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SUMMARY

The overall problem of boundary layer flow transition is

reviewed from the point of view that evidence seems to indi-

cate a need for basic new physical hypotheses to be injected

into classical fluid mechanics math models based on the

Navier-Stokes equations. The Navier-Stokes equations are

challenged as inadequate for the investigation of fluid

transition since they are based on several assumptions which

should be expected to alter significantly the stability

characteristics of the resulting math model. This point is

not proved, but the document collects strong prima facie

evidence to this effect.
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wave becomes unstable.

Ru Maximum unstable Reynolds number for a particular

wave.

S Effective range of intermolecular force; eqn. III-39.
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I. INTRODUCTION

This document presents a review of the general problem of

boundary layer transition from a new point of view. It is

felt that despite many advances in observing, understanding,

and even predicting boundary layer transition, there still

has been too little success in describing the actual physical

mechanism (or mechanisms) by which a flow changes from laminar

to turbulent.

No work to date adequately describes and predicts the transi-

tion process. Therefore, it is necessary to consider at

least the following two possible sources of the difficulty.

One possibility is that an adequate set of equations is

available, but that they are so difficult to analyze that

the problem has not yet been completely solved. A second

possibility not frequently discussed is that the conventional

equations might fail to represent some important physical

processess occuring in a real flow as it begins transition.

In other words, the present equations cannot reveal the

importance of some parameter or physical mechanism not imbeded

in them. The mathematics can never create missing physics.

The first possibility has been considered exhaustively for

almost a century, and some new physical characteristics of

the problem indeed have been "discovered". However, these

characteristics actually have been in the classical mathe-

matics all along. From the standpoint of basic hypotheses,

no really new physics has been injected, and the basic

turbulence mechanism still is unknown.
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This review primarily considers the second possibility and

seeks to identify missing physics. It also describes

qualitatively why some of the missing physics could be

important and how it might alter the stability of a laminar

flow. This background gives quite a new overall perspective

and should provide the basis for a new approach to the problem

of describing flow transition and turbulence.
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II. STABILITY THEORY

II.1 Background

One of the earliest approaches to predicting transition

was to assume that turbulence has its origin in an

instability of the laminar flow. As Mack (1969) points out,

such an approach tells nothing about turbulence, but it does

explain why the original laminar flow can no longer exist.

This basic premise has been the foundation for all rational

approaches to boundary layer transition.

Although it is recognized today that instability of one

laminar state may only result in shift to a new and

different laminar state, the above premise is even stronger

today than when put forth. One views transition of the

laminar boundary layer as merely the response of a very

complicated physical system for some one or many forcing

functions.

One might say that advances in boundary layer stability

research can be categorized as follows:

(a) Advances in understanding how the specified oscillator

(physicalsystem) responds to various disturbances; in

other words, how the amplifications grow thru wave

interactions.

(b) Advances in understanding the type of disturbances

which excite the real physical system, and which

therefore must be modeled.

(c) Advances in the realism of the math model thru incor-

poration of more physically descriptive terms.

3



(d) Advances in the analytical/numerical techniquesused

to study system response.

(e) Advances in the basic concepts of what constitutes

stability of physical systems.

(f) Advances in quality and controllability of experiments.

To date, stability theory actually can predict neither the

details of the nonlinear process by which the flow changes

from laminar to turbulent, nor the "location" of transition.

What it can do is define approximately which boundary-layer

profiles are unstable, and by how much. It also can identify

by an approximate analysis those frequencies for which the

system is most responsive, and how system parameters governing

the flow will delay or enhance transition.

Since the Schubauer-Skramstad (1943) experiments, it has been

accepted generally that in the majority of cases turbulence

does indeed arise from an instability of the laminar flow.

However, because of the complexity of the problem, there still

is much unknown and much confusion about the connection between

stability and transition.

Classical stability theory considers individual periodic

disturbances whose amplitudes are small enough so that a linear

theory can be used (Figure II-1). The wave number in the

freestream direction is ax = 2n/X
x

, where X\ is the

wavelength. Early work assumed the disturbance was two-

dimensional, with propagation parallel to the freestream.

Later studies have considered oblique disturbances, with

propagation at an angle X to the freestream direction.

The disturbance propagates in a downstream direction with

phase velocity c . The phase velocity is less than

4



freestream velocity ul , so there is some point in the

boundary layer where the mean velocity is equal to c r .

This point is called the critical point, and it is now

known to be very important to boundary layer stability.

Numerical results from stability theory can be presented in

the form of neutral-stability diagrams such as shown in

Figure II-2. They show regions of stability and instability,

separated by a line of neutral stability. One can think of

these diagrams as indicating whether or not a given wave will

be unstable in propagating through the system at any given
u x

system Reynolds number Re = - . They can also be thought

of as indicating whether or not the system, at a given Rex

will be unstable when excited by a disturbance of some given

wave number.

Two kinds of diagrams are found in Figure II-2. The neutral-

stability curve of type (a) shows all dimensionless wave

numbers (A6) are damped at sufficiently high Reynolds numbers,

where 6 is thickness of the boundary layer. The mean flow

is said to have inviscid stability. Since decreasing Reynolds

number by increasing viscosity can cause instability, it is

clear that viscosity can have a destabilizing influence in

addition to its more intuitively possible role of damping

out disturbances! The flat plate, or Blasius, boundary

layer is an example of a flow which is unstable only through

the action of viscosity.

This dual role of viscosity is a key point. Early investiga-

tions of fluid instability omitted viscous effects on dis-

turbances because air was thought of as an "inviscid" fluid

and the influence of viscosity on the growth of disturbances

5



would therefore be negligible. Hence, early investigations

treated only the Rayleigh equation. It was not until the

viscous terms were retained that a critical Reynolds number

was obtained. Later sections of this report will show that

still other terms have been neglected based on similar

assumptions, and the implication of these omissions will be

discussed.

With a neutral-stability curve of type-(b), there is a neutral

wave number at infinite Reynolds number. Hence, wave numbers

smaller than (a6)5 are unstable no matter how great the

Reynolds number, and the mean flow is said to have inviscid

instability. A boundary layer in an adverse pressure gradient

is an example of flow of this kind.

In both cases (a) and (b), all disturbances less than the

maximum a6 value on the neutral-stability curve are unstable

for some range of Reynolds number. However, there is a

minimum critical Reynolds number, Re r' below which no

amplification is possible. Often the objective of stability

theory is to compute Recr, but it turns out that this has

limited significance and cannot be relied upon to indicate

the relative instability of various mean flows. The computed

Recr is always less than Retr, and it definitely is not

proper to identify Re with the transition point (Mack; 1.969).

The frequency which is proportional to acr is very useful in

practice. A disturbance introduced into the boundary layer

with a particular frequency will remain essentially at that

frequency as it passes downstream, but the wave number will

change. A disturbance of frequency f and a low wave number

6



will pass through the unstable region of wave numbers

(Fig. II-2a). It will damp as it moves from the leading

edge to the downstream position where its wave number

corresponds to RL , the first neutral point. Then,

between RL and RU (the second neutral point) it will

amplify. Downstream of R
U

it will again damp. If the

magnitude of the disturbance becomes sufficiently large

before Ru is reached, then nonlinear processes take over

and eventually lead to transition because the disturbance

will grow even though linear theory says it should damp.

That is, linear theory would become invalid for the

description.

The neutral-stability curve only identifies the range of

unstable frequencies. It is important also to calculate

amplification rates which tell how fast each frequency is

growing, and which frequency is growing fastest. Further-

more, it is important to calculate overall growth of a

disturbance at constant frequency as it travels through the

unstable region. With this information, and given some

initial disturbance spectrum, it is possible to identify

the frequency which has the largest amplitude at each

Reynolds number. See Figure II-3 for an illustration of

typical results, and Figure II-4 and II-5 for a comparison

with experiment.

One might suspect that there is some sort of critical

amplitude, and when the largest wave reaches that critical

condition, nonlinear effects begin to dominate and there

is a "triggering" of the transition process. Note however

that the physical mechanism of the transition process is

still not identified.

7



1.2 Formulation of Stability Theory

Generally the equations used to represent the physical

system merely define conservation of mass and balance of

linear momentum. These two continuum principles are

expressed thru the continuity and Navier-Stokes equations.

For a viscous incompressible fluid, the equations are:

au + av + aw = 0
ax ay az

au + u 3 au w au
t + ax vy az =

av + u av v + w =
at +ax ay az

aw aw + aw aw
t + uax + v y + w a =

1 DP +
p ax

-1 U +
P ay

- 1 P +
p az

, a2 a2 +

ax 2 ay2

(/a2u + a2V +

aX2 ay2

VaX 2 + ay2 +ax2 ay2

In Section IV, these equations will be derived and it will

be shown that they are the result of approximations which

certainly must influence the stability of the fluid system.

Specifically, these equations omit terms representing fluid

elasticity and internal angular momentum by assumption that

such effects are negligible for air. This is reminiscent of

the early assumption regarding importance of viscosity on

disturbances in air, and is a clue as to what effects need

to be examined in more detail.

Beginning with Eqns. II-1, all flow quantities are divided

into a meanflow term and a fluctuation term: i.e., for some

parameter q(x,y,z,t) it is assumed that

8
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q(x,y,z,t) = Q(x,y,z) + q'(x,y,z,t)

The mean-flow quantity Q is assumed to satisfy conventional

boundary layer approximations, and negligible mean flow terms

are dropped. The equations sometimes are reduced even

further by the assumption of parallel flow. Reshotko

(1969) has noted that this assumption is not always valid,

and mean growth of the boundary layer may at times by an

important factor in the stability of the flow. Donaldson

(1969) and others have investigated a growing boundary layer

and found that it can influence stability (as might be

expected). Hence, each individual investigator must determine

if the nonparallel conditions are significant for the par-

ticular flow he is considering. Parallel flow equations

are achieved by the following conditions placed on the mean

flow:

U = U(y) , W = W(y) , V = 0 II-3

The parallel flow equations next are put in dimensionless

form using freestream conditions and boundary layer thickness

as characteristic parameters. For convenience, notation

usually is changed at this point so that dimensional

quantities are identified by an asterisk (*) superscript.

For boundary conditions it is assumed that the condition

of no-slip at the wall also applies to disturbance velocities

at the wall, and that disturbances go to zero as yew.

The boundary conditions are homogeneous, and solutions to the

set of parallel flow equations with these conditions will

exist only for certain combinations of flow and disturbance

parameters. Combinations for which the boundary conditions

9
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are satisfied are eigenvalues of the problem, and the objec-

tive of stability analyses is to find the boundary between

stable and unstable eigenvalues.

The disturbance quantities are taken to be periodic, having

the general form:

q'(x,y,z,t) = q(y) exp i[a6x + -z wt] II-4

where under a change of notation it is customary at this point

to let nondimensional parameters be

x* z* t*
x = , z = t U II-5

and asterisk quantities become dimensional.

The term q(y) is the complex amplitude function of a typical

flow variable q' ; the a6 and B6 are dimensionless

wave numbers 276/X and 27r6/X ; and X and X are
X x z

wavelengths in the x and z directions, respectively. The

dimensionless frequency is wa = 6/U . At time t , the

amplitude of q' is constant along a line

( sx + ) = constant , II-6

and this line therefore is a line of constant phase in the

xz-plane. If 8
6

= 0 , then the wave propagates in the

freestream direction. If B
6

O0 , then the wave is

inclined at an angle

= tan 1 II-7

10



with respect to the freestream. Note that even if the

boundary layer is two-dimensional the oblique waves or

disturbances are three-dimensional.

If a6', 8' and w
6

are all real, then the disturbance does

not grow, and so it propagates through the parallel flow

with constant amplitude Iq'(y) . If the frequency w6 is

complex, then the amplitude will change with time, and this

is referred to as temporal growth. If ad and 6 are complex,

the amplitude will change with x and z , and this is

referred to as spatial growth. If all three quantities are

complex, then the disturbance wave grows both in time and

space.

For temporal theory the disturbances are written in the form

q'(x,y,z,t) = q(y) exp i[a6x + 86z - a6ct] II-8

where the complex frequency w
6

has been replaced by a6c,

with c being complex:

C = C + ic. .
r 1 II-9

The real part (cr) of the complex wave velocity c is equal

to the phase velocity in the x direction, and the imaginary

part (ci) is the amplification factor.

In spatial theory the complex c is not introduced. Instead,

6', B,' and w6 are written as complex: i.e.,

11



d6 (W6 ) r + i()i

O = (a )r + i(a
6
)i II-10

Bg = (B6)r + i(B)i .6 +

Then, in order to have no temporal growth, the frequency

must be real, so (w)i = 0 .

Depending on which type of disturbance growth a particular

author wishes to investigate, these disturbance expressions

are substituted into the equations of motion and various

additional levels of assumptions about orders of magnitude

are made. The equations generally are analyzed in two-

dimensional form for simplicity, but several investigations

have gone so far as to consider three-dimensional disturbances

in a two-dimensional mean flow.

There are many special forms of the stability equations. For

parallel flow, these equations are discussed extensively by

Betchov and Criminale (1967). One of the most important

special forms is the Orr-Sommerfeld equation. The mean

laminar flow in the x-direction is assumed to be influenced

by a disturbance which is composed of a number of discrete

partial fluctuations, each of which consists of a wave

propagated in the x-direction.

