant inlet tempera-— ~120°F (188°K)

ture, methane

Coolant pressure at exit 600 psia minimum (4.13 x 106 N/mz)

WT, coolant 2.02 1b/sec (0.091 kg/sec)
Wf, injector 2.02 1b/sec (0.091 kg/sec)
&O 10.62 1b/sec (4.81 kg/sec)
Injector CJK 6901 100 SCFM
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VI, A, Test Conditions {(cont.)

l.

Shutdown Parameters

a. Use Pfj as CSM monitor and program shutdown for
conditions in excess of the following:
Amplitude of Frequency of Duration of
Oscillation Oscillation Oscillation
+ 50 psi 6 1000 cps to limit 30 millisec
(0.34 x 10 of transducer

N/m2)

b. Monitor Pc and shut down if PC drops below 450 psi
(3.1 x 106 N/m?).

c. Monitor TC5 and TC7; shut down if temperature exceeds
1300°F (977°K).

Start Procedure

a. Coolant flow 2 sec minimum before fire switch. Coolant
at full flow and at -120°F (188°K) to -150°F (172°K)
before fire switch.

b. Fuel and oxidizer circuit GN2 prefire purge adjusted

to a regulated pressure of 200 psig (1.38 x 100 N/M2).
Purge to be initiated at least 3 sec before fire switch.

c. Fuel TCV to lead oxidizer TCV by 0.075 + 0.025 sec
(150 to 200 millisec).

d. TCV opening time is 0.45 to 0.50 sec.

Shutdown Procedure

a. Postfire fuel and oxidizer circuit purge pressure 200 psig
(1.38 x 106 N/m?2).

b. Leave fuel and oxidizer prefire purge "ON'" (checked off)
throughout test.



VI, A, Test Conditions (cont.)

c. Close oxidizer TCV 2 sec prior to closing fuel TCV.
Minimum postfire fuel purge 5 sec. Minimum postfire
oxidizer purge 5 sec. Minimum coolant flow 5 sec
after closing fuel TCV.

d. TCV closing time 150 to 170 millisec.

4, Passivation

Fluorine passivation of the injector oxidizer circuit is
required prior to attachment of chamber. Continuous GNjp
purge of oxidizer circuit at 5 to 10 psig (0.034 x 106 N/m?)
after passivation except during test firing.

The actual test firings were conducted as follows: The test pro-
cedure commenced with purging of the methane system feed lines with low pressure
methane gas to remove air from the lines. The FLOX feed lines were bled at low
pressure to prechill the system. The FLOX tank pressure was set to final test
value, and the fuel line was set to final test pressure with the pressure control
regulator; a final system bleed of both circuits was conducted. At this time,
the helium purge to the heat exchanger was secured and the coolant regulator
energized, and the FLOX bleed valve was opened. When the coolant outlet pressure
and temperature were at prescribed limits, the countdown began, with the FLOX
bleed being closed on the "2" count.

At FSp, the injector purges were sequenced on and a helium purge
initiated through the heat exchanger to remove residual methane and prevent the
coolant tubes in the heat exchanger from freezing.

Figure 52 shows the test stand and diffuser with the thrust cham-
ber mounted for testing. Figure 53 shows the chamber in position with all
plumbing and instrumentation complete.

B. TEST RESULTS, COOLED CHAMBER TESTING
Test results are summarized in Tables IV and V.

Test 7 through 11 were conducted at planned parameters. Examina-
tion of data showed that thermocouples 5 and 7, which were monitored at 1400°F
(10330K for shutdown, were experiencing very erratic and dramatic variations in
addition to indicating temperatures 300 to 500°F higher than thermocouples 6 and
8, which were located 180 degrees opposite. To determine whether the throat area
at TC7 was actually experiencing the temperatures indicated, two thermocouples
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VI, B, Test Results, Cooled Chamber Testing (cont.)

(TC8a and TC7a) were installed on the outer nickel jacket surface near TC8 and
TC7. When TC7a failed to show any significant temperature difference over
TC8a, it was concluded that TC7 data were suspect. After Test 10, the shut-—
down monitor was changed to TC6. Posttest examination by X-ray indicated that
TC7 was protruding approximately 0.040 in. (1.02 mm) into the graphite liner.
For this reason, TC7 data are not valid for the interface temperatures. The
erratic readings from all thermocouples were determined to be due to carbon
soot buildup. Pieces of carbon to 1/8 in. (3.2 mm) thick were found in the
diffuser and adhering to the cylindrical section of the chamber liner. Post-
fire throat measurements indicated up to 3 mils (0.076 mm) deposit adhering.

It is surmised that builildup and flaking off was a continuous process during test
firing. Since soot is an excellent insulator, the variations in temperature in
some cases exceeded 300°F (422°K) in 2 sec.

The pulse test summarized in Table V consisted of eight cycles of
5 sec on and 2 sec off. The test objective was to provide a thermal and
mechanical shock on the thrust chamber. Posttest examinations indicated no
visible change in the liner or jacket. Note that the coolant temperature out
(Trco) is actually lower than the coolant temperature in TgcI) at 0.1 sec into
the run. This is due to complete cooling occurring during the 2.0 sec off
period plus the cooling effect of expanding methane while experiencing a pressure
drop of approximately 650 psi from inlet to outlet.

Black and white photos were taken after each test and the throat
diameter was measured. The throat measurements varied from 1 to 3 mils (0.025
to 0.076 mm) under prefire diameter measurements, indicating no throat erosion
and varying soot buildup. Figures 52 and 53 show the thrust chamber in position
on the test stand prior to the first test. Figure 54 shows the thrust chamber
after the first cooled test (No. 7) of 5.5 sec duration. Figure 55 was taken
after Test 13 and shows the carbon buildup in the cylindrical section of the
thrust chamber. Figure 56, post—~Test 14, shows : large carbon deposit just
forward of the convergent section.

C. POSTTEST ANALYSIS

Posttest analysis required was minimum and consisted of inspection
of the hardware, particularly the liner throat and divergent section where a
delamination was plainly visible in prefire photos, and X-rays to determine
thermocouple locations. Figure 56 shows the throat and exit section after com-
pletion of all testing, 540 sec total duration. Figure 57 shows the throat and
exit section after removal of soot by cleaning with soap, water, and steel wool.
Reference can be made to Figure 39 for a before-and-after comparison.

X~-rays taken axially through the throat showed that thermocouple 7
protruded approximately 0.042 in., (1.06 mm) into the graphite liner. This con-
firmed deductions based on the unusually high temperature readings recorded.
Thermocouple 8, also at the throat and located 180 degrees from TC7, was not
visible in X~rays, indicating it did not protrude into the graphite. The X-rays
alse established that the throat liner thickness was uniform and the liner was
concentric with the nickel jacket.
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494
495
523
488

P

psia N/mleO3

3406
3412
3605
3364

MR
3.63
4.60

4.79
5.32

TABLE IV

SUMMARY OF MAJOR PARAMETERS OF COOLED TESTS

w,. Coolant

Pulse Test - See Table V

486
495
491

491

515

524

3350
3412
3385

3385

3550

3612

5.13
5.50
5.38

5.11

5.24

5.42

f AP Coolant TFCI AT Coolant c*
1b/sec kg/sec  psi N/mleO3 °F °k °F °k  ft/sec m/sec
2.88 1.31 717 4973 -84 208 41 278 6840 2084
2.03 0.92 739 5095 ~43 231 73 296 6719 2048
2.24 1.02 655 4516 -78 212 128 327 6866 2093
2.09 0.95 932 6425 6l 289 17 265 6805 2074
1.56 0.71 546 3764 -80 211 217 376 7033 2143
1.85 0.84 600 4137 =77 213 181 356 6886 2098
2,24 1.01 663 4571 —65(1) 219 ll3<l) 318 6802 2073
1.60 0.72 552 3805 -80 211 214 374 6893 2101
2.16 0.98 529 3647 -99 200 94 308 6819 2078
1.91 0.87 594 4095 ~-80 211 159 344 7044 2147

Data are at FS

Shutdown by TC7 at 1400°F (1033°K).
Coolant ambient shutdown by TC7 at 1600°F (1144°K).

Shutdown at 0.5 sec due to FLOX valve make before fuel valve.
to attempt to shorten delay time.

2

except as noted.

Monitor changed to TC6 for next test.

open. Delay was reset to 140 millisec for next test.

Shutdown at 160.5 sec by TC6 at 1400°F (1033°K).

Shutdown at consumption of remaining FLOX.

Test Duration,
No. sec
7 5.5
8(2) 3.2
9 100.5
10 2.6
11 56.0
12(4) 0.4
139 160.5
14(6) 219.5
13 10.0
1-10 sec
avg
13 10.0
150-159 sec
avg
14 10.0
75-84 sec
avg
14 10.0
190-199 sec
avg
NOTES:
(1) At 10 sec.
(2)
(3)
4
(5)
(6)
NOMENCLATURE:

psia - Pounds per square inch atmosphere

2
N/m~ - Newtons per square meter

MR

w,_ Coolant - Weight flow, coolant

£

- Mixture ratio

AP Coolant — Pressure drop, coolant

TFCI - Temperature, fuel coolant, in

AT Coolant - Temperature change, coolant in to coolant out

106

psi - Pounds per square inch

Delay timing had been set at 60 millisec
Due to lack of pressure (volume) in system, fuel valve failed to

¢* — Characteristic velocity of propellant gases

kg/sec
1b/sec
ft/sec

m/sec

Kilogram per second

Pounds per second

Feet per second

Meters per second

°F - Degrees Fahrenheit

°K - Degrees Kelvin

&3



TABLE V

PULSE TEST
Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5 Pulse 6 Pulse 7 Pulse 8
Function FSl+.l F52 FSl+.l FS2 FSl+.l F82 FSl+.l F32 FSl+.l FS2 FSl+.l F82 FSl+.l F82 rSl+.l F82
Pe
psia 478 489 487 487 466 465 450 447 448 448 448 448 450 450 446 446
N/m2x106 3.29 3.37 3.36 3.36 3.21 3.21 3.10 3.08 3.09 3.09 3.09 3.09 3.10 3.10 3.08 3.08
MR 5.1 5.4 5.3 5.3 5.3 5.3 5.0 5.0 5,0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Wf Coolant
1b/sec 3.02 2.98 3.01 2.95 3.06 2.95 2.88 2.93 2.99 2.90 2.98 2.85 2.98 2.66 2.88 2.71
kg/sec 1.37 1.35 1.36 1.34 1.39 1.34 1.31 1.33 1.35 1.32 1.35 1.29 1.35 1.21 1.31 1.23
TFCI
°F ~-100 -99 -99 -98 -97 -96 ~96 -95 -95 -93 -93 -92 -90 -89 -89 -87
°K 200 201 201 201 202 202 202 203 203 204 204 204 205 206 206 207
TFCO
°F -120 -64 -107 -69 -107 -68 -107 -76 -107 -64 -106 -56 -104 -51 -107 =51
°K 189 220 196 217 196 218 196 219 196 220 195 224 198 227 196 227
TFCI Temperature of coolant, in

£01

TFCO

FS +.1
FS

Temperature of coolant, out

]

Fire switch 2, shutdown of run.

Fire switch 1 plus 0.1 sec, start of run + 0.1 sec.
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VI, Task IV - Cooled Chamber Tests (cont.)

D. ANALYSIS OF TEST RESULTS

1. Instrumentation

Temperatures were measured at five axial stations along the
contour with two measurements at each station 180 degrees apart. Ten thermo-
couples were inserted through the ribs nominally to the graphite-nickel
interface. Two additional thermocouples were spot welded to the exterior
surface of the electroformed nickel coolant jacket at the throat station. A
postfire X-ray showed one of the throat thermocouples to be actually positioned
0.042 in. (1.06 mm) into the graphite.

2. Test Results and Comparison to Predictions

Figure 58 shows typical temperature transients for Test No. 14
which was of 220-sec duration. The three thermocouples shown are the tempera-
ture at the threat station 0.042 (1.06 mm) into the AGCarb, the exterior of the
throat, and the interface 2 in. (50.8 mm) upstream of the throat on the same
side of the chamber. The wall temperatures are noted to oscillate throughout
the test with all instrumentation on one side of the chamber and in the throat
region showing similar response with time. Thermocouples located on the oppo-
site side of the chamber also oscillate with time but phased independent of
the transients shown.

