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SUMMARY

This paper describes the application of substructuring techniques for
two example problems, (i) a square plate and (ii) the static analysis of a
frame-wall interaction problem in multistory structures. Presently, multi-
point constraint forces are not retrieved in NASTRAN., A DMAP routine for
calculating the multipoint comstraint forces is also presented herein.

INTRODUCTION

The use of substructuring techniques in NASTRAN is well documented
(references 1 and 2). However, it is felt that example problems involving
large degree of freedom (d.0.f.) systems would bring out the advantages of
substructuring in greater detail and will be of help to the NASTRAN user
commnity. This is attempted in this paper.,

There are several cases where the analyst will be interested in evalu-
ating the multipoint constraint forces — for example, the frame-wall
interaction problem in multistory structures or the nuclear fuel pellet-clad-
ding problem in nuclear engineering. These forces are not presently retrieved
in NASTRAN, A DMAP routine, based on the Lagrange multiplier technique, is
presented herein for the calculation of multipoint forces of constraint.

"When this DMAP routine is applied for large d.0.f. problems, the computing
effort needed is so great as to make it impracticable. The substructuring
feature in NASTRAN overcomes this difficulty. This paper uses the substruc-
ture partitioning and the Lagrange multiplier technique to retrieve the
interaction forces between the shear wall and frame of a multistory
structure.

DESCRIPTION OF PROCEDURE
The details of substructure partitioning are explained in the NASTRAN

Userts Manual (ref. 2) and will not be described here. With reference to
static analysis, the method is briefly outlined in the following paragraphs.
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The complete structure is divided into a number of substructures, the
boundaries of which msy be specified arbitrarily; however, for convenience, it
is preferable to meke structural partitioning correspond to physical parti-
tioning. Each substructure is first analysed separately, assuming that all
common boundaries (joints) with the adjacent substructures are completely
fixed. (In NASTRAN, this is called the Phase I operation.) From this
analysis, the displacements of all interior points in each substructure with
the adjacent substructure boundaries fixed are evaluated. These boundaries
are then relaxed simultaneously and the boundary displacements are determined
from the equations of equilibrium at the boundary joints (the Phase II NASTRAN
operation). Each substructure can now be analysed for boundary displacements.
Adding these to the Phase I displacements, (displacements of interior points
in each substructure with adjacent boundaries fixed) we get the final displace-
ments. (This is achieved in NASTRAN in Phase III operation.)

The addition of the reduced substructure boundary loads and stiffness
matrices to obtain the total boundary load and stiffness mabtrix for the
complete structure, and the partition of the boundary displacement of the
complete structure into the boundary displacements of the separate substruc-
tures is achieved with the aid of partitioning vectors. The partitioning
vector for each substructure is a vector of size n X 1 where n is the total
degrees of freedom in the a-set. The various steps in the construction of
the partitioning vectors are explained in ref. 2. TFor cases where all the
grid points in the total structure have been numbered distinctly, the parti-
tioning vectors can be formed as follows:

1. Arrange the grid points in the a-set, in ascending sequence.
Iist the connected degrees of freedom at these grid points
(the components of the a-set) as scalar point internal
indices in ascending numerical sequence starting with 1.
This gives the size n of the partitioning wvector.

2. The partitioning vector for each substructure is obtained by

entering real 1's in all locations where the substructure under
consideration has connection components with any other substructure.

The formation of the partitioning vector when one substructure has
connection with two or more substructures and when the grid point numbering
for the total structure shows discontinuities is illustrated in Example
Problem Number 2.

EXAMPLE PROBLEMS

Problem Number 1

The structural problem consists of a square plate with hinged supports
on all boundaries. The 10 X 20 model, as shown in Fig. 1, uses one-half
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of the structure and symmetric boundary constraints on the midline in order to
reduce the order of the problem and the band width by one-half. Because only
the bending modes are desired, the inplane deflections and rotations normsl
to the plane are constrained. This is the same problem as that solved in

the NASTRAN demonstration mamual (ref. 3).

The model is divided into five substructures. (This is not the best
division of the problem; however, since the purpose herein is to demonstrate
the use of identical substructures and the second stiffness reduction in
Phase II, no attempt is made to choose the best subdivision.) The a-set points
consist of (i) points on the boundaries of the substructures, 12 thru 22, 88
thru 98, 154 thru 164, 220 thru 230 and (ii) additional points in each sub-
structure needed to define the dynamic response (this is largely based on the
analyst's judgement), 55, 60, 65, 121, 126, 131, 187, 192, and 197. Note
that Phase I runs are made only for two substructures, substructure 1 and
substructure 2 (Sub-5 is identical to Sub-1; Sub-3 and Sub-4 are identical
to Sub-2). There are 53 a-set points with 3 d.o.f. per grid point (Total
deo0.fe = 159). Applying the boundary condition y = O along X = 0, 7 d.o.f.
are eliminated; applying the condition u, = 64 = O along X = 10, ik d.o0.f.
are eliminated; this leaves 138 d.o.f. in a-set. Since all the grid points
in the boundaries are not needed for reasonably satisfactory dynamic response
of the structure, a second stiffness reduction is done in Phase ITI. The grid
points omitted are 13 thru 16, 18 thru 21, 89 thru 92, 9% thru 97, 155 thru 158,
160 thru 163, 221 thru 224, and 226 thru 229 (total of 32 points each of 3
d.0.f.). There are thus only 42 d.0.f. in the final solution of the pseudo-
structure in Phase IL. The natural frequency comparisons with and without the
second stiffness reduction of Phase II is given in Table 1.

