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ABSTRACT

Neutral density data were obtained near 400 km (1600 LT) from a

microphone density gage on OGO-6 from 00 to 400 N geomagnetic latitude

for 25 September through 3 October 1969. Several geomagnetic storms

occurred during this period (a varied from 0 to 207). Least-squares

fits were made to data points on density - ap and density - Dst scatter

diagrams, where the density values selected were delayed in time behind

ap and DSt. An equation representing the least-squares fit was computed

for each delay time. The equation of best fit (and the corresponding

time delay between the density and the magnetic index which resulted

in this best fit) was found by choosing the equation that gave the

minimum standard error. For example, the best fit at 100 N geomagnetic

latitude occurred for a at t-3 hr, where t is the time of the density

values. The implications of the time differences associated with the

best fits at various latitudes and longitudes are discussed with

regard to the time delays involved in geomagnetic heating of the neutral

upper atmosphere.

[
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INTRODUCTION

The OGO-6 spacecraft was placed into an eccentric near-polar orbit

(400 km perigee, 1100 km apogee, 820 inclination) on 5 June 1969. One

of the instruments aboard is the Lockheed microphone density gage

(Anderson and Sharp, 1972), designed to measure in situ variations in

the neutral upper atmosphere mass density. An analysis is presented in

this article based on the density data measured by this instrument at

low latitudes on 110 orbits for the period 25 September through 3 October

1969. During this period the satellite perigee was between 100 and 25 N

latitude at 1540 to 1630 local time. The 10.7 cm solar flux varied be-

tween 132.5 and 169.3 R.U. (Radioastronomy Units). This period was

selected because several geomagnetic storms occurred. Hence, there was

a large variation in the magnetic indices K and a (a varied from 0 to

207). This provided an opportunity to study the relationship between

neutral density changes and magnetic variations at low latitudes, as

a function of latitude, longitude, and time.

The U.S. Space Science Board of the National Academy of Sciences

(1968) concludes that the response of the global circulation to high-

latitude heating is one of the most provocative questions facing us at

present. Although it is known that the density of the whole neutral upper

atmosphere varies with geomagnetic activity, the relationship between

the density changes and the geomagnetic activity, as represented by a
p

or Kp, has not been well established. Empirical equations based on

satellite-drag data are not very accurate. Transient density fluctuations
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associated with geomagnetic activity are difficult to study by the

satellite-drag analysis method because the time and spatial resolu-

tions are so large. This task is also difficult because the quantity

to be determined, the acceleration of the satellite's mean motion, is

the second derivative of the mean anomaly. Another limitation exists

because the change in the orbital period is a measure of the integrated

effect of air drag in the neighborhood of perigee. Localized values of den-

sity cannot be provided, but only values averaged over an arc of 30 or more.

Another instrument on OGO-6, a quadrupole mass analyzer, was used

to, study neutral composition variations during the period between 27 Sep-

tember and 1 October 1969. These measurements by Taeusch et al (1971)

provided observations of composition variability that showed a

significantly different behavior of the atmosphere during a magnetic

storm than the behavior deduced from the lower-resolution total mass

density determined from satellite-drag measurements. The composition

data indicated that the major effect of a magnetic storm on the neutral

atmospheric components above 400 km altitude is localized in the high-

latitude regions of the earth at magnetic latitudes above 500, and the

response time of the atmosphere to such storms is less than one hour.

