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COMPARISON OF EXACT AND APPROXIMATE

EVALUATIONS OF THE SINGLE-SCATTERING INTEGRAL

IN NUCLEON-DEUTERON ELASTIC SCATTERING

By John W. Wilson
Langley Research Center

SUMMARY

The exact nucleon-deuteron elastic single-scatter ing integral has been calculated
numerically so that errors in sticking-factor approximations can be evaluated. Evalua-
tions of these errors are important since approximation of the multiple-scattering series
appears to be at present the most practicable approach to nucleon-deuteron scattering at
intermediate energy and the single-scatter ing integral is a principal contribution. Errors
in sticking-factor approximations to the single-scattering integral made by using realistic
interactions are typically 10 to 20 percent except at backward angles where errors are
even larger. A similar analysis made by using S-wave separable potentials concluded
that errors for these same approximations were negligible except near backward angles
where they were found to be about 10 percent. The present results impose questions as
to the usefulness of such unrealistic model calculations at these energies.

INTRODUCTION

The purpose of analyzing nucleon-deuteron elastic scattering is to study the internal
structure of this bound nuclear state. There are three competing methods for anlysis of
the nucleon-deuteron system. The usefulness of Faddeev and disperion calculations of
nucleon-deuteron scattering is presently limited by simplifying assumptions which have
made these calculations tractable. Faddeev calculations are made by the use of separable
interactions (ref. 1) and usually allow incorporation of only low-energy shape-independent
nucleon-nucleon data (ref. 2). Recent dispersion calculations (ref. 3) have neglected spin,
and the spin correlations required to specify fully the scattering matrix are not deter-
mined. Currently, the most practicable approach to nucleon-deuteron scattering at inter-
mediate energy is approximation via the multiple-scattering series. The multiple-
scattering series relates the nucleon-deuteron scattering amplitude to sums, of integrals
over nuclear-wave functions, nucleon propagators, and in their fullest complexity, the off-
shell two-body amplitudes (refs. 4 to 10), at least to the extent that they are known.



Extraction of deuteron wave functions from elastic nucleon-deuteron scattering
data must be preceded by a careful analysis of theoretical uncertainties of the formalism
used. The errors associated with the use of the multiple-scattering series are the uncer-
tainty in obtaining off-shell values of the two-body amplitudes, those associated with
approximating the integration of successive terms in the series, and those associated with
the remainder since any practical calculation can explicitly include only a finite number of
terms. Additional uncertainty owing to lack of knowledge of the deuteron wave function is
not considered since a knowledge of the wave function is the ultimate goal. This paper is
a first step in the evaluation of these errors.

The single-scatter ing integral, first nontrivial term of the multiple-scattering
series, is a principal contribution of the elastic T-matrix and is nearly the sole contribu-
tion near forward scattering. This integral over wave functions and a two-body amplitude
is often approximated by assuming little or no dependency of the two-body amplitude on the
internal motion of the target nucleus (refs. 5, 7, and 8). Although model calculations made
by using separable potentials indicate that some x>f these low-order approximations are .
adequate (ref. 9), an analysis of absolute error with realistic two-body amplitudes has not
been made until now. .< .

It is customary in multiple-scattering calculations to take the appropriate off-shell
two-body amplitudes to be the on-shell amplitudes evaluated at the same momentum trans-
fer and an energy which depends on the nucleori-nu'cleus laboratory energy, the momentum
transfer, and internal target motion (refs. 5 to 10). This point of view is strengthened by
the results for the so-called "linear approximation" of Kowalski arid Feldman (ref. 5) for
nucleon-deuteron scattering. However, in order to evaluate the single-scattering inte-
grand throughout the integration domain, off-shell continuation must be considered.

In the present paper, the off-shell continuation of the two-body amplitudes is dis-
cussed. By using this continuation, the errors of various low-order approximations of
the single-scattering integral are evaluated. The principal sources of error in low-order
approximations are indicated, and alternate numerical techniques are suggested for
eventual analysis of experimental elastic nucleon-deuteron scattering data.

