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FOREWORD

Today petrologists, mineralogists, and crystallographers are the possessors of very-well-equipped
laboratories. The laser probe, the electron microprobe, and the ion microprobe mass analyzer can pro-
duce results within minutes, results that used to take days and weeks to attain. Besides X-ray methods,
there are several spectroscopic techniques, such as Mossbauer spectroscopy, that can be used to exam-
ine the distribution of cations over nonequivalent structural sites in a crystal. The experimental
methods of synthesizing mineral assemblages in the laboratories have been greatly improved. Refined
techniques exist for the control of gas fugacities and the creation of low to very high pressure and
temperature conditions in petrological experiments. These technical capabilities are further enhanced
by the use of computers, which can analyze numerical data and the consistency or inconsistency of
experiments.

As a result of increased experimental capability, phase equilibria data have been gathered both
from efforts to synthesize mineral assemblages in the laboratory and from chemical analysis of natural
mineral assemblages. To make a meaningful analysis of both these types of data, thermodynamic data
on rock-forming phases and crystalline solutions must be available. Unfortunately, obtaining these
quantities by thermochemical and calorimetric methods has been a very slow process, and the possi-
bility of obtaining such quantities by other methods must be considered.

In suitable cases, retrieving thermodynamic data from the phase diagrams themselves may be
considered. These quantities may be considered significant if they are obtained consistently from dif-
ferent phase diagrams. However, in the case of crystalline solutions, thermodynamic functions of
mixing cannot be obtained without the use of certain solution models. Two types of phase diagrams
may be considered. The first type is the diagram with the solvus or binodal curve bounding aginary
two-phase region. The analytical methods have been discussed by Thompson (1967), Thompson and
Waldbaum (I969a,b), and Green (1970). These methods, however, are of limited use for rock-forming
silicates because many crystalline solutions do not show any solvus relationship. The second type of
phase diagram is the Roozeboom-type figure in which the concentration of a component in one phase
is plotted against the concentration of the same component in the coexisting phase. Such a distribu-
tion relationship, based on simple ion-exchange reactions, was discussed initially by Ramberg and
DeVore (1951) and later by Kretz (1959) and Mueller (1960). It is possible to retrieve useful thermo-
dynamic information from the distribution data in ion exchange collected by Nafziger and Muan
(1967), Larimer (1968), Medaris (1969), and Schulien et al. (1970), among others.

Useful thermodynamic information may also be obtained by considering distribution of cations
within the crystalline solution. Ghose (1961) found an interesting Fe2+-Mg2+ distribution in '(
cummingtonite. Since then, Fe2+-Mg2+ order-disorder has been studied in several silicates by crystal-
lographers. Theoretical framework for considering the homogeneous equilibria of intracrystalline
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cation distribution has been presented in papers by Mueller (1962), Matsui and Banno (1965),
Perchuk and Ryabchikov (1968), Thompson (1969), and Grover and Orville (1969).

The purpose of this work is to discuss these methods of obtaining thermodynamic quantities
and some aspects of partitioning elements in coexisting phases by considering the definition of crystal-
line solutions, the definition of components in a silicate mineral, and the definition of chemical
potentials of these components. The solution models involved are also considered. An example of cal-
culating thermodynamic functions of mixing in the CaWO4-SrWO4 system is given.

It is hoped that this work will generate enough interest among fellow scientists to gather useful
ion-exchange data on coexisting phases and among crystallographers to gather data on site occupancies
in rock-forming silicates.
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SYMBOLS

Superscripts are generally abbreviated names of the minerals to which the thermodynamic func-
tions are ascribed. Subscripts refer to components of the crystalline solution or the chemical system.

(f^ activity of component A in phase a

AO, A^, A2 energy constants in equation for excess free energy of mixing expressed as a polyno-
mial in mole fraction

A, B, C used as a subscript denotes components A, B, and C

A, B, C energy constants used in equations describing the relation between activity and mole
fractions

/ activity coefficient

G molar Gibbs free energy

G£M excess molar Gibbs free energy of mixing

Gm ideal molar Gibbs free energy of mixing (= £ R T In xj

GM total molar Gibbs free energy of mixing

H molar enthalpy

HEM excess molar enthalpy of mixing

//M molar enthalpy of mixing

K thermodynamic equilibrium constant

KD distribution coefficient

M1,M2 structural sites in the crystal

H Avogadro's number

P pressure
• • . . — " • ' . . -*- •' " ' •' - '

q contact factor

R gas constant

S molar entropy

SEM excess molar entropy of mixing
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SIM ideal molar entropy of mixing

SM molar entropy of mixing

T absolute temperature

TC critical temperature

w energy constant or the interchange energy used in the regular solution model

W - .. Jlw where w is a function of P and T as in the simple mixture model

W Jlw where w is independent ofP and T

x? mole fraction of a component i in phase a

2 coordination number

M" chemical potential of a component i in phase a

MAM chemical potential of a pure component AM

aim almandine: Fe3Al2Si3O12

bi biotite: K(Fe, Mg)3AlSi3O10(OH)2

en enstatite: MgSiO3 orMgMgSi2O6

gar garnet: (Mg, Fe, Ca, Mn)3Al2Si3O12 ,

ol olivine: (Fe, Mg)2SiO4

opx orthopyroxene: (Mg, Fe)SiO3 or (Mg, Fe)2Si2O6



Chapter 1

THERMODYNAMIC RELATIONS IN CRYSTALLINE SOLUTIONS

Thermodynamic relations between the concentration of a component in a solution and its chemi-
cal potential and other thermodynamic functions of mixing are presented here. The details of the
simplifying assumptions and the methods of statistical thermodynamics have been given by Denbigh
(1966), Guggenheim (1952, 1967), and Prigogine and Defay (1954), among others. Recently Thomp-
son (1967) also considered the properties of simple solutions. Besides a summary of thermodynamic
relations in solutions, the difficulties encountered in their application to silicate minerals will be con-
sidered. Some of these problems, such as the choice of a component and definition of its chemical
potential in a silicate, have been discussed by Ramberg (1952a, 1963), Kretz (1961), and Thompson
(1969). : • • • : • • - . . .

CRYSTALLINE SOLUTIONS

The crystalline solutions considered here are rock-forming silicates forming isomorphous series
with one another. Such crystalline solutions have a definite structural framework with generally two
or more kinds of nonequivalent structural sites. The type of sites and the ions that occupy them vary
in different crystalline solutions. The overall crystal symmetry of a solution does not change as a func-
tion of the composition, though certain microscopic details within the crystal, i.e., the form and size
of the individual structural sites, may change with changing composition.

Orthopyroxene (opx) (Mg, Fe)2 Si2 O6 may be considered as an example. In the crystal structure
there are single silicate chains parallel to the c-axis held together by the octahedrally coordinated Nig2"1"
and Fe2"1". There are two kinds of structurally nonequivalent sites M1 and M2 occupied by Mg2"1" and
Fe2+. The Ml octahedral space is nearly regular polyhedral, but the M2 space is quite distorted. As a
result of varying Mg2"1" and Fe2+ in the composition of the crystal, the general symmetry of the crystal
does not change, but there are distinct changes in M1 and M2 polyhedra. The former becomes more
regular and the latter more distorted with increasing Fe/Mg ratio. Such microscopic changes at the
structural sites within the same crystal framework may be regarded as continuous; and the resulting
energy changes, a consequence of the mixing or solution of the species to form a crystalline solution.

CHOICE OF A CHEMICAL COMPONENT

The definition of a component in a mineral is not unique. The components in orthopyroxene may
be considered to be the molecules MgSiO3 and FeSiO3 or the molecules MgO, FeO, and Si02 or the
ions Mg2+, Fe2*, Si4"1", and O2~. In petrological studies, the choice of a component is determined by
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known or postulated chemical reactions involving a mineral. In such studies, the use of components
such as FeSiO3 or FeO is convenient, even though there are no discrete units of this kind in the ortho-
pyroxene crystal structure. However, when the thermodynamic properties of silicate crystalline solu-
tions are being considered, it is only realistic to consider the ions as the components. (See Bradley,
1962.) Indeed, it can be noted that if the substitution of the cation Fe2t by Mg2+ in orthopyroxene
does not produce any changes in the silicate framework or if there are any slight changes, they are
directly a function of the changing Fe/Mg ratio; the alternative methods of defining FeSiO3 or Fe2+ as
a component are equivalent. (See also Saxena and Ghose, 1971.)

