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A WORKLOAD MODEL AND MEASURES FOR COMPUTER
PERFORMANCE EVALUATION

INTRODUCTION

Performance evaluation of large computer systems has developed into
a branch of computer science. Initially, comparisons of memory cycle times
or instruction execution times sufficed. However, evaluation became much
more difficult when some instruction executions could overlap in time, such as
arithmetic or logic operations and input/output actions on one or more channels.
Other forms of overlap in time can be seen in interleaved accesses to data and
instructions. Through the exploitations of such overlaps, the system's software
can enhance the performance of computer hardware considerably. Since a
large population of programs provides a greater opportunity for occurrence of
simultaneously executable instructions than a single program, multiprogram-
ming and multiprocessing of programs were introduced. Evaluating the success
of such complex architectural designs became an important factor in both the
design of computers and the selection of a computer or a configuration of a
system.

Performance analysis deals with three factors: the architecture of a
system, workload to be processed, and cost structure of the system. Archi-
tecture shall be understood in a broad sense as all elements, other than the
user programs, influencing the performance of a system. Besides the hard-
ware structure and configuration of a machine, it includes the total system
software consisting of the operating system, compilers, library routines, util-
ity programs, etc. It also encompasses the installation's policies concerning
the operation of the machine (e.g., to run only short jobs during daytime and
longer jobs for night shifts, etc.) and programming policies (e.g., policies
regarding the use of faster or slower drums, of storage of recurring jobs,
etc.). Because performance depends not only on the type of machine but also
on an associated workload, a generalized description of this workload is
required. The representation of a workload in published performance studies
varies widely with the technique employed. Mathematical models represent
their workload by the probability distributions (4), (5), and (?). Simulation
studies of computer performance use either a statistical description by distri-
bution functions or a deterministic description of the workload [equations (6)
and (9) ]. Experimental investigations of existing computers use benchmarks
representing typical selected workloads [equations (2) and (3)].



This report treats performance measurement by experiment. The
description of a workload by benchmark jobs restricts the observation of
performance to a few particular cases, however representative for a category
of programs; the workload representation proposed in this report describes a
wide variety of programs and allows a gradual transition from one category
to another; e. g., from compute bound jobs to I/O bound jobs. Most impor-
tantly, it allows a quantitative comparison of different workloads. In addition,
the workload representation allows the structure of its constituent programs
to be described in a manner such that their influence as individual programs
on the utilization of the subsystems becomes highly visible. Further, this
visibility is preserved when the individual programs are combined to form
a Mix. The workload so constructed is entirely portable. This report
attempts to satisfy these criteria by a generalized description of the workload.

Since an expensive machine is expected to perform better than a low
cost facility, and especially since each of its subsystems (CPU, drum, disc,
tape) influences the performance, the machine will be identified by cost factors,
which will be defined during the introduction of the workload description. The
cost structure of a machine is used in defining the quantity of a workload.
Workloads will be considered as equivalent on one machine if their serial
execution of the different subsystems used costs the same amount.

Different users will define performance in different ways. One group
considers mainly the total number of useful actions performed by the system in
a time period of 24 hours, another group is concerned with the time taken by
the system in responding to its request, and a third group is concerned with
the cost effectiveness of the system as measured by the utilization of its sub-
systems. One can, therefore, see the need for at least three different system
performance measures, which will be defined together with some subsystem
utilization measures in a later section. To demonstrate the utility of the
definitions of the workloads and the performance measures, several problem
examples are given in the section entitled Applications.

The workload and measures described in this report should also be use-
ful for simulation studies and provide the link to mathematical models, which
will ultimately need to be verified by comparison with results obtained from
experiments. It is hoped that the proposed workload attributes provide a basis
of sufficient generality to allow investigation of widely differing architectures
and workloads.



GENERALIZED WORKLOAD REPRESENTATION

The workload is defined in three levels: Elementary Processes, Types,
and Mixes, where Types are combinations of Elementary Processes equivalent
to individual programs (jobs) and Mixes combine Types into the substitute for
a batch of programs.

Elementary Processes

An Elementary Process is a very short program used as a standard
which mainly uses only one of the processors of a machine, CPU's and I/O
channels/controllers, but can be supported to a minor degree by other
processors. For the purpose of this report, the Elementary Processes are
those defined in Table 1.

