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- SUMMARY

By about 1985 technological advances will have necessitated a new
generation of commercial aircraft in order to remain ecologically
acceptable and economically competitive in the domestic and world
transportation markets. The current generation of commercial

- aircraft will be technologically outdated by then.  Design studies
were conducted of near-sonic (M . 98) advanced technology transport:
type aircraft as a replacement in that era. Among the advanced
technologies investigated were the supercritical wing, area ruling,
composite materials and load alleviation. These studies revealed
that with the application of advanced technologies, replacement air-
craft were feasible in both the business jet and large transport
categories.

The area ruled fuselage of near-sonic advanced technology trans-
ports offers more seating space in the expanded section while
providing slightly less space in the area of the wing integration than
current technology fuselages. For M . 98, the area ruled fuselage -
shape is more practical in large transports, over 170 passengers,
and business jets. The 20 to 170 passenger configurations utilizing
area ruling do not appear practical for near-sonic transports be-
cause of head height limitations over the wing.

The highly swept supercritical wing could be .ligh'ter, fhicker ahd
could carry more fuel than a conventional wing at any Mach Number.

Due:to the increased wing sweep required at the higher Mach numbers,
the inboard area of the wing must be increased if a conventional type
landing gear is used. Conventional tricycle and wing podded landing
gear systems were evaluated. In addition, an air cushion landing
system was considered and appears promising. The wing podded
arrangement offers more advantages than the convent10na1 tricycle
arrangement at the higher Mach numbers

The review of aircraft _conflguratlons for flight evaluation of the ad-
vanced technologies showed that a business jet size research aircraft
was a suitable candidate and appeared the most economical. An :
airplane incorporating supercritical aerodynamics, active control
systems and composite material construction could be designed,
produced, tested and evaluated for approximately 25% more cost
than that of a conventional aircraft of the same size. The

additional costs are assessed to the complexities associated with
active control systems and fabrication of the supercritical wing
utilizing composite materials. Retrofitting multiple technologies to,
existing aircraft does not appear to be practical from a cost stand-
point at the higher Mach numbers, because of the amount of structural



modification that would be required to meet the supercritical
technology.

A load alleviation system was investigated. A typical system

could reduce in-flight loads possibly up to 50%; however, the

ground maneuver and taxi loads would not be reduced by these flight
devices. To reduce the structural weight by the use of such a system
-would necessitate a reduction in FAR-25 design criteria.

Computer programs were develbped to support the various design
disciplines. These programs include weights, stress, flutter,
loads, propulsion, and mission analysis routines.



INTRODUCTION

The supercritical wing concept, introduced by Dr. R. Whitcomb

~ of NASA, Langley's High Speed Aerodynamics Division, unveiled

new possibilities for flight in the transonic regime,  Utilization

of this and other advanced technologies such as area rule, load
alleviation, composite materials necessitated investigations in the
areas of high lift devices, wing to fuselage integration, and alternate
aircraft configurations. Improved data is continually being generated
in the above areas of advanced technologies and is being incorporated
in advanced system design studies as developed.

- Design concepts of these technologies require detail definition and
integration into system designs to serve as the reference for follow-

on hardware concepts. The study results have established that '
these new technologies can be directed toward the achievement of
improved performance or economy. These benefits may be used to -
compensate for the penalties associated with reduced noise require-
ments anticipated to make future aircraft ecologically acceptable

while remaining economically competitive. In addition, the studies
have assisted in assessing technology modifications which are necessary
to develop compatible effective cost and economic study programs.

