7

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-568

Phase 1 Report on a Cognitive Operating
System (COGNOSYS) for JPL's Robot

F. P. Mathur

—CR-1283u46) A COGNITIVE OPgaagﬁigE]
SYSTEM (COGNOSYS)vFOR JPL'S ROBO‘,n HASE

. REpPORT F.P» Mathur (Jet propulsio C.SCL) o8
| 15 Sep. 1972 35 P i1j08 whots

{NASA

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 15, 1972

;R;produced by—“ T T
- NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of C
.. Springfield VA 202"'?'5“l°me >\\
ER .),

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 33_568

2. Government Accession No. | 3. Recipient’s Catalog No.

4, Title and Subtitle

PHASE 1 REPORT ON A COGNITIVE OPERATING
SYSTEM (COGNOSYS) FOR JPL'S ROBOT

5. R t Dat
eport Bate September 15, 1972

6. Performing Organization Code

7. Author(s) F. P, Mathur

8. Performing Organization Report No.

9. Performing Organization Name and Address
JET PROPULSION LABORATORY

California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91103

10, Work Unit No.

11. Contract or Grant No.
NAS 7-100

13. Type of Report and Period Covered

Technical Memorandum

12, Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

14, Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The most important software requirement for any robot development is the

COGNitive Operating SYStem (COGNOSYS).

This report describes. the Stanford

University Artificial Intelligence Laboratory's Hand/Eye software system
from the point of view of developing a cognitive operating system for JPL's
Robot. In this, the Phase I of the JPL Robot COGNOSYS task the installation
of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accom-
plished and guidelines have been prepared for the implementation of a
Stenford University type Hand/Eye software system on JPL-Caltech's computing
facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operat-
ing system are also considered.

17. Key Words (Selected by Author(s))

Computer Applicatibns and Equipment

Planetary Exploration, Advanced

Artificisl Intelligence

18, Distribution Statement

Unclassified -- Unlimited

19. Security Classif, (of this report)

Unclassified

20, Security Classif. (of this page) | 21. No. of Pages | 22. Price

Unclassified 3L

4

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

N
Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the
report cover, Use all capital letters for title (item 4). Leave items 2, 6, and 14
blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients,

7. Author(s). Include corresponding information from the report cover. In
addition, list the affiliation of an author if it differs from that of the
performing organization,

8. Performing Organization Report No, Insert if performing organization
wishes to assign this number,

10. Work Unit No, Use the agency-wide code (for example, 923-50-10-06-72),
which uniquely identifies the work unit under which the work was authorized.
Non-NASA performing organizations will leave this blank,

11. Insert the number of the contract or grant under which the report was
prepared.

15. Supplementary Notes, Enter information not included elsewhere but useful,
such as: Prepared in cooperation with, .. Translation of (or by). .. Presented
at conference of, .. To be published in. ..

16. Abstract, Include a brief (not to exceed 200 words) factual summary of the
most significant information contained in the report. If possible, the
abstract of a classified report should be unclassified, If the report contains
a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify
: the principal subjects covered in the report, and that are sufficiently
specific and precise to be used for cataloging.

18. Distribution Statement, Enter one of the authorized statements used to -
denote releasability to the public or a limitation on dissemination for
reasons other than security of defense information, Authorized statements
are "Unclassified—Unlimited, " "U,S. Government and Contractors only, "
"U.S. Government Agencies only, " and "NASA and NASA Contractors only, "

i9. Security Classification (of report), NOTE: Reports carrying a security
classification will require additional markings giving security and down-
grading information as specified by the Security Requirements Checklist
and the DoD Industrial Security Manual (DoD 5220, 22-M).

20. Security Classification (of this page). NOTE: Because this page may be
used in preparing announcements, bibliographies, and data banks, it should
be unclassified if possible, If a classification is required, indicate sepa-
rately the classification of the title and the abstract by following these items
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for
classified items, :

21. No, of Pages. Insert the number of pages,

22, Price. Insert the price set by the Clearinghouse for Federal Scientific and
Technical Information or the Government Printing Office, if known,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-568

Phase 1 Report on a Cognitive Operating
System (COGNOSYS) for JPL’s Robot

F. P. Mathur

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

September 15, 1972

I

\ "/ 4
Prepared~nder Contract No. NAS 7-100
National Aeronautics and Space Administration

o NS

B

P PREFACE

The work described in this report was performed by the Astrionics

Division of the Jet Propulsion Laboratory.

JPL, Technical Memorandum 33-568 iii

PRECEDING PAGE BLANK NOT FII.MED

Preceding page blank

CONTENTS

L Introduction v i v i i it it i ittt ot i et et e o et nensnn
II. Methodology . . v v v v vt i i i e i e et e it et s e e e e
III. Overview of Hand/Eye System . v « v v v v v v v v v oo v o n e o s oo oo
A, Hardware OVerview . « v v v v v v v v v v v st ot oo ot o o oo oo

B. Storage Requirements v v v i i it it ittt v

C. Software OVerview. .« « v v v v v v o vt it it vt s e e e e e

D. Data Representation: LEAP Triplet Associations.

E. Strategy or Control Programo vuoos A

IV, Pseudo-teletypes. v v i v i it vttt et ettt e
A. Hand/Eye PTY Mechanism Procedures « « « « « v v v v v o v o v .

V. Global Model i i i i it it it e sttt e e et e e e
A, Parallel Processing Using Spacewar Mode. . + « « v v v v v 4 .

B. Message Procedures and Forward MPs. « « + « v v v v v v v o

C. T racing . v v v v v i i it e e e e e e e e e e e e e e e e e

VI. UUOs, CALLS and CALLIS « v v v v v t 4 o v v o o v o v o n et on e n e
A, Summary of Phase L. . . v v v v v v vt v v vt v e ettt e e e

B. An Estimate of Phase IIo v i v e
Appendix A. Hand/Eye System Jobs v v v v e v i e i
Appendix B. List of CALLI Symbolics . v v v v v v v v v vt e v v v e a e n
Appendix C, Trace of Hand/Eye System Execution.

JPI1, Technical Memorandum 33-568

PRECEDING PAGE BLANK NOT FILMED

vi

FIGURES
1.

2.

CONTENTS (contd)

Overview of the system« ¢« v v v vt e v v vt v vt v oo o
Flow paths through Hand/Eye modules.

HE monitor dispatcher, I/O, command decoder
flow diagram . o v v v o v v v v v o v v e b e e e e e e e e e

Simplified flow diagram of program control
(Instant Insanity puzzle)t i it e .

Hand/Eye block structureo oo v v v vuennneon

Message procedure tTaCe . . . ¢ v v v v v o o o v b a0 s 00 s

JPIL, Technical Memorandum 33-568

17
18

19

20
21

22

ABSTRACT

The most important software requirement for any robot development is
the COGNitive Operating SYStem (COGNOSYS), This report describes the
Stanford University Artificial Intelligence Laboratory!'s Hand/Eye software
system from the point of view of developing a cognitive operating system for
JPL's Robot, In this, the Phase I of the JPL Robot COGNOSYS task the
installation of a SAIL compiler and a FAIL assembler on Caltech!s PDP-10
have been accomplished and guidelines have been prepared for the implemen-
tation of a Stanford University type Hand/Eye software system on JPL-
Caltech's computing facility. The alternatives offered by using RAND-USC's

PDP-10 Tenex operating system are also considered,

JPL Technical Memorandum 33-568 vii

I. INTRODUCTION

The most important software requirement for any robot development
is what may be termed the COGnitive Operating SYStem (COGNOSYS). The
COGNOSYS is to be distinguished from the operating system of the host com-
puter on which the cognitive operating system is implemented and resides.
The JPL robot's sensory-motor functions consist of those corresponding to
stereo-TV cameras, range finder, arm(s), and vehicle drive mechanisms.
None of the robots either in existence or under current development, to the
author's knowledge, have this mix of effectors. The Stanford Research
Institute's SHAKEY has no arm. The Stanford University Artificial Intelli-
gence (A.I.) Laboratory's Hand/Eye (HE) system has no mobility. The
approach taken by these two centers of robotics in the development of cogni-
tive operating systems are distinctively different from each other. Stanford
Research Institute's SHAKEY has a cognitive operating system which is
designed around a theorem-prover (the QA3-STRIPS-PLANEX approach)
whereas the Stanford University A,I. Laboratory utilizes heuristic strategy
program to control the serial/parallel execution of a directory of special-
purpose subroutines (jobs, modules), where each subroutine, for example,

may be a directive for a specific operation on the robot's subsystem,

This report formulates a methodology for developing a cognitive
operating system and describes the Stanford University A, I, Laboratory's
HE system from the point of view of developing cognitive operating system
for Jet Propulsion Laboratory's robot breadboard. In the Phase I of the
COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on
Caltech's PDP-10 have been accomplished and guidelines set forth for the
implementation of a Stanford-type HE software system on JPL-Caltech's
computing facility. The alternatives offered by using RAND-USC's PDP-10

Tenex operating system is also considered.

