PLASMA PHYSICS GROUP

Magnetospheres of the Outer Planets

C. F. Kennel

May, 1972

UNIVERSITY OF CALIFORNIA
LOS ANGELES
Magnetospheres of the Outer Planets

C. F. Kennel

May. 1972

Plasma Physics Group
Department of Physics
University of California, Los Angeles
California 90024

This work was partially supported by the Office of Naval Research, Grant #N00014-69-A-0200-4023; the National Science Foundation, Grant #GP-22817; the Atomic Energy Commission, Contract AT(04-3)-34, Project #157; and the National Aeronautics and Space Administration, Contract NGL-05-007-190 and NGR-05-007-116.
Scaling laws for possible outer planet magnetospheres are derived. These suggest that convection and its associated auroral effects will play a relatively smaller role than at Earth, and that there is a possibility that they could have significant radiation belts of energetic trapped particles.
1) **INTRODUCTION**

Of the outer planets, only Jupiter is known, from radio astronomical investigations, to have a magnetosphere, which requires that the pressure of the planetary magnetic field be sufficiently large to stand off the dynamic pressure of the solar wind flow. At present, observation does not rule out magnetospheric interactions with the solar wind with the other planets. Any well-conceived program for the exploration of the outer planets must therefore be prepared for the eventuality that one or more might have magnetospheres. This eventuality implies that the design of suitable complement of detectors for the exploration of the unknown magnetospheres must be considered. In the absence of hard experimental information, such considerations will rely, however unwisely, upon theoretical extrapolations upon what is known about Earth and Jupiter. In this spirit then, this paper presents a highly speculative discussion of hypothetical outer planet magnetospheres. We take what is reasonably well understood about the Earth's magnetosphere, what is guessed at about Jupiter's magnetosphere, and extrapolate to possible magnetospheres of Saturn, Uranus, and Neptune. The theoretician's point of view is adopted throughout. Since the attenuation of the solar wind with increasing heliocentric distance implies that the magnetic moments of the outer planets need not be large for them to have magnetospheres, it does not seem unlikely a priori that they will do so. However, with the exception of Jupiter, their magnetic moments are completely unknown. Therefore, we will concentrate upon developing a set of relations which scale the outer planets' magnetospheres to their unknown magnetic moments and to the properties of the solar wind extrapolated theoretically to the appropriate heliocentric distance. In order to illustrate the implications of these scaling laws, we will then compute some properties of the outer planets' magnetospheres, based upon the assumption that their magnetic moments scale as their rotational angular momentum. Clearly this procedure looks only under the
lammepost where there is some light; yet the extrapolation of terrestrial physics
is the only intellectual procedure available. Prudence dictates that we must
expect it to err.

In Section 2, we scale the size of a magnetosphere to its planet's magnetic
moment and heliocentric distance, assuming that the balance of forces at the
boundary of the magnetosphere -- magnetopause -- is earthlike -- namely, a
pressure balance between a vacuum dipole planetary field and the solar wind.
We also estimate the strength of its internal convection flow assuming it is
driven as at Earth, by magnetic reconnection at the nose of the magnetosphere.
We discuss procedures by which the density of plasma of ionospheric origin trapped
in the magnetosphere may be estimated. In Section 3, we discuss possible
radiation belts of trapped energetic particles. Here the limitations of our
method are most starkly delineated. It is a general truism about turbulent
plasmas that they generate energetic particles in a variety of ways. Yet only
one of the mechanisms suggested for the generation of the Earth's radiation belts--
let alone the energetic particles in laboratory and astrophysical plasmas -- radial
diffusion, can be scaled \textit{a priori} to arbitrary magnetospheres. Therefore, we
pursue the consequences of the only hypothesis we can make. In Section 4, we
present with all humility a table of properties of possible outer planet magneto-
spheres, based upon the assumption that their dipole moments scale as their
rotational momentum. At this point, our method of extrapolation of terrestrial
physics leads us to a very illuminating contradiction, namely, that the effects
of planetary rotation are likely to be much more pronounced at the outer planets
than at Earth. This leads us to doubt, for example, that present calculations
of magnetospheric shape, and perhaps even scale size, are adequate for the outer
planets, and to the speculation that the outer planets could have powerful
radiation belts. These general conclusions may retain some validity even though
our specific magnetic moment estimates may err greatly.
Limitations of space unfortunately force us to presume of the reader a reasonable working knowledge of basic magnetospheric physics. For general reference, however, we present in Figure 1 a schematic of the Earth's magnetosphere in which various features to be discussed are put in geometrical perspective -- the magnetopause, the boundary between the shocked solar wind and the magnetosphere, the bowshock standing upstream of the magnetopause, the plasmasphere where cold plasma of ionospheric origin corotates with the Earth, the Van Allen belts, and part of the geomagnetic tail. The view is of a slice through the noon-midnight magnetic meridian, and most of the geomagnetic tail, which is some thousand Earth radii long, is not shown.
2) SCALING OF EARTH-LIKE MAGNETOSPHERES

2.1) Characteristics of the Solar Wind

A planet P located at a distance r A.U. from the sun and within the heliosphere boundary, has a magnetic moment M_p, radius R_p, and rotation period T_p. With this information, together with an appropriate scaling of solar wind parameters, we may outline a model of its magnetosphere, assuming only that it is Earthlike. We scale the solar wind number density N, flow speed u, and radial and azimuthal components of the solar wind magnetic field, B_r and B_θ respectively, according to standard theory (Parker, 1963), normalizing to values typically observed at $r = 1$.

\begin{equation}
 u = \text{constant} \approx 4 \times 10^7 \text{ cm/sec} \tag{2.1}
\end{equation}

\begin{equation}
 N = \frac{7}{r^2} \text{ cm}^{-3} \tag{2.2}
\end{equation}

\begin{equation}
 B_r = \frac{5 \gamma}{r^2} = \frac{5 \times 10^{-5}}{r^2} \text{ Gauss} \tag{2.3}
\end{equation}

\begin{equation}
 B = \frac{5 \gamma}{r} \tag{2.4}
\end{equation}

\begin{equation}
 B = (B_r^2 + B_\theta^2)^{1/2} = 5 \gamma \sqrt{1 + \frac{r^2}{a^4}} = \frac{5 \gamma}{r} \ (r >> 1)
\end{equation}

The thermal conduction of the solar wind beyond Earth is not well understood. The simplest assumption, which may err, lets the electron and ion temperatures, T_e and T_i separately scale adiabatically.

\begin{equation}
 T_e \approx \frac{7 \times 10^4 \text{K}}{r^{4/3}}, \quad T_i \approx \frac{2 \times 10^4 \text{K}}{r^{4/3}} \tag{2.6}
\end{equation}

Scarf (1969) has discussed the expected characteristics of the solar wind near Jupiter in more detail. In particular, he suggests that the temperature
anisotropy will reverse, so that near Jupiter the perpendicular temperature \(T_A \) will exceed the temperature \(T_L \) parallel to the magnetic field direction. As a consequence, different electromagnetic wave instabilities (Kennel and Petschek, 1966) than those encountered near Earth (Kennel and Scarf, 1968) would be expected to reduce the thermal anisotropies.