- This document covers the work accomplished in the system and design
integration studies. The objective of this work is to define and assess
the application of the advanced technology most likely to result in

a superior next-generation, high subsonic/sonic CTOL transport
aircraft system. “
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ADVANCED AIRCRAFT TECHNOLOGY

INTEGRATED SYSTEMS DESIGN

The design approach is presented in a System Design Integration

~ Chart (Figure 1). The interaction between the design disciplines
is required in order to prov1de in-depth integrated systems de31gn

studies. ,

SUPERCRITICAL TECHNOLOGY

Area Rule Fuselag'ev

The primary design consideration in determining the shape of the
fuselage is the overall fineness ratio of the area rule curve, which
determines the maximum to minimum fuselage diameter. The
sensitivity of the area rule can be seen by comparing the fineness
ratios of 8.6 and 9. 6 on a Mach . 98 cruise aircraft (Figures 2 and 3).
The comparison shows an increase of 15% for the maximum and 19%
for the minimum diameter for a one point decrease in fineness ratio.

Compound curvature is a driving variable in increasing both aircraft
weight and air frame fabrication cost. A finite cabin width and length
can only accomodate a discrete number of seats. An optimum fuse-
lage diameter would be constant for a multiple of seat width. Diameter
differences reduce the seating efficiency, thus increasing DOC.

The location of the minimum diameter is influenced by wing location.
When the maximum wing cross sectional area coincides with the

apex of the area rule curve, the fuselage minimum diameter is
established.

The maximum diameter for any fineness ratio is an advantage; there
is little structural penalty and both passenger and cargo volume is
increased. For example, a 300 passenger area ruled aircraft, with
a fineness ratio of 9.1, has a maximum diameter that is 23 1nches
larger than the DC10 and five inches larger than the 747. This larger
volume for passengers, forward of the wing box, is also a significant
advantage in the design of a Mach . 98 executive jet.

Highly Swept Wing

In addition to the area ruled fuselage, the 42. 5 degree swept wing,
dictated by Mach number .98, created a major problem in integrating
the landing gear. Basically, the wing thickness in the main gear area
was inadequate for the support of the main gear. In addition, there
was insufficient wing chord aft of this location to accomodate high



lift devices. Therefore, it was necessary to increase the wing cross
sectional area at the fuselage intersection in order to increase its
local thickness for landing gear structure and provide space for the
inboard flap.

In terms of area ruling, the "batting' of the wing added wing cross
sectional area which was removed from the fuselage, further reducing
- its minimum diameter. The additional wetted area added by '"batting"
the wing is shown in progressive steps in Figure 4. The basic wing
for this configuration has an aspect ratio of 6. 3 and 2400 square

feet of wing area. Initially, the landing gear stowage requirement and
the accomodation of inboard flaps were inadequate on this baseline
configuration. In order to alleviate this, three iterations were made
to add the necessary wing area. The batted wing configuration had

an area increase of 837 square feet, which reduced the aspect ratio

to 5.25. The reduced aspect ratio will cause additional drag, which
will lower the cruise Mach number or will require larger engines.

A more detailed investigation of the wing geometry will be required
to assure the optimum wing configuration if wing '"batting' is utilized
to provide landing gear stowage and accomodation for high lift devices.

Landing Gear Integration

As alternates to ''batting'' the wing, other landing gear concepts were
investigated. The most promising is a wing pod stowage for the

main gear. This concept adds only 300 square feet of area to the
above wing, requires no wing ""batting,™ and no decrease in minimum
fuselage diameter. Additionally, the inboard flap area is more aero-
dynamically efficient due to the side plate effects of the fuselage and
landing gear pod. The podded system should be lighter than the batted
systems as the gear is positioned under the rear beam., :

An Air Cushiong Landing System was another concept investigated
where no wing batting was necessary and current contractor estimates
show a modest weight savings over conventional gear. Ground
handling and aerodynamic characteristics have not been fully supported
and will require further investigation.

Supercritical Wing

To better understand the characteristics of a supercritical wing,
studies were conducted to aid in selection of a baseline wing for
evaluation. The System Design Integration approach was used to
investigate the system design concepts on the baseline wing. These
concepts included basic load analysis, wing component design,
flutter analysis, and statistical weight program development.

Studies provided realistic inputs for a matrix of aircraft sizes into
many different programs, such as the low and high speed wind tunnel
models, flutter models, and Integrated Parametric Aircraft Designs
(IPAD) computer des1gns.



