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SECTION I

INTRODUCTION

Upon approaching a critical point a system will exhibit

large thermal fluctuations in the order parameter. The

effect is a direct consequence of the divergence of the

susceptibility which determines the strength of these fluc-

tuations [LI] . The word "susceptibility" is used here in

a generalized sense indicating the derivative of the

thermodynamic variable representing the order parameter

with respect to its conjugate field. Thus for binary

mixtures the susceptibility refers to Qc/d/LOrr, „ where ci , r
is the concentration and ju the chemical potential of either

component. The corresponding quantity for a one-component

gas with density p and pressure P is (Sp/Bju)T or the iso-_̂  •••
thermal compressibility K™ = p (dp/dP)™.

Near the critical point the fluctuations in the order

parameter decay slowly in time. This process has become

known as the phenomenon of critical slowing down of the

fluctuations. In a binary liquid mixture the time depen-

dence of the relevant concentration fluctuations with wave
-»-

vector k can be described by a diffusion equation

2
<ck(t)c_k(0)> = <jck|

2>e~Dk * , (1)

where D is the binary diffusion coefficient. For a gas it

is convenient to separate the density fluctuations into

adiabatic pressure fluctuations which propagate with the

sound velocity and entropy fluctuations whose intensity is

strongly divergent and which decay in a diffusive mode

2
<sk(t)s_k(0)> = <|sk|

2>e~xk t (2)



The thermal diffusivity x is related to the thermal conduc-

tivity coefficient X and the specific heat at constant

pressure cp

The behavior of the diffusion coefficient D near the criti-

cal mixing point and the thermal diffusivity x near the

gas-liquid critical point turns out to be rather similar.

I shall occasionally refer to either quantity as diffusivity.

The phenomenon of the critical slowing down of these

fluctuations is due to the fact that the diffusivity van-

ishes at the critical point. According to the thermodynamics

of irreversible processes fluxes J of thermodynamic quanti-

ties are proportional to corresponding thermodynamic

forces X [D1,H1] :

J = L • X , (4)

where L is the matrix of Onsager phenomenological coeffi-

cients. For instance, in a binary mixture the f lux J. of

component i is proportional to the gradient of its chemical

potential

Ji - -LVMi = - L V c . (5)

Since the diffusion coefficient is defined by Fick's law

J^ = -DVc. (6)

we see, on comparing (5) with (6), that D can be represented

as the ratio of the Onsager phenomenological coefficient L,



which is of a dynamical nature, over the susceptibility

which is a static property.

(7)

In the conventional theory the critical slowing down

of the fluctuations in the order parameter was wholly

attributed to the divergence of the static susceptibility

[VI] . That is, the transport coefficient L in (7) was

assumed to remain finite at the critical mixing point, so

that the diffusion coefficient would vanish as the inverse

susceptibility [D2] . Similarly, the thermal conductivity

\ in (3) was assumed to be finite at the gas-liquid critical

point [VI] , so that the thermal diffusivity would vanish

as cp~l which in turn vanishes as the inverse compressi-

bility.

That the actual dynamic processes are more complicated

became apparent, when experiments revealed that the thermal

conductivity A. diverges at the gas-liquid critical point

[SI] . In recent years it has become evident that the

temperature dependence of the diffusion coefficient of

mixtures near the critical mixing point also differs essen-

tially from the behavior predicted by the conventional

theory .

In this report we shall present an analysis of experi-

mental data for those transport properties (thermal

conductivity, thermal diffusivity and binary diffusion

coefficient) which determine the critical slowing down of

the fluctuations of the order parameter in gases and binary

liquids. This analysis will be preceded by an assessment

of the experimental situation concerning the viscosity of

fluids near the critical point. An earlier review of the



subject has been presented elsewhere [S2]. Since this

review may not be easily accessible to the reader, I have

included in this report a bibliography on the subject.

In the traditional thermodynamic experiments transport

properties are measured by observing the response of the

system to the presence of macroscopic gradients in the

thermodynamic variables. Such gradients are introduced

experimentally by imposing boundary conditions on the

system. To deduce the transport coefficients from the

observations one needs to integrate the hydrodynamic

equations for the experimental boundary conditions. Near

the critical point this procedure is complicated by the fact

that some of the fluid properties may vary appreciably in

the system.

The spatial and temporal Fourier components of the

fluctuations can be studied by observing the intensity

of light scattered through the fluid as a function of

scattering angle and frequency. New spectroscopic methods

using laser light have thus made it possible to determine

the diffusivity from the width of the Rayleigh line in the

spectrum of scattered light. This second method avoids

many difficulties associated with the presence of macro-

scopic gradients in the thermodynamic experiments, since it

allows us to measure the diffusivity, while the system

remains macroscopically in equilibrium. Experimental re-

sults obtained with the two procedures are in agreement

as discussed in Section IV.1.



SECTION II

SHEAR VISCOSITY

1. Viscosity of Binary Liquid Mixtures

In 1901 FriedlSnder published a beautiful paper "Uber

merkwllrdige Erscheinungen in der Umgebung des kritischen

Punktes" in which he demonstrated that the shear viscosity

of the binary liquids phenol-water and isobutyric acid-water

increases anomalously, when the critical mixing point is

approached [Fl]. A few years later Scarpa reported the

same phenomenon [S3]. The existence of a viscosity anomaly

has been confirmed subsequently by a variety of authors.

The experimental literature is summarized in Table I.

Almost all experimental data have been obtained by

observing the flow rate of the liquid mixture when flowing

through a capillary. The use of a capillary flow method

is not without difficulties near the critical point [S2].

First, it may be difficult to attain high uniformity in the

thermodynamic variables such as temperature and composi-

tion. Furthermore, the capillary flow method requires that

the compressibility of the fluid is small. Recent theore-

tical considerations suggest that the isothermal compressi-

bility may diverge weakly at the critical mixing point

[G3,Mll. The viscosity can also be measured by observing

the damping of a cylinder oscillating or rotating in the

fluid. Tsai and Mclntyre have included a few data points

obtained with a rotating cylinder viscometer; they appear

to find the same anomalous viscosity as that obtained with

the capillary flow method [Tl] .