JPL Technical Memorandum 33-568

II, METHODOLOGY

The methodology for the development of JPL robot's cognitive
operating system (COGNOSYS) from what was evident at the inception of this
project to what has evolved to date may be expressed thus: There was no
intention to be restricted to in-house capabilities alone but rather to acquire
as much benefit as possible by interacting with nationally known artificial
intelligence centers. These benefits would constitute in the awareness of the
latest developments relating to cognitive operating systems and in broaden-

ing the knowledge base of JPL researchers.

Specifically, these interactions would result in the importation of
artificial intelligence specific programming language compilers, assemblers,
and utility routines. They would also result in the understanding of
COGNOSYSs existing or under development at other centers, in the importa-
tion of these cognitive operating systems followed by in-house experimenta-
tion with them. This understanding and experimentation (either at JPL or at
site of origination) coupled with the JPL specific robot requirements would

lead to the modification and extension of these (imported) packages to fit the

JPL, robot's needs.

Should it be indicated, in the course of the study, that the effort
required to modify and extend these packages is not commensurate with the
effort required to develop these software packages from functional descrip-
tions and flow charts, then requisite steps would be taken to seek an inter-
mediary balanced approach. Such decisions may come about due to
incompatibilities of host machines, time-sharing systems, and availability
of compilers. Should the host machine compatibilities be of a marginal
nature then intermediary steps, between the extremes of: (1) direct import
and translation, and (2) total in-house specified development, are indicated.
That is to say, the task will comprise some of those imported packages that
are directly utilizable, those that will be utilizable after some modification,
other packages that may not thus be utilizable but must be developed and
written from basic specifications, and packages which do not exist anywhere,
are JPL specific, and hence must be developed here (e.g., those relating to

a robot functioning in a Mars environment).

JPL Technical Memorandum 33-568

III, OVERVIEW OF HAND/EYE SYSTEM

The HE system consists of a group of jobs which are all constrained to
some particular conventions (Fig. 1), These conventions enable communica-
tion of data and control information among the jobs. For the purpose of
clarity, these separate jobs may also be referred to as modules. Each

module represents a logical physical section of the HE system.

All of these modules are run as pseudo-teletype (PTY) jobs under the
PDP-10 timesharing system. The user is provided with a teletype (TTY)
controller which is responsible for communicating with the various modules
in the system. The TTY controller allows commands to be passed to these

modules and allows output from the modules to be shown to the user.

The PTY mechanism is used for controlling the modules to accommo-
date the timesharing system (e.g., logging in, executing system commands,
etc.). Since this is not a practical way of communicating large quantities of
data, another mechanism has been provided for making data available to all
modules and for communicating data between modules. This mechanism
makes use of the second segment on the PDP-10. All modules share a
common second segment which contains the SAIL routines and global data

storage space.

Since the second segment is common to all modules, it may also be
used for passing information from one module to another. This information
is passed in the form of ""messages' which resemble SAIL procedure calls.
Messages promote a means for passing data and for requesting executing of

so-called "message procedures' in the various modules.

A, Hardware Overview

The HE system's visual input is accomplished by using a commercial
TV camera. The camera has a four-lens turret, a four-position color wheel
in front of the vidicon, a pan-tilt head, focus, and target voltage all under
program control., The arm is powered by small electric motors mounted on
it. Each of the joints has a potentiometer mounted on it to provide position
feedback. The hand is a two-finger parallel grip device. The TV and arm

are connected through analog-to-digital converters to a Digital Equipment

JPL Technical Memorandum 33-568

PDP-6 and a PDP-10 computer linked together and sharing 128K of core
(which has recently been augmented to the full 256K of core).

All analog-to-digital and digital-to-analog convertors interface with
the PDP-6. All I/O devices between the HE and computing system are
attached to the PDP-6. The PDP-6, in general, is used for real-time
applications such as servoing the arms, changing lenses, changing color

filters, pan, tilt, etc.

B. Storage Requirements

The approximate estimate on storage requirements for the assembler,

compiler, jobs, global segment, and HE monitor are the following:

FAIL assembler 19 to 42K
SAIL compiler 23 to 50K
HE defined jobs 40K and more
Global models and run
time routines 27K
Other storage allocations 3 to 4K
HE monitor 6K
C. Software Overview

The HE system runs under Stanford's PDP-10 timesharing system,
which has been modified to enable the HE system to function in a timesharing
environment. The HE system is partitioned into many intercommunicating
modules. Each module runs as a separate job under the PDP-10 timesharing
system. This division alleviates job sizes limitations. It also allows the
timesharing scheduler to overlap computation-limited operations like arm
servoing. There are, however, two inefficiencies associated with the use of
multiple jobs to avoid core overlays; one in the overhead of trapping and
routing I/O from all jobs through a single terminal. The second is the
difficulty of bringing task-dependent strategies to bear on scheduling

decisions.

, Most of the HE system is written in SAIL (except for the run-time
routines which are mostly in FAIL), SAIL is an ALGOL-like language which

JPL Technical Memorandum 33-568

contains the LEAP associative processing language. To enable various
sections to run asynchronously, and to fit it into core, the system runs as
eight separate programs. The PDP-10 has two relocation registers, allow-
ing a program to be in two disjoint segments in core. One of these segments,
known as the upper segment, is common to all the programs and contains
reentrant subroutines common to all programs. In addition, it contains data
which provides a complete global model of the world as it is known to the
system at any given time, This model is generated by the lower segment
programs and can be interrogated by them. It is predominantly in the form

of LEAP associations.

The HE monitor (which resides in the lower segment) is the only pro-
gram that communicates directly with the operator. It activates PTYs and
logs in jobs through them. All characters sent to a PTY by the monitor go
to the teletype input buffer of the job attached to the PTY, and any teletype
output from a job is available to the monitoi'. The monitor also contains
facilities for directing teletype input to the proper job, outputting teletype
output from the jobs to the operator with the job identiﬁed,_ tracing the
teletype I/O and message procedure calls for debugging, and setting up and
controlling the other jobs. Jobs may also activate a message procedure in

the monitor to send commands to it (Figs. 2 and 3).

D, Data Representation: LEAP Triplet Association

An important form of storage of item instances is the association,
or triple. Ordered triples of item instances may be written into or retrieved
from a special store, the associative store. The method of storage of these
triples is designed to facilitate fast and flexible retrieval. A triple is

represented by:
Attribute @ Object = Value

where A, O, and V are items or item vars and are mnemonics for attribute,

object, and value, respectively,

JPL Technical Memorandum 33-568

Examples:

(1) BLOB @ TABLE [i, j] = blobs known to be in area where
TABLE is an item var array (whose indices are X/4, Y/4 where
X and Y are in inches and are table coordinates) and where
BLOB is the set of connected edges traced by the edge follower

(it may be one or more objects).

(2) COLOR @ CUBE = RED

which reads ''color of cube is red."

(3) COLOR @ ? = RED
which defines the set of all red objects.

E. Strategy or Control Program

The heart of the HE system is the control program. The control
program sequences the various tasks, attempts error recovery, generates
displays, and has provision for running parts of the system by themselves
for debugging. The strategy or control program that exists at Stanford
University is a program that enables the HE system to autonomously solve
the "Instant Insanity" puzzle (Fig. 4). The puzzle consists of four cubes,
each with faces variously selected from four colors: white, blue, red, and
green. To solve the puzzle, the blocks must be stacked so that each of the
four sides of the resulting tower reveals only one face of each color.
Determining the orientation of the cubes in the tower is normally quite
difficult for humans. For the computer this is relatively easy. Most of its
time and effort is spent in locating and identifying objects, determining the
colors of the faces, and, having found the final orientation, deciding what

arm motions are required to physically produce the tower.