TABLE 1. ELEMENTARY PROCESSES

PA

PH

R

S

C

PR

Central Process

Central Process

Random Access Process

Serial Access Process

Card Read Process

Print Access Process

A

H

The PA Elementary Process consists predominantly of floating point arithmetic
operations, while the PH Process contains mainly fixed point arithmetic,
logical, and housekeeping instructions in the CPU. The Random Access
Process is determined through a program that transfers records or blocks-of
records of randomly ordered files from disc or from drum to core and vice
versa, while the Serial Access Process deals only with sequentially ordered
files. The two other processes are self-explanatory.

The programs representing the Elementary Processes constitute a set
of standards for measuring a unit of workload. In order to compare the



performance of different workloads on a given system with constant architecture
and cost structure, it is necessary to introduce a metric for the Elementary
Processes. A unit of an Elementary Process will be represented by its
associated program, which is adjusted to execute for the length of time paid by
the unit of cost on the processor under consideration. It is obvious that a unit
of an Elementary Process is machine-dependent because it is a function of the
cost structure of the system. A unit of an Elementary Process, therefore, lasts
longer on a low cost device. This sizing of workloads according to the cost of
execution of their Elementary Processes allows the comparison of different
workloads on a machine and the evaluation of the cost efficiency of a machine.
If two different architectures are to be compared, each of the Elementary
Processes can be normalized to execute for a unit of cost and the amount of
work executed can be compared by counting the number of iterations of an
Elementary Process on each of the machines.

As mentioned above, an Elementary Process should, ideally, be a pro-
gram that uses one of the physical processors of the system exclusively; these
physical processors are CPU's and I/O channels connected with some devices.
In reality, however, it is not feasible to have a one-to-one correspondence
between the Elementary Process and the physical processor; e.g., a Random
Access Process needs some minor support by the CPU. Since it is necessary
to establish a correspondence between the Elementary Process and the associ-
ated physical processors for determining its cost, a Virtual Elementary Pro-
cessor is defined as the aggregate of physical processors involved in the execu-
tion of an Elementary Process. The cost of the Virtual Elementary Processor
is composed of the costs of its participant physical processors in proportion
to their utilization during the execution of the respective Elementary Process;
e. g., the cost for a Virtual Random Access Processor is the sum of the costs
of the respective device controller, the I/O processor (channel), and a
(small) CPU involvement. The costs are known from manufacturer's price
lists, and the amount of participation can be measured; for example, using
software or hardware monitors. The determination of the costs of Virtual
Elementary Processes will be further illuminated by discussing the following
cases:

1. Two, or more, Elementary Processes may use the same physical
processor. An example is the utilization of one type of CPU, possibly realized
as a set of identical CPU's, by two different Elementary Processes, such as
the PA (floating point arithmetic) and the PH Processes (housekeeping). In
this case the Virtual Processors are not composed of physical processors,
but obtained by partitioning a physical processor. Therefore, the cost infor-
mation cannot be obtained from price lists but must be estimated.



2. An Elementary Process may have a choice between different
physical devices for its execution; for example, a Random Access Process
may be executed either on a fast drum or on a slow disc device. Hence, sev-
eral Virtual Elementary Processors are available to be chosen for the execu-
tion of one Elementary Process, each with a different participation of physical
devices and with a different resulting cost. The derivation of this cost, how-
ever, follows the usual scheme.

3. If there is not a choice between the different Virtual Processors
and several Virtual Processors are used concurrently, one Elementary Pro-
cess must be introduced for each Virtual Processor employed.

For comparisons of some workloads on different machines, one
machine will be considered as the reference machine with its cost structure
used for the definition of units of the Elementary Processes. For this type of
investigation, it is possible that some Elementary Processes defined on the
reference machine cannot be executed on a machine to be compared; e.g., a
Random Access Process defined on the reference machine cannot be executed
on a machine devoid of random access devices. This problem can be solved by
substituting a combination of other Elementary Processes for the problematic
Elementary Process. For example, a combination of Sequential Access
Processes and PH Processes can be substituted for a nonexecutable Random
Access Process.

To show the relationship between Elementary Processes and the cost
of corresponding Virtual Processors, the list of Elementary Processes is now
expanded by the cost factors associated with their respective Virtual Elemen-
tary Processor and presented in Table 2. The numerical example applies to
a UNIVAC 1108 with three CPU's and two ICO's. Note that some Elementary
Processes have multiple cost factors associated with them, indicating a choice
of several Virtual Elementary Processes. From now on the set of Virtual
Processor cost factors will be referred to as the cost vector of a system,

CP= (Cpa, Cph, Crl,. . . , Cc)

The elements of this vector have the dimension dollars per hour ($/h).