When the disturbance also is two-dimensional the resulting

form of the equation is less complicated, and it is possible

to introduce a stream function (x,y,t) to represent a single

12



oscillation of the disturbance. The disturbance is assumed

to be of the form:

i (ax - W t)
4'(x,y,t) = ~(y)e d II-11

where ~ is the amplitude function of the fluctuation and

is assumed to depend only on y

Then the velocity perturbation components u' and v'

are of the form

i (ax - ldt)
u'= __ ='(y)e d

II-12
i (ax - W t)

vI= - = -icw(y)e d
ax

where prime on ~ denotes not perturbation but differentia-

tion with respect to y .

These are introduced into the continuity and momentum

equations, the pressure term is eliminated, and the

remaining terms are nondimensionalized. The resulting

equation is

(U - c) (" - ) U"a = - R ("" - 2a + 4) ,

II-13

which is the fundamental stability equation for the dis-

turbance. It is known as the Orr-Sommerfeld equation

(1907, 1908), and in its several forms (depending on the

nature of the disturbance assumed), it is at the heart of

almost all basic work on stability of incompressible steady

parallel flows.

13



If viscosity is considered to act only in the establishment

of the mean flow and is assumed to be so weak that it has

a negligible effect on the disturbances, then the Orr-

Sommerfeld equation reduces to the following much simpler

inviscid equation

(U - C( -c)(2" - U" = o0. II-14

This is known as the inviscid Orr-Sommerfeld equation, but

is also known more extensively as the Rayleigh equation

(1880, 1887). The Rayleigh form was developed before the

viscous form, and the majority of early papers on stability

of fluids used this frictionless form as their point of

departure. As a result, 'an extensive body of work on

inviscid stability has built up over the past 100 years.

However, from this equation no critical Reynolds number was

realized. It was only much later (1907, 1908) that the more

complete viscous equation was developed and finally solved

(Tollmien, 1929) for critical Reynolds number.

II.3 Special Problems

Mack (1969) describes several special forms of the stability

equation, and discusses analytical and numerical tech-

niques used over the years to obtain solutions. Even with

modern computers there are great difficulties. For one thing,

every numerical integration scheme has errors, and growth of

these errors will be determined by the most rapidly growing

solution. It is well known that after the integration has

proceeded a certain distance, the error may actually over-

whelm the solution.

14



Gortler and Velte (1969) discuss the phenomenon of "numerical

instability" in steady solution of the Navier-Stokes equa-

tions. In some cases this numerical instability definitely

may yield misleading results. The problem normally is over-

come in computational fluid dynamics by stability requirements

involving computational mesh size, incorporation of "arti-

ficial viscosity", and other suppression techniques. However,

successful use of these techniques in the computation of mean

flows does not make it clear how they can be applied to

problems where the task is to investigate some physical

instability. If numerical techniques are to be applicable

to stability problems for physical systems, the numerical

instability must be considerably smaller than the physical

instability in order to distinguish between them, and in

order for the two to be uncoupled. It is believed that this

problem is not sufficiently understood at this time, and that

further work must be done before numerical integration can be

used effectively and confidently in studying flow transition

via analysis of the dynamics of the system.

Taylor (1915) was the first to point out the possible

destablizing influence of viscosity, but Prandtl (1921)

was the first to demonstrate clearly that a stable inviscid

flow can be made unstable by viscosity. Prandtl's discovery

was preceeded by experimental observations where he detected

occasional wave forms with slowly increasing amplitude which

contradicted the accepted stability of laminar motion with

respect to small disturbances. Following these observations,

Prandtl and Tietjens performed calculations taking into

account the influence of viscosity on disturbances, but only

over a very small region of the velocity profile in the

immediate neighborhood of the wall.
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Their calculations yielded the unexpected result that

introduction of a small value of viscosity into the equation

did not produce damping but instead amplification for all

Reynolds numbers and all wavelengths of disturbances for

velocity profiles which had been shown to be stable when

viscosity was neglected! The velocity profiles they

investigated were composed of straight segments. Heisenberg

extended their work by studying the stability of curved

velocity profiles, taking into account the effects of

'viscosity. However, he still did not succeed in obtaining a

critical Reynolds number (Schlicting; 1955).

The problem was finally resolved when Tollmien (1929)

demonstrated that the influence of viscosity on disturbances

must be taken into account not only in the immediate vicinity

of the wall, as supposed by Prandtl and Tietjens, but must

also be accounted for in the neighborhood of the critical

layer where the velocity of wave propagation of disturbances

becomes equal to the velocity of the main flow. Tollmien

also showed that this influence of viscosity becomes evident

only if the curvature of the velocity profile is accounted

for. As a result of this analysis, he was able to find a

limit of stability, the critical Reynolds number, for flow

in the boundary layer of a flat plate at zero incidence.

This history is important and is emphasized because it

clearly illustrates how key features of the problem were

for years discarded as negligible effects. The point is

emphasized in relation to the suggestion of this report

that molecular effects heretofore neglected are also a

key part of the problem.
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The first attempt to develop a compressible stability theory

was made by KUchemann (1938), but he too neglected the

influences of viscosity, mean temperature gradient, and the

curvature of the velocity profile. The earliest fruitful

theoretical investigation of the stability of a compressible

boundary layer was made by Lees and Lin (1946). They

developed an asymptotic viscous theory and also conducted a

detailed investigation of purely inviscid theory. As a

consequence, they found that the flat-plate compressible

boundary layer is unstable to purely inviscid disturbances,

which is quite unlike the incompressible Blasius boundary

layer where the instability is viscous in origin.

This inviscid instability increases with increasing Mach

number, and leads to a major difference between the

incompressible and compressible theories. A second major

difference between incompressible and compressible theories

results from the fact that the mean flow relative to the

disturbance phase velocity can be supersonic. Mack (1965)

found that whenever the relative flow is supersonic over

some portion of the boundary layer profile there is an

infinity of wave numbers for the single phase velocity!

These additional inviscid neutral disturbances are called

higher modes, and were discussed earlier.

Another feature of compressible flow, found by Dunn and Lin

(1955), is that Squire's theorem does not hold. They showed

that for compressible flow a three-dimensional disturbance

is more unstable than a two-dimensional one, and Mack (1967)

later showed that for all supersonic Mach numbers a three-

dimensional disturbance is more unstable than a two-dimensinal

one.
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II.4 Relationship Between Stability and Transition

The relationship between stability and transition at super-

sonic speeds is even more of an open question than at low

speeds. Experiments [Laufer-Vrebalovich (1960), Demetriades

(1960), Kendall (1967)] have been performed that firmly

establish the existence of instability waves in supersonic

and hypersonic laminar boundary layers, but they do not

demonstrate how transition is caused by the instability

waves. In essence, they deal with macroscopic amplification

characteristics. From all this, however, it does appear

that if the external disturbance level is sufficiently low

then transition occurs as a direct result of laminar

instability. The key problem is that the "physical

mechanism" still is unknown.

A description by Tani (1967) of the transition process

indicates that, in the absence of large disturbing influences,

the sequence of transition processes actually involves four

distinct stages in the following order: (1) amplification of

weak disturbances, (2) further nonlinear development of the

disturbances, (3) development of high-shear-layer disturb-

ances, and finally (4) development of turbulent randomness.

Tani notes that the transition is preceded by the appearance

of weak oscillations of the type predicted by linearized

theory of laminar instability provided all sources of

disturbance are sufficiently small. However, he points out

that even in the most carefully controlled experiments an

initially 2D wave develops into a 3D pattern with the rate

of growth varying in the spanwise direction. He concludes

that the wave grows locally at a rate determined by local
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Reynolds number, which may vary in the spanwise direction

due to minor irregularities in the free stream or the

upstream boundary layer.

While the wave is sufficiently weak, it develops downstream

in a manner predicted by the linearized theory. However,

when the wave ceases to be weak, its development begins to

deviate from that of a theoretical prediction, and nonlinear

effects manifest before any actual breakdown. The most

striking feature of the nonlinearity is a pronounced increase

in three-dimensionality characterized by spanwise variation

in wave amplitude, with peaks and valleys occupying "fixed"

spanwise positions. As already noted, associated with this

variation in wave amplitude is a spanwise variation in local

mean velocity which is indicative of the existence of a system

of streamwise vortices.

Benney and Lin (1960) found that the interaction between a

2D Tollmien-Schlicting wave and a 3D wave with periodic

spanwise variation will exhibit a system of slowly growing

secondary vorticity in the streamwise direction when the 2D

component predominates. The result is a mean velocity defect

at the peaks and an excess at the valleys. This is consistent

with the observations in air made by Klebanoff, Tidstrom,

and Sargent (1962), and as already noted it reverses findings

of the early results of Klebanoff and Tidstrom (1959). The

understanding of the effect of pre-existing three-dimensionality

then becomes important in developing a unified view of transi-

tion.

The termination of the nonlinear development according to Tani

is indicated by an abrupt increase in wave amplitude followed
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by a subsequent concentration of vorticity in a thin layer

called a "high-shear layer". This layer is related directly

to the occurrence of an inflexional velocity profile for a

considerable fraction of a cycle of the fluctuating velocity.

(See Figures II-10 and II-11).

The hot-wire measurements of Klebanoff et al (1962) are also

indicative of the shedding of vortices, which they call

"hairpin eddies". These vortices are highly unstable and

break down into smaller vortices which eventually develop

into random fluctuations typical of turbulent flow.

The vortices generated by (or disintegrated from) the high

shear layer travel downstream at a velocity greater than

that of the primary wave. As they travel downstream, they

break down into smaller vortices, which again break down

into more smaller vortices. Hama, Long, and Hagarty (1957)

using hydrogen bubbles in water observed this cascade process

occurring several times. Tani indicates that it is during

this cascade process of wave breakdown that the formerly

periodic structure of the fluctuations is obliterated. He

draws the conclusion that turbulence is initiated in small

localized regions in the form of "turbulence spots." These

spots grow as they move downstream until they merge to form

the fully turbulent boundary layer (Figure II-12). Hence,

there is the linear amplification followed by nonlinear

development with associated 3D enhancement and high shear

layers from which hairpin eddies are shed and cascade

downstream. These hairpin eddies cascade until their

periodic structure is obliterated into random fluctuations

which appear as the turbulent spots.
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The idea of turbulent spots is relatively new. It was

originally put forth by Emmons in 1951, and involves the

concept that each point of the boundary layer has a definite

probability of being turbulent. But then how small is a

point, and if significant processes begin at a "point", what

is the smallest significant scale of the process? Clearly

it is not the scale of the "hairpin eddies"!

The process of formation, growth, and coallescing of

turbulent spots has been studied in detail by Emmons (1951),

Schubauer and Klebanoff (1955), Elder (1960), and Spangenberg

and Rowland (1960). Spangenberg and Rowland report from

their optical studies that the turbulent spots grow so rapidly

during the first few microseconds that they appear to

explode from the smooth outline of the laminar layer.

According to Spangenberg and Rowland, the first manifestation

of turbulent breakdown was the intermittent appearance of

ripples on the outer surface of the boundary laryer. One

or more visable shock waves were usually seen at the crest

of each ripple. As the ripples moved downstream, each

divided into several segments. Each of the segments then

became the source of a shock wave. In a matter of micro-

seconds after the appearance of these disturbances, low

density boundary layer air was belched from the disturbance

area, and the erupted spot then grew as described by other

authors.

At first the turbulent spots were thought to occur completely

at random in both time and space, but later indications were

that the process was not entirely random. Instead there
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appeared to be a production frequency with a range which

varied as the test conditions were varied. As for location,

the bursts seemed to be predominantly generated near span-

wise peaks in wave amplitude.

The terminology, "physical mechanism", frequently appears in

the literature, and is generally accepted as the big unknown.

Usually the amplification process is described as the

"physical mechanism" of transition. However, a careful and

important distinction needs to be made between the physical

mechanism (of transition) and these multiple wave amplifica-

tion processes.

Wave amplification processes really do not show how the

complex wave patterns degenerate into the small but

macroscopic randomness observed, measured, and described as

turbulence. Certainly much more is known today about these

amplification processes, and their description is an

important part of identifying the progressive conditions

which precede the development of turbulence, but that is

about all that can be attributed to them.

For example, the description of wave amplicication processes

does not predict, demonstrate, or explain the formation of

turbulent bursts. The math model of classical laminar

boundary layer equations makes no provision for energy

exchanges that could develop into and maintain randomness.

This omission needs to be recognized, and the model needs

to be modified to include physical coupling processes which

would allow fluid randomness.
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Regarding characterizations of turbulence, Kovasznay (1967)

points out that the turbulent boundary layer is but a

special subclass of a broad category of quasi-parallel

turbulent shear flows. He discussed (1) unconstrained

flows with no solid wall present, (2) fully constrained

flows, and (3) half-constrained flows. The boundary layer,

which is in this latter class, has all the complicating

features of both constrained and unconstrained flows.

He states that upon close examination it is apparent that

the turbulent boundary layer has four rather distinct regions.

Very close to the wall there is a viscous sublayer (often

called laminar sublayer) where viscosity dominates even

though there still are large random fluctuations. Then

there is a wall-dominated turbulent layer where the flow

scales linearly with distance from the wall, and is known

as the region of the "Law of the Wall". Next, far out from

the wall there is a large outer region of nearly homogeneous

turbulence which follows the "Law of the Wake". Finally,

there is a superlayer which provides the turbulent-nonturbulent

interface with the free stream.

