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PROPAGATION OF THE TRANSVERSE NORMAL STRESS

IN A THICK PLATE DUE TO DISTRIBUTED

LATERAL IMPULSIVE LOADINGS

By Larry W. Oline*
Langley Research Center

SUMMARY

The purpose of this theoretical investigation is to determine the magnitude of the
elastic stresses produced in an infinite elastic plate when an impulsive load is applied
normal to the plate surface. The plate is assumed to be infinite and elastic with, an axi-
symmetric normal load applied over a circular area. The first part of the analysis is
devoted to establishing the equations of motion and the boundary conditions and trans-
forming these equations by use of the Laplace transform. The normal stress distribu-
tion is determined in particular. The second part of the analysis deals with the inversion
of the transformed equations and is accomplished by use of an expansion method of
Cagniard which eliminates contour integration difficulties. At this point in the analysis
the various wave fronts which contribute to the normal stress can be identified and are
recognized. ~~~--

The normal stress due to the initial, unreflected, irrotational wave is evaluated
on the axis at the wave front, and the effect of varying the radius of the axisymmetric
load is determined. The results compare favorably in the limit with the published
results for normal stress due to a point load. It should be noted that only the normal
stress at the wave front and on the axis is determined due to the mathematical complex-
ities of the resulting inversion integrals. The solutions are obtained for both step and
Dirac delta time variations.

INTRODUCTION

When a projectile traveling at relatively high velocity strikes a plate, elastic
stress waves are usually initiated which propagate toward the back face of the plate.
These elastic stress waves are strong compression waves which decay in magnitude as

*This analysis was performed under .the NASA-ASEE Summer Faculty Fellowship
Research Program. The author is now Associate Professor, Department of Structures,
Materials, Fluids at the University of South Florida.



they propagate. When such waves arrive at the stress-free back surface, they are
reflected as tensile stress waves, which, depending on the intensity of the wave and its
duration, may cause fracture to occur. This process is termed spallation and can pre-
sent a problem in some situations. One example of a problem area is the main wall of
a double-walled meteoroid bumper system. The outer wall breaks up the impacting
meteor into an expanding gas cloud which then impacts the main wall over a certain dis-
tributed area. Because of the intensity of loading and its duration, there is a possibility
of spallation damage occurring.

Problems related to stress-wave reflection at a free boundary have been
encountered by seismologists, with some pioneering work done by Cagniard in refer-
ence 1. A bibliography through 1960 of other authors having done work in this area is
given by Miklowitz in reference 2. Several authors (Aliev in ref. 3, Kinslow in ref. 4,
and Blake in ref. 5) have approached this problem by using a pressurized cavity as the
source of a spherical disturbance along with an image system to preserve the stress-
free boundary condition. Problems arise, however, in exactly matching these stress-
free boundary conditions.

Another approach to the stress-wave propagation and reflection problem has been
to consider a finite thickness plate with a normal force applied to one side. Some pre-
liminary work for a distributive force on an elastic half space was done by Huth and Cole
(ref. 6) and by Thiruvenkatachar (ref. 7). Further analysis by Broberg (ref. 8), Davids
(ref. 9), Pytel and Davids (ref. 10), and Rae (ref. 11) included the effects of the stress-
free surface. All of these plate analyses considered the load to be applied at a point.
Distributive loading on a plate was formulated by Thiruvenkatachar (ref. 12) who obtained
the Laplace transform solution without completely finding its inverse.

The present analysis considers a uniform normal load distributed over a circular
area. The normal stress of the incident dilatational wave at the wave front under the
load center is presented as a function of the radius of the loading. Numerical results
are presented for various values of the radius of loading while maintaining a constant
total load. A comparison is also made with the case of a point load to show the rapid
decline in normal stress with increased loading area.

