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ANALYTICAL SOLUTION FOR HEAT TRANSFER IN THREE-DIMENSIONAL

POROUS MEDIA INCLUDING VARIABLE FLUID PROPERTIES

by Robert Siegel and Marvin E. Goldstein

Lewis Research Center

SUMMARY

An analytical solution is derived for the flow and heat transfer in a three-
dimensional porous cooled medium of arbitrary shape. The coolant and porous matrix
material are assumed to be in sufficiently good thermal contact that their local temper-
atures are equal, and as a result a single energy equation governs the process. The
coolant reservoir is at constant pressure and temperature. The portion of the surface
through which the coolant exits from the porous medium is exposed to a constant pres-
sure and has a specified uniform temperature that is higher than the reservoir temper-
ature. By introducing a suitably defined potential function, the solution is reduced to
solving Laplace's equation in the geometry of the porous material with simple constant
boundary conditions at the coolant inlet and exit surfaces. This geometrical aspect is
separated from the variable property effects. The viscosity variation with temperature
is accounted for by performing a simple integration with respect to temperature. The
integration relates the potential function obtained from Laplace's equation to the tem-
perature variation in the medium. Relations are obtained for the temperature distribu-
tion in the medium and for the local mass flow and heat flux distributions along the cool-
ant exit boundary. To illustrate the application of the solution and show the effect of
fluid property variations, some results are carried out for cases where air and oil are
the coolants.

INTRODUCTION

The desire to increase efficiency in power producing devices requires the practical
utilization of working fluids at higher temperature levels. However, these fluids must
be contained in some manner and the result is that the bounding walls must be able to
withstand high imposed heat fluxes. Thus some form of efficient cooling is required to



maintain the walls at a sufficiently low temperature so that they do not lose their struc-
tural integrity. If a solid wall is to be cooled by passing the coolant along one side while
the other side is subjected to a heat flux, two of the factors that govern the maximum
wall temperature are the wall thickness and the wall thermal conductivity. For a given
material the maximum surface temperature can be reduced by going to a thinner wall,
but it is not possible to reduce the wail thickness in many instances as high fluid pres-
sures are involved.

In view of these types of considerations a method that may prove increasingly useful
for advanced applications is to employ transpiration cooling. The metal wall is made in
a porous form by such methods as sintering layers of rolled wire mesh or small metal
particles. The coolant is forced through the wall and exits through the boundary exposed
to the high temperature source. The coolant must be kept clean to avoid plugging of the
pores in the material. Some possible applications are cooling components in fusion de-
vices, rocket nozzles, leading edges of vehicles in high speed flight and arc electrodes.
Additional applications of porous media involving heat transfer are porous solar collect-
tors for obtaining heated air, and porous burners using premixed combustibles.

Because of the high surface temperatures involved, the coolant can go through a sub-
stantial temperature change when flowing from the reservoir to the exit surface of the
plate. This can result in large variations in fluid properties. The fluid thermal conduc-
tivity is generally unimportant as the heat conduction is dominated by that in the solid
material; hence, it is the fluid density and viscosity variations that must be accounted
for. The objective of this report is to obtain an analytical solution that includes the ef-
fects of geometry as well as variable fluid properties. The porous material can have an
arbitrary three-dimensional shape, and the effect of both variable density and viscosity
will be included. Some of the previous analyses of porous media heat transfer have
dealt with one-dimensional situations including variable properties (refs. 1 to 3),
two-dimensional solutions with constant properties (refs. 4 and 5), a two-dimensional
numerical solution for compressible flow (ref. 6), and an analytical solution for two-
dimensional compressible flow with constant viscosity (ref. 7).

The three-dimensional porous medium can have various shapes such as a wall of
varying thickness along both its length and width, or an annular region with variable
thickness along its length. One part of the porous region is in contact with the coolant
reservoir which is at constant pressure and temperature. The coolant exits through
another part of the porous region into a region at a constant pressure lower than the
reservoir pressure. The part of the boundary through which the coolant exits is speci-
fied as being at constant temperature. The remaining parts of the boundary are either
at infinity, or are both insulated and impervious to the flow. The constant temperature
at the coolant exit face is determined by external conditions imposed on the porous me-
dium. For example in a design calculation it may be taken to be the maximum safe tern-



perature to which the material can be subjected. The calculation would then yield the
imposed heat flux that can be tolerated.