JPL Technical Memorandum 33-568

IV. PSEUDO-TELETYPES

A PTY is an artificial construct within the system to allow users to
have and control more than one job at a time. If you do output PTY, it is
as if you were sitting at a teletype typing those characters that you outputted.
The PTY reads your characters just as a regular teletype does. If you send
the character "Login" followed by a carriage return, line feed to a PTY, it
will 1ng in a job just as if you had typed that to a teletype. The PTY will then
type back the duplexing of what you typed as well as the usual message the

system puts out when someone logs in,

The job which initiates a PTY owns it uniquely, and no other job may
appropriate that PTY, Using the PTY unused operations (UUOs) one can
accomplish from a program anything one can from a command by sending the
command to the monitor and performing a PTY UUO with the line number set
to zero. That is to say, if you perform a PTY UUO with the line number in
ADR set to zero, it is as if the user had typed those characters you outputted.

Thus, a job can stop itself by sending control-C to line number zero.

A, Hand/Eye PTY Mechanism Procedures

The program designed to handle PTYs for the HE system (Fig. 5)

consists of the following procedures:

DPYCLEAR: Turn off display frame, put out by job I (3 displays
only for now).
DOIT: Procedure to set and reset flags (used in command
decoder),
CORE: Procedure to determine job size,
STRTST: Procedure to indicate when string space nearly empty.
TIMOUT: Procedure to output millisecond time as MIN; SEC;
FRACTION,

FORM: Procedure to format strings.

JPL Technical Memorandum 33-568

TRACE: Message procedure tracing functions:

GETVAL

GETREAL

GETSTRING

GETBITS

GETARGS

MON-COM: Procedure to send commands to the monitor from
the jobs.

SCANLOOP: Procedure to scan the TTY and all the logged in PTYs
to see if there is input waiting, and to take appropriate
action.

TYPEX: Procedure which types all strings to TTY; it handles

suppress and trace processing.

Procedures to help control the PTYs:
HALT: Halts the job IDnumber in COMJIOB,
SEND: Sends strings at the PTY for a job ID number.

SNARTF: Waits until a certain character is seen from that PTY.

SNARFMON: Arranges for that PTY to be in monitor mode.

WAITI: Waits for a character from a given PTY and returns it.

COMSCAN: Command scanner. It is called if the scanner loop
detected that there was input from the TTY. It checks
to see if there is a new job destination and, if so,
stores the logical name. If there is a command, the
logical name of the destination and the job ID number
are stored. If there is no command, the line is typed
at the appropriate PTY job,

COMMAND: Command decoder. It is called by COMSCAN if a
command is detected. This parses the command, looks
it up in the command table, and may then parse argu-
ments to the command. The command name and parsed
arguments are stored in ARGS array. Then dispatch
is made on the command number for the command.

This dispatch is in the form of one big case statement.

JPL Technical Memorandum 33-568

V. GLOBAL MODEL

The HE system is composed of several distinct jobs or modules all
running independently for the purposes of the time-sharing system, How-
ever, these modules will actually be about one common task, are able to
communicate with each other. This communication is implemented in two
ways: a global data space located in a second segment shared by all the

hand/eye modules, and a facility for passing messages between the modules.

All HE modules have access to all the data stored in the global area.
The declarations for global data are all included in a declaration tape that
precedes the SAIL compilation of each module. This insures that space is
allocated such that each separate module knows the same name for a given

price of global data (thus avoiding the FORTRAN COMMON problem),

The contents of the global tape are arrived at by agreement and precede

each SAIL compilation to be loaded as part of the HE system,

A, Parallel Processing Using Spacewar Mode

Spacewar mode is essentially a parallel process. A job designated in

Spacewar mode and started up runs independently from the main job.

One of the important points in a timesharing system is that users!
requests for time are scheduled. As a user uses more and more time, his
priority goes down and he gets larger and larger time slices. However,
completely invisible to the user, his program gets shut off periodically to
allow other users to run. This means that no user gets continuous service,
but they all get interrupted and shut off periodically, There exists a need
for perfectly regular service; e. g., if the SU's hydraulic arm were in oper-
ation, a shutdown of any length would cause the arm to wilt. It is for this
reason that a mode of operation exists that guarantees perfect (almost)

regular service — namely, the Spacewar mode.

When a Spacewar job is initiated, the initiator specifies the time
intervals between startups., The Spacewar job will be started from the
beginning after that amount of time., While the Spacewar module is active,

this job is locked into core and may not be swapped out.

JPL Technical Memorandum 33-568

10

B. Message Procedures and Forward Message Procedures

Message procedures (MPs) provide a mechanism for communicating
among the various modules of the HE system. Each of these modules
communicate with the common second segment, hence the intra-module

communication paths are established in that segment.

Messages are passed back and forth in the second segment., The

history of a message may be some subset of the following sequence:

Message is composed.

Message is put in sequence.
Message is ''sent. "

Wait for completion of the message.

Activate the message (call the procedure).

[€ 23N S)]

Acknowledge the processing of the message.

— e~ P e
— e et e e e e

-J

The capability is needed to send messages that have SAIL-like data
associated with them. It is not desired to convert all message data to some
symbolic form and (say) write a disk file with that text, but instead to pass
data of all types (sets, items, arrays, integers, reals, etc.) ina reasonably
efficient manner. At the same time it is desired that programs do not have
to explicitly type-check message data or explicitly have to do '"get this datum"

operations.

A mechanism which meets the above requirements is already in SAIL;
namely, actual parameter passing to procedures. A message, then, will
consist of a name of a procedure and a parameter list to pass to that proce-
dure for evaluation, together with some bookkeeping information. The
user is allowed to specify a symbolic source and a symbolic destination of the
message. These names specify the module to be activated (i.e., the recipi-

ent of the message), and the source module.

Thus a mechanism is implemented for a user in one module to emit
calls to procedures actually located in another module. The matching and
passing of formal parameters is handled in much the same way as for
ordinary procedures. Of course, the calling module must have declared the
names and parameter lists of the procedures it is calling. These

declarations will be in the HE definition tape and will look like ordinary

JPL Technical Memorandum 33-568

procedure déclarations, except that the words FORWARD MESSAGE
PROCEDURE appear.

A mechanism must be provided in the module in which this procedure
is actually located in order to allow this procedure to be evaluated for each
message passed to it. It could be arranged that whenever a message
specifying the evaluation of some procedure was passed to a module, that
module is interrupted and the message request honored. But this is unthink-
able, for many reasons. First, the module should control the priorities
with which messages are evaluated. Second, it would be objectionable to
suspend the module in the midst of a computation which has left an incon-

sistent view of the world in its data structures.

To rectify this, a module must 'specifically receive messages, and
must request the evaluation of the specified procedure. Briefly, a module
may look around in the list of messages in order to locate one destined for
itself, It may then request that the message be activated, i.e., evaluate the
procedure which is located in the module reading the message and which has
the same name as the '""procedure name'' specified in the message. This
evaluation is performed with the arguments as specified in the message.
Normally, when the procedure exists, the message is acknowledged (i.e.,

the calling module may now determine that the message has completed).

C. Tracing

There is a facility for tracing messages passed from one job to another
(Fig. 6). This facility is actually handled by the same program which
handles the TTY-PTY operations. A trace consists of a type-out at the
controlling TTY of the form: ''time MESSAGE TRACE: source destination
message-procedure-name args'' where time is in milliseconds since mid-
night. Args is a list of argument data for the message procedure. The
mechanics of tracing are that there is a global variable in the second seg-
ment called TRACING. If it is set non-zero, message tracing is enabled.
Every time a message is sent by the message handler, a trace message is
first sent to the tracing job. When the tracing message is acknowledged, the
original message is finally sent to its prescribed destination, An example
of a trace that was conducted on the HE system is included in Appendix C

of this report.