SYMBOLS

a radius of the load applied

cr dilatational wave speed,
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distortion wave speed,

total force

2qV)2 - 4q3nS

thickness of the plate

(eq. (21))

N, =

,I12 integrals

'k./jL'"1'
2cn

2

intensity of applied impulsive pressure

Laplace transform variable

q = — (nomial value of 0.5 for aluminum)
cl

r,0,z cylindrical coordinates

time

ur,uz displacements in radial and normal directions, respectively

U = COS I//

y = -I

constants



: = ,^40-1/e
''2c,2

6(t) Dirac delta

9ur ur 3u7"
~ + + ~ (Dilatation)

Lame constants

*=M/« 2 -4
cl

p mass density

azz'arr'arz'aee stress components

i// = Dummy variable in Poisson integral representation of Bessel function (see eq. (19))

3ur au_
n = —= -=- (Rotation)8z 9r

Subscript:

P dilatation wave

A dot over a symbol denotes differentiation with respect to time.

ANALYSIS

The problem considered is the determination of the stress response in a homo-
geneous, isotropic, infinite, elastic plate subjected to an impulsive pressure. The plate,
of thickness h, is loaded with an impulsive pressure of intensity P. The pressure is
uniformly distributed over a circular area of radius a on one face of the plate (see
fig. 1). A system of cylindrical coordinates (r,0,z) is defined with the origin at the



T

P
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Figure 1.- Coordinates and loading.



center of the circular area of loading and the positive Z-axis normal to the plate and
directed toward its other face. Due to symmetry of the loading, the problem is inde-
pendent of 9. The displacements in the r- and z-directions are denoted as ur

and uz, respectively.

Basic Equations

The problem is governed by the following set of basic equations:

Equations of motion (see ref . 13)

(»

where

8ur ur 9uz
A = — + — + —^ (3)

9r r 8z v '

9ur 8uz
n=-8T--87 (4)

and X,JIA are Lame constants and p is mass density.

Stress, displacement equations

9ur

ffflfl = XA + 2ji ^ (6)

azz = XA + 2M . (8)

Boundary conditions

arz = 0 (z = 0; z = h; t ^ 0) (9)

azz = 0 (z = h; t ^ 0) (10)



crzz = PH(t)[l - H(r - a)] (z = 0 for step function loading)

azz = P6(t)|l - H(r - aj] (z = 0 for Dirac delta loading)

where H(t) is the unit step function and 6(t) is the Dirac delta function.

Initial conditions

(lla)

(lib)

ur = uz = 0

ur = uz = 0

(t = 0, r £ 0; 0 * z * h)

(t = 0, r ^ 0; 0 £ z i h)

(12a)

(12b)

Laplace Transformation of the Basic Equations

Equations (1) to (4) were transformed in time using Laplace transforms and were
arranged to form two partial differential equations in terms of the Laplace transform
of A and fi. These equations are

and

9r
(14)

where p is the transform variable. These equations were solved by the method of sep-
aration of variables and superposition (see appendix A and refs. 7 and 12). The expres-
sions for the transform of the normal incident stress azz can then be obtained by uti-
lizing equations (3), (4), and (8).

Since the type of damage during spallation is caused by a reversal of the initial
compression wave to a tensile wave at the rear free boundary of the plate, the normal
stress, particularly along the Z-axis, is thought to be the major contributor to this
damage. The transformed expression for the normal stress due to a Dirac delta loading
function, is

zz = Pa

The functional relationships M(z, £) and G(£) are defined in appendix A and Jj(a£),
J0(r£) are Bessel functions of the first kind. The transformed solution for a step loading
is obtained from equation (15) by replacing P with P/p.



The solution as given by equation (15) can be expressed as a summation of terms,
each of which can be identified as reflected and unreflected shear and dilatation waves.
This expansion is given as

5
= aP f Qn + Qn*} + Y (Qn + Qn*) + . . . (16)

n=l

The values of Qn and Qn* are given in appendix B, along with the details of the
development of this equation. As can be shown, QQ represents the initial dilatation
wave, QQ* the initial shear wave, Q« the dilatation wave after one reflection, and so
forth. The result given by equation (16) has been previously obtained by Thiruvenkatachar
in reference 12.

Inversion of Laplace Transforms

The present analysis considers the normal stress crzz, caused by the incident
dilatation wave, and is represented by QQ in equation (16). Therefore, the transformed
stress which must be inverted is

= aP (17)

where N« and

the variables r\ =

are functional relationships found in appendix A. By introducing

^ C2and q = — and by making use of the integral representation

of the product of the Bessel functions (ref. 14), equation (17) becomes

CTzz = £
!7?2) e 1 f^j [PJ?

