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A. CONTRACT OBJECTIVE

The objective of this contract was to develop a thyristor type
of switch that will recover its forward current blocking capability within

2 microseconds when used in a series inverter.
B. SUMMARY OF PERFORMANCE TOWARD THE CONTRACT REQUIREMENTS

Westinghouse has successfully accomplished the objective of
the contract and completed the work requirements stated in Section C of
the contract. The work statement includes four items, which are discussed

below in sequence:

Item 1 -~ To formulate a philosophy of thyristor design consistent with
the objective of meeting the following specifications:

Max., Forward and Reverse \ 600V
Blocking Voltage mag

Max. Anode Current Iav 50A
Recovery Time 2 us
dv/dt | | | 400V/ps

v 2v @ 50a

Such a design was formulated and devices were made and delivered in

accordance with Item 2 below.

Item 2 -= Device fabrication., The original contract calling for ten (10)
devices was extended and the required number was increased by twelve (12),
making a total of twenty~-two (22) units in all. These twenty-two (22) units
were delivered along with an additional two (2) units to be used for display
purposes. Of the twenty-two (22) good units, nineteen (19) met all of the

114



specifications stated in Item 1 above, one (1) unit met the requirements
except for Vg, which was 2.3 volts at 50 amps rather than the desired

value of 2,0 volts at 50 amps, and two (2) had low reverse blocking voltage
- at 100°C, In view of the difficulty experienced in making thyristor type
switches that will recover their forward current blocking capability within
two microseconds, Westinghouse feels that such minor deviations from the

Vp and voltage specifications are acceptable within the limits expected for
a development contract of this type and that the contract requirements have

been met,

Item 3 -~ Test circuits., The required testing circuits were built and
performed in an entirely acceptable manner. The circuits were specifically
designed to relate to the series inverter of Schwarz, discussed in Section
1.2 of this report, and units so tested are expected to perform adequately
in that circuit when it is built,

Item 4 -- Identification of areas for future investigation. This item

is discussed more completely in a later section., In summary, the problem
areas relate particularly to the manufacturability and encapsulation of

the device. The basic design of the npnp silicon sandwich from which the
device is fabricated has proved to be more than adequate. The problems
encountered in the fabrication, however, dictate a minor but -- in terms

of manufacturability -- significant departure from the mesa structure now
employed. These problem areas are well defined because of the present con-

tract and future work should result in a completely manufacturable device.

Westinghouse has also met the terms of the contract in the delivery of

reports and in Inspection and Acceptance criteria. .

iv



C. RECOMMENDATIONS FOR FUTURE WORK

A natural recommendation for future effort on the gate assisted
turn-off thyristor (GATT) device is the extension of the device capability
to higher ievela in terms of blocking voltage, current handling capability,
and switching speed, ‘The results of the present effort, however, show
that a careful re-examination of the process techniques should accompany

any further development efforts.

Four types of process problems were encountered during the

contract work,

1) Cathode Mesas
a) the mesa formation itself,
b) cathode mesa leakage currents, and

c¢) contacting of the mesas.

2) Diffusion
~a) control of bulk lifetime, and
b) reproducibility of the p-diffusion

3) Blocking Voltage
Degradation induced by non-optimum processing

and encapsulation,

4) Device Encapsulation

In its detailed interaction with the selected mesas,

All of these problem areas are fabrication/processing problems.
Although they do indeed impact the device design, the net effect must be
considered as a yield problem since the devices that were successfully
completed did, in fact, meet specification, and improvements in parameter
performance can be projected based on well known principles of PNPN

device design.



1)

2)

3)

4)
5)

To approach the fabrication problems, we recommend that:
The cathode-gate juhctions be prepared by a planar technique,
obviating present problems in control of the mesa etch, the
cathode-gate geometry, and various mesa etch mask defects.
All of the junctions be provided with an inorganic passivation.
Thick cathode and gate metallization techniques be developed to
relieve packaging stress problems.
Devige more reproducible p-diffusion and lifetime control processes.

Improve package design to relieve local stress problems.

vi



1. INTRODUCTION

1.1 Power Processing.

t

A broad area of the field of power processing deals with the
conversion of dc power from one level of voltage to another. In some .
systems, the prime power is supplied by relatively low voltage exotic
sources producing dc output voltages too low and too variable to be used
directly. 1In others, the dc source is the rectified output of an ac line
which must be adjusted to the desired voltage level and then regulated
at that point, ’

Much technology has been generated in this field, making
possible a solution to almost any system problem presented. However,
when examined critically from the standpoints of equipment size, weight,
reliability, and efficiency, each circuit solution represents a certain
compromise of desired properties. It is always desirable, therefore,
to advance the art with new technology which offers an improved compromise

of the system evaluation criteria described.

Circuits for the conversion of dc power from one level to another
must of necessity interrupt dc currents. This can be done by inserting an
active switching device in the dc line, or alternatively by utilizing an
energy storage deviée. At present, no solid-state dc switch is available
for use at high power levels, so the technique normally used for the former
is to force commutate a thyristor. This technique, although feasible,
results in high energy transients which are detrimental to efficiency and
reliability, and contribute heavily to undesirable electromagnetic inter-
ference. Circuits of this type also suffer disadvantages in size and
weight and are limited in internal operating frequency by the recovery
times of the thyristors, which are rather long.



A more desirable circuit configuration employs lossless
energy storage devices, such a inductors and capacitors, to
effectively interrupt dc currents by natural commutation, In such
circuits, solid-state devices without turn-off properties, such as
thyristors, may be employed without the need for commutating circuitry.
Because commutgtion takes place naturally, no large voltage or current

transients need occur, increasing reliability and efficiency.

Circuits of this type do work well and exhibit all of the
previously discussed advantages, They are, however, limited in size
and weight by the maximum internal carrier frequency, which is in
turn limited by the relatively long recovery times of the thyristors
used. A considerable improvement in circuit performance would result
from the use of a solid-state switching device which, upon current
interruption by external means, would require only a short interval
before forward voltage may be reapplied.' It need not include the ability
to interrupt current by application of a gate signal. |

The gate assisted turn~off thyristor (GAIT) is such a device.

1t was developed on this contract.

1.2 The Series Inverter

The intended use for the GATT device of this contract is a
series inverter circuit. Although the device‘proposed will be useful
in any series inverter configuration, it will be asgumed for the purposes
of this program that the specific circuit under consideration is that
described by Schwarz 1’2. The basic motivation for the system described
by Schwarz was the need to develop a power conversion system useful for
space ‘application. Of foremost interest in such designs are the consider-

ations of efficiency, power density, and reliability.



Afﬁéf first studying various solid state switches, it was
concluded. by Schwarz that resonant circuits are best suited for the
utilization of thyristors in power conditioning systems., Of foremost
consideration in this selection were the surge capacity of thyristors
and the ability to be turned 'en' and 'off' at pulse repetition rates
in excess of.ten'kilohertz, yet with smaller power dissipation than
transistors in parallel inverters. Recent advances with thyristors
have enabled turn-on at high repetitinn rates and high retee of rise
of current; and, thyristors may be turned off by natural commutation,

with low losses in the process.

The dissipation features of thyristors versus transistors were
aptly demonstrated by the use of a ten megahertz bandwidth wattmeter.3
The turn-off dissipation properties of tne natnrally commutated thyfistor
thus obtained were instrumental in selection of the series inverter as
the power conditioner with which to transform dc power to ac power. The
inherent property of the series inverter to provide natural commutation
of the thyristor currents results in relatively low thyristor dissipation
which is almost independent of the pulse repetition rate at constant duty
cycle. The ensuing power dissipation in the thyristor is substantially lower
than that normally experienced wiﬁh transistors or force commutated thy-
ristors. The framework of the inverter efficiency design is then based
upon this independence of power dissipation from frequency due to the low
dissipation experienced during turn-on and turn-off phases of the switching
processes. The selection of the switch then leads to the selection of the
circuit which works best with the useful properties of the switch: the

thyristor-series inverter combination.

The .operating point of the series inverter is next considered from
the standpoint of efficiency. Figure 1 shows the series inverter current

waveform (il). The form factor of the current waveform may be expressed as

i T
rm

5§ _ _ _ X » d
=2 1+ T /T = 75/ + 7 ic

1) Form Factor = p; =1
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where Td = delay time between.end of conduction of thyristor 1

and start of conduction of thyristor 2.

T

k

the system = V¥ LC where L and C are equivalent series

= half period of the natural resonant frequency of

inductance and capacitance of the series inverter,

From Schwarz, the relative power loss in the system can be

approximated.by

R
2) 1-h=pi.2 -—1—-5-——-
Ry™ *+Rg
where '\ = the efficiency of the system
Rs = equivalent inverter series resistance

equivalent inverter load resistance

,_-F:‘

Once the series inverter design is fixed, losses can be minimized by
reducing the current form factor Py From (1), the form factor is

minimized by reduction of T, which, as already defined, is limited to

d
a greater value than toff’ the standard turn-off time of a thyristor under
self-commutating performance. Before development of the gate-assisted

thyristor, recovery times of conventional thyristors were limited to 10 us.

Such devices, with 10 psec turn off time, however, allowed
Schwarz to construct a series inverter with efficiency in excess of 95%,
power output of 2kW, and power density of 0.4 kW/kg. The purpose of this
contract was to develop a thyristor which would recover its forward blocking
properties after normal self commutation within 2 us. With this device,
Schwarz contemplates an improved inverter with efficiencies of the order of
95%, similar power output, and power densities of 1 kiW/kg, He assumes the
series inverter natural frequency could be increased to 50 kHz, and that
economies of size will result from the 50 kHz frequency due to reduction
of physical size and weight of transformers and of the associated energy
storage eléments. It is also expected that efficiencies will not

deteriorate.



As a concluding point, the availability of high current
thyristor switches reduces the need for unreliable paralleling. Thus,
the reliability of the Schwarz inverter design has additional merit
because the paralleling of groups of solid state switches, with their

attendant increase in number, reduces the probability of failures.