Each of these regions apparently has its own characteristic

length scale, and each has peculiarities which are not under-

stood at this time. More recently, as Kovasznay points out,

it has become evident that the random fluctuations in the

sublayer are quite large, and it is inappropriate to refer

to it as a "laminar sublayer". Movies by Kline and Reynolds

(1967) are reported to show that this sublayer exhibited a

very strong three-dimensionality.

23



An important feature of Kovasznay's 1967 paper was his

calling attention to work at Stanford by H. K. Moffatt

(1965). The existence of a very strong shear layer has

already been discussed. Now it is found from Moffatt's

work that any rapid shearing motion has two important effects

on homogeneous turbulent flows. One effect is a change of

energy level and an anisotropic redistribution of any dis-

turbance wave number (i.e., changes in both orientation and

magnitude), so that originally isotropically distributed

wave number components are now preferentially distributed

roughly perpendicular to the flow axis, and their total

energy increases linearly with distance propagated.

The other important result is that the Reynolds stress

increases linearly with time, and for short times after

application of a strain, the stress established is propor-

tional to the total strain experienced. This suggests an

elastic rather than a viscous type of response. The elastic

behavior implies that a readjustment of velocity profiles

will proceed according to the wave equation and not according

to a diffusion equation as normally thought. Moffatt notes

that an analogy between turbulent flow and the flow of a

non-Newtonian fluid was first pointed out by Rivlin (1957),

and was further recommended by Liepmann (1961).

These results match with concepts developed independently by

Kistler (1969), and with observations and analyses by other

investigators as discussed in the next section. To summarize,

the developments through recent years have shown that wave

amplification progresses through a linear phase and on into
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a nonlinear phase. From the nonlinear phase, regions of high

shear develop, and finally Moffatt has shown that this leads

to viscoelastic phenomena. The next section therefore will

briefly discuss viscoelasticity.
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III. FLUID CLASSIFICATIONS AND CHARACTERISTICS

III.1 Constitutive Equations

Introduction

This section introduces some of the more general concepts of

continuum fluids which are known in the field of rheology.

A Newtonian fluid (the fluid of classical aerodynamics and

hydrodynamics) is a very special and simplified concept,

and is only a small part of a large hierarchy of fluids.

A Newtonian fluid is one where the shearing stress T is

linearly related to rate of strain y by a proportionality

factor p , called the shear viscosity. Such a relationship

is called the constitutive equation for the fluid. Usually

p is taken to be a constant, and dependence on temperature

is neglected even in dynamical situations. Thus, for a

Newtonian fluid,

Du
p= uY =i y. III-1

This relationship and its use in development of the classical

equations of fluid mechanics will be discussed more in

Section IV.

Non-Newtonian Fluids

There are many other fluids which are non-Newtonian, and

roughly speaking they can be put into the following three

categories, each of which has several sub-categories:

(1) Time-Independent Non-Newtonian

(a) Bingham Plastics

Preceding page blank]
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(b) Pseudoplastic Fluids

(c) Dilitant Fluids

(2) Time-Dependent Non-Newtonian

(a) Thixotropic Fluids

(b) Rheopectic Fluids

(3) Viscoelastic Fluids

(a) Maxwell Bodies

(b) Kelvin-Voigt Bodies

The relationship between Newtonian fluids and the time-

independent non-Newtonian fluids is evident in Figure III-1.

Time-dependent fluids develop a build-up in reaction to

shearing. For example, a thixotropic fluid may behave

essentially in a Newtonian manner when first sheared.

However, after being sheared, if the fluid stands for a

short period of time and is sheared again the stress build-up

will be different than before. Thixotropic fluids also

exhibit a hysteresis. These characteristics are shown in

Figs. III-2 and 111-3, respectively.

The Bingham Plastic exhibits a yield effect, and obeys an

empirical relation of the form

T = + nlo III-2
T0

Pseudoplastics obey an empirical relation similar to the

Newtonian fluid. Ostwald suggested a power law which
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encompases pseudoplastics, Newtonian fluids, and dilitant

fluids, as follows:

T = Ky n III-3

n < 1 ; pseudoplastic power-law fluids

n = 1 ; Newtonian fluids

n > 1 ; dilitant power-law fluids

There are many other empirical relations proposed for these

fluids, but it is not important to go into the details of

them here.

Another class of fluids, the viscoelastic fluids, are thought

to be very important. Again, many empirical relations have

been proposed to describe these fluids which exhibit combined

characteristics of viscosity and elasticity. Most of the

models proposed are a simple combination of Newtonian

viscosity and Hookean elasticity. Obviously, more complex

relationships could be developed (such as power law viscosity

and Hookean elasticity, etc., etc.). The simple model

mentioned would obey a relation of the form

*TY + T.III-4

Vo X
0

or

X) + T = Y ,

where

0o relaxation time; i.e., the time

constant for exponential decay

of stress at a constant strain.
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-ty/110
If the motion is stopped, then the stress relaxes as e

For time varying processes, the elastic constants may actually

be complex functions of frequency.

General Linear Viscoelasticity

A general relationsionship for linear viscoelastic fluids

could be written in the form

--- + B. T
lijmn mn

+ B. mnmn
ijmn mn

+ c.. y +C.. Y
ijmn mn ijmn mn

+ T.. = Ci .
+ 1]- 1]

-+ -- _ --

Then the more simple one-dimensional viscoelastic models

and their mechanical analogies are:

(1) Linear Elastic (generalized Hook's Law);

= C.. Y
i]mn mn

(2) Linear Viscous (Newtonian fluid);

T.. = C .ij ijmn mn

(3) Maxwell Body;

B.., T + T T 
ijmnmn inj

= jmn mn
ijmn mn

(4) Kelvin-Voigt Body;

T.. Cjmn mny 
1i lijmn mn ijmn mn
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(5) etc., for many combinations and extensions.

Viscoelastic fluids exhibit many effects which are strange

to aerodynamics and gas dynamics, but which are well known

in rheology. When viscoelastic fluids are sheared rapidly

they exhibit normal stress effects (or cross stress) which

cannot exist in purely viscous fluids. Cross stress effects

were first predicted by Reiner in 1945, but were observed

for the first time by Weissenberg in 1947. Cross stresses

cause a viscoelastic fluid to climb a rotating shaft or

exhibit an axial load on a rotating disk, as shown in

Fig. III-4, and these characteristics now generally are

called the Weissenberg effect. Similar to the use of

Reynolds number in viscous flows to express the ratio of

inertial to viscous effects, in viscoelastic flows the

Weissenberg number expresses the ratio of elastic to viscous

effects!

There are numerous other viscoelastic effects, and three of

them should be mentioned:

(1) Viscoelastic effects are known to generate many types

of secondary flows; (depending on factors such as

geometry, motion of boundary surfaces, etc.).

(2) Viscoelasticity is known to depress the turbulent

friction factor when certain critical conditions are

exceeded; (this is known as the Toms effect, and is

illustrated in Fig. 111-5).

(3) Viscoelasticity is known to alter the critical Reynolds

number obtained from a stability analysis! (For example,

Wen (1963) and Betchov (1965)).
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Betchov investigated the Orr-Sommerfeld equation for a

Blasius boundary layer with a complex viscosity. He inte-

grated the equation numerically and found that the mean

flow is not influenced much by time-dependent effects, but

that neutrally stable oscillations are destabilized by the

stress lagging behind the rate of strain. Betchov's results

are shown in Fig. 111-6, where 6 is the boundary layer

thickness and 8 is the phase angle defined by

v
o [1 + (aCcTM)2]

III-10

0 = - arc tan (acTM)

Similar results were reported by Chun and Schwarz (1968) for

Poiseuille flow of a Second-Order Fluid. They found a

comparable strong shift in stability as the fluid becomes

more non-Newtonian. Bogue and White (1970) discuss other

studies of non-Newtonian effects on hydrodynamic stability.

Linear Elasticity

Symmetry assumptions play a big role in determining the

simplicity or complexity of the stress-strain relationships,

and in the static and dynamic characteristics displayed by

the model. Consider linear elasticity, defined by

j= CijmnYmn III-11

where C.. are constants, with (i,j,m,n, = 1,2,3). This
ijmn 4

relationship involves 3 = 81 independent constants.
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The assumption that only symmetric strain is present is

expressed by y = Y ' which requires that C.. = C.
Mn nm ijmn ljnm 

and the problem reduces to contain only 9 x 6 = 54

independent constants. The alternative assumption that the

stress is symmetric is expressed by T..ij = Tji , which

requires that C. = C.. , and again the number of
ljmn 13mn

independent constants is reduced to 6 x 9 = 54 . The

combined assumptions of symmetry in both stress and strain

is expressed by the joint requirements

C.. = C.. and C.. = C. III-12
ijmn jimn ijmn ijnm

so the stress-strain relation may be given by

Ta CaSY 1 III-13

where

(a,B = 1,2,3,4,5,6)

and the problem contains only 62 = 36 independent constants.

Considering the further assumption of isotropy, the most

general isotropic tensor of rank four is represented by

C A16 6 + A26. 6 + A36. 6 III-14
ljmn ij mn im jn jn mj

which may be rewritten in terms of a symmetric and a skew-

symmetric part. Dropping the skew-symmetric part and

substituting into

T., = C mnYmn III-15
1] ijmn mn
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gives the linear isotropic law for stress-strain symmetry:

T. = X6 6 Y
13 ij mm + Zpyij. III-16

Here there are only two independent constants, given by

X = A 1

2p = A2 + A 3

III-17

and the new coefficients (X and 2p) are known as Lame's

constants.

Contraction of T.. gives1]

Tii = 3Y ii + 2jYii 

= (3 + 2-)Yii '
11 ii 

III-18

and a common alternate arrangement of the coefficients is

found to be

E = 1 (3X + 2j) -

(x + ~)

P = X__

2(A + P)

modulus of elasticity

III-19

= Poisson's ratio
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Linear Viscosity

Results similar to linear elasticity are obtained for linear

viscosity, except that stress is now related to rate of

strain by jmn independent coefficients:

= jmnmn -20
ij ijmn mn

The general linear isotropic form for I.. is
l mn

C.. = A'6. .6 + A"6 6. + A"'6 6 , III-21
zijmn 1j mn lm jn in mj

which also may be written as

3ij mn mimjn + in + im6jn in jk

III-22

where the last term is the skew-symmetric part. The

X, a, and v are not the same coefficients discussed in

linear elasticity.

Now regardless of how the fluid is strained, if there is

assumed to be symmetry of the resulting stress (i.e.,

T.. = T j) , then the skew-symmetric coefficients vanish
13 ji

since

(6. 6. - 6 6j ) 0 . III-23
im jn in jm

This result is the same as would be obtained under the

assumption of symmetry in the rate of strain. Substitution

of the isotropic symmetric coefficient into the stress/rate-

of-strain relation yields
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= X6.ij 6mn) jmn + 6 im jn in jm mn

X6 .. 6 y + d 6 y
ij mn mn im jn mn

i mY jm

+ p6. 6j yin jm mn

+ 6 inYjn

X6ij mm + 2piij III-24

Contraction gives

..ii = (3X + 2p)Yi
iI13 = KYii III-25

where

K H (3X + 2 p) = coefficient of bulk viscosity .

It is conventional in classical fluid mechanics to assume

the coefficient of bulk viscosity is zero. This assumption,

due to Stokes, is named after him and yields the familiar

relation X = -2/3p

However, it is now well known that the bulk viscosity coeffi-

cient is not zero, and that it is indeed important in cases

such as the relaxation of diatomic gases excited by ultra-

sonic waves. Frequently it is stated in the literature that

the Stokes relation can be derived from the Kinetic Theory

for monatomic gases, but Truesdell (1952b) points out that

actually the Stokes relation is a basic assumption of that

theory.
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Constitutive equations are not exact descriptions of real

materials! The best that can be said of any mathematical

model of material behavior is that it provides a useful

description of certain features of the behavior of some

real material under specific (limited) conditions of oper-

ation. That same real material may under other circumstances

exhibit quite different types of Theological behavior.

Constitutive equations of exceeding complexity and generality

are available in the literature. Although they generally

are too complicated for use, they do serve as a framework

within which observed behavior under a wide range of con-

ditions can be categorized. Also, they serve as sources

for simpler equations which are valid under more restricted

conditions of flow.

111.2 Effects of Molecular Structure

Giesekus (1964) has shown that a suspension of soft-elastic

dumbells represents what is called an elastico-viscous

liquid of type N = 1 , and that if the hydrodynamic inter-

action of "dumbell spheres" is accounted for, the normal

stress in the direction of the flow gradient will have a

finite value.

Oldroyd (1964) shows that in steady simple shearing flow

with a finite velocity gradient, the elastico-viscous liquid

of type N will exhibit a variable apparent viscosity

depending on the rate of shear. It will also exhibit dif-

ferences in the normal stresses along and perpendicular to

the streamlines, and will exhibit phenomena such as the

previously mentioned Weissenberg climbing effect.
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Virk, et al, (1966) found from data on the Toms phenomenon

in turbulent flow of dilute polymer solutions that the onset

of drag reduction occurs only after the wall shear stress

exceeds a "critical" value which is characteristic of the

macromolecule in solution. This critical wall shear stress

corresponds to a turbulence scale characteristic of the

smallest eddies near the pipe wall becoming small enough

with respect to some macromolecular scale, which he chooses

as the "coil diameter", taken as the root mean square radius

of gyration of the unpertubed macromolecular coil.