Review of the coolant inlet and discharge pressures and
coolant flow rates revealed the flow and pressures to be very steady during
the periods when temperatures were changing rapidly, while the coolant bulk
temperature rise increased only 117 with the largest wall temperature rises.
The wall temperature oscillation phenomena observed are clearly due to the
local building up and flaking off of socot deposits on the gas-side surface.
This conclusion is supported by the following facts:

(1) The peak temperatures measured just after the soot
flakes off are very close to the values predicted for a clean wall and are
very repeatable.

(2) The temperatures drop slowly, reflecting a slow buildup
rate; reach a minimum value which is also repeatable each cycle, reflecting

the maximum soot thickness which is structurally stable under the gas shearing
forces.

(3) The wall temperatures rise rapidly following stripping
of the soot layer.

(4) Large shingles of carbon deposits were found on the
AGCarb liner surface following each test. The fact that the soot flakes off
supports the basic design criteria adopted-—that soot deposits should not be
depended upon to prevent chamber wall overheating.
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VI, D, Analysis of Test Results (cont.)

Figure 59 provides test data and the axial wall temperature
profiles as computed from the two-dimensional heat conduction analysis prior
to testing. Data are from Test No. 14 with TC7 thermocouple values adjusted

to account for junction depth. The following information can be noted from
this figure:

(1) Predicted wall temperatures for a no-soot condition on
the gas-side of the AGCarb, the exterior of the nickel, and the interface of
the AGCarb liner and the nickel jacket.

(2) Predicted témperatures for an injector with a 40 scfm
(9.1 m3) face plate for which the chamber was designed and predicted tempera-

ture for the same injector with the 100 scfm (22.8 m3) face plate that was
employed in testing.

(3) Measured wall temperatures which represent the maximum
values in the time-temperature history. These are most appropriate since
they represent the nearly clean wall condition for which the analysis was
conducted. |

The injector face plates are porous, sintered materials which
provide a fuel-rich zone around the periphery of the injector. The greater
porosity, 100 scfm (22.8 m3) face plate results in a longer fuel-cooled length
in the cylindrical region of the chamber. At the start of the convergent
nozzle, the unreacted oxidizer burns off the fuel-rich barrier and the wall
temperatures rise rapidly such that, at the throat station and beyond, there
is no predictable difference between the thermal characteristics of the two
injectors. Since the throat station results in both the maximum wall tempera-
tures, maximum temperature gradients and maximum thermal stresses, either
injector assembly is considered to be suitable for evaluating the adequacy

of the materials, the design and the fabrication approach, and analytical
techniques.

In general, the measured temperatures are in good agreement
with the predictions for the 100 scfm (22.8 m3) injector which was tested.
The throat was running slightly cooler than predicted as verified by both the
external thermocouple and the one located within the AGCarb. liner. These
temperatures are as follows:

Location Predicted Measured

External 264°F (402°K) 100°F (311°K)

AGCarb internal 1850°F (1283°K) 1600°F (1144°K)

AGCarb surface 4619°F (2821°K) 4000-4450°F (2477-2725°K)
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VI, D, Analysis of Test Results (cont.)

The AGCarb surface temperature, which can be inferred from these results,
range from 4000°F- (2477°K) to 4450°F (2725°K), depending on which of the wall
resistances or coefficients are assumed to be in error. Another possibility
is that some soot always remains on the wall such that a really clean wall
condition is never achieved.

The one region where a significant difference in predicted
(760°F [678°K]) and measured (150°F [339°K]) nickel wall temperatures is noted
is downstream of the throat. This may be due to the loss of good thermal con-
tact at the bond line downstream of the throat. Reduced thermal contact will
cause the nickel to run cooler and the AGCarb hotter. Complete separation
would result in the AGCarb surface temperature rising to the order of 5000°F
(3033°K) with radiation being the only cooling mode. The success of this
material is not surprising since many previous applications in an uncooled
configuration-have been demonstrated at operating temperatures to 5500°F
(3310°K). The lack of material removal under these severe conditions is
credited to the compatibility of the graphite fibers with the products of com-
bustion which are already saturated with the carbon supplied in the fuel.

An overall comparison of the accuracy of the thermal analysis
can be obtained by comparing the predicted and measured coolant temperature
rise as follows:

Predicted Measured=*
Injector face, scfm (scmm) 40 (9.1) 100 (22.8) 100 (22.8)
Coolant inlet temperature, -120 (188) ~120 (188) -78 (212)
OF (OK)
Coolant discharge temperature, -+357 (453) +60 (288) +92 (306)
OF (OK) i
Coolant temperature rise, 477 (520) 180 (355) 170 (350)

*Test No. 14 at 215 sec.

3. Transient Analysis

A portion of the thermal design effort was devoted to con-
sideration of the thermal transients of the chamber. One of the items of
interest was the ability of the two-dimensional heat conduction program for
regeneratively cooled chambers to predict the wall heating rates. Figure 60
provides a comparison of the predicted and measured throat station heating
rates. Since the coolant flows were slightly higher during the engine start
transient than those employed in the original design analysis, it was necessary

.to correct the test data to a lower flow condition. The top solid line in
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VI, D, Analysis of Test Results (coﬁt.)

Figure 60 shows the predicted time-temperature history of a point in the

AGCarb liner which corresponds to the thermocouple position as located by
a chamber X-ray. The dashed line shows the test results corrected to the

proper coolant flow rates.

The time-temperature histories predicted by the computer

model in the transient mode are noted to accurately define the wall heating
rates and time required to reach steady state.

4, Conclusions
(a) The thermal design is satisfactory.
(b) Soot reduces wall temperatures but not predictably.
(c) Thermal resistance at interface was as predicted
except for region downstream of the throat.
(d) AGCarb properties are adequately defined.
(e) Methane cooling charaéteristicé used are confirmed

by test results.
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VII., CONCLUSTIONS

To meet the objectives of the program (i.e., to demonstrate the
feasibility of operating a graphite-~lined thrust chamber with FLOX-methane
propellants) required the integrated efforts of several technical disciplines.
The use of unique materials and fabrication methods required the development
of special construction and assembly techniques by materials and fabrication
specialists. Likewise, the design, development and analyses required applica-
tion of special methods of analysis to account for and predict the performance
of the materials and material combinations involved. Two thrust chambers were
fabricated using fibrous graphite as a thermal barrier liner and nickel
electroformed over the liner containing passages for regenerative cooling.

One of these thrust chambers was test fired with FLOX-methane for a total
duration of 540 sec, thus demonstrating the feasibility of the concept and
methods of analysis. No throat erosion or other physical damage was evident,
thus demonstrating the potential of the fibrous graphite and electroformed
nickel as liquid rocket engine construction materials, either singly or in
combination. There is a need, however, to improve the physical and chemical
properties of these materials to further increase their potential. At the
same time, the manufacturing methods used in producing fibrous graphite and
electroformed nickel should be the subject of additional research with the
objective of upgrading the consistency and reliability of physical properties.
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App A

THERMAL AND MECHANICAL EVALUATIONS
OF AG CARB MATERIAL

INTRODUCTION

This is the final report to Aerojet Liquid Rocket Company,
Division of Aerojet General Corporation, for work performed under
Purchase Order Number L-801442-2022, Prime Contract NAS3-13315.

The object of the program was to perform tensile, compressive and
thermal conductivity evaluations of AG Carb nozzle material at room
and elevated temperatures. As shown in the test matrix (Table 1),
tensile and compressive evaluations were conducted at 70°F, 3000°F
and 5000°F and thermal conductivity was measured from 70°F to S5000°F.

MATERIAL AND SPECIMEN PREPARATION

The material evaluated was identified as AG Carb and was
furnished by Aerojet Liquid Rocket Company; the San Rafael Plastics
Company in San Rafael, California was the manufacturer.

Five different constructions of the material were evaluated,
but common denominators for all the specimens were that they were
carbon-carbon composites constructed from National Carbon's WCA
carbon tape and graphitized at a minimum temperature of 5000°F.

The differences were the layups (flat, 30° or 60°), or biases (each
layer biased 45°, alternate layers biased 15°, successive layers
biased 15° or fabric randomly oriented). These different construc-
tions for each evaluation are noted in the test matrix in Table 1;
sketches of each construction are displayed in Figure 1 for further
clarification. Also listed in Table 1 is the location and orienta-
tion of the material in the nozzle that each type specimen duplicates.

The material was received in the form of machined specimen
blanks; the size of these blanks may be noted in Table 1 also. There
were nine tensile and compressive specimens and one thermal conduc-
tivity specimen for each construction tested.

These mechanical specimens are identified throughout the report
by the Aerojet designations that were on the blanks. These desig-
nations are explained as follows:
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4
i Specimen number for this construction and type specimen

Aerojet type specimen number (1 and 12 were tensile
specimens, 4 and 13 were compressive specimens and
9, 10, 14 and 15 were thermal conductivity specimens)

Construction of material from which specimen was
fabricated ("A" construction was flat layup with 45°
bias, "B" construction was flat layup with alternate
layers rotated 15° clockwise, "D" construction was
flat layup with straight fabric

The thermal specimens did not fit within the nomenclature of
the mechanical specimens; these specimens are identified as follows:

B9

B10O

Cl5

D14

a radial chamber specimen with plys oriented 30° to the
longitudinal axis with random tape orientation. Heat flow
was 30° to plys

a radial throat specimen with plys 30° to the longitudinal
axis with alternate tape layers rotated 15° clockwise.
Heat flow was 30° to plys.

a radial throat specimen with plys 60° to the longitudinal
axis with successive plys rotated 15°. Heat flow was
30° to plys.

a radial throat specimen with plys oriented 60° to the
longitudinal axis with random tape orientation. Heat
flow was 30° to plys.

As already mentioned the specimens were received as blanks,
the size and configuration of which may be noted in the test matrix.
Bulk density and sonic velocity measurements were made on these

blanks.

Sonic velocity measurements were accomplished by a through-

transmission, elapsed-time technique. After the tensile specimens
were final machined the electrical resistivities of some spécimens
were measured by the potentiometer method. All of these values are
noted on the appropriate tables.
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APPARATUS AND PROCEDURES

Tension

The tensile evaluations were conducted in a gas-bearing tensile
facility. This apparatus utilizes gas-bearing universals in the
load train to help detect misalignments which cause unknown bending
stresses in the specimen. Primary components, other than the
gas bearings, are the load frame, the mechanical drive system, the
5500°F furnace, the optical strain analyzers and associated instru-
mentation for measurement of load and strain. The complete facility
is discussed in detail in Appendix A'.

Figure 2 is a sketch of the tensile specimen configuration
utilized for the two material constructions evaluated in tension.
This specimen is a 4-inch modification cf the standard 6-inch
configuration discussed in the appendix. The primary differences
between the standard and the 4-inch specimen are the reduced L/D
ratio in the gripping area and a lack of a double breakdown radius.
A study (using graphite) to compare the two has been conducted
to establish any differences, if they existed between the two
configurations. Briefly, it was found that:

1. The specimen configuration (4-inch versus 6-inch) does not
affect the tensile strength. ‘

2. The 4-inch specimen gives about 6 percent lower modulus
values, perhaps, because of the decreased gripping area and problems
associated with specimen motion during initial loading and graphically
interpreting the initial part of the curve.