Problem Number 2

This problem deals with the analysis of a multistory structure. The
shear wall and frame are treated as separate structures and they are discretized
and divided into substructures as shown in Figures 2 through 5. The shear
wall is divided into 30 substructures (three for each story). The frame is
divided into 10 substructures. Phase I analysis is performed for T of the
30 substructures of the shear wall and 2 of the 10 substructures of the
frame (due to the repetitive geometry, it is enough if 3 substructures of
shear wall and 1 of frame are analysed for Phase I; however, to reduce the a-set
points, the former approach is used).

Substructure 1 has connection points with substructures 2 and 4; sub-
structure U has connection points with substructures 1, 2, 5, and 7. The grid
point numbering for the total structure is available, even though it is not
continuous serially. Under these conditions, the partitioning vectors for
all the substructures can be formed as shown below.

(1) Arrange the grid points in the boundaries in ascending
sequence: L9-56, 105-112, 161-168, 217-22k4, 273-280, 329-336,
385-392, Uh1-4h8, 497-50L, 1749-1756, 1805-1812, 1861-1868,
1917-192k, 1973-1980, 2029-2036, 2085-2092, 2141-2148, 2197-220kL,
2905-2907, 2912-291k, 2919-2921, 2926-2928, 2933-2935, 29k0-29k2,
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29k7-2949, 2954-2956, 29%61-2963, 2968-2970, 3105-3107, 3112-311k,
3119-3121, 3126-3128, 3133-3135, 3140-3142, 31h47-3149, 3154-3156,
3161-3163, 3168-3170. Since each point has 2 degrees of fredom
(u and v), the components of the a-set are listed as scalar point
internal indices in ascending numerical sequence starting with 1
as follows: ‘

A-Set Scalar point
grid point internal index
kg L
50 3
L
51 5
6
1%&9 1&5
146
1750 1kt
148
2905 289
290
2906 291
292
3105 349
350
3106 351
352
3170 Loy
408

(2) The partitioning vector for each substructure is obtained by
entering real 1's in all locations where the substructure under
consideration has connection components with any other substructure.
The partitioning wvectors for 2 sample substructures is shown on the
following pages (size of partitioning vectors 408 x 1):



Substructure 1 Substructure b

Scalar point
Internal Index
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Scalar point Substructure 1 Substructure 4
Internal Index. :
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The a-set points for the freme are 5, 9, 13, 16, 20, 24, 27, 31, 35, 38,
o, 46, L9, 53, 57, 60, 64, 68, 71, 75, 79, 82, 86, 90, 93, 97, 101, 10k, 108,
112. Since there are 3 d.o.f. per grid point, (u, v, and 0,) the a-set com-
ponents total 90. The partitioning vectors for the substructures of the frame
(size 90 X 1) can be formed easily.

Since it is of interest to know how the frame and the wall acting alone
will resist the lateral wind load, the frame and the shear wall are analysed
separately at first.

This example will also be used to i1llustrate the use of multiple level
substructuring. The multistory structure is to be analysed for different
first story heights of 12 £t, 13 f£t, 15 ft, and 20 £t. In order that the
entire calculations are not to be repeated, a Phase II (Initial) run is made
where substructures L4 thru 30 of the shear wall are combined into a "super-
substructure"; so also substructures 2 thru 10 of the frame. The Phase II
(Final) run consists of combining the first story sybstructures to the super-
substructures of shear wall and frame, respectively. The data recovery of
substructures of interest is achieved in Phase III. For a different first-story
height of the multistory structure, the Phase I run for the substructures of
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the first story and Phase II (Final) runs are repeated with the necessary
Phase III runs. ;

The stiffness matrices with respect to the active degrees of freedom
of the wall and frame, respectively, are merged by mesns of vector of size
498 x 1. The interaction of the wall and frame is studied using multipoint
constraint equations; the conditions to be satisfied being (i) u and v
displacements at corresponding points of wall and frame are equal and (i1) Oy
of frame at connection points with the wall should be equal to the fictitious Oy
values of the wall obtained by dividing the difference of the vertical dis-
placements at the two ends of the left wall at each floor level by the width.

The value of the maximum displacement for wall alone, frame alone, and
frame-wall interaction for the case of the lateral wind load is given in
Table 2. It is to be pointed out that without substructuring, each of the
cases investigated would have involved considerably more computing effort.
For example, the frame-wall interaction problem has a total of 3210 degrees
of freedom. In a direct analysis of the total structure the stiffness mabrix
of 3210 X 3210 has to be decomposed; whereas in substructuring, 6 substructures
in each of which the size of matrix does not exceed 112 X 112, 2 of size 30 X 30,
1 of size 54 X 54, and 1 of size 468 x 468 are solved.