2.2) Nose of the Magnetopause

The nose radius \(D \) of the planetary magnetopause can be estimated assuming that the dipole field is essentially a vacuum field, whose moment is oriented more or less normal to the ecliptic plane. Then, according to Spreiter and Alksne, 1969, the radial distance \(D_p \) to the magnetopause at the subsolar point is determined by the balance of solar wind dynamic pressure and magnetic pressure, the dipole field having been doubled by magnetopause surface currents:

\[
D_p = \left(\frac{M_p^2}{2\pi \rho u^2} \right)^{1/6}
\]

(2.7)

Normalizing to the Earth, and using (2.2) to scale the solar wind dynamic pressure, we find

\[
\frac{D_p}{D_E} = \left(\frac{M_p}{M_E} \right)^{1/3} r^{1/3}
\]

(2.8)

where \(D_E = 10 \cdot R_E = 6.4 \times 10^9 \) cm. The magnetohydrodynamic solutions for the shape of the magnetopause, which scale as the single parameter \(D \), indicate that the distance between the local dawn and evening magnetopause, is \(3D \). The magnetospheric magnetic field at the nose of the magnetosphere is \(\sqrt{8\pi \rho u^2} = \frac{70\gamma}{r} \).

The criterion \(D_p = R_p \) defines the minimum planetary magnetic moment for which a magnetospheric interaction is expected. When \(D_p = R_p \), the surface magnetic field pressure is just large enough to stand off the solar wind dynamic pressure. In units of the Earth's magnetic moment, \(M_E \), the minimum
planetary magnetic moment M_p^* is

$$\frac{M_p^*}{M_E} = \frac{10^{-2}}{r} \left(\frac{R_p}{R_E}\right)^2$$ \hspace{1cm} (2.9)

Scarf (1969) has suggested that the gravitational interaction of the solar wind with the massive outer planets may significantly modify the flow configuration about the magnetosphere. We would expect significant modifications when the gravitational potential energy W_G of an ion just beyond the bow shock exceeds its thermal energy, KT_i:

$$\frac{W_G}{KT_i} = \frac{g_p R_p^2}{(1.3)D_p (KT_i/M_i)}$$ \hspace{1cm} (2.10)

where g_p is the surface acceleration of gravity, and $1.3 D_p$ is the expected distance to the bow shock (see Section 2.3).

2.3) Characteristics of Planetary Bow Shocks

Magnetohydrodynamic calculations (Spreiter and Alksne, 1969) indicate that a bow shock should stand a distance $0.3 D_p$ upstream from the nose of the magnetosphere. Shocks are expected at all the outer planets since the Alfven Mach number remains constant and the sonic Mach number increases with r, based upon (2.1-2.7). However, the structure of the shocks encountered could differ from those at Earth. For example, a significant component of the Earth's bow shock is a large amplitude magnetic whistler mode wave train (see Fredricks, et al., 1970). In order to stand ahead of the shock in the solar wind, the whistler phase speed upstream must match the solar wind speed. Since the maximum whistler phase speed is $\frac{1}{2} \sqrt{M_i/M_e} C_A$, where C_A is the Alfven speed, whistler wave trains are possible when
\[C_A < u < \frac{1}{2} \sqrt{M_i/M_e} C_A \] \hspace{1cm} (2.11)

which is satisfied for \(r > 1 \) if it is satisfied at \(r = 1 \), since \(C_A \) is independent of \(r \) from (2.1-2.7). \(M_i/M_e \) is the ion to electron mass ratio. On the other hand, electron plasma oscillations, which do not play a role in the Earth's bow shock, could be important beyond \(r = 1 \) (Scarf, 1969). The minimum phase velocity of these waves is the order of the electron thermal speed \(a_e \), where, from (2.8),

\[a_e = \frac{1.4 \times 10^8}{r^{2/3}} \text{ cm/sec}. \]

Whenever, \(u/a_e > 1 \), electron plasma oscillations could stand in the shock. Very little is known theoretically or experimentally about shocks which are supersonic to electrons.

2.4) **Reconnection on the Dayside Magnetopause**

Dissipative interactions leading to tangential stresses at the magnetopause are responsible for the geomagnetic tail (Axford, Petschek, and Siscoe, 1965; Dungey, 1961), the internal convection of plasma and magnetic field within the magnetosphere (Axford and Hines, 1961), and energetic particle bombardment of the auroral zone ionosphere by the convecting plasma (Kennel, 1969; Axford, 1969). Whether the dissipation is due to enhanced viscosity arising from plasma turbulence at the magnetopause (Axford, 1964), or to the resistive reconnection of solar wind field lines with magnetospheric field lines (Dungey, 1961; Levy, Petschek, and Siscoe, 1964), or both, has not been clearly established. However, it has been established that magnetospheric substorms (Akasofu, 1968), which are due in part to enhanced convective flow, do result from enhanced field-line reconnection, since they correlate with the solar wind field component anti-parallel to the Earth's dipole field (see Arnoldy, 1971, and the references therein). For this reason, we will evaluate only the consequences of reconnection, and not turbulent viscosity.

The electric field, imposed on the magnetosphere by reconnection, should be
proportional to \(\frac{uB_A}{c} \) where \(B_A \) is the component of solar wind field anti-parallel to the magnetopause magnetic field. \(B_A \) has considerable temporal variation, leading to temporally unsteady convection and substorms in the Earth's magnetosphere. However, \(B_A \) ought roughly to scale as the magnitude of the solar wind magnetic field. Assuming that the proportionality between the planetary convection electric field \(E_p \) and \(\frac{uB_A}{c} \) does not vary with heliocentric distance, we find

\[
\frac{E_p}{E_E} \approx \frac{1}{r} \tag{2.12}
\]

where \(E_E = 1 \text{ kV}/R_E \) is a typical terrestrial convection electric field. (2.12) scales identically as the estimate of Brice and Ioannidis (1970), who used a specific theoretical model of reconnection (Petschek, 1964) to scale \(E_p \).

We may estimate the solar wind energy input, \(\dot{W}_p \), into the magnetosphere as follows. If \(b \) is the magnetosheath magnetic field downstream from the bow shock, then the flux of magnetic energy transported towards the magnetopause to be dissipated by reconnection into internal magnetospheric convection is roughly \(\left(\frac{cE}{b} \right) \left(b^2 / 8\pi \right) \). The area of the dayside magnetopause is the order of \(\pi D^2 \), so that

\[
\dot{W}_p \approx \pi D^2 \frac{cE}{b} \frac{b^2}{8\pi} \tag{2.13}
\]

When the bow shock is strong, \(b \) will scale as the solar wind field \(B \), so that we may use (2.5), (2.8) and (2.12) to scale (2.13)

\[
\frac{\dot{W}_p}{\dot{W}_E} \approx \left(\frac{M_p}{M_E} \right)^{2/3} \frac{1}{r} \tag{2.14}
\]

where \(\dot{W}_E = 5 \times 10^{17} \text{ ergs/sec} \) (Axford, 1964). Since there exist no generally accepted theories or laboratory experiments which scale the reconnection rate to plasma parameters, the estimates (2.12) and (2.14) may err. However, it is dangerous to assume that no reconnection occurs at all.
2.5) **Tail of the Magnetosphere**

Assuming E_p is approximately uniform, then the electric potential ϕ_p across the magnetosphere is approximately $3 E_p D_p$, so that

$$\frac{\phi_p}{\phi_E} = \left(\frac{M_p}{M_E} \right)^{1/3} r^{-2/3}$$ \hspace{1cm} (2.15)

where $\phi_E = 30-100 \text{ kV}$ is a reasonable value. Magnetic flux is transported into the magnetospheric tail at the rate $\dot{\Phi} = c \phi_p$, where

$$\dot{\Phi} = (c \phi_E) \left(\frac{M_p}{M_E} \right)^{1/3} r^{-2/3} = 3 \times 10^{12} \left(\frac{M_p}{M_E} \right)^{1/3} r^{-2/3} \text{ Maxwells/sec}$$ \hspace{1cm} (2.16)

where $\phi_E = 30 \text{ kV}$ was chosen. Since magnetic flux cannot accumulate indefinitely, a second magnetic neutral line is expected in the magnetospheric tail, at which reconnection again occurs (Dungey, 1961; Axford, Petschek, and Siscoe, 1964). The reconnected flux would then be convected towards the nose of the magnetosphere to replenish that which has been stripped off, by reconnection at the nose, to feed the tail. In steady state, the two flux transport rates must be equal. By analogy with the geomagnetic tail, a plasma sheet, containing energetic plasma heated by Joule dissipation during reconnection and other processes, would be expected planetward of the tail neutral line. Since there is presently no adequate understanding of the temperature and density observed in the Earth's plasma sheet, nothing concrete can be said about the density and temperature of any other plasma sheets, other than that the total plasma plus magnetic pressure must be constant across the plasma sheet. Energetic particles precipitating from the convecting plasma in the plasma sheet should produce aurorae in the high latitude planetary ionosphere (Kennel, 1969; Axford, 1969).

