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DIVERGENCE OF THE TOTAL CRM, SECTION FOR THREE BODY
REARRANGEMENT COLLISIONS WITH COULOMB INTERACTIONS

K. Omidvar

NASA/Goddard Space Flight Cei,ter
Greenbelt, Maryland 20771

Abstract. Three charged nartirles 1, 2 , 3 doll. isle accord ing to the

reaction 1+(2+3)-)-(1+3)+2, where (2+3) and (1+3) are nydrogenlike

bound states. It is shown when (1+3) is in a highly excited

state n, due to the repulsive potential, the cross section in

the first Barn approximation behaves as 1/n which makes the

total cross section to diverge like Zn n. The total cross sections

in the higher orders of the Born approximation are similarly

divergent logarithmically.
a^

X x X x x x x x x x x

We consider the collision of three charged particles 1, 2, 3

w`	 with masses m , m , m and charges Z 
1	 2	 3
e, Z e, Z e, respectively,

1	 2	 3 

where e is the absolute value of the electronic charge. The

collision is represented by 1+(2+3)->-(1+3)+2 where (2+3)  and (1+3)

represent the hydrogenlike states of 2 and 3, and 1 and 3,

respectively. We assume that (2+3) is in the ground state, but

(1+3) is in an arbitrary state including the continuum. Examples

would be capture of an electron by a proton incident on atomic hydrogen,

and the exchange effect in scattering of electrons by atomic hydrogen.

The collision amplitude in the Mth order of the Born approxi-

mation is given bye
h

Tf(M+1)_ <exp(ik • r )T(f,r ) IV (G V.) M lexp(ik • r )T(i,r )>	 (1)^'2 ^'2	 X13	 f	 O 1	 1	 1	 -23

where the subscript .f on the left hand side designates that post

interaction form has been used for the amplitude. Y r (i,r ) and
-23

Y'(f,r ) are the bound states of (2+3) and (1+3) with r 	 and r
^'13	 23	 X13

vectors connecting particles 2 and 1 respectively to particle 3.
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Vectors r l and r z connect the centers of masses of (2+3)

and (1+3) to the particles 1 and 2, and vectors k and k
N1	 N2

are the propagation vectors of particles 1 and 2 with respect

to the centers of masses of (2+3) and (1+3) , respectively. 1k
N

is related to (k 1 through4

2k22k2	 m. (m +m )
2	

2 	 + E(213)  .- E(1 1 3)	 ui	 my+m^+mk -	 (2)
z	 1	 i j k

where E(2,3)  and E(1,3)  are the energies of (2+3)  and (14-3) states.

Finally, V  ^ V 12 + V 23 , and Vi M V 12 + V 13 , where Vij is the

potential between i and j particles, and Go is the three body

Green's function for outgoing waves. It should be noted that

V
12	 18	 23

is repulsive, while V	 and V	 are attractive potentials.

The rearrangement cross section is related to the rearrangement

amplitude through the relationship

Q =	
Tt (

 21 I T ^ 2 d(k 
1	 2

" k )	 (3)

	

2 (T 4
	
1 

We first consider the first Born approximation which

corresponds to M = 0 in (1). The cross section in this approximation

due to the V 23 potential, commonly called the Brinkman-Kramers

cross section, has been calculated by Brinkman and 1Kramers 2 using

the ground state wave function as the final state. Calculations

using the excited states as the final state have been carried

out by May s , and by a different method by Omidvar". These calculations

indicate that at high relative incident energies the cross section

behaves as n-3 with n the principal quantum number of the final

excited state. This behavior has also been predicted by Oppen lhe:zimer l ,.

The amplitude due to the V 12 potential has been evaluated



Jackson and Schiff using the ground state wave function

as the final state. Sim",lar calculations for the first few

excited stages as the final state has been performed by

Mapleton 7. Here we deri*,-e a general expression for the amplitude

due to the V
12 

potential for all the excited final states, and

find its limiting value as n tends to infinity.

The amplitude due to the V12 potential can be written 

T(1) (V12) = 4nZ1Z

	

	
dp

2 e2 U*(f,C-p)U(i^B-P) d

	

N	 N

4" k
	 ^	 m.m.