Table I

Viscosity Measurements Near the Critical Mixing Point of
Binary Liquids

Authors System

Friediander [Fl]

Scarpa [S3]

Drapier [D3]

Semenchenko, Zorina [S4]

Khazanova, Linshits [Kl]

Reed, Taylor [Rl]

Zhuralev [Zl]

Debye, Chu, Woermann [D4]

Woermann, Sarholz [Wl]

Brunet, Gubbins [Bl]

Gvozdeva, Lyubimov [Gl]

Arcovito et al. [Al]

Barber, Champion [B2]

Allen et al. [A2,L2,S5,S6]

Tsai, Mclntyre [Tl]

Pings et al. [G2]

phenol-water
isobutyric acid-water

phenol-water

phenol-water
isobutyric acid-water
eyelohexane-aniline
hexane-nitrobenzene

triethylamine-water
hexane-nitrobenzene

hexamethyleneimine-water

isooctane-perfluoroheptane
isooctane-perfluorocyclic oxide
hexane-perfluorocyclic oxide

triethylamine-water

cyclohexane-polystyrene

isobutyric acid-water

phenol-water
eyelohexane-aniline
eyelohexane-methanol
hexane-methanol

phenol-water

eyelohexane-aniline
lut idine-water

isobutyric acid-water

isobutyric acid-water
3-methylpentane-nitroethane
lut idine-water

3-methylpentane-nitroethane

lutidine-water



An anomalous increase in the viscosity near the

critical mixing point has been observed in all systems

listed in Table I. It is interesting to note that the

anomaly has been detected not only in systems with an upper

critical solution point, but also in such systems as tri-

ethylamine-water tS4,Zl], hexamethyleneimine-water [K1J

and lutidine-water [G2,S6] with a lower critical solution

point.

To illustrate the behavior of the viscosity I show as

an example some experimental data reported for the system

3-methylpentane-nitroethane. Fig. 1 shows the composition

dependence of the viscosity according to some earlier meas-

urements for this mixture obtained by Leister, Allegra and

Allen [LI]. Near the critical point the viscosity shows a

marked increase over the ideal viscosity to be expected in

the absence of an anomaly.

The temperature dependence of the viscosity of many

liquids can be represented by the Arrhenius equation

n = T}0e
E/RT , (8)

so that

£og t) = A' + I' (9)

where A' and B' are constants independent of temperature.

For temperatures close to the critical temperature eqn. (9)

can be approximated by

Jlog T) = A + Be (10)

with c = (T-T )/T « 1. This behavior is illustrated
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Figure 1. Viscosity of 3-methylpentane-nitroethane versus

composition at several temperatures, reported by Leister,

Allegra and Allen. A: AT =T-TC - 0.044°C; B: AT=0.544°C;

C: AT = 3.555°C; D: AT=8.544°C; E: AT = 13.465°C. The

dashed line represents the estimated ideal viscosity [LlJ.
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in Fig. 2, where the same data as shown in Fig. 1 are

plotted as a function of temperature for a number of concen-

trations. Near the critical point the anomalous viscosity

reveals itself as a deviation AT) from the ideal viscosity

T)., estimated on the basis of eqn. (10).

T) = ATJ + T)id (11)

The transport coefficients are defined as the coeffi-

cients in the linear relationship between fluxes and

gradients tDl,Hl] . This linear relationship is only valid,

when the gradients are sufficiently small. Near the criti-

cal point one should require that the variables do not

change significantly over distances of the order correlation

length. Since the correlation length diverges at the criti-

cal point, one may expect that the experimental viscosity

will depend on the velocity gradient Vv* sufficiently close

to the critical point. In fact, Fixman and coworkers [F2,

S7] suggested that the effect may be present in the thermo-

dynamic experiments mentioned above. Woermann and Sarholz

varied the shear rate dv/c^z near the critical point of

isobutyric acid-water over about three decades and verified

that the anomalous viscosity was independent of the shear

rate [Wl]. Tsai and Mclntyre made a comprehensive study

of the effect of the shear rate on the measured viscosity

of 3-methylpentane-nitroethane. By complementing their

capillary flow measurements with data from a rotating

cylinder viscometer, they varied the shear rate over five

decades from 10~2 sec~l to 10+^ sec" without noting any

effect on the anomalous viscosity [Tl]. The fact that the

anomalous viscosity does not depend on the shear rate may

therefore be accepted as experimentally established for the

shear rates commonly encountered in thermodynamic experi-

ments.
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The original theoretical attempts to explain the

viscosity anomaly, initiated by Fixman {F2], were based on

mean field considerations. The mean field theories [D5,

F2,F3,M2l lead to a correlation length and viscosity both

diverging as e * at the critical concentration.

The experimentally observed viscosity anomaly, however,

appears to be considerably weaker and may be approximated

by a logarithmic divergence, as pointed out by Arcovito et

al. for the viscosity of cyclohexane-aniline JA1J and

lutidine-water [private communication] . The fact that the

anomaly is close to logarithmic is illustrated in Fig. 3,

where the anomalous viscosity AT) of 3-methylpentane-nitro-

ethane is plotted as a function of log e. The figure is

based on the new more precise viscosity measurements of

Stein, Allegra and Allen [ S5] and of Tsai and Mclntyre [Tl] .

For an intercomparison between the two sets of data we con-

sider a reduced anomalous viscosity AT) = AT)/T)., where

T)., is the ideal viscosity at the critical point. We have

thus eliminated the effect of a systematic difference of 5%

between the two experiments, which is probably due to the

choice of different calibration data by the two groups of

investigators. It has been suggested that the anomalous

viscosity approaches the behavior predicted by the mean

field theories at temperatures farther away from the criti-

cal temperature [Bl,LI,Tl,Wl]. The experimental evidence

for this assertion is inconclusive [S2J .

In analogy to the equilibrium properties attempts

have been made to represent the anomalous viscosity by a

power law

r, = Ae~0 + T,id (12)

Since the anomaly is a weak one, the value deduced for the

critical exponent is sensitive to the estimate for T).,.

As the most natural choice one is inclined to identify TJ . ,

11-
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with the viscosity values predicted by the Arrhenius equa-

tion (9) or (10) , but the extrapolation can only be made

with a limited precision. As an alternative 7] . , is some-

times replaced with a linear function of temperature

T) = Ae~0 + Be + C , (13)

where, in addition to A, also B and C are treated as adjust-

able parameters. The coefficient A may also be a slowly

varying function of temperature. Thus, the empirical

function

r, = ee- , (14)

introduced by Debye and coworkers [D4] may, in retrospect,

be considered as an alternative procedure for determining a

critical exponent.

While the viscosity anomaly was the first anomaly

observed for transport properties near the critical point,

it is still not well understood. Ferrell et al. [F4] and

Halperin and Hohenberg [H2] have proposed an extension of

the static scaling laws to include dynamical properties.