However, the analysis of the data from the Lockheed microphone density

gage indicates that the density changes significantly with magnetic

activity even at low latitudes. For example, the average density at

406 km and 1600 hr LT between 00 and 300 N latitude was 38 percent

higher on 29 September 1969, a magnetically-disturbed day (Ap = 71)

than on 27 September 1969, a quiet day (Ap = 6). The 10.7 cm solar

flux was 151.3 R.U. on September 27 and 139.9 R.U. on September 29,

where R.U. is a Radioastronomy Unit (10-22 w m-
2 Hz-l).
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INSTRUMENT DESCRIPTION AND ACCURACY

The Lockheed microphone density gage was first flown on a

satellite in January 1961 (Sharp et al, 1962). The density values

measured agreed within the error of measurement with density values

obtained from satellite-drag. The operating principle of this instru-

ment lies in the transfer of momentum from the ambient neutral gas

atoms and molecules, created by the relative velocity between the gas

and the instrument, to the sensing element of the device, a thin

metallic ribbon. This ribbon, suspended between the pole pieces of

a permanent magnet to form a microphone, is mounted in the orbital-

plane experimental package (OPEP) of OGO-6 looking along the velocity

vector of the vehicle. The atmospheric gas, effectively having the

velocity of the vehicle, exerts a pressure P on this ribbon equal to

k p v , where k is a constant (taken to be =1) determined by the

accommodation coefficient and p is the atmospheric density. Since the

satellite velocity is independently known, the pressure is a direct

measure of the density. The gas striking the ribbon is mechanically

chopped by a tuning-fork chopper which interrupts the gas flow at

regular intervals to produce an oscillation of the ribbon in the mag-

netic field of a permanent magnet, the amplitude of which is proportional

to the applied pressure. The electrical voltage generated by this

ribbon motion through the magnetic field is amplified and rectified to
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provide a dc signal suitable for telemetry. More details concerning

the instrument operation can be found in Anderson and Sharp (1972).

The absolute accuracy of the density values derived from the

microphone gage is uncertain. A comparison made with density values

derived from the mass spectrometer on OGO-6 (Reber et al., 1971) using

data near perigee from orbits 1640 and 1641 on 27 September 1969,

showed that the density values from the microphone gage averaged 21

percent lower (Anderson and Sharp, 1972). Reber et al give no errors

for their measurements, but errors in mass spectrometer measurements

are estimated to be between 25 and 50 percent (Nurre and DeVries,

1970). Another comparison made with exospheric temperatures de-

duced from the profile of the 6300A line measured from OGO-6 by

Blamont and Luton (1970), using data from 6 perigee passes on 27 Sep-

tember and 28 September 1969, showed that temperatures derived from

the microphone density gage data averaged 6.3 percent lower. Blamont

and Luton state an accuracy of +50 0 K for their temperature.

It appears that the microphone density gage measures relative

density variations accurately. The average difference in density

at 406 km at a given geomagnetic latitude from 00 to 30 N between

28 successive orbits on 25, 26 and 27 September 1969 (Kp <3) was

9.0 percent. A total of 60 pairs of density values were used to
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calculate the differences; the two density values in a given pair

differed in time by about 100 minutes and in longitude by about

25 degrees.

DENSITY VERSUS K (OR ap)

Figure 1 shows some typical latitudinal density profiles for

27-30 September 1969 at 406 km and 1600 Hr local time from about 00

to 400N for K equal to 0,4+, 6 and 8, respectively. These density
p

profiles are fitted to density points derived from the microphone

density measurements (Anderson and Sharp, 1972), made over an alti-

tude range near perigee averaging about 20 km. An atmospheric

model (Anderson and Francis, 1966) was used to normalize the data to

an altitude of 406 km. The resulting data points in Figure 1 have an

average time separation of one-half minute and an average distance sep-

aration of 2 to 3 degrees. The 10.7 cm solar flux varied slightly

during 27-30 September 1969, from 151.3 R.U. to 137.0 R.U. The curves

of Figure 1 indicate that the 406 km density definitely increased at all

latitudes with increasing geomagnetic activity, represented by K . The aver-
p

age density from 100 N to 200 N is over twice as great for K = 8 as K = 0.
P P

The curve for K = 8 (orbit 1684) indicates a broad maximum with three

peaks from 159 N to 35° N. Many curves from other orbits during
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25 September - 3 October 1969 present a similar broad maximum, with