CHEMICAL POTENTIAL AND ACTIVITY OF A COMPONENT IN A MINERAL

A solution is ideal if the chemical potential of every component is a linear function of the loga-
rithm of its mole fraction according to the relation

M . = / i i +R T i n X i (1-1)

where ^ is the chemical potential of i in a solution and nl is the chemical potential of pure i. /i1 is a
function of pressure (P) and temperature (T) only. In a binary solution a whose composition is
(A, B)M, where M represents the anion group or the silicate framework and A and B, the cations that
substitute for each other, there is a choice between adopting the cations A and B as components or the
end member molecules AM and BM. As noted before, under certain conditions, the mole fractions
may be calculated as

A A + B
or

A M
AM AM + BM

These expressions could be considered equivalent to each other. For chemical potentials,

^ = M A M +R T l n x a (1_2)

or

. . OL ,, AM i 13 T" 1 « Gt f ] *%\
h** — A** T !*• l A 11 AJ i \ 1 ~ J /

where /z^M and /HAM are chemical potentials of A and AM in a standard state. The standard state AM
is well defined, but the standard state with reference to cation A needs definition. In orthopyroxene,
this is like referring to the chemical potential of Mg2+ in pure (Mg, Mg)Si2 Og. The Gibbs free energy
for the pure end member MgSiO3 is defined and experimentally measurable, but the meaning of free
energy of Mg2+ in pure enstatite (en) is little understood and experimental methods remain to be
developed for its measurement.

In theoretical discussions, however, in which the measured values of the potentials are not of con-
cern, the definition of chemical potential of a cation in a crystalline solution is not only permissible
but also useful. Kretz (1961) defines the chemical potential of Mg in orthopyroxene as



(1 A\d-4)
„ .„ .»

Fe Si 0

where « is the number of cations in the formula.

In many crystalline solutions, when their compositions are expressed in the simplest form, there
are two or more cations in one mole. Examples are olivine (ol) [(Fe, Mg)2SiO4 ] and garnet (gar)
[(Fe, Mg)3 Al2Si3O12 ]. The chemical potential of a component using the moleculaj model is ex-
pressed as

and
ear Fe.Al-Si.O,, . _ar ,, „

/U.Sar — // J 2 3 * 2 J - J ? T l r - » •& (\ fC\
^Pe Al <5i n ~ ̂  + K 1 in X . . , (l-O)

e3A12& 3°12 t e3Al2Sl3°12

where the first n in both equations is the chemical potential of the end member in the solution and the
second M is the chemical potential of the pure end member. If the cation Fe2+ is considered as a
component,

+ 2 R T l n x £ (1-7)

and

MFe -Mpe + 3/? / ln*Fe , (1-8)

where the first M in both equations is the chemical potential of Fe2+ in the crystalline solution and the
second (i is the chemical potential of Fe2+ in the pure end member. The mole fractions x are the same
quantities in both the molecular and ionic models. It may be desirable to consider the chemical for-
mula on a one-cation basis; i.e., olivine is considered to be (Fe, Mg)SiQ5O2 and garnet to be
(Mg, Fe)Al2/3 SiO4. In this case,

/u.01 = — fj. 62Sl°4 + K T In x ol (1-9)

or
_ 1 Fe2si°4 p T , ol n im

n - — M + R f In XpeSi O (1-10)
0.5U2 2 0.5 2

and

or

, , f e a r _ 1 ,,Fe
3Al2Si3012

iTo A 1 c.r» **+ f~*" T i\ I ± T\ X . l l " " l ^ ) . .F A 2/3S °4 3 FeAl SiO '

The usefulness of these relations is mentioned later in connection with the composition of
coexisting minerals.



The activities of the components will be the primary concern of this document. For a binary
ideal solution, the activity is equal to its mole fraction. In olivine the activity of the fayalite (fa) mole-
cule is

orforFe2*

Similarly for garnet and almandine (aim),

= g r (1-15)v '.a im a im

and

It is desirable to consider many reactions, particularly the ion-exchange reaction, on a one-cation
basis; i.e., to consider olivine as (Fe, Mg)SL 5 O2 , etc. Activity of a cation is then equal to its mole
fraction. It is necessary to specify that although in this situation xfe [the mole fraction Fe2+/(Fe2+ +
Mg2"1")] is numerically the same as :cfa (the percent of fayalite), the activities are different. xFe = (a
in the ionic model, but xfa = afa (the activity of fayalite) in the solution.

NONIDEAL BINARY SOLUTIONS

The relation between the chemical potential of a component i and its activity in a solution is given
by ,

/j.i = f i i + R T In a.. (1-17)

The ideal solution is the limiting case when a{ is equal to the mole fraction x{. In all other cases, the
relation between a{ and xi may be expressed as

« ! = / ! * ! , d-18)

where /j is the activity coefficient of the component i in the solution.

The free energy of mixing GM for a binary solution (A, B)M is given by

C r - x R T \ r \ a . + x t , / ? 7 1 n a nM A A D i s

= R T (*A In *A + XB In *fi) + R T (*A In /A + *B In /B)

= C I M + G E M . (1-19)

The first term, GIM , is the ideal free energy of mixing, and the second term, G£M , is the excess
free energy of mixing that is due to the nonideal nature of the system. GEM is one of the functions of



mixing termed 'excess functions.' Details of the excess functions of mixing may be found in Prigogine
and Defay( 1954) and Thompson (1967).. . .

REGULAR SOLUTION MODEL

The thermodynamic properties of crystalline solutions of mineral assemblages either obtained in
experiments or occurring in rocks must often be calculated. In many situations the use of certain
models for the activity composition relationship helps to assess such properties closely. The regular
solution model of Guggenheim (1952) is next in simplicity to ideal solution model.

Zeroth Approximation

The excess free energy of mixing G£M in a regular solution with the zeroth approximation, i.e.,
the approximation of complete disorder, is given by

where A and B are components of a solution (A, B)M, W' is equal to Tl w, and Tl is Avogadro's number.
W' is often referred to as the interchange energy. Regular solutions are very important in this work;
therefore, the parameter w will be briefly discussed. A simplified account of this parameter is pre-
sented by Denbigh (1966). It is assumed that the cations A and B are of roughly the same size and can
be interchanged between lattice sites without change of lattice structure and without change in the
lattice vibrations. There is interaction between A and B, given by the energy w, which is given by

» = 2»AB-«'A A-»B B / ' . ' 01-21)

where WAA is the increase in potential energy when a pair of A ions are brought together from infinite
distance to their equilibrium separation in the solution. WAB and WBB are similarly defined. In spite
of the interaction energy, it is assumed that the mixing of A and B is random. This means that the
entropy of mixing is the same as that for an ideal solution and deviations are expressed entirely in
terms of the heat of mixing. .

The thermodynamic equations for the regular solution model with zeroth approximation are

G - H - x x W (1-22)
EM EM A B

and
SEM = 0 . (1-23)

The interchange energy W' is independent ofP and T. Because the excess entropy of mixing is zero
according to this model, the predictions of the values of G£M and the heat of mixing /f£M, which may
often be different from GE M , are not satisfactory.

Simple Mixture Model . ,

In the regular solution model W' is supposed to be independent of T and P. In Guggenheim's
(1967) latest version of the lattice theory, W' may be treated as an adjustable constant required to fit



the experimental data to the model. Such an energy parameter with a symbol W may be called a
cooperative free energy. 2 W is in a sense the free energy increase in the whole system when an A-A
pair and a B-B pair are converted into two A-B pairs. It is expected that if W is fitted to the free
energy data at each temperature, the large errors usually found in the predictions of GEM and #EM

with composition may be at least partly eliminated. For a random mixing approximation, the various
excess functions are given by

GEM = *

and

The activity coefficient is related to the mole fraction by

R T

(1-24)

(1-25)

(1-26)

(1-27)

Quasi-Chemical Model

The main assumptions required for this model are similar to those of the regular solution model
in the preceding sections. Only the configurational partition function of the solution contributes to
the thermodynamic excess functions. The intermolecular forces are central and short range, and there-
fore the internal energy at 0 K may be obtained by an addition of the pair potentials. The assumption
of complete randomness is not required here. Therefore any differences found in the calculated values
of the excess functions of mixing by the zeroth approximation and by the quasi-chemical approxima-
tion are the result of ordering considered in the latter.

In binary solutions for which the two components A and B are of similar size, the activity coeffi-
cients are given by the equations

- 2

+ 1)
(1-28)

and

+ 1)

where z is the coordination number and 0 is given by

(1-29)

1/2 (1-30)



0 = 1 for a perfectly random mixture. If 0 > 1, a tendency for clustering exists, and if/3 < 1, a trend for
compound formation exists.