Each Elementary Process requests a certain storage area in one or
several storage media. The system's performance may very well depend on
its ability to satisfy the storage requirements of a set of programs. To
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account for this, we define a set of Elementary Storage Requirements which
indicate the amount of storage needed for the execution of the Elementary
Process (core storage, discs, drum tracks, or tape drives). The Elementary
Storage Requirements are measured in kilobits (kb) or by the number of tape
drives. A Storage Cost Factor is associated with each of the Elementary
Storage Requirements. It is measured in $/bit * hours and $/tape drive
hours. The Elementary Storage Requirements and the corresponding Storage
Cost Factors are represented in Table 3 for the example of a Random Access
Process.

TABLE 3. STORAGE REQUIREMENT AND COST
EXAMPLE FOR A HYPOTHETICAL RANDOM

ACCESS ELEMENTARY PROCESS

Storage

Elementary Storage
Requirement in

kb
Storage Cost,

$/kb * hour

Core

RASDrum A
Drum B
Disc

SAS Tape A
Tape B

36

1000

0. 56*10~3

0. 02*10~3

0.14*10~3

0. 004*10-3

Cost of drive/hour
Cost of drive/hour

The storage requirements can be considered as elements of a storage vector,
s. The costs for the devices are measured in $/bits * hours and combined
into a storage cost vector, CS.

Types
After the definitions of the Elementary Processes and Elementary

Storage Requirements, it is now possible to proceed to an abstract description
of a program (job) as a well defined combination of the Elementary Processes



which will be called Type. The Type receives its character from the relative
weight of each of the Elementary Processes in it, the accumulative Elementary
Storage required for all of the Elementary Processes present in the Type, and
the sequence and frequency of transitions between the Elementary Processes.

To define a Type quantitatively, we first have to recall that a unit of an
Elementary Process was characterized as an Elementary Process adjusted in
such a way that its execution cost was unit cost. Now each type can be nor-
malized to a Type of unit cost, a vector T, in which the elements represent the
relative weights of the different units of Elementary Processes constituting the
Type:

T = (Wpa, Wph,. . . , Wpr) , (l)

where

The weight vector for a Type can be interpreted as a vector in the n-
dimensional space, with each Elementary Process occupying one dimension.
Figure i depicts an Elementary Process space reduced to three dimensions.
The components of the type vector (T) are the weights of its Elementary
Processes. Since the sum of the weights must equal one, each type vector
must terminate in the hyper-plane expressed by equation (1).

It should be noted, that a Type will not only consist of the Elementary
Processes defined above, but will also need a driver to sequence their execu-
tion according to the transition matrix which is still to be described. The
driver will perform only housekeeping functions. It can, therefore, be con-
sidered as part of the Elementary Process PH. Hence, the PH Process load
content of a program to be represented by a Type must be reduced in order to
include the driver, otherwise the weight W12 will indicate the'inaccuracy intro-
duced by the driver. For example, a Type of unit cost may be represented by
the weight vector W in Table 4; the driver contributes the weight Wph of the
PH process. If the Type runs until it consumes $100, it spends $30 for the
PA Processor, $3 for the P.H Processor (e.g., for the driver), etc.



Wpa

Figure 1. Elementary Process space reduced to three dimensions.

Table 4. Weight Vector W

W

1

Central Process

Wpa

0.3

Wph

0.03

Random Access

Wrl

0.1

Wr2

0.3

Sequential

Ws

0.2

Print

We

0.04

Card

Wpr

0.03

The Storage Requirement for a Type is simply the sum of the storage
required for all the constituent Elementary Processes. The storage vectors
for each Elementary Process of the previous example are shown in Table 5.
Except for the central processing functions PA and PH, all other Elementary
Processes require two kinds of storage; namely, core and some mass storage.
Often two Elementary Processes run cooperatively, sharing some storage
areas. In the examples presented here a cooperation was assumed between
Rl and R2 for transferring data from disc to drum. A core area of 4 kb,



TABLE 5. STORAGE REQUIREMENT FOR A TYPE

Elementary
Process

PA

PH

Rl

R2

S

PP

C

Type

Core
kb

20

1

4 -

1-2, R

L-R2-,

0.5

R2-

28.

