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EFFECTS OF LEADING-EDGE CAMBER ON LOW-SPEED

CHARACTERISTICS OF SLENDER DELTA WINGS
By W. H. Wentz, Jr.
SUMMARY

Wind tunnel studies have been conducted to determine the
effects of leading-edge camber on the low speed aerodynamic
characteristics of a thin, sharp-edge 74° delta wing. Tests

—were—carried~out~in“the"Wichita‘Sféfé‘UﬁIV€f§IfyH7T“B§_1D'“Wiﬁa—"
tunnel, at a Reynolds number of 1.7 x 106. Data obtained
include six-component force measurements, pressure distributions,
and flow visualization patterns using oil flow, tufts, and water
vapor. Conical and constant percent chord leading-edge cambers
were tested, as well as a constant percent chord leading-edge
flap. Results show that leading-edge camber near the apex
is effective in controlling the destabilizing tendency of
slender delta wings at high lift coefficients. Effects of
;ideslip are discussed in terms of the leading-edge vortex
low. : .

INTRODUCTION

The necessity of thin low aspect ratio wings for aircraft
with efficient supersonic cruising performance is well established.
However, an important requirement of any civilian supersonic
aircraft is the ability to perform with reasonable efficiency at
subsonic speeds for approach, holding, and takeoff and landing
operations. Conventional subsonic lifting surface theories such
as those of Multhopp, Lamar and Wagner (Refs. 1, 2 and 3) are
available for predicting the subsonic performance for cases of
fully attached flow on cambered or uncambered wings. For thin
wings operating above design angle of attack, leading-edge
separation occurs and upper surface vortices appear. These
vortices are responsible for large changes in the aerodynamic
forces and moments produced by such wings.

Recently, Polhamus developed a very accurate technique for
predicting vortex lift and associated drag for sharp-edge flat
plate wings (Ref. 4). This technique is based upon consideration
of the relationship between the leading~edge suction force and
the leading-edge vortices. The technique has not yet been
successfully applied to cambered surfaces, since the lift and
drag components associated with the vortices (components of the




'leading-edge suction force) are strongly dependent upon the
location and strength of the vortices. In fact, the nature of
leading-edge vortices developed by slender wings with leading-
edge camber has not been previously investigated in detail.

The purpose of the present studies is to determine the
effects of cambering on the forces and flow fields associated
with thln, slender wings at low speeds.

Models consisted of thin delta wings having’ 74° leading-
edge sweep. Flat plate, conical camber and constant percent
chord camber surfaces were tested, as well as 15 percent chord
leading-edge flaps, with deflections up to 60°.  Tests were
conducted at a Reynolds Number of 1.7 x 106, pitch angles
from -10° to +40°, and sideslip angles from -25° to +25°.

It was felt particularly important to carry out detailed
flow visualization and pressure studies along with force
measurements, in order to develop the best possible under-
standing of the leading-edge flow .phenomena associated with
cambered highly swept surfaces.

SYMBOLS

, The longitudinal data are referred to the wind axes
and lateral stability data are referred to the body system
of axes. The origin for these axes is the moment reference -
position of 30 percent of the mean aerodynamic chord.
Dimensional quantities are given in both International (SI)
Units and U.S. Customary Units. Measurements and calculations
were made in the U.S. Customary Units. Conversion factors
between SI Units and U.S. Customary Units are presented in
reference 5. The symbols are defined as follows:

a wing local semi-span, feet.

b wing span, feet.

c wing mean geometric chord, fczdy/w1ng area.

él - airfoil section lrft coefficient, section 1lift/gsS.

Cy wing rolling moment coefficient, rolling moment/gSb.

Cr, wing lift coefficient, 1ift/gs.

Cp wing drag coefficient, drag/gs.

Cbo wing drag coefficiest at zero lift, drag/gsS.

Cy wing pitching moment coefficient about .30&, moment/gSc.



C : wing yawing moment coefficient, yawing moment/qgSb.

CNy, local longitudinal loading, obtained by spanwise
Cp integration.

Co pressure coefficient, (p - p_)/4.

CY wing sideforce coefficient, sideforce/gs.

q dynamic ‘pressure, force/area.

X chordwise coordinate, measured from model trailing
edge positive forward. .