The restrictive assumptions in the analysis are that the mass flow through the
porous material is assumed to be at a sufficiently low pore Reynolds number so that
Darcy's law applies. Also it is assumed that the thermal resistance between the fluid
and the porous matrix material is small enough so that the local fluid and matrix tem-
perature are equal. As a consequence, a single energy equation can be written that in-
cludes the heat transport by conduction in the matrix and by convection of the coolant.
The other governing equations are continuity, and for the compressible case, the perfect
gas law.

Because of the fluid property variations, the flow and energy equations are coupled.
These equations are solved simultaneously by using a suitably defined potential function.
The potential accounts for the integrated effect of the variable viscosity along a flow path
and is found by solving Laplace's equation in the porous region subject to a simple set of
boundary conditions. The temperature distribution in the porous material can be ex-
pressed as a simple function of this potential. The pressure distribution can then be
found from an integral involving the temperature and the variable viscosity. Thus the
main part of the solution is reduced to solving Laplace's equation for which many ana-
lytical techniques are available, or the solution to Laplace's equation can be done nu-
merically if the geometry is irregular.

To illustrate the effects of geometry, compressibility, and viscosity variation some
illustrative results are given for a step porous wall with air as the coolant (compres-
sible, variable viscosity) and with oil as the coolant (incompressible, variable viscosity).

SYMBOLS

A thickness ratio of step porous wall

a,b constants in linear viscosity variation, eq. (48)

C specific heat at constant pressure

f temperature ratio, (tr - t00)/(tg - t^)

h reference dimension of porous region

i , j ,k unit vectors in x-,y-, and z- directions, respectively

k effective thermal conductivity of porous region

M for incompressible case, M = ('i/2)(n./^00)(t00/t); for compressible case,

n unit outward drawn normal



P for incompressible case, P = p/p^; for compressible case, P =

p pressure

Q dimensionless energy flux vector, "qh Amtoo

q energy flux vector, -k Vt + puC t

q0 heat flux by conduction only at surface s
S

R gas constant

S exit surface of porous medium in dimensionless coordinates

SQ inlet surface of porous medium in dimensionless coordinates

s coolant exit surface of porous medium

SQ coolant inlet surface of porous medium

T temperature ratio, t/t^

t absolute temperature

u velocity vector

X,Y,Z dimensionless coordinates: xAr, yAr,
 zAr, respectively

x, y, z coordinates in physical plane

K permeability of porous material

X parameter, p^C^K^/2iJL^k

H fluid viscosity

4 intermediate mapping variable for step porous wall

p fluid density

* potential defined by eq. (22)

$_ potential along coolant exit surface
S

(p dimensionless potential, */$s

V dimensionless gradient, i(3/3X) + j(3/3Y) + k(3/3Z)

Subscripts:

i insulated impervious surface or surface at infinity

r reference temperature

s on surface where coolant exits from porous medium

0 on surface where coolant enters porous medium
00 in coolant reservoir



Superscripts:

a arithmetic average between reservoir and exit surface

r at a reference value

s exit surface
00 inlet reservoir

ANALYSIS

Geometry and Imposed Physical Conditions

Consider the porous region shown in figure 1. The coolant reservoir at pressure
and temperature p^.t^ is below the porous region; hence the coolant enters the porous

Insulated and
impervious
surfaces, s,-

1

)'

2

c.
rPs-ts

'»-• " • V Coolant exit
I S " s I surface, s

1
^-Coolant inlet

/ surface, s0

Coolant reservoir, p^.t

Figure 1. - Porous region POO>PS.

matrix through surface SQ and exits through the part of the surface denoted by s which
is at constant pressure p0. The remainder of the boundary s. is either impervious tos i
both heat and coolant flow or is at infinity. Acceleration effects are neglected in the
fluid as it approaches the reservoir boundary SQ so that the pressure at this boundary
is equated to the reservoir pressure pQ = p^. In this analysis we will always have
Poo > Ps- Since PQ and p are both constant, the fluid velocity at the inlet and exit
surfaces will be locally perpendicular to these surfaces; these directions are indicated
by the unit normal vectors nn and n . The normal to the remainder of the boundary is

U S

denoted by n.. The temperature t_ along the coolant exit surface is specified as con-
1 o

stant and is higher than the coolant reservoir temperature. Hence heat is conducted into



the porous matrix at the coolant exit surface and the energy is transferred to the coolant
and carried back out through s.