Storage

1
I*

7

Drum
kb

- '

-

200

-

4

-

204

Disc
kb

-

-

-

-400-1

R2-1

-

L R2

400

in kilobits

Tape
Drives

-

-

-

-

-

-

-

No. Tape
Drives

which is used as a buffer, must be reserved only once for these cooperative
processes. In a previous example, the Process Rl accounts for this core
buffer, while Process R2 refers only to it by listing the cooperative Process
Rl. We also recognize a cooperation between S and R2 (tape to disc transfer)
involving a 2 kb buffer and observe a card to disc process (C-R2) sharing this
2 kb core buffer and the shared drum storage of 400 kb, which also serves
in the S-R2 transfer.

The last line in Table 5 shows the storage requirement vector S for
the Type which is scaled in kilobits and number of tape drives. The scalar
product between the storage vector S and the storage cost vector CS for this
machine results in the storage costs per hour for this Type. If all storage in
the machine to be measured is reserved for the duration of a job, the storage
cost per hour must be multiplied by the basic execution time required for the
execution of the Type. The basic execution time of a Type will be defined as
the time needed for a serial, not overlapping, execution of its constituent Ele-
mentary Processes. In this way, a cost for storage, expressed in dollars, will

10 ,



result giving a measure of the total storage requirement for the Type.
The performance of a program on a machine will not only depend on its Ele-
mentary Processes and Storage Requirements, but also on the sequence in
which the processes are executed and on the degree of hashing between pro-
cesses. A definition of these two features will therefore be added to the
description of a Type.

Sequencing and hashing may occur in various ways: A Type given by a
weight and storage vector may execute each of its Elementary Processes for
the total time prescribed by its weight, before proceeding to the next process;
or in the general case, it may execute only for a portion of the total time allo-
cated for each of its Elementary Processes and return several times through
a prescribed sequence, until each Elementary Process is executed for the full
time prescribed for it. The sequencing of the Elementary Processes can be
described by a transition table, as exemplified by Table 6 in which each Ele-
mentary Process is completed before switching to the next one. The first
quantity of the pair of entries indicates the time spent for the Processes listed
in the column, and the second one points to the Elementary Process to be exe-
cuted next. The sequence starts with the Read Process (C) for the time t4,
then the Tape Process (S) is executed for the time ts, this is followed by the
execution of CPU-Process PA for the time tn, etc. A Type with the same
weight/storage vector can, however, be executed in a different manner by
hashing its Elementary Processes. In this case the Transition Table would
show loops between Elementary Processes whereby the frequency of iteration
within a loop is expressed by an exponent for the time/transition pair. When-
ever the performance of a system does not depend on the sequence of Elemen-
tary Processes, the workload can be presented in a much simpler form by
merely listing the duration (t) and hashing frequency (n) of each Elementary
Process, as shown in the bottom row of Table 6.

If the Type is not artificially constructed, as it was in this report, but
is derived from a batch of jobs representing a typical day or hour on a machine,
it is possible and desirable to compute the standard deviations, in addition to
the averages of durations for each Elementary Process. While the authors
refrain from using the standard deviation for the construction of a Type, it may
contribute to the construction of a model of the total batch of programs. The
curve in Figure 2 indicates the description of Elementary Process durations
as Gaussian distributions.

Conceivably, the workload throughput of some architectures may depend
on a blocking of Elementary Processes; e.g., in executing a block of concur-
rently executable Elementary Processes such as an "R2-PH" pair, the time
needed for repeated initiations of these Elementary Processes may be elimina-
ted. Also, the opposite effect may occur; larger blocks may hinder concurrent

11



TABLE 6. TRANSITION TABLE

Step

START 1

2

3

4

5

6

7

Per
Elementary

Process

Total Time

PA

%, Rl

tn

nll

PH

ti2> R2

tl2

n!2

Rl

t21, PH

t21

n21

R2

t22» PR

t?2

n22

S

ts, PA

ts

n3

C

t4, s

t4

n4

PR

tg, END

t5

%

m -

k -

i-
P-

LOG FREQUENCY

/

/

j

1

/
1
i

r /
/

1

\

\

\

\

\

\

\

\

1 T

P A P H Rl R2 S1 S Sn S* SP P LOGt

Figure 2. Frequency of Elementary Process durations.

12



processing of many different Elementary Processes. A Type description
should therefore allow an architecture to fully display its management abili-
ties.