J

— R) cos xd(p dr? (18)

where the trigonometric variables R, x> and <P are shown in the following sketch and
satisfy the following equations:

R2 = a2 + r2 - 2 arc cos tp

R sin x = r sin <p

R cos x = a - r cos cp



In addition, the Bessel function in equation (18) can be replaced with its Poisson integral
representation (ref. 15) to yield

Equation (19) can be recast into a more simplified representation by introducing the var-
iable (see ref. 11)

Cjt = zyl + rj2 + irjR cos 4> (20)

As 77 varies from zero to infinity, t is represented by a curve in the complex plane
from z/Cj to °° (shown in fig. 2). It is observed that r\ = 0 defines the wave front
z = Cjt. The path of integration can be transformed (see ref. 1) so that it lies along the
real axis in the t-plane, and equation (19) becomes

2 r - f a fu „ i , _. / » » , _ *
e'ptdt (21)a?*P Re \ \ (a - r cos <p) d<p \ sin2!// d^ H/t - -^ F,(T;)

^ c 2 ^ Q « J Q ^ 0 I V c l /

where

and Hft - ^-\ is the unit step function.
V cl/

The well-known Laplace transform of the second derivative of a function is given
by

^{^Tj = p2f" " pf(0) " f'(0) (22)

da
Therefore, noting that crzz(0) =0, 0 i t < —, and z (0) = 0, the inverse of equa-

tion (21) can be written as



Im t

t = - l + V + i n cos

R cos t//

• oo

z/c

Figure 2.- Variation of i\ with t in the complex plane.

Re t

\ (a - r cos cp) dp \ Fj(r?) ^ sin2 (23)

Inasmuch as equation (23) represents a stress wave propagating in the positive z-direction
with velocity c.,, it is the incident dilatation wave. For a step loading, equation (23)
would contain only one time derivative.
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Stress at Wave Front

If a fracture occurs during the reflection process, it is most likely to occur on the
axis where r = 0. Setting r = 0 in equation (23) yields

d (24)

where the subscript P denotes dilatation wave. For this condition R = a, equation (20)
becomes

+ irja. cos (25)

It will be observed from equation (25) that as long as the value of a is nonzero, r\ is
a complex function of if/, which makes F«(i7) and d?j/dt in equation (24) also functions
of i//. These functional relationships must be determined before the integral can be
evaluated. The value of a is assumed to be a positive number and a = 0 is treated
as a special case. Solving for 77 from equation (25) yields

cos J/> ± z2 + a2cos2 i//)
77 =

In this expression the positive sign must be chosen since 77 = 0 defines the wave front
z = Cjt. From equation (26) it can be seen that 77 is, in general, a complicated function
of i// which makes the integration shown in equation (24) a formidable task. In order to
make the problem somewhat tractable, the solution was sought at the wave front.

Case of a Point Load Where a = 0

For the special case of a = 0, 77 is real and independent of ^ and can be taken
outside the integral in equation (24). Equation (24) can then be written as

-7777(1 -2q2rj2)

4q3r?2

(27)

where ?ra2P is replaced by F in the limit.

Step load at a point.- The normal stress at the wave front z = Cjt for a step load
is obtained from equation (27) by replacing the operator d2/dt2 by d/dt. The resulting

11



normal stress ay7 becomes

where F is the total force. This result is identical to that obtained by Rae in
reference 11.

Dirac delta at a point. - From equation (27) it is possible to obtain the incident nor-
mal stress at the wave front due to a Dirac delta loading at a point which is written as

~ q
4 Fa c

<29>

where F is the impulse of the load.

Case of a distributed load where a / 0.- For the case of a distributed load, the
solution near the wave front z « Cjt will always satisfy the relation

Cjt i\/z2 + a2 cos21// (30)

This makes the term under the radical in equation (26) negative and makes rj pure
imaginary. (In order to consider the stress at any point other than at the wave front,
TJ would, in general, have to be considered a complex number, dependent upon z, a,
and <//.) Therefore, by letting 77 = iy and f; = -iy where

Cjta cos <// + zv/z2 + a2cos2i// - Cj2t2

z2 + a2cos2i//

equation (24) becomes

_ 2q2y2)2 2

Near the wave front, z « Cjt and y « 1. Using this knowledge and the fact that
< 1 allows equation (32) to be expanded, using the binomial expansion, to yield