More detailed predictions have been obtained by the mode-

mode coupling theory developed by Kadanoff, Swift [K2,S8]

and Kawasaki [K3,K4] . However, as pointed out by Kawasaki

[K3] , the mode-mode coupling theory implies that the vis-

cosity will remain finite at the critical point. Since the

experimental evidence for the existence of a viscosity

anomaly is overwhelming, Allen et al. have attempted to

reconcile the experimental observations with the theory by

assuming a cusp-like behavior for the viscosity [A2,S5]

T) = |(e~0-l) + Be + C . (15)

13



Recently, Kawasaki has suggested that the viscosity may

follow an apparent logarithmic divergence which turns into

a sharp cusp very close to the critical point [K4].

We remark that the capillary flow method yields in

first instance the kinematic viscosity 7)/p. When the dens-

ity of the liquid mixx ire is known, the data are usually

converted into values for the dynamic viscosity TJ. It is

commonly assumed that the kinematic and dynamic viscosity

diverge with the same exponent. However, since the density

varies with temperature, this assumption may not be true for

exponents derived empirically from data in a finite tempera-

ture range. Moreover, a weakly divergent compressibility

may imply an anomaly in the thermal expansion coefficient.

Thus the behavior of the two viscosities may not even be

the same asymptotically.

The values reported for the critical exponent of the

viscosity are summarized in Table II. The fact that the

anomaly is weak is reflected in the small values found for

the exponent when the data are fitted to (14). However, the

precise value^for the exponent appears to be very sensitive

to the choice for the mathematical representation. For

instance, Allen et al. [LI] deduced an exponent 0 = 0.04

from their earlier viscosity measurements for 3-methyl-

pentane-nitroethane when analyzed in terms of eqn. (12).

On the other hand, the same data yield 0 = -0.28 ± 0.08

when fitted to eqn. (15) [S5]. It is evident that the

viscosity anomaly is a weak one close to logarithmic, but

the mathematical character of the anomaly is not well under-

stood.

14



Table II

Values Reported for the Critical Exponent of the
Viscosity Near the Critical Mixing Point

System

cyclohexane-
aniline

isobutyric
acid-water

3-methylpentane-
nitroethane

phenol-water

hexane-
nitrobenzene

isooctane-per-
f luoroheptane

lutidine-water

P

n = eA+Be

^ = A (£-

Exponent 0

O(log)
0.04

-0.12±0.02
-0.37±0.04

0.05

-0.005±0.014
0.03±0.01

0.05

0.04

0.07

O(log)

+ B + ^ l d
£-*

^-1) + Be + C

Equation

(a)
(b)

(c)
(c)
(b)

(c)

(b)

(b)

(b)

(a)

(a)

(b)

(c)

Reference

[Al]
[D4,W1]

[A3]
[A3, Wl]
[D4,W1]

[S5]
[Tl]

[D4,W1]

[Wl]

[D4,W1]

[ Arcovito,
private

communicat ion]

15



2. Viscosity Near the Gas-Liquid Critical Point

The question whether the viscosity exhibits a weak

anomaly near the gas-liquid critical point cannot be

answered unambiguously due to a lack of reliable data suffi-

ciently close to the critical point. The capillary flow

method requires the presence of a pressure gradient which

induces a large density gradient near the critical point.

As a consequence the analysis of the flow pattern becomes

extremely complicated and the data do not permit us to

discriminate between the presence and the absence of a weak

anomaly like that observed near the critical mixing point

[S2] .

For a study of the viscosity in the critical region

the oscillating disk viscometer offers many advantages over

the capillary flow viscometer. It does not require a

pressure gradient and it provides a local determination of

the viscosity at a particular level in the fluid. The

method would be ideal, when combined with a local determi-

nation of the density, thus avoiding corrections for density

gradients induced by gravity [S2] .

Viscosity measurements, obtained with an oscillating

disk viscometer, have been reported by Naldrett and Maass

[Nl] and by Kestin, Whitelaw and Zien [K5J for carbon

dioxide near the critical point. Both sets of data indi-

cate an anomalous increase in the viscosity close to the

critical point. The effect is demonstrated in Fig. 4,

where the experimental viscosity data at 31.2°C (correspond-

ing to T-T = 0.2°C) are plotted as a function of density

and compared with the ideal viscosity. The ideal viscosity

can be estimated from data at 40°C [K5], 50°C and 75°C [M3]

by observing that the temperature dependence of the vis-

cosity at any given density is approximately the same as

16
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the temperature dependence of the viscosity in the low

density limit p -*• 0

T)id(p,T') -7)id(p,T") = 7)(0,T')- T)(0,T") (16)

This procedure will be discussed in more detail in Sec-

tion III. 2, where it will also be used to estimate the ideal

thermal conductivity. While the data of Naldrett and Maass

and of Kestin and coworkers do provide some evidence for a

weak anomaly in the viscosity, they do not permit any con-

clusion concerning the mathematical character of the anomaly,

Diller [D6] and Herreman et al. [H3] have studied the

viscosity of, respectively, hydrogen and carbon dioxide in

the supercritical region by observing the damping of a

torsionally vibrating piezoelectric crystal. However, the

resolution of these experiments is insufficient to deter-

mine the presence or absence of a weak anomaly as observed

by Kestin et al. Additional experimental information is

needed to decide whether the viscosity near the gas-liquid

critical point exhibits an anomaly similar to that observed

near the critical mixing point.

18



SECTION III

THERMAL CONDUCTIVITY NEAR THE GAS-LIQUID

CRITICAL POINT

1 . Survey of Experiments

The thermal conductivity of compressed gases is usually

measured either with a concentric cylinder method or with a

parallel plate method. In both methods a temperature dif-

ference is established across a layer of the fluid and the

heat flow is measured in the stationary state as a function

of the temperature gradient VT. In the first method the

fluid is enclosed between two concentric cylinders either in

horizontal or in vertical position and heat is generated in

the inner cylinder; in the second method the fluid is en-

closed between two parallel horizontal plates and the heat

is flowing from the upper plate to the lower plate [ S2J .

Near the critical point special precaution is needed

to avoid errors due to the presence of natural convection.

When the convection is small, the error in the apparent

thermal conductivity coefficient is estimated to be propor-

tional to the Rayleigh number [M4]

ga p2c d3VT

Here g is the gravitation constant, a = -p~ (dp/dT) p the

thermal expansion coefficient and d the thickness of the gas

layer. The Rayleigh number is strongly divergent at the

critical point, since both a and c diverge as the iso-

thermal compressibility. The convection also increases
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with the angle between the direction of gravity g and the

density gradient which accompanies the temperature gradient.

The parallel plate configuration is therefore the more

favorable configuration for avoiding convection.