G£M and //EM are given by

+ 1 - 2 * /3 - 1 + 2*

*A 08 + 1)

and

(1-31)

(1-32)

The various equations of the quasi-chemical approximation may be expanded as power series in
2W/zRT:

GEM = 1-If .AJLU 1 I 2 W
nn *A - -o

2 (1-33)

and

2 \ z R T 6 \ z R T

(1-34)

/B may be obtained by replacing A by B in Equation 1-34.

For molecules that are not very similar in size, a contact factor must be included (Guggenheim,
1952, p. 216) in these equations to take the size differences into account. The contact factors may be
found roughly proportional to the molar volumes or ionic radii. The activity coefficients are given by

i +.
+ 1)

(1-35)

and

i + (ft +1) (1-36)

where qA and gB are contact factors related to the contact fractions 0A and 0B and the mole fractions
XA andxB by

(l-37a)



and
VB 'B (l-37b)

For more details on the derivation and significance of the constants q^ and <j-B and the fractions 0A

and #B, reference may be made to Guggenheim (1952, p. 216) and King (1969, p. 488). 0 in Equations
1-35 and 1-36 is obtained by replacing XA and XB by 0A and 0B, respectively, in Equation 1-30.

The other excess functions are given by

.A,A ln In (I -1)1 (1-38)

and

B W d-39)

5£M can be obtained by the standard equation

CEM = Hm ~ T 5EM'

SOME OTHER METHODS FOR REPRESENTING THE ACTIVITY-COMPOSITION
RELATIONS

In the case of a binary system of components A and B, the Gibbs-Duhem equation is

d ln/ = 0. (1-40)

The changes d ln/A and d ln/B when due to composition change dxA at constant temperature may be
written

I n / , I n / ,
= 0 . (1-41)

A solution to the above equation was proposed by Margules in the form of a power series:

and



When the series is terminated at x3, the following relations exist between the coefficients:

and

CB = -

(1-44)

Using these relations, Carlson and Colburn (1942) expressed the activity coefficients by the equations

(1-*A)2 + 2 0 4 - f i ) (1 -*A)3 (1-45)

and

log / = (2 - A ~ B ) * l + 2 ( B - A) A ' (1-46)

Relations similar to these have been used by Thompson (1967) and Thompson and Waldbaum (1968,
I969a,b).

Another two-constant equation is due to van Laar. The equation resulted from a theory based on
the van der Waals equation of state. This theory is probably incorrect, but van Laar's equation con-
tinues to be useful for representing the activity-composition relation. This equation is

l o g / A = -— -. (1-47)

Similarly for the other component,

(1-48)

For many chemical systems, van Laar's equation provides a better representation of the data than the
Margules two-constant equation. The relative merits of these two equations were discussed by Carlson
and Colburn (1942). Finally, it may be remarked that a power series expansion as (see Equation 1-49)
for the <JEM is now widely preferred. Therefore, only such expressions and not the equations men-
tioned in this section will be used. Expressing G£M as a power series is a means of giving empirical
description to deviations from the ideal, which is a better alternative to the power series expansions
referring to individual activity coefficients mentioned above. GJ,M expressed as a power series can be
related more conveniently to other global properties of the mixture, such as the heat and volume
change of mixing, than can the individual activity coefficients, which represent the deviations divided
up, as it were, among the components.



GENERAL RELATIONS FOR BINARY CRYSTALLINE SOLUTIONS

Excess functions in nonideal solutions may conveniently be expressed by a power series in the
mole fraction. Guggenheim (1937) suggested that GEM can be expressed as a polynomial in x as

GEM = * Al (*A - *
(1-49)

where AQt A^, and A^ are constants. When odd terms in Equation 1-49 vanish, the solution becomes
symmetric. l fA 2 and other higher terms are also zero, the simple mixture model withy4Q as the
energy constant W in Equation 1-24 results. The expressions for the activity coefficients are obtained
from

3 C,EM

and

l (3

a cEM

(5 (1-50)

= A=2 UQ - /41 (3 ^B - *A) + 42 («B - *A) (5 *B - *A) + . - . ] •

Equations for other excess functions of mixing may be derived from Equation 1-49:

(1-51)

and

- 71

(1-52)

(*A *

(1-53)
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Chapter 2

THERMODYNAMIC STABILITY OF A SOLUTION

INTRINSIC AND EXTRINSIC STABILITY

A crystalline solution in an ideal state adds a certain amount of negative free energy of mixing to
free energy of the system. With increasing positive deviations from the ideal state, this contribution
becomes less and less. Below a certain critical temperature of unmixing, the solution unmixes to form
two or more solutions. These energy changes obviously affect the stability of the entire system of the
mineral assemblage. This instability of a crystalline solution, which is the result of the positive excess
free energy of mixing, may be termed "intrinsic instability" (see Mueller, 1964). Ideal solutions are
always intrinsically stable. A crystalline solution may also become unstable if the physical and chem-
ical conditions change in such a way that certain reaction products form a lower free energy assemblage
than the crystalline solution. This instability can be called extrinsic. A solution may be both intrin-
sically and extrinsically unstable. The division is essentially artificial; however, it helps in understand-
ing and describing certain petrological reactions as shown by Mueller (1964).

Olivine [(Fe, Mg)2SiO4] and pyroxene [(Fe, Mg)SiO3] may be considered as ideal binary solu-
tions at high temperatures (~1400 K). In spite of their ideal character, orthopyroxenes with more
than 5 5 mole percent of ferrosilite were found unstable at liquid-state temperatures by Bbwen and
Schairer (1935). The iron-rich pyroxene is unstable because of the instability of ferrosilite relative to
fayalite and quartz. This is extrinsic instability.

At low temperatures (~900 K) the situation is little different. Orthopyroxene is somewhat non-
ideal, and high values of GEM are associated with the high ferrosilite content of the solution. The
extrinsic instability of the solution relative to olivine and quartz is less because iron-rich pyroxenes
(about 86 percent FeSiO3) are stable in metamorphic rocks. The instability of pyroxenes with higher
ferrosilite in metamorphic rocks may be due to both the extrinsic and intrinsic instability of the ortho-
pyroxene solution.

CRITICAL MIXING

General Conditions

The conditions for critical mixing in terms of free energy of mixing GM and the mole fraction x •
are

B2 C M /B* 2 = 0 - (2-1)

11



and
3 3CM /3*3 = 0 (2_2)

These may be expressed in terms of GEM as

^2 GEM/B *2 = - « T/x (1 - *) (2-3)

and

^C^/B*3 = -K 7 ( 2 * - 1)A2 (1 -*) 2 . (2-4)

Simple Mixture

For a simple mixture,

CEM = * (1 - *) V , (2-5)

where
W = W (T, F) .

By successive differentiation of Equation 2-5,

B2 CUU/B *2 = - 2 IT (2-6)

and

B3 C^/3*3 =0. (2-7)

By substituting Equations 2-3 and 2-4 into Equations 2-6 and 2-7, respectively,

- 2 W = - « 71/* (1 - *) (2-8)

and

0 = R T ( 2 x - 1)A2 (1 - x ) 2 . (2-9)

These give the critical composition when x = 0.5 and 2RTC = W.

General Npnideal Solution

For a binary solution that is not a symmetric solution,

CB, = * (1 - *) po + Al (1 - 2 *) + xl2 (1 - 2 *)2 + . . .] . (2-10)

Successive differentiation of Equation 2-10 with respect to x gives

™
-y-fl = - 2 / l 0 -6^ (2* - 1) -^2 [10-48* (1-*)] (2-11)
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and

EM
™ = -12 A. +48/1, (1 - 2 * ) . (2-12)

Substitution of Equations 2-3 and 2-4 into Equations 2-1 1 and 2-12, respectively, gives equations that
are transcendental and cannot be solved without a computer program using an iteration method.

Formation of Miscibility Gaps in a Ternary Simple Mixture

Consider a ternary simple mixture with components 1, 2, and 3. W for the three binary systems
are Wl 2 , W. 3 , and W/23 . The chemical potentials of the components in the solution are given by

A4 = /z° (T, P) + R T In *j + R T In ( l . . . ,

where RT In /may be expanded in terms of x and H> as follows:

K 7" In /!=<*,)**„ + (*3>
2 ^13 + ?2 *3 (^2 - ^23 + "u) '

R r in /2 = (*3)2 iF23 + (*t)2 irla + *3 «1 (ipa3 - r13 + w l2) ,

(2-13)

and

R T In IT13 1T23

At equilibrium in the two separated coexisting phases a and 0,

-

(2-i4b)

(2-14c)

(2-15)

M2 and ju3 are similarly defined. Substituting Equations 2-13 and 2^14 into Equation 2-15 and rearrang-
ing (see Kaufman and Bernstein, 1970, p. 226),

R T l n IT - *« x) = 0 , (2-1 6a)

T In [(1 - r (1 -

- A W [x (1 - x^) - x« (1 - *)] = 0 , (2-16b)

and

[(i -

- A * [xj (1 - xj) T xj (1 ̂  xj)] = 0 . (2-16c)

where + H/ - H/23.
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With the help of Equations 2-16, compositions of coexisting phases may be calculated and the
miscibility gap may be plotted on a ternary diagram. However, first the compositions of the coexisting
phases on three binary edges must be calculated.