Even the largest macromolecular coils have coil diameters of

only a few tenths of a micron. Therefore Virk's hypothesis

that in these suspensions the individual macromolecule is the

effective particle would imply that the turbulence structure

extends to exceedingly small scale!

Townsend (1956) indicated that the scale of the smallest

significant dissipative eddies near the pipe wall is roughly

v/U, and that of the corresponding energy containing eddies

is roughly ten times larger. On this basis, and using Virk's

data, Fabula et al (1966) claim that the individual macro-

molecules are too small to interfere with the turbulence

structure in a particle manner. However, it is quite

important to realize that Townsend's indication of the

smallest significant eddies is uncertain, and therefore open

to question. Fabula's (1966) comment that Townsend's (1956)

work represents "present" understanding is certainly not

consistent with the results discussed in the previous

section of this report concerning the "point" origin of

turbulent spots.
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Lieber (1964) has shown that the mechanical evolution of

molecular clusters by binary elastic collision depends in a

crucial manner on symmetry and uniformity in terms of

molecular geometry, mass distribution, collision attitude,

and orientation of relative and resultant velocity vectors.

He notes that most of what is factually known about turbu-

lence is only phenomenological in character, and is expressed

by describables and measurables that refer to the macro-scale.

His contention, concurred with here, is that these phenomena

necessarily have molecular counterparts, i.e., the observables

are but macroscopic manifestations of molecular phenomena.

Binary encounters play a central role in the kinetic theory

of gases, and it is reasonable to expect that the production

and phenomena of turbulence is at least in part attributable

to a succession of binary encounters whose spatial distribu-

tions and initial conditions are functions of time.

Lieber found that formation of a binary cluster is mechanically

impossible when the colliding bodies are smooth rigid non-loaded

spheres, but that clusters are mechanically admissable when

the bodies can support and transfer angular momentum. Smooth

rigid elastic spheres (with the point mass assumption) cannot

transfer angular momentum by collision and-consequently their

initial angular momenta is conserved under all collisions.

If these smooth rigid elastic bodies have less than spherical

symmetry then kinetic energy can be exchanged between trans-

lation and rotation, and conversely. Under these conditions

there are certain classes of initial conditions which do lead

to clusters.
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Lieber also found that nonuniformity in the inertial as well

as geometrical properties of colliding bodies may further

enhance clustering and modify dissipation. He reasoned

that there must be a limit to the growth of such an aggregate,

because when it becomes so large that it does not have suffi-

cient speed to overtake other bodies it will no longer be able

to direct their velocities and will cease to grow.

To test his ideas on binary clustering, Lieber conceived an

experiment to establish whether or not aspects of molecular

geometry not represented by the Navier-Stokes equations are

relevant to the production and decay of turbulence. The

experiments were conducted by a team under Bogdonov at

Princeton in 1956 and, after initial difficulties with

reproducibility, the experiments indeed did confirm the

existence of differences in rate of decay of turbulence in

excess of ten percent, attributable strictly to molecular

differences (in that case between air and argon). With

these positive experimental results, there clearly is reason

to believe that important aspects of the mechanisms which

account for either production or decay of turbulence are not

embodied in the Navier-Stokes equations.

Since the experiments of Weissenberg, additional experiments

have been conducted, and cross-stress effects have been

reported for fluids such as air [Reiner (1957, 1958, 1960),

Popper and Reiner (1958), Foux and Reiner (1964), and

Bousso (1964)]! While normal stress effects now are widely

accepted for that class of fluids referred to as Weissenberg

fluids, the effects observed for air are still highly con-

troversial [Taylor and Saffman (1957), and Oldroyd (1964)].

It seems, however, that the effects- really should be expected
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to be present even for simple diatomic gases, and that the

only argument relates to how strong the effects will be, i.e.,

how observable. This point then emphasizes the question of

how good are present experimental methods, and the answer

must be able to stand in view of the situation before and

after the experiments of Schubauer and Skramstad.

The dissipation mechanism discussed by Lieber (1949) suggests

that in sufficiently strong shock waves the temperature (as

a measure of molecular mo'tion in translation that does not

contribute to flow velocity) can indeed be anisotropic!

Thus, the temperature field in flows with sufficiently

large velocity gradients may in a sense be polarized. Lieber

(1964) notes that the concept of a polarized temperature

field is consistent with experimental results of Reiner

(1960). Velocity gradients in Reiner's experiments were

exceedingly large, and it would be expected that the kinetic

energy in molecular rotation would be appreciable if the

molecular geometry admitted transfer between translational

and rotational energies. The concept of a polarized temper-

ature is consistent with the dynamical exchange concepts of

Kistler (1969), and specifically is suggested in work by

Ried (1969).

Ericksen (1962a) explores orientation phenomena produced by

flow in certain ideal incompressible viscoelastic fluids

which tend to be unoriented at rest. He shows that the

fluids under consideration continue to be unoriented and

behave like Newtonian fluids when the velocity gradients

are sufficiently small. However, when the velocity gradients

are large and vorticity is not excessive, orientation may

occur! When it does, the fluid becomes non-Newtonian!

41



Vorticity actually produces a stabilizing effect and resists

particle orientation effects which could arise due to rapid

compression or extension disturbances. Thus eddies tend to

have a gyroscopic action giving stability, but on the other

hand they also cause intense velocity gradients which increase

in strength as the eddies cascade and disintegrate.

Clarke and McChesney (1964) develop a vorticity equation

which is a generalization of Crocco's result for a chemically

inert, nonrelaxing gas. They show that chemical reactions

and internal state transitions can give rise to the production

of vorticity in the gas. Hence, lack of chemical and internal

equilibrium leads to nonzero vorticity. A general result for

a reacting mixture has been given by Hayes and Wu (1958).

Clark and McChesney also show that in very weak fully

dispersed shock waves, the effect of internal mode relaxa-

tion is exactly equivalent to the action of viscosity.

Hence, internal mode relaxation should be expected to play

some role in stability of disturbances, just as viscosity

does. They conjecture that in near-equilibrium situations

the effect of relaxation of an internal mode could be

represented by an equivalent bulk viscosity. This is not

adequate for treatment of stronger shocks. In nitrogen,

for example, the lower rotational levels are excited almost

instantaneously, but for J > 20 , equilibration takes place

at a different rate that is much slower.

111.3 Diatomic Molecules

The simplest model of a rotating diatomic molecule is that

of a dumbell which rotates with moment of inertia I about

each of two orthogonal axes, both of which are perpendicular
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to the internuclear axis of the molecule. The molecule is

considered to have angular momentum about each of two axes.

This model assumes that the only angular momentum in the

problem is that due to nuclear motion. There are other

angular momenta which play a role in the complete problem.

For example, there also are electronic orbital angular

momenta, electron spin angular momenta, and nuclear spin

angular momenta. However, these will not be considered here

since they are much smaller effects.

There also could be an angular momentum component along the

molecule axis of symmetry. This would give the molecule the

properties of an axially symmetric spinning top, with a

quantum-mechanical motion analogous to precession and

nutation. However, the effective moment of inertia of the

electrons about this axis is so small compared to that of

the nuclei about the other two orthogonal axis that this

spin component also is neglected.

If the molecule is assumed to be a nonrigid rotator where

two atoms are connected by a massless spring, the inter-

nuclear distance (and therefore the moment of inertia I)

would increase with increasing rotational energy due to

centrifugal stretching. In this case a quantum mechanical

analysis of the rotational energy levels at a given vibra-

tional level would give

2
zo= J(J + 1) 2 D J 2(j + 1)2, 111-26
rotQ.M. 8I V
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where

D = function depending on vibrational frequency
V

J = rotational quantum number of the nuclei

= 0,1,2,3,---

h = Planck's constant.

Actually, even this expression is not complete because
2

I = mrj , and rJ stretches due to rotation at different

quantum numbers.

If the rotator is rigid and allowed to rotate freely, then

it may take on rotational energy levels given by

2
£st = J (J + 1) ; J = 0,1,2,3--- . III-27rot 8n I

Such energy levels are defined as consisting of all energy

states having identical values of the energy cj , and any

level having more than one state is said to be degenerate.

The number of states contained in a given energy level of

common energy Ej is denoted by gJ , and is called the

degeneracy of that level.

The internal energy is given by

E = NkT2 a(in Q) III-28
aT
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where

N = number of molecules

k = Boltzman's constant

T = temperature of the gas

and the partition function Q is given by

Q = E gj exp[-eJ/kT

J

For the specific internal energy e = E/mN

R = k/m and

Q = QtrQrotQvibQel ,

one can write

e = RT2 .T in Q

= RT 2 T [ln Qtr + RT2 [(n Qrot + ---7 ( tr - I rt

= e + e
tr rot

+

Now the degeneracy for rotation is given by

= 2J + 1 ,
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QrotQ M.
E(2J + 1) exp -J(J +2IkT 

J=o

The group (h2/8r2Ik) has the dimensions of temperature, and

is called the characteristic rotational temperature:

Or = (8 2Ik)(h2 III-34

Hence the partition function can be written as

QrotQ M
Q. M.

21r "6er

1 + 3e T + 5e T + ---

and numerical values of or must be found by spectroscopic

study.

In most cases or is very small. Clark and McChesney give:

Therefore, at ordinary temperatures, the ratio er/T is

very small, and the sum of terms representing the partition

function can be replaced by an integral

Qrot

co
(2F + 1 -J (J+l) Or/T
= (2J + 1)e
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which is the area under a curve of (2J+l) exp [-J(J+l)0r/T]

versus J ; that is, an approximation to the sum of all

energy levels J = 0,1,2,3,--- . This then is the classical

value for heteronuclear molecules. In general, for the

above conditions, the partition function is

Q T III-37
rot acr

where a symmetry factor has been added (a = 1 for heteronuclear

molecules, and a = 2 for homonuclear).

With this value for the partition function, it is found that

rotation of diatomic molecules accounts for a specific internal

energy per unit mass of

erot = RT2 In Qrot] III-38

= RT

Thus, at sufficiently high temperatures (which actually are

quite low), the rotation contributes RT to the internal

energy per unit mass. The rotation is then said to be

"fully excited". This does not mean that no further energy

can be taken up in rotation. What it really means is that

the rotation energy increases linearly with T

Spectrograms giving characteristic temperature of vibration

indicate that this is strictly a high-temperature problem,

and it will not be discussed further here.

47



In the case of the rotation mode in a diatomic molecule

such as nitrogen, only a few collisions are required for

the mode to reach a new equilibrium state. The time required

for transfer of energy from the translational mode is very

short. Hence, in a diatomic gas at room temperature, there

must be a considerable number of inelastic collisions con-

stantly occurring to preserve the rotational distribution.

Clarke and McChesney use Ehrenfest's Adiabatic Principle

and develop the criteria

(A p) >> 1 III-39

for near adiabatic translation-rotation interaction. Here

r is the equilibrium nuclear separation, and S is the

effective range of intermolecular force between some atom

A and a molecule BC involved in the collision. They point

out that in all cases except for hydrogen and helium at

cryogenic temperatures this relation is not satisfied, and

the transfer of energy from translation to rotation is

an efficient process and should occur readily on impact.

The time of rotation is comparable with the duration of the

collision so that the rotation cannot undergo a sufficient

number of rotations to preserve the adiabaticity of the

collision.

Clarke and McChesney also indicate that Landau and Teller

(1936) concluded the efficiency of the rotational-translational

collision interaction depended on the ratio

effective duration of a collision)
natural period of rotation
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and this ratio has a value around unity so that the energy

transfer is efficient. The interaction is not a weak

collision - rather it is a "violent" collision.

It is clear that if the excited rotational modes do not

relax fast enough, then there could be a pumping of con-

siderable energy into these modes. There is a limit however,

and this limit depends on translational temperature,

i.e., it depends on whether or not one atom of the dumbell

can be overtaken from the- "rear" and thereby receive a

collision that further increases its angular momentum

(similar to Lieber's analysis). All other collisions will

reduce the angular momentum as well as probably altering its

orientation. The orientation is of considerable importance

because this would indeed be a true physical mechanism

whereby wave disturbances can interact as they would in a

solid (i.e., longitudinal and transverse waves interacting).

It is clear from the above discussion that classical

continuum theories of fluids as used in aerodynamics do not

describe all the known properties of real fluids. The con-

tinuum replaces the physical fluid of molecules with a

mathematical model which in certain cases may not accurately

simulate characteristics of the real fluid. The degree

of accuracy obviously depends on the "external" conditions

and this usually is implied in the statement that there is

only a limited range of validity of any mathematical model

representing a physical system.

The above discussions clearly indicate that the structure

of the molecular species can have profound effects upon a

fluid's behavior. However, this statement is not limited
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to the generally recognized fact that numerical values of

transport coefficients differ from one fluid to another. It

also applies to the fact that the set of dynamical equations

and constitutive relations which are necessary for a des-

cription of the fluid's behavior may vary in form and number

from one fluid to another. This applies not just to "suspen-

sion molecules", but also to basic "carrier molecules" such

as nitrogen and oxygen (if the mean flow is air).

What really is needed is a generalization of the classical

continuum theory to provide for greater detail in treating

macroscopic manifestations of subcontinuum flow effects

without sacrificing convenience of the field approach. The

point of departure from traditional theory-is incorporation

of a general angular momentum principle for structured con-

tinua. This internal angular momentum is associated with

configurational and kinematic aspects of a more general

continuum "fluid particle" as discussed by Kistler (1969).