JPL Technical Memorandum 33-568

11

12

VI. UUOs, CALLs, AND CALILIs

The unused op codes from Qf4¢ to 77 (in octal) are not used by any
instruction and are made use of to communicate with the monitor. These
are the UUO codes. An UUO is an instruction which is executed by the
system instead of by the computer. These UUOs are used for such functions
as to initialize devices, to set up buffer rings, to manipulate files, to make
data transfers, to terminate I/O, and to deal with specific I/O devices such
as teletypes, magnetic tapes, display units, and DECtapes. Op-codes gag
through @77 and @@@ trap to absolute location 40, with the central processor
in executive mode, and these programmed operators are interpreted by the
monitor to perform I/O operations and the functions in the foregoing

description.

The previous paragraph described functions of the monitor UUOs.
There are also User UUOs, which are op-codes #@1 through #37, and which
allow the user program complete freedom in the use of these programmed

operators while not affecting the mode of the central processor.

Op-codes P40 through $77 limit the monitor to 4(2)8 operations. The
UU® p4¢, which is the CALL operation, extends this set by specifying the
name of the operation by the contents of the location specified by the effective
address. This capability provides for indefinite extendability of the monitor

operations.

However, the CALL mechanism introduces an overhead cost of a table
lookup to the monitor. Thus there is a programmed operator extension of
the UUQ P47 referred to as CALLI. The CALLI operation eliminates the
table lookup of the CALL operation by having the programmer or the assem-
bler to perform the lookup and specify the index to the operation in the
effective address of the CALLI AC, N instruction, where N is an index to the

operation,

The PDP-10 operating system of the Stanford University A.I. Labora-
tory recognizes CALLIs up to N = 41 as standard, i.e., these were the
standard CALLIs that came with the operating system supplied to them by
DEC. These CALLIs (also loosely referred to as UUOs) have been extended
by Stanford; i.e., new ones have been defined. In fact, 46 new CALLIs have

been defined, bringing the total to 87.

JPL Technical Memorandum 33-568

However, in the meantime DEC has not been idle, and in their new
versions of their PDP-10 operating system (50 series) 107 CALLIs are
defined, i.e., sixty-six new CALLIs have been defined since they supplied
their operating system to Stanford. No doubt the impetus to do this may

have well come from the ideas developed by Stanford.

Nevertheless, in performing the task of developing an HE-type monitor
at JPL by '"fitting' the Stanford HE monitor to Caltech's PDPQIO, the avail-
ability of these new CALLIs is significant. These new CALLIs can now be
used to replace many of the Stanford specific ones; e.g., DEC's CALLI
AC, 60 has the function of locking jobs in core so that they may not be swapped
out, whereas Stanford has a number of SPACEWAR UUOs (see Subsection V. A)

that perform functions toward similar objectives.

In summary, although DEC now provides CALLIs that are similar
to those developed at Stanford thus making ‘'translation' to Caltech's PDP-10
easier, it should be noted that they are only functionally similar and may not
necessarily enable simple direct replacement. This issue will be investigated,

in Phase II of this task.

A list of Stanford's standard DEC CALLIs as well as their own defined
CALLIs is attached in this report (Appendix B).

A, Summary of Phase I

The two major trends in cognitive operating system design were
referred to in the introduction, namely Stanford Research Institute's theorem-
prover-based QA3-STRIPS-PLANEX approach and the Stanford University
Artificial Intelligence Laboratory's approach, which is to use a heuristic

strategy controller of a directory of jobs.

Initially some effort was made to survey theorem-proving techniques
and theorem-prover-based question-answering systems. Along these lines
the QA 3.5 package developed by Cordell Green and associates at Stanford
Research Institute (SRI) was obtained and installed on Caltech's PDP-10.
After very little experimentation it was evident that theorem-prover-based
deductive systems are indeed very slow. Their strength lies in powerful

deductive capability on deep but narrow searches, For broad axiom bases

JPL Technical Memorandum 33-568 13

14

the inference space rapidly gets out of hand, thus reducing speed and

requiring large amounts of core storage.

The QA 3.5 package is on Caltech's System directory and is available

to anyone with a valid account number to the PDP-10.

Due to the above limitation of theorem-prover-based systems and also
due to the broad general requirements for the JPL-Robot's Mars application,
along with the consideration that the Stanford University's Shineman arm is
being acquired for the JPL-Robot the decision was made to pursue Stanford
University A.I. Laboratory's approach. Along this line an effort was initiated
to study their system and bring the HE system in-house for experimentation

and extension.

Toward this goal a SAIL compiler and a FAIL as sembler were installed
on Caltech's PDP-10 and are currently being used to gain proficiency in their

usage.

The greater part of this report attempts to document the Stanford
University A.I, JLaboratory's HE system. A summary list of items accom-

plished in Phase I of this study are:

(1) Investigated theorem-proving techniques.

(2) Investigated question-answering systems.

(3) Acquired SRI's QA 3.5 program and make it operational on
Caltech's PDP-10.

(4) Experimented with QA 3. 5 at Caltech.

(5) Investigated English language (a subset of the natural language to
first-order predicate calculus translators for the purposes of
having more convenient front-ends to question-answering systems.
Acquired tape of Stephen Cole's ENGROB (English Robot) program
from SRI.

(6) Investigated problem-solving programs such as SRI's QA4 and
Carl Hewitt's PLANNER at MIT. Obtained a tape of a version of
Terry Winograd's implementation called MICROPLANNER.

(7) Investigated PDP-10 Tenex operating system, paging capabilities,
fork structure, and communications capabilities.

(8) Investigated Caltech's version 5 PDP-10 operating system.

(9) Initiated dialog with Stanford University A.I. Laboratory personnel.

JPL Technical Memorandum 33-568

(10) Formulated m/ethodology for developing a cognitive operating
system for JPL Robot.

(11) Acquired documentation on Stanford's HE system based on PDP-10
and PDP-6 computers.

(12) Acquired computer listings of HE monitor, global segment run
time routines, and message procedures.

(13) Acquired mag tape of the complete Stanford HE system.

(14) Made listings of the HE system tape at JPL.

(15) Acquired tapes of DECUS's version of SAIL and FAIL.

(16) Made SAIL and FAIL operational on Caltech's PDP-10,

(17) Documented the salient features of Stanford's HE system for the
purposes of importation to JPL.

(18) Formulated guidelines for Phase II and estimated magnitude of

manpower requirements for the completion of this task.

B. An Estimate of Phase II

During Phase I, the general problem solving area was surveyed for
applicability to the development of a cognitive operating system for the JPL-
Robot. The emphasis was placed on bringing in-house Stanford University
A.I. Laboratory's HE software system. Toward this end the HE system was
studied in some detail, and the software infrastructure (SAIL compiler,

FAIL assembler, etc.) was established on Caltech's PDP-10,

Along with the acquisition of an understanding of the HE systefn,
Digital Equipment Corporation's latest 5 series version operating system
was studied. This revealed that many of the features, such as TTYs, upper
segment writability, and special CALLIs which were pioneered at Stanford,
have now been incorporated into the Standard 10/50 DEC operating system.
Thus the operating system of Caltech's PDP-10 makes available to the user
the PTY mechanisms, provides the capability to remove write protection
from upper segment under program control, and provides an extended set of
CALLIs, These extensions of DEC's capabilities make the implementation

of Stanford's HE system at Caltech quite feasible.

Thus, of the primary modules of the HE system, the one that will

require the most effort will be in the implementation of the '""message

JP1, Technical Memorandum 33-568

15

16

procedure' mechanism (which enables jobs to communicate with each other

via the global segment),

It is recommended that the transition first be made to the standard
10/50 PDP-10 system. Once that is accomplished, then operation of the
system under Tenex 10/50 compatibility mode (either in BBN's Tenex or
under Tenex mode of DEC's KI10) should be initiated. The next step should
be that of rewriting the system to make use of Tenex's paging features, fork

communications, and backtracking capabilities,

The manpower requirements for Phase II of this task, i.e., to have an
operational HE-type software system on the PDP-10 in the Booth Computing
Center at Caltech is estimated to be between 3 and 6 man-months now that a
clear understanding of Stanford's HE system has been gained and the software

infrastructure to do the job has been established.