SYMBOLS

aT ,bT structure constants of deuteron wave function n = 1, 2, 3L n ' L - n • - . - . . . . . ; - • ' • • . .

D deuteron four momentum, amu

proton laboratory energy, MeV



jo nucleon current matrix element, /3 = S, T, V, A, P, amu

L deuteron orbital angular momentum quantum numbers, dimensionless

I nucleon-nucleon orbital angular momentum quantum numbers, dimensionless

m nucleon mass, 1.0 amu

m^ pion mass, 0.14847 amu

P nucleon four momentum, amu

P! struck deuteron constituent four momentum, amu

P£ spectator deuteron constituent four momentum, amu

Q momentum transfer in center of mass, amu

s,t,u Mandelstam variables for two-nucleon system, amu^

s Lorentz invariant, amu^

SL £,(Q) deuteron sticking factor, dimensionless

Ts single -scatter ing transition matrix, amu~l

o
to Lorentz invariant two-body amplitudes in current x current basis, amu"

YL 2x2 representation of spin spherical harmonics with orbital angular
momentum L, dimensionless

z off-shell two-body cosine of center-of-mass scattering angle, dimensionless

01 =

nucleon mass difference, off -shell parameter,



two-body center -of -mass scattering angle, rad

deuteron internal momentum, amu

i deuteron polarization vector, dimensionless

Pauli spin vector, dimensionless

deuteron radial wave function,

Subscripts:

E entering state

F final state

MPE multipion exchange

OPE one-pion exchange

Three vectors are denoted by — above the quantity. Four vectors carry no
special annotation. Dot products among four vectors b = (b°,F) and c = (c°,cj are as

b • c = b°c° - ft . c"

Dagger (t) denotes Hermitian conjugation. Circumflex (") denotes unit vector.

SINGLE -SCATTERING INTEGRAL

The integral which represents the scattering of the incident nucleon from a con-
stituent nucleon in the deuteron is the 2x2 matrix

TS(PFDF;PEDE) =
LELF

where subscripts E and F refer to the entering and final states, respectively. The
sums over L include the two angular momentum states of the deuteron wave functions

~K/ where KJ. -p = ~K ± -jQ with (3 the three momentum transfer in the center-of-
mass frame. The deuteron spin spherical harmonics are included in the symbol
T(s,t,u,6) along with the two-body scattering amplitudes for simplicity of notation (spin



indices and deuteron polarization vectors are suppressed)

L
j3

(2)

where / \ denotes a trace and JofPi jPo) are ^e ^ve orc^nary 0-decay-type currents
(given in refs. 11 and 12) which constitute a complete basis for the two-nucleon amplitudes
and

(3a)

|iT • KK • a -|iT • a (3b)

are the representation of the L = 0, 2 spin spherical harmonics used. The vector iT
is the deuteron polarization which depends on the deuteron spin projection. The argu-

-••0

ments s, t, and u are the Mandelstam variables, and t = -Q* is a constant in the
integral. The fourth argument of r is linearly independent of s, t, and u and is
taken to be the mass difference between the struck constituent in the entering and final
states. These variables and the momenta of the two deuteron constituents are defined as

P2 = DE -

= (PE

- p )2

6 = Pi 2 - Pi 2



The spectator in the scattering is the target constituent not struck by the incident projec-
tile and is taken always on-the-mass shell (ref. 10).

The value of equation (1) can be approximated or calculated numerically; however,
off-shell values of the two-body amplitudes must be evaluated. In the sequel, the calcu-
lation of off-shell values is discussed. This off-shell continuation is then used in several
low-order approximations of equation (1). The poor behavior of these low-order approxi-
mations is discussed in the context of the one-pion exchange interaction. Additional com-
parison with a numerical evaluation indicates that the low-order approximations are
inadequate.