All information on blocking of the processes is employed in Table 7.
The value of each element of this matrix denotes the number of transitions
from the Elementary Process, listed in the top row, to the Process named in
the right column; e.g., there is a block of p consequentive S Processes,
furthermore, there is one block of m loops between the R2 and PA Processes
and a block of r loops through the trio of the Elementary Processes PH-R2-S,
etc.

The Type specification could be further sophisticated to include the
sequencing through the Elementary Processes by prescribing a random walk
through the Processes. Each step toward refinement, however, creates an
added burden for the extraction of such additional information from a typical

TABLE 7. BLOCKING OF TRANSITIONS BETWEEN
ELEMENTARY PROCESSES

From Elementary Process

PA

0

1

>
m-1

PH

0

/

/

r ^^

k

Rl

1

/
0 ^

.̂.
n-1

R2

m
/

^s

^

i*•*/

s

k-1

"I
/•'

P

t
1

C

1

0

PR

l-l

0

To

PA

PH

Rl

R2

S

C

PR

13



batch of jobs and for the comparison of different workloads. For most archi-
tectures, a Type specified by the frequency and average duration of each of
its Elementary Processes seems to be adequate.

Mixes

Multiprogramming systems execute portions of different programs con-
currently whenever the appropriate processors are available. • To test such
systems, a large number of jobs must be simultaneously offered for execution.
Accordingly, a large number of Types, batched into a Mix, are used as a
proper Workload. Originally, one may think of a Mix as a number of different
Types of various lengths of execution, each Type to be executed repeatedly for
a given number of times. Obviously, one can also construct a new Type which
represents the average of the Types in the Mix.

The average Type is obtained by weighting each Elementary Process by
both its original weight in a Type and the execution length and number of repeti-
tions of this Type within the Mix. The new homogenized Type will be called
the Mix Average Type, which has naturally all the properties of a Type, par-
ticularly that of unit cost. It can be specified by any one of the methods appli-
cable for Type definitions. For simplicity, a specification using only the fre-
quencies and average durations of the contributing Elementary Processes is
preferred. Similarly, an average Storage Requirement for the Mix Average
Type can be constructed.

The Mix consists finally of an infinite number of Mix Average Types,
possibly with Elementary Process durations obtained from sampling prescribed
Process distributions. The number of Mix Types simultaneously admitted to
the system for execution will be determined by the Storage Requirement for the
Mix Type and the system's storage capabilities.

Review of Workload Specifications
In review, we see the Elementary Processes as standards defining the

units of processing. Execution times of these Elementary Processes are deter-
mined by the cost structure of the machine; the frequency of iterations reflect
the differences in performance of the instruction sets available on the machine
under test. Types are constructed to represent jobs. A gain in the execution
time of a type compared with the time needed to execute its Elementary Proces-
ses serially reflects the machine's capability to overlap Elementary Processes.

14



Similarly, a gain in execution of a Mix over the time needed to process its
Types serially indicates how well the architecture takes advantage of the
simultaneous offering of a large number of Processes present in a Mix.

A workload represented in generalized form exhibits several proper-
ties: It allows a quantitative comparison of different workloads, it can be
derived from benchmarks (either manually or supported by software moni-
tors) , it establishes a link between benchmark representations and statistical
distributions of a workload, and it is portable between different machines.
While the workload has only been described for batch processes, it can be
expanded into real time and data base systems by adding timing or data access
conditions to the transition table of a Type or by introducing such conditions
into a Mix.

DEFINITION OF PERFORMANCE AND EFFICIENCY MEASURES

As previously stated, different users consider different features of a
system important for them. In this chapter, parameters will be defined which
describe the overall performance of a system rather than focusing on detailed
features. No effort has been made to accommodate the special needs of real-
time or time-sharing systems. In order to define parameters of performance
and efficiency we will first describe the main check points through which a
Type passes.

Throughput Rate, THR

As a measure of the performance of a data processing system one
usually counts the number of jobs or instructions pertaining to a given workload
processed per unit time. The following redefinition of this measure which is
called the Throughput Rate, THR, in essence arose from this concept. In mul-
tiprogramming systems the active system time ast. = tt. - at. (Fig. 3) of a

certain Type does not depend only on its structure and the processing speed of
the system but also on the other Types being active at the same time and shar-
ing core, CPU, I/O channels, and peripheral systems with it. The active
system times ast. of the Types constituting a Mix can be considered as realiza-

tions of a random variable, AST, with the expectation E [AST], Its distribu-
tion function needs not to be specified for our purposes. K, on the average, r
Types are active simultaneously (degree of multiprogramming) the Throughput
Rate, THR, or in other words the Type terminating rate, can be defined as
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ARRIVAL OF TYPE NO. i

i = l,2,...,n

SYSTEM ENTERING TIME SET ;

set j < set i + !