Two approaches to arriving at the desired equations will be

mentioned. One approach is through a generalized Boltzman

equation, as discussed in papers by Dahler, Scriven, Curtis,

McCoy, Condiff, Brenner, Parker, Kline, Allen, Green, and

others. The second approach, not worked out yet, is through

kinematical equations for a "continuum with discontinuities",

using equations given by authors such as Truesdell, Jaunzemis,

Erringen, etc. Though the necessary equations have been

available for years, their use in developing a "Slip Theory"

for boundary layers to account for diatomic molecular effects

seems to be a new concept and first suggested here.
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The above discussion has emphasized that a finite time is

required for establishment of equilibrium in gases. For a

gas in thermal equilibrium, individual molecules are con-

stantly gaining and losing energy through collisions but

the total change is zero (except for what is exchanged at

the walls). The amount of energy either gained or lost

per collision (measured by collisional efficiency) is of no

importance in a condition of equilibrium. However, if

conditions suddenly change so that the gas finds itself

seeking a new state of equilibrium, then the rate of

adjustment (measured by "relaxation time") is governed by

collisional efficiency. If the efficiency is high, then

molecules adjust rapidly and relaxation time is short. But,

for a given collisional efficiency, if changes become too

sudden (high shear rates, etc.), the relaxation effects

become more and more important.

Parker (1959), using a molecular interaction potential

consisting of an attractive component which acts between

geometrical centers of molecules and a repulsive component

assumed to originate from two centers of force in each

molecule, obtained good results for the number of collisions

necessary to establish rotational equilibrium. For nitrogen

he obtained a rotational collision number of 4.01 for 300 °K,

whereas experimental values obtained ultrasonically are 6, 3,

5, and 5.26. For oxygen he obtained 3.45 for 300 °K, whereas

experimental values obtained ultrasonically are 3, 12, and 5.

So, as noted earlier, the collision efficiency is good, and

only a few collisions are necessary even at low temperatures.

A macroscopic transport process has the capability of

sustaining preferred orientations among the constituent
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molecules (or aggregate particles) whenever the geometrical

configuration departs from smooth spherical and the mass

configuration departs from symmetrical. This ability and

tendency to polarize may be regarded as the natural con-

sequence of biasing of molecular interactions inherent in

the frictional interference which accompanies the transport.

The extent to which orientation occurs is governed in large

measure by how small the interval of time between successive

collisions in relation to the characteristic time for

rotational disorientation! Even in a dilute gas state,

molecules subjected to persuasive action of nearby boundaries

may reorient appreciably and thereby revise their own

influence upon a transport process.

Even though a precise determination of the modified transport

coefficients for a diatomic gas is not the primary emphasis

in this document, it is worth discussing the method by which

they are obtained. Basically, in determining transport

coefficients, the collisional equations are solved for a

binary collision with some selected molecular mass, geometry,

and force potential characteristics, and initial conditions

on velocity vectors, etc. Therefore, at this point, the

collisional equations themselves will be considered in order

to gain insight into their completeness. Specifically,

it is of interest to determine whether or not the equations

used in calculating transport coefficients accurately account

for molecular rotation effects in the collision dynamics.
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111.4 Collision Kinetics

Following Hirschfelder, Curtiss, and Byrd (1954)*, the

determination of appropriate collision kinematic equations

begins with the laws of Newton expressed as Lagrangian

equations of motion. The Lagrangian equations of motion

are the Newtonian equations transformed to a generalized

coordinate system. A Lagrangian function, L(qq2,---,

9 3 N; ql'q --- ,), with qk(x1 ,y 1 ,z, ---,x ,yn,z) as

generalized coordinates is defined by

L = K -c , III-40

where D is the potential energy function for the entire

system, and K is the kinetic energy of the system.

Usually K is defined by

K = i III-41

i

which is the sum of the kinetic energies of the individual

particles. One must be careful here, because for a diatomic

particle this may not account for the kinetic energy of

rotation. It is not clear that some of the formulations

appearing in the literature have started with a sufficiently

generalized Lagrangian.
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Generalized momentum of the system is written as

aL
Pk = III1-42

and if the generalized coordinates were Cartesian coordinates,

this generalized momenta then would reduce to ordinary linear

momenta.

Next, a Hamiltonian function of the system, H(ql,---,q3N;

P1'---P3N), is defined by

H(ql,---,q3N; P1, -'P3N) Pi i - L . III-43
i

Thus, the Lagrangian is a function of the coordinates and

their time derivatives, whereas the Hamiltonian is a func-

tion of the coordinates and their conjugate momenta. In

the above expression for the Hamiltonian, the qK appear

explicitly, and also implicitly in the Lagrangian. Differ-

entiation of H with respect to Pi and qi gives

III-44

aH aqj a a1L aq.
aqi = Pj aq aqi aq
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These may be simplified using Lagrange's equations of motion

and the definition of conjugate momenta Pk to give

aH

api i

III-45

aH
3q = -Pi

These are Hamilton's equations of motion, and are central to

the development of a key equation in collision mechanics,

the Liouville equation.

The Hamiltonian for a conservative system is numerically

equal to the total energy of the system; i.e., it can be

shown that

H = K + · = E . III-46

Consider now some property of the system, S = S(qi,pi,t)

which depends on the dynamical state of the system and in

general depends explicitly on time. The change in S with

time, following a point along a natural trajectory, is

DS S D S * US *
Dt at + i qi + p

= S + aH aS aH
at i ii a i aP q

= + [S,H] . III-47at
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In the last equation, notation called the Poisson braket

has been introduced. It should be noted that an assumption

of continuity along the trajectory has been introduced, and

higher order terms have been dropped.

Proceeding traditionally, if one considers a large collection

of noninteracting systems which differ from each other only

in their initial conditions, the state of the entire

collection of systems is described by a set of points. For

a sufficiently large number of systems, the set of repre-

sentative points can be specified by a continuous distri-

bution function, p(qi,Pi,t), which is called the density in

phase space. The choice of the density function is abitrary

at the initial time, but is fixed at any subsequent time by

the equations of motion. Since there are no "sources" or

"sinks" in phase space, the distribution function satisfies

a generalized continuity equation:

Dat i+ E(4qi) + pi (Pi) = . III-48

Then using Hamilton's canonical equations and the Poisson

bracket, the generalized continuity equation can be put in

the form

.Dp =p + [pH] = 0 , III-49

which is called the Liouville equation.
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A gas made up of N molecules may be represented by an

ensemble described by the distribution function

f(N)(qN,Np ,t) in y-space of 6N dimensions, and the

variation of this distribution function with time must obey

the Liouville equation. Thus, the time variation of the

distribution function f(N) is given by

Df(N) _ f N af N)f f( N) H = o
t D at ( -N ' N a-N N

aq Dp Dp Dq
III-50

With mk as the mass of the molecule k , F
k

as the

force on molecule k due to all other molecules, and Bk

as the force on molecule k due to an external field, the

above equation can be written as

~t + 0
1 k (qk )Pk

III-51

It usually is assumed that the macroscopic behavior of the.

gas is described with sufficient accuracy by a distribution

function of low order. At sufficiently low densities, the

macroscopic behavior is described by the first-order set of

distribution functions f(l) These distribution functions
1 (N)

are defined as the integral of f(N) over the coordinates

and momenta of all but one of the molecules. Thus, an

equation for f(l) may be obtained from the Liouville

equation by integrating over the coordinates of (N-l)

molecules. Performing this integration, and requiring f(1)
5
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to vanish both at the walls of the container and also for

|Pi + ~ , the following equation is given by HCB:

1i 11
at m IL ) ( IL

3 aP-i

N N- 1 _-i
" · z)- dq dp

III-52

In considering a system of identical molecules, the distri-

bution function f(N) is symmetric in the coordinates of

all the molecules, because there is no physical differ-

entiation among them. Therefore, in obtaining f(l) it

does not matter which molecule is considered. The f(l)

is adequate for description of all physical properties of

gases which do not depend upon relative positions of two or

more molecules, and so it provides a level of information

sufficient for moderately dilute gases. For gases at

higher density, or for dilute gases with local density con-

centrations, a knowledge of higher order distribution

functions is required.

Df( 1 )
The equation for Dt does not in itself define the behavior

f f(1) That is, there is no unique integro-differentialof f l) That is, there is no unique integro-differential
1

equation for f() , and in order to remove this ambiguity

it is necessary to invoke an additional condition which

restricts the possible functions f(N) This is the condition

of molecular chaos.

The measure of influence that the state of one particle has

on the state of a different particle is called the correlation
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between the particles. When the states of two particles are

independent of one another, the particles are said to be

uncorrelated, and this condition of vanishing correlations

is what Liboff (1969) describes as the property or constraint

of molecular chaos.

The incident velocities of two particles prior to collision

are independent, but after collision they are not independent.

After collision, the velocities are related thru the con-

servation equations. Hence, collisions create correlations,

but they also destroy previous correlations. Molecular

chaos in essence assumes that such encounters will distribute

the molecular states at random, and without any correlation

between velocity and position of two molecules prior to an

encounter. Thus, there is to be no correlation remaining

from a possible previous encounter between the molecules,

and furthermore their force fields do not encounter. This

clearly means that the molecular force fields are assumed to

be short-ranged compared to the mean free path, so that the

molecules travel a relatively long initial trajectory

uninfluenced by other molecules until just the very last

instant prior to collision.

Chapman and Cowling (1939) indicate that for gases at N.T.P.

the mean free path is of the order of 10- cm., which is

several hundred times the diameter of the molecules, so at

the beginning of the free paths which terminate in the

collision of two molecules it indeed is unlikely that there

is any new correlation between their velocities. However,

they do point out that, say at 100 atm., the free path is

comparable with the dimensions of a molecule and molecular

chaos under these conditions may well be invalid.
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Actually, the assumption of molecular chaos, involving

random distribution of molecules in all states, is a condi-

tion corresponding to local equilibrium. Anytime there might

be some phenomena in the fluid that destroys this equilibrium

it will destroy the randomness, higher order distribution

functions may become necessary, and molecular chaos would

not hold.

The next step by HCB is to restrict the analysis to a single

component gas and consider only two-body forces between the

molecules. Under these restrictions, i = 1 , N = 2 , and

the equation for f(l) becomes

12

at m- 1 *a + 1* p 

= {f12 d P2

III-53

If the intermolecular forces are short range, a collision

diameter r can be defined such that 12 is essentially
o F12

zero when r- r21 > r . Then all contributions to the

collision integral above will come only from regions where

Ir- r2 < r 21 0

Now the pair distribution function can be written as

f(2 ) (1)f(1) + C(2) III-54
12 = 2 12
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where C(2) is the correlation between particles. Thus,
12

the case of vanishing correlation is expressed by

f(2 ) = f(l)f() III-55
12 1 2 1 5

which was Liboff's definition of molecular chaos, and is

assumed to hold outside the interaction sphere.

Inside the interaction sphere, the pair distribution

function is now known explicitly. In order to proceed with

developing a Boltzman equation from the Liouville equation,

HCB then follow Kirkwood (1947), and use results where he

showed that the Boltzman equation implies an assumption that

the distribution functions f(l) do not change appreciably
1

during a collision. HCB then invoke the assumption that the

pair distribution function does not change during a collision.

For uncorrelated particles at a short time 6t prior to a

collision, they write

f12 'q2; 'P2'

(1) (1)( , t -6t)
fl qpl't tf2 ('P2'- '

III-56

Then, if the pair distribution function after the collision

is the same as before the collision, it can also be written

f12 (ql'q2; Pl'P2 ; t )

f (= ''t-t) f 2 'Pt-6t)

III-57
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Thus, for every (q2,p2 ) after a collision, the pair distri-

bution function could be related to one-particle distribution

functions at a time (t-6t) which is prior to the collision.

For each point there is a different 6t , and 6t is of the

order of magnitude of the duration of a collision, so it is

small compared with macroscopic measurements.

The assumption of no change in distribution functions

clearly limits the above approach to equilibrium situations

where there are no sources or sinks in state space.

Regarding this short time interval, Kirkwood corrected for

the various 6t by time averaging the first-order equation

for i-species over an interval somewhat longer than a

collision. The time averaged distribution function then

is denoted by ~(1) and the equation of change becomes:
1

Dt 3q~~~~~i ·
~ at + Imi *Pi

=f i f i f 1)gijb db de dPj

J III-58

T T

If the 6t represents an interval 2 to -2 where 

is an interval of time comparable to the duration of a

collision, and is the interval over which the distribution

functions are time averaged, then HCB give
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f()f (t + T) (t + T) dT
i j I i~

2 2 jf(1) (t)f(1) (t) + o () 
i i j T4 f 2

'U I,,~ ~t

f(1) (1)af. f. a'
+ 2 1 3 + f (1) + 2 a j f

3t at j
III-59

K ~ ff(1) (t + T) dT 1 f/ (1) (t + r) dj

0-/2
-I ~o/2 

o(1) j + f
f(l) (t)f () (t) + -[f+ i

~~i tj~24 a2 t t J
III-60

Thus, if the distribution functions do not change appreciably

in the time interval T over which they are averaged, the

average of the product will be equal to the product of the

averages. When this condition holds,

f(l)f(l) = T(1)T (1) III-61
i j i j

and Kirkwood's equation becomes the Boltzman equation

obtained by physical arguments. Both Kirkwood's equation
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and the Boltzman equation imply an assumption that the

particles are uncorrelated before and after collision,

because the collision integral must account for change in

the pair distribution function, and yet there is no correla-

tion term in the change equations given above.

