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DIFFERENTIAL CORRECTION SCHEMES

IN NONLINEAR REGRESSION

Henry P. Decell, Jr.

University of Houston, Houston, Texas

F. M. Speed

Texas A & I University

Abstract

This paper briefly reviews and improves upon classical iterative

methods in nonlinear regression. This is accomplished by discussion .of

the geometrical and theoretical motivation for introducing modifications

using generalized matrix inversion, other than but in the same general

vein as those discussed by Fletcher [6], Examples having inherent pitfalls

described in [8], [12] and others are presented and compared in terms of

results obtained using classical and modified techniques. The modification

is shown to be useful alone or in conjunction with other modifications

appearing in the literature.



Introduction

Following for convenience the notation of [8], let y denote a

set of n responces of the form

t =

where the response function f (8) is a known function of t and an
/v

undetermined vector 8 = (81 .0 ). We will call the vector 0 a least-

squares estimate (given the n responses) of 0 provided 0 minimizes

Q(Q) =1 (y - fXe))2 .
t=i c

The vectors are defined

30i

R(8) = (yt - ft(9))

and the matrices

e T
f (6) = ( - s - )



Three of the most common differential correction schemes for
/\

estimating the parameter vector 6 are the steepest descent method, the

quadratic approximation, and the Gauss-Newton method, with corrections

respectively given by

A6 = -aQ'(6) , a > 0

A9 = -(Q"(e))~V(e)

A6 = -l/2(f'(e)Tf'(6))~1Q'(e) .

These methods have their advantages and disadvantages. Of the

three, the Gauss-Newton method is probably most popular.

The authors of [8] present a modification of a classical method and

state that "The step A8 will in general be distinct in both length and

direction for each of the three methods." This is not necessarily the case

from a computational point of view since the matrices to be inverted may be,

for all practical computational purposes, singular; yet the system of

equations may have infinitely many solutions. For example, the Gauss-

Newton correction requires the solution of the equation

f'(6)Tf'(e)A0 = f'(6)TR(6)

since

f'(e)TR(9)



It is known that any equation of this form (i.e., of the form

T T
A Ax = A z, the normal equations of the least-squares problem: minimize

T
(Ax-z) (Ax-z) given A and z) always has at least one solution and

perhaps infinitely many. We will try to point out the significance and

consequences of these solutions in terms of their relationship to

differential correction schemes.

The Generalized Inverse

A few basic concepts regarding generalized inverses important to

the development follow.

Theorem 1. The four equations AXA = A, XAX = X, (AX)* = AX, and

(XA)* = XA have a unique solution X for each complex m*n matrix A.

This solution X is called the generalized inverse of A and is denoted

by X = A+.

This theorem is due to Penrose [10] and is equivalent to the

apparently more geometric characterization of the generalized inverse

of A which follows.

Theorem 2. The generalized inverse A of A is the unique solution

of the equations

A* ' PR(A)

YA = P
** R(X)



where PD,,N and P-ofv\ , respectively, denote the perpendicularK\A; KI.A;

projection operators on the range spaces (column spaces) of A and X.

In any case, it is easy to see that if A is square and non-

singular, then A is the ordinary inverse of A. Much work has been

done recently in the area of generalized matrix inversion, including

theoretical developments and computational techniques, rendering it a

very useful tool in matrix theory and applications. A rather exhaustive

bibliography concerning applications of generalized inverses can be found

in [2], [3], and [13]. We will not develop the details of the basic

concepts, but rather state an important theorem regarding the solution of

matrix equations in general.

Theorem 3. The matrix equation AXB = C has a solution X if and only

if AA CB B = C, in which case all solutions are given by

X = A+CB+ + S - A+ASBB+

where S is an arbitrary matrix having the dimensions of X.

The Equation A Ax = A z

As stated earlier, the Gauss-Newton method involves the solution

of an equation of this type at each iteration. The following corollary

to Theorem 3 will give some insight to a possible course of action one

could take at those times during the iteration process when the matrix

f'(9)Tf'(6) (or perhaps even a matrix such as Q"(6) in another method



requiring inversion for the calculation of the correction A6) is

actually or nearly singular. For the purpose of this paper, we will

describe how generalized inversion can be useful in iterative techniques

T T
requiring the solution of equations of the form A Ax = A z.

Corollary 1. If A is any mxn matrix and z is any mxl vector, then

T T
the equation A Ax = A z has at least one solution and all solutions are

given by

X = A+z + (I - A+A)y

where y is arbitrary having the dimensions of x.

The proof of Corollary 1 is an immediate consequence of Theorem 3

and fact that (ATA)+AT = A+ [10].

T T +
Corollary 2. Among the solutions of A Ax = A z, the solution x = A z

has the smallest Euclidean norm (henceforth "norm" will be denoted | | • | |),

The proof of Corollary 2 follows from the facts that I - A A is

the orthogonal projection operator on the orthogonal compliment of the

range space of A and hence that A z and (I - A A)y are orthogonal

for every y. In fact,

||A+z + (I- A+A)y||2 = ||A+z||2+ ||(I - A+A)y||2

v. I I A+ I I 2_> | |A z||



The significance of Corollary 1 is that there may be infinitely

many possible corrections A0 satisfying an equation defining a

differential correction scheme in the presence of a singular or, in the

computational sense, nearly singular coefficient matrix. There is a

tendency to disregard or remain unaware of these solutions and, with the

inability to invert the coefficient matrix, to look for new or modified

techniques such as those found in [1], [5], [8], [9], and [12]. For

example, in [7] Jennrich and Sampson modify the coefficient matrix by

selected rows and columns. In [8], Marquardt changes the diagonal of the

coefficient matrix. It has been our experience that these solutions should

be given careful attention in the case of what will hereafter be called an

apparent (i.e., actual or computational) singularity.