JPL Technical Memorandum 33-568

USER’S CONSOLE

TRACE
™ outpuT
 —— CONTROL e
T —— ARM SERVO O —
/O |@——oo ! ARM SOLUTION |@———p
S MESSAGE
W le———] COLORFINDER |{@————sf PROCEDURE
M | ROUTINES
0 T (ACCESS
N C ————e! BODY RECOGNIZER j#———pt BETWEEN
l H LOWER
T | SEGMENTS)
0 N [®———{ EDGE FOLLOWER [
R G
> CURVE FITTER j@—————
¢—————» CAMERA MODEL [@———>
ERROR MESSAGES AND
- TRACE OUTPUT fAngQL
(DIRECT
ACCESS
FROM
EACH
LOWER
COMMAND SEGMENT)
DECODER
"MAIN PSEUDO- "SUBJOBS ~ MESSAGE UPPER
PROGRAM TELETYPE (LOWER PROCEDURE SEGMENT
(LOWER LINKS SEGMENTS) LINKS
SEGMENT)

Fig. 1. Overview of the system

JPL Technical Memorandum 33-568

81

89G-€£€ WNPUBRIOWDN TeITUYIDT, TJ[

TRACE TO DSK FILES

COMMANDS (e.g. KILL)

USER
TTY
111
ECHO TO TTY _| | ECHO TO USER
MONITOR

— Ry S
1> K|
—l
<
|53 e o o
2 .
5 PTY 1 PTY 2 PTY 16
1z e o o
p—
2
[2a]
I~ e o o
9 JOB JOB JOB
'E 4 o o o b d
- 1
(Y2}
1Q l
4 |
< _

MESSAGE PROCEDURES

RUN TIME ROUTINES

GLOBAL MODEL

Fig., 2,

COMMANDS TO ACTIVATE
OTHER JOBS, ETC.

PTY = PSEUDOTELETYPE

1. GLOBAL VARIABLES, ARRAYS,
INTEGERS ETC. TO BE ACCESSED
BY JOBS.

2. TRIPLETS GENERATING ASSOCIATION

DESCRIBING THE WORLD.

Flow paths through Hand/Eye modules

PTY DSK

MESSAGE PROCEDURES

TTY MARCO MARCOS ARE STORED IN

L

MONITOR AND ACTIVATED BY
l ANY DEVICE EXCEPT PTY.

» /O INPUT

89G-¢¢ wnpueJowa N [ea’guqael 147l

DISPATCHER COMMAND
DECODER

IF 1/O FROM TTY,

61

TOTTY | IF I/O FROM PTY DISK, MARCO, MP
AND = SWITCH WO TYPES OF COMMANDS :
TRACE \/ SPECIFIC AND NOT SPECIFIC
TO A JOB.
N Y/
, COMMAND > l
DECODE
/
y Y
/ TO PTY Y
o AND HALT JOB |« FOR JOB
/ TRACE
/ / N
/ / EXECUTE OR
/ / SWITCH

Fig. 3. HE monitor dispatcher, I/0, command decoder flow diagram

0¢

89G-¢¢ WNPUBIOWAA [BOTUYDD] TJ[l

START

FIND AN OBJECT ==

NO

START TRAJECTORY
PLANNING TO TURN OVER

4

OBJECTS

REJECT
CUBE

NO

FOUND

FIND COLORS OF FACES
FACING CAMERA IF NOT
DONE YET

COLORS OF
BACK FACES

NO

KNOWN FOR
ALL CUBES

FIND SOLUTION
AND STACK

Fig. 4. Simplified flow diagram of program control (Instant Insanity puzzle)

TRAJECTORY

NO

REJECT

ALL
CUBES

a

CUBE

YES

TURNED
OVER

¢

1

-

TURN OVER AND
RETRACE

CAN

YES ARM REACH

NO

READY

CUBE
?

REQUEST CUBE
BE MOVED

HE

JPI, Technical Memorandum 33-568

PROGRAM
HE 2
DPYCLEAR 213 — START ADDRESS
DPYCLEAR 223 — END ADDRESS
DOIT 225
DoOIT 239
CORE 242
CORE 249
STRTST 253
STRTST 263
TIMOUT 265
TIMOUT 270
FORM 273
FORM 274
TRACE 279
GETVAL 282
GETVAL 286
GETREAL 287
GETREAL 29
GETSTRING 292
GETSTRING 315
GETBITS 316
GETBITS 328
GETARGS 329
GETARGS 347
TRACE 351
MON, CO 353
MON,CO 358
SCANLOOP 360
SCNJOB 368
SCNJOB 399
SCANLOOP 459
TYPEX 461
ouTw 465
ouTW 468
TYPEX 476
PROCESS-STRINGS 478
PROCESS-STRINGS 486
SEND 488
SEND 498
SNARF 500
SNARF 504
SNARFMON 505
SNARFMON 522
WAITY 523
WAITI 532
HALT 533
HALT 546
COMSCAN 548
LOOK F 578
LOOK F 602
COMSCAN 603
CVSTRX 605
CVSTRX 610
COMMAND D 612
TRAC 617
TRAC 624
MIN 625
MIN 626
CcO2 658
co3 662
co3 676
co2 678
LOG 710
LOG 765
KJOB 768
KJOB 778
uprD 832
upPD 847
COLECT 880
SCAN 882
SCAN 885
COLECT 888
STAT 946
STAT 973
DUMP 999
DUMP 1025
DPYOFF 1027
DPYOFF 1031
COMMAND 1034
HE 1090
Fig. 5. Hand/Eye block structure

21

SECOND

SEGMENT
(GLOBAL)
FIRST MESSAGE
PROCEDURE
SECOND MESSAGE
PROCEDURE
JOB 2 JOB 1
y
MONITOR

Fig. 6, Message procedure trace

JPIL, Technical Memorandum 33-568

The eight major jobs defined in the Hand/Eye system are the following:

EDG:

SIM:

CAM:

VER:

GUN:

CUR:

APPENDIX A

HAND/EYE SYSTEM JOBS

Edge follower scans the TV's field of view, using a coarse
raster, looking for edges. It then traces around the edges to

find outline of object.

Simple body recognizer. It gets the corner coordinates of the
objects in the global model and applies various tests to obtain

a prediction as to what the object may be.

Changes the status of the TV camera, e.g., change lens, pan,
tilt, pan and tilt, focus, focus and pan, focus and tilt, focus,

pan and tilt, center.

The verifier is called to determine whether or not an edge or
line exists between TV coordinates (X1, Y1) and (X2, Y2).
The value of the procedure is the confidence of the program in

the existence of an edge.

This procedure finds the colors of the visible face of each

object.

Arm driver. The potentiometer readings generated by the arm

solution program are obtained and the arm joints are servoed.

Driver for the region finder which prepares blobs for COMPLEX.,

Curve fitter driver which tries to curve fit a set of blobs.

JPL Technical Memorandum 33-568

23

CX
CcX

CX
X

24

REIIN, Bh3EIVY°
Setopt, setont
DLTOUT,DDTOUT
NDEVCHR ,JYCHP
ADTGT, cP oy
GETCHAE, DVCHR
JUTEL, CPGORY
WelT,WelT
CGRE,CORYUG
EXIT,FExlT
UTPCLF,UTFCLR
DATE,UATE
LOGIN,LNGIN
APREND , APRENR
LOGOULT,LacoUT
SWITCH,SWITCH
REASSIGN,REASSIGN
TIMER, TIMER
METIME ,MESTINE
GETPPH , GETPFN
TRPSET, UUDEKR
TRPJCN, UYUERR
RUNTIM, JCHITIHM
PJOL , JOBNO
SLEEFP,SLEEP
SETPOV,S=TPOV

PLEKR,PEEK
GETLIN,GETLN
RUN, UJOERR
SETUWP, sgtywp
REMAP, remap
GETSEG,UYNERP
GETTAR,UUJERR

STANFORD DEFINED

SPCHAR,SPCWAR
CTLV,CTLY

SETHNAM,SETNAM
SPCWG0O,SPCWGO

APPENDIX B

CALLI SYMBOLICS

we we Mo wa Wi mewsws
NOY U E W

P
(S

HE WA
HE
a4
HE R
316
317
HA))
2%
HEYS
HER
HRE:
325
P20
327
i 30
3.3,
;32
s (F
3 33
134
HE 3]
136
;37
HE Y
141

H

y}1 PUT TTY IN NON=DUFLEX MODE,

12
HR

5540001 CHAR,
OT LOC IN PROTECTED JOB DATA
TSEND DOT CHAR,
DZVICE CHARACTISTICS
GET DOT MODC
UEVICE CHAR,(NIFF,
RELEASE DOT HOIE
WAIT TILL DEVICE INAZTIVE

cOrRE Yuo

TXIT

CLEAR JEC TAPL DIRECTORY

GET DATE

LOGIN

“NABLE APR FOR TRAPPING

LOGAUT

RETURN DATA SWITCHES

PCASSIGN DEVINE TO ANQOTHER JOB

RETURN JIFFY CLOCK TIME

PETURN TIME OF DAY IN “S

RKETURN PROJLUCT-PROGRAMMER MJMBER

SET Pl TRAP LJC, AND USER 19

DISMISS INTERRUPT T0 EXEC MODE

RETURN TOTAL, JNB RUNEING TIME

RETURN J0OB NuUM3ER

SLEEP FOR N SECONDS, THEN RETURN TO0 USER
SET PUSH DOWN OVERFLNAW TRAP
QR COMPATIBILITY ONLY)