A symbolic schematic of the series inverter is shown in Figure 2.
Waveforms derived from Figure 2 are shown in Figures 1 & 3. The arrangement
is conventional and consists of two series inverter circuits for which
components L1 and load transforme¥ Tl are shared by both circuits. Operation

consists of the alternate sharing of current by switch Th1 and Thz. As an

example, when Th1 conducts, C1 provides half of the load current pulse by
discharging from some value greater than e to a negative voltage which is .
some fraction of eg. At the same time, capacitor 02 resonantly charges from
some negative potential which is some fraction of e to a positive value

greater than e Capacitors CI and C2 resonate with inductor Ll’ and the

sum of potentials across 01 plus 02 is always e The waveforms in Figure 1
illustrate the sequence of events of the inverter operation. Assuming

operation starts at time tl, then C, .18 charged to e + A v and C, is charged

2 1

to =A v, At time t, thyristor Th, is naturally commutated and a delay time

1 1 )
Th‘z toff must exist before Th2 can be triggered. The delay time of Td is

shown in Figure 1, After the delay time, Th, is triggered and at the instant

that Th2 is triggered, Th1 experiences a risz in anode voltage at a rate which
is less than or equal to 400V per microsecond. Capacitor 02 discharges
producing & negative going current pulse through transformer Tl. During

the conduction of Th

to - Av

the voltage across C, falls resonantly from e, +Av

2’
and the voltage across C

2

1 1 rises from -A v to es + Av. Hence at

time ty the potentials of C1 and C, have reversed from their position at

2

time t,. After a delay Td’ thyristor Th1 conducts, provides a positive

current pulse through transformer T1 and the potentials of C1 and C2 return

to their values they assumed at time t In this cycle, an ac current pulse

1.
1 and transformer Tl‘ Rectifier RR~1 in the secondary

of T1 reconverts the pulsating current to unipolar pulses which charge C3

was developed through L

to a level of eo;
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The series inverter is well known for its poor regulation
features when operated at a constant pulse rate, The inverter discussed
in this report regulates the frequency of thyristor triggering to main-
tain output voltage constant. This is achieved by the standard usage of
comparators, voltage controlled oscillator, and triggering systems. One
other novel system of the Schwarz inverter is the use of two anti-parallel
thyristors placed across inductor L; and transformer Ty in such fashion
as to "'secure a contained excursion of the capacitor voltage waveform and
an appfoximately constant efficiency for a given load and for variations of
the same voltage eg." The two auxiliary thyristors are triggered during
conduction of a main thyristor such that main thyristor current is reduced
to zero and energy stored in Lj causes continued circulation of load current
through T; and ultimately into the load. Discussion of the inverter control
system and voltage stabilization methods are found in the literature 1,2
and are not germane to the requirements of the gate assisted thyristor.

These topics will not therefore, be further amplified.

The primary interest of the gate assist thyristor development is
the relationship of the GATT device performance to the requirements of the
series~-inverter. 1In general it is required that the GATT performance as a
thyristor at least equate to the comparable thyristors used by Schwarz,
except for recovery time., These are the thyristors spoken of with 10 us
recovery periods and which were run at 20 kHz. A one for one correspondence
between standard thyristor and gate assist thyristor does not exist, al-
though many characteristics and ratings are similar. The maximum 10 kHz
operating frequency of the series.inverter'and the contemplated 50 kHz
operating frequency demand full concurrent frequency characterization for
either range. This characterization is considered outside the scope of the
gate assist development and requires additional effort. Most thyristors
with full frequency characterization use some form of "amplifying gate"
structure to achieve fast turn-on., Full turn-on drive is supplied to annular

power gates through auxiliary gates which receive drive from the anode source.



’The gate assisted thyristor uses a long emitter-gaté edge  because of the
finger emitter structure which enhances extraction of P-base charge, but
which also requires a large drive for effective turn-on. Since drive to
the long emitter periphery does not originate wifh the anode as with the
amplifying gate, high drive for effective turn-on must be supplied from
the actual gate of the gate assist thyristors. This is as large as a
15A pulse. -

Another feature of gate-assist thyristor which alters normal
thyristor performance is the lack of gate emitter shunts which are used
 to obtain high dv/d; rating. Since these shunts would simply act to
bypass gate assist drive, making the gate assist process more difficult,
shunts are not used. While gate assist performance is helped, transient
susceptibility deteriorates, However, the effect of gate-emitter shunts
méy be obtained if the devices are always operated with an external bias
resistor combination between.gate and emitter such that dv/dt ratings in
excess of 400 V/us are obtained. The bias source voltage is always less
than the gate emitter avalanche voltage and losses due to the bias are

small,

Several parameters of the GATT switch bear inter-related
characteristics which should be understood when testing and applying
these units. The characteristics reflect the normal design trade-offs
required to product a gate-assist switch. As an example, latching
currents for gate-assist units could be as high as six amperes. In
general, units optimized for turn-off will sacrifice some switching
performance. Hence, the current level at which the sum of the alphas
equals one could be much higher than the normal thyristor. As a con-
sequence, other performance is influenced by this feature. Minimum gate
voltage (VGT) and gate current (IGT) to cause turn-on or firing are
impeded by high latching current. If a gate-assist device with a minimal
gate drive and high latching current is tested at current levels below

the latching current, there may result a condition in which the device is

-10-



forward biased but not truly SW1tched yet a high anode voltage and
relatively high anode current of several amperes may exist in the dev1ce.
Such tgsting has frequentlyrresulted in catastrophic fa11ure due to the
high.Qissipative nature of the combination of conditions extant. As a
result, the characteriSC1qs of Vop and IGT are normally not tested for
this device. Latching currents are also measured at anode voltage levels
no higher than 25 volts to avoid excessive dissipation if the latching
curfent is high., If operation is required at current levels below the
latching current level, a continuous drive of at least one~-quarter of

the latching current level must be supplied.

1.3 The Thyristor and the Gate Assisted Thyristor

In the above type of circuit, the thyristor is always at a
disadvantage when compared with a device with gate control. To obtain
a short turn-off time with a thyristor, the stored charge must be swept
out by the application of a large reverse bias voltage with the accompanying
flow of reverse curfent. The circuit under consideration does not provide
the required reverse voltage, with the result that the thyristor turn-off
times realized are long. When a GATT device is used, however, reverse gate

current is applied during the interval 0 < t < t, as defined in Figure 6,

when anode voltage is essentially zero. As a reiult of this current, some
of the charge stored in the device is swept out. The remaining charge is
swept out when forward anode voltage is reapplied, but at this time, sweep-
out takes place in the presence of the flow of reverse.gate current, which
is the normal condition of operation of a GATT. As a result, the GATT
operates in its normal mode in this circuit and optimum performance is ob-
tained, as opposed to use of even the fast-switching thyristor, which is
not operated in optimum fashion by this circuit and yields nonoptimum
performance. The only circuit change necessary for use of the GATT will
be the inclusion of a reverse bias gate pulse generator that will apply

reverse bias to each GATT following anode current commutation.

-11 -



1.4 The Gate Assisted, Fast Turn-Off Thyriétor Switch

The circuit requirements of -a typical series inverter circuit
as ‘discussed in Section 1.2 can be summarized in the two major spec~ *
ifications, namely, the recovery time and the rate of reapplied forward
blocking voltage. Very few, if any, commercially ‘available 50A fast
tufn-off thyristors have turn-off times less than 10 us, when the rate
of‘reapplication of_vbltage is 50 or 100 V/us. At a 400 V/us rate of
reapplied voltage, their turn-off times become much longer. The design
of ‘a specially constructed thyristor was thérefore necessary. This »
seétion describes the objectives and the direction of the design philosophy

~which achieved them, while the next section delineates the testing goals.

1,4.1 Design Objectives and Philosophies
The objectives for the GATT device are given in Table 1.

Certain parameters usually given in thyristor specifications, holding
current, gate current to fire, gate voltage t6 fire, and turn-off
time with énode voltage are missing from the list because of their
limited meaning in the context of a GATT type of device. The limit-
ations are in part theoretical, -and in part practical, as will now
be shown.

Four-layer pnpn switches are commonly discussed in terms of
their two-transistor analogs, which involves an npn and a pnp tran-

sistor combined.

Cathode ¢ n | p
Gate o —T

P ’| n | p]___.Aﬁode

From this model, the static forward voltage blocking-charhcteris;ic,

VBO’ is developed as is the vCEO of a transistor, and depends upon
the anode current I,, as :
: ) pop pnp
_ o pnp Ig + ICBO f IC§O
1 -¢ -Q
npn pnp

-12-



Table 1 -~ Design Objectives for the GATT Devices

PARAMETER - SYMBOL VALUE
Maximum Forward Blocking Voltage Voltg : " Vpg 600
Maximum Reverse Blocking Voltage Volts Vis 600
Maximum Forward Drop at I, =504 ‘ Volts Vg 2.0
Maximum Junction Temperature ' - *c T 125°
Maximum Crest Anode Current | Amps IA 50

Recovery Time (See Fig. 4)
after IA = 50A i8 circuit
commutated off : us t 2

Maximum Initial Rate of Reapplied

Voltage Rise , Exponential to

Vpp Maximum, at T, = 100°C V/us dVRM/dt 400

Maximum Rate of Current Removal . Afus di/dt 10




In this model, and even in more realistic extensions, the separate
a's, or common base current gains of the separate component tran-
sistors figure very prominently. Switching of the thyristor into

the on state occurs when the @'s sum to unity, or greater,

Uon t Oy 2 1 (2)
Once switched on, the pnpn device will remain on so long as equation 2

is satisfied.

Design of a thyristor for specific applicétions entails
proper selection of the geometrics and resistivities to specify
anpn and ¢pnp for the characteristics desired. Thyristors of ''stan-
dard" design typically involve ompn < 10 opnp at the switching point.
The a's are current dependent, as is the case in any transistor, and
gate turn-on triggering is accomplished'by base drive of the npn tran-
sistor to raise its current level, and thereby its o to the point where
equation 2 is satisfied, In the design of a gate assisted turn-off
thyristor, it is equally necessary that the gate have control over the
switching characteristics; therefore, the junction designs are also
selected so that

onpn > opnp

Fast turn-off is required of the GATT device, and to
accomplish this, the units were gold-doped. By thus shortening the
lifetime, the values of onpn and opnp at any given current level are
reduced. Thus, in general, the current drive to cause switching is

greater for faster tuxn-off device capability,

Once switched on, a thyristor will conduct until the current
drive is reduced so that equation 2 is no longer satisfied. At this
point, the device switches off and the minihhm current required to keep
it on is known as the holding current. In these fast, high power devices,
the holding current is much greater than for "standard" devices, and in
most cases, when we endeavored to determine its value, the devices were

destroyed by a second-breakdown type of fault; i.e., as ig the case

- 14 -



with a transistor, transit?time through the safe operating area is
significant for a GATT device. The common technique for measuring
holding current compares to a "dc" transient, and resulted in device

. destruction due to the high dissipation involved.