The effective thermal conductivity of the matrix material k is based on the entire
cross-sectional area rather than on the area of only the solid material. Since the con-
ductivity of the matrix material is generally much larger than that of the coolant, the
heat conduction in the coolant is neglected. The Darcy velocity u will be used through-
out the analysis. This velocity is the local volume flow divided by the entire cross-
sectional area rather than by the pore cross-sectional area.

Governing Equations

The pores are assumed small compared with the size of the porous region; hence,
volume averaged equations can be used. For the conditions discussed, the following
equations apply for compressible and incompressible coolants:

Conservation of mass

v • (pu) = 0 (compressible) (la)

V • u = 0 (incompressible) (Ib)

Darcy's law

u= -JL. vp (2)
|t(t)

Conservation of energy

V • q = 0 (3)

where

q = -kmVt + puCpt (4)

Perfect gas law (for compressible case)

p = pRt (5)



Darcy's law as given by equation (2) applies for both the compressible and incompres-
sible cases with temperature dependent viscosity (refs. 8 and 9). Kinetic energy and
inertia effects have been neglected.

Boundary Conditions

As the fluid in the reservoir approaches the porous medium, there is some heat
conduction from the coolant inlet face SQ back into the fluid. This raises the coolant
temperature (and, hence, matrix temperature, since they are equal in this analysis) to
tQ which is an unknown quantity along the surface SQ and will be obtained later in the
analysis. The thermal conductivity of the fluid is generally much less than that of the
porous matrix material. Hence, as the fluid approaches the wall, the temperature rise
from t^ to t0 takes place in a thin region compared with the thickness of the porous
material. In addition, the pressure PQ is essentially equal to p^ since the pressure
change associated with accelerating the fluid to the inlet of the porous material is negli-
gible compared with the large drop of pressure through the porous region. This constant
pressure condition results in the inlet velocity vector being everywhere locally normal to
SQ with no flow along this surface. These conditions permit the boundary conditions to
be applied in a locally one -dimensional fashion along SQ. By balancing the heat con-
ducted out of the wall and into the reservoir, with the energy carried back into the ma-
trix by convection, we obtain

kn • Vt = P C(t - t> • ip - 0

- P = P0 = Poo = constant

- for (x,y,z) on SQ (6)

On the surface s through which the fluid leaves the porous material, the tempera-
ture is specified as constant so that the boundary conditions are

t = t = constant
O

P = Pc = constant

for (x,y,z) on s (7a)

And on the impervious surface the boundary conditions are



>• for (x,y,z) on s. (7b)

Equations in Dimensionless Form

The governing equations and boundary conditions will now be placed in dimensionless
form. The functions P and M (defined in eqs. (8) and (9)) are given different defini-
tions for the compressible and incompressible flow cases. These definitions will result
in the two cases reducing to the same set of relations. The dimensionless variables are

X = — Y = 2. Z = — T = —

P =

-2- incompressible
Poo

compressible

(8)

M(T) =

— ^-J — incompressible
2 t

compressible'

(9)

c tl
(10)

X = (11)

ax az



For the compressible case, equation (5) is first used to eliminate p from equations
(la) and (4). Then for both the compressible and incompressible cases, Darcy's law is
used to eliminate u. The result is that equations (1), (3), and (4) reduce to

V2P = J-VTM - VP (12)
TM

• Q = 0 (13)

Q = _VT - — VP (14)
M

By a similar manipulation boundary conditions (6), (7a), and (7b) become

_^-n0 • V T + 2 L n 0 - VP = ol
T-l M I for (X,Y,Z) on SQ (15)

P = l

(16a)

n. • Q = 0

nt • VT = 0
for (X,Y,Z) on S. (16b)

Formulation in Terms of a Potential Function

At this point we shall postulate, pending later verification, that P is a function of
T only. It will be found that, with these conditions, a solution satisfying the governing
equations and boundary conditions can be obtained; and, hence, this is the required so-
lution. We shall now show that this assumption implies that the energy flux is the nega-
tive gradient of a potential $. That is,

Q = -V$ (17)



Hence, equation (13) shows that

V2$ = 0 (18)

which shows that this potential function can be found as a solution to Laplace's equation
with boundary conditions to be prescribed subsequently.