/a Y - a2P d2 P* -vy(l - 4q2v2 + 4q4y4)

4q4y4) + 4q3y2 fl - &1 - 9*^4 y I T ^4 y VA
 0 0 • - - - ;v- g g

(33)

TTP « A\& V 0 / O O J>l \ / OT T C j Q i u x 0 0 A A \ o o / r t 2 , T 2 r t 4 « 4 V v 2
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The expansion was truncated at powers of y2 to yield

<34>

It can be shown from equation (34) that the step load for a = 0 given by equation (28)
can still be obtained, but the Dirac delta load for a = 0 becomes

12Fq3c«

which is less than that determined in equation (29). Since the series expansion has been
truncated, the solution presented in equation (35) is an approximation. Consequently, the
results of the investigation for the Dirac delta loading is limited to the case where
a > 0.

Substituting for y and y from equation (31) into equation (34) and making the
substitution u = cos 4> results in an integrand with 12 identifiable terms. Equation (34)
can be written as

_ 12

where In are the integrals of these 12 terms. A representative example of one of these
integrals is I, written as

_1 " •" (37)

and the remaining 11 integrals are presented in appendix C.

In order to evaluate these integrals, an expansion was utilized. Since | u | i
over the open interval -1 < u < 1, then

This expansion diverges at the end points. However, the end points of the interval in
the 12 integrals may be excluded since their integrands at the end points remain finite.
For ease of computation, this series expansion was truncated such that the numerator of
the integrals always contained terms of u to the fourth power. The expressions for the

13



normal stress (tfzz)
 at the wave front for the step load and Dirac delta load are

shown in appendix D.

RESULTS

Normal impulsive loading of an elastic plate by a uniform and point load was inves-
tigated. Results were obtained for the incident normal dilatation stress wave along the
axis at the wave front. The time-dependent step and Dirac delta loadings were
considered.

Figure 3 shows the typical results of the incident normal stress at the wave front
for a step load applied uniformly over a circular area as a function of the radius of
loading a. The total load applied in each case was a constant 27.95 N (2-n Ib), and the
distance traveled was z = 1.27 cm (0.5 in.). The plate was assumed to be aluminum.
It will be noted that the solution for a jt 0, as given by equation (Dl), limits to the solu-
tion for an a = 0, as given by equation (28). The decrease in normal stress for
increasing a is rapid when a is small.

Figure 4 shows corresponding results for a Dirac delta load uniformly applied
/~ 16tQ7T \

over a circular area. The load was determined from F = 44.718t0 N-s IF = —^— Ib-sl,

where tg is chosen as 2.45 x 10~6 s from reference 8 (according to the Hertz theory
of impact). Again as a is increased, the stress level at the wave front decreases. It
will again be noted that the solution for a / 0, as given by equation (D8), is consistent
with the solution for a = 0, as given by equation (29).

Figure 5 shows the nondimensional ratio of normal stress at the dilatation wave
front to applied pressure, as a function of a/z for an applied step load. This was
obtained from equation (Dl). The curve in figure 5 shows (as expected) that either as a
gets large (plane wave) or as z gets small (the pressure application point) the ratio of
normal stress to applied pressure approaches unity. Another observation that can be
made is that, for a given z, the plane-wave case (i.e., where no attenuation at the wave
front is experienced) is approached very rapidly for values of a > z.

Figure 6 shows the progression of the wave front as it propagates into the plate for
a step input. The total load applied is again a constant 27.95 N (2-n Ib) but the intensity of
the pressure P is varied. At z = 0 the normal stress azz equals the applied pres-
sure for a particular radius a. As a increases, the rate of decay decreases, and the
solution rapidly approaches that of a plane wave.

14



0
r"

Radius of loading, a, cm

5 10 15 20 25

Solution for a = 0, as given by eq. (28) and ref. 11

Solution as given by eq. (Dl)

3 4 5 6 7 8 9
Radius of loading, a, in.