A comparison between a conventional aircraft (727-200) wing and

a supercritical wing (SCW-1-156) of equal area was made to show
the differences in size, shape, weight, etc. The planform of the

two wings are shown in Figure 5. This figure shows the sweep of
32.5 degrees for the 727 and 42.5 degrees for the SCW-1-156.

The increase in sweep for the SCW (dictated by the. 98 cruise Mach
number)impacts the wing box. Two major effects are that it is

- longer for a given wing area and span, and it is narrower because of°
larger high lift system requirements. Both result in weight in-
creases. However, when compared to a 727 type wing with 42. 25
degree sweepback, the thicker, more efficient cross section of a
supercritical airfoil is 11% 11ghter The thicker wing box also pro-
vides a significant increase in wing fuel tank capacity, approximately
14%, which, in turn, provides more wing fuel weight and, thus, ’
additional bendmg rehef

Cost

In order to test the advantages of supercritical technology at near-
sonic speed, a flight test program is indicated.

The anticipated cost of experimental aircraft incorporating super-
critical technology for both conventional and composite materials in
the wing was reviewed. A study was conducted to establish a

credible program for estimating costs as a function of aircraft weight.
Parts of NASA working papers were integrated into a single program.
The program showed good correlation ina comparative study utilizing
- a system study contractor's (General Dynamics) estimating and cost
data.

The results of this study are presented in Figure 6. Two sets of
aircraft at various gross weight, one with an aluminum wing, curves.

3 and 4, the other with a composite wing, curves 1 and 2, show rapid
cost increases as weight increases. The studies were limited to
aircraft from 20,000 pounds to 250,000 pounds gross weight. As an
example, the cost of an aircraft weighing 60,000 pound with an aluminum
wing would cost from 62, 5 million to 65 million dollars, depending on
design cruise Mach number. Applying advanced technology, a composite
wing, with load alleviation, would cost 80 to 85 million dollars. There-
fore, the additional cost of developing an advanced technology aircraft
system incorporating a composite wing with load alleviation is 17.5 to

20 million dollars, depending upon Mach number requirement,.

Research Aircraft

A general arrangement of candidate aircraft to demonstrate advanced
technology is depicted in Figure 7. The cockpit has side-by-side



seating of pilot and copilot with ejection seats. The instrument
panels and consoles can represent those of a large multi-engine

jet. There is sufficient area for instrumentation consoles and flight
observers to maintain flight monitoring as necessary. The wing is .
large enough to accomodate advanced technology load alleviation
devices and to observe scaling effects on primary structure.

The study indicated that a . 98 Mach number business jet is feasible.
An existing business jet as compared to the development of a new
aircraft was considered. Investigation of existing business jets was.
conducted to check their viability as advanced technology research
aircraft. A modified Lear Jet, with two 10 foot plugs added to meet:
the proper fineness ratio of 9. 6 as shown in Figure 8, was one of the
configurations studied. The cross-hatched area is all new structure
and the shaded area is the modified form .required to approximate
the area rule curve. Very little of the original aircraft structure-
could be used. Conversion or modification of existing aircraft, such
as the Boeing 737, 727, and the DC 9 are being considered for
application as experimental aircraft to demonstrate advanced single
and integrated technologies. :

Contractor Comparisons

The three system contractors presented their configurations for an
experimental advanced technology aircraft. A comparison of their
sizes and geometry are presented in Table I. The variations in their
alternate configurations indicate that their predictions for the future

- commercial aircraft market are diverse. For example, the alternate
configurations TOGW varied from 247,000 to 340,000 pounds, and
Mach numbers varied from . 90 to . 98. Range remained fairly con-
stant at 3000 nautical miles. Based on the above, there appears to -
be little correlation on size of the airplane for the replacement period.
The air transportation requirements for the 1985 period should be
more firmly established.