Y spanwise coordinate, measured from model centerline
positive to right.

a angle of attack with respect to flat portion of all wings, .

i —.—— — degrees. -———— - —-- —ooTTsooTmeTITT oo o ST T
8 angle of sideslip, degrees.
S leading~edge flap deflection normal to hinge line, degrees

EXPERIMENTAL INVESTIGATIONS

Wind Tunnel Models and Instrumentation

Three design configurations of the wing were chosen; a flat
plate delta for baseline data, a wing with constant percent camber
at each airfoil station, and a second cambered wing with conical
camber. ' All models have the same planform; a delta wing with 74°
leading-edge sweep, and a 76.2 cm (30 in.) centerline chord. All
models were fabricated from 0.635 cm (0.25 in.) aluminum plate
with sharp leading and trailing edges. - Models were fitted with
tubing for static surface pressure measurements. The models,
pressure tap locations and mounting sting are shown in figures 1
through 6.

The "flat plate" model is the basic 74° leading-edge sweep
flat plate delta. The "apex camber" model is composed of NACA
230 mean lines designed for a section lift coefficient of ¢; = 0.5
(Ref. 6), with the 74° delta planform. The resulting surface
has maximum camber at the apex, tapering to zero camber at the
wing tip. The "conical camber" model has the same planform, with
cambered leading-edges generated as elements of the right circular
. cones, emanating from the apex. This results in conically
cambered leading edges. The camber at the mid semi-span station
was selected to match the camber of the apex camber model at mid
semi-span. Additional tests were conducted with the flat plate
model fitted with 15% chord leading-edge flaps.

v A 12° streamwise flap deflection was selected for testing
to match the camber of the apex camber model (Fig. 6). Stream-
wise deflections of 7° and 17° were established as minus and
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plus 5° from the nominal value, and a 35° value was added to
obtain ‘a setting which more nearly matched the leading-edge
slope of the apex camber model. Because of the large sweepback
of the flap hinge line, the deflections normal to the hinge
line differ considerably from the streamwise angles, as
indicated in Table 1.

Table 1 - Leading-Edge Flap Settings

§ streamwise § normal to hinge
7° 12°
12° 24°
17° 36°
35° ‘ _ 60°

Experiments were conducted in the Wichita State University
7- x 10-ft. low speed, closed circuit wind tunnel. Tests were
conducted at a dynamic pressure of 1916 newtons/me er2 (40 psf),
which corresponds to a Reynolds number of 1.7 x 10° based upon
mean aerodynamic chord. Six component force data were obtained
from all the models, employing a 2. 54 cm (1") dia. internal sting
balance.

Recent studies by Blackwell (Ref. 7) have shown that for
high aspect ratio wings in transonic flow, the location of the
transition point may have a strong effect on shock-induced
separation point, and will consequently alter force and pressure
characteristics significantly. These studies have shown the
importance of properly locating trip strips when shock-induced
separation is to be simulated. Unfortunately, these studies
do not clarify the problem of transition f1x1ng on wings with
leading-edge separatlon.

Tran51tlon studies more appropriate to hlghly swept delta
wings have been carried out in the transonic regime by Stahl,
Hartmann, and Schheider (Ref. 8). These authors have suggested
that significant. Reynolds number effects are to be expected at
all Mach numbers, even though the1r studies of Reynolds number
effects were restricted to Mach numbers near unity. Because
-the present tests were carried out at low Mach numbers, it was
felt essential .to explore the questlon of tran51tlon fixing
during the present experiments.

To accomplish thlS purpose, the models of the present
tests were fitted with trip strips along the 65% semi-span
locations. Prellmlnary force measurements were conducted at a
series of tunnel speeds, with and without transition strips
on upper and lower wing surfaces. The results, presented in
detail in reference 9, indicate no substantial changes due to
Reynolds number or transition position.



For- the purposes of the present tests it was felt that
Reynolds number and transition point location were not important
unless they were responsible for significant changes in the force
and moments produced by the wings. Furthermore, -the transition
strips do produce local effects on surface pressure fields, due
to the contour "bump" of the transition strip. It was therefore
deemed best to test without transition fixing, and all subsequent
tests were conducted without transition strips.,

Data Reduction

The force data from the tunnel was reduced employing the
IBM 1130 computer of Wichita State University, and applying
_ the usual wind tunnel boundary .correctioens.---Details—are given~
in Appendix B (Ref, 9). The moments were resolved about the
30% mac location (see fig. 2), using a length of 2/3 centerline

chord as the mean aerodynamic chord.