It is not understood theoretically why the geomagnetic tail contains the flux it does; consequently, reliable estimates for the flux stored in other
possible magnetospheric tails are not possible. However, let us suppose that the length of the tail L_p scales geometrically as the Earth's, which is some 100 nose radii D_E long (Dungey, 1965), so that $L_p = 100 D_p$. An estimate for the steady state convection time T_c is then

$$T_c = \frac{L_p}{u} = \frac{100 D_p}{u}$$

and

$$\frac{T_c(P)}{T_c(E)} = \left(\frac{M_p}{M_E} \right)^{1/3} r^{1/3}$$

(2.17)

where $T_c(E) = 1.5 \times 10^4$ sec = 4 hours.

During the time T_c reconnection would transfer a flux $F T_c$ to the magnetospheric tail. In steady state, this is the flux stored in each lobe of the tail, F_p, so that

$$F_p \approx \frac{100 c \phi_D}{u}$$

and using (2.8) and (2.16),

$$\frac{F_p}{F_E} \approx \left(\frac{M}{M_E} \right)^{2/3} r^{-1/3}$$

(2.19)

We may estimate the tail magnetic field as follows. Beyond a distance D_p downstream from the planet, the magnetic field should be stretched out in a tail-like configuration, in two lobes, with field in the solar direction in one lobe and the antisolar direction in the other. The lobes are separated by the plasma sheet. Assuming the field is essentially a vacuum field, and therefore uniform across the tail cross-section, the magnetic field in the tail is then

$$B_T \approx \frac{2F_T}{\pi R_T^2}$$

(2.20)

where R_T is the tail radius (2.20) corresponds to one of the basic assumptions in the flaring tail models of Tverskoy (1968) and Spreiter and Alksne (1969b), who assume the tail to be a cylinder bifurcated by a plasma sheet. Near the
In the terrestrial ionosphere, an auroral "oval" (Akasofu, 1964) of enhanced particle precipitation surrounds the polar cap. The area of the oval is comparable with that of the polar cap. A significant fraction of the energy of the convective flow is dissipated as auroral precipitation and ionospheric heating. An upper limit for the energy input per unit area in the auroral oval $\dot{\omega}_p$ may be found by combining (2.14) with (2.20), whereupon

$$\left(\frac{\dot{\omega}_p}{\dot{\omega}_E} \right) \propto \left(\frac{B_p}{B_E} \right) r^{-2/3}$$

where $\dot{\omega}_E = 1$-10 ergs/cm2-sec is a reasonable typical value.

2.6) Corotation and Convection

Figure (2A), from Brice and Ioannidis (1970), schematically illustrates the streamlines, in the magnetic equatorial plane, of the convective flow from the plasma sheet towards the nose of the Earth's magnetosphere. There are two distinct regions, of open and closed streamlines. The open streamlines are convective return of flux to the nose of the magnetosphere; near the Earth, where corotation dominates convection, the flow streamlines are closed. The plasma remains in this region long enough to approach thermal equilibrium with the ionosphere; the plasma density is consequently relatively high within the corotation region. Outside the corotation region, plasma escaping from the ionosphere is convected rapidly to the magnetopause where it is lost. Consequently the density is lower in the convection region (Brice, 1967; Nishida, 1967). The boundary separating the high density plasmasphere and the low density convection region is ordinarily quite sharp. Figure (2B) describes the calculated plasmasphere at Jupiter, where corotation is much more powerful than at Earth.

There are several means by which the relative importance of corotation and convection may be parametrized. For example, we may compute the ratio of the convection time (2.17) to the rotation period T_p.
planet, the tail must join smoothly with the nose of the magnetosphere. Consequently, we take \(R_T = 1.5 \) D, the radius of the magnetopause on the dawn-dusk meridian. Thus, combining (2.18) and (2.20) we find

\[
B_T = \frac{30 \Phi}{uD} = 2.25 \times 10^4 \frac{\Phi}{D}
\]

(2.21)

\[
\frac{B_T(P)}{B_T(E)} = \frac{1}{r}
\]

(2.22)

where \(B_T(E) = 38\gamma \). The tail field should decrease monotonically with distance downstream approaching the value \(\sqrt{8\pi p_0} \) at asymptotically large distances (Spreiter and Alksne, 1969b), where \(p_0 \) is the static pressure in the solar wind.

We may now estimate the area \(A \) of the polar cap, the region of field lines directly connected to the solar wind, since the flux leaving (or entering) each polar cap must equal the flux in each lobe of the tail. Thus,

\[
A = \frac{100 \ c \Phi D}{2uB_p S}
\]

(2.23)

where \(B_p \) is the equatorial magnetic field at the surface of the planet.

Assuming \(A = \pi r_0^2 \), where \(r_0 \) is a characteristic dimension, then

\[
r_0 \sim \sqrt{\frac{50c\Phi D}{\pi uB_p S}}, \quad \text{and the colatitude} \ \lambda \ \text{of the boundary of the polar cap is roughly}
\]

\[
\lambda = \frac{r_0}{R_p} \sqrt{\frac{50c\Phi D}{\pi uB_p S}}
\]

(2.24)

where \(r_0/R_p \) has been taken small.
\[
\frac{T_c(P)T_E}{T_c(E)T_P} = \left(\frac{M_p}{M_E} \right)^{1/3} r^{1/3} \frac{T_E}{T_P}
\]

(2.26)

\(T_c/T_P < 1 \) implies a dominant convection region, as for Earth, whereas \(T_c/T_P > 1 \) implies a dominant corotation region, as for Jupiter. Similarly, we may compare the magnitudes of the corotation and convection electric fields, \(E_{CR} \) and \(E_C \) respectively. At the magnetic equator on a given tube of force we have

\[
E_{CR} = \frac{2\pi}{T_P} \frac{L_p B(L)}{c} = \frac{2\pi}{T_P} \frac{R_p B_p^S}{cL^2}
\]

(2.27)

where \(L \) measures the distance in units of planetary radii. The minimum value of \(E_{CR} \) occurs at the magnetopause, where \(L = D/R_p \) and \(E_{CR} \geq \frac{2\pi}{T_P} \frac{M_p}{cD^2} \). The ratio \(\Delta_{CR} \) of the minimum corotation field to the convection field is, using (2.12) and (2.8),

\[
\frac{\Delta_{CR}(P)}{\Delta_{CR}(E)} = \left(\frac{T_E}{T_P} \right)^{1/3} \left(\frac{M_p}{M_E} \right)^{1/3}
\]

(2.28)

where \(\Delta_{CR}(E) = 0.3-1 \). Again, when \(\Delta_{CR}(P) > 1 \), corotation dominates. (2.28) and (2.26) are identical.