Similarly, efforts to determine minimum gate current and
gate voltage to fire also involve operation of the device in a

dissipative mode, and resulted in device destruction,

Determination of these parameters will be essential for
eventual safe application of the GATT device. Since, however, their
determination is frequently destructive to the device itself, they
must be approached in the same fashion as are the surge current and
di/dt ratings of conventional thyristors. That is, by a statistical
study of a stable production line.

Determination of turn-off time with anode voltage was not

made, since no application of the device is this mode was foreseen.

One final area of device design current gain, where the
GATT device differs significantly from a conventional thyristor,
deserves comment, and is treated below. We now define the test con-

ditions used in device characterization,

- Referring to Figure 4, the gate drive pulses are defined
on the basis that the turn off is circuit-ihitiated, i.e., the anode
voltage goes through zero. This time and rate of current removal are
dependent on the components in the series inverter such as the cap-
acitance, leakage inductance, and switching times of the diodes, etc.
However, the start of cufrent decrease can be used to trigger the
assisting turn=off pulse applied to the gate. This voltage has a
minimal source impedance; thus the voltage will not exceed the break-
down voltage of the gate-cathode junction throughout the entire t, period,
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Figure 4 —Nomenclature for turn-off waveform.
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The ty is the time in which the assiéting gate pulse must be applied;
not only will it extract the remaining stored charges, it should also
remove the d (CV)/dt current when the forward blocking &oltage is re-
applied. The gate current is really a dependent variable since the
magnitude of the current is controlled by the available charges from
the device. Thus the gate current will reach a peak and will decrease
as the charge supply dwindles. For this reason, we do not use as a
criterion the ratio of steady maximum anode current to instantaneous
peak gate reverse current, IA/IG, which is commonly and misleadingly
called "turn-off gain'.
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1.4,2 Device Design Consideration

.The turn-off limitations of conventional thyristors
are due mainly to the residual stored charge in the device. If this
charge can be removed more rapidly through the application of a supple-
mentary drive signal to the gate, the delay time before the forward
blocking voltage can be reapplied is significantly reduced.

Function of Gate Control

The conventional thyristor is & regenerative
device; its gate is used to initiate cathode injection, which in turn
causes anode injection., This action continues as regenerative feed~
back to drive its blocking junction into deep saturation.for forward
conduction. The gate loses its control oncé the regeneration takes
effect. After the area adjacent to the gate is triggered "on'", while
the more remote regions are still blocking, some lateral flow of
current will occur, This divergence of the current flow provides the
required'triggering current for its neighboring area to trigger it on.
The '"on'" region thus spreads out to cover the whole junction area,
permitting the device to carry hundreds of amperes. The spreading
mechanism has been experimentally verified and its velocitj determined
for certain types of construction.4-7

This mechanism superficially gives an extremely
high "turn-on gain" of a thyristor and is generally independent of its

maximum current capability.

In a filamentary section of PNPN where lateral
spreading is not a factor, although the gate is not needed to keep
the device in conduction due to its internal regenerative feedback, it
is possible to draw enough current out of the gate to disrupt its
regenerative cycle and to return it to the blocking or "off'" state. In
the same way, the gate of a thyristor can be reverse-biased to prevent
it from injecting charge carriers or to remove excess carriers due to
regeneration at high temperatures or to remove d(CV)/dt current, es-
pecially when dv/dt is high.
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The last stated characteristics are compatible
with series inverters. However, in a high current, large area device
where the current spreading feature is used, only a small area surround-
ing the gate electrode can be effectively controlled. The limitation is
due to lateral voltage drop in the gate.

Lateral Voltage Drop

If the device is already turned off, the application
of forward blocking voltage VFB will cause the space charge region to
widen toward a new equilibrium value. In doing so, it develops a current
d(cVv)/dt uniformly over the whole area. This current is in a sense equivalent
to a positive gate current in the P-base region with no external gate
connection, Now if a reverse bias is present prior to the application
of V

FB’
di/dt), and there can be no injection from the cathode. With this reverse

B? the cathode-gate junction may be already cut off (depending on -

gate voltage, the current d(CV)/dt or the displacement charge d(CV), will
be swept toward the gate electrode. The P-base region, however, has a
certain resistivity due to its level of doping. If & unit length of this
gection is considered and if b is a point where the voltage drop is zero
(Figure 5), the voltage drop Vgo at the edge is

RbZ (V)

g0 = (1)
2 dt

If the gate drive voltage Vg i8 greater than Vgo’
the x = b point will shift further from the gate into the cathode area
to increase the distance b so that vgo = Vg; More gate current will be

drawn since total Ig is proportional to b.

However, the displacement current in the region x > b
cannot be swept out. In that area, the cathode junction is thus forward
biased and may permit the device to turn on. In other words, the gate

has no control over this area,
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It is obvious that higher negative gate voltages can control larger
cathode areas. However, the quadratic relationship soon will demand
voltages at x = 0O greater than the breakdown voltage of the cathode

gate junction.

Since the breakdown voltage and the P-base
resistivity p are usually fixed for a thyristor, the most profitable
approach to render full gate control is to make the cathode in narrow
strips with the gate surrounding it., The width of the strip can be

easily calculated from Equation 1 and the doping profile.

In conclusion, the basic requirement for the gate
to maintain control of a large area device is to use long and narrow
cathode emitters. This is the essence of the GATT device. The
maximum utilization of these and the electrical contact that permits

uniform distribution of gate current have been central to this contract.
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Removal of Stored Charges

In the foregoing discussion, we have assumed that
the circuit commutation is fully effective. In other words, the cathode
junction is blocking and gate assistance is to draw out the d(CV)/dt
current, However, if the circuit voltage and current merely drop to
zero without effective reverse sweeping of the excess charges in the

device, the gate may function differently,

Using the charge control approximation, the switching
characteristics in general have been calculated (References 6 and 7).
Similarly, the charge distribution under our specific conditions can be
illustrated. Figure 6 shows the charge decay without gate control: Fig.
6a shows the effect of forcéd commutation with reverse sweep-out current;
Figure 6b shows the natural commutation turn-off as current decreases to
zero. With the gate drive and natural commutation, the turn~off is shown
in Figure 7a. 1If reverse drive is available then the residual charge can
be reduced even faster. The excess charge left in the base region will
determine the time when the fast dv/dt can be reapplied. For this reason,
the dotted line in Figure 4b indicates that a circuit arrangement which

would allow some reverse current may be desirable.

1.5 Statement of Work

These are the broad philosophies of thyristor design which we
believe to be consistent with the meeting of the objective specifications:
a 600-volt, 50-amp thyristor which will recover in 2us8 in the face of a
reapplied dv/dt of 400V/us after conducting with a 2-volt forward drop.
Two major portions of the work on this contract were aimed at the im-
plementation of these design philosophies and the delivery of 10 or more
thyristors meeting the specifications, A third task waé the development
of test circuitry to verify the specifications, to simulate the use of
thegse devices 'in the series inverter. Finally, it was expected that the
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performance of the contract would lead to a deeper understanding of the
developments required to improve the switch beyohd its present ratings,
to higher voltages, higher currents, shorter recovery times and lower
forward drops.

Westinghouse Electric Corporation has not only fulfilled but
has indeed exceeded most of the objectives of this contract. GATT
devices were delivered very early in the‘performance of the contract,
devices which met the majority of the final specifications., Not only
first but also second generation tests and simulation circuits have been
designed and put into operation., The problem areas are now clearly de=-

. fined and the potential solutions well understood.



2, PROCESSING

2.1 Introduction

GATT processing is intermediate between thyristors and tran-
sistors. The steps are related to thyristors, for the GATT unit is a
four layer device, blocking voltage and handling current much like a
thyristor. The steps are related to transistors, for turn-off, in
current sweepout, the device is functioning in a three layer mode through
the gate and emitter contacts which are interdigitated like a transistor.
Much of our processing development related to the latter characteristics
in particular to the nature of the fingers, the mechanical contact to them,
and the ultimate capability for sweeping out stored charge. These problems
were of suchlprimary importance that a separate section is devoted to them
alone. In the following, we describe the standard processing and control
and some of the developments and improvements made in this. These changes

are not related directly to the finger problem itself.

2,2 Standard Processing (See Figure 8

We now outline the major process steps.

1) Silicon of 0,91" diemeter, n-type conductivity, (111)
orientation, and 103/cm2 or fewer dislocations is the
starting material.

2) P Diffusion is effected by depositing gallium and then
driving it into cleaned slices of silicon in two closed
tube diffusions. Sheet resistivity and junction depths
are measured after these steps.

3) Phosphorus Deposition is done by forming phosphorus glass

on both sides of the diffused slices in a furnace from a

" source of ammonium phosphate maintained at 780° to 1230°C.
Subsequent to this the phosphorus deposited glass is removed
from the anode side by a short silicon etch, Phosphorus
drive into the cathode side in an oxygén rich atmosphere
pfovideb the basic emitter region, The diffusion is slow
cooled. Slices are then removed and are etched in HF to

remove the oxide and glass aurface layers. Sheet resistivity
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4)

5)

6)

7)
8)

9)

and junction depth measurements relative to the phosphorus
diffusion are made.

Lifetime Control is obtained by evaporation of gold on the

anode side and then diffusing it into the silicon at a tem=-
perature ranging from 820 to 880°C, depending on the desired
degree of lifetime reduction. Residual gold is removed and
the wafers cleaned,

Mesa Etch of the emitter fingers is done by a long slow
silicon etch, designed to maintain a flat surface while
removing 15 to 18 microns of silicon. This exposes the
P-gate region and defines the raised emitter fingers. ‘
Alloying with a 0,94" diameter aluminum preform to a 50 mil
thick moly slug of the same diameter is performed in a
vacuum furnace. Subsequent to this the fusion is cleaned and
aluminized by evaporation on the cathode emitter side. The
metallization is photomasked and etched back to define the
areas of aluminum contact. After this the aluminum is
sintered above 500°C.