3. Total strain was not affected by the problems of initial
loading.

Compression

The compressive evaluations were performed in a gas-bearing
compressive facility much like the tensile facility. This facility
also has gas-bearings in the load train to eliminate misalignments
and unknown bending stresses. Strains were measured with optical
strain analyzers and elevated temperatures were supplied by an
electrical resistance furnace with a graphite element. Appendix B'
is a complete discussion of the facility. The standard "dumbbell"
specimen configuration as discussed in the appendix was utilized
for these evaluations; the configuration is shown in Figure 3.
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Thermal Conductivity

The thermal conductivity of the "AG Carb" composite was de-
termined in the direction 30° from the lamina. The comparative rod
and radial inflow apparatuses were employed to make the determina-
tions from 150°F to 5000°F,

The material was supplied in the form of blanks and, as discussed
previously,Blanks B9-1 and B10-1 were used to prepare the specimens
for the comparative rod apparatus. Several blanks designated as
C1l5 and D14 were employed to prepare the specimens for the radial
inflow apparatus. These blanks were considered to be the same
material and therefore were used to obtain duplicate data; however,
there was a slight difference of fabric orientation between the
blanks. The layers of the fabric in B9-1 and D14 were laid up with
a random orientation of the warp direction; whereas, the alternate
layers of the fabric in B10~1 and successive layers of the fabric
in Cl5 were rotated 15° clockwise. This was not expected to affect
the conductivity of the material and the good repeatability of
the runs confirmed this expectation.

A description of the comparative rod apparatus used from 150°F
to 1500°F is included in Appendix C. The normal procedures and
specimen configuration discussed in the appendix were employed
for these determinations, therefore the estimated uncertainty of
t5 percent applies to these runs.

For the temperatures above 1500°F the radial inflow apparatus
was employed. A description of this apparatus and procedure is
included in Appendix D% Normally a cylindrical specimen is employed
and the heat flows radially inward through the specimen, where it is
monitored by a water calorimeter situated along the axial centerline
of the specimens. Due to the anisotropic nature of this material
the normal cylindrical specimen could not be employed, therefore,
the strip assembly was used. This assembly consisted of four
strips boxed around the central calorimeter as shown in Figure 4.
The heat flowing radially inward toward the calorimeter transfers
through the thickness of each strip. The temperature gradient across
each strip is measured and the average value 1s used to calculate
the thermal conductivity.

The uncertainty from all sources for the radial inflow apparatus
is *7 percent when employing the normal cylindrical specimen con-
figuration. For the strip assembly employed for these runs, two
additional sources of error must be considered. The first is the
amount of heat that bypasses the specimen strips and flows through
the insulated corners of the assembly. This error 1s a function
of the ratio of the conductivity of the corner insulation (ther-
matomic carbon) to that of the specimen. Due to the relatively
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high conductivity of the specimens this error was negligible. The
second source of error concerns the formation of isotherms within
the strips that are not normal to the assumed direction of the heat
flow. This error would be random and experience has shown that the
error is probably less than #*3 percent. Combining this with the
uncertainty of *7 percent for the basic apparatus yleldS a total
uncertainty of only *8 percent.

Weight/Volume Bulk Density

The bulk density of each specimen blank was determined from
direct measurements of weight and dimensions. Weight measurements
were made on an analytical balance having a sensitivity of 0.0001
gram. Dimensional measurements were made to the nearest 0.0005
inch using micrometers.

Ultrasonic Velocity

The through-transmission, elapsed-time technique was used for
measuring the acoustic velocity. In this method, a short pulse of
longitudinal-mode sound was transmitted through the specimen. An
electric pulse was originated in a pulse generator and was applied
to a ceramic piezoelectric crystal (SFZ). The pulse generated by
this crystal was transmitted through a short delay line and in-
serted into the specimen. The time of insertion of the leading edge
of this sound beam was the reference point on the time base of the
oscilloscope which was used as a high-speed stopwatch. When the
leading edge of this pulse of energy reached the other end of the
specimen, it was displayed on the oscilloscope. The difference
between the entrance and exit times was used with the specimen length
in calculating ultrasonic velocity. A short lucite delay line was
used to allow time isolation of the sound wave from electrostatic
coupling and to facilitate clear presentation of the loading edge
of the entrant wave resulting in a more accurate "zero" for time.
Tranducers having resonance frequencies of 1MHz and a 1/2-inch
diameter cross-section were used. Alcohol was used as a couplant
to reduce errors incurred by solid couplants. The precision of
the measurement for tensile test blanks is #0.002 inch per micro-
second.
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Electrical Resistivity

Electrical resistivity was measured by the potentiometer method.
The test specimen may be either a specimen blank or a finished speci-
men configuration having a uniform gage length of 1 inch or more.
The attachment taps to the specimen were spring-loaded graphite
discs. Potential taps were normally clipped to the specimen and
had a gage length of 1 inch.

The procedure used in the potentiometer method involved com-
paring the voltages for a standard resistor with a specimen of unknown
resistance when a common, Xknown current flowed through both. With
1 amp flowing through the specimen and a standard 5000 pohm resis-
tor, the potentiometer was set at 5000 uv, and the reheostat adjusted
until there was no current flow through the galvanometer. Then,
the potentiometer leads were switched to the specimen. The poten-
tiometer was adjusted for zero current flow through the galvanometer,
and the voltage across the specimen was read.

From the relation

el

I

the relationship between the standard resistance, the unknown
resistance and the associated voltages could be expressed as

Ry _ By Ex
— — or Ry = Rg ™
Rg  Eg Eg
where
Ry = resistance of specimen
R = resistance of standard resistor (5000 uohm in this case)
Fy = voltage drop across specimen
Eg = voltage drop across standard resistor

A full-wave rectified dc power supply operated by an ac regulated
power source was used to induce current flow though the specimen.
A galvanometer having a sensitivity of 0.8 uV per millimeter with
a 1000 ohm series resistor was used with a potentiometer having
a dial graduation of 0.0005 uV to measure voltage.
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Using the measured voltage drop across the specimen, the known
current flow, and the dimension measurements from the specimen, the
volume electrical resistivity was calculated using the equation

o=2 Vx
I
where
o = volume electrical resistivity
A = cross-sectional area of specimen
Vx = voltage drop across gage length of specimen (corrected for
open—-circuit voltage)
I = current flow through specimen
L = gage length of specimen

The normal uncertainty for the value of electrical resistivity
determined from this apparatus is *2 percent.

DATA AND RESULTS

The results of the mechanical, thermal and nondestructive
test evaluations obtained with the various constructions of AG
Carb material are presented in Tables 2 through 5 and Figures

5 through 12.

Tension

The results of the tensile evaluations of the "A" and "B"
constructions of the AG Carb are exhibited in Table 2 and Figures
5 through 8.

' As shown in Figure 5, the strength of both
constructions increased approximately 20 percent with each increase
in temperature from 70°F to 5000°F. Also evident, is the fact
that the "B" construction specimens (flat layup with alternate
layers rotated 15° clockwise) were 20 to 25 percent stronger than
the "A" construction specimens (flat layup with 45° fabric bias).
At 70°F the respective values were 6790 psi and 5360 psi; at 5000°F
these comparative values were 9770 psi and 8050 psi.

In Figure 6 the tensile elastic moduli for both constructions
are plotted against temperature. At 70°F and 3000°F the "B" con-
struction specimens again exhibited higher values. Comparative
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values at 70°F were 1.48 x 10° psi for the "A" and 1.75 x 10° psi

for the "B"; at 3000°F the comparative values in the same respective
order were 1.19 x 10° psi and 1.46 x 10° psi. At 5000°F both con-
structions exhibited the same value of 0.55 x 10° psi. As one can

note by this discussion each increase in temperature resulted in -
a lower modulus for each construction.

Figure 7 is a plot of total strain to fracture versus temperature .
for each construction. The results are confusing here because of
scatter in the data and there were no absolute values obtained at
5000°F. This latter phenomena was due to the strain targets falling
off or sliding down the specimens before fracture occurred. At
70°F both constructions exhibited a value of approximately 0.007
in./in. Increasing the temperature to 3000°F caused the values to
increase to 0.008 in./in. for the "A" construction and 0.010 in./in.
for the "B" construction. It is evident that increasing the tempera-
ture further to 5000°F caused the total strain values of both con-
structions to increase greatly (greater than 0.060 in./in.).

Photographs of the fractured specimens may be seen in Figure
8. As shown, the specimens from the "A" construction failed along
an approximate angle of 45°. This would be expected since the "A"
construction was a flat layup with a 45° tape bias. The specimens
from the "B" construction did not seem to fail at a definite angle -
part of the fracture (individual laminae) was approximately 75°
to the longitudinal axis while the other part of the fracture was
torn straight across (90° to the longitudinal axis). This reflects
this material's construction of flat layup with alternating layers
offset 15° to the longitudinal axis; in-between layers were straight.

Compression

The results of the compressive evaluations of the with lamina
specimens from the "B" construction and the across lamina specimens
from the "D" construction are displayed in Table 3 and Figures 9
through 11. :

The compressive strength versus temperature plot is shown in
Figure 9. As anticipated the strength of the across lamina specimens
("D" construction) was approximately double that of the with ‘
lamina specimens ("B" construction). Also as anticipated (from the
tensile behavior), each temperature increase from 70°F to 5000°F
resulted in successively higher strengths for both type specimens. .

SOUTHERN RESEARCH INSTITUTE
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At 70°F the strength of the across lamina and with lamina specimens

respectively were 13,590 psi and 7,790 psi. In the same order the
values were 18,500 psi and 9,870 at 3000°F. Only one fracture was
obtained at 5000°F due to the physical limits of load train travel
being exceeded by the specimen deformations. The single fracture
was obtained with a with lamina specimen ("B" construction); the
value was 11,800 psi.

Compressive moduli are plotted against temperature for each
type specimen in Figure 10. The moduli of the with lamina specimens
were greater than those of the across lamina specimens at all three
test temperatures. Respectively at 70°F, 3000°F and 5000°F the
comparative values were 1.50 x 10° psi to 0.30 x 10° gsi, 1.54 x 10°
psi to 0.44 x 10° psi and 0.86 x 10° psi to 0.18 x 10 psi. This
also shows that the moduli of both constructions increase slightly
with the temperature increase from 70°F to 3000°F. Further in-
creasing the temperature to 5000°F caused a drastic reduction in
moduli for both constructions.

A plot of compressive strain to failure versus temperature is
not included because there is a lack of data from which to produce
one. We were able to measure total strain with only the "B"
construction specimens and then only at 70°F and 3000°F, Measure-
ments of strain were usually terminated by the strain targets
breaking off the specimens. For this reason the values with the
"greater than" notations in the tables mean this was as far as
we could follow the targets; the actual total strain at failure
would be much higher.

The specimens from the "B" construction exhibited a total
strain of 0.0074 in./in. at 70°F and 0.0093 in./in. From this
it should be safe to say that total strain increased with each in-
crease in temperature from 70°F to 5000°F as was the case in '
tension. The across lamina specimens ("D" construction) exhibited
very high total strain at each test temperature. 1In fact the speci-
mens evaluated at 70°F strained so much that the strain targets
fell (approximately 0.040 in./in.) before fracture occurred.

Figure 11 is a photograph of the failed specimens. All of
the failures obtained with the "B" construction material (with
lamina) occurred along a shear line angularly located at approx-
imately 30° to the longitudinal axis. The across lamina specimens
("D" construction) failed in a compaction manner. It may be
noted that most of these specimens have also failed in an inter-
laminar mode. These failures occurred as secondary breaks and in
removing the specimens from the push rods.

SOUTHERN RESEARCH INSTITUTE
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Thermal Conductivity

The thermal conductivity of the "AG Carb" with the heat flow
in the direction of 30° from the lamina is shown in Figure 12
and Tables 4 and 5. The values decreased from 425 Btu in./hr ft?°F
at 200°F to 182 Btu in./hr £t?°F at 4500°F. These values were
extrapolated to 190 Btu in./hr ft2°F at 5000°F. The extrapolation
was based on the character of two runs made initially during this
program using a strip assembly that did not monitor the temperature
gradient across each strip. These initial runs were not reported
due to a higher random uncertainty that resulted.

The slight increase in the conductivity at the elevated
temperatures, although being less than the uncertainty of the
measurement, is believed to exist since all data points (for the
initial unreported runs and those shown in Figure 2) taken in this
temperature range consistently increased. Previous evaluations
on this type of composite have also exhibited increasing conduc-
tivity with temperature above 3500°F. This increase is attributed
to the further graphitization of the material in addition to a
slight contribution by radiant transport.