In a binary solution, the miscibility gap can be calculated by finding the composition of the
coexisting phases that together represent the minimum free energy of the system. This may be done
graphically by the tangent method, i.e., by drawing a tangent through the two points representing the
two minima in the plot of the free energy of mixing against composition. Alternately, the relations

and

may be considered. For the binary regular solution, there is a symmetric miscibility gap and therefore

and

* ;= *? •
Therefore,

R T i n ( I - * r ) - + * 2 w = R T l n ( l - x . J + * l w (2-17)

R T I n x j + (1 - Sj ) 2 W - RT In *2 + (1 - *2)2 W (2-18)

Substituting x2 = 1 - xl into Equation 2-17,

W 1
R T 1 - 2

In . (2-19)

Equation 2-19 may be solved by an iteration method to find the miscibility gaps on the binary edges in
a triangular diagram.

A computer program to solve Equations 2-16 numerically and the method to form a miscibility
gap have been presented by Kaufman and Bernstein (1970). Some examples to illustrate the possible
solutions of certain mineralogical problems are presented elsewhere.
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Chapter 3

COMPOSITION OF COEXISTING PHASES

IDEAL SOLUTION MODEL

Distribution of a Component Between Two Ideal Binary Crystalline Solutions

Although there are no strictly binary silicates, certain minerals such as orthopyroxene and olivine
may be assumed to be quasi-binary. Because Fe2"1" and Mg2"1" are similar in ionic charge and size,
olivine and orthopyroxene may be assumed to be binary ideal solutions. This assumption will be
reexamined later.

Ramberg and DeVore (1951) considered the following ion-exchange equilibrium between olivine
and pyroxene:

Mg Si 03 +-Fe2 Si O^Fe Si 03 + lMg2 Si 04 . (3-1)

en fa f s f o

The equilibrium constant for this reaction at a certain P and T is

OPX / I _ v ° l \

*3-i =
 Fe C Fe) - (3-2)

The equilibrium constant K is a function of P and T only. In the present case, however, K^ is not
found to be constant except at high temperatures. (See Olsen and Bunch, 1970.)

It may be noted that Equation 3-1 is written on a one-cation exchange basis. It may also be
written as

2 Mg Si 03 + Fe2 Si 04^ 2 Fe Si 03 + Mg2 Si 04- (3-3)

The equilibrium constant for this reaction is

/ opx.,2 ,, ol
(x ) (1 -x }

K - fe Fe
3-3~ : •

(1 -*°P*)2 *"'
Fe Fe
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A Roozeboom figure with such K values has been presented by Kern and Weisbrod (1967, p. 224). It
is known empirically from the distribution data in several mineral assemblages that equilibrium con-
stants or distribution coefficients such as K3^ are very cumbersome to handle and inconsistent with
petrological observations. One may, therefore, prefer to use the distribution data on a one-cation ex-
change basis. It is obvious that in actual calculations of the energy values, it will be necessary to adjust
for the activity-composition relations, such as Equations 1-7, 1-8, 1-14, and 1-16, as discussed before.

Generally olivine and pyroxene coexist with several other minerals of fixed or variable composi-
tion. If no significant change in the concentration of the minor components changes the binary charac-
ter of the two minerals, K^ is not a function of any changes in the number or proportion or composi-
tion of other coexisting phases. This is generally true about equilibrium constants in other systems also.
At a certain P and T the stability of the olivine and pyroxene combination is a function of the presence
or absence of quartz, but the value of K3l itself is not affected.

Kretz (1959) used Roozeboom plots extensively to show the orderly distribution of cations be-
tween coexisting silicate minerals in rocks. If chemical equilibrium is closely approached in the distri-
bution of a component between two binary solutions at a certain P and T, the distribution isotherm is
a smooth curve. If at the same time both the solutions are ideal, it will be of the form shown in
Figure 3-1.

Figure 3-1—Distribution of a component A between two
ideal crystalline solutions a and |3. The numerical values are
equilibrium constants.
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Coexisting Ternary Ideal Solutions

Consider two coexisting ternary phases a and )3 with the formulae (A, B, C)M and (A, B, C)N. The
pure components are AM, BM, and CM in a and AN, BN, and CN in |3. The chemical potentials of the
components in a and 0 are

A& =/** + * T i n * - , (3-4)

and

^=^ + R T l n x ^ . (3-5)

The others are similarly defined. The potentials of all the pure components n are functions of P and T
only, x^ andx^ may be substituted for x^M and x^M , respectively, without altering the results. (See
discussion before.)

The distribution of A between a and j3 may be represented by the ion exchanges

A a + B P^ B a + A P (3-6)

and

A-a + C/3^Ca + A / S . (3-7)

The equilibrium constants may be written as

•rt'.
'"~-s*g ' • .

and

A C

where XA = A/(A + B + C), and the other x's are defined similarly. Both K^ and K3^ will be constants
for all ratios of A to B to C. A plot of x^ against x^ will produce a symmetric ideal distribution curve.

NONIDEAL SOLUTIONS

Distribution of a Component Between Two Simple Mixtures

For the ion-exchange equation

Aa + B / 3 v ^ A / 3 + Ba (3-6)

at equilibrium,
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If (A, B)a and (A, B)j3 are simple mixtures,

In (3-9)

and the other M'S are similarly defined. Substituting the values found by Equation 3-9 into Equation
3-8 and rearranging,

In . Wa

(3-10)

where

Or

AG° =M*a

l n * 3 -a = l n - 2 * - 2 x (3-11)

where ^3^ = exp (~G°JRT) and A^ is the distribution coefficient.

If a good least-square fit can be obtained for the distribution data by using Equation 3-11, it may
be found that both minerals are close to being simple mixtures.

As one or both of the minerals becomes less ideal, the distribution isotherms may attain different
forms. (See Mueller, 1964.) Figure 3-2 shows an example where one of the mineral's a is ideal and )3
is nonideal. W? is assumed to vary linearly with l/T. The values of W^/RT and KQ at 673 and 1673 K
are 2.75, 1.603, 0.77, and 1.518, respectively (see Saxena, 1969). The forms of the distribution iso-
therms are very different from the symmetric ideal curves.

1.00

0.75-

0.50 -

0.25 -

Figure 3-2—Distribution of a component A between
an ideal solution a and a regular solution )3 for the
following data:

1.00

r(K)

673
1673

W0

RT

2.75
.77

K

1.60
1.52
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Coexisting Regular Ternary Solutions

The composition of two coexisting phases that obey the same equation of state is considered here
as an example. These phases are products of unmixing in a ternary solution (A, B, C)M. K^B, W^,
and W'AC are assumed to be 6300, 29 000, and 38 000 J/mole (1500, 7000, and 9000 cal/mole),
respectively , and the values of W' are assumed not to be functions of P, T, and composition (regular
solution). Figure 3-3 shows the miscibility gap in the system and the tie lines for the coexisting phases.
Let the phase rich in C be denoted by a and the phase poor in C by 0. For the chemical potentials,

and

(3-12)

(3-13)

and

Any one of the following ion exchanges between a and j3 may be considered:

A/3 + B a^A a + B/3,

B a + C/3^B/S + Ca,

A a + C/3 ̂  C a -f A / 3 .

(3-14)

38 000(9000) \\29000 (7000)

Figure 3-3—Coexisting regular ternary solutions.
The components are A, B, and C. M^B, W'zc, and
W'ACare 6300, 29 000, and 38 000 J/mole (1500,
7000, and 9000 cal/mole), respectively. The temper-
ature is assumed to be 1573 K. 6300(1500)
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The equilibrium constant for Equations 3-14 is

« ffi f"
1 A.' B

= K3-14 (3-15)

In this particular case because a and 0 obey the same equation of state, AG° = 0 and A^3.14 = 1. In
other cases where a and )3 are minerals with different crystal structures, the equilibrium constant is
not equal to 1. The/terms in Equation 3-15 are functions of/*, T, and the ratio of A to B to C. There-
fore KD (•KB*!/*!*! ) ak° cnanges witn ?> T, and the ratios of A to B, B to C, and A to C.

Let the ratio of A to B to C change systematically as listed in Table 3-1. A plot of Xg against XB,
where x is either A/(A + B) or A/(A + B + C), shows a smooth distribution curve (Figure 3-4). The
form of the curve, however, is markedly different from the ideal distribution curve.