C k l - m3-2 , B	
3k	

k
m	 1 -
	 2,	

ij	
(4)mi m. 

where

U(jfq) _ ( 2 Tr) s/2 exp ( iq - r ) T ( j , r ) dr	 (5)
N	 N N	 N N

When the bound states are expressed in parabolic coordinates

we have `'

U (nn m, q)	 6 (m,o)'r (ot/ 	 ^* 2n1
1	 N	

Tr	 IWi4	
w	 ,

a= u ij Z i Z j /(menao )	 w = 2 (a - iq ) ► z = q ,	 (6)

with n 1 and m the parabolic and magnetic quantum numbers, me

the electronic mass, and a  the Bohr radius. In (6) the spacial

quantization axis is taken along q. As n tends to infinity,
N

a->o, and by the definition of the delta function (6) can be written

U (nn 
1
m, q ) = d (m, o) 7Tv!n' (2a) 1/2 8(q) , a-so , z = q	 (7)

When use is made of (7) in (4) we obtain

3

^I
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(1 )	 d (m,o) 321TZ Z e 2 YS-a05/2a3/2

Tnn m 1 2)	
C 2 [a 

2+ (B - C) 
212

	

1	 0	 N

a0 W 

U 23 Z 2 Z 3/(mean) ' a 
W 

u13Z".Z3
/(menao)')-o	 (8)

At high incident energies Ik 1 will be independent of
N 2

n(cf. Eq.(2)). Then (4) shows that B and C are also independent
N	 N

of n. In this case as n becomes large TO)   m becomes proportionAl
1

to n-1 . When the squared modulus of Tnn)m is summed with respect1

to n 1 m and the result is substituted in (3) we find that the

cross section for the repulsive potential V 12 for large

quantum numbers behaves as n -1 ,whereas the corresponding cross

section for V23 potential behaves as n -3 . This has two impli-

cations:(1) the cross section due to the repulsive potential

or "core" potential at large n dominates the Brinkman-Kramers

cross section, (2) the total cross section which is a sum of the

individual cross sections with respect to n diverges as kn n.

The capture into the continuum states of (1+3) can be

considered by analytic continuation of the bound state cross

section. The appropriate equation is given by

J

du	 _	 3e jR	 n 3 Q (n)	 = 
u l 3 i ' s

d ( e R)	 2 1-exp (-2Tr O ) ]	 Y

me 3EjR
n-+ 3 f e

where e/R is the relative kinetic energy of the particles 1 and 3

in rydberg, and da/d(e/R) is the continuum capture cross section

per unit range of this energy. a(n) is the bound state capture

cross section given by (3). From the foregoing discussion and,

(9) it can be seen that as a/R-}0 the continuum cross section

goes to infinity as ( e/R) -1 .

1 ---
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We now consider the divergence in the second Born

approximation. Designating the initial state by 100 and the

final :Mate by nn m, by a straightforward substitution in (1)
1

we find that

s ^

T(2) 
nn 1 m	 -n fj

dgdq'x

A 2 k2	 h2g2	 i2q-2
r ""	 + E ( l i 3 ) — - 

^1 2 

k 2 _q )2( k 
1 

u j v
q ' ) 2

3

x[Z ZU* (nnin,A)+Z Z U* (nn m,D) ] [Z Z U(100,E)+Z Z U(100,F) ]
2 3	 1-	 1 2	 1	 -	 1 3	 -	 1 2

(10)

(11)

where

A - - q +	 (k	 q) I D	 q' - 
m 

1

13 
(k - q)m	 -2	 -2

3 

E	 X	
u23 k + q	 F	 kr	 2 g	 + 13 q- q

M_.1	
v ...	

m	
v1	

m	
N

3	 2	 1

When n tends to infinity, Equation (7) can be used to evaluate

the first squared bracket in the numerator in the integr'and in (10).

Then, similar to the first Born approximation, at high incident

energies and large	 1g	 g quantum numbers Tnn ) m 
behaves as n , and the

_1

corresponding cross section for the nth level will behave as n

it should be noted that in applying (7) to (10) assumption is made

that once A and once B are the spacial quantization axis. In
M	 N

actual computation the states should be rotated to refer to a

•	 common z-axis. This transformation, will not however change the

n dependence of the amplitude.

Regarding the higher order terms in the Born amplitude it is

seen from (1) that the dependence of these terms on the final

state is through the first squared bracket in the numerator

of the integrand in (10). Then, provided the higher order
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terms have well defined values, their dependence on n for large

n is the same as the second order term, and the corresponding,

total cross section diverges as kn n.

It is then concluded that the sum of the Born series give

rise to a total cross sectio.: which as n increases diverges like

Zn n. It is possible that a Perturbation theory such as the

Born approximation cannot	 applied for the final excited

states higher than a certain excites: state. in this case a

criterion should be found for the validity of the Born approximation.
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