Submitted by:

Mol &\

Donald C. Irvin
Associate Engineer

Starrett, Head
Solid Mechanics Section

Approved-by:

C. D. Pears, Head
Mechanical Engineering Division

A-528-2550~1T
(5:12)
klr
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30° to Lamina Thermal Conductivity -

Radial Inflow Apparatus {2000°F to
5000°F) - Chamber Radial and Throat

Radial

Evaluation:

Construction: Plys 60° to longitudinal axis,
National Carbon WCA carbon tape
randomly oriented in radial chamber

/

specimen {Dl4) and successive layers
rotated 15° clockwise in radial
throat specimens (C15)

l ¥
P
3

Warp

wa ////’

45°
Bias

-1/4
Evaluation:

3/4

pa”

With Lamina Tensile ("A") Chamber Hoop
Construction: TFlat layup, National Carbon WCA
carbon tape with 45° bias

Evaluation:

Figure 1.

t Construction:

AN BB

With Lamina Tensile and Compressive ("B"}

Throat Hoop
Flat layup with National Carbon WCA
carbon tape with alternate layers
rotated 15°

Construction of Specimen Blanks

/
S /////‘,
\ \\ / Heat Flow

Evaluaticn: 30° to Lamina Thermal Conductivity -
Comparative Rod Apparatus (70°F to
2000°F) - Chamber Radial and Throat
Radial

Construction: Plys 30° to longitudinal axis,
National Carbon WCA carbon tape
randomly oriented in radial
chamber specimen (B9) and alternate
layers rotated 15° clockwise in

radial throat specimens (B10)

e

i -

—

| to Plys

P
Across Lamina Compressive ("D")

Evaluation:
Flat layup with Mational Carbon

Construction:
wWC2 carbon tave
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0.453 Dia

?
0.500 Dia

i

1R 0.250 Dia

Notes:

LoV I NI

°

All diameters must be true and concentric to within 9.0085 inch

%J
1,200 0.416

4

0.250

Both ends flat and perpendicular to ¢ to within 0.0005 inch
Do not undercut radii at tangent points. Contour grind
All dimensions are in inches. Tolerances are *0.001 inch on

diameters,

Figure 2.

+0.005 inch on lengths.

Tensile Specimen Configuration
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e——————— 2,50 ————

—h]

0.900 Dia } - t

{
l/ZRJ_ [—O.SOO‘Dia

4

Notes:

1. All diameters true and concentric to 0.0005 inch
2. Both ends flat and perpendicular to 0.0005 inch
3. Do not undercut in gage length

Figure 3. Compressive Specimen Configuration
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Tensile Elastic Modulus in 10° psi
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With Lamina Tension

Flat Layup, National
Carbon WCA .Carbon Tape
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Rotated 15° Clockwise
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Figure 8.
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Table 1

Test Matrix for AG Carb Materials

Location Number of Runs
of Type Per Temperature size of
) Specimen Material Material Specimen Specimen
Evaluation Orientation Construction in Nozzle Designation 70°F ]3000°F | 5000°F Blank

Tension With Flat layup with Chamber Al-1 3 3 3 3/4"x3/4"x4-1/4"
(ultimate strength, Lamina National Carbon WCA hoop through
elastic modulus, carbon tape with 45° Al-9
Poisson's ratio bias
and strain to
fracture)
Tension With Flat layup with Throat Bl2-1 3 3 3 3/4"x3/4"x4-1/4"
(ultimate strength, Lamina National Carbon WCA hoop through
elastic modulus, carbon tape with B12~9
Poisson's ratio alternate layers
and strain to rotated 15° clockwise
fracture)
Compression With Flat layup with Throat B4-1 3 3 3 1-1/8"x1-1/8"x2~1/2
(ultimate strength, Lanmina National Carbon WCA hoop through
elastic modulus, carbon tape with B4-9
Poisson's ratio alternate layers
and strain to rotated 15° clockwise
fracture)
Compression Across Flat layup with = | ====w- D13-1 3 3 3 1-1/8"x1-1/8"x2~1/2
(ultimate strength, Lamina National Carbon WCA through
elastic modulus, carbon tape straight D13-9
Poisson's ratio
and strain to
fracture)
Thermal Conductivity 30° to Plys 30° to longi- Radial B9 <t 1 > 1.0" dia x 1.0" 1g
{comparative rod Lamina® tudinal axis, National | Chamber
apparatus = 70°F to Carbon WCA carbon tape
2000°F) in random orientation
Thermal Conductivity 60° to Plys 60° to longi- Radial D14 <= 1 e 5/8" tk x 1.0" wide
(radial inflow Lamina'® tudinal axis, National | Chamber X 2-1/2" long
apparatus - 2000°F Carbon WCA carbon. tape
to 5000°F) in random orientation
Thermal Conductivity 30° to Plys 30° to longi- Radial B10O - 1 - 1.0" dia x 1.0" 1g
{(comparative rod Lamina’® tudinal axis, National | Throat
apparatus - 70°F Carbon WCA carbon tape
to 2000°F) with alternate layers

rotated 15° clockwise
Thermal Conductivity 60° to Plys 60° to longi- Radial C15 1 > 3/8" tk x 1.0" wide
iradial inflow Lamina'l tudinal axis, National | Throat x 2-1/2" long
apparatus - 2000°F Carbon WCA carbon tape
to 3000°F) with successive layers

rotated 15° clockwise
1. The manner in which heat was introduced to the specimens resulted in the heat flowing 30° to lamina.

_EZ‘.
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Table 2

Results of Tensile Evaluations of "A" and "B" Constructions
of AG Carb Material

Total Unit
Loading Stress Specimen Bulk Ultimate | Initial Elastic | Axial Strain Poisson's|
Direction Temperature Rate Number Density Strength Modulus in to Failure Ratio ! Sonic Electrical
°F . psi/min gm/cm? psi 10% psi in, /in, > N Velocity | Resistivity
wa WW | in./usec yohm cm
Filat layup 70 10,000 Al~1 1.450 5550 1.32 0.0095 0.10 0.1242 1281
45° Bias Al-4 1.452 541¢ 1.67 6.0068 0.22 0.1253 1281
Fabric al-8 1,432 5130 1.46 0.0067 0.40f 0.1230 | =~=--- !
With Laminal Average 1,445 5360 1.48 §.0077 0.160.40
{witn warp)
3000 10,000 Al-3 1.447 7040 1.27 0.0083 0.13 0.1245 1314
Al-7 1.444 6600 1.11 0.0080C 0.190 0.1228 | s=—=-- !
Al-S 1.449 6650 1.20 0.0083 0.07 0.1236 1260
Average 1.447 6760 1.19 0.0082 0.0710.16
5000 10,000 Al-2 1.444 8320 0.53 >0.0332 0.05 0.1247 | eme-- !
Al-6 1.450 8240 0.54 >0.062% 0.10, 0.1238 1264
Al=-9 1.440 7600 0.56 >0.0662 0.22 0.1219 1305
Average 1.445 8050 0.54 0.141{0,10
Flat layup 70 10,000 Bl2-1 1.446 6260 1.81 ~0.005° 0.43 0.1285 1283
Alt. layers Bl2-4 1.446 6870 1.68 0.0071 0.46 0.1284 | —e-e- !
rotated 159 Bl12-7 1.440 7230 1.76 0.0068 0.05 0.1280 1244
clockwise Average 1.444 6790 1.75 0.0070 0.4610.24
With Laming
(with warp) 3000 10,000 B12-2 1.443 8150 1.46 0.0076 0.27 0.1283 | m=ee- !
B12-5 1.449 8260 1.55 0.0116 0.20f 0.1278 1238
B12~9 1.443 8930 1.38 0.0123 0.22 0.1.280 1267
Average 1.445 8450 1.46 0.0105 0.24106.20
5000 10,000 Bl2-6 1.444 9990 0.44 >0.070° 0.17 0.1290 | ==w=-- !
B12-3 1.447 9520 0.65 >0.066° 0.220 0.1293 1247
B1l2-8 1.437 9800 0.57 >0.0662 0.23 0.1285 1268
Average T.443 770 0.55 0.230.20
1. Data not obtained with this specimen.
2. Strain targets fell before completion of run.

3. Strain approximated because specimen tore making accurate measurement impossible.

._1'72._
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Results of Compressive Evaluations of "B" and "D" Constructions

Table 3

of AG Carb Material

Total Unit X
Loading Stress Specimen Bulik Ultimate Initial Elastic | Axial Strain Poisson's Sonic
Direction Temperature Rate Number Density Strength Modulus in to Failure Ratio Velocity
°F psi/min gm/cm? psi 106psi in, /in. wa MNww N aw in./usec
Flat layup 70 10,000 B4-1 1.448 7920 1.52 0.0077 0.41 0.1321
Alt. layers B4-2 1.451 7920 1.54 0.0082 0.43 0.1311
rotated 15° B4-3 1.442 7520 1.45 0.0062 3 0.1327
clockwise Average 1.447 7750 1.50 0.0074 0.13 [0.42
With Lamina
(with warp) 3000 10,000 B4-4 1.452 9740 1.63 0.0098 0.34 0.1331
B4-5 1.450 9960 1.49 0.0099 0.31 0.1341
B4-6 1.452 9900 1.49 0.0083 0.10 0.1344
Average . 154 N R R
5000 10,000 B4-7 1.448 11,800 0.82 >0.030°% 0.47 0.1343
B4-8 1.454 >75001 0.94 >0.020° 0.42 0.1333
B4-9 1.462 >6900 0.83 >0.0207 0.26 0.1334
Average 1.455 11,800 0.86 | ==--- 26 ({0.44
Flat layup 70 10,000 D13-1 1.434 13,300 0.28 >0.064% 0.09 0.0687
straight D13-4 1.427 14,000 0.32 >0.0442 0.18 0.0736
fabric D13-8 1.440 13,480 0.29 >0.0192 0.05 0.0687
Across Average 1.434 13,590 0.30 | ====- 0.11
Lamina
3000 10,000 D13~-2 1.433 18,750 0.39 >0.0332 0.10 0.0681
D13-6 1.439 18,100 0.47 >0.0442 0.09 0.0686
D13-9 1.432 18,650 0.45 >0.045% 0.13 0.0678
Average 1.435 18,500 0.44 | ===== 0.11
5000 10,000 D13-3 1.436 >8550" 0.20 >0.036% 0.12 0.0688
D13-5 1.43% 1 >5360! 0.17 >0.0272 0.13 0.0709
D13-7 1.432 >7990 0.17 >0.061° 0.25 0.0712
i Average 1.434 | w=—mm— i 0.18 | ====-- 0.17
| |
i I ] | |
1. Specimen deformation exceeded limits of load train travel.
2. Strain targets fell before completion of run.
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Thermal Conducti

Determined usi:

Table 4

vity of "AG Carb" Material with Heat Flow 30° from Lamina
; the Comparative Rod Apparatus with Armco Iron References

Thermal AT Mean Thermal AT
Thermal Mean Conductivity through ! Tempera- Conductivity through
Mean Conductivity AT Temperature of Lower Lower ture of of Upper Upper
Specimen Temperature of Specimen through of Lower Reference Reference Upper Reference Reference
and of Specimen kg Specimen | Reference k, AT, Reference ky AT,
Time °F Btuin. /hr £ °F °F °F Btu in. /hr {2 °F °F °F Btu in. /ur ff °F °F
Spec BS-1 Initial thickness: 0.9994 in. Initial weight: 17.8815 gm
Run 2 Final thickness: 0.9995 in. Final weight: 17.8619 gm
Run 5303-92-app 2
9:00 am 223 417 8.62 209 466 7.68 237 459 7.88
9:20 am 222 415 8.85 209 466 7.83 237 459 8.05
1:35 pm 1072 288 43.08 1005 288 44,40 1141 261 46.39
1:55 pm 1073 290 43.12 1006 288 44.82 1142 261 46,35
4:15 pm 1515 251 75.07 1393 220 87.25 1642 195 95.00
4:30 pm 1519 251 74.27 1396 219 86 .85 1644 195 93.65
Spec Bl0-~-1 Initial thickness: 0.9974 in. Initial weight: 18.53%92 gm
Run 1 Final thickness: 0.%975 in. Final weight: 18.5317 gm
Run 5303-90-app 3
7:45 pm 193 421 6.00 184 472 5.25 202 468 5.50
8:15 pm 192 444 5.97 183 472 5.63 702 468 5.65
8:30 am 632 342 37.77 575 376 33.03 692 350 38.35
9:15 am 631 341 37.82 575 376 33.00 692 350 38.35
12:30 pm 1108 277 26.08 1022 282 53.35 1200 251 64.05
12:55 pm 1111 278 36.07 1025 281 53.70 1203 251 64,13
2:45 pm 1521 238 75.75 1401 220 81.00 1650 195 93.70
3:15 pm 1526 239 75.48 1405 220 81l.12 1654 195 33.60
Notes: 1. All measurements made with helium purge. Apparatus was not evacuated prior to determination
2. Thermal conductivity (kg) of specimen calculated from following equation

kg = k, AT, + k; 8T, lg
1y 1, 24Ty
where
k = thermal conductivity
AT = temperature drop over gage length

1

= gage length

and subscripts 1, 2, and s refer to lower reference, upper reference, and specimen, respectively.