much lower densities near the equator and above 400 N, especially those

curves associated with high Kp,indicating geomagnetic disturbed condi-

tions. This low-latitude density bulge, which seems to be a permanent

feature near the equinoxes, was first found by analyzing drag data

from Explorer 1 in 1961 and 1962 (Anderson, 1966). Newton and Pelz

(1969), analyzing in-situ density measurements from Explorer 32 density

gages for May through October 1966 during geomagnetically quiet days,

concluded that the low midlatitude density can be 20 percent greater

than the equatorial density during the day for altitudes between 300

and 400 km. Hedin and Mayr (1971) found maxima in the N2 and 0 densities

measured by the mass spectrometer on OGO-6 at ± 200 magnetic latitude

during July and September 1969.

The low-latitude density bulge illustrated in Figure 1 may prove

important for understanding the semi-annual effect appearing in satellite

drag data. This effect is poorly understood at present. It is well

known that there is a greater frequency of geomagnetic disturbances

around the equinoxes. On the average, "magnetic" heating is indicated

to be stronger near the Fall equinox than near the Spring equinox, with

a minimum of heating from June to August and December to January.

These features are also characteristic of the semi-annual effect.

Based on this similarity, a recent explanation advanced for the semi-

annual effect proposes that it is a complex effect resulting from both

latitudinal density variations caused by solar heating and "magnetic"

heating, with the former dominating during summer and winter and the

latter dominating during Spring and Fall (Anderson, 1969).
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Figure 2 shows two curves for the period 27-30 September 1969,

where the solid curve is the density at 406 cm and 20° N geomagnetic

latitude and the dashed curve is for K . From inspection, it is
P

obvious that the higher densities are usually associated with high Kp
P

The coefficient of correlation between density and K is r = +.97.
P

Kp is interchangeable with ap, as indicated on the right hand side of

Figure 2.

METHOD

Inasmuch as Figure 2 indicated a good correlation between density

and Kp (or ap); a method was devised to derive predictive equations.

The method consists in making least-squares straight-line fits to points

on density.ap scatter diagrams, where the density p at 400 km is delayed

in 3-hr time intervals behind a from O to 24 hr. Equations of the

fitted straight lines were derived for all the delay times for a given

latitude or longitude sector. The corresponding standard error was

calculated for each equation. The delay time which resulted in the best

fit at a given latitude or longitude sector was found by selecting the

equation having the minimum standard error. Hence, the best-fit equation

was taken as that which resulted in minimum standard error.

The equation of the least-squares straight line fit for the p, ap

points is

15 3m (1)Pc =(a + b ap) -315mcm- (1)

The constants a and b are determined from the following normal

equations:

p = n a + b E a
p

(2)
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E(p a ) aa + b E a (3)

where n is the number of data points.

Solving (2) and (3),

2 2
E( ap) E ap p a - n (p ap) Eap

a = 2 3 (4)
E ap n E ap _ - E ap)

and,

n (p ap) - ap p

nEap2 ( E a )2

The standard deviation of the n data points about the Line (1), or

the standard error is,

r(p _ pc)2 l/2
SP= L --n---c p) *(6)

Equations (1), (4), (5) and (6) were programmed for computer

calculation. For example, Figure 3 is a scatter diagram containing

80 data points at 10ON geomagnetic latitude from 26 September

through 3 October 1969. The ordinate is p at 400 km in units of

,1015 gm cm 3, and the abscissa is a' or the value of ap at t - 3 hr,

t being the time of the density values. The a' values range from 0 to
p

207 (Kp = 8), while p ranges from about 4.0 to 14.5x 10- 1 5 gm cm- 3 .

The equation of the least-squares solid line in Figure 3 is

Pc = (5.46 + .0336 ap) 10
-

1 5 gm cm
- 3

. (7)pg m 7
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The dashed straight lines in Figure 3 indicate the limits of the

standard error, which is

S = 1.07 x 10 1 5 gm cm 3, (8)

or 16.0 percent of the average density. Some of the points contained

outside the dashed straight lines are associated with peaks and

troughs appearing in the latitudinal density profile (Figure I).