Finally, the plasma energy density associated with rotational motion could distort the dipole field (Melrose, 1967; Brice and Ioannidis, 1970). This effect is measured by the corotation beta, \(\beta_{CR} \), the corotation energy density divided by the magnetic energy density. For a given plasma number density \(\rho_M \) at the magnetopause, \(\beta_{CR} \) maximizes in the dipole equatorial plane at the magnetopause:

\[
\beta_{CR} = \frac{8\pi}{3} \frac{1}{2} \rho_M \left(\frac{2\pi D}{T} \right)^2 \sim \frac{1}{2} \left(\frac{\rho_M}{\nu_s} \right) \left(\frac{2\pi D}{uT_P} \right)^2
\]

(2.29)

where we have used \(B^2/8\pi \sim \rho u^2 \). The ratio \(Q = \left(\frac{2\pi D}{uT_P} \right)^2 \) scales as
\[\frac{Q_p}{Q_E} \approx \left(\frac{M_p}{M_E} \right)^{2/3} r^{2/3} \left(\frac{T_E}{T_p} \right)^2 \]

(2.30)

where \(Q_E \approx 10^{-4} \). When \(\beta_{CR} \) approaches 1, we expect the magnetopause calculations referred to in Section 2.1 to fail because then centrifugal forces must be included in the stress balance.

2.7) Plasma Density Profile

Ioannidis and Brice (1971) have estimated the plasma density in the Jovian magnetosphere by a method which can be scaled to other planets. First, they noted that only photo-electrons have sufficient energy to escape over Jupiter's gravitational potential energy barrier. They then scaled the terrestrial flux of photo-electrons deduced by Perkins and Yngvesson (1968) by a factor \(1/r^2 \cos \theta \), where \(\theta \) is the solar zenith angle at the foot of a given line of force in the ionosphere. They then computed the flux and energy of escaping electrons, and assumed that hydrogen ions would be pulled out of the ionosphere to ensure charge neutrality. From this, they could deduce a diffusive equilibrium density model, assuming no plasma loss from a given tube of force.

This model predicts extremely large densities beyond \(L = 6 \). Therefore, it must be amended by the inclusion of loss processes, of which the most significant is the outward radial diffusion of cold plasma which is driven by interchange instabilities which set in when \(\beta_{CR} = 1 \). Thus the condition \(\beta_{CR} = 1 \) sets an upper limit for the plasma density, and in the absence of other loss mechanisms, determines the density. Figure (3) shows the plasma density profile computed by Brice and Ioannidis (1971) in this fashion.

Scarf (private communication, 1972) has pointed out that this calculation can easily be extended to Saturn, provided \(M_p \) is known. Since Saturn's gravitational field and rotation period are comparable to Jupiter's, the flux of escaping photo-electrons will be \(1/r^2 = 1/4 \) as large at Saturn as at Jupiter.
Thus, near Saturn, the plasma density would be $1/4$ that near Jupiter, and far from the planet would be determined by the condition $\beta_{CR} = 1$.
3) RADIATION BELTS

3.1) Radial Diffusion

The origin of the energetic particles trapped in the Earth's magnetosphere is not completely understood quantitatively. Particles up to a few tens of KeV are injected during magnetospheric substorms, when rapid convection from the geomagnetic tail to the inner magnetosphere greatly compresses and heats the plasma (Axford, 1969). The maximum particle energy attainable by flow compression is given by the convection potential across the magnetosphere. Thus, from (2.15), convection should provide particles with energies not exceeding \(E_E (M/M_E)^{1/3} r^{-2/3} \), where \(E_E \approx 30-100 \) KeV. It is also likely that plasma turbulence can statistically accelerate particles to high energies within the magnetosphere (Kennel, 1969). Such mechanisms are poorly understood at present; anyhow, they cannot be scaled to other magnetospheres. It has been suggested (see Tverskoy, 1969, and the references therein) that the energetic component of the Earth's radiation belts is generated by injection of low energy particles in the outer magnetosphere followed by inward radial diffusion driven by variable electric and/or magnetic fields. If the field variations have sufficiently low frequency, the particles' first adiabatic invariant \(\mu = T_\perp / B \) (where \(T_\perp \) is the component of particle energy in motion perpendicular to the magnetic field) is conserved. Therefore, as particles diffuse from weak to strong magnetic field regions, their energy increases. If a typical magnetic moment can be estimated for particles injected at the magnetopause, then typical particle energies at any point in the dipole field can also be estimated from \(\mu \)-conservation.

Since the ultimate source of the radiation belt particles is the solar wind, it is useful to compute the magnetic moment in the solar wind, based upon the flow energy density:
\[\mu = \frac{1}{2} \mu_1 u^2 / B = 16\pi \text{ MeV/Gauss} \quad (3.1) \]

If \(\mu \) is conserved for that small fraction of the impinging solar wind flux which not only traverses the shock and magnetosheath but penetrates the magnetopause boundary, we may use \((3.1) \) to estimate the energy of radiation belt particles. On the other hand, should the particle's magnetic moments be randomized by turbulence in the bow shock and magnetosheath, the magnetic moments of particles at the magnetopause could be somewhat smaller than \((3.1) \).

The maximum particle energy produced by radial diffusion will be of order \(\mu B_p^S \), where \(B_p^S \) is the planetary surface field. If \(\mu B_p^S > 0.5 \text{ MeV} \), electrons with sufficient energy to generate synchrotron radiation could be produced.

The intensity of the radiation belts produced by radial diffusion is proportional to the fraction of the solar wind particle flux which diffuses across the magnetopause. How this occurs at Earth is not well understood. However, one thing is clear. The magnetopause of a rapidly rotating planet will differ considerably from the Earth's. For example, if \(\beta_{CR} = 1 \), the magnetopause could be subject to interchange motions. If there is rapid counterstreaming of corotating magnetospheric plasma and flowing magnetospheric plasma, then the growth of two-stream instabilities could increase the particle transfer rate. Clearly, the structure of the Earth's magnetopause cannot be extrapolated to the outer planets with confidence.

The radial diffusion coefficient is determined by the power in time-varying electric and magnetic fields with periods comparable to the particle's azimuthal drift periods around the planet. The particle drifts stem from three sources: convective electric field drifts from the combination of corotation and convection, drifts due to gradients in the magnetic field strength, and drifts due to field line curvature (Hess, 1969). The time for a nonrelativistic particle to drift once around the planet via the magnetic gradient drift is
\[T_D(\mu) = \frac{2\pi c}{3c} \frac{L^2 R_p^2}{\mu} \] (3.2)

where \(e = 5 \times 10^{-10} \) esu, \(c = 3 \times 10^{10} \) cm/sec, and \(LR_p \) is the radial distance from the center of the planet to the particle. We assumed, for simplicity, that the particle has no velocity parallel to the magnetic field and so is confined to the magnetic equatorial plane. (3.2) may be suitably generalized to include parallel motions, and so the magnetic curvature drift, and to relativistic particles (Lew, 1961). For particles with the same \(L \), \(T_D \) scales as \(R_p^2/\mu \), and so using (3.1), we find

\[
\frac{T_D(L;P)}{T_D(L;E)} = \frac{1}{r} \left(\frac{R_p}{R_E} \right)^2
\] (3.3)

where \(T_D(L;E) \approx 0.15 L^2 \) hours. Since \(T_D \) is proportional to \(L^2 \) for a given \(\mu \), the radial diffusion coefficient when magnetic drifts predominate depends upon different frequency components of the fluctuating electric and magnetic fields at different \(L \); similarly particles with different \(\mu \) resonate with different frequency components at a given \(L \).