Notation in Kirkwood's equation relates directly for that

used in the physical derivation of the Boltzman equation.

In the physical derivation, the probable number of molecules

of type-i lost from the momentum range Pi to (Pi+dpi)

in the position range r to (r+dr) because of collisions

with molecules of type j during the time interval dt is

given by

ri ) dr dp dt . III-62
1j

As before, consider some target molecule i , and let

molecule j approach with relative momenta (j - i ) .

The initial relative velocity will be

P. Pi
= III-63

gji m. m.

and is the same parameter as in Kirkwood's equation. An

impact parameter b is taken as the inner radius of a

cylindrical shell about the trajectory if molecule i

This shell will characterize the collision (i.e., the

potential field of the molecule) because any molecule j

located within the cylinder will be impacted and any

j-molecule outside will pass uninfluenced. Clearly this

does not characterize more general potentials and diatomic
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geometry. The parameter de identifies a sector around

the axis of the cylinder. The probable number of j-molecules

within any sector is

f(1) (q,pt)gijb db de dt , III-64

where

gij = gji = Jil III-65

The probable number of i-molecules in the volume element

dr about r with momentum in the range dPi about Pi

is

fi (r, it) dr dPi III-66

Then

ri
-

dr dpi dt = dr dPi dt f i )(r pt)

fi (r,Pi,t)gijb db de dt

III-67

and hence

rij) = |I (f-, :fb db dE dP III-68oij fff f 1)gb i ·
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A similar expression is obtained for the probable

number of molecules of the ith kind which in time dt join

the group of points which started from (r,pi) because of

collision with molecules of type j . This is denoted by

i+ ) dr dPi dt , and it is found that

r(+) = f(l)f() g 1b db dE d III-69
ij i j ij '

where primes indicate conditions after a collision. For

smooth spheres with spherically symmetric potential functions,

the collision is reversible and the following equalities

hold:

gij = gij

b = b' III-70

dpi dpj = dp: i dp

These relations are not valid for more general bodies and

potentials.

Under conditions where they are valid, then the collision

integral becomes

E fff[f(l)' f(l) - f()f(l)]gijb db de dpj III-71

j
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and is analogous to the collision integral in Kirkwood's

equation except that here the distribution functions are

not time averaged.

The Boltzman equation also frequently is written in coordinate-

velocity phase space, fi(q,vi,t), instead of coordinate-momenta

phase space, and in coordinate-velocity space it is conven-

tional to drop the superscript.

III.5 Kinetic Theory for Nonspherical Molecules

Curtis (1956), Dahler (1959), Dahler and Scriven (1963),

Dahler (1965), and others have developed an extensive and

more general theory for the kinematics of nonspherical

molecules where molecular angular momentum and molecular

orientation must be accounted for.

The dynamical state of a single molecule is now described by

a set of 12 coordinates: coordinates of the center of mass,

q = (ql,q2 ,q3) ; the linear velocity, v = (v1,v2,v3) ; the
Eulerian angles, a = (aC

1
, 2 ,a 3) ; and the angular velocity

in the space-fixed coordinate system w = (w1,W 2,W3
) . The

state of a gas made up of such molecules is described by a

distribution function f(q,v,a,w,t) in the corresponding

generalized space.

This distribution function is defined so that the number of

molecules with q between q and (q + dq), with v between

v and (v+dv), with a between a and (a+da), and with

X between w and (t+d') is

f(q,v,a,`,t) dq dv da dv . III-72
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This distribution is normalized so that

n = f dv dca d'Z III-73

where n is the number density of molecules.-

Curtis (1956) follows this pattern and develops an equation

(qvatJ , III-74

where J is the net rate at which molecules are gained into

a particular state due to collisions, and the operator g

is defined by

~Gf = f I a (Bf)+ +(if a (if)]+ (
+ +

aq av
III-75

His equation then is a generalized Boltzman integro-differ-

ential equation describing the time variation of the distri-

bution function. The parameter J is just the collision

integral.

Curtis defines a summational invariant (i as a

function of v and w , such that the following relation

holds:

i) + (i) (i)' ' III-76

The subscripts refer to the molecules in the collision, and

primed values are before an encounter whereas unprimed are

final (in contrast to earlier notation used herein).
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Curtis then defines four independent summational invariants

(1) = .1

(2) my , linear momentum

III-77

'p(3) ~ L'= + m[qxv] , angular momentum

(4) = mv + 1 -I.

where I is the moment-of-inertia tensor in the space fixed

coordinate system.

Curtis demonstrates that

(i)oJ dv dw da = 0 , III-78

so when his modified Boltzman equation is multiplied by a

general summational invariant '(i) if the above condition

is invoked, and the result integrated over v, a, and ,

the following general equation of change is obtained:

at [n' ] [n< (i)] _ i)
as q Da~v

- n<<((k aa k a > = 0
k

III-79

From this equation the four governing equations of change

are found by inserting each of the four summational

invariants in turn.
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By the procedure of setting the collision terms to zero,

Curtis may have discarded some important features of a

diatomic collision. It seems in essence that he has invoked

an assumption of reversibility of the collision, which is

not valid for diatomic molecules. That is, for every

"forward" collision there is not a unique inverse.

Lordi and Mates (1970) have investigated the rotational-

translational energy transfer in collisions between homo-

nuclear diatomic molecules, but assuming constant angular

momentum and allowable inverse collisions. They used

Parker's model for the intermolecular potential. The

results for shear viscosity, thermal conductivity, and

rotational relaxation times actually compared well with

experimental values. Results were obtained for both a

coplanar and a three-dimensional collision model, and for

thermal conductivity and relaxation times the coplanar

values more nearly agreed with experiment. The opposite

result would be expected, and this discrepancy may have

been a numerical problem with the 3D computer solution of

the collision process.

Transport phenomena in monatomic gases have been described

successfully in terms of atomic collision processes for quite

some time, and the theory is described in well-known texts

such as HCB, and Chapman and Cowling (1939). Gradually work

has been done on idealized diatomic molecular models such as

the rough or loaded spheres, but only recently has work been

published for transfer processes in diatomic gases with more

realistic models of the intermolecular potential.
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Wang-Chang and Uhlenbeck (1951) did the first formal kinetic

theory analysis of transport phenomena of polyatomic gases

for a general potential. They used a semiclassical treatment

of the molecular degrees of freedom, and obtained a Chapman-

Enskog-type solution to the appropriate Boltzman equation.

Two cases were distinguished: easy transfer of energy from

internal modes to translation, and difficult transfer.

Their analysis is described in HCB.

Taxman (1958) did a purely classical study of the easy

transfer case, not allowing inverse collisions. Sather and

Dahler (1963), Condiff, Lu, and Dahler (1965), and Sandler

and Dahler (1966) have evaluated loaded spheres, rough

spheres, rigid spherocylinders, and other models. The

dependence of the distribution function on the direction of

the molecular angular momentum was included. Such an effect

arises from the absence of inverse collisions in these

idealized models, and it has a large effect on the transport

properties!

With this background, Lordi and Mates obtained numerical

solutions for the collision trajectories of two diatomic

molecules using Parker's potential. They then performed a

Monte Carlo evaluation of the transport properties. For

the Parker model, each molecule had two repulsive force

centers located on the internuclear axis, but not necessarily

on the rigidly connected atomic mass centers. The attractive

force center is located on the molecular center of mass.

Both the attractive and repulsive parts of the intermolecular

potential vary exponentially with distance between the

respective centers.
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They found, of course, that the problem was greatly simplified

for molecules rotating only in the collision plane. The

duration of the collision was found to be of the order of

10 2 sec, and the molecules go through one or two rotations

in that time. The scattering angle is close to that for a

Lennard-Jones potential. Even for the simple coplanar

collision there are many collision parameters which were

found to influence significantly the rotational energy

transfer. One of the most important was initial orientation

of the molecules. The initial rotational energy and the

potential-well depth also were quite significant.

For the out-of-plane rotations, they numerically solved the

full three-dimensional equations of motion for a binary

collision. Initial direction of rotation was as significant

as initial orientation. In all, the deflection angles and

rotational-energy change did not differ appreciabley from

the coplanar case, but the run times were significantly

longer (30-50 sec. as compared to about 6 sec.).

The multidimensional integrals cannot be evaluated analyti-

cally for a general intermolecular potential, so a Monte

Carlo evaluation was performed. Initial values of the

collision paramaters are obtained from suitable distributions

of random variables. With these initial conditions, the

numerical solution of the collision trajectory is performed,

as discussed above. Then, with the solution for the tra-

jectory, the integrands in the collision integrals can be

obtained.
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The results of the coplanar calculations showed that the

values of the integrals after 500 trials were close to the

values after 1,000 trials. Since even 500 trials is

extremely time consuming, Lordi and Mates extended their

work to obtain an approximate method of calculating transport

properties. The basic technique is to seek a series solution

to the Lagrangian formm-of the equations of motion for a

coplanar collision. Using this technique they obtained

rotational relaxation times which compare very favorably

with the Monte Carlo solution, as shown below for nitrogen:

These data compare very well with experimental values,

and therefore the method provides realistic diatomic trans-

port data for use in appropriate generalized continuum

equations for the dynamics of a diatomic gas.
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Temperature Rotational Relaxation Time

Monte Carlo Approx. Soln.

(°K) p R (dyne-sec/cm2) pTR(dyne-sec/cm2 )

300 7.73 x 10 - 4 8.17 x 10 - 4

600 1.63 x 10 - 3 1.85 x 10 - 3

900 2.84 x 10 - 3 2.78 x 10 - 3
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IV. FLUID MATH MODELS

This section considers the classical macroscopic equations

of motion for a continuum in order to indicate what factors

in their derivation might be questionable if the equations

are to be applied to stability analyses of a diatomic

medium.

It is found that there are questionable areas, and these

are discussed to clarify the nature of assumptions on which

the classical equations rest. This review, by highlighting

these assumptions, also provides a clue as to the type of

modifications which might be made to the classical Navier-

Stokes equations in order to model more accurately the

momentum and energy exchange processes which are believed

to occur in the dynamics of a diatomic fluid. These

processes, of course, could very well influence a stability

analysis, which is the primary concern of this work.

IV.1 Reynolds Transport Theorem

Reynolds Transport Theorem is a key part of the development

of all the governing differential equations of a fluid. In

essence, it provides the method for evaluating total rate

of change with time of some physical parameter of the fluid.

For some arbitrary physical parameter 5(x,t), which may be

a scalar or vector quantity, the time rate of change of this

parameter integrated over a changing volume v(t) may be

expressed as the time rate of change of the same parameter

integrated over a fixed volume v using the definition of

the Jacobian J (see Aris, 1962):

dt fJi·(x,t) dv = f Ixt)J dvo IV-1
v(t) v
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Since v is not a function of time, the derivative may be

taken inside the integral to yield

d fr( ,t)Jdv = [ + ] dv IV-2

v v
o o

But time derivative of the Jacobian may be written as

d(J) a(J) + V * V(J)

V * V(J) (V · J ,

since the field is continuous and _J . Note: See

eqn. IV-40 and comments in that section.

Thus

d dJ
dT ffIf(x,t) dv = dj + ] dvfif o

v(t) v
o

IfJ[d J + (V.V)J] dvo
v
0

- Jj[a- + (V.)]J dv
v

o

= I~ i Fd + g(V-v)] dv
v(t)

= v [+ V(gt] dv IV-4

v(t)
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Sometimes this expression is written as the sum of a volume

integral and a surface integral. Note that the operation

extracting the Jacobian from the bracket on the right hand

side depended on treating the nabla operator as a conven-

tional vector with the commutative property. This does not

hold in general, and yields the same result only for contin-

uous fields. But the assumption of continuous fields is a

precept for the continuum method, so the question actually

concerns the range of validity of a continuum theory. The

fluid actually is not a continuum but instead is an ensemble

of atoms, molecules and possibly collections of molecules

which will be called particles.

Experience over at least the last century has established

the usefulness and indeed validity of continuum equations

for flow of. diatomic molecules under not too rarefied or

not too dense conditions. However, for some situations

involving rapid shear and strong gradients in the flow, a

medium of diatomic molecules might need to be analyzed as

some type continuum with a finite number of discontinuities

representing substructure boundaries. Such a flow might be

modeled as horizontal lamina, with the conventional continuum

approach given appropriate modifications to incorporate

jump conditions at boundaries with container walls and at

boundaries between lamina. Thickness of the lamina would

represent a microscale characteristic length. It appears

that the jump conditions (Jaunzemis (1967), Eringen (1967),

Truesdell (1960, 1965)) would yield an additional equation

of transport which would account for the same type of motion

coupling effects that will be explored here for fluids with

asymmetric stress (after the manner of Dahler, et al.).
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IV.2 Governing Differential Equations for Classical Model

As noted in the previous section, the Reynolds Transport

Theorem is the basic relation used in developing all the

governing conservation or balance equations of classical

hydrodynamics.