The index ap comes entirely from converting Kp to a normalized linear

scale. The 3-hr planetary index K is obtained by averaging values from
p

12 observatories located between 47.7 and 62.5 geomagnetic latitude, aver-

aging 56 degrees geomagnetic latitude. Thus ap (or Kp) represent magnetic

disturbances near 56 degrees geomagnetic latitude. The fact that a and
p

Kp represent a mixture of disturbance effects associated with auroral

electrojets, storm-time variations, and other magnetic variations of

smaller amplitude such as sudden impulses makes them useful for very gen-

eral correlations. However, for more discriminating studies it is desir-

able to have indices for each type of disturbance. Since we are inter-

ested in low-latitude effects, it was decided to investigate the Equatorial

Dst magnetic activity index (Hess, 1965; Si__uiraand Cain, 1969). Equa-

torial Dst is a measure of the mean departure from normal of the horizontal

component, H. of the Earth's magnetic field observed at a group of low-

latitude stations, whereas a is based on 3-hr ranges of the field at sta-
p

tions in higher latitudes.
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Accordingly, the Dst magnetic index was selected to find if more

accurate least-squares fits could be achieved on density versus Dst scatter

diagrams. Not only does the type of magnetic storm variation represented by

Dst occur at low and moderate latitudes, but the Dst values themselves are

available every hour, instead of every 3 hours like a . This could be an
P

advantage when studying the relationship of magnetic storms with rapid

changes in the density. However, Dst can be positive or negative. The neg-

ative values, especially the larger ones, are normally associated with ring-

current particle injection associated with magnetic storms.

The equation for the least-squares straight line fit for the p, Dt

points is

Pc = (a' + b'Dt) 10 5 gm cm 3 ,(9)

where the constants a' and b' are determined from normal equations similar

to (4) and (5) with Dst substituted for a 

As an example, Figure 4 is a scatter diagram of density at 400 km ver-

sus Dst at t hr, corresponding to 89 density data points at 20° N (Fig-

ure 3). The Dst values range from -113 to 45. The equation of the least-

squares straight line is

Pci= (6.51 - .0256 Dt) 1015 gm cm 3. (10)

The standard error is

Sp 1.69 x 1015 gm cm- 3 , (11)

or 23.6 percent of the average density.

C
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DATA ANALYSIS

Table 1 presents the constants a and b in Equation 1 computed from

(4) and (5) for a from time t to t - 24 hr in 3-hr increments and geo-

magnetic latitudes OON, 10°N, 20°N, 30°N, and 400 N and all latitudes (0°N to

40CN). Table 2 exhibits the corresponding standard error Sp, expressed in

percent of the average density of the n data points, calculated from (6)

and (1). In addition, Sp is given for a < 15 and a > 15, representing

quiet and disturbed geomagnetic conditions, respectively. The minimum

standard error in each column is marked with an asterisk. This value can

be used to determine the time delay between p and a that gives the
p

best correlation in a given column. For example, under the 10° N

column the minimum Sp occurs for ap at t - 3 hr. The corresponding a and

b selected from Table 1 results in Equation 7 (see Figure 3). Displayed at

the bottom of each column in Table 2 is the average Sp, the ratio of the

average Sp to the minimum Sp, the number of data points n, and the relative

density (density for "all latitudes" = 1.00). The minimum Sp occurs at

0° N, 10N, and 2CP0°N for a at t - 3 hr and at 300 N and 400 N for a at t-9
p p

hr. However, no significance is attached to the minimum values at 30°N and

40CN because the average/minimum Sp ratios are low. It doesn't matter greatly
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which time delay is selected for a for these latitudes. As indicated at