A number of mechanisms to drive radial diffusion have been suggested. For example, low frequency variations in the convection electric field, due to a variable solar wind, are thought to be important for the Earth (Falthammar, 1965; Birmingham, 1969; Cornwall, 1971; Mozer, 1971) and have been considered for Jupiter by White (1971). For a given \(\mu \) and \(L \), the diffusion coefficient \(D \) is of order \(CE^2(\omega_D)/B^2(L) \), where \(E(\omega_D) \) is the electric field amplitude at the drift frequency \(\omega_D \), and \(B(L) \) is the equatorial magnetic field strength. At low frequencies, the electric field amplitude should be reasonably uniform spatially: if furthermore the frequency spectrum is reasonably smooth, then \(D \approx L^6 \) in a dipole field, since \(B(L) \approx L^{-3} \). Perturbations of the magnetospheric magnetic...
field stemming from irregular magnetopause motions, again driven by solar wind variations have been considered for Earth by Nakada and Mead (1965) and for Jupiter by Chang and Davis (1962) and Hess and Mead (1971). This mechanism has a basic L^{10} dependence. Consequently, both electric and magnetic diffusion tend to be weak on the inner L-shells, where the highest energy particles are involved. As mentioned earlier, interchange instabilities driven by corotation have been suggested by Ioannidis and Brice (1971).

Interchange instabilities are one member of the class of low frequency drift instabilities which could drive radial diffusion (Kennel, 1969; Cornwall, 1970). No specific diffusion rate or L-dependence can be estimated for these mechanisms, since they depend upon knowledge of the nonlinear saturation levels of the instabilities.

When corotation dominates the magnetic drifts, so that $T_{CR}/T_D \ll 1$, the energetic particles circle the planet in approximately one rotation period. In this case, electric and magnetic field amplitudes at the corotation frequency determine the diffusion coefficient for particles over a wide range of both μ and L. It seems much more likely that the time-varying fields will not stem from irregular solar wind variations, but will be relatively more coherently driven by corotation itself. It stands to reason that radial diffusion could be quite efficient in corotation-dominated magnetospheres.

One such radial diffusion mechanism has been proposed by Brice (1971) and Brice and McDonough (1972) for Jupiter. Solar illumination creates a periodic heating of the planetary atmosphere which leads to tidal wind systems. The winds then couple to ions in the dynamo region of the ionosphere to drive Hall currents; polarization of the Hall currents then leads to electric fields which map along magnetic field lines out into space. The net electric potential associated with the atmospheric dynamo is of order $\frac{WB_p S_{RP}}{c}$, where W, a typical wind velocity is of order one-tenth the sound speed. For Jupiter, this potential
is roughly 10 MV, so fluctuating fields greatly in excess of that expected from solar-wind irregular convection may be possible. Furthermore, the diffusion coefficient may have a much weaker L-dependence than those associated with solar wind variability. For both these reasons radial diffusion near the planet could turn out to be surprisingly efficient in co-rotation dominated magnetospheres.

3.2) Loss Mechanisms

High frequency fluctuations near the particles' cyclotron frequencies, which violate the magnetic moment invariant, act as a loss mechanism by slowly diffusing the particles in pitch angle until the magnetic moment is sufficiently reduced that they are not reflected by the dipole field gradients and so are lost to the atmosphere. An upper limit to the stably trapped particle fluxes is then set by the threshold particle fluxes which trigger high frequency instabilities. One such limit, involving electromagnetic ion cyclotron and whistler instabilities has been calculated for the Earth's radiation belts (Kennel and Petschek, 1966; Cornwall, 1966). When the fluxes of electrons and protons trapped in the radiation belts are sufficiently intense, the anisotropy in their velocity distributions, which is maintained by loss of small pitch angle particles to the atmosphere, permits whistler and ion cyclotron waves to grow unstably. The resonant particles driving the instabilities are diffused in pitch angle by the waves to the atmospheric loss cones, whereupon they are lost to the atmosphere. Thus, since the instability reduces the fluxes of trapped particles, an upper limit for stably trapped fluxes is given by the flux J_p^* required for marginal stability (Kennel, 1971)
\[J_p^* = \frac{5 \times 10^{10}}{L^4} \left(\frac{M_p R_p^4}{M_e R_p^4} \right) \text{cm}^{-2} \text{sec}^{-1} \] (3.4)

\(J^* \) is independent of the particle mass (and is consequently identical for electrons and ions) and of the background plasma density \(N \). However, only electrons and ions which can resonantly interact with the waves can be diffused; this condition implies that only particles with energies greater than the magnetic energy per ion pair, \(B^2/8\pi N \), at the magnetic equator, will be scattered by whistler or ion cyclotron waves.

Pitch angle diffusion can only reduce particle fluxes to the stably trapped limit when the precipitation lifetime is less than characteristic radial diffusion time. The minimum precipitation lifetime (Kennel, 1969), a lower limit to the precipitation lifetime, scales as \(L^4 \) and so is large on distant L-shells. Thorne and Coroniti (1971) have arrived at an upper limit model for the intensity of the Jovian radiation belt. They assumed electric field diffusion, of sufficient strength to permit particles to diffuse past Io, and that injection at the magnetopause was sufficient to create particle flux above the stability threshold for whistler and ion cyclotron waves. Beyond \(L = 6-8 \) radial diffusion is faster than precipitation, and the particle fluxes to the stably trapped limit in the range \(L = 6-8 \). Thus, instabilities serve as a valve limiting the injection of particles to the inner L-shells in this model. Near the planet, \(B^2/8\pi N \) exceeds the expected particle energy \(uB \), using the Ioannidis and Brice (1971) plasma density model, so that whistler and ion cyclotron waves may be stable near the planet. However, there remains the possibility that electrostatic instabilities of the loss cone type (Rosenbluth, 1965) could act as a turbulent loss mechanism. Such instabilities, with frequencies appropriate to scatter electrons, have recently been discovered in the Earth's radiation belts (Kennel et al, 1969), but as yet our knowledge of them is insufficient to permit extrapolation.
3.3) Role of Satellites in Magnetospheric Physics

Planetary satellites whose orbits lie within the magnetosphere, offer the possibility of studying a completely new type of flow interaction. For example, Io, which is located at $L = 6$, well within the Jovian magnetopause, presents an obstacle which is supersonic to the corotation flow. It should have an interesting interaction and wake, whose properties are barely guessed at presently. Hess and Mead (1971) have argued that Io can absorb radiation belt particles as they radially diffuse across Io's orbit; for the highly L-dependent and consequently weak radial diffusion coefficients applicable in the drift-dominated regime, it is likely that particle absorption by Io would drastically reduce the particle fluxes. However, this leaves the problem of accounting for the observed synchrotron radiation created by relativistic electrons within the orbit of Io by some other mechanism. If radial diffusion is to provide for synchrotron radiation, then Io cannot be a barrier. Recently, Hess and Mead have estimated the radial diffusion coefficient from the synchrotron emission profiles (Berge, 1966); upon extrapolating this to the orbit of Io, they find a significant fraction of the radial diffusion flux can get past Io (Hess, private communication).