Results of Force Tests

Lift, drag, and pitching moments. - The basic longitudinal
force characteristics of the flat plate, apex camber and conical
camber wings are shown in figures 7 through 15, It should be
noted that the zero angle of attack reference for all models
of this study has been selected as the tflat plate portion of
the wing., This is contrary to the usual practice for high
aspect ratio wings, but was deemed advisable in this case for
two reasons. First, the amounts of camber tested are substanti-
ally greater than that required for optimum supersonic cruise,
and would probably be achieved through variable geometry on a
practical désign. Second, leading-edge cambering of low aspect
ratio wings does not produce as much shift in zero lift angle
as would occur on low sweep high aspect ratio wings. (See
Ref. 10).

Figures 16 and 17 compare the lift and drag results of
the cambered models with the experimental results of the flat
plate delta wing. Theoretical 1lift for the flat plate model,
based vpon Polhamus' leading-edge suction analogy (Ref. 4) is
also shown on figure 16, and a theoretical induced drag based
upon the leading-edge suction analogy is shown in figure 17,
It is seen that the suction analogy is quite accurate for
predicting 1lift and induced drag for uncambered deltas, as
reported earlier (Refs. 4, 11, and 12).

At moderate angles of attack, the conical camber and apex
camber deltas show less lift than the flat plate. Since the
theoretical 1lift curve slope is 1ndepen6ent cf camber, the
expected ACL due to camber would be glven by:




Aa (Equation 1)

Where Ao is the change in zero 1lift angle.. The potential 1ift
curve slope from computer studies (Ref. 2) for these planforms

is: dCy/da = .0254 per degree. Using equation 1 and the
experimentally observed changes in angle of zero lift, "expected"
changes in potential lift may be determined. These are shown in
Table 2, along with experimental results.

Table 2 - Effects of Camber on Lift

Model Experimental Experimental Experimental Expected
Zero Lift C;@l0° ACL@lO° Potential
Angle * ACyr,@10°
Flat ' ,
Plate 0° 0.34 (baseline) (baseline)
Apex
Camber +0.8° 0.28 -0.06 -.02
Conical :
Camber +0.8° 0.30 . -0.04 -.02

* with respect to flat plate portion of wing.

Thus the observed 1lift reductions at 10° angle of attack
are substantially greater than would be expected from potential
flow considerations. Evidently leading-edge camber reduces the
vortex lift as well as the potential 1lift. Furthermore, vortex
1lift has a significant influence even at moderate angles of
attack, for cambered highly-swept surfaces.

At high Cp's, the drag polars of the cambered models
exhibit substantial reductions in drag due to lift compared to
the flat plate. This is illustrated by the values given in
Table 3. ’

Table 3 - Effect of Leading-Edge Camber on Drag

Model Cc Cp Drag Reduction
Flat Plate 1?3 0.69 (baseline)
Apex Camber 1.2 0.61 12%
Conical Camber 1.2 0.64 7%

The reductions in drag shown are attributed to recovery of a
portion of the thrust component of leading-edge suction as a
direct consequence of cambering.



The slope of the flat plate Cy - Cy, curve (fig. 9) is
about -.10 at low Cp, values, indicating an aerodynamic center
location of about .40c. The curve!indicates a less negative :
slope at Cp's above 0.4, reflecting a decrease in static stability.
This is substantially below the stalllng Cy, value of 1.4.

The aerodynamic center locatlon at low Cp's and the
destablllzlng trend at higher Cp's are both typical of slender
delta wings (Ref. 13). Examlnatlon of figure 18 reveals a very
strong influence of camber near the apex (constant percent chord
camber) on pitching characteristics. The conically cambered
model, on the other hand, has pitching characteristics nearly
identical with the flat plate delta, prior to stall. The apex
camber is apparently quite effective in overcoming the pre-
__Stall destabili21ng _tendency. _The importance of apex. geometry
in slender wing aerodynamics has been observed in previous
studies of delta and double-delta wings (Refs. 12 and 14).

Leading-Edge Flap. - Based upon the favorable effects of
apex camber versus conical camber, the flat plate model was
modified to have a leading-edge flap with constant percent
chord rather than either a constant chord or a "reverse taper"
flap which would have approximated conical cambering. The
constant percent chord flap approximates the camber of the
NACA 230 mean lines utilized on the apex camber model.