the bottom of Table 2, the relative density is slightly below normal for the

lower latitudes and for "all latitudes" with a < 15, while it is slightly
p

above normal for the higher latitudes and for "all latitudes" with a > 15.
p

Table 3 gives the constants a and b for 60-degree longitude sectors

and for all longitudes (same as the "all latitude" column in Table 1). Table

4 presents the corresponding Sp. The average/ minimum Sp ratio for 180°E -

240E is 1.81. The minimum Sp occurs for ap at t-3 hr. Hence, it is very

advantageous to use a at t-3 hr and a and b in Table 3 at t-3 hr in

Equation 1 for this sector. On the other hand, it doesn't matter very much

which time delay is used for a in the 600 E - 12C0E sector since the average/

minimum Sp ratio is only 1.11. As indicated at the bottom of Table 4, the

relative density variation with longitude is slight between 0°N and 40°N

geomagnetic latitude.

Table 5 gives the constants a' and b' (Equation 9) computed for Dst

for times t to t-12 hr in 1-hr increments and geomagnetic latitudes 0°N,

10°N, 2C0N, 30°N, 400 N and "all latitudes" (CPO°N-40°N). Table 6 presents the

corresponding standard error Sp. The minimum standard error (marked with

an asterisk) occurs for Dst at time. t, the same times as the density values,

for each latitude except 100 N, where it occurs with a time delay of 2 hours.

Yet, the average/minimum Sp ratios at the bottom of Table 6 are low, so not

much confidence can be placed in any particular time delay.
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Table 7 shows the constants a' and b' for 60-degree longitude sectors

and "all longitudes." The constant b' is positive in the 60°E to 120°E from

t hr to t-5 hr and in the 180°E to 240°E sector from t-8 hr to t-1O hr. This

indicates that there is no correlation between density and Dst during these

delay times at these longitudes. Table 8 presents the Sp corresponding to

Table 7. The correlation between density and Dst is good only at certain

longitudes and delay times, as indicated by large values of the average/

minimum Sp ratios at the bottom of the table-in the 120°E to 180°E and 180°E

to 240°E sectors with time delays of 4 hr and 0 hr, respectively. The standard

error is low at 16.5 percent for Dst from t to t-12 hr in the 60°E to 1200 E

sector. For some reason, there is little or no correlation between density

and Dst in this sector. The same is true for density and ap (Table 4).

Since changes in Dst do not result in appreciable changes in density, the

scatter of points in the scatter diagram is less, resulting in low standard

error. The relative density values at the bottom of Table 8 indicates that

there is not much variation of density with longitude, as pointed out before.

DISCUSSION

Table 9 gives a comparison between the standard error resulting using

a (Table 2) and Dst (Table 6) for geomagnetic latitude and delay times of

0, 3, 6, 9, and 12 hr. In all cases, the standard error is lower using a

than Dst, averaging 19.3 percent lower. Also, the average/minimum Sp ratios
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are appreciably higher for ap than Dst at 0°N, 10 0 N, and 20°N. For these

latitudes, the minimum standard error for ap occurs at t-3 hr, where it

averages 37.8 percent lower than that for Dst at the same time delay. There-

fore, it appears that the density can be predicted best at low latitudes

using a at t-3 hr, at least during the period under consideration.
p

Table 10 shows a comparison between standard errors resulting from

using ap (Table 4) and Dst (Table 8) for 60-degree longitude sectors and

all longitudes (0 ° - 360CE) for delay times 0, 3, 6, 9, and 12 hr. In all

longitude sectors the average standard error is lower using a than Dst'

averaging 21.2 percent lower. Based on the average/minimum Sp ratio only,

ap is clearly superior to Dst for predictive purposes in the 0 ° to 60°E

and 300° to 360°E sector with time delays of 3 and 6 hr, respectively. Dst

appears better at 1200 - 180°E at t-3 hr. The high value of both average/

minimum Sp ratios in the 180 ° to 240°E sector indicates that the density is

well correlated in this sector with both a and Dst, with time delays of
p Dst'

3 and 0 hr, respectively. The low values of both ratios in the 60 ° to 120PE

and 240 ° to 300°CPE sectors indicates that density is poorly correlated with

both ap and D t' In these sectors it seems preferable to use a since itboth ap Dst. p

results in a lower standard error.