Io produces decametric radio emissions which have been discussed by Goldreich and Lynden-Bell (1969). They argue that the $\mathbf{v} \times \mathbf{B}$ electric potential, from corotation of the plasma, across Io's diameter, is the order of 0.5 MV. This large potential then drives magnetic field aligned currents in the tubes of force intersecting Io, which close in the Jovian ionosphere. These field-aligned currents then produce instabilities in the Jovian ionosphere, creating waves with frequencies up to the electron cyclotron frequency at the foot of the field line. Similar waves, also apparently associated with field-aligned currents, have been observed in the Earth's ionosphere as auroral hiss. Since the dissipation of field-aligned currents may heat the ionospheric plasma and also produce energetic beams of "runaway" electrons. There is the interesting possibility that Io could be a source of radiation belt electrons.
4) **HYPOTHETICAL MAGNETOSPHERES**

Table I lists the orbital radius r (in astronomical units), the planetary radius R_p, the ratio R_p/R_E, the planetary rotation period T_p, the ratio T_p/T_E, the planetary magnetic moment M_p in units of the Earth's magnetic moment M_E, and the surface field B_p for the planets Earth, Jupiter, Saturn, Uranus, and Neptune. All the parameters but M_p and B_p are well known, and have been taken from Newburn and Gulkis (1971). The Jovian magnetic moment M_J has been estimated from radio astronomical evidence (Warwick, 1970). It is not known whether Saturn, Uranus, and Neptune have magnetic moments. However, current understanding of the dynamo theory of planetary magnetism indicates it would be dangerous to presume they have no magnetic moment, since they are rapidly spinning objects, with a reasonable possibility of having a conducting liquid core. Furthermore, the minimum magnetic moment M^* (Eq. 2.10) for which a magnetospheric interaction will occur is quite small, $M^* \approx 10^{-2} M_E$, $M^* \approx 8 \times 10^{18} M_E$, and $M^* \approx 5 \times 10^{-3} M_E$. For the purposes of illustration, we have scaled the planetary magnetic moments according to the "Magnetic Bode's Law" (Moroz, 1967) whereby the magnetic moment is proportional to the total planetary angular momentum, a rule which works fairly well for Earth and Jupiter. These estimates of M_p greatly exceed the minimum moment required for a magnetospheric interaction. We have not performed any scalings for Pluto, since it is sufficiently small that it may not have a magnetic moment.

Table II lists basic parameters defining the magnetospheric configuration: the nose radius D_p, normalized to the Earth's nose radius D_E and also to the planetary radius R_p, the length of the geomagnetic tail L_p in astronomical units, and B_N, the magnetic field strength at the nose of the magnetosphere. These hypothetical outer planet magnetospheres are much larger than the Earth's, both in absolute units and in units of planetary radii. The estimated length of Jupiter's magnetic tail is significant on the solar system scale. Should the nose radius estimates be correct, then the satellites JV, Io, Europa, Ganymede and Callisto lie
<table>
<thead>
<tr>
<th>Planet</th>
<th>r(A.U.)</th>
<th>R_p(Km)</th>
<th>R_p/R_E</th>
<th>M_p/M_E</th>
<th>B (Gauss)</th>
<th>T_p(hours)</th>
<th>T_p/T_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1</td>
<td>6.4×10^3</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.2</td>
<td>7.1×10^4</td>
<td>11.1</td>
<td>5×10^4</td>
<td>12</td>
<td>10</td>
<td>0.41</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.5</td>
<td>6×10^4</td>
<td>9.4</td>
<td>10^4</td>
<td>4</td>
<td>2.10</td>
<td>0.41</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.2</td>
<td>2.5×10^4</td>
<td>4</td>
<td>2.4×10^2</td>
<td>1.25</td>
<td>10.8</td>
<td>0.45</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.0</td>
<td>2.5×10^4</td>
<td>4</td>
<td>1.7×10^2</td>
<td>0.9</td>
<td>15.8</td>
<td>0.66</td>
</tr>
<tr>
<td>Planet</td>
<td>(\frac{D_p}{D_E})</td>
<td>(\frac{D_p}{R_p})</td>
<td>(L_p) (AU)</td>
<td>(B_N = \sqrt{8 \pi \mu u^2})</td>
<td>(\phi_p / \phi_E)</td>
<td>(\dot{W}_p / \dot{W}_E)</td>
<td>(\omega_p / \omega_E)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Jupiter</td>
<td>64</td>
<td>57</td>
<td>2.5</td>
<td>13(\gamma)</td>
<td>12</td>
<td>260</td>
<td>12</td>
</tr>
<tr>
<td>Saturn</td>
<td>45</td>
<td>48</td>
<td>1.8</td>
<td>7(\gamma)</td>
<td>4.8</td>
<td>48</td>
<td>2.7</td>
</tr>
<tr>
<td>Uranus</td>
<td>16.5</td>
<td>41</td>
<td>0.66</td>
<td>3.5(\gamma)</td>
<td>0.87</td>
<td>2</td>
<td>0.53</td>
</tr>
<tr>
<td>Neptune</td>
<td>17</td>
<td>42.5</td>
<td>0.68</td>
<td>2.2(\gamma)</td>
<td>0.57</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>Earth</td>
<td>(D_E = 64000 \text{km}), (\frac{D_E}{D_p} = 0.04)</td>
<td>(B_N = 67\gamma)</td>
<td></td>
<td>(\phi_E)</td>
<td>(\dot{W}_E \times 10^{17-18})</td>
<td>(\omega_E \approx 1-10)</td>
<td>30-100 kV ergs/sec</td>
</tr>
</tbody>
</table>
within Jupiter's magnetosphere; Janus, Mimas, Enceladus, Tethys, Dione, Rhea, Titan, and Hyperion within Saturn's; and Triton within Neptune's; all of Uranus' satellites lie within its magnetosphere. A rich variety of satellite interactions with planetary magnetospheres may therefore exist.

However large or small the magnetic moments, and consequently the magnetospheres of the outer planets may be, the magnetic field in their outer regions will be considerably weaker than at Earth, due to the attenuation of the solar wind dynamic pressure with increasing heliocentric distance. The estimate of \(B_N \) allows us to infer that Neptune's surface field need exceed only 1 or 2\(\gamma \) for it to have a magnetospheric interaction with the solar wind.

Table II also lists parameters defining internal convection: the electric potential \(\phi_p \) across the magnetosphere; the net energy input \(\dot{W}_p \) from the solar wind into the magnetosphere; and the energy flux \(\dot{w}_p \) into the high latitude ionosphere from auroral dissipation of the convective flow. Jupiter and Saturn should have considerably larger convection potentials, and absorb considerably more energy from the solar wind, than Earth, whereas Uranus and Neptune are comparable to Earth as far as convection is concerned. The auroral particle energy fluxes into the high latitude Jovian ionosphere could considerably exceed those at Earth.

Table III lists parameters necessary for the comparison of corotation and convection: the convection time \(T_c \), the ratio of convection to corotation time \(T_c/T_{CR} \), which also yields the relative ratio of corotation to convection electric fields at the magnetopause, \(\Delta_{CR} \), and \(Q_p \) which characterizes \(\beta_{CR} \) at the magnetopause. Both \(\Delta_{CR} \) and \(Q_p \) favor corotation at the outer planets relative to Earth. On this basis, then, we expect relatively large regions of corotation flow, and relatively small regions of convection in these magnetospheres. Furthermore, \(Q_p \) is more than an order of magnitude larger for all the outer planets than for Earth, which suggests the strong possibility of corotation-induced distortions
Table III
Corotation Parameters

<table>
<thead>
<tr>
<th>Planet</th>
<th>T_c (hours)</th>
<th>$\frac{T_c}{T_{CR}}$</th>
<th>$\Delta_{CR}(P)$</th>
<th>Q_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>256</td>
<td>25.6</td>
<td>6.7×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>180</td>
<td>18</td>
<td>3.2×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>66</td>
<td>6</td>
<td>3.6×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>68</td>
<td>4.2</td>
<td>1.8×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>4</td>
<td>0.15</td>
<td>10^4</td>
<td></td>
</tr>
</tbody>
</table>
in the magnetic field and/or interchange instabilities at these planets. This indicates that the simple calculation of the nose radius based upon an undistorted dipole field is incorrect and can at best be regarded as an order of magnitude estimate. Finally, the magnetopauses of the outer planets could be irregular and noisy, thereby permitting injection of more particles into the radiation belts than at Earth.