ACTIVE CONTROL SYSTEMS

One of the advanced technologies under investigation is an active )
control system (ACS). The main advantage of ACS is the reduction

in maximum flight load excursions. This allows the use of a longer
endurance limit for the structural materials for longer aircraft life-
time or a reduction in material gages for a reduction in aircraft

weight. Along with this structural benefit, there is a significant
improvement in ride quality. It appears that the magnitude of the

flight loads can be reduced by 50%; however, the ground maneuver and
taxi loads are not reduced by these flight devices. FAR-25 design
criteria would have to be reduced in order to realize any weight savings.
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Various systems have been designed and tested in the recent years . -
as load alleviation devices, and are presented in Figure 9. The
twisting wing tip in Figure 9 was presented in a Langley working
paper and is a theoretical concept that has not been tested. A

Spoiler Slot Deflector (SSD) was examined. A study is underway to °
determine quantitative data on the SSD advantages and disadvantages.
The main concerns are response time, added drag, and the resultant

- change in pitching moment.

The preliminary investigation was concerned with the extent of load -
alleviation that could be achieved through ACS while still maintaining
compatibility with the ground loads. Figures 10 through 13 relate

the potential reduction in maximum wing bending moment from using-

- load alleviation for one and two engines on each wing, and for a clean

wing configuration. The magnitude of the airloads are depicted with

and without load alleviation. Additionally, the bending relief provided
by wing-mounted engines can be determined by comparing the max1mum
excursions in each configuration., ‘

COMPUTER PROGRAM TECHNOLOGY

To assist the advanced transport evaluation studies, several computer
programs were developed in FORTRAN language for processing on
the Control Data 6600 System at NASA/LRC. Reference is made to
Table II which lists the current operational programs. Included are
programs to compute aerodynamic wing geometry data; loads and
flutter; mission analysis, which determines flight profiles, component
sizing and overall efficiency; installed engine performance; stress
analysis; weight; and aircraft costs.

Mission Analysis : ' ' 4

A computer program to evaluate flight profiles including take-off,
climb, cruise, descent and landing has been developed and is opera--
tional. Using this program, comparative studies were made to size:
major aircraft components, determine salient characteristics of
performance and flight profiles, and evaluate the overall efficiency
at which selected advanced technology configurations should operate.
Mission/airframe combinations which best reflect the conclusions
drawn from these studies were synthesized.

The Mission Analysis program, which provides an estimation of aero-
dynamic performance from take-off to landing, has been broken down
into two major segments for study purposes. First, the utilization of
advanced computer technology andFortran IV programming was used
for both current and suggested future developments. Secondly, this
computer technology was applied in analyzing various mission profiles .
for advanced transport configurations ranging in size from 156 to

300 passengers. The computer program was developed in routines,
one for each segment of the flight profile, climb, cruise, and descent.
These segment routines were combined into a smgle mtegrated closed



loop missions program called MISSIONS. The segmented basis allows
flexibility in future modifications and improvements. - This relatively
refined and detailed program has a built-in capablhty for application
to subsonic or transomc turbojet transport.

The flight profile, Figure 14, is presently incorporated in the
MISSIONS computer program and is based on the Air Transport

- Association (ATA) domestic rules, which include time, distance,
fuel to climb and descend, and reserve fuel are corrected for the
effects of altitude and veloc1ty changes.

The MISSIONS program inputs, Figure 15, consists of weight, pro-
pulsion and aerodynamic information. The weight data is obtained
from a computer routine developed from statistical data and deter-
ministic inputs from calculated design and weights data. The propulsion
routine corrects engine data from uninstalled performance results
supplied by engine manufacturers. The installation corrections are
inlet recovery, nonreference nozzle, thrust reversers, power extrac-
tion, and service airbleed. :

Aerodyna.mic data is derived from drag polars from wind tunnel test
data which has been corrected to full scale using current industry
technique. This technique involves calculation of the minimum in-
compressible parasite drag using flat plate theory and form factors.

A separate computer program was developed to handle this calcula-
tion. With proper weights and propulsion information, a rapid mission
analysis response to any request on a fixed geometry and engine con-
figuration can be provided. :

The MISSIONS program outputs, Figure 16, are weights, range, fuel,

and time information which are calculated for the total mission and

- for the mission segments. The results are then inputs for the economic
evaluation program., B .