In Table 2 the minimum standard error occurs for a at t-3 hr at OON, 10 0 N, and
p

200N. No significance is attached to the fact that the minimum Sp occurs at t-9 hr

because the average/minimum Sp ratios are low for these latitudes. The density at
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0° - 20°N may correlate best with the ap value 3 hr earlier because there

is a time delay of about 3 hr between the peak geomagnetic activity in the

auroral zone and the atmospheric response at low latitudes. If the main

atmospheric heating is caused by some mechanism or energy source in the

auroral regions, then wave propagation could transport the energy from the

auroral region to the equatorial region within a time interval of about

3 hr. Jacchia and Slowey (1967) from satellite-drag analysis, give a mean

time delay of 7.2 ± 0.3 hr for an average latitude of 25 degrees. However,

the inaccuracies associated with satellite-drag measurements have been dis-

cussed already( Also, see Taeusch et a.,1971).

De ries (1971), reporting on neutral density data obtained from the

Low-G Calibration System (LOGACS) flown on a polar orbiting satellite during

a period of high geomagnetic activity (May 22-26, 1967), states that the

in-situ high resolution data show that the density increases almost simul-

taneously with enhanced geomagnetic activity. The largest density increases

occurred in the region of the maximum current of the auroral electrojet. with

no significant increases in the equatorial region until several hours later.

Atmospheric waves, apparently associated with joule heating, appear to orig-

inate in the auroral region at altitudes lower than 150 km and propagate up-

ward and toward the Equator. Blamont and Luton (1970) analyzed thermospheric

temperature measurements from data obtained by a Fabry-Perot interferometer

on OGO-6 in the period 26 September-6 October 1969, during which two large

geomagnetic disturbances occurred. These temperature measurements showed a

3000 K increase in the two polar regions while the temperature near the Equator

increased by only 90°K.
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Volland and Mayr (1971) calculated the response of thermospheric density

during geomagnetic disturbance, assuming that an impulse type of heat input

is injected into a small band of latitude within the auroral oval during

local nighttime. They calculated the temporal response of the thermospheric

density to the heat input. This theory indicates a dependence of the atmos-

pheric density changes on latitude and longitude. The general trend of the

density variations is in agreement with the trend observed in the LOGACS

observations (DeVries, 1971). The data in Table 4 indicate that there is a

good correlation between density and a at t-3 hr at 180° to 2400 E and little
p

or no correlation at 600 to 1200 E and 240° to 300°E. Table 8 indicates good

correlation between density and Dst between 180 ° to 240°E with no time delay

and little or no correlation between 60 ° to 120°E.

May and Miller (1971) have shown from a rather limited sample of satel-

lite spin-rate data that the variations in density at 310 km in low latitudes

are more closely indicated by Equatorial Dst, with a 2-hr lag of density be-

hind Dst, than by a with the 7-hr lag suggested by Jacchia and Slowey (1967).
p

The improvement of the relationship with Dst as compared with ap is most

marked in the recovery phase following the peaks of magnetic storms. At

these times the density recovers more slowly than ap, in common with Dst.

May and Miller state that it is not possible with their data to test whether

or not the improvement was caused by the density being measured in low lati-

tudes, where the magnetic observations from which Equatorial Dst is evaluated

are made. The minimum Sp values in Table 6 indicate no lag in time between
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density and Dst, except at 10°N, where it is 2 hr. According to De Vries

(1971), the density increases simultaneously with a in auroral latitudes,
p

near where a is measured. If this is true, it appears reasonable to expect

that likewise no lag should occur between the density and Dst at low lati-

tudes, where Dst is measured, provided that the geomagnetic disturbance causes

worldwide heating simultaneously. The 3-hr lag between the density at low

latitudes and a (Table 2) could result from the fact that most of the energy
p

is initially deposited in auroral latitudes and later transported southwards

by wave or bulk mass motion.