Evidence for the existence of a thermal conductivity

anomaly near the critical point of carbon dioxide was pre-

sented by Guildner on the basis of data obtained with a

concentric cylinder method [G4] . A comprehensive study of

the thermal conductivity of carbon dioxide was made by the

author in collaboration with Michels and Van der Gulik

[M4,M5]. The experimental results, obtained with a parallel

plate apparatus, are shown in Fig. 5. It could be estab-

lished that the experimental thermal conductivity coefficient

was independent of the value of the Rayleigh number. We,

therefore, concluded that the anomaly could not be attrib-

uted to convection and that the anomalous heat conduction

satisfied the law of Fourier.

The existence of a thermal conductivity anomaly was

subsequently confirmed by Needham and Ziebland for ammonia

[N2]. The densities to be associated with their experi-

mental data were recently recalculated by Haar and coworkers

using a more up to date representation of the P-V-T surface

of NH3.t The results are shown in Fig. 6. In retro-

spect, some evidence for an anomalous behavior of the

thermal conductivity could also be detected in earlier

measurements for argon and nitrogen [S9] .

A survey of the experimental literature is presented

in Table III. It appears that the existence of a thermal

conductivity anomaly has been verified for helium IK6] ,

argon [B3,S9], xenon [ T2] , hydrogen [ R2] , carbon dioxide

[G4, L4,M4,M5] , ammonia [N2] , sulfurhexaf luoride [ L3] and

L. Haar, National Bureau of Standards, private
communication.
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Figure 5. The thermal conductivity of COp as a function of
density and temperature (T -31.00°C).
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Table III

Thermal Conductivity Measurements in the Critical Region
of Gases

Investigators Method Substance

Guildner [G4]

Michels, Sengers
[M4,M5,S10]

Amirkhanov,
Adamov [A4.V2]

Simon, Eckert
[Sll]

Ziebland, Burton
[Z2,S9]

Ikenberry, Rice
[II,S9]

Needham, Ziebland
[N2]

Golubev, Sokolova
[G5,S12]

Lis, Kellard [L3]

Bailey, Keliner
[B3]

Kerrisk, Keller
[K6]

Roder, Diller
[R2]

Murthy, Simon
[M6]

Le Neindre et al.
[L4, T2]

vertical cylinder

parallel plate

parallel plate
vertical cylinder

interferometer

vertical cylinder

vertical cylinder

vertical cylinder

vertical cylinder

vertical cylinder

vertical cylinder
horizontal cylinder

parallel plate

parallel plate

parallel plate

concentric cylinder

carbon dioxide

carbon dioxide

carbon dioxide

carbon dioxide

nitrogen

argon

ammonia

ammonia
methane

sulfurhexafluoride

argon

helium

hydrogen

carbon dioxide

carbon dioxide
steam
xenon
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steam [Le Neindre et al.] . I believe that Amirkhanov and

Adamov did not approach the critical point sufficiently

closely and that the measurements of Golubev and Sokolova

may have been affected by convection. Using a correspond-

ing state argument it can be shown that the anomalies

observed in argon, nitrogen, carbon dioxide and ammonia

are all of the same order of magnitude [S2] . The measure-

ments of Murthy and Simon for CO2 do not agree with our data,

2. Interpretation in Terms of Scaling Laws

In this and the subsequent section I shall present an

analysis of our thermal conductivity data for carbon diox-

ide. For this purpose I have selected values for a number

of parameters such as critical temperature and critical

exponents which may not be definitive. This analysis is

a preliminary one and details may be subject to minor revi-

sions .

We first recall that the equilibrium thermodynamic

properties satisfy static scaling laws. These scaling

laws follow from the hypothesis, first proposed by Widom

[W2] and elucidated by Griffiths [G6] , that the Helmholtz

free energy is a homogeneous function of its characteristic

variables. In this formulation the chemical potential can

be represented in the form

I VI
where h (x) is a function of a variable x defined by
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In these equations AJU* is a reduced chemical potential dif-

ference A/ii* = {/Li(p,T) - /Lt(p , T)}p /P , Ap* a reduced densityt> c* c
Ap* = (p-p )/p , 6 the exponent of the critical isotherm and

Ĉ  V*

8 the exponent of the coexistence curve. The function h(x)

should satisfy a number of conditions formulated by

Griffiths [G6] . I refer to the left hand side of (18) as

the "scaled" chemical potential. The principle of thermo-

dynamic scaling thus implies that the scaled chemical

potential is a function of a single scaling parameter x.

The validity of this scaling law relation has been experi-

mentally verified for a variety of gases and magnets

[M7,M8,S13] .

Fig. 7, taken from reference [M7] , shows the scaled

chemical potential, deduced from the experimental P-V-T

data of Michels and coworkers for C0? [M9] , as a function

of (X+XO)/XQ. The solid curve represents an equation for

h (x) proposed by Vicentini-Missoni, Levelt Sengers and

Green [M7]

28
1
J

with the following parameters for C00
£t

8 = 0.35 P /p = 0.3075 atm/Amagat^ c rc
-y = 1.26 XQ 0.135

T = 304.11 K E, 2.35977c . 1
p = 236.7 Amagat1 E0 =0.29684 (20a)
C £

In this report the density is occasionally expressed
in terms of Amagat units. The density in Amagat is the
actual density relative to the density of the same substance
at 0°C and 1 atmosphere. For CO,, 1 Amagat = 0.0019764 g/cm3.

25



C
O

_JU
J

XC
J

xoo0
0

Q
d

crL
J

LUa
CD o

 o
• 

IT
) C

D
•**• on en

n
 

n

II 
O

n en
ori—

 cr 
n

_i i—
U

J U
J
 

o
c

 0
0
1
-

o
• Xox

:

U
J

O
L

D
 

—
 

C
n

^
tC

D
C

N
O

O
C

M

O
O

O
O

O
O

O
O

-
^

Q
cnoncnoncncncooncnuj

n
 

n

B
0

0
+

X
O

4
-
I
X

N
 

I

oCD

O
•

LO

O
 

O
•
 

•

en 
CNJ

(X
)H 

€
0

1

o
•

o

F
ig

u
re

 
7

. 
L

o
g

-lo
g
 
p

lo
t 

o
f 

th
e
 

s
c
a
le

d
 

c
h

e
m

ic
a

l 
p

o
te

n
tia

l
h

(x
) 

v
e
rs

u
s 

(X
+

X
Q

)/X
Q

fo
r 

C
0

2 
[M

7] .