._.9Z...
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Table 5

Thermal Conductivity of "AG Carb" Material with Heat Flow 30° from Lamina

Determined Using Strip Technique of Radial Inflow Apparatus

Heat Flow Specimen Average
Average to Average Thermal
Specimen and Strip AT for Calorimeter Mean Conductivity
Run Number Time Location Each Strip Btu/hr Temperature |.Btu in./hr ft2°F

Spec D-14-5-8 Front 53 240
Run 1 Left 47 252
Run 5303-108-A29 Back 49 258
Density: 1.4353 Right 45 290
gm/cm? 297

Velocity: 0.1478 306 .

in./usec 3:35 49 274 1548 221
Front 105 455
Left 76 459
Back 97 473
Right 88 449
436
411

T2:30 91 17 2640 35
Front 149 630
Left 143 589
Back 140 590
Right 125 578
576

556 _

2:45 139 587 3561 167
Front 150 666
Left 137 640
Back 156 650
Right 136 640
668
648

4:30 145 51 1492 178

_LZ_
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Table 5 - Continued

m Heat Flow Specimen Average
Average to Average Thermal
Specimen and Strip AT for Calorimeter Mean Conductivitg
Run Number Time Location | Each Strip Btu/hr Temperature {Btu in./hr £t*°F
Spec C~15-5-8 Front 40 218
Run 1 Left 32 219
Run 5303-116-LK=-A29 Back 38 209
Density: 1.4392 Right 35 200
gm/cm® 192
Velocity: 0.1370 179
in./usec 9:30 36 203 1539 223
Front 64 371
Left 70 370
Back 75 366
Right 60 365
347
348 .
11:40 68 361 2600 210
Front 103 468
Left 95 455
Back 101 446
Right 93 428
422
446 : o
2:10 58 135 3398 180
Front 137 613
Left 107 599
Back 128 599
Right 110 591
584 L
3:15 12T 597 3896 156

._..82_.

y ddy
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APPENDIX A'

ULTIMATE STRENGTH, ELASTIC MODULUS, AND POISSON'S
RATIO TO 5500°F IN TENSION

A typical tensile facility is shown in the photograph in
Figure 1 and in the schematic in Figure 2. The primary components
are the gas-bearings, the load frame, the mechanical drive system,
the 5500°F furnace, the optical strain analyzers, and associated
instrumentation for measurement of load and strain. The load
capacity is 15,000 pounds.

The load frame and mechanical drive system are similar to
those of many good facilities. The upper crosshead is positioned
by a small electric motor connected to a prec151on screw jack. This
crosshead is stationary during loading and is moved only when
assembling the load train. The lower crosshead is used to apply the
load to the specimen through a precision screw jack chain driven by
a variable speed motor and gear reducer.

Nonuniaxial loading, and therefore bending stresses, may be
introcduced in tensile specimens not only from (1) misalignment of
the load train at the attachment to the crossheads, but also from (2)
eccentricity within the load train, (3) unbalance of the load train,
and (4) external forces applied to the load train by such items as
electrical leads and clip-on extensometers. Although the bending
moments from some of these sources may seem relatlvely slight, the
resulting stress distortions are quite significant in the evaluation
of the extremely sensitive brittle materials. Now consider each
individually.

To confirm that the gas-bearings had eliminated nonuniaxial
loading at the point of attachment of the load train to the cross-
heads, the frictional moment was determined at a load of 5000 pounds
by measuring the torque requlred to produce initial motion within
the system with the bearings in operation. This torque was found to
be a maximum of 6.6 x 10° ? inch-pounds. The equation

Mo = _2pP R,3 - ;3
Rp,2 - Ry?2

(1)

was then applied to the system to calculate the kinetic friction
where M, was the resisting moment due to kinetic friction and u
represented the coefficient of kinetic friction. The calculated
value of u was then equal to a maximum of only 4.5 x 10~7.

SOUTHERN RESEARCH INSTITUTE
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The classic equation

Mc .
S:I (2)

was then employed to obtain the stress that could be induced in
the specimen due to this bending moment. This value was 0.16 psi,
or less than 2.002 percent of the tensile stress produced within
a typical graphite specimen. These low values clearly indicate
the elimination of problems of bending stress in the specimen
imposed by misalignment at the crosshead attachments, either

initially or during loading.

Emphases in the design of the load train were placed on (1}
large length-to-diameter ratios at each connection, (2) close
sliding fits (less than 0.005 inch) of all mating connections,
(3) the elimination of threaded connections, (4) the use of pin
connections wherever possible, and (5) increasing the size
of components to permit precise machining of all mating surfaces.
All members were machined true and concentric to within 0.0005
inch, and the entire load train was checked regularly to ensure
overall alignment following assembly c¢f the individual members.
This process ensures concentricity and no kinks in the system.

The problems of unbalance within the load train and of external
forces applied to the load train have been exnlored and correcte”d.
The entire load train is statically balanced to less than 0.01
inch~pound for normal operation.

One configuration of the tensile specimen is shown in Figure
3. This specimen provides a relatively large L/D ratio in the
gripping area to ensure good alignment. All surfaces in the
gripping area are cylindrical in order to make precision machining
easier and repeatable from specimen to soecimen. This specimen also
has double breakdown radii from the gripping area to the gage
section. This double breakdown allows a uniform transition of
the stress pattern and reduces the frequency of radius (out of
gage) fractures. This specimen provides a uniform gage section
which gives a definable volume of material under stress and permits
accurate measurements of strain. The flags for the measurement
of axial strain are positioned one inch apart so that unit strain
is recorded directly. The flag attachment for measurement of
lateral strain 1s positioned between the flags for axial strain;
see Figure 4.

SOUTHERM RESEARCH INSTITUTE
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A schematic of the precision tensile grip is shown in Figure 5.
The design is much like the jaws of a lathe head or the chuck of
a drill motor made with precision. Observe from the figure the
long surface contact of the mating parts and the close fits to es-
tablish precise alignment with the specimen. As the load is applied,
the wedges maintain alignment to fracture.

Figure 6 is a sketch of the 5500°F furnace used for tension
showing the basic components. The furnace consists of a resistively
heated graphite element insulated from a water-cooled shell by
thermatomic carbon. The furnace and specimen are purged with helium
to provide an inert atmosphere. Ports with visual openings are
provided on opposite sides of the furnace as a means of allowing the
strain analyzers to view the gage flags on the specimen. Specimen
temperatures are determined by optical pyrometer readings taken
through another small sight port containing a sapphire window.

A calibration curve was established for the loss through the
sapphire window, and since the furnace cavity acts essentially
as a blackbody, true temperature readings are obtained. Power
is supplied to the heating element by means of a 25 KVA variable
transformer.

Strain measurement consists of measuring optically the elonga-
tion between two flags, or targets, which are mounted on the specimen
and separated initially by a predetermined gage length. The travel
of the targets is measured by sensing the displacement of the image
of the edge of the targets and then electromechanically following
the image displacement. The relative travel of the two targets
provides the strain. Readout is continuous and automatic on a
millivolt recorder. A schematic of the analyzer is shown in Figure 7.

A brief summary of the mechanical motions of the components
involved in monitoring the strain is helpful in understanding the
detailed performance. A tracking telescope follows the upper target
and carries a second telescope mounted on its carriage. The second
telescope is capable of independent motion to follow the lower
target. The relative displacement between the upper and lower tele-
scope, as strain occurs, defines the strain. The system usually
1s operated so that the tracking telescope follows the upper target
and the strain is monitored by the relative displacement of the aper-
ture rather than the telescope following the lower target. With this
procedure the maximum range is the maximum displacement available
for the lower aperture, of about 1/8 inch, and the sensitivity is
limited by the optics and the noise level of the detector. Using
both telescopes, the range is about 3/4 inch.

SOUTHERN RESEARCH INSTITUTE
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To provide optical references on the specimens, targets are
affixed to the test specimen as mentioned. When the specimen 1is
neated to temperature, the targets are self-luminous and are observed
optically. The optics view past the luminous targets into a cooled
cavity in the opposite furnace wall. The self-luminous targets are
then visible against a dark background. To obtain data below 2000°F,
a light beam is directed from behind the flags providing a shadow
image for the detection system.

The image of the flowing target is focused through a rotating
shutter (cnopper) and onto a rectangular aperture. Small slits in
the aperture pass a portion of the upper and lower edges of the light
beam. A photocell receives the light thus transmitted, and an
electronic circuit detects whether the energy passed by the two slits
is egqual. A servo drives the apertures to let a balanced quantity
of lignt pass tinrough the two slits and thus maintains an optical
null.

To obtain lateral strain, a strain analyzer is supported
norizontally on the tensile frame to view the diametrical or lateral
strain of tne specimen. A flag attachment, with the general con-
figuration as shown in Figure 8, was developed to follow and transmit
lateral motions of up to a few mils. The three-piece assembly con-
sist of a ring and two rams bearing on the specimen.

Calibrations of the analyzers are performed in various ways
including absolute correlations to precision micrometers, strain
gage cxtensometers, and direct plots of stress-strain for reference
materials such as steel, plexiglas, magnesium, and aluminum. Precis-
ion is within +0.000020 inch.

Instrumentation includes primarily a stress-strain measurement
system composea of a 1000-pound SR-4 Baldwin load cell, constant
d. c¢. volitage power supply, two optical strain analyzers, and two
X-Y recorders. Specimen temperature is monitored with an optical
pyrometer., Stress(load) is measured by a commercial load cell. The
cell receives a constant d.c. voltage input from thc power supply
and transmits a millivolt signal (directly proportional to load) to

an X-Y recorder. Simultaneously, the optical strain analyzers
measure both the axial and lateral strain and transmit a millivolt
signal (proportional to strain) to the X-Y recorders. hus,

continuous plots of stress~exial strain and axial strain-lateral
strain are recorded simultaneously.

11/69
200
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Figure 1. Picture of a Tensile Stress-Strain Facility
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I Positioning Crossheal

| - |
' \( “r \/. f“{‘j Gas Ixit

Upper Spherical___,&\\ ‘7 Gas Pregsure

Gas Bearing

o———— Precision Load Cell

— -

la—— Tubular Furnace

Optical
Strain
Analyzern

I

Tensile Specimen

Uy

Lower Spherical_______ ..
Gas Bearing

>
|

- ——Power Crosshead

———— Mechanical Screw Load
Application

Figure 2. schematic Arrangement of Gas-Bearing Universals,
Specimen, Load Train, and Grips
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Notes:

All Diameters True and Concentric to Within 0, 0005"
Do Not Undercut Radil At Tangent Points
Both Ends Flat and Perpendicuiar to and to Within 0. 0005"
All Dimensions are in Inches
Tolerances are ¥ 0,001 on Diameters
*0.005 on Lengths

Y55 on Fractions

°

e °

O o QO DN b

Y ddy

+0, 000
0.010R 1R 2R 0.500 -0.001
/ 0.250 0.271 ¢' 0,453
R Y
:2 % - 4 - - :g:
| T . f
0. 250__%%,@_ 0, 625 & 4 +
- 0.516™% 1. 035 -
Lot 3 —

Figure 3, Tensile Specimen Configuration
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|

—

“14-—— Tensile Specimen

L_ 1 _J Optical Targets
oM o T e Axial (Rotated 90°)
pAe - -
e [ateral

lLateral Strain

Axial Strain Attachment

Attachments

Figure 4, Location of the Flag Attachments on the Tensile
‘Specimens
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\\/ Graphite or Stainless

Steel Pull Rod

\;

\\ Mating Surface Flat and
Perpendicular to 0.0005 in.