OFF-SHELL TWO-BODY AMPLITUDES

The two-body Lorentz invariant functions to(s,t,u,6) of equation (2) depend on the
four variables s, t, u, and 6 which are linearly independent with two nucleons off
shell. The behavior of the two -body amplitudes is generally not known except on the two-
dimensional subspace

6 = 0

s + t + u = 4m2

corresponding to on-shell processes which are measured experimentally. A unique
extension from this experimentally known subspace to the full space including off-shell
processes cannot be made without a detailed knowledge of the strong force. A proposed
extension is not completely arbitrary but must be consistent with what is known of the
analytic structure (nature and location of singularities) of the two-body amplitudes.

The singularities of the two-body amplitudes which lie closest to the physical region
are those corresponding to the exchange of a meson with the smallest mass (a pion). The
one-pion exchange (OPE) contributions are simple poles shown in figure 1 along with the
multipion exchange (MPE) contributions which are branch-cut singularities at points
farther removed from the physical region. The variables chosen for the figure are defined
by

t = (4m2 - s)(l - z)/2

u = (4m2 - s)(l + z)/2

where z is the off-shell cosine of the center-of-mass scattering angle and



s = - t - u

so that s — s for on-shell processes. In accordance with figure 1

t(s,t,u,6) = tOFE(t,u) + tMpE(s,t,u,6)

which is true on or off shell. Any off-shell continuation must be consistent .with
equation (4).

(4)

I m ( z )

TWPE OPE

[z-plane]

Physical region
(line)

+1 OPE MPE

OPE

MPE

1 -2m 2 /(4m2-?)
7T/ \ '

Red)

Figure 1.- Singularities of two-body amplitudes as seen in z-plane. z = cos 9cm-

Now the off-shell continuation used in the present calculation is discussed. The
off-shell values of the OPE contribution are exactly known. The singularities of the
MPE part are far removed from the physical region as seen in figure 1. Since the MPE
amplitude is analytic in the neighborhood of the physical region, the off-shell continuation
can be accomplished by a Taylor series expansion

-g-tMpE(s,t,u,60)(s - s)as

- 60) + • • • (5)

1



where s and SQ are taken to be the on-shell-like values

50 = 0 (6a)

s + t + u = 4m2 (6b)

Since the MPE contribution is a slowly varying function in the neighborhood of the
physical region (e.g., in modern phase -shift analysis of refs. 13 and 14, the OPE ampli-
tude is used for all partial waves with I £ 5 with the MPE contributing to the phase
shifts with I £ 5) it is reasonable to assume that

where subscript exp denotes an experimentally measured quantity. This continuation is
accomplished by subtracting the correct off-shell OPE part from the texp(s,t) ampli-
tude and replacing the energy variable s by the new quantity s.

The off -shell continuation given by equations (4) and (7) is now used to study
approximations of equation (1). Note that this choice of continuation preserves the loca-
tion of the branch cuts of the MPE part as seen in figure 1 as well as preserves the
proper symmetry of the amplitudes under interchange of identical nucleons (i.e., left-
right symmetry in fig. 1). From the relation of 6 to the integration variable of equa-
tion (1)

6 = PiF
2 - Pl£

2 = -2Q

It follows that

and generally

Hence, when the entering and final nuclear states are the same, the linear term in 6 of
expansion in equation (5) is expected to be small for all values of Q. Even when the
entering and final states are different, this off-shell effect is vanishingly small for for-

-"2ward scattering or Q = 0.



EVALUATION OF SINGLE-SCATTERING INTEGRAL

The single-scattering integral (eq. (1)) can be evaluated numerically by using the
off-shell continuation (eq. (7)). As noted previously, the variable t is fixed by the
momentum transfer while the remaining variables s, u, and 6 are functions of the

integration variable K". To aid in evaluation, the deuteron wave function is approximated

by a sum of Gaussians

(8)
n

The coefficients given in table I are estimates for the Hamada-Johnston wave function
(ref. 15) and are reasonable fits to distances of about 0.28 fm. First some low-order
approximations to the integral (eq. (1)) are examined.