2
6



The parameter x_ is defined such that the line x = -xn

represents the coexistence curve. In preparing this report

I found some evidence that the authors may have slightly

underestimated the value of the critical temperature to be

attributed to the data of Michels and coworkers by a few

hundredths of a degree. Nevertheless, for the present pur-

pose I have continued to use the NBS equation (20) with

parameters (20a), since they provide a good representation

of the chemical potential at the temperatures and densities

at which the thermal conductivity was measured. The simple

scaling law relation is valid in a range covering approxi-

mately ±30% in reduced densities and at reduced temperatures

up to 3% above the critical temperature.

The scaling law relation (18) for the chemical poten-

tial implies similar scaling law relations for the other

thermodynamic properties. In general, an anomalous thermo-

dynamic property X(p,T) that diverges along the critical

isochore with an exponent if/

X(pc,T) = X0|e|~* (21)

can be written in the form

A*(p)X(p ,T)
— TTTp. = f Y< x > (22)
X I A _ *f- I ~ys/ p A

0 I A p |

where fY(x) is again a function of the scaling parameter x.
*The factor A~(p) accounts for any asymmetry of X around the

critical density p . In principle, this asymmetry factor

A* will be a function of both p and T. However, since the
A

validity of the power law.(21) and the scaling law (22) is

limited to a range of about 3^ in the temperature variable,

the temperature dependence of the coefficient XQ in (21),
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and consequently that of the factor A* is usually neglected,
A

as we shall do also in the present report.

As an example of (22) let us consider the isothermal

compressibility K_, which diverges with the exponent 7

'T) = r e~ 7 (23)

The coefficient r is related to the parameters in the NBS

equation (20)

(24)

when K_ is expressed in dimensionless units K£ = P K_,.

Since p2!̂  = (dp/d/Li)T, it follows from (18) that the

compressibility will scale after multiplication with p :

= f (x) = r~1{6h(x)- |h' (x)}'1 (25)
"m P

The validity of (25) is demonstrated for C00 in Fig. 8,
£

where scaled values of the compressibility are plotted as

a function of (X+XQ)/XO. The data points represent com-

pressibility values which were earlier deduced from P-V-T

data by numerical differentiation; the solid curve was

obtained by substituting the NBS equation (20) with para-

meters (20a) into the right hand side of (25). The agree-

ment between the two procedures for calculating the

compressibility gives additional support to the adequacy

of the chosen representation for the thermodynamic proper-

ties at the temperatures under consideration.

The origin of the scaling laws is associated with the

fact that the anomalous thermodynamic properties are func-

tions of a single correlation length £ [K7]. In the
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SLOPE 1.26

o 0.20°C
+ I.IO'C
v 3.80'C
a 9.00 "C

x+x,

Figure 8. The scaled compressibility p* K*/r |Ap*|~^ ^
versus (X+XQ)/XO .

10°
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hydrodynamic limit we may expect that the anomalous thermal

conductivity will be determined by the same correlation

length. This consideration led us to investigate in an

earlier study with Keyes, whether the thermal conductivity

would satisfy a scaling law relation similar to that

established for the equilibrium thermodynamic properties

[S14].

In analogy to the viscosity of binary liquid mixtures

we separate the experimental thermal conductivity X into an

anomalous part AX and an ideal part X.,

X = AX + Xid (26)

The ideal or background thermal conductivity X., is estimated

empirically by extrapolating data away from the critical

point into the critical region. For this purpose it is

convenient to consider a so-called excess thermal conduc-

tivity

X = X(p,T) - X(0,T) (27)

which measures the excess of the actual thermal conductivity

X(p,T) at density p over the value X(0,T) in the low density

limit p ->• 0 at the same temperature. Many previous investi-

gators have noted that this excess thermal conductivity X

is to a good approximation independent of the temperature

at densities up to twice the critical density [S15]. This

phenomenon is illustrated for carbon dioxide in Fig. 9,

based on the experimental data of Le Neindre and coworkers

[L4]. The data in this figure correspond to a range of

temperatures from 200°C to 700°C; no systematic trend with

temperature can be detected. Once X is established as a

function of p from data outside the critical region, the

30
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ideal thermal conductivity in the critical region can be

calculated as

Xid = X(p) + X(0'T) (28)

In the absence of reliable information the thermal conduc-

tivity near the critical point has often been identified

with the ideal thermal conductivity (28) in the engineering

literature [K8].

The experimental data of Le Neindre et al. are in good

agreement with our thermal conductivity data in the region

of overlap [L4,S2] . Thus we can use these high temperature

data with some confidence for estimating the background

term in our thermal conductivity data. Approximating X (p)

by a cubic polynomial, the ideal thermal conductivity for

CO2 is estimated as

Xid(p,T) = X(0,T) + X-jp + X2p
2 + X3p

3 (29)

with

Xj^ = 0.6678 x 10~4 W/m°C am

X0 = 1.083xlO~
7 W/m°C am2

£

X3 = 3.659 x 10"
10 W/m°C am3

The anomalous thermal conductivity AX = X-X. ,, thus deduced

from our experimental data, is shown in Fig. 10. Values

for AX are listed in Table IV for those densities and

temperatures at which the validity of the scaling laws have

been previously verified for the equilibrium properties.

These values were obtained from data presented in Table XIV

of the original publication [M5] .
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Figure 10. The anomalous thermal conductivity AX of C0r
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Table IV

Anomalous Thermal Conductivity of Carbon Dioxide in
the Critical Region*

\T-Tc
p \̂amagat ^-^

170

190

200

210

220

230

240

250

260

270

290

310

AX, W/m°C

0.20°C

0.0364

0.0590

0.0798

0.115

0.189

0.267

0.282

0.230

0.132

0.0752

0.0395

0.0240

1.10°C

0.0318

0.0490

0.0609

0.0744

0.0882

0.0957

0.0931

0.0820

0.0667

0.0525

0.0332

0.0218

3.80°C

0.0257

0.0348

0.0392

0.0428

0.0449

0.0453

0.0439

0.0412

0.0372

0.0327

0.0245

0.0180

9.00°C

0.0185

0.0225

0.0243

0.0256

0.0261

0.0262

0.0256

0.0245

0.0231

0.0213

0.0173

0.0135

p = 237 amagat.
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To investigate whether AX satisfies a scaling law rela-

tion of the form (22) we first represent the temperature

dependence of AX along the critical isochore by a power

law (21)

AX(p .T) = Ae~^ (30)
C*

The values of AX at the critical isochore, estimated by

interpolating the experimental data, are plotted as a

function of e on a logarithmic scale in Fig. 11. They do

satisfy the power law (30) with parameters

A = (0.0028 ± 0.0003) W/m°C, if/ - 0.63 ± 0.03 (31)

corresponding to t = (31.00 ± 0.04) C. The precision of

the values determined for these parameters is limited by

some uncertainty in the value of the critical temperature

to be used in the interpretation of the measurements. In

this report the thermal conductivity data are analyzed in

terms of t = 31.00 C; however, they can also be described
O

satisfactorily in terms of t = 31.04 C as shown earlier
C

[S2,S14]. The errors quoted in (31) correspond to an

estimated uncertainty of ±0.04 C in the value of t .