Fletcher [6] points out that in the generalized least-squares

(Gauss-Newton) or Newton methods "... A most important property of the

generalized inverse formulation is that in all circumstances (i.e., full

rank or not), even when the generalized least-squares method would fail,

the directions of search generated are downhill and so an imporvement can

always be made to the sum of squares (assuming the approximation is not

already a stationary point)." In this connection, the significance of

Corollary 2 is that there is a reasonable way to choose a correction A9

satisfying the defining equations of the scheme whenever an apparent

singularity occurs. We propose to choose the minimum Euclidean norm

correction A z (i.e., the correction of shortest length consistent with

the correction equation). It has been our experience that in nonlinear



equations other solutions can result in failure of convergence.

The suggested correction certainly depends upon the algorithm used

to calculate A and the actual computational way in which the algorithm

T
establishes that A is not of full rank (i.e., A A singular). Of course,

this is intimately connected with near-zero tests in the algorithm,

sensitivity to dependent columns or rows, conditioning, and so forth. We

should further point out that, for a general differential correction scheme

of the form M(6)A6 = z(8), the choice of the correction should be

A6 = M(9) z(6) if there is at least one solution for A9. Of course,

according to Theorem 3 there will be at least one and possibly infinitely

many solutions A9 if and only if M(9)M(e)+z(6) = z(9). Moreover, if

there is one and only one solution, then that solution is indeed given

by A9 = M(9)+z(9).

T
For example, in the Gauss-Newton method, M(9) = f'(9) f'(9) and

z(9) = ff(9)TR(0) so that A9 = M(9)+z(9) = (f'(9)Tf'(9))+f'(9)TR(9) =

f'(6)+R(6). Even if M(9) is nonsingular, then (f'(9)Tf'(6))+ =

T —1
f'(9) f'(9)) , and either form of A9 may be used in calculations:

A9 = (f'(9)Tf'(9))~1f'(9)TR(e) = f'(9)+R(9) .

In other words if M(9) is square and computationally nonsingular, the

classical correction is, in fact, the minimum norm.correction. We will

not discuss the comparative aspects of computing A9 in a correction

scheme such as the Gauss-Newton method by one or the other of the



theoretically equivalent formulas:

(i) Ae = (f'(e)Tfl(e))+ff(e)TR(0)

(2) A6 = f'(9)+R(e)

Calculations in our examples use (2).

We have had unusual success with this technique in many practical

problems too numerous to mention here. In many cases, one definite

advantage seems to be the ability to continue making corrections of

reasonable length and perhaps, as in the Gauss-Newton case, reasonable

direction through regions in which the coefficient matrix M(8) behaves

badly. We do not propose this technique as a cure-all but rather that it

should be included among other useful techniques in nonlinear regression.

A few examples having known pitfalls will be presented in the next section.

Examples.

In the following examples, the residual sum of squares Q(6) will

be presented in tables by iteration number. The values of Q(6) for the

methods cited will be those values tabulated in the references cited. Some

authors divide Q(6) by the degrees of freedom. For clarity and easy

comparispn we indicate this division in the tables when necessary. Finally,

the residual sum of squares given by the method of this paper (minimum norm

correction) will be noted MN; Q(9).



Results of the method of this paper compared with those of the

Modified Davidon Method (MDM) used in [12] to find the parameters of an

exponential model discussed by Hartley in [7] are given in Table 1.

Table 1

Exponential Model (Hartley)

Iteration

0

1

2

3

4

5

6

7

8

9

MN; Q(6)

27376

14586

13779

13408

13394

13390

MDM; Q(6)

27376

20127

15412

13552

13485

13449

13425

13394

13393

13390

10



A second exponential model given by the authors of [8] points out

a failure of Hartley's method [7] due to a singular partial derivative

matrix. In [8] a stepwise regression scheme (SR) is successfully utilized

for this example. The results of the (SR) scheme compared with those of

the method of this paper are given in Table 2.

Table 2

Exponential Model - Singular Partials

Iteration

0

1

2

3

4

10

30

MN; Q(8)/8

521.41

429.84

39.11

15.765

15.545

SR; Q(8)/8

521.41

429.84

88.15

83.74

*

21.33

15.545

*The value of SR: Q(6) was not tabulated in [8]
for this iteration.

Another six-parameter exponential model having inherent singularity

problems is presented in [12] using the Modified Davidon Method (MDM).

A comparison of the results using the technique of this paper is given

11



in Table 3.

Table 3

Six Parameter Exponential Model - Singular Partials

Iteration

0

10

20

30

40

50

60

70

80

MN; Q(6)

21.38

.873

.792

.396

MDM; Q(9)

21.38

2.39

1.99

1.77

1.59

1.41

.90

.41

.407

Concluding Remarks

We have taken the liberty to exclude a reproduction of the detailed

description of our example models. These models are thoroughly treated in

[7], [8] and [12], The tables give some indication of rates of convergence

and a comparison of residuals only. We do not wish to leave the impression,

12



that iteration counts are comparable. For example, one Gauss-Newton

iteration could have been equivalent to p conjugate direction steps

for the matrix inversion employing the Davidon method.
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