A general equation of balance is obtained by equating time

rate of change of the volume integral of some physical

parameter to whatever external effects are assumed to be

the cause of the change. The general balance equation is

written as:

asd fl 9(X,t) dv = External Effects . IV-5

v(t)

Many of the questions raised here concerning the classical

equations of hydrodynamics can be traced to inadequate use

of this balance equation, because math models constructed

from this balance equation incorporate only those effects

which the investigator assumes are present. If he assumes

that asymmetric stress and elasticity are negligible (or

absent) then the model can never reveal any situations where

these effects might not be negligible!

If external effects are viewed as the sum of body effects

integrated over the volume of the fluid element plus surface

effects integrated over the surface of the element, this can

be written as

External Effects = 5 J dv + | .un ds ,

v(t) s(t) IV-6
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where u is the velocity of the center of mass of the

element, and n is the unit normal vector at any point on

the surface. Then a tabulation of physical parameters and

corresponding external effects is as follows.

Conservation of Mass

The'balance equation for mass

written

per unit volume then is

d JiP dv = 0

v(t)

IV-7

By Reynolds Transport Theorem, the left hand side is expanded,

and balance is written as

;vIti [at3 + V. (pu)] dv =IP.;i I P t ]d

. IV-8
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mass per
nit vol. p 0

linear Fpu F + f dv
s t) momentum vt

oment of x p x dFs)+ | ( X FB) dv
omentum s(t) v(t)

total L M s+ MBdv
angular v t)
omentum

energy E = + e + e* d dW
_ _ _ at -WE



Since v(t) is an arbitrary volume selected for investigation,

this may be written

a- + v. (p) = O

or in index notation

apu.
ap + Pu- 0
at ax.

Expanding the second term,

au.
ap + P a + a oBy defitu. - 0-y ax. tj ax.

By definition,

IV-9

IV-10

IV-11

0 > steady flow

IV-12and
ap =
ax

m

0 v incompressible flow .

Hence, for steady incompressible flow, conservation of mass

yields

au.
1 = 0 .

aX.
]

Conservation of Linear Momentum

Similarly, conservation of linear momentum yields
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IV-14

For details of the derivation see Aris (1962).

Now the stress tensor S.. is frequently assumed to be

separable into a static part and a dynamic part,

S.. = -p6 + T.., IV-15
13 ij ij

where 6.. is the kronecker delta, p is the hydrostatic1D
stress (not yet identified as pressure), and Tij is the

viscous stress tensor. The stress tensor T.. need not be
1]

assumed to be purely viscous; any of the more general con-

.stitutive assumptions such as those discussed in Section III
could be selected! Thus, the quality of a math model

depends on judgement concerning what characteristics the

fluid is assumed to process!

For the assumption that the fluid is linear, isotropic, and

purely viscous, the constitutive equation is

T . = , IV-16
1i ijmn mn

where

au
m

=m -,IV-17mn 3X
n
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= .ij mn13 mn
+ 1(65 6 + 6 6 ) + -1 (6 6 - 6 . ).im jn in jm im jn in jm

IV-18

Hence,

T . i j mn6 + (6 i 6 + 6 . 6ymni] ij mn mnim jn mn in jm mn

+ 1(im jn mn

= 6ij.yij mn

in jmYmn)

+ i + Yi) + (iji ji + 

IV-19

and

S. -P6ij . +Ymn +p (y + i) l p(Y jj ij ij mn ij ji ij

-P6..i]

au au au Iau au
+ 6 Um ++ + I j11 .

ij axm i ax.aj -iX

IV-20

Contraction gives

S. 
11 = -p.. + X6ii .i1 iimm + 2pYii ,

IV-21

so the total stress is

3

S = ii

i=l

- 3 p + 3Xyi
i

+ 2pYii

= - 3 p + (3X + 2p)Yii
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Under static conditions, S = -3p , and S is identified

as the hydrostatic pressure P . Hence, at equilibrium,

S = -3p E P . IV-23

This condition is assumed to hold also in dynamic situations

not too far from equilibrium, which requires the assumption

that bulk viscosity K is identically zero; i.e.,

K (3X + 2 p) E 0 , IV-24

since yii . This is called Stoke's assumption, and it

is now known that it does not hold for many important cases.

Furthermore, the parameter p classically is identified

with thermodynamic pressure for the static condition, and

it is assumed that this also holds for dynamic situations

involving small deformations. However, experimental results

with many fluids show that when density variations are large

there does not seem to be any correlation between X and V

and consequently p cannot be the average normal stress (see

Eskinazi, 1967). Furthermore, for most fluid motions with

large dilitation rates the ratio is positive rather than

negative, and may be as high as 200. Under dynamic situations,

p should not be identified as the thermodynamic pressure.

Since the Orr-Sommerfeld stability equation incorporates

these assumptions, it is clear that they alter results

obtained with that equation, and it also is clear that when

oscillations become large the assumptions involving small

deformation are not valid!
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Expanding the equation of motion gives

au.a au. au aSik
P + + U ap = at i at i ax. . aX. +uj k ~l x.P 

IV-25

Again,

atP- 0 * steady flow

and

a 5 0 m incompressible flow

Hence, for steady incompressible flow,

au. au. as
at + pu ax = pfi + xk IV-26

This equation, with suitable assumptions on a constitutive
expression for the stress tensor, is the basic equation used
in most fluid stability analyses. Only limited work has been
done with more general unsteady compressible forms.

Moment of Momentum

If the stress tensor is written as the sum of a symmetric
part and an anti-symmetric part, this gives
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s.. = (S) (a)ij ij ij

s(S)+ 1
= ij T ijk kmnSmn

= (S)+ 1 E A IV-27
ij + ijkAk '

where Ak is a pseudo-vector.

Balance of moment of the linear momentum equation for the

steady incompressible case gives

d
iXiUijXif (ekijXiSu) = f Ak

IV-28

The pseudo-vector Ak resulted from the anti-symmetric part
of the stress tensor. By various arguments (Aris, 1962;

Frederickson, 1964) it is generally assumed that the fluids

of classical hydrodynamics and aerodynamics cannot support

asymmetrical shear, so Ak is taken to be zero.

Total Angular Momentum

Balance of total angular momentum L gives

5d IJPLk dv = |P(Cijxifj + Gk dv

v(t) v(t)

+ n(E kijiS j + Ck) dS,

S(t)
IV-29
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or for steady incompressible flow

dL
d- Pk ijxifj + PG + (ki Sj) + Cdt kiji xi k kiji kj ,' Czk,k

IV-30

where Gk is a body couple and C k is a surface couple,

and Lk = Ik + Eki jXiUj represents the sum of any internal

or spin angular momentum plus the moment of linear momentum.

Spin Angular Momentum

Subtracting the equation for moment of momentum from the

total angular momentum gives

d!
k

P dt pGk + C k,k + Ak IV-31

where

= LL - E ,XU.. . IV-32k k kij 1 3

From this equation it is clear that the antisymmetric part

of the stress tensor, if it exists, will contribute to a

rate of increase of internal or spin angular momentum! Thus,

when the stress tensor is not symmetric, the moment of

momentum is not conserved in the classical sense. Loss of

moment of momentum will show up as increased spin angular

momentum. This then represents an energy coupling between

translational and rotational modes, and clearly would need

to be considered in any stability analysis of the system!
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Fluid Mechanics With Antisymmetric Stress

Grad (1952), Dahler (1959), Dahler and Scriven (1963),

Condiff and Dahler (1964), and Dahler (1965) discuss in

detail the theory of structured continua. For the fluid

mechanical effects of antisymmetric stress, Condiff and

Dahler ignore submolecular forms of angular momentum and

express the internal angular momentum X in terms of a

microscopic spin field W and a tensor field I which
o

simulates the average moment of inertia of the molecules.

In general, I is a function of position and time, but if

the individual molecules are not too flexible or eccentric

in shape then I can be regarded as a constant dyadic. If

the fluid is isotropic, then

I = IU , IV-33

where U is the unit dyadic and I is a constant scalar.

Condiff and Dahler consider a linear Stokesian fluid

with the symmetric part of the stress tensor independent of

internal strain of the spin field (hence dependent only on

the symmetrized velocity gradient tensor). Furthermore,

they assume the couple stress tensor is symmetric and depends

only upon internal strain (i.e., only upon the symmetrized

spin gradient tensor).

The constitutive equations then are
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IV-34

The coefficients p and n here are respectively the bulk

and shear coefficients of viscosity, p is assumed to be the

thermodynamic pressure, v
1

and v2 are bulk and shear coef-

ficients of spin viscosity, and 5 is a phenomenological

coefficient which they call the vortex viscosity (in earlier

papers by Dahler this was called spin viscosity).

The spin field is a manifestation of noncentral intermolecular

forces. Since the spin angular momentum equation explicitly

contains the pseudo-vector A , it demonstrates that anti-

symmetric stress is the mechanism for transforming moment

of linear momentum into internal (spin) angular momentum!

This is just a coupling between internal spin and vorticity.

For fluids with internal spin, there is not the usual conser-

vation of vorticity. This will be considered further in the

next section.

Condiff and Dahler insert the above constitutive equations

into the transport equations for conservation of mass,

balance of linear momentum, and balance of spin angular
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momentum, and obtain the following polar fluid analogues

of the Navier-Stokes equations of motion:

do
tf =

du
P E =

-p V-u

-Vp + pf + 2 VXW + (4 + n - VVu

+ (E + n) V u

dw
pI - =

+ 2¢(Vxu - 2w ) + pG

1 - 2-
V 2 + V VV (. + (v + v

2 )
V o32 7 1) 0 1 0

IV-35

These equations represent the dynamics of the system with

internal structure, and stability analyses of a diatomic

fluid should be performed with this type of coupled system!

Conservation of Vorticity

Consider now the classical proof of conservation of vorticity.

By definition, the vorticity C is

C Vxu . IV-36

Then divergence of the vorticity is

V .C = v.(Vxu))
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The claim frequently is made that

V.~ E 0 IV-38

is always true; i.e., that the vorticity vector is always

solenoidal. When the operator div is applied to a vector

function C it gives at each point the rate per unit volume

at which the physical entity is issuing from that point. If

div c is positive at the point, then the point is a source

and if div 5 is negative the point is a sink. When

div F E 0 IV-39

the net outward flow over any part of the region is zero,

and so it is claimed that vorticity is conserved within a

fluid and only created at solid boundaries or at slip

interfaces between two fluid layers.

The procedure of cyclic permutation of the triple scalar

product where one of the members is the nabla operator

is not in general a valid procedure. The nabla operator is

not a true vector, and is not in general commutative. That

is, in general

!V. V -V IV-40

and

Ts oe- oxv . IV-41

Thus, order of the product cannot be interchanged.
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The correct approach is to perform the operations in the

order indicated. First consider

v( + xu a y + 2 az) i+x (iu + jv + kz)

i j k

ax ay az

U v W

=w avi f ax au + D aua
(ay azt ax D (ax ay)

IV-42

Then

V (i a- + J Y + k '( aw av

axw au)+ tav au
- ax az ax ay

aw 30 a /3 W ui a l v au\
-ax ay az ay ax az + ax

a2W 2V a2W 2 a2 a 2U2 2 2 2 2 2
w v aw au v __

axay axaz ayax + yaz + azx azay IV-43

E 0 if - = E , etc. IV-44ax ay ay ax

Therefore, vorticity is solenoidal if and only if the order

of differentiation is unimportant, i.e., if the limits are

identical regardless of the direction of approach to the

point in question. This condition is satisfied if and only
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if the function is continuous at the point. The question

therefore centers around whether or not velocity profiles

(hence velocity gradients) are continuous. If they are

discontinuous, i.e., if there is slip, then the vorticity is

not solenoidal. If vorticity is not solenoidal then there

must be a source or sink of vorticity in the flow field.

Classical hydrodynamic theory assumes continuous functions

based on the assumption that volume integrals can be shrunk

to a point (i.e., zero volume) without encountering a dis-

continuity (Aris, 1962).

From the molecular theory it is clear that there are limits

to the validity of this assumption. However, it is classi-

cally presumed that in most flow problems negligible error

has been introduced by the assumption. Certainly for mean

flow computations the results seem to substantiate the

assumption. The end result is a theory where vorticity is

treated as a solenoidal vector function, i.e., there are no

sources and sinks within the flow. Furthermore, in this

classical theory vorticity is either introduced at the wall

or at some "gross" slip surface within the flow, or else it is

artificially imbedded within the flow as discrete points of

zero volume but infinite vorticity (see Betchov and Criminale;

1967; p. 158).

The classical conclusion generally is that there is no

vorticity created within the flow, but that vorticity is

created at the wall and diffuses out into the stream to

develop a steady-state vorticity distribution normal to the
wall (Fig. IV-1).
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The alternate viewpoint presented here is that vorticity is

created within the flow as well as at the wall, and that the

vorticity creation (i.e., source) is directly related to

particle and molecular slip in the flow at stations normal

to the wall. Furthermore, it is postulated that this slip

is directly related to the previously discussed spin field

(eqn. IV-31), and "produces" the coupling between vorticity

and internal spin.

Consider Figure IV-1. For either accelerated or retarded

flow the maximum vorticity occurs at the location of minimum

slope of the velocity profile. That is, for streamwise

velocity, the maximum vorticity occurs where Du is maximum.

When the flow is retarded sufficiently to produce an inflec-

tion in the velocity profile the slope D becomes a maximum

at a location out in the stream rather than at the wall.