In order to understand the effects of camber on angle of
zero lift, the leading-edge flap configurations were analyzed
theoretically utilizing the modified Multhopp computational
routine in cooperation with Mr. John Lamar of NASA Langley
Research Center (Ref. 2). It should be noted that the
Multhopp method is only approximate for flapped wings, since
the method does not account the discontinuity in surface slope
at the flap hinge line. The results of the analysis are com-
pared with experiment in Table 4.

Table 4 - Effect of Leading—~Edge Flaps on Zero Lift Angle
Zero Lift Angle

Sn Theory ' Present Tests
0° 0° 0°

12° 0.08° 0.3°

24° 0.15° 0.2°

36° 0.21° 0.4°

60° 0.44° 0.8°

The agreement between experiment and theory is reasonably good,
with less than 0.4° maximum difference. It should be re-emphasized
that these angles are measured with respect to the slope of the
unflapped portion of the wing surface.




Figures 19 through 21 show the comparisons of lift
curve, drag polar and the pitching moment curves of the apex
camber wing with the flat plate wing with various amounts of
leading-edge flap deflection. It is seen that the wing with
9 = 36° behaves much like the apex camber delta, demonstrating
that the performance and stability benefits of apex cambering
can be achieved with rather simple variable leading-edge
geometry.

Effects of Sideslip. - The variations of side force,
rolling moment and yawing moment coefficients with sideslip
angle at various angles of attack are shown in figures 22
through 24.

The curves are dgenerally linear at low angles of attack
(up to 10°) and become increasingly non-linear with increase
in angle of attack.

The flat plate delta shows a large rolling moment at high
angles of attack and sideslip, a result of the asymmetries in
vortex strengths and positions. For cases in which the side-
slip angle exceeds the complement of the leading- edge sweep-
back angle, the downwind "leading" edge becomes, in fact, a
"trailing" edge and would not be expected to contribute to
the vortex strength. Yawing moment and side force coefficients
remain 'small. With cambered leading edges, substantial side
force and yawing moments are developed as a result of forward
facing area upon which thrust components of vortex—induced
suction can be effective.

Recent work by Davenport and Huffman (Ref. 15) presents
an analytical approach for predicting aerodynamic moments
in sideslip, based upon the leading-edge suction analogy.
This method appears quite promising, but has not yet been
extended to include the effects of leading-edge camber.

Flow Visualization Studies

Composite Flow Field Results.- For analyzing complex flow
field sItuations, a variety of experimental wvisualization
techniques are available. Because each of several techniques
has been found valuable for providing a particular type of
information, three techniques were employed in the present
investigations. A composite of typical results is shown in
figure 25, along with a sketch of the flow field vortex sheets
and typical streamlines. Interpretation of the flow evidence
proceeds as follows:




a) The locus of minimum pressure points is determined
from pressure distribution plots. These points
correlate with the primary vortex core centers.

b) The water vapor traces give the locus of the primary
vortex cores. Vortex bursting will be evidenced by
an abrupt increase in core diameter.

c) Primary and secondary separation lines are readily
apparent in the oilflow patterns, being marked by
a pair of dark lines emanating from the apex.

d) The tuft patterns provide the best information as
to reattachment of the leading-edge vortex sheet.
This is evidenced by an abrupt change in directiodn
— — — - -.——of the_-tufts; the tufts-inboard--are nearly -streamwise------—- —-—- —- -
and those outboard of reattachment have a strong
spanwise component.

The paragraphs which follow give detailed interpretations of
the various visualization results.

Tuft Photos at Zero Sideslip. - Tuft photos of the upper
surface flow patterns at zero sideslip are shown in figures 26
through 33. 1In this series the flat plate, apex cambered, and
conically cambered models may be compared directly. At 10°
angle of attack, the flat plate model shows a well-developed
vortex flow with full reattachment inboard of the vortex. This
is indicated by the steady, streamwise-pointed tufts in the
center region of the wing, and the tufts which show an outboard
deflection from about the 60% semi-span position outboard. The
outboard deflection is caused by the velocities induced by
leading-edge vortices. The apex camber model, on the other
hand, appears to have attached flow up to about 30% chord with
evidence of a separated flow aft of this position. From these
photos, it appears that the apex camber model has no apex
leading-edge separation at angles below 30°. This is in con-
trast to the flow patterns on the flat plate delta.