ACTIVATION TIME at j

TERMINATION TIME ft;

SYSTEM EXIT TIME «ext ;

text i $ «ext j + 1

/

\

READING OF THE FIRST CARD OF A DECK OR ARRIVAL OF THE
FIRST WORD.

THE TYPE IS WAITING IN THE BACKGROUND STORAGE FOR
THE ASSIGNMENT OF EXTERNAL DEVICES SUCH AS TAPES,
DRUMS, DISKS (NOT CORE AND CPU) AND FOR ACTIVATION.

/EXTERNAL DEVICES ARE ASSIGNED. THE TYPE IS ELIGIBLE FOR
EXECUTION. ALLOCATION OF CORE OR JOINING THE QUEUE OF
TYPES WAITING FOR COR£.

USUALLY THERE OCCUR INTERRUPTS DURING THE ACTIVE
STATE. THE TYPE MAY MOMENTARILY LOSE ITS CPU AND
ITS CORE. IT REMAINS, HOWEVER, IN THE ACTIVE STATE.

/

\

THE TYPE IS PROCESSED:
CPU, CORE, AND EXTERNAL DEVICES ARE RELEASED.

WAITING FOR OUTPUT.

/

\

THE LAST LINE IS PRINTED OR THE LAST CARD IS PUNCHED.

TYPE NO. i
LEFT THE SYSTEM

Figure 3. Active system time.
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<2a)

This definition can be used for mathematical models and for measurements as
well. In the case of measurements the following equation holds:

THR 7-A i = 1, 2 n , (2b)
max(tt.) - att

 v '

where n is the number of Types processed during the total observation time
max(tt.) - atj.

Gain Factor, GF

It is well known that in a multiprogramming/multiprocessing system
the total time elapsed for processing n Types of a workload is usually less
than the time needed for serial processing of the same Types. More pre-
cisely, the interval of the total active time max(tt.) - atj measured on a mul-

tiprogramming/multiprocessing system is usually less than the corresponding
time interval tt* - att for serial processing. The Gain Factor, GF, indicates

how many times faster a system can process a given workload using multi-
programming compared to uniprogramming.

tt* - at}n
GF = max(tt.) - att '

Comment: The combination of equation (3) with equation (2b) yields:

tt* - atj
G F = T H R * - - . (4)

This equation suggests another physical interpretation of the Gain Factor, GF.
Since the second term in equation (4) represents the mean active system time

17



per Type for serial processing, the quantity GF can be interpreted as the
mean number of Types processed during that time. Therefore, according to
the notation Throughput Rate, THR, one could use the term Throughput instead
of Gain Factor.

Internal Delay Factor, IDF

Despite the gain in the total time required to process a batch of Types
in a multiprogramming environment, the active system times for the individ-
ual Types will be greater than the corresponding times for serial processing.
The increased active system times of individual Types is the price paid for a
better utilization of all processors of a computer system. To measure this
increase in active system time, an Internal Delay Factor, IDF, is introduced.
This indicates how many times greater the expectation E [AST] of the active
system time per Type is with respect to the mean active system time

— (tt* - atj) for serial processing:

-i (tt - at<)n n l/

(5a)

If the Internal Delay Factor is determined by measurements, the expectation
E [ AST] has to be replaced by the corresponding mean sample value:

I (tt.-at.)

Comment: According to equations (3) and (5b) there exists a relationship
between the Gain Factor, GF, and the Internal Delay Factor, IDF:

ij.

E
.

max (tt.) - atj (6)
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The right side of equation (6) represents the mean number of jobs which are
active simultaneously.

External Delay Factor, EDF

Usually the intervals between the system entering time, set., the acti-

vation time, at., between the termination time, tt., and the system exit time,

sext., respectively, are significantly different. Therefore, it seems to be

appropriate to introduce another characteristic quantity, the External Delay
Factor, EDF. If we consider the total system times, tst. = sext. - set., of the

Types constituting a Mix as realizations of the random variable TST, then the
External Delay Factor indicates how many times the expectation E [TST] of
the total system time per Type is greater than the expectation E[ AST] of the
active system time per Type under the same operating conditions.