CONCLUSIONS

This analysis shows that marked density increases occur at low latitudes

during geomagnetic storms. The average density from 100 N to 20°N is over twice

as great for K = 8 as K = O. The best least-squares fit and corresponding
P P

delay time between density and a magnetic index can be determined for a given

latitude or longitude sector from the minimum standard error. The average/

minimum standard error ratio indicates whether or not there is a good correla-

tion between the density and the magnetic index having the time delay asso-

ciated with the minimum standard error. Large average/minimum standard error

ratios occur at 0°N, CPN, and 20°N geomagnetic latitude where the minimum

standard error occurs for a at t-3 hr. The average/minimum ratio is very
p

large in the longitude sector 180° to 2400E, where the minimum standard error

occurs at a time delay of 3 hr between density and a .
P
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With regard to density and Dst, the best correlation at low latitudes

results with no time delay, except at 10°N, where it is 2 hr. Like a , the

the best correlation with longitude occurs at 180° to 240°E. In most cases,

the correlation of density with Dst is not as good as that with ap, as indi-

cated by the magnitudes of the standard errors and average/minimum ratios.

It appears that the density can be predicted best at low latitudes using ap

at t-3 hr. If the minimum values of the standard error reflect the time de-

lay between the onset of a storm (as indicated by a and D ), then inasmuch
p st

as there is little or no lag between density and Dst and about a 3 hr lag

between density and ap, this indicates that a geomagnetic disturbance causes

worldwide heating simultaneously, with most of the heating ensuing in the

auroral zones, some of which is later transported to low latitudes.

These results are valid for CPN to 40°N geomagnetic latitude for the

period 25 September through 3 October 1969 for an altitude of 400 km, 1600

local time, and solar flux of 145 R.U. Equations 7 and 10 can be used for

other altitudes, local times, and solar activity by normalizing them with

the aid of a model atmosphere (See Anderson and Francis, 1966). If the ex-

planation given in Anderson (1969) for the semi-annual effect is correct,

then this effect is automatically taken into account. The general applica-

bility of the predictive equations can only be determined by analyzing den-

sity data from other periods having geomagnetic storms.
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FIGURE CAPTIONS

FIGURE 1 Some typical latitudinal density profiles for 27-30 September 1969

at 406 km and 1600 LT from 0° to 40°N latitude for K = 0, 4+, 6,
P

and 8. These density profiles are fitted to density points derived

from the Lockheed microphone density gage measurements (Anderson

and Sharp, 1972).

FIGURE 2 Density and K versus Universal Time (U.T.) for 27 September
p

through 30 September 1969. The solid curve is the density at 406

km and 20°N geomagnetic latitude, and the dashed curve is for K 
p

The correlation coefficient between density and K is r = +.97.
p

The values of K (and the corresponding ap) are shown on the right.

FIGURE 3 Density at 400 km versus a' scatter diagram for 80 data points for
p

26 September - 3 October 1969 at 10°N geomagnetic latitude,

1600 LT, and 145 R.U., where a' is the value of a at t-3 hr, t
p P

being the time of the density values. The solid straight line rep-

resents the least-squares fit to the data points (Equation 7). The

standard error (Equation 8) limits are indicated by the dashed

straight lines.

FIGURE 4 Density at 400 km versus Dst scatter diagram for 89 data points

for 26 September - 3 October 1969 at 20° N geomagnetic latitude,

1600 LT, and 145 R.U., where Dst is at time t, t being the

time of the density values. Equation 10 is the equation of the

solid least-square fit line. Equation 11 represents the

standar error whose limits are indicated by the dashed lines.
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