Two options of the MISSIONS computer program are available for the
total mission where the aerodynamic geometry, payload, and design
Mach number are held constant. This is shown in Figure 17. Option
one computes the range for a fixed ramp weight while’option two allows
the ramp weight to be calculated as a function of fixed range. There
are other options available for the cruise,. descent and reserve,

Future capabilities and developments, Figure 18, may be derived
from the MISSIONS computer routine and proposed airport perfor-
mance programs, Continual modifications will be made to the
MISSIONS program to increase its efficiency and usefulness in ad-
vanced transport technology. Take-off and landing routines will be
written to complete an airport performance program in rounding out
an entire mission. '

11
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To 111ustrate the mission analyS1s capability, a hypothetlcal trijet
configuration with a 300 passenger payload was selected. The trijet
configuration, which consists of an airplane with two wing- mounted
engines and one straight duct engine mounted in the vertical tail,
shown in Figure 19. This particular configuration has a 42 degree
swept wing (Mach . 98 design). The wing planform was developed
through supercritical technology and is a 3000 nautical mile range

- mission with a 300 passenger payload of 61,500 pounds and a cruise

Mach number of . 98. The configuration was parametrically optimized
for wing area and engine size. The effects of start cruise altitude

‘were also evaluated. The parametric studies include range, wing

area, start cruise altitude, engine sizing and sensitivity effects of
drag and operating weight empty.

The variation of ramp weight with wing area and start cruise altitude
is shown in Figure 20.. For each maximum start cruise altitude,
there is a wing area at which the ramp weight is 2 minimum, This
plot shows the fuel cut off line. For the same calculations, the variation
of sea level static thrust with wing area and start cruise altitude is
presented in Figure 21. . This curve shows the minimum ramp weight
line from the previous figure. The operating altitude region for a
wing area of 3,540 square feet, an initial cruise weight of 450,000
pounds, and an engine thrust rating of 50,000 pounds sea level static
thrust is shown in Figure 21. For aircraft flying at transonic speeds,
the Operating region may be severely limited by the maximum and
minimum cruise altitudes. In addition, Figure 22 illustrates that the
drag exceeds the maximum cruise thrust available at a minimum

‘and maximum altitude restricting the operational a.lt1tude

Figure 23 shows the effect of engme size on operating altitude. As
engine size increases, the operating altitude range also increases,
and the maximum cruise altitude is higher. Also, an engine size
reduction could make the aircraft incapable of flying at Mach . 98
for the cond1t1ons shown,

The variation of specific range with altitude for this aircraft at

Mach . 98 is presented in Figure 24, The maximum power setting
determines the upper and lower altitude limits. It should be noted that
there is a weight at which the aircraft can no longer fly at Mach . 98.

In summarizing the parametric characteristics, Figure 25, of the trijet
configurations, studies were made on the effects of start cruise altitude
on ramp weight, sea level static thrust, wing area, start cruise wing
loading, total fuel, and operating Welght empty. With the wing area
being optimized for minimum ramp weight, studies revealed a 13, 500
pound increase in ramp weight as the start cruise altitude varied




6,000 feet starting at 33,000 feet. Also, the sea level static thrust.
rating ran from 47,500 pounds to 55,500 pounds and thrust to weight
ratio from . 31 to . 35, respectively, over the same start cruise
altitude region. To fly at start cruise altitude of 33,000 feet, it takes
a wing reference area of 3250 square feet which increases to 4000
‘square feet as start cruise altitude begins at 39, 000 feet, Start
~ cruise wing loading decreased 17% from 137 lb/ft to 114 1b/ft2 and

- total fuel showed very little variation with start cru1se altltude, although

operating weight empty increased 6%. |

13
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CONCLUSIONS

Near-sonic Advanced Technology Commercial Transports will
become a reality by 1985 if these technologies are, in fact, im-
plemented, tested, and evaluated through an integrated flight
system. Benefits of the supercritical wing and advanced transport

. technology have been established. Technologies requiring in-depth

study and development are those attendent to slow speed flight.
Presently, areas that have been identified are the development of
more efficient high lift devices and the applications of FBW and ACS.
Main landing gear systems, whether podded or air cushionéd,
require evaluation from aerodynamic and ground maneuvering stand- -
points to assure selection of the optimum system for advanced
technology transport aircraft.