When EDF has to be determined by measurements the expectation values in
equation (7a) have to be replaced by the corresponding mean sample values:

n
(sext. - set.)

n
Z (tti - aV

(7b)

i = 1

Utilization Factors

The parameters defined previously do not reflect the utilization of the
main components of a system such as CPU's, I/O channels, and working stor-
age. Although, the utilization factors of these components are not performance
parameters proper, they provide at least some insight into how the workload
utilizes the system' s capacity. Very low utilization factors can indicate
excess system capacity, a mismatch of the workload with respect to the
system's architecture, an inefficient algorithm of the operating system,
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or that the degree of multiprogramming should be increased. Very high utili-
zation factors of I/O channels, however, point out excessively long queues and
waiting times. Subsequently, several utilization factors will be defined.

• Utilization of the Central Processing Unit

1. Utilization of CPU no. j; j = 1, 2, . . . , m

where

UCPUj = Active time of CPU no. J _ ( ga)
max(ttj - atj

2. Overall CPU utilization

m
H UCPUj . (8b)

Comment: The active time of a CPU is supposed to include both the CPU time
charged to the individual Types of a Mix and the CPU time needed
for performing housekeeping functions (system overhead SOH) .
Although the system overhead is not considered to be a perform-
ance parameter proper, it should be considered together with the
CPU utilizations,

m n
V active time CPU no. j - V CPU time charged to Type no. i

L^i - .

m
active time CPU no. j (8c)

• Utilization of I/O Channels

3. Utilization of channel no. k; k = l, 2, . . . , S.

Busy time channel no. k
UCH, = / \ ~ •k max(tt.) - atj
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4. Overall channel utilization,

UCH = -y J UCH • (9b)
k = l k

• Utilization of Core Memory

Working storage ( core) is usually required for three purposes: stor-
age of the resident part of the executive system, storage of active Types and
nonresident parts of the executive system, and as buffers. In this report, only
the utilization of that part of core memory which is available for Types (user
programs) and nonresident routines and functions of the executive system is
considered. Its capacity is denoted by C. To determine the utilization of C
the portion C occupied momentarily at sample time t is measured.mom,t J

If we denote the time interval between two consecutive sample points by At,
the utilization of core memory is

; * At
mom,t

\ •C* max(tt. - atj

In order to obtain numerical values for the parameters defined above,
the quantities specified in equations (2b) through (10) have to be meas-
ured. There are three different sources of information: the accounting system
of a computer installation, software monitors, and hardware monitors.
Because it is the authors' intention to define performance and efficiency
parameters rather than to focus on measurement techniques, these data
acquisition methods will not be discussed.

APPLICATIONS

The usefulness of the definitions and approaches outlined in the previ-
ous sections will be demonstrated by applying them to performance studies of
a large scale computer, the UNIVAC 1108, a system employing three central
processing units and two I/O control units operating under the executive sys-
tem EXEC 8. Four classes of problems are treated.
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First, the influence of the type of Workload on the Performance of a
constant architecture is investigated. Such investigations become feasible
because of the assignment of a value, the cost of executions to each Type. We
recall that the character of a workload is represented by the weights of the
Elementary Processes present in the Mix Type. To study the global behavior
of the system, groups of similar Elementary Processes are lumped together.
In the following example, it is to be investigated how the percentage of I/O Ele-
mentary Processes in the Mix influences the performance of the system, where
the percentage of I/O Elementary Processes is defined as the su"m of the
weights of all I/O Elementary Processes in a Mix. Five different Mixes were
constructed consisting of 10, 30, 50, 70, and 90 percent I/O Elementary Pro-
cesses, respectively. The resulting Throughput Kates and Gain Factors are
depicted in Figures 4 and 5 respectively. The parameter r denotes the num-
ber of jobs simultaneously active in the system (degree of multiprogramming.).

Figure 5 shows that the Gain Factor increases with the percentage of
I/O, or in other words, Mixes with higher I/O percentages (I/O bound Mix)
overlap their Elementary Processes more than those with lower I/O percent-
ages (compute bound Mix). The slow increase between 30 and 90 percent I/O

THR JOBS/MIN

7

6

5

4
= 6

= 1

0 0.2 0.4 0.6 0.8 1.0

GF

r =6

•*—x-

= 1

0.2 0.4 0.6 0.8 1.0

Figure 4. Percentage I/O Through-
put Rates.