10

N

—,8 x 10

Figure Incident normal stress along the axis at the wave front for. a step input.
F = 27.95 N (2it Ib); z = 1.2? cm (0.5 in.).
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Radius of loading, a, cm
10 15 20 25

Solution for a = 0, as given by eq. (29)

Solution as given by eq. (D8)

3 4 5 -6 7 8
Radius of loading, a, in.

9 . -10

N

-Jo

Figure k.- Incident normal stress along the axis at the wave front for a

Dirac delta input. • F = M

(1.0 in.); tQ = 2.̂ 5 x 10'6 s.

z = cm
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I I I 1 t I

10 12

a/z

14 16 18 20 22 24

Figure 5«- Normal stress as a function of a/z for a constant pressure amplitude P.
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Distance into plate, z, cm

2 3 4 6
-r

azz,psi

= 0

j,

a = 2" inch (1.27 cm)

a = 1 inch (2.54 cm)

a = 2 inch (5.08 cm)

.5 1.0 1.5 2.0

Distance into plate, z, in.

2.5

V J
-.3

3.0

Figure 6.- Variation of normal stress with depth z for a step input
of constant total load (variable pressure amplitude).
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CONCLUDING REMARKS

The normal stress due to the incident dilatational wave produced in an infinite
plate when loaded normal to its surface has been evaluated. The loading was distributed
uniformly over a circular area. Solutions have been obtained on the axis at the wave
front for step and Dirac delta time variations.

Although the solutions presented are limited, they do show the effect of increasing
the area of loading. In a similar manner, other contributions to the normal stress, such
as the incident shear and reflected shear and dilatational waves, could be obtained. How-
ever, the superposition of one wave upon another cannot be determined by this solution
since the different wave fronts pass the same point at different times.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 20, 1972.
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APPENDIX A

DEVELOPMENT OF TRANSFORMED NORMAL STRESS

By substituting equations (3) and (4) into equations (1) and (2) and taking the Laplace
transform, two partial differential equations result, one of which (eq. (14)) is

where p is the Laplace transform variable. Separation of variables by assuming

A = R(r) Z(z)

yields

A = f [!(£) JQ(r£) sinh az + B(£) J0(r£) cosh az]d£ (A2)

2
where |2 = a% - -2—, a is a constant, and A(£) and B(|) are arbitrary functions.

cl2

Similarly, the other partial differential equation (eq. (13)), when solved, results in

« = f lc(|) Jx(r^) sinh /& + D(|) Jj(r^) cosh /3z|d^ (A3)

~ 2
where>; /32 = £ + -2—, /3 is a constant, and C(£) and D(^) are arbitrary functions.

C22

Substitution of the values for A and fi into the Laplace transform of the differential
equations (1) and (2) yields

P2ur = J < c1
2|^A(0 sinh az - B(£) cosh az]

+ c2
2/3|"1jc(a cosh /3z + D(|) sinh /3z] 1 Jt(r|) d| (A4)

20



APPENDIX A - Continued

and

P2uz = \ /ac^l'iJAfi;) cosh az + B(£) sinh azl

-c2
2|ca)sinh j3z + D(£)cosh/3z]j JQ(r|)d£ (A5)

From equations (7) and (8) the transformed stresses are found to be

CTZZ = \ \ [A(|) sinh az + B(£) cosh az] J0(r£) d£

+ 2^ f Ja2Cl
2|-l[A(|) sinh az + B(£) cosh a z]

p2 JQ ^ A L J

- /3c2
2[c(£) cosh /3z + D(£) sinh /3z]| JQ(r^) | d^ (A6)

and

f f-Cl
2a!|A(4) cosh az + B(£) sinh azl

rz 2 J0 V. I- J
a = ?Ji

p

t2 + - fcU) sinh ^z + D(|) cosh /&H J ( r ? ) | d^ (A7)
2c2

By applying the transformed boundary conditions, equations (9), (10), and (lib), to equa-
tions (A6) and (A7) the following equations are obtained:

0 (A8)

aLA(£) cosh ah + B(|) sinh az

2rJ [i2 + -B-s)|c(€)sinh &+ D^^cosh H= ° ^A9^

jjf «2^2)'B(|) _ ? ^ 2c(j) = pgj (a«) (A10)