.
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=~

/ 3-Piece Split Ring
/—- Compression Nut

>"\\True, Concentric, and

Parallel to 0.0005 in.

TN

/
NN

|t " S pecimen

Figure 5. Precision Collet Grip for Tensile Specimens 2:1 Scale
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Assy. ltem Quan, Description
A-2 Top pyrolytic graphita ring
A-3 Bottom pyrolytic graphite ring
Avd Pyrolytic graphite temperature sight plate
A-BA S graphite protector tube
A-B Cb graphite temperature sight tube
AT Rottow Micarta insulating dlsc
A-B Top steel base plate
[62%: 7.1 Steel shell
A-10 ‘fop Micarta insulating dise
A-ll Top zirconia dise
A-12 Bottom steel base plate
A-13 Bottum zirconia disc
A-14A CS graphite heater tube

A-15

Steel sight port tube

Cs graphite sight port plate
C8 graphite sight port plate
Firebrick sight port plate .
Firebrick sight port plate
Zirconla sight port disc
Zircontu sight port dise

€5 graphite sight tube
Fibertrax insulator

Top electrode

Bottom electrode
Thermatomic carbon
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Figure 6. Small 5500°F Graphite Resistance Furnace
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Specimen
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Figure 8. CGeneral Configuration of the Flag Attachment to Monitor
Lateral Strain in Tension
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ULTIMATE STRENGTH, ELASTIC MODULUS, AND POISSON'S
RATIO TO 5500°F IN COMPRESSION

The compressive apparatus is shown in the photograph in Figure 1
and in the schematic in Figure 2 and consists primarily of a load
frame, gas bearings, load train, 50-ton screw jack, variable speed
mechanical drive system, strain analyzers, 5500°F furnace, and
associated instrumentation for the measurement of load and strain.

The load frame is similar to most standard frames. It was
designed to carry a maximum load of 100,000 pounds and to support
the furnace, optical strain analyzers, and other related equipment.

Gas bearings are installed at each end of the load train to
permit precise alignment of the loading train to the specimen. The
upper bearing is spherical on a radius of 6.5 inches. This radius
is the distance from the top of the specimen to the spherical bearing
surface. The load train, not the specimen, shifts to maintain
radial alignment. The lower bearing is flat and is about 6 inches
in diameter. The lower bearing permits transverse alignment of the
load train. The gas bearings are floated for only a small initial
amount of load so that precise alignment of the load train can be
attained.

The load train near the furnace consists of the specimen loaded
on each side by graphite and water-cooled steel push rods. The
graphite push rods are counter-bored to permit insertion of a pyrolytic
graphite disc which serves as a heat dam and to align the specimen to
the center-line of the load train. Extreme care is exercised in the
preparation of all parts of the load train to ensure concentricity
of the mating parts to less than 0.0005 inch. '

The 50-ton jack is a power screw type. The mechanical drive
system consists of a gear reducer driven by a Louis Allis Synchro-
Spede Unit (300-3000 rpm). The gear reducer is connected to the
Synchro-Spede Unit through a chain coupling and to the 50-ton
Jack by a single roller chain and sprocket system. Different load
rates are obtained by adjustment of the variable speed setting on
the Synchro-Spede and by changeout of sprockets on the gear reducer
and screw jack.

i SOUTHERN RESEARCH INSTITUTE
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Migure 3 shows details of the "dumbbell" specimen which maintains
A 0.500 inch diameter over the 1.2 inch long gage section. The
specinmen provides sufficient room for the flag attachments that follow
the axial and lateral strains and also minimizes the influence
of end restraint.

The flag attachments for the measurement of axial strain are
positioned one inch apart so that unit strain is recorded directly.
The flag attachment for the measurement of lateral strain is positioned
between the flags for axial strain; see Figure 4. The lateral flag
attachment used in compression is shown in Figure 5. The 4-piece
assenbly consists of a ring, two rams bearing on the specimen, and
a screw to adjust the contact pressure. The ring was designed to
track lateral motions as great as 0.030 inch without breaking.

The furnace and strain measurement system is the same as described in
Appendix A'.
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Figure 1, Picture of the Compressive Facility with Gas Bearings

and Optical Strain Analyzer
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Figure 2. Schematic Arrangement of Gas-Bearing Universals,
Specimen, and Load Train

SOUTHERN RESEARCH INSTITUTE



App B'

0.25H

2.50"

1.20"

<—0. 500~

+#" R

e— 0,900 ——»

Figure 3. Compressive Specimen Configuration
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e~ Compression
' Specimen
N T $ Y ] Optical Targets:
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B e = H o o
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Figure 4. Location of the Flag Attachments on the
Compressive Specimen
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Figure 5. Lateral Strain Flag Attachment for Compressive Specimen
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A COMPARATIVE ROD APPARATUS FOR MEASURING
THERMAL CONDUCTIVITY TO 2000°F

Southern Research Institute's comparative rod apparatus is
used to measure thermal conductivities of a wide variety of materials
from -300°F to 2000°F. This apparatus, shown schematically in
Figure 1, consists basically of two cylindrical reference pieces
of known thermal conductivity stacked in series with the cylindrical
specimen. Heat is introduced to one end of the rod, composed of
the references and specimen, by a small electrical heater. A
cold sink or heater is employed at the opposite end of the rod as
required to maintain the temperature drop through the specimen at
the preferred level. Cylinders of zirconia may be inserted in the
rod assembly to assist in controlling the temperature drop.
Radial losses are minimized by means of radial guard heaters surround-
ing the rod and consisting of three separate coils of 16, 18 or
20-gage Kanthal wire wound on a 2 or 4-inch diameter alumina core.
The annulus between the rod and the guard heaters is filled with
diatomaceous earth, thermatomic carbon, bubbled alumina or zirconia
powder. Surrounding the guard is an annulus of diatomaceous earth
enclosed in an aluminum or transite shell.

The specimens and references (see Figure 2) are normally 1-
inch diameter by l-inch long. Thermocouples located 3/4 inch apart
in radially drilled holes measure the axial temperature gradients.
Thermocouples located at matching points in each guard heater are
used to monitor guard temperatures, which are adjusted to match
those at corresponding locations in the test section.

In operation, the apparatus is turned on and allowed to reach
steady state. The guard and rod heaters are adjusted to minimize
radial temperature gradients between the rod and guard sections
consistent with maintaining equal heat flows in the references.,
Temperatures are measured on a Leeds and Northrup Type K-3 potentio-
meter, and the temperature gradients calculated. A typical
temperature profile in the test section is shown in Figure 3,

The thermal conductivity of the specimen is calculated from the
relation

K, AT + K AT AX
L S
Kg =

20T AX,
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where K1 and Kz are the thermal conductivities of the upper and lower
references; AT1, AT, and ATg are the temperature differences

in the upper and lower references and specimen, respectively;

AXg and AXy are the distances between thermocouples in the specimen
and references.

Note that for purely axial heat flow, the products K, AT, and
K2AT2 should be equal. Due to imperfectly matched guarding and
other factors, this condition is seldom attained in practice;
therefore, the average of the two values is used in the calculations.
Their difference is maintained as small as possible, usually
within 5 percent of the smaller.

For identical specimens, the ratio AXg/AXy should be unity
but may vary due to the uncertainty in hole locations. To prevent
introducing an additional error in calculations, AX is determined
as follows: the depth of the hole is measured by inserting a
snugly fitting drill rod in the hole, measuring the projecting
length and subtracting it from the total length of the rod. The
slope, or angle the hole makes with the perpendicular to the
specimen axis, i1s determined by making measurements to the face
of the hole and the outer end of the drill rod with respect to
a datum plane, using a dial gage. From these measurements,
the location of the bottom of the hole can be calculated.

Generally, measurements with the comparative rod apparatus
are performed in an inert helium environment. The apparatus
can also be operated in vacuum and at gas pressures of up to 100
psig. We have had experience operating under all conditions.

The primary reference materials which we use are Code 9606
Pyroceram and Armco iron for measurements on materials with low
and high thermal conductivities, respectively. Primary standard
reference sets are kept and are used to calibrate other references
made from the same materials. The standards of Code 9606 Pyroceram
were made from a batch of material which NBS purchased shortly
after their measurements on a sample of Code 9606 Pyroceram. The
curve which Fl Lynn presented for the thermal conductLVLty of the
Pyroceram is given in Figure 4. Note that the curve is in good

! Robinson, H. E. and Flynn, D. R., Proceedings of Third Con-

ference on Thermal Conductivity, pages 308-321, 1963 (with
author's permission)
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agreement with the recommended values from NSRDS-NBS 82, 1The stan-

dards of Armco iron were made from the stock which was used in

the round-robin investigations from which Powell?® developed the
most probable values for Armco iron. The curve used for the Armco
iron standards is shown in Figure 5. DPowell estimated the un-
certainty to be within %2 percent over the temperature range from
0° to 1000°C. ' Note in Figure 5 that numerous evaluations of

Armco iron from other batches of material have agreed within

t3 percent (coefficient of variation about curve) with Powell's
original data.

In addition to Code 9606 Pyroceram and Armco iron, several
other materials have been used as references. These include
copper for high conductivity specimens, 316 stainless steel for
specimens of intermediate thermal conductivity and Teflon or
Pyrex for low conductivity materials.

Copper references have been calibrated against Armco iron
and excellent agreement with literature data has been obtained.
Thermal conductivity values obtained from calibrations of 316
stainless steel against Pyroceram, Armco iron and a set of 316
stainless steel standards are presented in Figure 6. Note the
consistency of the data obtained with the three different sets
of references. The coefficient of variation of the data shown in
Figure 6, about the curve value, was *3.3 percent. These data
indicate the internal consistency of the stainless steel and the
reference materials. Note that the thermal conductivity values
for 316 stainless steel presented in Figure 6 lie between values
reported by several steel manufacturers and Lucks and Deen."

The calibrations indicate that for materials with moderate
to high thermal conductivities the apparatus operates with a
precision of about *3 percent and a total uncertainty of about
5 percent at temperatures above 0°F if temperatures between the
guard and test section are closely matched. Below 0°F, the
precision achieved to date has been about *7 percent with a total
uncertainty of about #10 percent. We anticipate that the
precision and uncertainty at cryogenic temperatures can be im-
proved by additional calibrations.

’ powell, R. W., C. Y. Ho and P. E. Liley, Thermal Conductivity

of Selected Materials, NSRDS-NBS 8, Department of Commerce,
November 25, 1966.

3 Powell, R. W., Proceedings of Third Conference on Thermal Con-
ductivity, pages 322-341, 1963.

WADC TR58-476, "The Thermophysical Properties of Solid Materials",
Armour Research Foundation, November, 1960,
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Some additional data obtained on the comparative rod apparatus
are shown in Figures 7and 8. Figure 7 shows thermal conductivity
data for ATJ graphite, with grain, using Armco iron as the referene
material. These data show excellent agreement with earlier data
obtained here and by other sources °~7, The maximum scatter of
the comparative rod points was about 5 percent.

Figure 8 shows data for thermocouple grade constantan obtained
on the comparative rod apparatus using Armco iron references
and on Southern Research Institute's high temperature radial inflow
apparatus. Note the excellent agreement. These data also show
close agreement with data obtained by Silverman" on an alloy of
very similar composition.

°® ASD-TDR-62-765, "The Thermal Properties of Twenty-Six Solid
Materials to 5000°F or Their Destruction Temperatures,"” Southern
Research Institute, August, 1962.

Pears, C. D.,, Proceedings of Third Conference on Thermal
Conductivity, 453-479, 1963.