Figure 5. Percentage I/O Gain
Factors.
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is due to the fact that the Types in each of the Mixes used the same I/O chan-
nels. Despite this relatively better utilization of the system processors by
I/O bound Mixes, a much greater number of compute bound jobs leaves the
system per unit of time.

This paradox behavior can be explained if we recall that those Elemen-
tary Processes which use inexpensive Virtual Processors will be executed for
relatively longer periods of time. The Throughput Bates in Figure 4, there-
fore, include both the effects of overlapping Elementary Processes and the
cost of the processors used. From Figure 5 it can be concluded that compute
bound Mixes utilize the more expensive processors of the system much better
than I/O bound 'Mixes. The cost structure of the system is of greater influence
on the Throughput per Dollar than the degree of overlapped processor usage
expressed by the Gain Factor. In other words, if the system runs an I/O
bound Mix, it wastes the more expensive processors available in the system.
Consequently, a time rental service would have to apply a factor of 1.7 to the
price of a 50 percent I/O Mix in order to draw the same income from this Mix
as it does from compute bound jobs, if it uses this architecture.

If the configuration and the architecture of a machine cannot be changed
but the workload can be varied, the performance curves could indicate an opti-
mum workload for a machine. Since Figure 4 does not show a true optimum,
the most cost effective workload on this machine consists of an extremely com-
pute bound batch of programs.

Second, to investigate the influence of specific I/O Elementary Pro-
cesses on Throughput Rate and Gain Factor, three Mix Types were constructed,
each of which contains 50 percent I/O Elementary Processes. The first one
uses exclusively slow drum channels (Fastrand), the total I/O percentage of the
second one is generated by equal percentages of I/O activities on slow and
fast drum channels (Fastrand FH-1782), and the third one uses only fast drum
channels (FH-1782). The results are shown in Figures 6 and 7 where it can
be seen that the workload becomes more cost effective and utilizes the proces-
sors to a higher extent when the I/O activities are predominantly handled by
high speed channels.

The third class of problems is concerned with the selection of a com-
puter system or of a system configuration best suited for handling a given work-
load. In this case one computer system will be considered as the reference
system and Throughput Bates and Gain Factors of all other machines are
expressed relative to the performance of this reference system. A family of
curves similar to those presented in Figures 4 and 5 will be obtained.
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THR [JOBS/MIN]

r = 6

0.5 I/O

0 0.2 0.4 0.6 0.8 1»0

GF

r= 6

0.5 I/O

I I

0 0.2 0.4 0.6 0.8 1.0

Figure 6. Weight of Fast Drum
Process relative to weight of total

I/O, THR.

Figure 7. Weight of Fast Drum
Process relative to weight of total

I/O, GF.

Finally, the performance of a system will depend not only on its archi-
tecture or the general type of workload applied but also on the structure of its
programs. The Types of a Mix indicate the structure of the programs to be
simulated in their transition tables, especially through the degree of hashing
between Elementary Processes and also through their sequencing. In order
to study the influence of hashing, one of the previously used Mixes ( 50 percent
I/O) was repeated with different degrees of hashing of its Elementary Proces-
ses without changing the weight of its constituent Elementary Processes (Figs.
8 and 9). The results show decreasing Throughput Rates and Gain Factors
when the degree of hashing is increased. This effect is mainly due to an
increased system overhead.

CONCLUSIONS

This report presents definitions for measuring the performance of a
complex computer system and a method for constructing workloads with
desired properties. The workloads so constructed show in a very translucent
way the degree of subsystem involvement, the structure of the program, and
the constraints imposed by storage requirements for programs or batches of
programs. The proposed workload is easily transferable between different
machines. It allows the comparison of the performance of different workloads
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Figure 8. Throughput Rate with
degree of hashing.

Figure 9. Gain Factor with degree
of hashing.

on the same machine and reveals the cost effectiveness of an architecture rela-
tive to the workload. Because of the extreme visibility of its structure and its
contributing Elementary Processes, such a workload is also useful in searching
for bottlenecks in a system. Since it is easy to construct a workload of a pre-
scribed property, this method may be used for experimental verification of
theoretical studies on system performance. The generalized parameters
expressing the weight or structure of a program could allow the description
of a workload sufficient to compare the results of experimental studies on dif-
ferent systems by different authors. The parameters found to be essential for
the performance of a given architecture can be used as the basis for adaptively
scheduling the workload inputs to a large scale system for performance opti-
mization.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama, February 11, 1972
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