The activity coefficients are given by

T in
'AC rAB *BC 'AC''

and

R T In

(3-16a)

(3-16b)

(3-16c)

where XA = A/(A + B + C) and the other x's are similarly defined. It may be checked that substitution
of/values into Equation 3-15 gives the equilibrium constant as unity.

Table 3-1—Composition of coexisting phases in ternary regular solutions.

a

B

0.010
.040
.080
.100
.130
.170
.200

A

0.082
.079
.071
.066
.056
.037
.020

C

0.908
.881
.849
.834
.814
.793
.780

0

B

0.043
.174
.339
.413
.512
.625
.700

A

0.868
.718
.522
.431
.309
.171
.081

C

0.089
.109
.140
.156
.179
.205
.219

1

0.108
.336
.530
.602
.699
.821
.909

4

0.047
.195
.394
.489
.624
.785
.896

*„
0.406

.478

.576

.632

.715

.796

.862

*B =
B

B + A
and KD =
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0.5-

Figure 3-4—Distribution of a component B between two
ternary regular solutions plotted on a Roozeboom diagram.
x = B/(A + B).

DISTRIBUTION OF A CATION BETWEEN TWO OR MORE MULTICOMPONENT MINERALS

Many rock-forming minerals are complex multicomponent crystalline solutions. The distribution
of cations in two or more coexisting minerals in natural assemblages may still yield certain valuable
information. The method to be followed in such cases has been discussed by Kretz (1959). In silicates
there are at least two types of coordination for cations. Si4+, Al3"1", Fe3"1", and less commonly Ti4"1" are
in tetrahedral coordination. Fe2"1", Mg2+, Fe3+, A13+, Mn2"1", and Ti4+ are found in octahedral
coordination. Such differently coordinated ions may be regarded as forming submixtures. The distri-
bution of Fe2+ or Mg2"1" or any other octahedrally coordinated ion may be examined in two or more
such submixtures forming parts of different minerals. It should be noted, however, that the chemical
potentials of a cation in octahedral coordination may also be a function of any chemical variation in
the concentrations of the tetrahedrally coordinated ions. Such information can be usually obtained
beforehand by considering the chemical composition of individual minerals. For example, the positive
correlation between the concentration of tetrahedrally coordinated A13+ in amphiboles and biotite
with the Fe2"l"/Mg2"1" ratio in the mineral is now well known (Ramberg, 19526; Saxena, 1968a).

It may be argued that the study of the distribution of a component between only two of the co-
existing minerals that are quasi-binary solutions out of an entire assemblage of five or six minerals
could not be useful. That is, the presence or absence of a third or fourth mineral in the assemblage
ought to affect the distribution coefficient. This is not generally true. The distribution coefficient
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changes only when the presence or absence of a third mineral is associated with a significant change
in the concentration of one or more elements in one or both of the coexisting minerals. For example,
TiO2 is only sparingly soluble in olivine and orthopyroxene. The chemical potential of TiO2 may
increase or decrease in the rock, and rutile may be added or removed from the assemblage, but KD for
the distribution of Fe2+ and Mg2+ would not change. However, if the change in MTio changes the
concentration of TiO2 significantly in one of the two coexisting minerals, KD may also change. Thus
it is only meaningful to consider the concentrations of all the components in the two minerals and not
the presence or absence of another phase or the change in the bulk composition of the rock.

One of the important results of the study of cation partitioning is the recognition of how closely
chemical equilibrium may be approached in the rocks. Whether the minerals are ideal or not, the dis-
tribution of a component between two coexisting binary phases at a certain P and T will be repre-
sented by a smooth distribution curve if chemical equilibrium is closely approached. If the minerals
are not binary, the concentration of other components because of the diadochic or substitutional
relationships may affect the orderly distribution as discussed before. In fact, the approach to chemical
equilibrium can be studied with respect to each component individually. Figure 3-5 shows the distri-
bution of Mn in coexisting minerals from charnockites (Saxena, 1968&). Such orderly distribution of
Mn is common in other rocks as well. The distribution of Fe2+ and Mg2+ between coexisting olivine

o

MnO in horn

• bi X Capx • opx o gar

Figure 3-5—Distribution of Mn in coexisting minerals
in charnockites of Varberg, Sweden (Saxena, 19686).
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and orthopyroxene at 1073 and 1173 K was experimentally studied by Medaris (1969). Although
Medaris made repeated grinding and heating of the reaction products, Figure 3-6 shows that the distri-
bution points both at 1073 and 1173 K show some scatter. The difficulties are related to the kinetics
of the ion-exchange reaction as equilibrium is approached, particularly when the distribution approaches
a 1 to 1 ratio in the two minerals. In contrast to these experimental results, the partitioning of Mg2"1"
and Fe2+ between orthopyroxene and Ca pyroxene (Capx) in metamorphic rocks as studied by Kretz
(1963) is remarkably orderly. Most distribution points fall on a smooth curve, and a distribution curve
representing igneous rocks is clearly separated from a distribution curve for the metamorphic rocks.

Studies of partitioning of cations between coexisting minerals in natural rocks by petrologists
(Albee, 1965; Annersten, 1968;Binns, 1962; Butler, 1969; Kretz, 1959; Gorbatschev, 1969; Hietnan,
1971; and Mueller, 1960, among many others) are attempts to rationalize the concept of metamorphic
facies on a mineral and chemical basis. In experimental systems, similar attempts have been made by
Nafziger and Muan (1967), Larimer (1968), and Medaris (1969), among others. The results of such
partitioning studies have generally confirmed the usefulness of the approach and the need for more
thermodynamic data on crystalline solutions.

In essence, problems of phase equilibria are distribution problems, and a statistical approach to
such problems may be made to avoid the consideration of the thermodynamic properties of solutions
in individual minerals. Such approaches have been made principally by Greenwood (1967) and Perry1

and should be applicable in solving the petrogenetic problem of incompatible assemblages and the
recognition of chemical equilibrium in natural or experimental systems.

i.oo

0.75

0.50

0.25-

Q1073K

0.25
Figure 3-6-Distribution of Fe2"1" and Mg2+

between synthetic olivine and pyroxene. Distri-
bution data from Medaris (1969).

K. Perry, St.: "Construction of a Single (m + 2) Dimensional Phase Diagram From Petrochemical Data." To be published.
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Chapter 4

MEASUREMENT OF COMPONENT ACTIVITIES BY ANALYSIS OF PHASE DIAGRAMS

An experimental measurement of activities of components in a crystalline solution, particularly the
silicates, is beset with difficulties and the measured values are subject to large errors. Therefore, obtain-
ing such activity-composition relations from phase diagrams would be very convenient.

However, there is no direct method of doing this without some kind of a solution model. The use
of a solution model brings in uncertainties in the activity values, which depend in extent and form on
the choice of the model. The attempts to obtain the thermodynamic functions of mixing through the
use of various solution models is still useful. For some crystalline solutions it may be possible to
experimentally determine such properties. A comparison between the experimental values and the
values based on a particular model would provide a greater understanding of the interrelationship of
the crystal structural parameters on which the model is based and the thermodynamics of the crystal
phase. In other cases where experimental determinations cannot be made, the empirically derived
functions of mixing may be tested for their physical significance by their success in application to prob-
lems of petrogenesis.

SYMMETRICAL MIXTURES

Simple Mixture

The thermodynamics of a simple mixture or regular symmetric solution has been discussed before.
Assume that the solution (A, B)M unmixes into two coexisting solutions, a, rich in AM, and 0, rich in
BM. At equilibrium,

and * _ * (4-1)

so that according to the simple mixture model,

/i*° + R T In x* + W (1 - x<£)2 =./xJ° + R T In x% + W (1 - *^)2 (4-2)

where «0 and |30 stand for the same pure end member structure AM. Eliminating n°g> and /a^° and sub-
stituting jc^ = 1 - xa. ,

t\ f\.

R T In *? + W (1 - *")2 = R T In (1 - *?) + W (**)2 (4-3)
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or

JTf = t . 2 ,* ' (^

This expression is similar to the one obtained by Thompson (1967). The equation for the curve of co-
existence of two phases may also be written in terms of critical temperature Tc of unmixing and the
mole fractions by substituting

= 2 R Tc

into Equation 4-4:

(4-5)

If there are data on the composition of coexisting phases at different temperatures and the form
of the solvus is symmetric, the value of W and the activity-composition relations can be calculated.