’ NSRDS-NBS 16, "Thermal Conductivity of Selected Materials",
Part 2, by C. Y. Ho, R. W. Powell and P. E. Liley, National
Bureau of Standards, 1968.
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Thermal Conductivity - Btu in,/hr ft2°F
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"Proceedings of Third Conference on
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Bureau of Standards publication NSRDS-
NBS 8, "Thermal Conductivity of
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ARMCO IRON DATA
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APPENDIX D'

THERMAT CONDUCTIVITY TO 5500°F
BY RADTAIL INFLOW METHOD

The thermal conductivity is determined with a radial heat
inflow apparatus that utilizes a central specimen 1" long. This
apparatus is normally employed for measurements over the temper-
ature range from 1500°F to 5500°F., Comparative rod apparatus is
used at temperatures below 1500°F where radiant heating is less
effective. The radial inflow apparatus gives a direct measurement
of the thermal conductivity rather than a measurement relative to
some standard reference material. A picture of the apparatus ready
to be installed in the furnace is shown in Figure 1. The furnace
and associated equipment for the thermal conductivity work is shown
in Figure 2. In addition to the specimen, the apparatus consists
primarily of (1) a water calorimeter that passes axially through
the center of the specimen, (2) guards made from the same specimen
material at both ends of the specimens to reduce axial heat losses,
(3) sight tubes that allow the temperature at selected points in
the specimen to be determined either by thermocouples or optical
pyrometer and (4) an external radiant heat source (see Figure 3).
The water calorimeter provides a heat sink at the center of the spec-
imen to create a substantial heat flow through the specimen and
allows the absolute value of the heat flow to be determined. Thermo-
couples mounted 1/2" apart in the calorimeter water stream measure
the temperature rise of the water as it passes through the gage
portion of the specimen. By metering the water flow through the
calorimeter, it is possible to calculate the total radial heat flow
through the 1/2" gage section of the specimen from the standard
relationship Q = MCAT. M is the weight of water flowing per hour,
C is the specific heat of water and AT is the temperature rise of
the water as it passes through the gage section.

The standard specimen configuration is shown in Figure 4. The
“specimen is 1.062" 0.D. x 0.250" I.D., x 1" long. Holes 0.073" in
diameter are drilled on radii of 0.233 and 0.437" to permit mea-
surement of the radial temperature gradient. In specimens which are
anisotropic in the diametral plane (for example, certain graphites)
a second pailr of holes is drilled 90° to the first pair. The
diameters joining each pair of holes is located to coincide with
the principal planes of anisotropy in the material.

A 1/2% long upper guard and a 1/2" long lower guard of spec-
imen material are placed above and below the 1" long specimen to
maintain a constant radial temperature gradient throughout the
entire specimen length and thereby prevent axial heat flow in the

SOUTHERN RESEARCH INSTITUTE
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specimen. The outer ends of the specimen guards are insulated with
graphite tubes filled with thermatomic carbon. These tubes also
hold the specimen in alighment. The combined effect of specimen
guards and thermatomic carbon insulation permits a minimum axial
temperature gradient within the specimen. This gradient is not
detectable by optical pyrometer readings. Visual inspection of the
specimens after runs have verified that no large axial temperature
gradient exists in the specimen. The guards, made of specimen
material, display axial distortion of the isothermal lines for
approximately 1/4" from the outer ends before reaching an apparent
constant axial temperature.

When sufficient material is available the alternate specimen
configuration shown in Figure 5 is employed. This specimen, being
1.5" in diameter, provides a larger gage length (0.357") between
temperature wells and allows the installation of three holes on
each radius without excessively distorting the radial temperature
profiles. Thus this specimen configuration permits a more precise
measurement of the average temperature at each radial location.

As with the smaller specimen, the location of the temperature wells
must be altered for transversely anisotropic specimens.

The annulus between the specimen inside diameter and the
7/32" outside diameter of the calorimeter tube is packed with either
copper granules, graphite or zirconia powder. This packing provides
a positive method for centering the calorimeter within the specimen
and promotes good heat transfer between specimen and calorimeter.

Temperatures up to 2000°F are measured with Chromel/Alumel
thermocouples inserted into the specimen through the sight tubes.
At high temperatures, the temperatures are measured through the ver-
tical sight tubes using a right-angle mirror device and optical
pyrometer, '

In Figures 1 and 3 showing a typical conductivity calorimeter
apparatus ready for insertion into a furnace for a run, a watexr-
cooled copper section can be seen at the top of the unit. This
section provides permanent sight tubes to within about 2-1/2" of
the guard specimen, in addition to a permanent mount for the right-
angle mirror device used with the optical pyrometer. Within the
short zone between the water-cooled section and the top guard,
thin-walled graphite sight tubes are fitted. The remainder of the
annulus is filled with thermatomic carbon insulation.

During thermal conductivity runs, the following data are re-
corded: (1) power input, (2) specimen face temperature, (3) specimen
temperatures in the gage section at the two radii, (4) temperature
of the calorimeter water at two points 1/2" apart axially within the
specimen center and (5) water flow rate through the calorimeter. At
least 5 readings are made at each general temperature range to deter-
mine the normal data scatter and to minimize the erxrrxor that might
be encountered in a single reading.

SOUTHERN RESEARCH INSTITUTE
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All thermocouple readings are measured on a Leeds and Northrup
%-3 null balance potentiometer used in conjunction with a galvanometer
of 0.43 microvolts per mm deflection sensitivity. All optically
measured temperatures are read with a Leeds and Morthrup Type 8622
optical pyrometer. The flow rate of the calorimeter water is mea-
sured with a Fischer and Porter Stabl-Vis Flowrater.

The thermal conductivity values are computed from the relation

0L,

A
TA1m

K =

where O is the heat flow to the calorimeter within the specimen gage
section, Ay is the log mean area for the specimen gage length, AT

is the specimen temperature change across the specimen gage length
and T is the gage length over which the specimen AT is measured.

The heat flow O is determined by the calorimeter. Ajp and L
are calculated directly for the particular specimen configuration.
AT is determined directly from the observed temperature difference
across the specimen gage length.

Based on an extensive error analysis and calibrations on homo-
geneous isotropic materials of known thermal conductivities, such
as Armco iron and tungsten, the precision (coefficient of variation)
in the measurements has been established at *7 percent over the
temperature range. For multiple runs on samples having similar pro-
perties, the uncertainty in a smooth curve through the data can be
established to within *7 percent. A detailed error analysis has been
presented in a paper by Mann and Pears.'

Nata obtained here on several high temperature materials are
nresented in Figures 6, 7 and 8. Figure 6 is a plot of data obtained
here on tungsten. The specimen for these determinations were fab-
ricated from stacks of 0.060" washers cut from hot rolled sheet
stock. Also plotted are values reported by other investigators in-
cluding "recommended values" given by Powell, Ho and Liley” based on
a compilation of 103 sets of data. Agreement between our data and

'Mann, W. H. Jr., and C. D. Pears, "A Radial Heat Flow Method
for the Measurement of Thermal Conductivity to 5200°F", presented
at the Conference on Thermal ronductivity Methods, Battelle Memorial
Institute, October 26-28, 1961,

2powell, R, ™., C. V. Ho and P. E. Liley, "Thermal Conductivity
of Selected Materials" MSRDS-NMRS 8, Mational Standard Reference Data
Series - Mational Bureau of Standards - 8, 1966, pp. 11, 54-59.
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the recommended values is excellent throughout the temperature
range.

Figure 7 shows data obtained here on ATJ graphite, with grain.
This material is premium grade, medlum grain graphite having a
density range of 1.73 to 1.78 gm/cm® . The crosses (+) shown in
the figure are "recommended values" given by Ho, Powell and Liley.?
Again agreement is excellent.

Figure 8 shows data obtained on AXM-501. These data were ob-
tained under a program sponsored by the Air Force Materials Labor-
atory to develop high temperature thermal conductivity standards.
Measurements were made on this material by four laboratories in
addition to Southern Research Institute. The bands shown in Figure 8
represent the range of data reported by the other participating
orqanlzatlons A pomplete presentation and discussion of the data
are given in AFML-TR-69-2.

Ho, C. Y., R. W. Powell and P. E. Liley, "Thermal Conductivity
of Selected Materials, Part 2," NSRDS-NBS 16 National Standard
Reference Data Series =~ National Bureau of Standards-16, pp. 89-128.

Y AFML-TR-69-2, "Development of High Temperature Thermal Con-
ductivity Standards" submitted by Arthur D. Little, Inc., under
Contract AF33(615)-2874, 1969, pp. 115-127.
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I. INTRODUCTION

The earlier structural analysis of the Regeneratively Cooled
AGCarb Graphite-Lined Thrust Chamber is given in Reference 1. This
analysis did not include the stiffening effects of the inlet and outlet
coolant manifolds in the stress model of the structure and did not incorpo-
rate the measured compressive material properties of the AGCarb-101 liner
material obtained from Southern Research Corporation. The purpose of this
- analysis is to complete a detailed structural evaluation of the entire
design concept to determine structural adequacy and necessary design
strength modifications. The design conditions consider a chamber operating
pressure of 500 psia and the thermal conditions during steady state and

transient operation.

IT. SUMMARY OF RESULTS

Three finite element analyses were conducted tolevaluate the thrust
chamber structure. These analyses considered the forward chamber shell
and outlet manifold; the throat region; the aft chamber shell and inlet
manifold; and the stress distribution about the coolant channel at the
axial station where the maximum radial thermal gradients are developed
during steady state and transient thermal conditions after start-up. The
results of the analysis are summarized in Tables I and II and indicate the

following:

A. The inner diameter of the nickel shell will experience yielding
during operation but the stress levels are well within allowable ultimate
strength values. The outer diameter tensile stresses are within allowable

values.

B. The stresses developed in the inlet and outlet manifolds are

below allowable strength levels.

C. The meridional stresses in the AGCarb liner are low compression.
The compressive hoop stresses developed in the liner at the throat where the
15° rotated layup is used are marginal in that they are equal to the ultimate

compressive strength (M.S. = 0.0).
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D. The shear stresses developed in the AGCarb liner are acceptable
except aft of the throat region at the aft retaining flange where the shear
locally exceeds the allowable value (M.S. = -0.37). The contact pressure
between the iiner and the nickel is less than the intended design value of
200 psi at this same location but is greater than the 200 psi value along all

the other bondlines.

E. The stress developed in the thrust chamber during the transient
thermal conditions after start-up are less severe than during steady state

operation.

F. The stresses developed around the coolant channel are within

allowable values.

G. The low cycle fatigue life associated with the maximum

compressive strain in the nickel is approximately 80 cycles.