Bevel, Spin Etch, and Coat are standard thyristor operations.

Gate Insulation will be discussed in greater detail in the

following section. The units are essentially complete at
this point and may be stored, tested, etc.
Contacting and Encapsulation are the last operations. The

proprietory Westinghouse "Compression Bonded Encapsulation"
system is used as illustrated in Figure 9. In this approach
a copper cathode contact is pfessed on a silver foil atop

the fusion which itself is resting in the package base as
shown in Figure 10, The ceramic cap is welded over the top,
effecting an hermetic seal. The basic design and its
adaptations have been discussed at length in the final report
on contract F33615-68=C=-117 with the Air Force Aeropropulsion
Laboratory, Wright Patterson Air Force Base, Ohio.
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2.3 Process Improvements

These are the major processing steps by which GATT devices are
made, As will be discussed in the following paragraphs and in the next
section, some basic alterations in the sequence were found advantageous.

In addition to this, there was specific work performed on the relationship
of blocking voltage and the gold doping level, on the relationship of
blocking voltage and the quality of bevel lapping (a mechanical system),
and on base resistivity and thickness. Of these, bevel lapping is the
simplest to treat. This angle bevel is required because the junctions

at the surface will have higher blocking voltage éapability if they inter-
gect the surface of the silicon at an angle other than normal. For this
reason, and also to eliminate the diffused short between anode and cathode
base, the silicon slice and its molybdenum backing plate are ground around
the edge to an angle between 10 and 30°. We discove;ed during this work
that the GATT slices, which are somewhat thinner than normal for thyristors
because of the early gate etch, were suffering from minor cracking and
breakage at the outer edge of the silicoﬁ molybdenum junction. Blocking
voltage suffered. A better quality lapping machine was found and when

this was used, average blocking voltages increased by approximately 200 volts.

2.4 Blocking Voltages

The degree of lifetime reduction by gold diffusion, the P base
resistiﬁity»and thicknees relate directly to the blocking capability.
This is particularly true of VkB and its dependence on junction operating
temperature. When gold is present, higher generation currents are required
and the internal or bulk leakage of the device at a given temperature is
in general higher than its counterpart without gold. These leakage currents
rise exponentially with temperature. Thus if one specifies a safe current
level and uses this to define a blocking voltage, then this blocking voltage
will be relatively constant up to that junction temperature at which the
exponential rise in leakage suddenly becomes apparent. Above that temperature,
the blocking voltage must of necéssity decrease sharply. Figure 11 shows

this dependence for three devices, one from run 52B and two from run 52C.
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These devices differed primarily in their p-base width, as can be seen
_ from Figures 12a and 12b, The differences are shown in Table 2 and also
in the resistivity profiles in Figure 13 and 14,

4 ' The crucial point is the expected and good correlatioﬁ between
the p-base width and the blocking ability. Run 52B has the wider base
width and clearly blocks higher voltages at all temperatures and especially
at 125°C,” Run 52B4 with its 46 micron base width is capable of with-
standing\well in excess of 600 volts in the reverse direction at all
temperatures whereas 52C5 and 52C6, at 37 microns, are at best 450 volts
at Tj = 125°C, Overall, the characteristics in Figure 11 are typical of
GATT devices and are consistent with the dependency generally reported in
the literature for gold doped thyristors. The most notable departure is
the lower temperature of the breakpoint. For GATT devices this is about‘
80°C while for thyristors generally, with their lower level of gold, the
breakpoint is usually somewhat higher, perhaps 110°C or 120°C. The GATIT
devices in general fequire the higher level of gold responsible for this
difference to'improve their recovery. With this exception we have found
the blocking voltage trade-offs in GATT devices closely parallel those
- for thyristors generally. GATT devices have no unusual traits in this

respect,
Table 2 - Design Differences Between 52B and 52C
=3
WB (um) fp (ohm=cm) Nt (em 7) pN.(ohm-cm)
52B | 46 0.1 10%° 60
52C 37- 0.1 1020 3%
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3. CHARGE EXTRACTION AND GATE~-EMITTER CHARACTERISTICS

3.1 Introduction

To. extract charge from the commutating device, the gate emitter
junction must be driven towards and even through its avalanche voltage.
The gate surrounds the emitter fingers and extracts charge from underneath
the emitter contact area, thus allowing this junction to recover., Except
for this meéhanism, recovery of the device and its ability to face re-
applied dv/dt would be determined primarily by carrier lifetime. Since
lifetime has already been reduced considerably by the gold diffusion,
charge extraction through the gate becomes the vital difference between
the GATIT device and a conventional thyristor. The GATT device differs
also from the‘transistor in that removal of the latter's base drive is
sufficient to cause it to drop out of conduction, GATT devices do not do
 this. Therefore, considerable time and effort has been spent upon im-
proving the'efficiency of charge extraction and in understanding the
mechanisms that govern it so that the maximum rates are obtained.

If the gate emitter junction is leaky, then not all the gate
current drawn is residual stored charge and higher gate drives will be
necessary to accelerate commutation., We early observed that mamy en-
capsulated devices had soft avalanche characteristics and leakages in
the order of several amperes, a current that is substantial wheﬁ compared
to the extracted charge. Under these circumstances, much of the gate
drive signal is diverted into ohmic losses. Examination of individual
devices soon revealed that although the reverse leakages of most of the
thirty~8ix individual emitter fingers were excellent, there were a few
with disastrously high leakages, 100 milliamps or even one ampere. Such
leaky fingers are very prone to turn-on failure which will occur when dv/dt
is reapplied.



Simultaneously,.an investigation of the peak currents achievable
from back bigsing individual non-leaky fingers, as a measure of charge ex-
traction, was performed, It revealed that there was a parallel variation
in this capability. Some fingers extracted charge notably better than others.
We discuss the leakage situation first,

3.2 Gate-Emitter Leakage

Recognition of gate emitter leakage as an individual finger problem
rather than a distributive one, led to the examination of the steps in
procesging where fingers might degrade. We found that immediately following
etching of the emitter finger mesas, the leakages were low and uniform in
the order of microamperes. On the other hand, prior to encapsulation the
leakages were variable and some were in the ampere range. For example, twelve
wafers alloyed to molybdenum would reach the finger test out of 25 starts.

In one particularly good run, one unit of the twelve had four fingers with
leakages so high that they could be congsidered shorted; the remainder had
- microamp leakages. Two units had one finger each shorted, the balance ex-
hibiting virtually no leakage. Two additional units had one finger each
which measured leakages in the milliampere range, the balance good. All
fingers of the seven remaining wafers had leakages in the microamp range.
Thus we are speaking of a total of eight fingers, half of which are com--
pletely inoperable. Thus, although the’yield to microampere leakage on a
device (or wafer) basis is less than 50%, the yield on a finger basis is
very high,

Typical data for a single wafer is shown in Table 3. Igt
Vgr = 12.5V 18 shown for the eighteen shorter fingers first and then for the
eighteen longer ones., The leakages range from 0.5 ma to 0.18 amperes, with

at

one shorted finger. Excepting this one, all could be made to turn off
individually, although the device could not.function properly as a unit. By
both following material forward through the line and working backward from
encapsulation, we pinpointed two sources of degradation, The first was the
physical handling of the fusion after finger etch. We demonstrated that once
the bare junction is exposed, it is extremely vulnerable to physical damage.
In the initial process sequence this junction was unprotected during alloying
and bevel lap operations. Specifically, tﬁe surface was exposed to powdered
graphite and an abrasive lapping compound in these steps. Elsewhere, ex~
periments showed that handling with steel tweezers and even plastic ones,
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Table 3--Variability in Emitter Finger

Characteristics on a Typical Wafer.
Throughout, 1,=104, VBR=12.5V and Ig=3.5A.

SHORT FINGERS LONG FINGERS
Finger tg te I inmA  Finger tg te I in mA
Number us - us @ Vgr Number us us @ Vgr

1 0.8 1.0 0.5 1 1.0 3.5 50

2 1.0 1.0 45 2 1.5 2.5 20

3 1.0 2.0 20 3 1.0 2.0 30

4 0.8 3.0 12.5 4 1.0 5.0 20
5 1.0 1.8 12.5 5 1.0 11.0 20

6 1.0 2.0 12 6 1.0 9.0 10

7 1.0 2.4 12.5 7 shorted
8 1.0 5.5 30 8 1.0 4.0 10

9 1.0 5.5 17 9 - 1.0 3.0 150
10 1.0 = 5.0 150 10 1.5 1.0 120
11 1.0 4.5 90 11 1.5 2.5 120
12 1.0 0.5 40 12 1.5 0.8 120
13 1.0 1.5 150 13 1.0 2.0 35
14 1.0 2.0 125 14 1.0 2.0 100
15 1.0 0.5 85 15 - 1.0 1.5 100
16 1.0 0.6 24 16 1.0 1.5 10
17 1.0 1.0 17 17 1.0 1.0 10
18 1.0 1.0 8.5 18 1.0 1.2 35




caused an immediate increase in leakage. Even touching the unit with a
cotton swab wet with distilled water was sufficient to cause short term

degradation of gate-emitter characteristics.

Further experimentation established the second source of junction
leakage. It was found to be introduced during the final aluminum evaporation
of the top contacts. In this step, the entire upper surface of the wafer is
covered with aluminum. A subsequent photomasking operation protects the
contact areas and allows a selective etch to be used to remove the umwanted
metal which lay across the exposed junction, A minor improvement came when
it was realized that faulty instructions to the operator were causing him
to evaporate with a substrate temperature well in excess of 300°C., Such
substrate heat is routinely used for cleaning in the vacuum system prior to
evaporation; but, if applied during evaporation it causes appreciable micro-
alloying to occur, Alloying at the exposed junction would obviously result
in high reverse leakages. But elimination of this error was insufficient
to yield devices with a 100% yield of perfect fingers. It was concluded
that either the aluminum itself or sodium contamination in the metal was

still contributing to surface states and leakage.