Since P is only a function of T,

M(T) M(T) dT

Hence, if we put

h(T)= / -J_°£.dT (19)
M(T) dT

~ Hfi "^ 1 r\T3 ~ 1 ~
Vh(T) =55. VT = ^L_ 5f_VT =—-—VP (20)

it follows that

Vh(T) =
dT M(T) dT M(T)

so that equation (14) can be written as

Q = -VT - XVh(T) = -v[r + Xh(T)j (21)

This gives

O = «-V$

with the potential function $ defined as

1 dP 1
M(T) dT

= T+X I —L-iifldT + C^ (22)

'T,

where CQ is an arbitrary constant that can be used to fix the level of the potential. Note

10



that, since P is only a function of T, $ is also a function of T only. Hence, P
and T are functions of $ only.

Equations (13) and (14) have been expressed in terms of a potential; now we return to
equation (12) . This can be written as

= J_ d(MT) ̂  . dP ^ = J_ d(MT) dP
MT d* d$ MT d$ d$

(23)

Now

/**> r*t t**t HP
= V • VP = V • —

In view of equation (18), this becomes

(24)

and it follows from equation (22) that

d i = i + x J L d P = l + A d P _ d £ (25)

dT M dT M d* dT

Equations (24) and (25) can now be used to eliminate P from equation (23) giving the
following equation which is a restatement of equation (12) in a form which determines T
as a function of $:

d*

~ HP ~ HPNote that v . 5 f _ V $ = 2f_

11



or equivalently

= 0 (26)

Before solving equation (26) the first boundary condition of equation (15) will also
be expressed in terms of $. It follows from equations (21) and (20) that

/•«*» yk f̂ f

- VT = — VP
M

Upon solving this for VP and substituting it into the boundary condition, the latter be-
comes

T * • VT
T - 1

- VT) = 0

After using the relation .VT = (dT/d*)V$, the boundary condition becomes

l +
T -

n = 0 for (X, Y, Z) on S (27)

Solution for T and P in Terms of

Equation (26) can be integrated twice to obtain

T = — + C0e (28)

The constants C.. and C2 are to be evaluated from the boundary conditions. Thus
inserting solution (28) into equation (27) gives

(1 _ -— i
1 T - 1 u = 0 for (X,Y,Z) on Snu

This boundary condition will be satisfied if C = 1. Then equation (28) becomes

12



T = 1 + C2e~ . (29)

Since the second of boundary conditions (15) involves P, we use equations (25)
and (29) to relate P and T. Thus equation (25) implies that

dP^-lV (30)
dT dT X

and equation (29) shows that

dT = -C2e~* d* = (1 - T)d$

These relations can be combined to obtain

dT l-T / X 1 - T X

Integrating this from SQ to an arbitrary position in the medium and taking into account
the second boundary condition (15) result in the following:

P .1 =L I _^J_dT (32)

The value T~ is unknown in this integral. To evaluate it, the specified boundary con-
ditions of equation (16) are imposed to give

(33)

This integral can be carried out once the viscosity variation is specified so that M(T)
is known. The quantity TQ is thereby related to the specified quantities Pg and T .

To obtain the simplest boundary conditions for the potential * which is governed
by Laplace's equation, the constant C in equation (22) can be set equal to -T^ to give

/

T
!<*,
M d T

(34)

13



and hence, since T = TQ along SQ, we obtain the boundary condition

$ =0 for (X,Y,Z) on SQ (35)

It now follows from equations (35) and (29) that the constant C« is compatible with fix-
ing $ = 0 on SQ only if

Then equation (29) becomes

T0 = 1 + C2

T = 1 + (Tn - l)e'*

which can be solved for *, to obtain

(36)

This is evaluated at the coolant exit face to obtain the boundary condition

/Tq - 1\
$=* a-in I-5 ] for (X,Y,Z) on S (37a)

\To -'

The surface temperature Tg is specified and TQ can be calculated from equation (33) .
Hence $ is known. Finally it follows from equations (16b) and (17) that $ must sat-

S
isfy the boundary condition on the impervious surfaces

n. • V* = 0 for (X,Y,Z) on Si (37b)

And since T is a function only of $, the second boundary condition (16b) is auto-
matically satisfied. Equations (35), (37a), and (37b) provide the required boundary con-
ditions to solve equation (18) for $. In the solution of Laplace's equation for the poten-
tial function it would be more convenient to have the boundary conditions go from 0 to 1
rather than from 0 to $_. To this end the potential can be normalized as

S

(38)

14



Then <p is obtained from

V2<p = 0 (39)

<p = 0 for (X,Y,Z) on SQ

<? = 1 for (X,Y,Z) on S

n. • V<p = 0 for (X,Y,Z) on Si

By eliminating T~ from equations (36) and (37a) the temperature distribution is
found to be

T = 1 + (T - l)e s = 1 + (T - l)e s (40)
S S

Heat and Mass Flux at Coolant Exit Surface

A quantity of practical interest is the heat flux that is being transferred to the sur-
face of the porous material. This relates the flux to the surface temperature. Also of
interest is the mass flux distribution blowing out of the exit face as this will influence
any external flow past the surface.