The conical camber delta at 10° angle of attack appears
to have attached streamwise flow along the drooped extreme
tip regions, with vortex flow developed inboard.

Oilflow Patterns at Zero Sideslip. - The surface flow
patterns at zero sideslip are shown in figures 34 through 40,
These patterns are characterized by a pair of lines emanating
from the apex which are indicative of the secondary separation
which occurs outboard of the leading-edge vortex core location.
At o = 10° the flat plate and conical camber models exhibit a
distinct secondary separation line, while the apex camber model




has a primary separation line near the apex (flow is attached
at the apex leading edge), and a faint secondary separatlon
line along the aft portion of the wing where vortices are
present.

At higher angles of attack, the flat plate and conical
camber model flow patterns retain their similarity, indicating
that the basic leading-edge vortex patterns are not affected
greatly by camber near the wing tip.

The separatlon lines for the apex camber model illustrate
an interesting "kink" which appears at 20° angle of attack and
is present up to 30° angle of attack. This peculiar behavior
is believed to occur in the following way. The flow is attached
at the apéx leading edges, so that no vortices are formed in
this region. As the flow follows the highly cambered apex
region, primary separation takes place on the curved surface
and the resulting separation stream-surface flows. over the
Center portion. of the wing, without reattachment.

The aft portion of the wing, being only very slightly
cambered, exhibits separation at the edges at low angles and
a pair of leading-edge vortices is formed, emanatlng from about
the 50% chord location. These vortices.pump air into the wing
center section and induce reattachment of the flow beneath the
vortices. The aft panel vortices are therefore presumed to be
responsible for the kinked separation lines.

Water Vapor Patterns at Zero Sideslip. - The water vapor
patterns shown in figures 41 through 47 were obtained by
passing saturated steam through a 1/4" diameter copper tube
attached to the models and fitted with a "tee" nozzle so that
the steam was injected near the vortex cores. If the steam
is injected very close to the center of the core, it becomes
entrained and follows the core. Steam 1njected outside the
core will be induced to coil about the core in a helical
pattern. Thus after some preliminary experimentation, it was
possible to determine a single location which gave satisfactory
vortex core traces over the desired angle of attack range for
the flat plate delta. The same technique was utilized for the
cambered models, but with less satisfactory results. For these
models the vortices do not increase in strength with distance
from the apex in the same regular manner (theoretically linearly)
as the flat plate delta, and vortex core definition becomes more
difficult.

On the apex camber model, for example, at angles of attack
below 20°, the vapor emitted was not entrained along. the leading
edges and hence does not mark a vortex type flow.
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Comparison of the flat plate and conical camber model
patterns, however, shows that they have essentially the same
leading- edge vortex locations throughout the angle of attack
range prior to bursting. Vortex “burstlng" or "breakdown" is
characterized by a rapid increase in core diameter and rapid
turbulent diffusion within the core downstream from the bursting
point. As a consequence, the water vapor may evaporate a short
distance downstream from the bursting point,. depending. upon
relative humidity and water vapor densities. Werle, (Ref. 16)
has published a beautiful collection of photographs 1llustrat1ng
bursting phenomena as observed using colored dye traces in a
water channel.

At a = 30°, (Fig. 45) the flat plate model shows no
-burstlngr»fThe -apex._camber_model_exhibits bursting of both
rlght and left panel vortices, at about the 75% chord location, -
and the conical camber model shows evidence. of burstlng on the

right hand panel only.

Initial vortex bursting occured between 30° and 35° on the
flat plate model. From the force data (fig. 7) the maximum
CL occurs at o = 35.5° to 37.5°, indicating a bursting angle
in this range of values. From reference 12, the expected value
of o at burstlng would be 36°

Thus the force data correlates very well with previous
tests, but the steam photos indicate bursting at a sllghtly
lower angle. It is believed that this discrepancy is. due to
increased tunnel upwash angle at the reduced dynamic pressure
of the steam photo runs. Because of the rapid evaporation of
the water vapor at high velocities, it was necessary to: operate
the tunnel at a greatly reduced speed (q = 67 newtons/m2) for the
steam photos. In any case, the amount of cambering utilized on
the models of the present investigation was not responsible for
a significant change in the initial vortex.bursting boundary.