These observations suggested four courses of action.
1. Reschedule the mesa etch so that the fingers are exposed
as late in the process as possible.
2. Rework the handling procedures so that there is no physical
contact with the gate-emitter junction after exposure.
3. Institute a érogram to recover the junctions that have failed.
4, Protect the junction throughout, '

3.2.1 Rescheduling of Process

In Figure 8 and in Section 2.2 we outlined the
initial process schedule for GATT devices. The first attempt to reschedule
the mesa etch was to do it after the alloying step. When this was done,
finger leakages improved but not as dramatically as we had hoped. However,
this had an unanticipated side benefit. The incidence of silicon cracking
during the brazing of the wafer to the molybdenum substrate was reduced.
Previously, the etched wafer frequently shattered; presumably because it

had been thinned somelO7 by the mesa etch.
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3.2.,2 Physical Handling

The handling of conventional thyristors, with
broad area emitters and short emitter periphery is generaliy not critical
insofar as casual contact with gloves and the like to the top surface.
These devices only become sensitive after the final etch of.the junction
bevel and prior to coating; and this interval is short. The GATT device
on the other hand has a very long emitter periphery. A major effort was
made, therefore, to eliminate any handling operations which might lead to
contact with the bare junction. The devices are only picked up by their
edges and no materials are allowed to come in contact with the top surface.
The processing is done exclusively by solution, with liquid contact, and
- agitation 18 restricted to ultrasonics or a mild agitation by moving the
wafers about in the bath while retained in their rack. Photoresist is
removed entirely by non-mechanical means. The testing of individual
fingers for leakage 18 done by a contact applied from above rather than

using, e.g., the original sliding contact on a spinning fixture.

3.2.3 Junction Rework

_ , Since these programs did not fully achieve
uniformly low leakage in all fingers, a set of experiments was carried
out to determine if the junctions could be recovered after damage. It
should be possible to eliminate the leakage caused by physical damage
with straightforward silicon et;hes. This was indeed easy to do. Des~
pite this, it was not possible to obtain a high yield of devices in which
there were no fingers of abnormal leakage. Thus, the problem ﬂrea was
narrowed and defined, and a partial solution obtained. The conclusions
led inescapably to the need for a better protection scheme for a junction,
a passivation that could be put on the device early to maintain the low
leakages observed immediately after emitter finger etching. We discuss
this program in the following section.



3.2.4 Emitter GCate Passivation

Four kinds of coatings for passivation against
junction degradation were tried.
1. Photoresist
2. Thermally-grown 5102

3. Chemically vapor-deposited 8102 with boron or
phosphorus additions

4, Chemically vapor-deposited Sioz/Si3N4 films

‘ Photoresist - The simplest protection of all is
a layer of photoresist. It can be put down exactly where required, it
adheres well and has moderately good long-term stability. Its advantages
clearly outweigh other choices such as silicones or paralyene. The
reverse of the aluminum contact etch back mask is used and photoresist
is laid down with this. The insulating resist thus covers the exposed
junction., Since photoresist does not withstand a vacuum enviromment well,
it could only be used after the aluminum contact had been laid down and
etched back., Thus the junction was protected only in contacting and
packaging., Although the photoresist may have been successful, it obviously
could not eliminate leaky finger generation during the metallization it-
self. Unfortunately at the time photoresist was tried, the seriousness
of degradation in metallization was not known so that the outcome of the

photoresist experiments could not have been anticipated.

Thermally=-Grown §i0, - The easiest inorganic
passivation attainable on silicon is a thermally~grown oxide. For GATT
devices, this coating was established following the mesa etching of the
fingers and the removal, also by etching, of the temporary etch mask.
Exposure of the bare wafers to an oxidizing atmosphere at moderately
high temperatures permjitted conversion of the silicon at the device
surfaces into a passivating SiO2 film, Since this film covered the
entire surface, a photomasking step followed by etching in buffered HF
was necessary to remove the 5102 from the gate and emitter contact areas.
Aluminum evaporation was then carried out as before. However, no perfect
devices were obtained either because the conditions of growth of the
thermal oxide were to severe for the device doping or because the thermal
oxide was too thin to withstand the ‘attack of the aluminum during
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Chemically Vapor-Deposited 8102 - To avoid
changes in dopant concentration and distribution during the consumptive

growth of oxide films on the silicon surfaces, attention was given to
chemically vapor-deposited (CVD) films. Many systems have been proposed
for this purpose, but the most promising for low temperature application
is the oxidation of silane gas, SiH;, with oxygen. When combined directly,
these gases react in the gas phase to form an undesirable smoke;-but when
diluted, the reaction will occur almost exclusively at the surface of a
hot object exposed to the gas stream. Accepted practice calls for the
dilution and thorough mixing of both the oxygen and silane gas streams
with argon or nitrogen before the two reactants are even brought together.
' Typical values of concentrations and flow rates

for a quartz tube reactor with a 2 inch ﬁ 6 inch cross section are:

Dilutant'(carrier) gas: dry N2

Total gas flow: 40 1/min.

Silane flow (3-5% in Ar): 10 cc/min.

Oxygen flow (20 times silane flow): 200 cc/min,

| Substrate temperature: 350-400°C '

Given these conditions, deposition rates of 400-500&/min. can be expected
with little or no-vapor phase reaction.

Since pure Si0, deposited this way is not as
chemically resistant or as well matched to silicon in thermal expansion
coefficient as is thermally grown 8102, a borosilicate gléss film was
also tried. The borate glasses generally are low fusing, fluid glasses
ﬁhich can be densified at the low CVD temperatures. The well-known
optimum concentration of 22% B,0; in the film was bbtained, using es-
sentially the same conditions as listed above, but oxidizing a mixture
of SiH4 and BZH6~in which the diborane made up 267 of the reactant gases.

An additional dopant gas, PH;, was also used.

The objective was to use a phosphorus doped Si0, to provide gettering of
sodium and other metal fions which are known to degrade device characteristics.
Again, conditions were essentially as above except that the reactant gas

in the stream included 57 phosphine.



All of these deposited films were laid down
over the entire wafer and, as was the case with the thermally grown
oxide films, were etched to expose the contact areas prior to met-
allization. A further similarity with thermal oxide passivation was
the exposure of the CVD films to attack by aluminum during metallization
and sintering. 1In view of the latter, it is not too surprising that
here, as before, no devices with a complete set of pérfect fingers were
obtained. Overall yield was, however, substantially improved.

Silicon Dioxide/Silicon Nitride (Oxide~Nitride)

Passivation =~ A process similar to but somewhat more complex than the

formation of CVD oxides has been developed at the Westinghouse Research
and Development Center. Like the oxidation of silane, oxide-nitride
passivation or ONP, does not consume any of the substrate surface. The
silane gas is reacted first with oxygen, then later with ammonia and
finally once again with oxygen to form a three~layered coating. A
notable difference is the higher temperature (> 700°C) required for ONP.
Because all the layers are applied in the same reactor without inter-
mediate handling, the process is only a little more complex and certainly
does not reflect the complexity of the deposit itself.
» The functions of the various layers are briefly:

a) 510, to provide a good interface between the passivati..g

film and the device surface;

b) Si;N, as a highly impervious barrier to sodium and heavy

metal ion contamination and further to provide some gettering

action for these ions; furthermore it is not attacked by

aluminum which {8 a great advantage;

c) 810, as an etch mask for the Si;N, film.

The usefulness of S10, as an etch mask comes about
because it can be photomasked and etched using conventional techniques
and reagents. Si3N, 1s not attacked by these reagents. On the other hand,
Si3N, 1is attacked by hot phosphoric acid which has little effect on 8102.
The cover oxide layer can therefore be masked and etched using buffered HF
to expose areas of SijN,. Subsequently, phosphoric acid is used to etch
the nitride. Once windows have been opened this way in the Si3N, film,
dipping the wafer in buffered HF a second time then provides access to
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the silicon contact areas through the underlying oxide film, while
the unetched nitride layer in its turn serves as an etch mask.
The work on oxide-nitride passivation included
two variations of silicon dioxide-silicon nitride layered structures. In
one, undoped 510, was chemically vapor deposited on the silicon surface
followed by S_13N4 and an undoped Si0, top layer. In the other variation
the structure was the same except that the first §10, layer was doped with
5% P705 by the addition of PH3 to the chemical vapor deposition gas stream.
Both procedures followed these steps:
a) Prepare the basic alloyed unit by the standard techniques;
i.,e., gallium, phosphorous, and gold diffusions, alloying to
a moly base with aluminum and etching the fingers by photomgsking
téchniques.
b) Deposit about 1500A U. of $109 by chemical vapor deposition,
adding PHy to the gas stream if phosphorous is desired in the
oxide,
c) Deposit a like amount of SizN, by chemical vapor deposition.
d) Deposit undoped 510, as in Step 2 as a capping layer.
e) Photomask and etch the top SiO2 layer in standard buffered
HF etch, Remove the photoresist.
£f) Etch the Si3N, in boiling H3PO, using the top S10, pattern
as a mask.
g) Etch the underlying oxide layer (the top layer of Si0,
is also removed). '
h) Continue with the normal fabrication procedure.