TABLE I.- FITTED STRUCTURE PARAMETERS FOR GAUSSIAN

APPROXIMATION OF HAMADA-JOHNSTON WAVE FUNCTION

Normalization
/-*°O «—

J [</>0
2(<l) +

r — •>

= £ aLn
 exp(-bLn<l2

n

1

2

3

an , amu"3/2

n
92.41770

12.74490

-.35298

n
bQ , amu"^

204.15580

25.77230

1.29835

a9 , amu ~ 3/2
<sn>

-1.683110

-.971535

2.659846

p
b2n> amu

11.27690

2.85898

465.61200

The principal assumption normally used in developing approximations to the integral

(eq. (1)) is that the product of two-body amplitudes and spin spherical harmonics (eq. (2))
are slowly varying functions of the integration variable ~K compared to the radialwave
functions. Hence, a Taylor series expansion of equation (2) is expected to be rapidly con-
verging when placed into the integral (eq. (1)), and various low-order approximations are
obtained by choice of expansion point and the number of terms retained. The development
of the more successful approximations is given in the order of increasing accuracy, as
well as a discussion of their shortcomings. The Chew impulse approximation (ref. 7) is
discussed in reference 5.



Kottler-Kowalski Prescription

The Kottler-Kowalski prescription as described in reference 8 has the advantage
of requiring a single evaluation of the two-body amplitudes at K" = 0, thereby leaving an
integral over wave functions (sticking factors or form factors) to be performed

* X

where

and SQ, UQ, and SQ are values at K" = 0. These form factors differ from those nor-
mally used in electron-deuteron elastic scattering calculations. The value 6g is equal
to its on-shell value so that off-shell effects appear through the variables SQ and UQ
only. Had the nonrelativistic Galilean invariants been chosen to describe the two-body
amplitudes, then K" = 0 is sufficient to place the two-body reaction on-the-energy shell
(ref. 5).

A supporting argument for this procedure is that

has an extreme at 5T = 0, and L = L' and is most pronounced at low energies. Usually
other extremum in this product of radial wave functions give an even larger contribution
at higher energies. For L = L', this prescription yields the same result as the linear
approximation.

Linear Approximation

The linear approximation as developed in reference 5 makes use of the fact that the
two-body amplitudes are analytic over the domain of integration and can be expanded in a
Taylor series

T(s,t,u,6) = TA + [vKT(s,t,u,6)] • (K - KA) + . . . (10)
A.

where subscript A denotes evaluation at K^ chosen such that

10



which is an average value K^ = 'O1 Then

F

since the terms linear in JT of the expansion vanish by virtue of the choice of KA .
When the remainder is neglected, an approximation which is correct to the linear term is
obtained.

The error of the linear approximation is estimated by comparing the quadratic term
of the remainder with the amplitude of equation (12). Estimates using the OPE amplitude
and neglecting spin show the remainder to dominate the amplitude near backward scat-
tering. This large error indicates the poor convergence of the series of equation (10).
Note that

OPE(sO'tO'uO»6o)| = TOPE(sA>tA>uA>6A)|

so that the more accurate linear approximation generally yields results smaller than the
Kottler-Kowalski prescription.

Asymptotic Method

The asymptotic method was devised to eliminate some of the defects of the previous
approximations. Since the radial wave functions exhibit many extreme values, the
approximation should contain sums of two-body amplitudes evaluated at the extremes
times an appropriate function of Q. Such an approximation is easily accomplished by
using the Gaussian approximated wave functions which reduce equation (1) to the form

TS =
\ _o / ~i p r / , -,\2~i „

-^JQyie r(s,t,u,6)LEL e x p - t v x -ijSQ) ddK
T T -11 - in - J ^ L >• ^ ' JLELF

n m (13)

where

«=b L +bL (14)
n m

r - bLF }/<* (15)
m ft//

11



Aside from the two-body amplitudes, the integrand exhibit maxima at

Thus, by using the Chebyshev-Hermite and Chebyshev-Laguerre integration and retaining
the first term which is Laplace's method (ref. 16), the next higher approximation to the
linear approximation is to factor out of the integrand of equation (13) the function r
evaluated at the corresponding maximum. The result is

aLE
 aLF e x p a l - f l T f o & U f r S p y v / c t ) (17)

T T ^ ^LELF

n m

By neglecting for the moment the spin spherical harmonics in equation (13), the accuracy
of equation (17) can be examined by finding under what conditions the next term in
Laplace's expansion is small. By using the OPE amplitude, equation (17) is found to be
a good approximation if either a~l « m^2 or [3P2/2 + (/3(5/4)2j » m^2 where
P = (PE + Pr)/2- Unfortunately, the terms of equation (17) for which this is true do not
dominate the sum. In fact, the terms with ofl > m^ dominate for large values of Q.