In analogy to (22) we now conjecture

A*(p)AX
(x) (32)

The presence of an asymmetry factor A* manifests itself in
A

a shift of the peaks in Fig. 10 to lower densities, when

the temperature is increased. This asymmetry factor may

be a complicated, but nonsingular, function of density
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(and temperature). However, we have noticed empirically

that it can be approximated by A? (p) = /o* [S14].

f> (x) (33)
A|Ap~' *"" A

In Fig. 12 we have plotted the empirical values of

p*^AX/A|Ap*|~ P as a function of (X+XQ)/XO for the para-

meters A = 0.00278 W/m°C, ^ = 0.63, j8 = 0.35, t = 31.00°C
C

and p = 236.7 amagat. The data points correspond to the

values listed in Table IV; they cover the same range in

densities and temperatures for which the scaled compressi-

bility was shown in Fig. 8. Fig. 12 confirms that the

scaled thermal conductivity to a good approximation can

indeed be represented by a single valued function of the

scaling parameter x.

In an attempt to investigate the nature of the scaling

function f.. (x) for the thermal conductivity, I shall assume
A.

that the correlation length £ can be approximated by the

Ornstein-Zernike formula [F5,M10]

(34)

where n is the number density, k^ Boltzmann's constant and
D

R a proportionality constant, usually referred to as short

range correlation length. I shall also assume that this

short range correlation length is constant throughout the

critical region. The Ornstein-Zernike formula (34) implies

v = -y/2, where v is the critical exponent for the corre-

lation length 4

(35)
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On comparing (35) with (23) and (34) we note that the

coefficient £ can be identified as

£0 = R/nkBTT/Pc = R/nkBTcP/Pc (36)

where r is again given by (24) . The Ornstein-Zernike

theory is not exact, but deviations are known to be minor.

Furthermore, since K_ in (34) will be evaluated from the

NBS equation with -y = 1.26, we obtain v = 0.63 in good

agreement with the value v = 0.63 ± 0.01 recently determined

experimentally by Lunacek and Cannell for C00 t L5] .£

If we substitute (25) into (34) and neglect the secular

temperature dependence in the expression (36) for £„, we

see that the correlation length £ scales after multiplication

with /p*:

/* f Wft = f * (x) = F~^{ 6h (x) - f h ' (x) } ~^ (37)e0iAp*rv/p * p /
The scaled correlation length can be calculated by substi-

tuting the NBS equation (20) for h(x) into (37). The

results thus obtained are represented by the solid curve

in Fig. 12. I emphasize, therefore, that the curve in

Fig. 12 was not fitted to the experimental thermal conduc-

tivity data, but obtained from an independent calculation

of the equilibrium correlation length. It turns out that

within the resolution of the experimental data the scaling

function for £ coincides with the scaling function found

empirically for AX. Thus we conclude that in the range of

simple scaling to a good approximation

f381
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which, combined with ty = v = 0.63, implies that

AX « | (39)

3. Comparison With the Mode-Mode Coupling Theory

In the early attempts to explain the thermal conduc-

tivity anomaly the enhancement was attributed to the

association and dissociation of clusters diffusing in the

presence of a temperature gradient [PI] in obvious analogy

to the increased thermal conductivity observed in disso-

ciating gases [B4]. This approach was pursued to an

admirable degree by Brokaw in a report that may not have

received sufficient attention [B5]. To obtain quantitative

agreement with experiment, however, one needs to introduce

various empirical adjustments [H4] .

An alternate but less realistic prediction X ae~^ was

provided by the mean field theories [F3,M2] . Since in

these mean field theories the correlation length £ and the

heat capacity c also diverge as e~ , this result can also

be interpreted either as X" £ or X" c . An empirical at-

tempt to relate the thermal conductivity anomaly to the

anomalous behavior of c and r\ via the Eucken factor

X/T)C tM5,S9] had to be abandoned, since it was based on

erroneous viscosity measurements.

The two approaches mentioned above have now converged.

Using a non-linear perturbation technique [Z3] , often

referred to as mode-mode coupling theory, Kadanoff and

Swift [K2,S7] predicted X a cv~^. The theory was further

developed by Kawasaki [K3] who derived for the thermal

diffusivity near the gas-liquid critical point

> k T
T£- = -̂ - (40)
" P 67TT)i-
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and a similar expression for the binary diffusion near the

critical mixing point

k T
D = -SL- (41)

The parameter r\ represents the shear viscosity which is

assumed to be independent of £ and the wave number k.

These formulas have a simple physical meaning, if one

imagines that the diffusion is determined by the mobility

of clusters of spatial extent £ [A1,K9]. According to the

Einstein relation D = kDT/£, where £ is a friction coeffi-
D

cient. If one identifies this friction coefficient with

the hydrodynamic friction coefficient £ = 67T7)£ as predicted

by Stokes' law for a spherical droplet with radius £ [L6],

one recovers eqn.(41) for the diffusion coefficient. Near

the gas-liquid critical point this formula does not apply

to the mass diffusion coefficient, but to the thermal dif-

fusivity, since the dynamical slowing down of the fluctua-

tions is determined by the diffusion of entropy.

In order to compare (40) with experiment, we note that

the theory refers to the anomalous contribution AX to the

thermal conductivity. We also remark that

«p - ̂  (I? ̂ S * S

does not diverge with a simple power law, but contains a

strongly divergent term proportional to K_ and a weakly

divergent c . We replace c by c -c whose asymptotic

behavior is the same as that of c . Thus we interpret

(40) to imply

kgT
A>- = ê T P(C~~C,,) (43)
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The subtraction of the background c from c is not a

serious limitation, since c diverges much faster than c .

However, we note empirically that this procedure enlarges

somewhat the range of temperatures where (43) is applicable.