' The process sequénce in which the application
of the coating is done after alloying, definitely is undesirable. The
unit is heated to 700°C during the original alloying step, at which tem=
perature the molten alloy must be confined mechanically to keep it from
running out of the joint. When the unit is reheated for the SijN, de-
position, run-out occurs leaving the silicon only partially supported.
During subsequent bevel lapping for blocking junction isolation, the
unsupported regions crack and break off, destroying the unit,



A further alioying problem was also discovered.
On otherwise good units, regions of anomalously deep penetration of the
alloy-silicon interface were noted. The interface was not flat or mildly
undulatihg as desired but consisted rather of mesa-like structures pro-
jecting into the silicon. These structures could degrade reverse blocking
voltage by causing premature punch-through of the depletion region; in
the worst case they could cause anode to cathode shorts. Tentatively, -
the location of these regions has been attributed to the effects of sand-
blasting the backs of the wafers before and after gold diffusion. They
are probably the result of local wetting and temperature gradient zone
melting,
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3.3 The Limits Of Charge Extraction
Although the ultimate capability of a GATT device is the sum

of the individual static capabilities of the 36 fingers, the present
performance is not since dynamic effects predominate. Examination of
the dynamics of individual finger charge sweep-out capabiiity is clearly
a part of the requirements of this contract. Two parameters of in-
dividual fingers are of interest. The first is the recovery time, which
consists of storage and fall time; and the second is the peak current
capability in commutation, ' |

Table 3 shows measurements of the individual short and long
‘fingers of a typical wafer taken at a constant peak anode current .of
ten amperes with I = 3.5, and Vg = 12.5V. (Note that this anode
current corresponds to a total device current density of 360A). The
scattér amongst storage times is low, The start of charge sweep-out
is thus relatively constant across the entire wafer which speaks well
for the uniformity of processing. It is not surprising that the storage
times are slightly longer for the second group of fingers, for they are
physically longer in the actual pattern. The fall times on the other
hand scatter widely. Again, there is an indication, albeit weak, that
the fall times of the longer fingers are longer; at least the longest
fall times 11 and 9 us, occur in this group. The values range from these
highs down to a low of half a microsecond. Those slower fingers determine .
the time of application and rate of rise of reapplied voltage. The slow
fingers are last to sweep out charge, the last to recover, and hence are
most prone to dv /dt failure. If a slow fall time should also happen to
be coincident with a high gate emitter leakage, these difficulties would
undoubtedly be compounded. :

Table 4 shows the maximum sweep-out capability of a group od
eight adjacent fingers on a particular wafer, To obtain these data, the
anode current through a given finger was steadily increased until it
reached that level at which destructive failure was thought to be imminent,
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Table 4-~Maximum Turn-off Capability of Eight Fingers
on a Single Wafer. The parameters shown are
all taken at the limiting current,

Finger tg ty Ige off L.to Vg
Number us us A A
1 2 4 6 30 5
5.5 26 5 15
5.5 20 3.5 16
11 22 3.5 24
6.5 30 4.5 15
6 30 4.0 15
6.5 30 4.0 16
8.0 32 4.0 20




The anode current may or may not develop a small tail prior to failure,
and if this is observed, the device must be shut down. But failure is
difficult to anticipate and the margin before destruction is small,
For this reason it has been difficult to obtain this data on a large

mmber of fingers or on large numbers of devices.

The peak current varies from 22 to 32 amperes. Other wafers
in which fewer fingers were tested have shown that some exceptional
fingers can handle as much as 40 amperes. Since there are 36 fingers
on each wafer, it would seem that the current handling capability of
each alone is more than adequate for the GATT application. Dynamic
. problems during switch~off must be minimized. The data in Tables 3 and
4 again confirm the basic prgmise'that a finger selection scheme was an
appropriate engineering solution to improve quickly GATT performance.
The observation on leaky'fingers led to the same conclusion. These two
facts, coupled with our knowledge of the current extraction capabilities
in the fingers of a related device, the gate controlled switch, demanded
that selective finger contacting be used in GAIT devices to improve per-

formance,

Several schemes have been used to selectively contact the
better fingers and to leave out the poorer ones. All are based upon
the bonding of a wire along the length of each good emitter finger. The
CBE cathode pressing down from above then coﬁtactl only the wired fingers..

The first technique used short lengths of wire, approximately
two millimeters long, thermal compression bonded to the outer end of each
good finger. The remainder and middle of the device was covered with a
mica washer slightly thinner than the diameter of the wires. This washer
supported much of the mechanical load from the cathode, avoiding severe
deformation of the wires. It was observed however that the cold flow in
the wires was sufficient that the load on these became marginally low,
especially when the device was thermally cycled. Then differential thermal
expansion around paralleled structural paths in the package caused some of
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The cathode~wire contacts to open 1nterm1ttent1y. Overall device

characteristics were not stable.

The final solution was to eliminate the mica washer altogether
and to carry the full compression bonding load on 15 mil digmeter silver
wires running the entire length of each emitter finger., Many devices have
been packaged this way and no indication of instability, either electrical
or mechanical, has been observéd. Wire bonding is an expensive operation
however. Not only must the fiﬁgers be individually tested and marked, the
wires must be individually tested and marked, the wires must be laid onto
the emitter contact with considerable precision. When they are not, the
wire swages over the edge of the junction and shorts out the gate. Thus
we have a good engineerihg solution based upon a poor manufacturing tech=-

nique.



4, TESTING

4.1 Introduction

The'gate assisted turn-off thyristor has been conceived as a
thyristor with gate control qualities used to hasten the turn~off time -
associated with normal thyristor commutation. As a consequence, all the
evaluation parameters of the GATT device are normal thyristor ones
except where the new functions of gate control must be defined. Thus
we have in this section first an outline of the standard thyristor
testing procedures used to charactérize the more normal properties of
the GAIT device. These include, for example, forward and reverse blocking
voltage, the forward drop, as well as a number of other useful parameters,
many of which were not specified as the targets for this contract.
Secondly, we have the dynamic evaluation of GAIT performance which has
of course been influenced by the desired utilization of the device as
a fast thyristor for use in the high frequency series inverter. Thus
properties like the turn~-on time, the recovery time, the rates of re-
application of voltage, and finally the overall dynamic gate characteristics
had to be determined. 7Two circuits have been used for this. The first
is the simulator specified in the work statement. The second is a more
recent and far more interesting system suggested by Drs. F. Schwarz and
C. Renton and designed specifically to test the recovery time and dvrm/dt
characteristics most stringently. We outline both,

Throughout this section test data will be given on particular
devices which represented the current product at the time the tests were
done. We have chosen to segregate the collection of final characteristic
of the delivered devices (as well as some data on certain intermediate
groups) to Section 5, Thus the purpose of this section is to outline the
testing procedures rather than to evaluate the collected characteristics
of all the completed GATT devices.



4.2 Static Characteristics

4,2,1 Forward Blocking Voltages = Devices with avalanche
values in excess of 600V have been routinely fabricated, aibeit with
low yield. As had been described in the processing section, the GATT
devices exhibit some downgrading of forward blocking ability with in-
creasing temperatures. This is related primarily to the presence of
gold'in the device. In general the reverse blocking voltages are lower
than the forwards, possibly because the gold is diffused from the anode
side and hence is more concentrated at the reverse blocking junction., 1In
some devices the blocking voltage may be increased by shunting the gate-
cathode with resistance, or shunting the gate-cathode with a resistance
in series with a negative bias. Because of the large distributed gate
area, resistance shunting alone has only little effect upon increasing
forward blocking voltage. The latter method of applying ten ohms in
series with ten volts across the gate cathode will increase forward
blocking voltage capability by five or ten percent. 1In some instances,
limitation of forward blocking ability is caused by surface leakage
effects, for which bias changes from gate to cathode will have no effect.

As with thyristors, forward blocking ability is defined as
the blocking voltage existing at prescribed forward leakage current, at
specified junction temperature. The forward blocking specification is
as follows:

F CASE
10 ohms, ~10 volts gate to cathode 2

Vep = 600 volts at I.=15 ?a, T = 125°C

4.2.2 Reverse Blocking Voltage - Reverse blocking abilities

of the order of 600 volts have been produced. The reverse blocking

specification is as follows:

= 600 volts at I = 15 ma, = 125°C

VrB Tease
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4,2,3 Reverse Gate Voltage Measurement - The gate-cathode

characteristics of the GAIT behave as a forward biased junction in the
forward direction and a reverse biased junction when the gﬁte is forced
negative. See Figures 15a and 15b. The forward characteristic of
Figure 15 suggests the absence of gate-cathode shunt paths which are .
normally used with all diffused thyristors to increase dv/dt. The GATT
does not use gate-cathode shunts (shorted emitter construction) in
order to keep the turn-off effectiveness of the gate at its maximum
capability, If shorted emitters were used, turn-off drive would be
diverted from the gate~base area and be bypassed by the shorts. This
is illustrated schematically in Figure 16.

Gate shunts are used with thyristors to divert current caused
by transient anode voltage from the thyristor gate., This desensitizes
the gate, and increases the device dv/dt rating. Figure 15b and Figure 17
show the reverse gate characteristics of two different devices, the first
of which is low leékage, and the second higher gate-cathode leakage. For
device 52A7 the indicated leakage path was unintentional and only sub-
tracts from device performance. The gate assisted switch is designed
without gate-cathode shunts, and those with lowest leakage such as the
device of Figure 15b are considered the highest quality units.

Besides the obvious reason of diverting turn-off current, other
reasons exist for avoiding GATT devices with high gate leakage. When
reverse voltage is applied to the device of Figure 15b, voltage from
13-14 volts may be supported by the gate with little current drain where-
as the unit of Figure 17 requires a current of 150'm1111amperes be
supplied when =14 volts is applied to the gate., The leakage currents
of some GATT devices have been as high as 1-5 amperes, and this places
a high strain on the turn-on and turn-off gate circuitry. The un=- -
necessary leakage current requires a larger gate power source, greater
losses in gate drive circuitry, and more expensive components. As a
consequence it is easier to drive a gate assisted thyristor if the gate

shunt paths are minimized.
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Reverse gate voltages were measured on GCS-type devices
produced in a parallel program in Westinghouse. These ranged from
-10 volts to -18 volts. Since no shunts are used with this device
either (structurally it is equivalent to the GATT device), a nominal
bias is applied for all meaéurements and operating circumstances. The
bias consists of -10 volts in series with 10 ohms applied from gate to
cathode of the switch., Without bias the device shows a dv/dt switching
level of 10-20 volts/microsecond. A transient anode voltage change at
the rate of 10-20 volts/microsecond will cause the device to turm-on
if reverse bias is not connected from gate to cathode. On the other
hand, the GCS or GATT device will exhibit a dv/dt capability in excess
of 400 volts/microsecond with bias applied. The ultimate level of
sensitivity with bias ie uncertain, since above 400 volts/microsecond
the dv/dt generator source impedance is so low that turn-on by dv/dt
is destructive. No devices have survived a test when turned-on by
dv/dt with bias. Without a bias, dv/dt sensitivity is so low that the

device is useless.

4.2.4 iFotward Conducting Voltage = This parameter is measured
in the standard fashion with an applied forward current pulgse of 50
emperes which remains constant for several hundred microseconds. The
GATT assumes a stabilized forward conducting voltage drop within several
microseconds after turn-on. By contrast, a thyristor turns-on with a
characteristic fall of anode voltage followed by a long spreading time.
The lack of spreading effect in the forward voltage drop characteristic
gives the GATT a transistor-like character.