Effects of Sideslip on Vortex Patterns. - The effects of
sideslip on the vortex flow patterns are .illustrated by the
series of tuft, oil flow and water vapor photos shown in
figures 48 through 56. These tests were conducted at an
angle of attack of 20° on all models, which corresponds to lift
coefficients in the range of 0.7 to 0.8 for the models. tested..

The oil flow patterns in thls series for the flat plate
model were obtained subsequent to cutting the model leading-
edges to form nose flaps. The flaps were fitted with a set of
brackets to permit zero camber, but the flap apexes had been
removed to permit- nose droop. Thus, the planform geometry was
compromised slightly for this series, by the "notched" apex.
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A general observation which is noted from examination of
‘the oil flow photos is that the patterns developed on the
flat plate and conical camber models are quite 51m11ar, while
the patterns developed by the apex camber model are unique.
For all. models, as the yaw angle is increased, the secondary
'separation lines move toward the leading edge on the downwind
edge and away from- the . leadlng edge on the upwind edge. At 30°
sideslip. condition, .the vortex formed by the upwind edge is now
located at nearly the mid-span location, while the downwind
edge vortex does hot produce sidewash on the upper surface, as
evidenced by examination of the o0il streak and tuft photos. The
water vapor photos, on the other hand, show rather clearly that
the downwind vortex is still present, but located well outboard
of the wing leadlng edge, in a dir ction nearly streamwise. The
"downwind leading edge” has in fact become a "trailing edge", as
a result of the high 51desllp angle.

A The~water vapor photo of the flat plate model at 10° side-
slip (fig. 54) illustrates how sideslip influences bursting.
Vortex bursting occurs at a lower angle of attack on the upwind
edge with its lower effective sweep. Vortex bursting is delayed,
on the other hand, on the downwind edge where the effective
sweep has been increased. These results are in agreement with
the observations of Hummel (Ref. 17).

The large vortex movements and changes in vortex strengths
and in angle of attack for bursting noted above would be expected
to give rise to strongly non-linear aerodynamic force and moment
data as discussed in the section on force measurements.

With the apex camber model water vapor photos of this series
a difficulty occurred which had been encountered with the pitch
series for this model. The water vapor nozzle outlet does not
always coincide with the vortex core location. This is
illustrated by comparing the tuft and water vapor patterns
of figure 48 and figure 54. The tufts indicate a vortex on
the right w1ng panel, but the water vapor is streaming to the
left. This is a result of the downwind vortex originating at
the apex, while the other vortex seems to originate at near
mid chord. :

The characteristics of the flow fields in sideslip may
be summarized as follows:

1) The vortices tend to assume a more nearly streamwise
direction.

2) Bursting occurs asymmetricaliy in sideslip, with the
upwind edge being more susceptible to bursting.

12



3) 'Conical cambering has little effect on the vortex
field in sideslip, while apex cambering tends to
~give rise to premature bursting.

Cross-Flow Water Vapor Patterns. - A few photos were taken
‘'0f the cross-flow .vortex patterns. These were obtained by
mounting a camera behind the wing trailing edge, and illuminat-
ing the water.vapor with a slit of. light perpendicular to the
vortex cores. By successively positioning the light at various
chordwise stations, the vortex development may be observed. A
comp051te of such photos for a single angle of attack is shown
in figure 57.

T~ surface Pressuré Distributions — -

' Zero Sideslip Case. - The pressure distributions over the
wings at angles of attack up to 40° with zero sideslip are
shown in figures 58 through 69. The flat- plate wing exhibits
the upper surface suction peaks located slightly inboard from
the leading edges, as is characteristic of vortex flows. It
is seen that the conical camber wing behaves very much like
the flat plate wing. Evidently the leading-edge vortices,
once formed, are not influenced greatly by conical camber. 1In
contrast to this, the apex camber model exhibits a large re-
duction in suction near the apex, and a corresponding aft
shift of the longitudinal pressure peak. All the wings exhibit
two spanwise pressure peaks at the rear chordwise stations.
This is attributed to the formation of a secondary vortex very
close to the leading-edge.