Table IV lists several parameters of interest in radiation belt physics: the characteristic magnetic moment \(\mu \) in the solar wind, the maximum particle energy attainable by radial diffusion \(\mu B_p^5 \), in MeV; the maximum particle energy attainable by convection, \(e \phi_p \rangle \), the drift time \(T_D(L) \) in hours, the ratio \(T_D/T_{CR} \) of drift to corotation time, and \(J^*L^4 \) where \(J^* \) is the stably trapped flux limit defined by (3.4). If radial diffusion could bring particles to the surface of the planet without loss, it would produce several hundred MeV particles at the outer planets. Only protons would achieve such high energies, since electrons would lose energy to synchrotron radiation. The rings of Saturn should sweep out any radiation belt particles, so the maximum particle energy expected at Saturn is probably an order of magnitude smaller than the 600 MeV listed. The ratios \(T_D/T_{CR} \) listed in Table IV indicate that beyond \(L = 2 \), Jupiter's radial diffusion should be corotation dominated; Saturn's, beyond \(L \approx 3 \); Uranus, beyond \(L = 10 \), and Neptune's, beyond \(L = 14 \). The Earth's radial diffusion, by comparison, is never corotation dominated. When the corotation domination region extends close to the planet, as for Jupiter and Saturn, our previous arguments lead us to suspect that there may be efficient generation of high energy particles.

Finally, the stably trapped flux limits are fortuitously similar for all the planets. Whether or not the stably trapped flux limit applies depends upon whether the particle energies exceed \(B^2/8\pi N \) -- which implies a knowledge of the plasma density \(N \) -- and whether the minimum precipitation lifetime is less than the radial diffusion time.
Table IV

Radiation Belt Parameters

<table>
<thead>
<tr>
<th>Planet</th>
<th>μ(MeV/Gauss)</th>
<th>μB_p(MeV)</th>
<th>$e\phi_p$(KeV)</th>
<th>$(T_D(L))(\text{hours})$</th>
<th>$\frac{T_D}{T_{CR}}$</th>
<th>J^*L^4/cm2-sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>84MeV/Gauss</td>
<td>1000</td>
<td>400</td>
<td>2.5L^2hours</td>
<td>0.25L^2</td>
<td>1011</td>
</tr>
<tr>
<td>Saturn</td>
<td>150</td>
<td>600</td>
<td>150</td>
<td>1.4L^2hours</td>
<td>0.14L^2</td>
<td>6.5$\times 10^{10}$</td>
</tr>
<tr>
<td>Uranus</td>
<td>300</td>
<td>375</td>
<td>30</td>
<td>0.125L^2hours</td>
<td>0.012L^2</td>
<td>5$\times 10^{10}$</td>
</tr>
<tr>
<td>Neptune</td>
<td>500</td>
<td>450</td>
<td>15</td>
<td>0.075L^2hours</td>
<td>5$\times 10^{-3}$L^2</td>
<td>3$\times 10^{10}$</td>
</tr>
<tr>
<td>Earth</td>
<td>16</td>
<td>5</td>
<td>30</td>
<td>0.15L^2hours</td>
<td>6$\times 10^{-3}$L^2</td>
<td>5$\times 10^{10}$</td>
</tr>
</tbody>
</table>
There will undoubtedly be many surprises in the magnetosphere of Uranus; the rotation axis is inclined roughly 98° to the normal to its orbital plane, so that twice per orbit, its rotation axis points nearly towards the sun. This configuration will occur in 1988. This suggests the possibility of a new and unusual magnetospheric configuration, if it turns out that its magnetic moment is aligned more or less along its rotation axis, as is the case for Earth and Jupiter.

W.P. Olson has calculated the shape of the nose of the Uranian magnetosphere based upon this assumption; his results are presented in Figure (4). In this case, the "polar cap" points directly towards the sun, and there exists the possibility of direct penetration of solar wind to the planetary surface. Whether or not this implies an especially intense radiation belt is unclear. G.L. Siscoe (1971) has discussed convection and the topology of a possible Uranian magnetic tail: his results are presented in Figure (5). Magnetopause and tail reconnection both take place on lines of force connecting to the magnetic pole. It seems likely that the atmospheric tidal dynamo, postulated by Brice and McDonough to drive radial diffusion at Jupiter, will be most unusual at Uranus.
5) DISCUSSION

We have scaled the magnetospheres of the outer planets according to the theoretical variation of solar wind parameters and to Moroz's magnetic Bode's law for the magnetic moments. In the absence of better information, we have assumed where necessary that Earthlike physics prevails at the outer planets. Yet this procedure suggests that the magnetospheres of the outer planets could be very different from the Earth's. Several broad conclusions emerge. First, convection and its associated auroral precipitation should play a relatively smaller role at the outer planets than Earth. Corotation dominates. This in turn suggests that solar wind particles may penetrate a disturbed magnetopause and radially diffuse into the dipole more efficiently than at the Earth. The general increase in solar wind magnetic moment with increasing heliocentric distance indicates that the radiation belt particles could be considerably more energetic than at Earth. Thus, the outer planets' magnetospheres could be radiation-belt dominated. The outer planets offer the possibility of studying satellite-magnetospheric interactions; the interaction of Io with the Jovian magnetosphere is known to be significant. Uranus may have an unusual magnetic topology, since its magnetic dipole axis is currently directed more or less in the solar wind directions. These hypothetical outer planet magnetospheres seem to be more like each other than the Earth. In particular, a careful study of the magnetospheric processes at Jupiter may lend greater insight for the rest of the outer planets than further extrapolation of Earth-like physics. The above parametric studies suggest that the investigation of the magnetospheres of the outer planets can be carried out using instrumentation already developed.
ACKNOWLEDGMENTS

It is a pleasure to acknowledge the deep influence of N.M. Brice upon this review. In addition, the author benefitted from many useful discussions with F.L. Scarf, F.V. Coroniti, R.M. Thorne, W. Hess, J.W. Warwick, S. Gulkis, and W. Olson. Thanks are due W. Olson for permission to reproduce unpublished results. This work was supported by the Office of Naval Research, Grant #N00014-69-0200-4023; the National Science Foundation, Grant #GP-22817; the Atomic Energy Commission, Contract AT(04-3)-34, Project #157; and the National Aeronautics and Space Administration, Contract NGL-05-007-190 and NGR-05-007-116.
FIGURE CAPTIONS

Figure 1. EARTH'S MAGNETOSPHERE

Shown here is a slice through the noon-midnight meridian of the Earth's magnetosphere, with the relative geometrical locations of various features to be discussed subsequently in the text.

Figure 2. CONVECTION AND COROTATION AT EARTH AND JUPITER

(A) is a schematic of the streamlines of the Earth's convective flow in the magnetic equatorial plane, taken from Brice and Ioannidis (1970). Local magnetic times are indicated, with the solar direction, local noon, at the top of the figure. The region of closed streamlines, the corotation or plasmashere, contains relatively dense cold plasma of ionospheric origin.

(B) is a similar schematic for Jupiter.