21



APPENDIX A - Concluded

[X + ̂  a2c.,2) r1fA(0 sinh ah + B(|) cosh ah]
V P2 /

_ ?Ji /3c2
2fc(^) cosh /3h + D(^) sinh j3h] = 0 (All)

Equation (A10) is obtained with the help of the Hankel inversion theorem (ref. 16) and an
expression from reference 14. Equations (A8) to (All) are solved simultaneously for
A(|), B(£), C(£), and D(|) which are then substituted into the expression for the nor-
mal stress, equation (A6). This gives the relation for the transformed normal stress as

= Pa

G(*)
(A12)

where

,^) = (cosh az + cosh /3z) NjNg^ - cosh ah cosh /3h)

NJ^ cosh az + N, cosh /3z](sinh ah sinh )3h)

Nj sinh az - N2 sinh /3z)(N2 sinh ah cosh /3h - Nj cosh ah sinh /3h) (A13)

and

G(|) = (N^ + N2
2)(sinh ah sinh j3h) + 2NJN2J1 - cosh ah cosh /3h) (A14)

(A15)

(A16)

22



APPENDIX B

TRANSFORMED STRESS, SHOWING WAVE COMPONENTS

The transformed normal stress is given by equation (15) as

= Pa rJo (Bl)

Let

(B2)

then

cosh ah =

sinh ah =

2t (B3)

and

cosh az\-

r i o\l r+ N0 cosh jSz 2vN0 - N« 1 + v^ + N« sii |_ ^ 1\ /J |_ 1 sinh

(B4)

23



APPENDIX B - Continued

Substituting equation (B4) into equation (Bl) gives

where

'zz
/"• °^ ^~

= ^ \ (F jNj

-N2sinh/3z)]

cosh az + FN cosh /3z + FN sinh

(B5)

1"N l N l (N 1 X-N 2 ) N1 - X N 2
(B6)

(B7)

(B8)

Let X = e'ah and Y = e~Ph, then

t -l "

to-
2 " i + Y (B9)

Substituting equation (B9) into equation (B6), after some algebraic manipulation, results
in

F.- -i N
1 + (BIO)

24



APPENDIX B - Continued

which, after using the binomial theorem for and —-—, becomes

n=0 '17 VN2
(Bll)

Similarly

F2 = ^
=0

N.

r-in
(B12)

and

n+1

(B13)

Equation (B5) can now be rewritten as

(FINI - F3Ni)e -az

(F2N2 - F3N2)e + (F2N2 (B14)

The coefficient of eaz, can be expressed as

F1N1 + F3N1 = 2X

+ 2X"

Nl N2 VN2/ \«1,

No Ni /Ni \ /No
-1 -3 — - — - 3 — 1 -5—

Nl N2 N2 Nl

+ 4XY
No Ni / N j N /N
_£+^+2[-i] + 2 ( -
N N lN) 1N

25



APPENDIX B - Continued

or

F1N1 + F3N1 = -

( N 1- N 2)
+ 4XY

2N1N2 (B15)

Similarly the coefficient of e~az is found to be

4N1 4X2NJN1 + N2
- F0N, =

N

Nl - N2 (Nl - N2)<

SXYNjN^SNj + N
(B16)

Thus, from equations (B14), (B15), and (B16) it follows that the stress can be written as

5

where

= aP

n=l

(B17)

2N«Nfl

Nl(Nl + N

r"Q4= -4 JQ

2N1(N2
2

+3N1N2)

(N1-N2)3

(B18)

(B19)

(B20)

(B21)

(B22)
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APPENDIX B - Concluded

s-2/3h-az (B23)

The values of (^ (n = 0,1,2,3,4,5) are obtained from Qn by interchanging N^
with Ng and a. with /3. The results given by equations (B17) to (B23) are identical
to those presented by Thiruvenkatachar in reference 12.
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APPENDIX C

TWELVE INTEGRALS USED IN EQUATION (36)

In equation (36) the solution of the normal stress was shown to be

2P d2 V T

1 n=l

The twelve integrals of this equation are as follows:

:
2 t ( z 2 - a 2 u2) ( l - u 2) 1 / 2 du
1 V (C2)

(z2
 + a2u2r

,1/2
- 3zat2u(l-u2) du

'! V (C3)
1/2

/.. 9 \ 1/2 / 9 0, 9 9 9 \ 1/2
T C Z3.ll ( 1 — U ) I 7 •• C *^t 4» £L U 1

. 3 - - , -L^ M ^ L (C4)