The local heat flux conducted into the porous surface at the boundary S is

qs = kmns • Vt for (x,y,z) on s (41)

In dimensionless form this becomes

n • VT = —L_ no • 3! v$ for (X,Y,Z) on S (42)
T - 1 d*s

The term dT/d$ L_* is obtained from equation (40) Since $ is constant on S, the
s

normal vector n is in the direction of the gradient of $ at the boundary. Hence
O

n^ = - .^ . for (X,Y,Z) on S

15



The negative sign accounts for the fact that $ decreases in going from SQ to S (note
that $_ is negative). Equation (42) can therefore be written ass

or using the normalized potential

q h
= |*| |V<H for (X,Y,Z) on S (44)k (t -t) • s

mv s °°'

The local coolant flux distribution leaving the porous medium is given by

pu • ng = - JL_ pvp • ng for (x,y,z) on s (45)

First consider the case of a compressible flow. By using equation (5) and introducing
dimensionless variables this becomes

k
pu - n = -JL. JL vp • n = -_™- -L- V(\P) • S (46)s gs

 p
 sRt Chr MT

But upon noting that V(xP) = [d(XP)/dT](dT/d*)V$, we find from equation (31) and the
line preceding it that

V(XP) = l - T)V* = MT
\1 -T/

Inserting this in equation (46) and using equations (43) and (38) give

«or(X,Y,Z)on S (47)

A similar manipulation for the incompressible case shows that equation (47) also applies
in this instance. Upon comparing equations (44) and (47), it becomes evident that the di-
mensionless heat and mass fluxes are equal.

16



Summary of Analytical Solution

The main results of the analysis are the temperature distribution in the porous ma-
terial (eq. (40)), the local distribution of heat flux transferred to the coolant exit sur-
face (eq. (44)), and the mass flux distribution exiting from the porous material (eq. (47)).
The quantities needed to evaluate these expressions are the distributions of <p and $„.

0

The potential (p is found from equation (39); that is, by solving Laplace's equation in
the domain of the porous region with the simple boundary conditions <p = 0 and 1 on
the coolant inlet and exit surfaces, respectively, and n. • V<p = 0 on the remainder of
the boundary. Equation (37) is used to obtain the quantity * needed in the final results.s
But this requires that TQ be known. However, TQ is determined by equation (33) where
PQ and T_ are given and where the specified function M(T) accounts for the law of vis-

a o
cosity variation with temperature.

EXAMPLES ILLUSTRATING APPLICATION OF GENERAL SOLUTION

Geometry Effect

It follows from equations (44) and (47) that the dimensionless heat and mass fluxes
along the coolant exit boundary both depend on | Vtp \ along that boundary. To demon-
strate the geometric effect which is given by the | Vq> \ term, consider for example the
two-dimensional wall with a step shown in figure 2. All of the lengths have been made
dimensionless by dividing by the smaller thickness. It is necessary to evaluate |v<p|
along the boundary Y = 1 where q> is determined from the boundary value problem
~ 9V <p = 0 in the region and cp = 0 and 1, respectively, along the lower and upper bound-
aries.

f"*1 .5

1
1

y p T //-*s ^"Vs f

r . , 1 [
J>

•<p= 0 71

Figure 2. - Step porous wall in dimensionless physical plane.
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This has been done in reference 7 where it is shown that

where £ is a dummy variable related to the distance X along the upper surface by

In rLLL
U - i ,

-In ?A + g

V A - *
£ £ < A

The variation with Xg of |v<p|Y=1 is shown in figure 3 for various thickness ratios.
Since the heat and mass fluxes are directly proportional to this quantity, the plot shows
how these fluxes decrease in the thicker portion of the medium.