Figure 3. PLASMA DENSITY IN THE MAGNETOSPHERE OF JUPITER

This figure is taken from Ioannidis and Brice (1971). The dashed line approaching infinity near \(L = 10 \) is the result of loss-less diffusive equilibrium calculations; the dotted line indicates the density limit set by recombination, and the dashed lines labelled \(B_{SJ} = 1, 10, 20 \) indicates the density limit set by interchange instability for various values of Jupiter's surface magnetic field \(B_{SJ} \). Centrifugal effects confine these densities largely to the Jovian magnetic equatorial plane.

Figure 4. NOSE OF THE MAGNETOSPHERE OF URANUS

Shown here are results of calculations by W.P. Olson of the nose of Uranus' magnetosphere. The solar wind impinges upon the planet at \(0^\circ \). Magnetosheath
plasma could directly penetrate the magnetosphere along the 0° line.

Figure 5. CONVECTION AND THE MAGNETIC TAIL IN THE MAGNETOSPHERE OF URA NUS

Reproduced here is a schematic of the convective motions postulated by Siscoe (1971). The numbers label a magnetic tube of force successive instants in its interaction with Uranus. Point 2 corresponds to field annihilation at the nose of the magnetosphere; N.S. denotes neutral sheet. Corotation around the dipole axis has been neglected; it would be expected to give the field lines a helical twist.
REFERENCES

UCLA PLASMA PHYSICS GROUP REPORTS

* Published by Experimental Group
†Published by Theoretical Group

R-1 "Propagation of Ion Acoustic Waves Along Cylindrical Plasma Columns", A.Y. Wong (July 1965)*
R-2 "Stability Limits for Longitudinal Waves in Ion Beam-Plasma Interaction", B.D. Fried and A.Y. Wong (August 1965)*
R-3 "The Kinetic Equation for an Unstable Plasma in Parallel Electric and Magnetic Fields", B.D. Fried and S.L. Osakow (November 1965)†
R-5 "Effects of Collisions on Electrostatic Ion Cyclotron Waves", A.Y. Wong, D. Judd and F. Hai (December 1965)*
R-7 "Observation of Cyclotron Echoes from a Highly Ionized Plasma", D.E. Kaplan and R.M. Hill (May 1966)*
R-8 "Excitation and Damping of Drift Waves", A.Y. Wong and R. Rowberg (July 1966)*
R-9 "The Guiding Center Approximation in Lowest Order", Alfredo Bafios, Jr. (September 1966)†
R-10 "Plasma Streaming into a Magnetic Field", S.L. Ossakow (November 1966)†
R-11 "Cooperative Effects in Plasma Echo Phenomena", A.Y. Wong (March 1967)*
R-12 "A Quantum Mechanical Study of the Electron Gas Via the Test Particle Method", M.E. Rensink (March 1967)
R-14 "The Expansion and Diffusion of an Isolated Plasma Column", J. Hyman (May 1967)
R-17 "Parametric Coupling Between Drift Waves", F. Hai, R. Rowberg and A.Y. Wong (October 1967)*
R-18 "Cyclotron Echoes from Doppler Effects", A.Y. Wong (March 1968)
R-21 "Test Particle Theory for Quantum Plasmas", M.E. Rensink (October 1967)†
R-23 "Landau Damping of Ion Acoustic Waves in a Cesium Plasma with Variable Electron-Ion Temperature Ratio", K.B. Rajangam (October 1967)
R-24 "The Inhomogeneous Two-Stream Instability", G. Knorr (September 1967)
R-26 "Small Amplitude Waves in High Beta Plasmas", V. Formisano and C. Kennel (February 1968)†
R-27 "Low Beta Plasma Penetration Across a Magnetic Field", B.D. Fried and S. Ossakow (March 1968)

R-29 "The Theorist's Magnetosphere", C. Kennel (April 1968)

R-31 "Electromagnetic Echoes in Collisionless Plasmas", A.Y. Wong (April 1968)

R-32 "Parametric Excitation of Drift Waves in a Resistive Plasma", G. Weyl and M. Goldman (June 1968)

R-33 "Parametric Excitation from Thermal Fluctuations at Plasma Drift Wave Frequencies", A.Y. Wong, M.V. Goldman, F. Hai, R. Rowberg (May 1968)

R-34 "Current Decay in a Streaming Plasma Due to Weak Turbulence", S.L. Ossakow and B.D. Fried (June 1968)

R-35 "Temperature Gradient Instabilities in Axisymmetric Systems", C.S. Liu (August 1968)

R-37 "Transverse Plasma Wave Echoes", B.D. Fried and Craig Olson (October 1968)

R-38 "Low Frequency Interchange Instabilities of the Ring Current Belt", C.S. Liu (January 1969)

R-41 "Nonlinear Oscillatory Phenomena with Drift Waves in Plasmas", F. Hai and A.Y. Wong (September 1970)

R-42 "Ion-Burst Excited by a Grid in a Plasma", H. Ikezi and R.J. Taylor (February 1969)

R-43 "Measurements of Diffusion in Velocity Space from Ion-Ion Collisions", A. Wong and D. Baker (March 1969)

R-44 "Nonlinear Excitation in the Ionosphere", A.Y. Wong (March 1969)

R-47 "Direct Measurements of Linear Growth Rates and Nonlinear Saturation Coefficients", A.Y. Wong and F. Hai (April 1969)

R-50 "Effect of Fokker-Planck Collisions on Plasma Wave Echoes", G. Johnston (June 1969)

R-56 "Trapped Particles and Echoes", A.Y. Wong and R. Taylor (October 1969)
R-84 "Observations of Parametrically Excited Ion Acoustic Waves", R. Stenzel (March 1971)
R-85 "Remote Double Resonance Coupling of Radar Energy to Ionospheric Irregularities", C.F. Kennel (January 1971)+
R-86 "Ion Acoustic Waves in a Multi-Ion Plasma", B.D. Fried, R. White, T. Samec (January 1971)+
R-87 "Current-Driven Electrostatic and Electromagnetic Ion Cyclotron Instabilities", D.W. Forslund, C.F. Kennel, J. Kindel (February 1971)
R-88 "Locating the Magnetospheric Ring Current", C.F. Kennel and Richard Thorne (March 1971)
R-89 "Ion Acoustic Instabilities Due to Ions Streaming Across Magnetic Field", P.J. Barrett, R.J. Taylor (March 1971)
R-90 "Evolution of Turbulent Electronic Shocks", A.Y. Wong and R. Means (July 1971)*
R-91 "Density Step Production of Large Amplitude Collisionless Electrostatic Shocks and Solitons", David B. Cohen (June 1971)
R-95 "3-D Velocity Space Diffusion in Beam-Plasma Interaction without Magnetic Field", P.J. Barrett, D. Gresillon and A.Y. Wong (September 1971)
PPG-96 "Dayside Auroral Oval Plasma Density and Conductivity Enhancements due to Magnetosheath Electron Precipitation", C.F. Kennel and M.H. Rees (September 1971)
PPG-97 "Collisionless Wave-Particle Interactions Perpendicular to the Magnetic Field", A.Y. Wong, D.L. Jassby (September 1971)
PPG-98 "Magnetospheric Substorms", F.V. Coroniti and C.F. Kennel (September 1971)
PPG-100 "Structure of Ion Acoustic Solitons and Shock Waves in a Two-Component Plasma", R.B. White, B.D. Fried and F.V. Coroniti (September 1971)
PPG-101 "Solar Wind Interaction with Lunar Magnetic Field", G. Siscoe (Meteorology Dept.) and Bruce Goldstein (JPL) (November 1971)
PPG-102 "Changes in Magnetospheric Configuration During During Substorm Growth Phase", F.V. Coroniti and C.F. Kennel (November 1971)