4q3c1
4t3a2u2(a2u2-z2)(i.u2)1/2

du

M = J 1 Tl 2~(z2 + a^u

l
2t(a2u2 - z2)(z2 - Cj

2t2 + a2u2) (l - u2)1/2 du
5 "

rl 8q3c 3t2zau(z2 - a2u2)(Z2 - C
2 t 2

 + a2u2) ' (l - u2) ' du
I f i =- i i i i (C7)
6 J- 2 14

rl -4q3c 5t4a3Zu3(l -U2)1 / 2du
In = \ ±— : : _ (C8)

J-l / 9 9 9^4 / 9 9.9 9 9\l/2^zz + a^u^J (z^ - c^t2 + a2u2 )

28



APPENDIX C - Concluded

.3^ 3.2 3.3,•J <l 9 1 1 I o \ */ " / 9 OO O o \ •*/ "
4q3c3t2za3u3(l - u2) (z2 - c 2 t 2 + a2u2) du1 \ ' \ 1 1 ((,9)

- u2) (z2 - d2t2 + a2u2 ) du
IB = \ ^ —i i ] \ l 1 (CIO)

(z2
 + a2u2)4

4q3c1
3z3au(l - u2) (z2 - c,2t2 + a2u2) du1 \ • ' \ 1 / (cn)

In = - - - - - (C12)
J " 9 2-2 + a^

8qVc 2ta2u2(l - U 2 ) ( Z 2 . c 2t2 + a2u2)du
I12= - 1 - i - 1-,— I - 1— (C13)

/ 9( 2z +
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APPENDIX D

EXPRESSIONS FOR THE NORMAL STRESS

The normal stress on the axis at the wave front z = Cjt for a step load is given

12

2dt
1 n=l

(Dl)

where, at z =

. Z2)(4a2 + 3Z2)
dt 8a4

dI4 _ 6q3
Cl

2z2

"dF 12

az
. 16a2)

^

z2(z2 + 4a2) (?z2+ 16a2) | tan"1(a/z)
!) 8az

(D2)

(D3)

dig _ q3z2
Cl

2

16a4
 + 8a2z2 - z4) + z4

12z'

8z4(

l(z2 - 4a2)j

4 2-|3z2(32a4 - 32a2z2 + 7z4) + z2 (-7z4
 + 4a2z2 - 96a4)]

- z4) + z2(z2
 + 8a2)(z2 - 4a2)l

J

8az5
_ Z4) + Z2(Z2 + 8a2)(z2 . (D4)

dljj -12q"

dt
2a2

 + z2 2a2 + 7z2 , 2a 2 -z 2
 t tan-1(a/z)/2a2 Z2)

(D5)

12z2(z2
+a2)2
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APPENDIX D - Continued

4q3z2c1
2

12Z2(Z2 + a
- 12a2) -

8az5

2a j]
j

(D6)

dt dt dt " dt dt dt dt
-= 0 (D7)

The normal stress at the wave front z = c«t, for a Dirac delta loading is given by

12
dl V -
M* L In (D8)

,n=l

where, at z = ct,

dt2 1 ~ dt2 dt2 dt2 dt2 dt2 dt2 dt2
(D9)

d2I4 12q3
Cl

3z ;2(z2 + 4a2) 7Z
2+ I6a2 tan'^a/z) (D10)

d2I5 3q3c1
3z3

dt
t(l6a4

12Z
2(Z

2 + a2)
r(32a4 - 32a2z2 + 7z4)

.,
8z4(

- z ) + Mifa
8aZ

5
(Dll)
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APPENDIX D - Concluded

3 3 32 4 q C l z 2a2 + z2 . 2a2 + 7z2 2a2 - z2

3(z2
 + a2)3 12z2(z2

 + a2)2 8Z4(Z
2
 + a2)

~l+ tan-i(a/z) (2a2 . Z2)
8az5

(D12)

dzl_i2 !!*dt2 " a
2a^ 2a -2a2

3(z2
 + a2)3 12z2(z2

 + a2)2 8zV + a2)

+ z2) (D13)
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