PEEK INTN SYSTEM CORE,

GET NAME OF TTY

JUN COMMAND

SET USER WRITE PRNOTECT

REDQ CORE MAP

GET SESMENT

GETTAB ILLEGAL AT STANFORD,

RESE
EX7=
SETO
£XT

NAME)

1JS

READ SWITCK REGISTER 3yt

3 JS
SKT JOB NAME FOR SYSTATY
ANOTHER SPACEWAR UUO

JPL Technical Memorandum 33-568

CX SWAF,SY58J8 +4 RUN A JOB

CX ETOTM,EIDTM i5 ENTER 10T usEp MODE

CX LIOTM,LI9TM ;6 LEAVE 0T USER MODE

Cx PNANWE,PNAME 37 GET A DEVICE’S PHYSICAL NAME

CX UF3GET,UFBGET 319 GET A FAST BAND

X UFBGLIV,UrRGly 111 RELEASE A FAST BAND

CX JFBCLR,FBFLUSH 712 RELEASE ALL FAST BANDS

CX J3TSTS,USTAT 3113 GET JOB STATUS WORD OF A JOB

CX TTIYIOS,TTYIOS ;114 GET A JOB’S TELETYPES STATUS WORD
CX corglrcorg? 115 Funny corg UYUD for hligh sggments
CX attse9,attghg 116 Attacn high gegment

CX detseyg,dgtseg 147 Detach high segmeng

CX setnro,setpro ;20 Change protection of high segment
CX segnum,sganum ;2L get number of high segment

CX se3siz,seuslz 122 :

CX |linkun,|jnkup 123

CX dismls,dismlis 324

CX Intno, ingnb 12% enable interrunts

CX Intorm,intorm ;206

CX Intacm, intacm 327

CX intns,intns HR %)

LX intiip,intitp 131

UX Intira,intirg 1 32 .

CX Intyen, intgen ;33 gensgrate an Interrupt

Cx uwalt,uwalt 134

CX debraak,debreak ;35

CX gatnn?,setnm? ;36 set name of upper, if any

CX segnam,segnéam ;37 get name of upper, if any

CX IWALT, TWAIT ;40 _
CX uskip:usklip ;41 Skip if @ UWAIT reafly has to wajt,
Cx ouflep,byufle, 142 Returp buffer le,gth for a device
CX namein,nameln 143 See If this Job name e,ists

X slevel,sgt|Vv| i44 Set or get sarvige |evel,

CX ienbw, ienbhy 145 Emnable interrupts and Immediately go into
Cx runmsk,runmsk 146 Sets processor run mask wait state
LIsT

JPL Technical Memorandum 33-568

26

29 Mar 1972

14109

APPENDIX C

A TRACE OF HAND/EYE SYSTEM EXECUTION

TRACS3,0BGC2,KKP])

TTY-MON DISKIN HEMACRL!I,HE]

DISK=MON

DISK=MACR
DISK<MACR
DISK=MACR
DISK«+MACR
DISK<+MACR

DEFINE EDGRUN

EDG:LQGC

EDGiRUN DSK EDGECII1,HE]
EDG;GATER

DRV

MON=TTY EDGRUN DEFINED

D]SK<MON

D]SK+MACR
DISK*MACR
D]SK<MACR
DISK<MACR
D]SK+MACR

DEFINE CURRUN

CUR;LOG

CUR;RUN DSK CURVECI],HE]
CURJGATER

DRV}

MON<TTY CURRUN DEFINED

D]Sk+MON

DISK<MACR
D]SK=HACR
DISK<MACR
DISK<MACR
D]SK<MACR

DEFINE CAMRUN

CAM;LOG

CAM3RUN DSK CAMERACII,HE]
CAM;GATER

DRV}

MON=TTY CAMRUN DEF INED

D]SK«MON

DISK=MACR
DISK-MACR
DISK=MACR
D]SK=MACR

DEFINE IIRUN

DRV3LOG

DRViRUN DSK IIORVCII,HE]
ORVIGATER

MON«TTY TIRUN DEFINED

D]SK<MON

DISK<MACR
D]SK+MACR
DISK=MACR
D]SK=<MACR
DISK<MACR

DEFINE SIMRUN

SIM:LOG

SIM{RUN DOSK SIMPLECII,HE]
SIM}GATER

DRV

MON<TTY SIMRUN DEFINED

DISK<MON

DISK*MACR
DISK«MACR
DISK<+MACR
DISK<+MACR
DJSK<MACR

DEFINE COLRUN

CoL:LQG

COLtRUN DSK COLORCI!,HE]
COL3GATER

DRV}

MON<TTY COLRUN DEFINED

DISK<MON

DISK<MACR
DISK«MACR
DISK=MACR
D]SKk<MACR
DISK=MACR

DEFINE VERRUN

VERILOG .
VER$RUN DSK VERIFY[]1,HE]
VER;GATER

DRV,

MON-TTY VERRUN DEFINED

DISK<MON
DISK+MACR
D1SK«+MACR

DEFINE HANDRUN
HAND1ILOG
tRUN DSK HANDCII,HE]

JPL Technical Memorandum 33-568

DISK+MACR HAND}GATER

DISK*MACR DRV

DlsK+MACR

MON<TTy MANDRUN DEF INED
DISK=+MON DEFINE MOVERUN
DISK+MACR MOVELLOG
DISK<MACR tRUN DSK MOVECII,HE)
DISK«MACR MOVEJIGATER
DISK«MACR DRV

DISK<+MACR

MON=TTY MOVERUN DEFINED
D]1SK+MON DEF{NE SETUP
DISK«MACR t1IRUN
DISK<MACR $ 1 TRACE
DISK<+MACR 11SET TYPE
DISK=+MACR

MON-TTY SETUP DEFINED

D]SK<+MON DEFINE ANDY
DISK+MACR DRV1LOG
DISK=MACR tRUN DRIVERCH,JAM]
D;SKtMACR 11SET TYPE
D]SK=+MACR 11 TRACE
DISK=MACR DRV}GATER
DISK*MACR

MON<TTY ANDY DEFINED
MON<TTY END DISKIN
TTY-MON SETYP

MACR+MON [TRUN

MACR=MON LOG

MACR=0RV L

MACR=DRYV 2/KKP

MON«TTY DRV LOGGED IN AS JOB 26
DRVTTY

MACR<MON RUN DSK ITIDRVLI1,HE]
MACR<DRYV RUN DSK 1]ORVLII,HE]
DRV=TTY

MACR=DRY GATER

MON«TTY END MACRO
DRV<TTY ,¢C

MACR=MON TRACE
DRV-TTY
MACR=MON SET TYPE

MON=TTY END MACRO

DRV<TTY ,SEGMENT LOGICAL NAME?
DRV~TTY

DRV=TTY

DRV=TTY

DRV<TTY

DRV-TTY

DRV-TTY

DRVTTY

DRV<TTY

JPL Technical Memorandum 33-568

28

DRV=TTY

DRV-TTY

DRV=TTY

DRV<TTY UTILITY ROUTINES INITIALIZED
DRV=TTY »

TTY<-MON CAMRUN

MACR=MON LOG

MACR<CAM L

MACR<CAM 2/KKP

MON=TTY CAM LOGGED IN AS JOB 27
CAM-TTY

MACR<MON RUN DSK CAMERAC!I,HE]
MACR=CAM RUN DSK CAMERALI!,HE]
CAMTTY

MACR=CAM GATER

MACR=<DRY

MON=TTY END MACRO
CAM»TTY ,¢C

CAMTTY
TTY<MON EDGRUN

MACR+MON LOG
MACR<EDG L
MACR<EDG 2/KKP

MONTTY EDG LOGGED IN AS JOB 28
CAMTTY ,SEGMENT LOGICAL NAME?