An experimental testbed aircraft appears to be the only means of
obtaining accurate technology support data. Aircraft development
programs are expensive and escalate with increasing aircraft

weight. Therefore, the selection of the aircraft to be used is a
prime factor in acquiring the most data for the dollar ‘cost. The
trades between a larger, modified current technology aircraft to

test a single technology must be compared with the development of a
smaller aircraft which could incorporate multiple technologies. '
For example, new technologies could include comp031tes, ACS,

FBW, as well as scaling effects.

The MISSIONS program, along with weights and other supporting
computer programs, should be expanded to supersonic, hypersonic,
and STOL aircraft. Other parameters that could be investigated for
incorporation into the MISSIONS program are noise and terminal
approach :
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 MISSION PROGRAM INPUTS

I. WEIGHTS

Operating
Weight
Empty

‘Take-off Gross Weight

.85
.90
.95
.98

'II. PROPULSION R
. ' . ~Mach

Thrust

Fuel Flow

TII. AERODYNAMICS

AMach .85 gg |

.95
.98

FIGURE 15



MISSION PROGRAM OUTPUTS

WEIGHTS

+ Ramp

Take-off Gross

Start Climb-

"« Start Cruise

End Cruise

End Descent

Zero Fuel Weight

Operating Weigh't. Empty

- RANGE
. » Segments
» Design
e ATA Allowances

¢ Air Transport Association -

FUEL

. Segm'ents'
-. Total
. Block

o Reserve

. TIME

~» Segments
» Flight

¢ Block

30 : o " FIGURE 16




OPTIONS OF COMPUTER PROGRAM

TOTAL MISSION - Fixed Geometry, Paylozid, and Mach Number ‘

- a) Range Computed for Fixed Ramp Weight

b) Ramp Weight Computed for Fixed Range - -
CLIMB - Climb Spéed Schedule Computed for Maximum Rate of Climb

CRUISE Constant Mach Number
a) Optunum Climb Cruise (Maximum Spec1f1c Ra.nge)
~ b) Constant Altitude

¢) Maximum Power Setting Climb Cruise

DESCENT
a) Predetermined Speed Schedule

- b) Speed Schedule Computed for a Constant Lift Coefficient
- (i.e., Cy, for L/D Ma.xunum)

RESERVES
a) Air Transport Association Domestic Rules

b) Fixed Time ' ‘ ' : "

31 - - - FIGURE 17
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A.

A,

. FUTURE CAPABILITIES AND D-EVEL(')P_.MENTS

Climb |

- Predetermined Speed Schedule
Maximum Energy

Cruise -
Step Climb

Reserves !

* ATA International Rules

Total Mission

Engine Sizing Routine

AIRPORT PERFORMANCE COMPUTER PROGRAMS

Take-~off

. Distances - ground roll and air segmenf

Béla_nc ed Field Lengfhs

Speeds - take-off and obstacle

- Climbout Gradients

Landing
Distances - ground roll and air segment
Approach Speeds

Touchdown Speéd's
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TRIJET -
VARIATION OF SEA LEVEL STATIC THRUST WITH
WING AREA AND START CRUISE ALTITUDE
~ 300 PASSENGER
PAYLOAD = 61, 500 LBS.
(3) P&WA ATT-6 ENGINES
RANGE = 3000 N. MILES

MACH = 0. 98
=g | START CRUISE
Ryich : ~ ALTITUDE
= - = |~ 1000 FT.

39

SEA LEVEL STATIC THRUST/ENGINE ~ 1000 LBS.
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