1.0

.8

.6

HY-I
.4

.2

-2 -1 1 2
Xc

Figure 3. - Gradient of normalized potential along
coolant exit surface of step porous wall.

Fluid Properties Effect

The dimensionless heat and mass fluxes are also proportional to $ which dependss
on the viscosity variation with temperature. To illustrate the effect of this variation,
$s will be determined for two example fluids: air (compressible case), and oil (incom-
pressible case).

Determination of <&g for air. - As an illustrative example, let the coolant reser-

voir be at t = 300 K and the exit face of the porous material be at t = 1500 K. Since
the viscosity of air is insensitive to pressure, the variation of jxW/fi^ is plotted at
1 atmosphere in figure 4(a) (from ref . 10) even though the pressure varies through the
porous medium. As a simple approximation, the variation is taken as linear so that

18



= M(T) = a + bT = 0.49 + 0.51T (48)

If M = a + bT is inserted into equation (33) and the integration performed, we find
that

(P - l ) X = (a + b)(T 0-T ) + H <
s u s 2

(a + b)ln (49)

__u(t )
u(300K)

3.2

3.0

2.8

2.6

2.4

2.2

1.8

1.6

1.4

1.2

1.

Viscosity data
from ref. 10-

Linear approximation:

p(t) /• 0.49 + 0.00171

M(300K) 1 =0.49 + 0.517; T- —
^ 300

I I
300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Absolute temperature, t, K

(a) Viscosity of air at 1 atmosphere relative to that at 300 K.

l.Oir

U(350 K)

.6

.4

.2

0
1.00 1.04

Viscosity data
from ref. 10

J
1.08 1.12 1.16 1.20 1.24

Tern perature ratio, T • t/too* t/350 K
1.28 1.32

(b) Viscosity of oil relative to that at 350 K.

Figure 4. - Viscosity variations used in illustrative calculations.
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(a) Results for air.

.001.002.004 .01 .02 .04 .1 .2 .4 .6 1 2 4 6 810
Ml - Ps>

(b) Results for oil.

Figures. -Values of |*5| for variable viscosity and various refer-
ence viscosities; |* J is directly proportional to mass and heat
fluxes at coolant exit surface.
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Upon using equation (37) to eliminate TQ from equation (49), we obtain the relation be-
tween P and * as

g g-PJ = (T - l ) ( l - e s) - * a + k ( T -
*„ 2$

S /m -f \« S(Ts + 1) - 2e b - (Tg - (50)

Note that this relation is independent of any geometric considerations. The factor |$ |
multiplies the geometrically dependent quantity |V<p| whose calculation was illustrated
previously for a step porous wall. The factor |$ | accounts for all the variable property
effects.

The factor |$g| is given as a function of X(l - P ) in figure 5(a) for the specific vis-
cosity variation shown in figure 4(a) where T = 1500/300 = 5 and b = 0.51. This il-

S

lustrates the variation of heat and mass flux as a function of X and P_ for an arbitrary
S

geometry.
In general M(T) would not be a simple function of T that would permit equation (33)

to be integrated analytically. In that instance a numerical integration can be done to re-
late T~ to X(P0 - 1) and then this value of T~ inserted into equation (37) to obtain <£0.

\J o U S
Determination of <J>0 for oil. - To provide a second illustration let the coolant be

S

engine oil for which the viscosity variation with temperature is tabulated in reference 10.
The reservoir temperature is chosen as t^ = 350 K, and the surface temperature at the
coolant exit is tD = 450 K. It can be seen from figure 4(b) that a reasonable approxi-

o

mation for v/v.^ is (note also the definition for M(T) in eq. (9)) /

JL = 2TM = -L (51)
M 10

This is inserted in equation (33) to give

i fs i
2 L T10(l -

x(po - i) = £ I i dT
S o f 1 n

T)
" "0

which can be integrated to obtain



n=l

(52)

With T = 450/350 for this example, X(l - PJ can be found for various values of Tns s u
between 1 and T . Then these values of T~ are inserted in equation (37) to calcu-
late $„. The corresponding values of |$_ I and X(l - PJ are plotted in figure 5(b)

and with the imposed
„. _s s s

showing how the heat and mass flux vary with the parameter A.
pressure ratio Pg =

Use of a Reference Temperature

It was shown that, with regard to the surface heat and mass fluxes, the geometry
effect separates from the property variation effect. The latter is embodied in the quan-
tity $ which is related to the variation of viscosity with temperature. It is worth-

S
while to examine whether the constant viscosity solution could be used with the viscosity
evaluated at a convenient reference temperature such as t^, t or (t^ + t J/2.