EDG-TTY
MACR~MON RUN DSK EQGECI!,HE]
MACR<EDG RUN DSK EDGECLII,HE]

CAM«TTY DATXFRI RETRIEVING DATALL1,SHY)L
EDG-TTY

MACR<EDG GATER
CAM«TTY DATXFR! RETRIEVING DATA(C1,SHYJ2
MACR<DRY

MON=TTY END MACRO
TTY+MON CURRUN

MACR~MON LOG
MACR=CUR L
MACR<CUR 2/KKP

MON«TTY CUR LOGGED IN AS JOB 29
CAM<TTY DATXFRt RETRIEVING DATACLL,SHYI3
EDG-TTY ,SEGMENT LOGICAL NAME?

CUR=TTY
MACR*MON RUN DSK CURVECII,HE)
MACR<CUR RUN DSK CURVEC!II,HE]
CAM<TTY DATXFR: RETRIEVING DATACL,SHY)4
EDG+TTY »

CURSTTY

MACR<CUR GATER

CAMSTTY CAM_UPDI POTS T00 NOISY (13 2 13)
MACR<DRYV

MON«TTY END MACRO
QUReTTY ,¢C

JPL Technical Memorandum 33-568

CURSTTY
TTY<MON S]MRUN

MACRMON LOG
MACRSIM L
MACReSIM 2/KKP

MON<TTY SIM LOGGED IN AS JOB 30
CAM=TTY ,,,TYPE Y TO TRY AGAINI
CUR-TTY ,SEGMENT LOGICAL NAME?

SIMeTTY
MACR<MON RUN DSK SIMPLECI],HE]
MACR<SIM RUN DSK SIMPLECII,HE]
SIMeTTY

MACR<SIM GATER

MACR<DRY

MON«TTY END MACRO

SIM=TTY ,+C

SIMeTTY

TTY-MON COLRUN

MACR*MON LOG

MACR=COL

MACR=COL 2/KKP

MON«TTY COL LOGGED IN AS JOB 31
SIM=TTY ,SEGMENT LOGICAL NAME?
COL=TTY

MACR=MON RUN DSK COLORCI!
MACR=<COL RUN DSK CQLORCI!
SIM<TTY WARNING! TWQ PROGRAMS W]
COL=TTY

MACR<COL GATER

MACR=DRY

MON<TTY END MACRO

TTY«CAM

CAM=TTY CAM=~ACTIVATED

COL-TTY ,SEGMENT LOGICAL NAME?
TTY-MON STAT

»HE]
yHE]
TH |

DRV<TTY 26 11 11DRV
CAM=TTY 27 CAM CAMERA
EDG-TTY 28 EDGE EOGE
CURTTY 29 CURVE CURVE
SIMTTY 3 SIMP SIMPLE
COL-TTY 3% coL COLOR
MON<TTY

TOTAL CORE = 191K UPPER SEGs18K MAX=65K

TTY-MON TRACE

TYY+MON SET TYPE

TTY=-EDG DEBUG EDGE ON

EDG~TTY »

TTY+DRV BLOB«GETEDGE(2)

DRV«TTY SENDING INSIDE NIL

49954733 MESSAGE TRACE: I £
DRV<TTY WAITING FOR RESPONSE INSIDE
EDG<TTY DAC SET AT 62 ADw

JP1, Technical Memorandum 33-568

2. KKP
2. KKp
2 KKP
2) KKP
21 KKP
21 KKP

DGE
2711

ITEMS IN THEM

lowWg
[0Wq
INTHG
10WQ
[0WaQ
10WQ

12K LEFT

INSIDE lvv

28K
14K
35K
18K
33K
29K

210,383
212,683
210,316
210,200
010,333
12,383

g:8,38
g12,68
210,31
g:10,20
2:0,33
g:0,38

29

EDG=TTY DAC SET AT 1 ADs® 1884
TTY«MON STAT

EDG-TTY 28 EDGE EDGE 21KKp RUNQ 35K 14,616 214,30
EDG=TTy DAC SET AT R} ADs= 1892
EDG+TTY DAC SET AT 46 ADs 1897
EDG+TTY DAC SET AT 54 AD» 2161l
EDGTTY DAC SET AT 30 AD= 1907
EDG»TTY DAC SET AT 52 ADs= 2238
EDG-TTY DAC SET A7 51 ADs= 1974
EDG=TTY AUTO TARGET SET AT 50

EDG-TTY REINIT TCLIPs 3 BCLIP= 4
EDG«TTY DAC SET AT Sa ADs= 1903
EDGTTY CLIPSET TCLIPs 7 BCL[Ps 7

EDG»TTY XTENT OK
EDG+TTY KKPIFOUND MATCHING END

50150600 MESSAGE TRACE: EDGE 11 RESPONSE "FIND" 3788 @
DRV«TTY WAITING FOR RESPONSE INSIDE

53158716 MESSAGE TRACE: EDGE Il RESPONSE "INSIDE" 4028 =2
DRV<TTY

.
TTY<DRV BLOBs=s

DRV«TTY BLOB NOT RECOGNI!ZED OR ILLEGAL
DRY=TTY

DRV=TTY »

TTY-DRV BLOB

TTY=DRV

DRV«TTY = (BLOB_1)

DRV=TTY @

TTY=DRV BLOBe«]NNER(BLOB)

DRV<TTY SENDING FINE BLOB_1

502087116 MESSAGE TRACE: 1! EDGE FINE [vv

DRV<TTY WAITING FOR RESPONSE FINE

50210266 MESSAGE TRACE! EDGE CURVE CURVE_FIT FAR
EDG=TTY

EDG-TTY pP0P@6 WORDS COLLECTED = GARCOL

EDG-TTY

EDG=TTY 200000 WORDS COLLECTED = GARCOL
EDG=TTY KKplpglNT SEEy BEFQRE
E0G~TTy DELETED

EDG<TTY CLIPSET TCLIPa 7 BCLIPs 7
EDG=TTY CLIPSET TCLIPs 7 BCLIPw= 7
EDG+TTY CLIPSET TCLIPs 7 BCLIPa 7

EDG<TTY KKPILOOPING

EDGTTY KKPi SCAN REVERSED

EDG-TTY CLIPSET TCLIPs 7 BCLIPa ?
EDGTTY KKP§ ACCOM FAILED

EDG<TTY KKPI O0BJECT SEEN

EDGTTY KKPIHIT CURRENT OBJECT

EDGTTY DAC SET AT 53 AQDs= 2124
EDG+TTY DAC SET AT 50 ADs= 1915
EDG«TTY CLIPSET TCLIPs 7 6BCLIPs 7
EDG<TTY DAC SET AT 33 ADs= 2128
EDG+7TY DAC gET AT 58 ADs 2334

JPL Technical Memorandum 33-568

EDG~TTY
EDG-TTY
EDG=TTY
EDG-TTY
EDG=TTY
EDG-TTY
EDGTTY
ERGTTY
EDG-TTY
EDG-TTY
EOG=yyY
EDGeTTY
EDGeyTY
EDG#}‘Y
EDG-TTY
EDG-TTY
EDG-TTY
EDG-TTY
EDG-TTY
EDGTTY
EDG-TTY
EDG-TTY
EDG=-TTY
EDG-TTY
EDG-TTY
50416033
EDGTTY
EDG-TTY
EDG-TTY
EDG-TTY
EDGeTTY
EDG-TTY
EDG-TTY
EDG-TTY
EDG-TTY
EDG-TTY
EDG=TTY
50466650