Symmetrical Mixture of Higher Order

Symmetrical crystalline solutions may not be simple mixtures and may require an expression with
two or more constants to represent GEM :

GEM = *A C1 - *A> |?o + M1 - 2 *%)*] . (4-6)

For such a solution, Equation 4-3 is

(4-7)

Using the relation MR = /•'B ' an equation similar to Equation 4-7 can be written, and the two equations
can be solved simultaneously to obtain A Q , A 2 , and the activity-composition relation.

ASYMMETRICAL SOLUTIONS

Subregular Model

As mentioned before, G£M may be expressed as a polynomial in the mole fraction *A or XB for
the compound (A, B)M according to Guggenheim's equation:

GEM = *A *]

If A 2 = 0 is substituted into Equation 1-49, a two-constant equation for an asymmetrical solution is
the result. Proceeding as in the previous sections,

R T In x« + R T In f« - R T In %^ + R T In f^ (4-8)
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and

n *B + n ;B - . n X
B

Substituting values of RT In/from Equations 1-50 and 1-51,

RT In x^ + (*£)

and

R T In x« + (*»)' [4Q - ^ (3 x- - *£,] = R T In

Q + A, (3 *J - **) = ft T In »

- ^ (3

(4-9)

(4-10)

(4-11)

Equations 4-10 and 4-11 now can be solved simultaneously to yield the values of the two con-
stants AQ and/lj .

The method of calculation presented above is equivalent to that used by Thompson (1967) and
Thompson and Waldbaum (1969a,£>). Thompson's (1967) equation for G£M is

X c (4-12)

where

and

6' = *. x.A B

This is as if the crystalline solution is composed of JCA moles of a simple mixture with
moles of another simple mixture with WQI . Then,

and

GEM = W

2 - 2 x.
- W A a

Gl 2 "G2

Substituting 1 =XA +xn into Equation 4-13,

Gi GO

2 - 2 * .
(4-13)

EM "A "B

"/• 4- "/^» **/-> — " jn
vo T Gi Go fi

* A X B
(4-14)

which is of the same form as Guggenheim's equation with two constants AQ and^j
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Therefore,

and

F_ + Wr
G2 Gl

WG ~WCA - G2 Gl
1 2 '

(4-15a)

(4-15b)

AQ/RT and A l /RT would correspond to the notationBG and CG , respectively, used by Thompson
(1967) following Scatchard and Hamer (1935).

For the activity coefficient,

R T In /A = (*B)2 UQ + Al (3 *A -

Substitution of Equations 4-15 into Equation 1-50 gives

(1-50)

K n n / A = («B)'

= x.2-

W W W-i _i_ «/-f "/-i — "/-i
'2 + °1 G2 Gl

ip B' [f rrr
GZ + GI G2 -

 HGl
- W^

= - 2

(4-16)

which is the same form used by Thompson (1967).

Substituting the calculated values of AQ and-dj into Equation 1-49, GEM can be estimated. The
solvus bounding the two-phase region can then be determined by the graphical tangent method or by a
suitable iteration numerical method. The calculated values of JCA, Xg, JCA , and x| are then compared
to the observed mole fractions to test the applicability of the model. Other excess functions of mix-
ing may be calculated by Equations 1-52 and 1-53.

Quasi-Chemical Approximation

This model has been used by Green (1970) to study the halite-sylvite solvus. Consider two coexist-
ing phases M and N with components A and B. At equilibrium at a certain P and T,
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and
=

M =

or

and

+ R T In *» + /? 7 In

+ R T In *« + fl T In

+ R T In ** + /j 7- ln y-N

+ R T In *J| + R T In /£.

(4-17)

Because both M and N obey the same equation of state, the chemical potentials of pure A in M and A
in N and B in M and B in N are canceled.

Substituting values of /^ and/^ from Equations 1-35 and 1-36, respectively, into Equations 4-17>

and

2 1 11 n rM + In
A T 2

In *M + * InB 2
1

r 0g (/? - 1)i -)-
0A (/? + i)_

+ ^ (/3 - 1)1

$1 (/3 + 1)J

Z 01

+__! In 1 +

ln 1 +

^ (/3' + 1).

!>N (/?' - 1)"

(4-18)

(4-19)

where 0 arid ^', which correspond to phases M and N, respectively, and the 0's are defined by Equations
1-30 (using 0A instead Of XA , etd) and 1-37. q1 and q2 are the contact factors discussed before. They
are riot Iridependeht and should approach 1 simultaneously. Green (1970) assumed\/qlq2 = 1. The
two independent relatidns 4-18 and 4-19 contain two unknowns ^ A?2 and W and can be solved by an
iteration process. The ratio q^/q2 *s a function of the geometry of the substituting chemical species
and therefore may be regarded as almost independent of T. Substitution of q i/q2 back into Equations
4-18 and 4^19 gives two independent values of W at each temperature. Any difference noted in the
two Values of iti would be caused by the inadequacy of the solution model to fit to the experimental
data*

The sdlvus bounding the two-phase region may be determined graphically by the double tangent
rnethod on a plot of free energy bf mixing against mole fraction or by a numerical iteration method.
The Excess functions of mixing can be calculated by Equations 1-38 and 1-39.

EXAMPLE OF CALCULATION OF FUNCTIONS OF MIXING: THE CaWO4-SrWO4SYSTEM

Chang (1967) presented the data on the two-phase regions with solvus in the binary tungstate
RI!WO4 type of crystalline solution. Table 4-1 shows the data on the composition of the coexisting
phases a and j3 rich in CaWO4 and SrWO4, respectively. Calculated values ofA Q /RT and A^/RT
according to the subregular model are listed in Table 4-2. The relationship between AQ/A l and T is
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Table 4-1—Chemical composition of unmixed phases in the
system CaWO4 -SrWO4 .

a

T(K)

823
873
923
973
1023
1073

va
*Sr

0.005
.010
.025
.035
.067
.120

Y<*
*Ca

0.995
.990
.975
.965
.933
.880

*ir

0.995
.980
.955
.905
.800
.630

XP
*Ca

0.005
;020
.045
.095
.200
.370

aa and 0 are coexisting phases rich in CaWO4 and SrWO4, respectively. The
compositions are from Chang (1967, Figure 3).

Table 4-2-The calculated AQ /RT and
^1//Z7'in(Ca,Sr)W04.

r(K)

600
650
700
750
800
900a

1000a

AQ/RT

4.364
3.524
3.119
2.537
2.021
0.839

-0.296

AI/RT

-0.327
-.348
-.455
-.514
-.607
-.739
-.884

"From Equations 4-20 and 4-21.
Note: An error of ±5 percent in the mole fractions

(Table 4-1) results in a ±800 J/mole (±200 cal/mole)
error in determining AO and A j.

linear and is given by

and
RT

RT

= 14.1526 - 0.011

= 0.9616 - 0.001 45T .

GEM can then be calculated from the relation

'-'EM = *SrW04 *CaW04 ^0

and the activity coefficients from the relations

^" ' S rW0 4 ~

(4-20)

(4-21)
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and
R T In/

CaWO. SrWO. (3 CaWO,, SrWO,

Figure 4-1 shows the activity-composition relation at 1073 and 1273 K. GEM can also be plotted
against composition, and the composition of the coexisting phases can be found by the tangent
method. In the present case, the differences between compositions calculated by the model and the
observed compositions in Table 4-1 are found to be small.

As mentioned before, the activity-composition data and other thermodynamic functions as cal-
culated from phase diagrams are sensitive to the nature of the assumptions and the model used. For
the system CaWO4-SrWO4, calculation shows that the use of quasi-chemical approximation predicts
the solvus with the same accuracy that the subregular model does. The use of quasi-chemical approxi-
mation requires the values o f q l , q 2 , and the coordination number z, the number of the nearest Ca2"1"
or Sr2"1" ions surrounding each other. In CaWO4 there are four Ca2+ ions surrounding each Ca2+ at a
distance of approximately 0.39 nm. There are four more Ca2+ ions at a distance of 0.5 nm. z may be
assumed equal to 4, and the two equations of the quasi-chemical approximation (Equations 4-18 and
4-19) can be solved simultaneously to find q l/q2-

In this case, it may be assumed that either ql +q2 = 2 or^/qlq2 = 1. The differences in the cal-
culations of W using either of the two assumptions are small. (See Green, 1970.) A computer pro-
gram may be used to solve each of the two equations independently by using various values for ql and
q2 and to compare the W values so obtained until the best set of W values is found. The W values with
z = 4 are listed in Table 4-3. ql and q2 are 1.20 and 0.80, corresponding to SrWO4 and CaWO4,
respectively. The atomic radii (R) for Sr2+ and Ca2+ are 1.12 and 0.99, respectively (Ahrens, 1952);
therefore, the ratio of q: to q2 is 1.50 and the ratio of the radii of Sr2+ to Ca2+ is 1.13; these values
are not similar.