Compressible case (for air). - For constant viscosity equation (33) becomes

T - 1 X
(TQ - Ts) - in

1 -

Then use of equation (37) to eliminate TQ gives

- PJ = M(T - 1) 11 - e* (53)

For the compressible case M is the reference viscosity divided by u.^. This will be
(i)written as /JLV /n^ where i = °°, a, s designating that the reference value is eval-

uated at the reservoir temperature, arithmetic average temperature between the reser-
voir and exit surface, and exit surface temperature, respectively. The corresponding
* for these cases are denoted by $ ^'. This yields the following relations for $_'x ':

S o S
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Viscosity evaluated at ta

(co)N

X(l - Pg) = (Tg - 1) ll - e (54)

Viscosity evaluated at (t^ + tg)/2 (for a linear viscosity-temperature dependence)

- P) = - 1)]
(a)N

- e (a) (55)

Viscosity evaluated at t

- Ps) = b(Tg - 1)]
(s)\

(Ts - l)(l -e (s) (56)

Note that it follows from equation (37) that the $s are negative. The quantities
I*./1' I have been evaluated for various values of X(l - P0) and are shown in figure 5(a).

/-\ a
The ratios of $„/*</' are given in figure 6(a).

S S

Incompressible case (for oil). - By using the definition for M in equation (9)
and following the same procedure as for the compressible case, the following relations
are obtained for $ :

Viscosity evaluated at t

- -2X(1 - Pg) (57)

Viscosity evaluated at (t^ + tg)/2

.«.., ills'
.10

- Ps) (58)

Viscosity evaluated at tc

= _2T10 (59)

The quantities !$„ I are plotted in figure 5(b) and the ratio *„/$„ in figure 6(b).1 S S S
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(b) Results for oil.

Figure 6. - Ratios of * from variable properties solution
to those using constant reference properties.
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Proper Reference Temperature to Obtain Agreement with Exact Solution

If we let

f = (60)

where t is a reference temperature, then for the example with air (note that a + b = 1)

(r)
^ — = a + bT = 1 + fb(T - 1)

We insert this for M into equation (53) and then equate the result to equation (50) to ob-
tain the f value that will cause the approximate equation to yield the same value of *0s
as the exact equation

- 2e s - (Tg - l)e
2$,

(Tg - 1) U - e

(for air) (61)

where <& is related to x(l - Pj by equation (50),s s
Similarly for oil

-1 +

f =

.!*
1/10

(for oil) (62)

where in this instance the (1 - P )X and $0 are corresponding values obtained from x
s s

the exact solution equation (52). The values of f are plotted as a function of X(l - P )
S

in figure 7.
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Figure 7. - Reference temperature to give correct mass and heat flow results when using constant properties
solution.

DISCUSSION

An analytical solution has been obtained for the heat transfer behavior of a three-
dimensional porous medium with the inlet and exit faces each at specified constant pres-
sure and with the exit face at a specified uniform temperature. Compressible and in-
compressible cases are considered, and the fluid viscosity variation with temperature
is taken into account.

It was found that the solution could be reduced to two independent portions, one de-

26



pending on the geometry and the other on the viscosity variation with temperature. The
geometric portion involves solving Laplace's equation in the porous region with con-
stant boundary conditions on the coolant inlet and exit surfaces. The heat flux and cool-
ant mass flux along the coolant exit surface are proportional to the gradient in the solu-
tion to Laplace's equation evaluated along that surface. The effect of the shape of the
porous material is illustrated by results for the porous wall with a step shown in fig-
ure 2. Asa consequence of the change in thickness, the heat and mass flux vary in pro-
portion to the function | V<p \ shown in figure 3 .

The exit surface heat and mass fluxes are also proportional to the function |<6 I which
i S '

accounts for the variation of fluid viscosity with temperature as the fluid moves through
the porous medium. Since the results depend on the nature of this temperature depen-
dence, the analytical results were evaluated here for two illustrative fluids, air and oil,
whose viscosities vary with temperature in opposite directions. The resulting |<£ I are
shown as functions of X(l - P ) in figure 5. Note that, for the incompressible case, the

S
quantity P on the abscissa is the dimensionless pressure ratio ?„/?<,„ , while for com-

O rt O

pressible flow P is (p^/p,*,) . As (1 - Pg) increases from 0 to 1, the pressure on the
exit face of the porous medium is decreasing from the reservoir pressure toward zero.
Figure 5 shows the corresponding increases in |<3? | which is proportional to the heat
and mass flux. The detailed shapes of these curves are related to the fluid viscosity
variations and can be better appreciated by looking at some typical temperature varia-
tions within the porous medium.