The theoretical assumption that the viscosity is

independent of k and £ is probably not justified suffi-

ciently close to the gas-liquid critical point and

certainly not close to the critical mixing point. As a

result there exists some ambiguity at those temperatures

where T] is anomalous, whether the parameter rj should be

identified with the ideal viscosity rj. ,, with the hydro-

dynamic viscosity or with an intermediate value. The issue

is complicated by the fact that the viscosity appears in

the theory under an integral over Fourier space whose major

contributions arise from wave numbers k ~ £ [K3] . In

(43) we have identified rj with the experimental viscosity T).

This procedure is justified, since the anomalous contribu-

tion to the viscosity is negligibly small at the tempera-

tures where X was measured. The difference between ideal

and full viscosity, as measured by Kestin et al.[K5] amounts

to at most 5% at the temperature AT = 0.2° closest to the

critical temperature.

Eqn. (43) implies that AX at the critical isochore

will diverge with exponent if/ = y-v. The temperature

dependence (31) of the experimental AX is consistent with

this prediction. Using (34) and (42) we can also deduce

from (43) a relationship between AX and the scaling

function (25) for the compressibility.

*
(44)

where

42
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where

with

A,(p) = p (|f) (45b)
P

In the derivation of (45) I have approximated the factor
3/2T by a constant.

On comparing with (25) we see that relation (44) is

identical to (37) and (38) except that the simple asymmetry

factor /p is to be replaced with the more complicated

expression (45) for A, . This quantity can be calculated
A

using values for (BP/dT) deduced from the compressibility
P

isotherms [M9] and the experimental viscosities measured

by Kestin et al. [K5]; the results thus obtained are plotted

in Fig. 13. It turns out that A? is a function of both

density and temperature. However, if we want to neglect

the temperature variation of this coefficient, as we have

done at several stages, we see that on the average A, can

be approximated by /7>* . Thus the relationship between AX

and the equation of state derived empirically in the previous

section, can be obtained from the mode-mode coupling theory,

if

(a) we neglect any deviations from the Ornstein-Zernike

theory and if

(b) we approximate the asymmetry factor (45) by //o

As a last step we may ask whether (43) describes the

experimental AX also on an absolute basis. For this purpose

we need an estimate for the short range correlation length

R in (34). Chu and Lin have published some experimental
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data for £ of C0? deduced from X-ray scattering data [Cl] .

These data can be represented within their experimental

precision by (34) with R = (4.0 ± 0.2) A, as shown in

Fig. 14. In Table V experimental values are presented for

the quantity

AX

using R = 4.0 A. This quantity should be equal to unity

according to the simple prediction of the mode-mode coupling

theory. Of course, in preparing this table we introduce

some additional uncertainties, since we are intercomparing

results from four experiments [Cl, K5, M5, M9] . Nevertheless,

the results turn out to be surprisingly close to unity.

The irregularities at AT = 0.2 C are obviously connected

with the fact that the data in the wings of the peak in

Fig. 10 are excessively sensitive to small errors in the

density. The mode-mode coupling theory appears to reproduce

the experimental data to within 15% which is about as good

as one can expect from this theory.
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Table V

Comparison of the Experimental Data for CCX, with the
Mode-Mode Coupling Theory

p ^\c
Amagat \.

170

190

200

210

220

230

240

250

260

270

290

310

0.20°C

1.16

1.00

0.97

0.98

1.10

1.17

1.22

1.34

1.17

1.02

1.03

0.93

AX
P(cp-cv)

1.10'C

1.14

1.10

1.11

1.13

1.13

1.13

1.12

1.10

1.06

1.04

1.01

0.92

•̂
3. 0°C

i . in
1.19

1.20

1.17

1.14

1.12

1.09

1.08

1.05

1.03

0.98

0.88

9.00°C

1.15
1.14

1.14

1.13

1.10

1.08

1.06

1.03

1.00

0.96

0.88

0.78

= 237 amagat.
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SECTION IV

DECAY RATE OF FLUCTUATIONS

1. Thermal Diffusivity Near the Gas-Liquid Critical Point

The decay rate of the entropy fluctuations near the

gas-liquid critical point is determined by the thermal

diffusivity x = X/pc as mentioned in (2). The thermal

diffusivity of C00 is shown in Fig. 15. These plots are
£t

obtained when our thermal conductivity data are divided by

calculated values of c . These values were obtained by

adding experimental c data [F6,M11] to the values of

c -c deduced from the compressibility isotherms [M9] ,

as discussed in the previous section.

The decay rate can also be measured directly as the

line width of the central component in the spectrum of

scattered light [B6,C2,C3,M12,M13] . This method has the

advantage that the system remains macroscopically in

equilibrium during the experiment. As a result convection

can be excluded rigorously and it is possible to approach

the critical point considerably more closely than in the

thermodynamic experiments discussed above. On the other

hand, light scattering experiments become less accurate

at a distance away from the critical point, since the

intensity of the scattered light decreases rapidly away

from the critical point. In practice, therefore, the two

methods yield complementary information.

Line width measurements near the gas-liquid critical

point have been reported for carbon dioxide [M14,S16],

xenon [H5,S17] and sulfur hexafluoride [B7,B8,B9,F7,L7,M15],
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Most of the work thus far reported has been restricted to

the temperature dependence of the line width along the

critical isochore and the coexistence curve.

Values for the thermal diffusivity of C00 at p=p and
£ C

T>T , obtained by Swinney and Cummins from light scatter-

ing experiments [S16] are represented by the circles in

Fig. 16. The squares in this figure represent the thermo-

dynamic data from Fig. 15. It appears that the two sets

of data are in satisfactory agreement. The line width

measurements of Maccabee and White are also in agreement

with these results [M14,W3] .

*y—ilfThe line width will vanish as c Y where t// is the

exponent in the power law (30) for the thermal conductivity

According to the mode-mode coupling theory y-i/j should be

equal to the exponent v for the correlation length. This

prediction was in apparent disagreement with the values

•y-T// = 0.73 ± 0.02 and 0.751 ± 0.004 originally reported for

C00 and Xe, respectively [H5]. However, as pointed out in
£

a previous paper [S14], the line width measurements should

be corrected for the non-singular background term in the

thermal conductivity. We thus consider

AX .. u/v M (46)

or

AX

where x is the thermal diffusivity as given by the line

width measurements. For completeness, I have also sub-

tracted a background c from c ; this correction, however,
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Figure 16. The thermal diffusivity of C02 at p=pc as a
function of temperature. The circles represent the light
scattering data of Swinney and Cummins [S15] and the squares
represent the thermodynamic data discussed in this report.
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is unimportant at the temperatures where the light scatter-