O
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l.oo Figure4-1-Activity-composition relation in CaWO..-
SrWO. crystalline solution at 1073 and 1273 K.
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Table 4-3-2W/zRT for the system
CaWO4-SrWO4.

7(K)

873
923
973
1023
1073

Equation
4-18

5.883
5.173
4.919
4.495
4.183

Equation
4-19

5.361
4.821
4.460
4.301
4.386

z = 4 ; < ? 1 = 1.20;g2 = 0.80.

The following equation describes the relation between the calculated W (the average of the two
values listed in Table 4-3) and T:

•jfjz = 34.64 - 0.055 06 T + 0.000 025 T2 . (4-22)ZK1

Figure 4-2 shows a comparison of GEM at 1073 K calculated according to both the subregular
(SR) model and the quasi-chemical (QC) model. The value of GEM according to the latter is nearly
twice that calculated according to the former. Differences between the other calculated functions of
mixing, #EM and SEU , are even more marked. Unfortunately there are no data on experimentally
determined #EM and SEM for the CaWO4-SrWO4 system, and, therefore, there is no way to know
which model predicts the thermodynamic functions better in this particular case.

For the system NaCl-KCl, Green (1970) compared the thermodynamic quantities calculated by
the subregular model and the quasi-chemical model with those determined by experiments. The
thermodynamic quantities predicted by the quasi-chemical model are closer to those measured
experimentally.

A comparison of the predictions of the functions of mixing in several binary alloys by regular
solution model and by the quasi-chemical model (Lupis and Elliott, 1967) shows that generally the pre-
dictions by the latter for the excess free energy are closer in agreement with experimental determina-
tions than those by the former. The prediction for the excess entropy from the quasi-chemical model
is not satisfactory. This may be in part caused by the neglect of the nonconfigurational excess entropy
in many of the binary alloys. For the halite-sylvite system, Green (1970) finds that the nonconfigura-
tional contributions are unimportant and suggests that the positive excess entropy of mixing found in
the NaCl-KCl system may result from the introduction of vacancies or other defects into a crystalline
solution.

This approach of calculating thermodynamic functions of mixing by the analysis of phase diagrams
is relatively new in the field of mineralogy and deserves more attention from mineralogists and petrolo-
gists. The fact that there is no unique analysis of a solvus and two or more solution models may be
applicable to the same solvus data need not be a barrier to acquiring and interpreting more phase data
with the help of various solution models. Experimental verification of many of these results may not
be possible in the near future. However, it may be possible to test such thermodynamic data by their
application to petrogenetic problems and get physically meaningful results.
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Chapter 5

MEASUREMENT OF COMPONENT ACTIVITY USING COMPOSITION
OF COEXISTING MINERALS

Experimental data on the distribution of a component between two coexisting crystalline solutions
at a fixed P and T for systems such as olivine and pyroxene have been collected by Nafziger and Muan
(1967), Larimer (1968), and Medaris (1969). Distribution data are also available for natural assemblages,
but the P and T of their formation are indefinite. The distribution data from natural assemblages in
many cases may be found to represent ion-exchange equilibrium closely. If precise P and T are not
important, such data may be used to obtain useful information on the thermodynamic nature of mixing
in the minerals. For this purpose, the thermodynamic equations according to various solution models
for binary solutions presented in this section may be used. . .

The composition of coexisting phases that do not obey the same equations of state may be used
to find the activity-composition relations in each phase in suitable cases. Consider a and j3 with chemi-
cal formulas (A, B)M and (A, B)N, respectively, which are in ion-exchange equilibrium at a certain P
and T. From Chapter 3,

A a + B/3^ B a + Af t . . (3-6)

The equilibrium constant K^ is given by

3-6

The term in the first bracket is the distribution coefficient KD . Depending on the nature of the data
available, the following cases may be considered.

COMPOSITIONAL DATA AVAILABLE ON A COMPLETE DISTRIBUTION ISOTHERM

The simple mixture model, the two-constant asymmetric model, and the regular solution model
with quasi-chemical approximation are the possible choices. According to simple mixture model,

In K = In Kn - — (1 - 2 xa.) + — (1 - 2 xfy . (3-11)
3,6 . & • RJ-- A' R T ,A „ . . . .

A nonlinear least-square fit using the data on x°^ and x^ finally yields A^, Wa, and W*3.
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According to the Redlich and Kister equations (King, 1969, p. 326),

R T ln 'A = *B IAQ + *i (3 *A - *B> + A2 (*A - *B> <5 *A - *B>

and

Therefore,

R T ln - Ai (3

R T In.
/

(6 - 8 «

(5-2)

(5-3)

(5-4)

Substituting the values of /£//£ andf£/f£ by using Equation 5-4 in Equation 5-1, neglecting the
constants A 2 's, arid rearranging in logarithmic form yields

In K -- In . (6 (6 -!)•

(5-5)

Equation 5-5 is of the form

N = M + AI xt + A2 x2 + A3x 3+ . ...

where the N and the x's are known quantities; It may be solved by a numeric least-square method
yielding M = In AT3-6 and other constants. There must be a minimum of five distribution points.

According to the quasi-chemical approximation,

1 + (1-35)

and/B is defined as in Equation 1-36. Substituting these values of/into Equation 5-1,

1 +
- 1)

1)
1 +

- 1)

1)
(5-6)

- r,
1 +.

-1)

where /30 and @P are for phases a and |3, respectively, and are given by Equation 1-30, with XA replaced
by 0A, etc. qa and ̂ ^ are contact factors for phases a and 0, respectively. A numerical least-square
method may be used to solve Equation 5-6. j
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COMPOSITION DATA ON A COMPLETE DISTRIBUTION ISOTHERM AND THE
ACTIVITY-COMPOSITION RELATION IN ONE OF THE TWO COEXISTING PHASES

Depending on the accuracy of the data, Equations 3-11, 5-5, and 5-6 may be used. If necessary,
all three constants in Equation 5-4 may be used. Equation 5-4 may be written as

f
R T l n j - = x B ( 2 A 0 + 6 A l + 10 A2) - *£ (6 AI + 24 A2) + ** (16 A2) - (AQ + Al + A2)-. (5-7)

' B

Transforming Equation 5-1 into logarithmic form and substituting values from Equation 5-7 for

/B _ ( Ao + Ai + A2\ f 2 A 0 + 6 A 1 + lOA\
n— - ^ n 3-6+ -p-f / XB\ "RT /

A

/6 A, + 24 A\ /16 A\

Equation 5-8 is of the form

If the activity-composition relation in a is known, Equation 5-8 may be solved by least-square analysis.

If sufficient number of distribution points are available, Equation 5-5 may be used with the third
constant A^ and the results compared with those obtained by using Equation 5-8.

The olivine-chloride solution system (Schulien et al., 1970) has been used by Saxena1 for calcu-
lating the activity-composition relation in binary solutions using the distribution data.

JS. K. Saxena: "Retrieval of Thermodynamic Data From a Study of Inter-Crystalline and Intra-Crystalline Ion Exchange
Equilibria." To be published in Amer. Mineral., 1972.
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Chapter 6

ORDER-DISORDER IN Fe2+-Mg2+ SILICATES

Long-range order-disorder phenomena in ferromagnesian silicates differ from those in alloys in
several important respects. First, as opposed to alloys, the silicate framework remains more or less
inert and only a certain number of cations take part in the site exchange. Second, a complete crystal-
line solution usually exists between the Mg and Fe end members. Third, because Fe2+ and Mg2+ are
similar in size, charge, and other characteristics, the site preference energies (corresponding to the dif-
ference in binding energy of the ion between the nonequivalent sites) are not strongly dependent on
the degree of order as is usual in many binary alloys. Order-disorder or the intracrystalline cation dis-
tribution in silicates is measurable by X-ray (see Ghose, 1961) and other spectroscopic techniques. The
energy of the intracrystalline ion exchange is part of the Gibbs free energy of the crystal and is, there-
fore, a very useful thermodynamic quantity (see Mueller, 1969, and Thompson, 1969).

INTRACRYSTALLINE ION EXCHANGE AND SITE ACTIVITIES

A crystalline solution (A^, B 1_X)M may have the two cations A and B distributed between two
nonequivalent sites a and )3. M is the inert silicate framework. Following Dienes (1955) and Mueller
(1960, 1962, 1969), the disordering process may be represented by the following exchange reaction:

Aa + B/3 ^ A/3 + Ba . (3-6)

In terms of kinetic theory, the time rate of change of A in site j3 is given by

<**£

where x refers to the mole fractions, K.a and Ka. are rate constants and functions of P and T only,
and are </>„ and (j>a0 analogous to activity coefficient products in a macroscopic chemical system and
are functions of P, T, and 0. At equilibrium,

d t
and

Ka *? f f t* xa fa a^ aa
K */?q = A /A B'B = A B (6_2)

x a f a

* '
3-6

* ° " * B ' B ~ A ' A
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where/is the partial activity coefficient and a the partial activity. The product of the/'s appears as 0
in Equation 6-1. The term "partial" is used to distinguish between the activity of A on the site from the
activity of A in the crystal.