As for the linear approximation, the two -body amplitudes could have been expanded
into a Taylor series in equation (13) about each relative extreme, and higher order terms
could be retained. Similar to results for the linear approximation, the second-order
terms are found to dominate the terms retained in approximation of equation (17) near
backward scattering.

Exact Evaluation

The form of the single -scatter ing integral given in equation (13) suggests evaluation
by use of standard numerical procedures. Computation time is greatly reduced by a
proper choice of variables and integration scheme. Variables are chosen to be those of a
cylindrical system with z along Q. This choice reduces equation (13) to a form for
direct application of Gauss integration by using Hermite, Laguerre, and Legendre poly-
nomials for components of /T along Q, perpendicular Q, and the angular variable,
respectively, as described in reference 16. Some optimization will allow computation of
the integral in about 10 minutes on a Control Data 6000 series computer.

COMPARISON OF RESULTS

The modulus squared of the single -scatter ing integral as approximated by the
Kottler-Kowalski and asymptotic methods are shown in figure 2 in comparison with results

12



w

Exact
Asymptotic
Kottler-Kowalski

20 40 60 80 100 120 140 160 180

Figure 2.- Modulus squared of single-scattering integral as function of
center-of-mass scattering angle for 146-MeV proton laboratory energy.

of an exact evaluation of equation (13). The two-body amplitudes were generated from
the Livermore phase shifts (ref. 13) with the off-shell continuation given by equation (7).
These results show that, even at forward angles, errors of several percent enter these
low-order approximations, while errors in the backward hemisphere are on the order of
one magnitude. As noted previously, the source of error comes from the assumption
that the product of the two-body amplitudes and spin spherical harmonics is a slowly
varying function of >T compared to the radial wave functions.

The errors caused by the rapid variation of spin spherical harmonics alone are
shown in figure 3. These results were obtained by setting the two-body invariants to a
constant in equation (13) and approximating the resulting integral over spin functions.
The results in figure 3 clearly indicate that any quantitative calculation must accurately
integrate the rapidly varying D-state harmonic function. The spin-dependent nucleon
currents of equation (2) are slowly varying functions of /T, and to assume them to be
constant results in less than a 4-percent error in the modulus squared of equation (13).
The results in figures 2 and 3 clearly indicate that the errors of low-order approximations
cannot be attributed entirely to poor approximation of the integral over spin spherical har-
monics. That the total error is not due to poor approximation to the integral over spheri-
cal harmonics is especially true for backward scattering where low-order approximations
of the single-scattering integral are in error by an order of magnitude.

13
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Figure J.- Error in modulus squared of integral over spin functions
in asymptotic method for indicated proton laboratory energies.

To examine the errors contributed by rapid variation of the invariant amplitudes,
the spin dependence in equation (2) was totally neglected and the two-body amplitudes
were approximated by a sum of poles in t and u as follows. The lowest pole is the
OPE with the more distant poles as approximation to branch cuts of the MPE part.
Thus

T(s,t,u,6) = B
15 60i 120

t - m t - t -
± (t - u)

where the ± applies for total isospin I = 0, 1 so that Ts is properly symmetrized
under interchange of incident and constituent nucleons. Each of the low-order approxima-
tions is easily evaluated for this form of function and an exact evaluation for the OPE
terms gives

n.m

where

f(z) = ot(z -

V2

14



and, similarly, for the more distant poles. The relative error 6 in the amplitudes is
calculated by forming incoherent sums and differences of various S- and D-state contribu-
tions. Thus

- I
LELF

n rp"-
LELF " LELF

where superscript A denotes an approximate amplitude.