For simplicity the temperature variation will be examined for a plane layer for
compressible flow; the same ideas will apply for a two- or three-dimensional shape and

~2for the incompressible case. The solution for tp as obtained from V <p = Q in a plane
layer with <p = 0 at X = 0 and <p - 1 at X = 1 gives the result <p = X where X is
the local position in the layer divided by the total thickness. Then equation (40) shows
that the temperature distribution in the wall is

= e

The quantity <J> is found as a function of X(l - P ) from figure 5(a) and the tempera-s s~
ture distribution evaluated. Typical curves are shown in figure 8.

Consider the solid curves in figure 8; these correspond to the variable property so-
lution. For a low flow or small X (i.e., small X(l - Pg)), the conduction through the
porous material and then into the fluid as it approaches the surface exposed to the reser-
voir, significantly preheats the flow before it enters the plate. Hence all the fluid in the
plate has a viscosity close to that at the fluid exit temperature. For a high flow or large
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Figure 8. - Temperature distributions in porous plane wall for air.

X (i.e., large X(l - PJ), conduction into the plate cannot carry heat very far before the
O

large amount of convection carries the energy out. In this instance the fluid is entering
the plate at close to the reservoir temperature and most of the plate is near this tem-
perature with a rapid temperature increase near the exit face.

These temperature curves help interpret the behavior of the |$ | curves in figure 5.
For small X(l - Pg) the $g is close to $g^ where *g^ is computed from the con-
stant properties solution with properties evaluated at the exit surface. This is the
proper behavior since all the coolant in the plate is near the exit temperature when
X(l - P ) is small. On the other hand, when X(l - PJ is large, most of the coolant is

o / \
near the inlet reservoir temperature; hence, $g tends toward *g ' which was com-
puted using the inlet reservoir value.

The function |*g | goes through a rapid increase in the midrange of A(l - P ) in
figure 5(a). As evidenced by the corresponding temperature profiles in figure 8, this is
the range where the flow within the porous wall is changing from being predominantly at
the exit temperature to being predominantly at the inlet reservoir temperature. For air,

28



as the temperature decreases the viscosity decreases; hence, the increase of mass flow
rate as X(l - P0) increases is accentuated by the decrease in the average fluid viscosity

i iwithin the porous medium. (Recall that the |$ | is directly proportional to the mass
flow rate.) The opposite effect occurs in figure 5(b) since the viscosity of oil increases
as the temperature in the porous medium is decreased. The results show that a con-
stant viscosity analysis with the viscosity evaluated at a single reference temperature
will not yield good predictions for all values of the parameters.

CONCLUDING REMARKS

The flow and heat transfer behavior have been considered for a three-dimensional
porous medium. Fluid from a reservoir at constant temperature and pressure flows
through the medium and exits through a surface at a specified uniform temperature that
is higher than the reservoir temperature. The local fluid and matrix temperatures are
assumed to be equal. For these conditions a potential function was obtained which al-
lowed the solution to be reduced to solving Laplace's equation in the interior of the por-
ous region with constant boundary conditions along the coolant inlet and exit surfaces.

Both compressible and incompressible fluids were treated and the variation of fluid
viscosity with temperature was taken into account. As the pressure drop across the
porous medium is increased thereby increasing the flow, the viscosity of the fluid enter-
ing the medium tends to .be closer to the reservoir value. For air the fluid viscosity is
lowest in the reservoir where the temperature is lowest. As a result, compared with
the constant viscosity case, an increased pressure drop produces a larger flow increase
as a result of lowering the average viscosity for the fluid in the medium. For oil on the
other hand, the viscosity is highest at the reservoir condition. When the pressure drop
is increased, the viscosity in the medium is closer to the reservoir value. The increase
in viscosity tends to counter to some extent the flow increase resulting from the in-
creased pressure drop. These trends also apply to the heat flux that can be imposed
along the exit surface corresponding to the specified temperature at that surface.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, June 22, 1972,
136-13.
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