The distribution coefficient is

KD has sometimes been referred to as the ordering parameter. The distribution coefficient, however,
should not be confused with the ordering parameter S used to describe ordering in alloys. S = 1 cor-
responds to the highest possible order, and S = 0, to complete disorder. This is the opposite in the case
of KD . Further, KD will be used to describe order-disorder in nonstoichiometric silicates forming com-
plete crystalline solution series. In such silicates the formation of a fully ordered or disordered periodic
structure is not possible. Even with the greatest tendency towards ordering, some of the excess atoms
of one component must inevitably occupy sites belonging to the other, which leads to a lower order
or disorder. The distribution coefficient is a function of T and the varying ratio of A to B in the crystal
and, therefore, is of little thermodynamic significance.

The equilibrium constant K^ is a function of-P and T only. However, as the volume changes in-
volved in the ion exchange are negligible, the dependence of K*, on P is ignored, and K., is considered
to be only temperature dependent.

The definition of the chemical potential of a cation on a site presents certain problems (Mueller,
Ghose, and Saxena, 1970). One may write the following equations, as done by Grover and Orville
(1969), for the chemical potential of a cation A on the sites a and /3:

^A = ^A° +R 7 In a- (6-3)

and

^A = /XA°+ R r ln °B' (6'4)

where the M° 's are the standard chemical potentials and the a's are the corresponding partial activities.
According to classical thermodynamics, however, it is incongruent to define two different chemical
potentials for one species in a single homogeneous phase. In such a case,

and (6-5)

To avoid this difficulty, Borghese (1967) regards A in site a as a distinct species from A in site j3.
This is somewhat analogous to speaking of the chemical potentials of O2 and O3 in a homogeneous
gas phase. The idea of defining a new potential analogous to chemical potential called a site preference
potential (Greenwood in Grover and Orville, 1969) could also be considered.
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The use of a site preference potential may be avoided in practice, particularly because its quan-
titative use in thermodynamics is rarely of importance.

The standard site preference energy or the intracrystalline ion-exchange energy AG° for the ex-
change reaction (Equation 3-6) is given by

AC0 = -R T l n K a (6-6)

where Ka is the equilibrium constant and is a function of T only, unlike KD , which is a function of
both T and composition.

THERMODYNAMIC FUNCTIONS OF MIXING

One of the principal aims of the study of order-disorder phenomena is to investigate the thermo-
dynamic properties of the crystalline solution as a whole. In case of an ideal macrophase, the activity-
composition relation is given by

-i = <•*.,)", (6-7)

where N is the number of structural sites in the crystal. When there are two sites,

and if these sites are different,

a. = (x . f ,
1 V I ' '

o. = (*? + *f) (6-8)

or
< » . = ( * . ) « ( * . ) £ , (6-9)

where a and )3 are two nonequivalent structural sites. The latter method has been generally used
(Mueller, 1962; Thompson, 1969). Extending the above method to the nonideal case,

a. = ( a . r ( a . / , (6-10)

where af and a? are partial activities referring to the sites. In an orthopyroxene (MgMgSi2Og-
FeFeSi2O6) where there are two sites, Ml and M2, the activity of Fe2+ in the crystal may be expressed
as

Oopx Ml M2 (6.n)

Fe Fe Fe

If the activity is considered on a one-cation basis, i.e., for the crystal (MgSiO3-FeSiO3),

aopx = ( f lMl M2 2 + ) l /2 . (6.12)

Fe Fe Fe

The partial activity af is equal toffx? where/is the partial activity coefficient. At a certain tempera-
ture the atomic ratio xi in the two sites a and 0 can be determined by X-ray or other resonance tech-
niques. The next problem involves the evaluation of the partial activity coefficients.

41



Several crystals of suitable composition (A, B)M between the end members AM and BM may be
chosen and heated at a certain temperature for a time long enough to attain equilibrium for the intra-
crystalline ion exchange (Equation 3-6). Several such distribution isotherms may be obtained. A
model suitable for interrelating the partial activity coefficient with the atomic fraction at the site
must be found. The simple mixture or regular solution model may be found useful in cases where the
form of the distribution isotherms does not indicate too much of a nonideal state of mixing A and B
at a. and 0. Thus,

Wa W& a
In Ka = In KD - _ (1 - 2 *«) + |L. (1 - 2 *J) , (6-13)

where W is related to the partial activity coefficient by

R T l n / £ = W (1 - *£)2. (1-27)

At this point, certain other partial functions of mixing may be considered. The partial free energy
of mixing at the sites is given by

C£ = *£K T l n a £ + X « R T In a£ (6-14)

CM = x" R T In /£ + x* R T In /* + T (*« R In x« + ** R In *») . (6-15)

Substituting S^ =-R(x°^ Inx^ +*£ In *£ ) and Equation 1-27 into Equation 6-15,

The term Wajt^JCg is also the partial excess free energy of mixing.

In a crystalline solution such as AAM-BBM, the total free energy of mixing is given by

*; + *£ *£ + *£
G = — - - R T I n o» -a a S— - - — -

M 2 A A 2 B B

which can be shown to be

X (6-18)

xa - x/3

IF a + ̂ * . (6-19)

This expression is similar to the one derived by Grover and Orville (1969) for ideal mixing at the sites.
Note that in the above expression K^^ is the equilibrium constant and not the distribution coefficient,
as in the case of ideal mixing.

Substituting AC0 = -RTln K^ into Equation 6-19,

* i - *4

CM =-^— ^ A G ° - T (SM + Sfo + <C™ + C^) . (6-20)
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Thus the free energy of mixing in the crystal as a whole is a result of the energy due to the distri-
bution of the cation between a and j3 sites, the entropy change due to the distribution of A and B
within a and |3 sites, and finally the excess energy of mixing that is the result of the nonideal state of
the solution in a. and |3.

The partial excess free energies of mixing at the sites are

G™ = " m - T S m (6-21)

and
CiM = <« - r S ^ M - (6-22)

Substituting Equations 6-21 and 6-22 into Equation 6-20,

x/3 - xa

Gu = --3— A C° + Hw + Hm ~ T ( SIM+ SEM + 5
M

 + *> • (6-23)

The thermodynamic relations presented in this and earlier sections have been used in analyz-
ing the data on site occupancies in orthopyroxene (Saxena;1 see also Saxena and Ghose, 1971).

KINETICS OF ORDER-DISORDER

Virgo and Hafner (1969) made the important observation that there is an apparent cutoff or tran-
sition region on the temperature scale below which no more ordering or disordering occurs. This tran-
sition temperature in orthopyroxene was estimated to be approximately 750 K. Above this temperature
the activation energy required for diffusion to start in the direction of disordering is of the order of
80 kJ (20 kilocalories) (Virgo and Hafner, 1969). Below this temperature the activation energy should
be very high. This is confirmed from the measurement of order-disorder in metamorphic pyroxenes
that cooled slowly through geological time. Figure 6-1 shows the data on the KD values for the distri-
bution of Fe2+ and Mg2+ between Ml and M2 sites in metamorphic orthopyroxene. From these data
it may be noted that no orthopyroxene shows a degree of order representing temperatures lower than
723 K.

Mueller (1970) proposed a two-step mechanism for order-disorder kinetics in silicates. This in-
volves a low-temperature process with high activation energy and a high-temperature process with a
lower activation energy. This mechanism may be responsible for ordering characteristics distinguishing
metamorphic, igneous plutonic, and volcanic pyroxenes. The intracrystalline ion-exchange equilibria
in igneous plutonic rocks is not ordinarily quenched at any temperature because of slow cooling rate.
The same applies to such equilibria in metamorphic rocks. However, in metamorphic rocks attainment
of such equilibria is possible below the transition temperature if crystallization or recrystallization
occurs at these temperatures. Because of rapid cooling in volcanic rocks, it is very possible that the
intracrystalline equilibria are quenched and the temperature indicated by order-disorder is not very
much lower than the original temperature of crystallization.

1S. K. Saxena: "Retrieval of Thermodynamic Data From a Study of Inter-Crystalline and Intra-Crystalline Ion Exchange
Equilibria." To be published in Amer. Mineral., 1972.
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