TABLE I
MARGINS OF SAFETY
STEADY STATE TEMPERATURE CONDITIONS

AGCARB GRAPHITE LINED

THRUST CHAMBER

Location Stresses F . Allowable Max
Radius (R) Sta.(2)® Maximum 6H 6z (psi) ge tu ty (psi) Tu Strain | Tgmp M.S.
Region Material (in.) (in.) Elem No.* { Conditions Hoop Meridional Shear Effective Ult Yield Shear Ult (31 F Ult
. Pvd End
Cutlet CRES
Vani fold 0LL 3.17 15.75° 52 Comp - 8,915 -19,370 - -25,820 59,000 | 26,000 - .09 350 +1.3
“lectrotormed 2.50 10.5¢ 28 Comp 25,996 ~25,160 - <2l 210 . 30,000 1 17,000 - 0.78 3C +C.27
3rell “ickel 3.20 10.2¢ 16 Tension 11,580 15,33C — L%,335 75,000 | 52,000 — CucO LT3 + .07
AlCarb 2.57 11.27 65 Hoop Comp - 1,980 ~ 3,800 1350 .- 20,100 -— 1550 .28 3929 +1,CT
Liner L59 Bias layup
At 60° to e 2.9C 15.5L 520 Shear 2,333 630 735 - 1320 «13 605 +C,8¢C
II. Throat Electroformed 1.91 5.02 536 Caomp -12,520 ~12,7,0 - 11,058 18,000 £,000 - 1.76 1376 +.03
Region
Shell vickel .67 £.57 628 Tension 3L, L0 38,580 -- 17,034 72,000 | 5e,000 - €.26 1.2¢ +0., 77
Ceoiant wieciroformed I 0L 5.1% gt Comp -13,195 —-— - 12,352 18,CC0 J,CCC - 0.9¢ 1171 +C 5
Cnarnel 5. 13t Tension 33,729 - - 33,3809 TL,CCC | L9,0C0 (.12 oL +1.JC
05 1,35 Co PG FRPSENY oL —~ TL, 70 - 1700 s LASL +1 L0
Liner AT ‘ STl ExiR Shear - 6,810 = 2,713 50T - 18,700 —= 1500 1.33 3137 o1
ACart 150 Comp &nd
fictatgd Layup 1.56 2.65 21¢ Shear ~10,730 - 2,38¢ 1379 - 10, 7C0 - 155¢ 1.07 3088 C.0
At 4O to ¢
TIT. TR 3L
3.52 1.03 L6 Tension 16,650 2,300 - 15,760 | 1hc,cc0 | 35,000 - 0.1L -120 +2.04
Electroformed 2401 1.53 25 Comp T, AL -13,L712 — 1 7,5L0 70,70 1 19,000 - C.18 LET +0L7T
Nickel 342 1.05 1,2 Tension 12,95C = 5,505 - 18,150 52,000 | 5,000 -— Colly -12C +0 51
Liner AGCarb 2.35 1.4 109 Comp -11,179 - 1,882 1140 = 21,200 - 1550 1.58 LSTe .50
15° Bias layup
At 600 to ¢ 2,80 1.09 3L Shear - 3,347 - 838 2180 - 15,300 - 1380 0,7k 1133 -0.37

* See Figures 1l and 15,
#% See Figure 16,

g ddy



TABLE II

MARGINS CF SAFETY

MAXIMUM TRANSIENT TEMPERATURE CONDITIONS

t = 1.8 SECONDS

AGCARB GRAPHITE LINED THRUST CHAMBER
CHAMBER STATION Z = 5.1%

PLANE STRESS ANALYSIS

. Location Stress (psi) Allowable {psi)
Maximm Max
Material Conditions | Radius (R} Sta.(z)® (= 0z z Te Fra Py Zu  {Strain|Temp |M.s.
(in,) {in,) Elem No, Hoop_ Meridional Shear  Effective | 11t Yield Shear 10t | e() | (CF) M.

F-lectroformed
Tickel Comp 1,92 5.1 21 -37,380 - 256 38,220 {60,000 10,000 - 22 €17 | + 57
Shell Tension 2.08 5.1 L6 24,103 - 38 2L,382 }87,000 58,000 - .08 180 | +2.57
e fggg 1.78 5.1 31 -10,220 - 213 -- 20,600 == 1550 |1.26 {u213 | «1.a
L&g“? at
607 to ¢

# See Figures 1L
#* See Figure 16,

and 15.

g ddy
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IIT. CONCLUSIONS

The finite element analyses of the AGCarb graphite-lined electro-

formed nickel thrust chamber indicate:

A. The structure will develop marginal hoop compressive
stresses in the AGCarb throat liner. However, the AGCarb is in a state
of compression and is contained by the nickel shell with the local shear
stresses within allowable values. Therefore, the condition is considered

acceptable.

B. The structure will develop excessive shear stresses in the aft
AGCarb liner at thé aft retaining flange. Since this is a very local condi-
tion, it is anticipated that the liner will probably delaminate locally
(interlaminar) but not completely fracture. A possible means of alleviating
this local excessive stress condition would be to provide an axial expansion

relief, e.g., a Grafoil material insert.
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Iv. ANALYSIS

A. DESIGN CRITERIA

1. Configuration

a. Reference Drawings
1159525 Combustion Chamber

1159524 AGCarb Liner
1159636 Combustion Chamber Assembly

2. Geometry

The basic dimensions of the regeneratively cooled chamber

are given in Figure 1.
B. PRESSURE AND THERMAL CONDITIONS
1. Pressure

The chamber pressure for FLOX/Methane propellant is
P = 500 psia.

The gas static wall pressure during firing is shown in
Figure 2. The coolant channel and manifold pressure schedule is given
in Table III.
2. Temperature

a, Steady State

The temperature data used in the analyses for the

steady state firing condition are depicted in Figures 3 and 4. TFigure 5
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shows the temperature distribution used in the analysis of the coolant
channel at chamber Station 12.5 (Stress Model Station 4.3). This particular
axial location was selected because it is where the highest thermal gradient

is developed across the AGCarb liner and nickel shell.

b. Transient Analysis

A transient thermal analysis of a start-up condition
was conducted at chamber Station 12.5. Figure 6 summarizes these data by
showing the temperature distribution across the chamber wall with time.
The stress analysis of the thermal transient condition was conducted for
time t = 1.8 seconds when the maximum thermal gradient is developed across

the AGCarb liner. The temperature distribution used is shown in Figure 7.

C. MATERTAL PROPERTIES

The material properties used in the analysis for the electroformed
nickel are given in Figures 8 through 10. The AGCarb-101 material properties
used in the analysis were obtained from the tests conducted at Southern
Research (Reference 4). Figure 11 shows the compressive strength and modulus
of the AGCarb for the 15 degree rotated layup used in the throat and the
45 degree bias layup used in the chamber. Figure 12 gives the corresponding
Poissons' Ratio data for the two AGCarb materials. The interlaminar shear
strength for both layups was assumed to be proportional to the warp direction

tensile strengths as given by Reference 5 - and shown in Figure 13.

The material properties for the CRES 304 stainless steel were

obtained from Reference 6.
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D. METHOD OF ANALYSIS

The finite element method of analysis was used to evaluate the
structural adequacy of the modified design. The particular computer routine
considered the separate three dimensional (laminated orthotropic) radial,
axial and hoop mechanical properties of the AGCarb liner wrapped at a
60 degree orientation. Also, the procedure accounted for the inelastic
behavior (plasticicity) of the nickel shell at high temperatures under high
radial compressive load. The method has been described in previous reports

(Reference 1).

1. Stress Models

In order to conduct a complete detailed analysis of the
thrust chamber shell, liner and manifold, the structure was considered as
two separate models coupled by appropriate boundary conditions. Figure 14
shows the finite element computer plot of the model for the forward end of
the chamber and Figure 15 shows the similar model of the aft end. Since
these models are axisymmetrical, the local radial reduction of stiffness
in the electroformed nickel shell at the coolant channels was accounted
for by using an equivalent radial and axial elastic modulus for the finite
elements representing the channels. The derivation of this effective

stiffness is given on page 9.

The local stress distribution about the channels during
steady state and transient thermal conditions was evaluated by the plane
stress finite element model plotted in Figure 16. The geometry evaluated
was at the axial station where the highest thermal gradient is ‘developed

across the nickel shell (Z = 4.3, Figure 15).
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E. DETAILED ANALYSIS
1. Finite FElement Representation of Coolant Channel
Stiffness
a. Material Properties for Effective Channel Stiffness
in the Axisymmetrical Model
Electroformed nickel w/100 - .034 in. wide channels
equally spaced.
Assume an average radius of 2.0 in.
C = 27R
= 2m(2.0)
= 12.57 in.
Effective Meridional and Radial Modulus:
. (12:57 = 100(.034); g
eff 12.57 nickel
= °73(Enicke1)
Hoop stiffness is Ee = 1000
Temp Eoickel T Equivigent,Stifi?ess, psi
F psi R & V7 o RZ VR,Z,80
70 29.4 EQ6{ 21.4 EO06 1000 8.25 EO06 0
400 28.0 E06( 20.4 E06 1000 7.85 E06 0
800 25.8 E06| 18.8 E06 1000 7.25 E06 0

Coefficient of expansion forequivalent material

in the channel is assumed the same as for nickel.
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2. Forward End Region

The results of the analysis are summarized in Tables I and II
and Figures 17, 18 and 19. Figure 17 shows an iso-stress plot of the
effective stresses in the CRES 304-1 outlet manifold and electroformed
nickel shell. These data show the inner diameter of the nickel shell will
yield but the stress level is well within the allowable ultimate strength
values. TFigure 18 shows the hoop and meridional stress distributions in
the AGCarb liner with all values well within allowable strength criteria.
Figure 19 gives the compressive contact stress and the shear stress distri-
bution in the AGCarb and the bond line between the nickel and the AGCarb.
The bond contact pressure and shear stress in the AGCarb are all within .
allowable design conditions of 200 psi pressure and 1300 psi shear along

the laminates (interlaminar).

3. Throat and Aft End Region

The results of the analysis are summarized in Table T
and Figures 20, 21, 22 and 23. TFigure 20 shows the isostress plot of the
effective stresses in the CRES 304-L inlet manifold and electroformed
nickel shell. These data show compressive stresses in the nickel exceeding
yield values forward of the throat region. The minimum ultimate
margin of safety in compression at the inner diameter is +0.45 at the throat.
The minimum ultimate margin of safety in tension is at the same location at
the outside diameter is +0.75. Figure 21 shows the hoop and meridional
stress distribution in the AGCarb liner. The minimum ultimate margin of
safety of 0.0 at the throat shows the design is structurally marginal at
this location. However, since the AGCarb is in compression and contained
by the nickel shell; and the local shear stresses are within allowable
values; the condition is considered acceptable. A reduction in the nickel
shell thickness at this region would partially alleviate the compressive
hoop stress due to the liner bulk temperature but would have no effect on

that portion of the total stress due to the temperature gradient.

i0
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Figure 22 gives the shear stress distribution in the
AGCarb liner with the plasticity effects in the nickel being included in
the analysis. These data indicate that high shear stresses exist in the
liner aft of the throat region. These shear stresses are a maximum at the
aft end where the retaining flange contains the liner. The maximum value
is 2,180 psi giving a margin of safety of -0.37. Since this is a very
local condition, it is anticipated that the liner will possibly delaminate
locally (interlaminar) but not completely fracture. A possible means of
alleviating this local excessive stress condition would be to provide an

axial expansion relief, e.g., a Grafoil material insert.

Figure 23 gives the compressive contact stress and the
shear stress distribution in the AGCarb at the bond line. The contact
pressure is only below the design value of 200 psi at the retaining flange
corner in the vicinity where the high bond shear stress was determined;

as discussed above.

4. Coolant Channel

a. Steady State Thermal Conditions

The results of the plane stress analysis of the stress
distribution about the coolant channel during steady state thermal conditions
are depicted in Figure 24 with maximum values shown in Table I. These data

show no structural inadequacies.

b. Transient Thermal Conditions

The results of the analysis of the coolant channel for
the maximum thermal gradients developed at t = 1.8 seconds are shown
in Figure 25. The maximum values are summarized in Table TI and these data
indicate that during the transient condition a greater compressive stress is
developed on the inside surface of the AGCarb liner and the electroformed

nickel. The higher compressive stress in nickel will occur at a lower thermal

11
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condition which will result in higher margins of safety than for steady state
conditions. The higher compressive stress in the AGCarb is still below the
maximum value developed in the 45° bias layup aft of the throat (stress

model Sta. Z = 1.44) where the minimum margin of safety (+0.90) occurs for

this material.

5. Low Cycle Fatigue Life

Figure 26 shows the results of an evaluation of the low
cycle fatigue life of the nickel shell inside diameter based on the

Manson/NASA universal slopes equation:

3.5 F
tu o ~-0.12 + D0.6 N -0.6

Aetotal = E £ f

These data show that the maximum compressive strain of 1.26%
developed in the nickel would result in a low cycle fatigue life of approxi-

mately 80 cycles.

12
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TABLE III

AGCARB GRAPHITE LINED
ELECTROFORMED NICKEL
THRUST CHAMBER
100 CHANNEL DESIGN

COOLANT PRESSURE DISTRIBUTION

Axial Dist Coolant Pressure

From Outlet PB

(in.) (psi)
(Outlet) 0 1000
6 1001

2.2 1012

4.2 1031

6.2 1048

8.2 1063

9.7 1078
10.7 1003
11.25 -
11.8 1021
12.5 1099
13.0 1140
13.5 1196
14.0 1225
14.5 1246
15.0 1256
15.5 1263
(Inlet) 15.8 1263

14
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Figure 5 Coolant Channel Temperature Distribution Steady State Condition, °F,
Stress Model Station 4.3 (Reference 7)
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