The range of forward conducting drop for the GAIT varies from
1.5 to 2.5 volts at the 50 ampere conducting level. These values are
within the target'range for the 50 ampere device.

4,2.5 Latching Current - Latching current is that value of
anode current which must be assumed by a four layer device before con-
tinuation of the on state will remain after turn-on drive is removed.

The latching currents for the GATT's ranged from 0.5.ampere to 35 amperes.
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The devices with highest latch current were susceptable to failure if
gate drive was not excessive. For this reason, measutements.of mi nimum
gate voltage-and-current-to-trigger were discontinued. Before latching,
GATT device behavior resembles a transistor. Anode voltage will fall
with gate current, and some indication of lack of latch may be determined
from the tendency of the gate current to control conducting drop. For
the smallest forward conducting drop before latching, gate current should
be one-quarter of the anode current value. At high anode currents before
latch, any transit from blocking state to conducting state will result in
failure 1f gate drive is inadequate, For the present GATT design, a
laﬁching current of 107 of turn-off current capability is quite adequate.

4,2,6 Holding Current - Measured holding current values ranged
from 0.5 milliamperes to 0.5 ampere,

4.3 Dynamic Measurements

4,3,1 Turn-On Time Measurements - The original assumptions
regarding GAIT turn-on were that the GATT would not possess a turn-on
speed problem since the gate region surrounds the cathode islands. By
analogy with thyristor turn-on characteristics, it was assumed that a
GATT will turn-on at many points, resulting in g large turn-on area and
high di/dt switching ability. A thyristor normally turns on at ome spot
since the gate layer of a thyristor is accessible only at oﬁe point, this"
point being the center of the structure for Westinghouse thyristors, Bj
contrast, the GATT gate area surrounds the mesa~like cathode fingers.
Hence, many cathode points are near the gate from which much charge may
be supplied to promote injection, The GATT has been tested to show
adequate turn-on for current rate-of-rise of 40-50 amperes per micro-
second., For this load current rise, the GATT will turm-on in 1.0
microseconds, For circuitry in which current rise time is greater than
50 amperes per microsecond, the GATT will respond slower than the circuit
speed and impede the flow of current. Here device limiting will occur
causing the actual circuit response to be determined by the GATT instead
of the external circuit. Device limiting is highly dissipative and is
to beiavoided,.egpecially for high frequency switching duty. Figure 18
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shows turn-on speed for a sample GAIT for various levels of gate drive,
For the largest gate drive of 16-18 amperes, turn-on occurg in 1.0 micro-
seconds, but for lower drives turn~on is slower, so much that the current

waveform is altered.

The turn-on illustrated by Figure 18 is not unusually swift;
some units have recorded performance in the 0.5 microsecond area. The
variation of turn-on speed with gate drive is typical and the character-
istic as such presents a hazard area for high frequency duty. The most
important point of turn-on characterization is the specification of

current rate-of-rise with turn-on time.

4,3.2 Turn-0ff Time Measurements - Circuit One - Original
testing of turn-off time began with a simulation circuit with unique

properties, see Figure 19. 1In this system, recovery of forward blocking
ability occurs under the conditions of zero anode voltage and current,
Although it was finally decided to concentrate test effort with a
different circuit, the responses generated in the original simulation
circuit of Figure 19 are of sufficient interest to be reported here,

In Figure 19, 50 amperes are diverted from the initially
conducting loop (I,) into the loop with the test device v(OUT). The
current through the test device will remain at 50 amperes until the
capacitor Cy is charged to near the voltage Vi, at which time current
will transfer back to the original conducting loop. During this transfer
‘time the decay of current through the test device occurs at a rate of
minus 10 A/us. When the current through the test device reaches zero,

a gate assist signal of -~14 volts is applied by a transistor switch to
the gate, ’

Figﬁre 20 illustrates all the typical characteristics of the
blocking junction recovery. Figure 20 is the behavior of the gate~-
cathode junction, At tﬁe instant of the application of gate assist
voltage, a gate junction recovery current IG flowing into the cathode
can be observed. It quickly crests and the gate-cathode junction then
recovers and starts to support reverse voltage. Considering the recovery
of the blocking junction, it is obvious from Figure 20 that this junction
does not recover as quickly as the gate-cathode diode, causing the anode
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Fig. 20a

Top - Gate voltage 10V/div.

Bottom-Cathode current 5A/div.

Fig. 20b

Top - Anode voltage 10V/div.

Bottom- Anode current 5A/div.

Fig. 20c

Top - Gate voltage 10V/div,

Mid - Anode current S5A/div,

Bottom - Gate current 4A/div.

Fig. 20, GATT Turnoff Waveforms
Sweep speed 1 ps/div,
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to immediately drop to the gate potential of about =12 volts. With
the anode 12 volts low, current begins to flow into the anode and out
of the gate. ,Ié is assumed that the peak recovery current of the
blocking junction observed in the anode lead is limited by external
impedance of the anode circuit. When the anode current reaches this
peak, normal blocking junction recovery occurs and a typical transient
occurs at the anode at this point. After this recovery a small tail
current still flows into the anode.

In Figure 20 the gate current, gate voltage and the anode
current are shown simultanecusly., The gate current pulse consists
of a sharp leading edge due to rapid gate-cathode junction recovery
and thereafter a slower rising front due to the higher circuit im-

- pedance in the diode circuit, The time from application of the gate
assist signal to the instant of peak anode current is named tgr and is
considered to be the minimum obtainable blocking junction recovery time.
Time tgy is shown in Table 5 with peak anode current. It is clearly
evident from these values that the blocking junction recovery time was
reduced to less than 2 s, ,

It was assumed that the peak recovery current in the anode
was limited by the external circuit as in an ordinary diode circuit,
Hence an additional diode D2 was added in the test circuit of Figure 19
to bypass any distributed inductance of the anode circuit. Figure 2la
shows superimposed photos of the gate current pulse with and without
bypass diode D2, Figure 21b gives the associated anode circuit and
gate voltage waveshapes and Figure 21lc shows clearly the effect of the
ingerted diode D2, With this diode, tor Vas decreased from 0.9 to
0.5 us. The junction recovery time is then dependent on the device

characteristics and on the gate assist voltage.
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TABLE 5 GATT TURN-OFF TESTS
TURN-OFF TEST CIRCUIT NO. 1

T = 25°C
c

v, =‘-14v Applied at I_ = 0

DEVICE T r/ps : 1_ Peak/Amps
56A3 1.0 . 8.0
5647 .9 6.0
S6F3 1.8 9.0
S6F5 1.9 : 9.6
S6F7 2.0 9.6
56D1 .8 6.0
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Fig. 2la

Top - I, with diode D, 4A/div.

Bottom - I, without diode 4A/div.

Fig. 21b

Top - Anode current without diode
5A/div.

Bottom - Gate voltage 10V/div.

Fig. 21c

Top - Anode current with diode D,
SA"diVO

Bottom - Gate voltage 10V/div.

Fig. 21. Effect of the bypass Diode D,
on the GATT Turnoff Waveforms
Sweep speed O.Spa/div.



4.3.3 Turn-Off Time Measurements - Circuit Two - Test circuit
2 is illustrated in Figure 22. An auxiliary thyristor T; charges the
capacitor C; to a preliminary voltage Veo- After a delay to allow Tl to
recover, the Device Under Test (DUT) is triggered, causing the discharge
of C; and the formation of a characteristic current pulse if. The circuit
Q is guch that an induced voltage will appear across DUT, reversing its
polarity and turning it off, After another delay interval,'r1 is triggered
on and the cycle starts again. The circuit response values, V., iF peak,

the induced voltage R and the pulse length t  are defined in Figure 22.

P

The performance of test circuit #2 is shown in Figure 23, The
ma jor performance difference between the desired response and the one
observed is the magnitude of the induced voltage Vg- The specified value
~ was =50V whereas -160V was observed. This did not significantly alter -

device performance.

The anode voltage and current responses are typical. Of
particular interest, especially for a device which is to operate under
high repetition rate conditions, is the magnitude of reverse recovery
current. From Figure 23, the duration of reverse recovery current is
several microseconds. The simultaneous occurrence of reverse recovery
current and reverse commutating voltage is dissipative and can add
significant device losses. It was observed that reverse anode recovery
current was dependenf on the duration of forward gate drive pulse, see
Figure 24, These results show that recovery current will increase from
2.5 microseconds to 3.5 microseconds if a high amplitude gate drive is
maintained for the full conduction interval.

4,3.4 Gate Assist Regponse - For all gperating conditions, a

bias voltage of -10 volts in series with 10 ohms was connected from gate

to cathode of the GATT device. The gate circuit response for this condition
is ofvimportance immediately after the reduction of forward anode current.
It is also of interest to determine the gate‘circuit response when a low
impedance voltage source is switched to the gate at the instant forward
anode current reaches zero. These responses are illustrated in Figure 25
the former labeled with subscript 1, and the latter with subscript 2.
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I, = 20A/div.
v, = 200v/div.

zZero

Speed = 5us/div.

Fig. 23 Typical anocde voltage and current of the
' GATTS-unit when operated in test circuit #2

I, = 20A/div.

1g = 10A/div.

Speed = 2.5us/div.

Fig. 24 Reverse anode recovery current as a function of
the length of the turn-on pulse
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I, = 204/c v,
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Speed = 2us/div.

'Fig. 25b

I, = 20A/div,

Vg1 = 10V/div.

Vgy = 10V/div

Speed = Sps/div.

Fig. 25. Gate current { a) and gate voltage (b) for a 100/-10V and
a -15V/pnp transistor gate drive circuit.




For Igi the gate is continuously biased to -10V through a
100 resistor. Current Ig2 arises from shorting the gate to a -15V source
via an npn transistor when IA reaches zero. It can be seen that the
forward gate drive, which adds to the continuous bias, terminates slightly
after IA reached its peak. The gate voltage remain near zero while GATT
ig8 conducting positive anode current. During this interval a =-1A gate
current leaves the gate corresponding to the 10 volt drop across the 102
resistor. When I, reaches zero, the gate starts to support voltage
(Figure 25b) and positive Igl flows. This is explained by the condition
of the gate voltage when any level of reverse recovery current flows.
Gate voltage Vp; is more negative than ~10 volts. ‘Hence for condition
1, a current will flow into the gate immediately after flow of forward
current, This condition does not stimulate rapid blocking junction

recovery.