As seen from Table 2, for solving six different problems, a total time
of about 900 sec is only needed while using substructuring techniques whereas
for the solubion of one shear-wall problem alone, about 2450 sec is needed
without substructuring. The total time for solving all the cases without sub-
structuring will be exhorbitantly high (the bulk of the time is spent on decom~
position of the large stiffness matrix). It should be mentioned that this wide
discrepancy in time with and without substructuring is largely due to the repeti-
tive nature of the structure geometry of this problem and alsc that Phase ITII
runs are performed only at the portion of interest in the structure. Nonethe-
less, time savings are bound to result, in general, with the use of substructuring.

EVALUATION OF MULTTPOINT CONSTRAINT FORCES

In NASTRAN, the multipoint constraint forces are not retrieved. A
DMAP program is written here to retrieve these forces. The theoretical basis
for this DMAP roubtine lies in the use of the lagrange multiplier technique.

From the minimum potential energy principle, we have the functional

T,

. = 1/2 [, {.,g}T[E] {e} dv - st ATdS

where s; is the surface upon which the tractions T are prescribed.

4o1



The collection of multipoint constraint equations can be written in
the form
cl {4; =0

To account for such constraints, we invoke the method of ILagrange
multiplers, and defining the vector {‘A}-of these multipliers, we have the
augmented functional

IR R R A G
After applying the first necessary conditions, we have

K 1. cTl )A P

c ' O A ()

This equation can now be solved for{ % L. Note that the system of
equations, in general, is not now positive definite, and hence the unsymmetric
decomposition routine of NASTRAN has to be used for the solution. From
the stand point of units, A's have the unit of 1b/in. or in-1b/in.
depending on whether the particular multipoint constraint equation equates
displacements or rotations. This discloses that from a purely physical
standpoint, the A's represent the average value of the distributed force or
moment needed to satisfy the multipoint constraint equation.

For-this problem the a-set stiffness matrix for the wall is of size
408 x 408; that for the frame is 90 X 90; and there are 30 multipoint con-
straint equations. Thus the augmented matrix is the size 528 x 528. An
unsynmetric decomposition of this matrix on CDC 6600 machine with 140K (octal)
storage will require about 18.5 minutes. Sirnce this is very expensive, an
alternative formulation is used herein. The 408 X 408 a-set stiffness matrix
of the wall is reduced to 20 X 20 (retaining only the d.o.f. at each connec-
tion point with the frame); the 90 X 90 a-set stiffness matrix of the frame
is reduced to 30 X 30 (retaining only the d.o.f. at each connection point
with the wall); thus, with 30 multipoint equations, the sugmented matrix
of size 80 X 80 need only be unsymmetrically decomposed. The reduction of
a-set stiffness and load matrices and the solution of the augmented matrix
took only about 88 sec on CDC 6600 with 140K (octal) storage. The DMAP
package for this frame-wall interaction problem, including the stiffness
reductions mentioned above, is given in the Appendix.

Even though the procedure described herein for the calculation of
multipoint constraint forces is general and can be used for problems that
do not involwve and/or necessitate substructuring techniques, it has to be
emphasized that for large problems, the method can be used only with sub-
structuring. Even then, an additional stiffness reduction would considerably
shorten the. computing effort., This is because unsymmetric decomposition
of large matrices will involve unacceptably high computing costs.
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CONCLUDING REMARKS

The NASTRAN substructuring techniques have been applied for the
solution of a static and a dynamic problem. In both problems, substructuring
is found to result in considerable saving of computing effort. The multiple
level substructuring technique, which facilitates the efficient reanalysis
of the structure when only a portion of the structure is modifed, has been
applied for a frame-wall interaction problem. In NASTRAN, the multipoint
constraint forces are not presently retrieved. A DMAP routine for
retrieving the multipoint constraint forces has been written and has been
successfully used in calculating the interactive forces between the frame
and shear wall of a multistory structure.
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Teble 1.

Natural Frequency Comparisons, CPS.

Mode Theoretical NASTRAN 5 8ubstructures 5 Substructures
10 x 20 (No stiffness (stitrrmess
reduction in Ph. 2) reduction in Fh, 2)
1 0,9069 0,9056 0.9063 0.9068
2 2.26T2 2,2634 2.2707 2,2812
g;::i‘ égh::;elozngm 258.5 sec 238.5 sec
6600 machine
Table 2, Value of maximum displacement, in, ft.,
due to lateral wind load of 1 kip/sq. ft.
Frame Shear-wall Freme-Wall interaction
Alone Alone problem
Case 1-First 0.051145 0.019336 0018901
story height = 12¢
Case 2-First 0.052557 0,019855 0.019448
story height = 13!
gbtfa:;mmm; 50 + 30 290 + 220 160 + 140
on.CDC 6600). = 80 sec = 510 sec = 300 sec

Total time on CDC 6600 for solving the problem of shear wall alone

(with a First story height of 13') without the use of substructuring

but using omit d.o.f.

2li50 sec.,
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