ing data were obtained. Both equations (46) and (47) lead

to the same results, when applied to the light scattering

data of Swinney and Cummins for C00. I have a slight
£

preference for (46), since it enables us to calculate the

correction factor from our thermal conductivity data more

directly. The singular part of the thermal diffusivity,

thus deduced from the light scattering data of Swinney and

Cummins, is shown in Fig. 17. The corrected data satisfy

a power law y-if/ = 0.63 ± 0.02 in good agreement with the

prediction of the mode-mode coupling theory and with the

exponent deduced from the thermodynamic data. The experi-

mental data of Tufeu, Le Neindre and Bury [T2] enable us

to estimate the background contribution X. , to the thermal

conductivity of xenon as

Xid = X0 + Xlp + X2p2 + X3P + X4P (48)

with \1 = 5.909 x 10~6 \2 = 3.817 x 10~
9

X3 = -1.070 x 10~12 X4 = 0.5904 x 10~
15

where X is expressed in W/m°C and p in kg/m . Using this

estimate, Swinney and coworkers [S17] have recently shown

that the exponent y-ty observed for xenon changes from the

uncorrected value 0.75 to a corrected value of 0.64 ± 0.02.

Strictly speaking, the values thus deduced for the

exponent -y-i// may only be identified theoretically with the

exponent v of the correlation length, if the temperature

dependence of the parameter rj in (40) can be neglected.

At the temperatures, where the light scattering measure-

ments were made, the anomalous contribution to the viscosity

may not be completely negligible. If we multiply the line
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deduced from the light scattering data of

Swinney and Cummins.
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width data of Swinney and Cummins for C00 with the hydro-
^dynamic viscosity r\, estimated by extrapolating the data of

Kestin et al. as a function of temperature, and then deter-

mine the exponent y-if/, we see that its value reduces even

further from 0.63 to 0.61.

The temperature dependence of the thermal diffusivity

of SFg has been the subject of some controversy since

Benedek and coworkers [B7] originally reported an exponent

y—i]/ = 1.26. This value would imply a non-divergent or

weakly divergent thermal conductivity, in contrast to what

one would conclude from the thermal conductivity meas-

urements of Lis and Kellard [L3,S2]. Subsequent redeter-

minations of this exponent by various investigators have

yielded significantly lower values of this exponent

[B8,B9,M15]. The most recent data show that, after correct-

ing for background effects, the value of this exponent for

SF,. is the same as that observed for other gases [F7,L7] .

2. Diffusion Near the Critical Mixing Point of

Binary Liquids

Thermodynamic measurements of the diffusion coefficient

in liquid mixtures did show that the binary diffusion coef-

ficient vanishes at the critical point [C4,H6,K10,Kll,L8] .

However, with the traditional thermodynamic methods it is

difficult to measure the diffusion coefficient very close

to the critical point with adequate precision. Neverthe-

less, the data of Claesson and Sundelbf [C4] and, to a

lesser extent, the data of Haase and Siry [H6J for n-hexane-

nitrobenzene do indicate that the temperature derivative

(dD/dT) tends to become infinite when the critical pointo
is approached. This observation implies that the exponent

y-ip in the power law

D-.e"*'̂  (49)
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is smaller than one. Therefore, one could have suspected

already from the data of Claesson and Sundelbf [C4] that

the Onsager coefficient L in (7) diverges, since even in

the Van der Waals theory (SjU/Sc)™ „ cannot vanish with an
•!• » "

exponent smaller than one. For some reason, however, this

conclusion was not drawn by the original investigators

[HI, H6,S18] .

All current more detailed information concerning the

temperature dependence of the diffusion coefficient near

the critical mixing point has been obtained from measure-

ments of the decay rate of the concentration fluctuations

with light scattering [M16,M17] . Such measurements have

been reported for isobutyric-acid-water by Chu and co-

workers [C5], for n-hexane-nitrobenzene by Chen and

Polonsky-Ostrowsky tC6], for phenol-water by Goldburg

et al. [B10,P2], for cyclohexane-aniline and isooctane-

perfluoroheptane by Berge and coworkers [Bll,B12,D7,V3J .

Measurements of the decay rate of the concentration

fluctuations in 3-methylpentane-nitroethane have recently

been obtained in our laboratory [C7] .

The data have been customarily fitted to a power law

(49). A survey of the values reported for the exponent

y-TJj at T >T is presented in Table VI. For the gas-liquid
l*>

phase transition it was essential that the decay rate

be corrected for a non-singular background term in the

thermal conductivity. There is, of course, a priori no

reason to expect that a similar background effect would

not be present in the decay rate of the concentration

fluctuations. In analogy to the gas-liquid phase transi-

tion this effect would be determined by the ideal contri-

bution to the Onsager coefficient L in (7). Just as for

the gases such a correction would decrease the value of
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i IT
p
»
-*N

—
 '

S0-PCO>
-,

COCOrHOX
I

-pp^
^

CMOO+
1

COCDOCMO
•

O+1COt>o0T3•HX0•HQG0,QrHCO
C

J

CDrHCO
1 —

 '.

rHCO

•P0>>0GG•His

CMOO+1ĈD
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the exponent y-ty. Furthermore, the assumption that r) in

(41) is independent of temperature is also not justified.

The existence of a viscosity anomaly has been well docu-

mented and the anomalous contribution to the hydrodynamic

viscosity is not negligible at the temperature where most

light scattering experiments have been obtained. If one

assumes that the temperature dependence of r\ is equal to

that of the experimental hydrodynamic viscosity, one finds

a correction which also reduces the value of the exponent

y-fy. The latter point was also made by Berge and Dubois

[B13]. Further research is needed to make a quantitative

assessment of the corrections due to background effects

and to the anomalous temperature dependence of the viscos-

ity.
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SECTION V

CONCLUSIONS

The shear viscosity of binary liquids exhibits an

anomalous temperature dependence near the critical mixing

point which is close to logarithmic. Existing experimental

data do not enable us to discriminate between a weak power

law divergence or a cusp-like behavior. The existence of

a weak anomaly in the viscosity of gases near the gas-

liquid critical point appears probable, but has not yet

been demonstrated conclusively.

In order to deduce the asymptotic behavior of the

transport properties, it is essential that all transport

properties be corrected for non-singular background contri-

butions .

The anomalous thermal conductivity near the gas-liquid

critical point satisfies scaling law relations similar to

;hose previously established for equilibrium properties.

It appears that the thermal conductivity anomaly can be

to a good approximation related to the equilibrium correla-

tion length.

The mode-mode coupling theory for the dynamical slow-

ing down of the fluctuations is in substantial agreement

with experiment at those temperatures, where the anomalous

contribution to the viscosity is negligibly small.
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