When ailow impedance voltage (Vgy =15 volts) is switched to
the gate at forward current.zero, gsome current may be extracted from the
gate (Igz). At this time, however, the eitractioh of current from the
gate~base of the GATT is limited by the anode potential, which is
negative (~160 volts), see Figure 23. It is concluded that the application
of a gate assist potentiagl at a time when the anode potential impedes
the flow of forward junction recovery current is not an effective tech-
nique. Later testing will show that forward blocking recovery will be

enchanced when a source of forward recovery current is available.

The application of a gate assist pulse to the gate of the device
under test before anode current zero operates the GATT device in the gate
control mode, By this technique the device will turn-off current. The
anode voltage and current response for this conditfon is shown in Figure 26,
The most serious effect is the rise of anode voltage when anode current
is prematurely forced to zero. (Negative gate assist voltage is applied
at the instant that anode voltage rises). The anode voltage rise results
from current flowing in the resonant inductance of the anode current loop.
Premature reduction of anode current by gate control results in release of
1/2 LI& energy which is dissipated in the device, The excess device
dissipation is clearly not tolerable.
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1, - 10A/div.

V, = 200V/div,

Figure 26. Gate-Assist Thyristor
Operating Turn-off Mode
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4,3.5 Turn-Off Time With Reverse Current - For the turn-dff
test of the GATTS device the circuit of Figure 22 was modified such that

a thyristor SCRl was inserted in series with DUT, see Figure 27, The
purpose of SCRl is to isolate the forward current loop of Figure 22 from
the reapplied voltage circuit. Thyristor SCRl and DUT are triggered
simultaneously. The isolation thyristor is selected to have a recovery
time longer than that of the test GATIT device (DUT). Therefore, DUT
will develop and support all reverse voltage provided by capacitor Cl

of Figure 22. However, thyristor SCRl must recover before DUT will
support reapplied forward voltage, and in so doing drgws some reverse
recovery current. As a consequence, some distortion of the reapplied

wvoltage occurs.,

For testing purposes, it has been prudent to keep the 1ﬁpedance
level of the reapplied voltage source as high as possible. I." turn=on
~occurs due to insufficient recovery time, a high impedance reapplied
voltage source prevents destructive failure. As a second concern, high
reapplied voltage rates require low driving point impedance because of
line and device capacitances., Hence, the impedahce of the reapplied
generator is chosen as a compromise of these factors. The response of
a GATT device to gate assist and reapplied voltage is shown in Figure 28,
Anode current and voltage fesponses are shown in Figure 28a. The anode
current waveform shown is the tail end of the forward anode current when
anode current reaches zero, and thereafter. (A cross indicatéd current
zero). The typical reverse current is shown after current zero, followed
by a sequence of pulses of current which flows into the anode of the GATT
device. These pulses are forward recovery current pulses caugsed by re-
applied voltage pulses applied at the instants shown in the lower portion of
Figure 28, The characteristics of forward recovery current are similar
to those of reverse blocking junction recovery. At the instant reapplied
voltage is applied to the anode of the test device, forward recovery current
flows into the anode., The anode of the test device remains clamped to

near zero volts until recovery of the forward blocking junction. At this
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I, - 4Aafdiv.
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Figure 28b. Turn-off Time Response with Gate-Assist



point, anode current peaks, and forward anode voltage begins to rise,
At a higher anode voltage level, the voltage across the isolating thy-
“ristor SCR1l changes from forward to reverse, causing a small distortion
of the reapplied signal. The fastest recovery time shown in Figure 28
is 3.5 miéroseconds. A faster recovery time in this simulation would
require application of forward reapplied voltage to the test device
before reverse recovery of the isolation thyristor SCRl. To increase
‘the anode voltage under these conditions would require rapid charge of
‘discharge capacitor Cl from the high impedence reapplied volfage source.
This was not possible and a.second technique was used to determine min-

imum recovery time. It will be discussed at a later point in this report.

Figure 28 illustrates gate current regsponse for reapplied voltage
excitation, Clearly, forward anode recovery current is extracted by the

gate, Note that the gate current of Figure 28 is the same as I 2 of

g
 Figure 15, with the addition of extracted gate current. Also the re-

applied voltage pulse is in excess of 400 volts per microsecond.

4,3.6 Turn-Off Time With Small Reverse Current - As a final
measure of GATT device capability, a test was devised for which minimum

recovery time could be measured. In the simulation circuit; minimum
recovery time is determined by the recovery time of the forward current
isolation device, For the response of Figure 28, the isolation device
was SCR1 of Figure 27. For the final test, SCRI is replaced with a
fast recovery diode such that most recovery current is nearly eliminated,
as well as the reverse voltage developed across the test device. Since
the speed of the isolation diode is much faster than the test device,
all reverse voltage wili be supported by the isolation diode, and none
by the test device. It is generally assumed that reverse current will
hasten blocking recovery. The elimination of reverse current is then
more severe than a recovery test with reverse current available. The

test responses are shown in Figure 29,
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v, - 200V/div.

Hor. - 2us/div.

Figure 29b. Turn-off Time Response with Gate Asaist -
No Reverse Current.
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Minimum recovery time is one microsecond. This is clearly
related to the rise time of the minimum recovery current which reaches
a 14 ampere peak and begins to flow at the instant forward current
reaches zero. The data of Figure 28 is typical performance at 100°C

case temperature,

The sequential photographs of reapplied voltage at various
instants illustrate the decaying character of forward recovery current,
As time progresses after forward current zero, carriers trapped within
the device junctions decay by recombination, causing the observed
reduction of recovery current. The large recovery current pulse at
minimum recovery, in coiﬂcidence with reapplied voltage is dissipative
and will have some influence upon the frequency rating of the GATT

device.
4.4 Conclusions

. "Performance tests conducted at the Westinghouse R&D Center
indicate that thyristor-like devices may be fabricated with measurable
recovery times of less than two microseconds. Aithough not measured
by the exact and conventional test system, a test technique was devised
with test conditions considered more severe than normal. The results

of these tests were excellent,

Other test results of the gate assisted turn-off thyristor
are good, Some compromise of turn-on characteristics was evident,
requiring higher drives than normal to achieve reasonable turn-on, The
resultant turn-on is considered less dissipative than that of a simple
thyristor in that the spreading effects normally associated with single
point thyristor turn-on are absent. Hence, although the GATT turns on

slower than a thyristor, complete turn-on is achieved faster.

Most characteristics of the GATT device are comparable to
those of an ordinary thyristor. The devices perform the gate assisted
turn-off function very well indeed. The dv/dt capability is in excess
of 400V/ps and the minimum recovery time is less than 1 us.
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5. DEVICE DATA

In this section we present three major sets of data. The
first are the specifications on four devices shipped to NASA(ERC) some
four months éfter the commencement of the contract. These devices did
not meet all of the specs, specifically missing the blocking voltages,
but they are nevertheless indicative of the quality of some of the first
units produced. The second data are on the nine devices that were rather
fully characterized part way through the contract. Some of these devices
were used as the device under test in Section 4. .The third data are the
devices delivered to NASA Lewis. These data are tabulated in Tables 6, 7&8,
and 9 respectively.
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Table 6-~Characteristics of First Four GAIT Devices
(These devices are typical of early 50A units.
They were delivered about 4 months after the
start of the contract.)

No. VFB/V @ mA vRB/v @ mA VGRB/V @ mA vg(/)z IGTO/A toff/ps ton/ps
1 600 15 500 10 16 0.5 2.3 18 2 4
2 800 <10 650 < 10 16 0.1 2.2 18 2 3.5
3 600 10 250 < 10 16 <0.2 2.2 20 2 3
4 810 10 350 < 10 16 2.0 4.4 18 2 3
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6. CONCLUSIONS AND RECOMMENDATIONS

Exceedingly fast, gate-assisted thyristors can indeed be
made, The proper philosophy, design and development can lead to
devices which recover within 2 us after the natural commutation of
anode current and in face of a reapplied voltage of 400 V/us. The
average forward drops are about 2 V at 50A forward current, #gain
within the requirements of the proposal. Also, we now have a very
good understanding of the problem areas in these devices. The
opportunities lie clearly in the direction of more uniform processing,
for with more uniform processing the sweep-out capabilities of the
multiple gates will be more readily utilized and the performance of
the whole device will more closely approximate the sum of its parta.
There is every indication that 2 us GATT units should be able to re-
cover from peak currents in excess of 100A at these blocking voltages,
forward drops and temperatures. It is our recommendation that the
next step be towards higher current devices and towards a better
package for these units. Airborne or space applications are better
.served by a Pow-R-Disc than a stud-mount device and there is every
reason to believe that a GATT device should function better in such
8 low inductance pack. The goél of a lightweight, high efficiency
series inverter with three times or four the present capability is

attractive indeed.
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7. NEW TECHNOLOGY

The principal item of New Technology resulting from this
work was the demonstration that the contract objectives were

feasible, Devices meeting the specification were produced,

Maximum Forward Blocking Voltage Volts Veg 600
Maximum Reverse Blocking Voltage Volts VRB 600
Maximum Forward Drop at I, = 50A Volts VF 2,0
Maximum Junction Temperature °c Tj 125°
Maximum Crest Anode Current A IA 50
Recovery Time (See Fig. 4) ps t 2

after I, = 50A is circuit
commuta%ed of f

Maximum Initial Rate of Reapplied V/ps dv&M/dt 400
Voltage Use Exponential to

o
VFB Maximum at Tj 100‘C

Maximum Rate of Current Removal Alps di/dt 10

A significant New Technology was also demonstrated in the use
of bonded wires parallel to the silicon surface for selective contact
of power device elements in a compression-bonded (CBE) package., While
probably not economically feasible in high volume manufacturing, the
technique 1is of significant value in power device engineering, since
power devices typically cannot be tested in full or in part until
they have been provided with proper thermal contacts, The selective
bonding ~ CBE approach greatly simplifies the measurement of develop-

mental units,
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