The amplitude errors, neglecting spin, for the three approximations at several
energies are shown in figure 4. The errors tend to be small in the forward hemisphere

100

75

_Asymptotic method
-•Kottler-Kowalski

Linear approximation

(a) Elab = 100 MeV.

Asymptotic method
Kottler-Kowalski
Linear approximation

(c) Eiab = 300 MeV.

100

75
«£

S. 50i__
LLJ

25

0

• Asymptotic method
•Kottler-Kowalski
'Linear approximation

cm
= 200 MeV.

Aysmptotic method
Kottler-Kowalski

- Linear approximation

(d) Eiab = ̂ 00 MeV.

Figure 4.- Errors in integral over spinless amplitudes.
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with a sharp rise at backward angles past 130° for energies of one to a few hundred MeV.
At lower angles, the errors decrease slowly to a small value at 90° and remain nearly
constant at lower angles and independent of method of approximation. Over most of the
angular range, the estimated errors for these spinless calculations are less than 10 per-
cent. Each approximation greatly overestimates the amplitude at these backward angles.
Recall that the high-momentum components of the wave functions (small values of a)
dominate in this backward region where these approximations were expected to fail.
These general features are retained at higher energies as shown in figures 4(b) to 4(d).
The backward angle errors increase as a function of energy, thereby indicating greater
difficulty in approximating the integral as the deuteron is probed at smaller distances
(small values of a).

The difficulty in calculating the single-scattering integral at backward angles arises
from exchange symmetry terms owing to the identity of the incident nucleon and the con-
stituent nucleons of the deuteron. When the incident particle and constituents are not
identical, the left-hand singularities shown in figure 1 do not appear in the two-body
amplitudes; thus, lower order approximations are expected to be more accurate.

The errors due to identity effects cause a backward peaking in the nucleon-deuteron
single-scattering amplitude as seen in figure 2. This backward peaking has erroneously
been identified in references 17 and 18 as the cause of the observed backward peaking in
proton-deuteron elastic scattering at high energies.

Model calculations with separable potentials (ref. 9) have shown the Kottler-
Kowalski prescription to be far more accurate than indicated herein. Those calculations,
however, have only S-wave contributions in both the deuteron wave function and two-body
amplitudes and are therefore essentially spinless. Such a simple separable model should
not be expected to yield results similar to the realistic model used in the present study.

CONCLUDING REMARKS

The spin-dependent errors of low-order approximations to the single-scattering
integral are large over most of the angular range and decrease to a few percent at for-
ward scattering.

Even when spin is neglected, the simple approximations to the single-scattering
integral, such as the Kottler-Kowalski prescription, linear approximation, or asymptotic
method, are inadequate for scattering angles above 130° in the center of mass for
energies of one to a few hundred MeV. At lower angles, the errors decrease slowly to a
small value at 90° and remain nearly constant at lower angles and independent of method
of approximation. Over most of the angular range, the estimated errors for these spin-
less calculations are less than 10 percent.

16



At backward angles, much of the difficulty in calculating the single-scattering inte-
gral arises from exchange symmetry terms owing to the identity of the incident nucleon
and the constituent nucleons of the deuteron. When the incident particle and constituents
are not identical, lower order approximations are expected to be more accurate.

In applying these results to multiple-scatter ing analysis, an adequate approximation
of single scattering short of numerical integration appears nonexistent. Much computation
speed can be gained with only a 4-percent loss of accuracy by assuming that the current
matrix elements of the two-body amplitudes are constant. The off-shell amplitudes will
probably not be well known for a long time so the most profitable work will be to examine
the higher order multiple-scattering terms.

Others have suggested that the identity effects in single scattering account for the
backward peaking in proton-deuteron scattering at high energies. The present error
estimates make these conclusions based on low-order approximations suspect. The
present results indicate that the backward peak cannot be produced by single scattering.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., August 18, 1972.
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