Longitudinal Load Distribution. - Spanwise pressure
integrations on the flat plate delta wing were carried out at
each chordwise station to obtain a local normal force coeff1c1ent
defined in the following way:

a
A J a ACp dy
CN = . (Equation 2)
L b/2

This integration is carried out numerically by summing the
pressure difference over the panels in the spanwise direction:

n
Cn, = .z A Cpy 8(2y;/b). (Equation 3)
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The results of these integrations are presented in figure 70.
These results are compared to results from other sources (Refs.
18 and 19) at a = 20° in figure 71.

" Integrated Force Data. - Total pressure forces were also
obtained by Cp integration over the entire surface. Figures 72
through 74 show the comparisons of the integrated pressure
forces with the measured force data for the flat plate. For
these comparisons, the angle of attack and drag coefficient
have been corrected for wind tunnel wall effects. (See Appendix
C, Ref. 9, for details.) The lift and drag due to lift compare
quite favorably. The pitching moments calculated from pressure
integrations compared quite favorably with measured pitching -
moments, with the exception of one point near the vortex burst-
ing angle of attack.

Effects of Sideslip on Pressure Dlstrlbutlons.,r Pressure
distributions for the three wings in sideslip are shown in .
figures 75 through 77. As expected, the pressure peak of the.
leading wing panel moves inboard and the pressure peak of the
trailing wing panel moves outboard, resulting in an asymmetric
loading. At large sideslip angles the balance housing on the
pressure side of the wings is responsible for a slight buildup
of pressure on the upwind side and reduced pressure on the down-
w1nd side of the housing.

Combined Flow Field Results

Results from oil streak patterns, water vapor patterns
and pressure distributions are combined in figures 78 through
80, This series illustrates how the suction pressure peaks
are located beneath the vortex cores, and the secondary separa-
tion lines are located just outboard of the vortex cores.

CONCLUSIONS

1. Leading —edge vortices play a dominant role in the rorces
developed by slender wings with camber as well as uncambered
wings.

2. While it is not yet possible to predict camber effects

quantitatively from a theoretical standpoint, the qualitative

effects are predictable from observations of the leading-edge

vortex development and particularly the positions of the
leading-edge vortices as a function of angle of attack, angle
of sideslip and camber of the wing surface.

14



3. Leading-edge camber has only a slight effect on angle of
zero lift and total lift for slender sharp-edged wings at high
angle of attack. Leading—-edge camber does produce some re-
duction in drag due to 1lift at high angles.

4. Slender wing pitching moment characteristics are strongly
influenced by leading-edge camber. Camber near the apex is
especially effective in alleviating the destabilizing tendency
Common to uncambered slender wings at high angles of attack.

5. Pitching moment and drag improvements with a simple hinged
leading~edge flap with constant percent chord were similar to
those achieved with a curved apex cambered surface.

Aeronautical Engineering Department
Wichita State University
Wichita; Kansas
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(a) Model and Support Stand

(b) Water Vapor Vortices

Figure 1

- Model Installation
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Figure 3
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- Side Force Characteristics

(b) Apex Camber Model |

Figure 22
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-~ Rolling Moment Characteristics
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- Yawing Moment Characteristics (Continued)

-Figure 24
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Figure 24
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Yawing Moment Characteristics (Concluded)



Figure 25
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- Composite Analysis of Flow Field.
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Conical Camber

Apex Camber

Flat Plate

a = 20°

0il Flow Patterns,
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Figure



63

=P ’
0SC suxajjed MoTd TTO - . LE 2anbta




00€ = © ‘suze3zjzed MoTd ITO - 8¢ =2anbta

Iaque) TeOoTuod Toqure) xody 23eTd 3eTd

64



65

oGE = © ‘suxezjzed moTd ITO - 6€ =2iInbta

Iaque) TeOTuoD aoque) xady 93eTd 3IeTld




W 0 m.—.HHmn_. e MO® 21N mv_
) b
.-m

Isqure) TeOTuUod
Io D xad
que Y

o3e1d 3IeTa

66



00T = ® ‘suxejjeg xodep x=3eMm - TIF 2Inbtg

67

.HwQE.m“ ) B OTUO ok 02_:@ xm; . w._ e u— 12
._” b U U ¢




oST = ® ‘suxojjed xodep I93BM - gz oInbTg

Iaqure) TeOTUOD Toque) xady 23®eTd 3eTd

68



69

00Z = ® ‘suxsjjeg iodep I93eM - ¢y oInbTg

Iaquied TeOTUOD Joque) xody o3eTd 3eld




0GZ = © ‘suxejjeg xodep xojen - PV sanbtg

Isque) TeOTUOD Toqure) xody °23eTd 3eTd

70



71

00€ = © ‘suzsjzeg zodep xojzeMm - SV oanbra




0oGE = © “‘suxajljzeg xodep a93eM - 9 2anbTg

Joque) TeoTuo) Toque) xady o3eTd 3eTd



73

00F = © ‘suis
suxojzjed xodep Ia3eM - Ly 2anbt
Td

s U =]