CLIPSET TCLIPs 4 BCLIPa

KKP1

0BJECTY SEEN

KKPsHIT CYRRENT OBJECT

KKPi SCAN REVERSED

KKPIH]T CURRENT OBJECT

DAC SET AT $3 ADs

DAC SET AT 50 ADs
CLIPSET TCL|Ps 7 BCLIPw
DAC SET AT 53 ADs

DAC SET AT 56 AD=

DAC gEy A7 53 AD=z

DAC gtt Ay 50 AD=

CLIP E; CLIP= 7 BCLIPa
cLipSeT TéLipa 7 BCLIPS
CLIPSET TCLIPs 7 BCLIPa
KKP1 ACCOM FAILED

KKP1 SCAN REVERSED

KKPILOOPING

DAC SET AT 53 ADs

DAC SET AT 56 AD=

KKP3 HIT END OF PREVIOUS O0BJECT

KKPs SCAN REVERSED

KKPIH]T CURRENT OBJECT

KKP i

TRY FOR MORE

KKP$HIT CURRENT OBJECT

MESSAGE TRACE! EDGE CURVE CURVE_FIT FAR

DAC SET AT 53 AD=
CLIPSET TCLIPs 2 BCLIPw

KKP 1
KKP 1

ACCOM FAILED
OBJECT SEEN

KKPIH]T CURRENT OBJECT

KKP 1

SCAN REVERSED

KKPIHIT CURRENT OBJECT

KKPIPOINT SEEN BEFORE
DELETED
DAC SET AT 56 AD=
OAC SET AT 53 ADs=
MESSAGE TRACE: EDGE CURVE CURVE_FIT FAR

EDG+TTY KKPIPOINT SEEN BEFORE
EDG+TTY DELETED

EDG+TTY DAC SET AT 56 ADs=

EDG<TTY DAC SET AT 53 AD=

50492933 MESSAGE TRACE: EDGE CURVE CURVE_FIT FAR
EDG+TTY DATA MISSED « TV

EDG+TTY HUNG DEVICE AD

EDG-TTY TYPE C<CR> TO CONTINUE, ANYTHING ELSE <CR> TD RETRY
TTY-EDG

EDG=TTY HUNG DEVICE AD

EDG=TTY TYPE CKCR> TO CONTINUE, ANYTHING ELSE <CR> TO RETRY
EDG<TTY HUNG DEVICE AD

EDG<TTY TYPE C<CR> TO CONTINUE, ANYTHING ELSE <CR> TO RETRY
TTY<EDG

JPI1, Technical Memorandum 33-568

2130
1928

2128
2320
2130
1922

2130
2327

2132

2327
2132

2336
2131

~N N~

31

EDG=TTY
EDG»TTY
EDG=TTY
EDGeTTY
TTY=EDG
EDG=TTY
TTY<MON
TTY-EDG
EDG-TTY

30586750

EDG=TTY
DRV<TTY
TTY<EQDG
EDG-TTY
EDG-TTY
TTY=DRV
DRV=TTY
DRV<TTY
TTY<EDG
EDG-TTY
EDG-TTY
TTY<EDG
EDG-TTY
EDG=TTY

rrv.NOV
T Fwin e

DRV=TTY

50639533

DRV«TTY
EDG-TTY
TTYEDG
EDGTTY
EDG»TTY
EDG=TTY
EDG=77Y
EDGey7Y
EDGeTTY
EDGeTTY
EDG-TTY
EDG-TTY
EDGSTTY
EDG-TTY
EDG-TTY
EDGTTY
EDG<TTY
EDGeTTY
TTY<MON
TTYEDG
EDG-TTY
EDGTTY
EDGTTY
EDG<TTY
EDGTTY

HUNG DEVICE AD

TYPE C<KCR> TO CONTINUE, ANYTHING ELSE <CR> TO RETRY

HUNG DEVICE AD

TYPE C<CR> TO CONTINUE, ANYTHING ELSE <CR> TO RETRY

c
DAC SET AT 50
S
]

MESSAGE TRACE: EDGE Il
&
&
BLOB
COM ERR BLOB
&
BLOB
s ()
L]
REJVECT =4
REJECT 4028 =1
L
BLOB<«GETEDGE (1)
COM ERR BLOB«GETEDGE(Y)
L]

BLOB-GETEQGE (1)

SENDING FIND NIL
MESSAGE TRACE! [! EDGE
WAITING FOR RESPONSE FIND

ADs 38

RESPONSE "FINE" 4928 =1

FIND Ivv

COLOR WHEEL !S HUNG! RETRY OR CONTINUE (R OR C)

R
DAC SET AT b3 AD= 1883
DAC SET AT 48 AD=z 1886
DAC gEt A 49 ADw 1897
EACOSEI éE Se AD= 1918
ut T skt A 59
REINI; QCLIPg T 3 BCLIP=
PARITY ERROR, IN YOUR CORE JMAGE!

LOCs 7020
*C

o7

ERROR IN JOB 28

ItL MEM REF AT USER 7820
*

S
S
o *C

DAC SET AT 1 ADs 1851
DAC SET aAY 25 ADs 1872

JPL Technical Memorandum 33-568

EQOG=TTY
EDG=TTY
EDG=TTY
EDG-TTY
EDG=TTY
EDG=TTY
EDG=TTY
EDG=TTY
EDG-TTY
TTY-MON
TTY<EDG
EDG-TTY
EDG-TTY
EDG=TTY
TTY<EDG
EDG=TTY
EDG-TTY
EDG-TTY
EDG=-TTY
EDG-TTY
EDG-TTY
EDG=TTY
EDG-TTY
EDG-TTY
EDG=TTY
508216290
52822183
DRV=TTY
EDG-TTY
DRVTTY
TYY<DRV
DRVTTY
5083215¢
DRV-TTY
50834033
50841783
DRV«TTY
TTY<DRV
DRV=TTY
TTY=DRV
DRV=-TTY
50862433
SIM-TTY
SIM-TTY

DAC SET AT 37 AD= 1883
DAC SET AT 50 ADs= 1918
AUTO TARGET SET AT 50
REINIT TCLIP= 3 BCLIP=s

?

ERROR IN JOB 28
ILL MEM REF AT USER 7g2¢
'C

RUN EDGECI!,HE]
RUN EDGECI!,HE]

Y
+SEGMENT LOGICAL NaME?

GATER

DAC SET AT 1 AD= 1847
DAC SET AT 25 AD= 1878
DAC SET AT 3?7 AD= 1885
DAC SET AT 50 AD= 1918
AUTO TARGET SET AT 50
REINIT TCLIP= 3 BCLIPe
XTENT OK

PP020@ WORDS COLLECTED « GARCOL

KKP3FOUND MATCHING END
MESSAGE TRACE{ EDGE Il
MESSAGE TRACE{ EDGE Il
WAITING FOR RESPONSE FIND
*
»
BLOB«CURVE (BLOB)
SENDING FIT BLOB_?2
MESSAGE TRACE: 111 EDGE
WAITING FOR RESPONSE FIT

RESPONSE "FIND®

RESPONSE "FIND*" 4328 =1

FIT 1wy

MESSAGE TR4CEs EDGE CURVE CURVE_FIT FAR

MESSAGE TRACE! EDGE 11

&
REJ«
. :
OBJ+SIMPLE(BLOB, (ALL),REJ)
SENDING SIMp_FIT BLOB_ 2

MESSAGE TRACET 11 SIMP
1 AM NOW IN SIMPLE
NUMBER OF CQRNERS 1S 6

RESPONSE "FITw 3785 2

SIMP_FIT ItV @ FLplVvR

SIM-TTY 17S/S A RECTANGULAR PARALLELEPIPED,

SIM«TTY
SIMaTTY
SIM«TTY
SIM-TTY
SIM«ITY
DRV=~TTY
TTY«DRV

INSTANCE TRANSFORM FROM SIMPLE

«,957483 -,258490 , 000000 27,2563
,288497 -,957483 . 200000 27,6449
220000 223000 1,00000 625000

*

DISP_0BJ(OBJ,1)

JPL Technical Memorandum 33-568

000000 , 00000 200002 1,00000

33

34

DRV=TTY
DRV=-TTY
TTY=MON
TTY-DRV
DRV=TTY
DRV=TTY
DRV=TTY
TTY=DRV
DRy~TTy
DRV=TTY
DRV=TTY
TTY=«MON

= ##& NO VALUE wwsa

-

RESET 01

COLFIND(OBU)

COLFIND NOT RECOGNIZED OR ILLEGAL
08J)

-

COL_FIND(OBY)

COL_FIND NOT RECOGNIZED OR ILLEGAL
0BJ)

&

UPDATE

JPL Technical Memorandum 33-568

NASA — JPL — Coml., L.A,, Calif.