Iaque) TeoTuod

00T

9

‘002

0

‘suxo3jled 3ing -

Toque) xady

8%

2anbTa

23®T1d

3eTd

74




002 =9 ‘o0z = © ‘surelreqd 3IInL - 67 osanbtg

75

Iaque) TeoTuod Joque) xody 23eTd 3eld




00 =9 ‘5,07 =10 ‘suxejljeg 3yny - 0§ oanbrtg

Joaqure
qued TedTuod Jaque) xady @31eTd 3eld

76



77

4

OH"& 7 =
o 00C B suio3ljed MOTd TTIO - 1S 9anb1a

O . U mﬂ..m




00Z = 9§ ‘00T =P ‘suxeljed MOTJ TTO - 9 92I1Inbta

Ioqure) TeROTUOD Toqure) xady o3eTd 3eld

78



79

o0E = 8§ ‘.0z = o ‘Sursljeq Mmold ITO0 - €G 2InbTg

Iaque) TeoTuoD Toque) xady 23eTd 3eTd




‘suxsjjeg Iodep Iezepm - 7S oanbtg

Isque) Teotuo
tuop Idque) xady
9314 3erg

o
(e}




81

00Z =9 ‘5,07 = © ‘suxsljeg xodep I93eM - GG aanbta

Isque) TeOoTuod Toque) xady e 93814 3eld




o0 =9 ‘5,0z = ©» ‘suxsjgjeg aodep I93eM - 99 2anbtg

Ioque) TeoTuo)d Ioque) xod
O xady SI®Id jerg

82



Figure .57

- Water Vapor Cross Flow Patterns
Flat Plate Model, a = 20°, B = 0°

83



\

\

Figure 58 - Pressure Distribution - Flat Plate Model,
a = 10°, B = 0°




Figure 59 - Pressure Distribution -~ Apex Camber Model,
a = 10°, B = 0°



Figure 60 - Pressure Distribution - Conical Camber Model,
a = 10°, B = 0°
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Figure 61 - Pressure Distribution - Flat Plate Model,
a = 20°, B = 0°
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Figure 62

- Pressure Distribution - Apex Camber Model,
o = 20°, B = 0°




Figure 63

\

\

- Pressure Distribution - Conical Camber Model,
a = 20°, B = 0°
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Figure 64

- Pressure Distribution - Flat Plate Model,
a = 30°, B = Q°



- Pressure Distribution - Apex Camber Model,
o = 30°, B = 0°

Figure 65
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Figure 66 - Pressure Distribution - Conical Camber Model,

a = 30, B = 0°




Figure 67 - Pressure Distribution - Flat Plate Model,
a = 40°, B = 0°
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Figure

68

- Pressure Distribution - Apex Camber Model,
a = 40°, B8 = 0°



Figure 69 - Pressure Distribution - €Conical Camber Model,
a = 40°, B = 0°




Local Normal Force Coefficient

Figure 70
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Non-Dimensional Chord

- Longitudinal Distribution of Normal Force -

Flat Plate Model
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- Comparisons of Longitudinal Loading with Data
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Figure

From Other Sources
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Figure 72 - Comparison of Integrated Pressures with Measured

Lift - Flat Plate Model
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Figure 73 - Comparison of Integrated Pressures with Measured

Drag Due to Lift - Flat Plate Model
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Figure 74 - Comparison of Integrated Pressures with Measured

Pitching Characteristics - Flat Plate
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Figure 75 - Pressure Distribution - Flat Plate Model,
a = 20°, B = 25°

101




Figure 76 - Pressure Distribution - Apex Camber Model,
a = 20°, B = 25°
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Figure 77 - Pressure Distribution - Conical Camber Model,
a = 20°, B = 25°
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