This condition gives a vorticity maximum in the stream, and

is known to be unstable.

An alternate condition without velocity profile inflection

is the fully turbulent profile, and it also provides a

vorticity maximum at the wall. Furthermore, the shape of

the turbulent profile gives greater velocities near the

wall, with the result being a corresponding concentration of

vorticity closer to the wall.

The classical theory of vorticity diffusion and self convec-

tion has been used to explain the possibility of a vorticity

maximum out in the flow. The alternate concept suggested

here is that due to friction and slip, a flow with retardation

near the wall will naturally develop an inflected velocity
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profile representing a local region of slip concentration at

and near the inflection, since that is where au is greatest!

Furthermore, it is believed that this slip concentration is

the very feature that produces the local vorticity maximum

in the flow.

At an inflection in the velocity profile, the derivative

should be a good approximation to the slope providing the

velocity profile is a continuous function. Hence, the error

terms would not be expected to contribute significantly in

such a region, and should not contribute much even if some

characteristic scale prevented skrinking Ax, Ay, and Az to

zero. However, if the velocity function is a step function

(discontinuity caused by slip), then it is precisely at such

an inflection point that errors will be greatest due to the
Au.slope uy' i.e., very small spacings or "lamina" in Ay produce

relatively large jumps in Au.

The classical presumption of course is that the infinitely

thin lamina will shear with no slip between lamina, and hence

there is no production of vorticity. The alternate concept

is that the boundary layer might be described better as a

"slip layer" than shear layer.
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V. EXPERIMENTAL OBSERVATIONS

V.1 Macroscopic Phenomena

This section summarizes macroscopic experimental observa-

tions by various investigators regarding gross flow

characteristics and correlations needed for engineering

design of flight vehicles.

Without concern for molecular and microscopic effects, flow

transition usually is detected by evaluation of data from
optical or hot-wire techniques. In the latter case the

data frequently is plotted as heat transfer (possibly
Stanton Number) versus local Reynolds number based on length

from the leading edge. The data in Fig. V-1 demonstrate

the effect of roughness location. They also show the typical

decrease in heat transfer to the plate as laminar flow moves

along the plate, then the increase in heat transfer as

transition begins, and again a decrease as fully turbulent

flow is established. The beginning of transition is taken

as the beginning of the rise, and the end of transition is

taken as the end of the rise.

Similar data is represented in Fig. V-2, with Stanton number

plotted against energy-thickness Reynolds number.

DiCristina (1970) presents heat transfer data from a study

of sharp cones at angles of attack, and it is clear that

the data varies considerably for different locations around

the cone (Figs. V-3). This figure also shows results from
optical studies. The optical data was obtained from

shadowgraphs and is quite open to interpretation. Shadowgraphs
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show the laminar region as a thin white line, increasing in

distance from the cone surface at downstream locations.

Toward the turbulent region the sharpness of the line

diminishes and then it totally disappears in what seems to

be a fully developed turbulent region. The end of transition

is defined as the most aft position at which this line can

be detected, i.e., where it disappears. Obviously this is

quite approximate, and the beginning and end of transition

is determined more accurately through heat-transfer

measurements.

From the heat-transfer measurements, beginning of transition

is indicated by increase in heat-transfer over the laminar

value, and the end of transition is taken as the peak in

the heat-transfer curve. Detailed observations confirmed

a region of faint turbulent bursts in the vicinity of the

aft location where heat transfer measurements begin to

increase.

Figure V-3f is a typical illustration of the effect of Mach

number on transition for constant unit Reynolds number.

This type of correlation has been accepted practice in the

past, but is now known to be very questionable.

Figure V-3f is a replot by DiCristina of data from Softley,

et al (1968). Morkovin (1969) also reproduced this data.

Morkovin notes that Softley pointed out that.the data was

obtained from Fig. V-4 (of this document) "by assuming that

data obtained at the same unit Reynolds number in different

wind tunnels are comparable". Softley and Morkovin emphasize

that there is no known substantiation for this assumption, and
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the Figure V-3f must be regarded with caution! It is now known

that the assumption indeed does not hold unless the tunnels

at least are geometrically similar. Unfortunately, such

warnings often get dropped. Pate and Schueler (1969) comment

further that if an effect of Mach number on transition

Reynolds number exists at supersonic and hypersonic speeds,

it is doubtful that the trend can be established by comparing

transition data at different Mach numbers obtained in wind

tunnels with turbulent wall boundary layers because of the

influence of radiated aerodynamic noise.

Morkovin focuses attention on the need for determination in

general of the environmental disturbances for different

facilities and testing techniques, and also on the need for

assessment of receptivity of the boundary layer to such

disturbances. He emphasizes that the presence of 2D and 3D

instability modes suggests that adequate characterization

of the disturbances must include specification of the 3D

orientation in addition to the intensity and spectral

measurements.

Reshotko, Pate and Schueler, and other authors discuss the

radiated aerodynamic noise effects on transition in super-

sonic and hypersonic streams. They show conclusively a

significant and continuous increase in transition Reynolds

number and decrease in radiated aerodynamic noise (generated

by the tunnel wall turbulent boundary layer) with increasing

tunnel size. From this, they conclude that a major part of

the heretofore unexplained unit Reynolds number effect is

probably the result of radiated aerodynamic noise.
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Experience in the past with subsonic tunnels showed that

transition results were critically dependent on the quality

of the flow, and therefore were different from one tunnel

to another. However, initial high-speed predictions of

transition location disregard this, and were based on the

assumption that tunnel freestream disturbances are unimportant

at high supersonic and hypersonic speeds. It is now known

that these disturbances are important, and that aerodynamic

sound radiated from the wall boundary layers is a dominant

source. Laufer (1964) showed that the intensity of the

radiated pressure fluctuations is proportional to size of

the test section, and therefore the simple correlations of

the past were missing an important parameter.

Past correlations had exhibited a 0.3-0.4 power variation

with unit Reynolds number, as in Fig. V-S and as exhibited

by some of the data in Fig. V-4. However, as Morkovin

notes, the Mach 8-9 data in Fig. V-4 fail to follow this

anticipated trend. Too often such changes may have been

evident in other data but dismissed as "bad points". It is

now clear that what has been identified as the unit Reynolds

number effect actually does not represent one effect but

rather a complex superposition of many functional relation-

ships (probably not all of which are even known yet).

Morkovin calls for further careful microscopic diagnostic

measurements in the free stream with simultaneous probing

of the boundary-layer response, because this is the only way

to clarify the roles of turbulence and sound waves. Of

course, even microscopic experiments will contain inaccuracies

and regimes of uncertainty. What then constitutes solid

evidence, and what indeed is the smallest significant scale?
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There also is a question of detection techniques and their

relative indications (which also vary with the major

parameters). The question is raised by Morkovin, and

Figs. V-3 and V-5 and -6 indicate it is important.

Figure V-5 shows a large difference in experimentally deter-

mined axial location of the beginning of transition from

optical data and from heat-transfer measurements. Also,

the spatial distribution around the cone is important. At

zero angle of attack the distribution is fairly uniform,

but at positive angle of attack the pattern is irregular.

This is important in engineering design for heat protection

because it emphasizes that three-dimensional features of

the flow over even a simple sharp cone can be complicated

and not subject to good prediction.

An associated question raised by Morkovin concerns the

reasoning leading a particular experimenter to focus on

the beginning of transition whereas another focuses on the

end of the extended transition region. Potter and Whitfield

(1960) choose the center of the transition region. This

lack of consistency too frequently gets overlooked when

experimenters are merely showing trends from a single set of

tests, but the matter really is of crucial importance if

good usable correlations between a variety of analytical

predictions and experiment are ever to be attained.

Figure V-8 illustrates the trend of points for both the

beginning and end of transition versus Mach number. This

figure also shows the well known "Mach bucket" not shown in

Fig. V-3f. As discussed by Morkovin, and Morkovin and Mack

(1969), this is a trend reversal in wind tunnel data, and

one that is not found in flight data. They discuss several
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such trend reversals, and emphasize the need for caution in

taking wind tunnel data (which frequently is a composite

from several tunnels) and extrapolating the data to very

large vehicles in atmospheric flight.

Morkovin discusses many other effects which cannot be con-

sidered in this summary. However, one last major parameter

cannot be passed over. Morkovin and Mack point out that

contrast between any observed growth of disturbances (also

its documented dependence on various parameters) and

the theoretically expected standard growth and behavior

is a key to better understanding and rational correlations.

However, they note that before one can approach the

instability problem proper, one has to have the tools for

computing mean boundary layer profiles for the specific

pressure and mass transfer conditions of interest, preferably

with different degrees of cooling and possibly real gas

effects. This task by itself is a major problem.

Two recent symposia (August 1968 at Stanford, and December

1968 at Langley) provide extensive summaries of present

knowledge and techniques for computing turbulent boundary

layers, and they provide insight into the difficulty of the

overall stability problem. First of all, from these it is

clear that computation of velocity profiles is a major task

even when the flow is known to be fully turbulent. Now

recall that the stability problem starts out with the

velocity profile laminar, and continuously progresses thru

a transition stage where the profile really is due to a

mixture of laminar and turbulent effects. The reason this

is important is that disturbance growth rate is of considerable
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importance and must be computed to see if the disturbance

passes out of the unstable region before the linear theory

becomes invalid. Thus, any laminar computation becomes

increasingly inadequate before full turbulence is developed,

and any reasonably accurate profile computation must be

done with equations which include turbulent effects. It
will be seen that accurate knowledge of the velocity profile

is crucial in the stability analysis, so use of laminar

profile with no downstream change is very questionable!

Recall from Section II that a disturbance damps as it moves

downstream in what is a stable condition, then it amplifies

as it progresses into unstable conditions, and then damps
again if it has progressed on through the unstable region

before nonlinear effects set in. Now certainly the velocity

profile is also changing with distance downstream, and hence
a real physical disturbance should be analyzed with a

velocity profile that is changing with time, from laminar to

turbulent. The simplified classical treatments do not

consider this feature, but this is equivalent to a changing

of the "spring constant" of the problem and clearly could

influence system stability. In the language of flight

dynamics, this is the "static stability" of the problem,

in contrast to the "dynamic stability" usually analyzed in

classical fluid mechanics. It is well known that both can

have a significant influence on the resulting amplification

or decay of disturbances. The above comments do have to be

qualified however, by recognition that rate of change of

the profile may be slow compared to some disturbance growth

rates, and hence a constant profile may be adequate. This

point needs further investigation.
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In fluid dynamics the "inviscid" instability is really a

static instability of the problem, and arises from the

shape of the velocity profile. The "viscous" instability

is a "dynamic instability", although dynamic instability by

no means is limited to viscosity effects: inertia and

elasticity both influence the dynamic stability!

Viscous and inviscid fluid stability effects have been known

since the days of Tollmien. What has not been appreciated

however is the tremendous effect that velocity profile

(static stability) can have on the problem. The importance

of this was shown in Figure II-9.

V.2 Stability Portfolio

Obremski, Morkovin, Landahl, et al (1969) have published a

portfolio which emphasizes this point of sensitivity to

the profile shape. However, it is difficult enough to

compute a single profile, or to conduct a stability analysis

for a given profile. How much more difficult it would be to

make progressive profile computations and couple these into

the stability analysis! A brief discussion of "The Portfolio"

will illustrate the importance for boundary-layer stability

problems.

To cope with the problem of the difference between critical

Reynolds number (Rc) and transition Reynolds number (RT),

the engineer predicting transition needs information on the

amplification characteristics of his particular boundary

layer rather than on R alone. The Portfolio points out
c

that stability theory neglects the x-variation of mean

profiles as being of secondary importance and treats x as
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a dormant parameter. This is called a "local-constant-base"

or "quasi-parallel flow" assumption. It can be generalized

further to time-dependent parameters, where both x and t

are treated as dormant. Justification is based on the

assumption that for many important problems the characteristic

times of the Tollmien-Schlicting waves are sufficiently short

in comparison with those of the bas.e flow for the approxi-

mation to be valid.

The range of validity of the assumption is not considered

here, but it is important to note the striking significance

of velocity profile as indicated by the study. The Orr-

Sommerfeld equation discussed in Section II was used for

the Portfolio. Now the only features of the boundary layer

which enter the Orr-Sommerfeld equation are mean velocity

variation U(y) and its second derivative U"(y). With the

boundary conditions U(O) = 0 , and U(y) -+ U as y + 1
e

the profile curvature U"(y) fully specifies velocity

distribution.

Specification of any profile through its U"(y) distribution

emphasizes the physical role of U"(y), i.e., the rate of

change of the mean vorticity. This fundamental role can be

traced to the fact that in the linearized vorticity equation,

the term vU" is directly related to the mechanism through

which the fluctuating disturbance vorticity feeds on the

reservoir of mean flow vorticity. Incidentally, it should

be noted that this is a "mathematical mechanism" and does

not clarify the real "physical mechanism".
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Stability theory itself is indifferent to how a given

distribution of vorticity, and hence of U"(y), arose. Thus,

under the hypothesis of local constant base, the instantaneous

local U"(y) distribution (and the boundary conditions) deter-

mine the local growth and propagation characteristics of

waves.

The Portfolio emphasizes that in comparison of theoretically

and experimentally determined stability characteristics of

nonsimilar boundary layers, the U(y) and U"(y) distributions

which are fed into the theory may not correspond to the

actual profiles for which amplification, Re, etc. may have

been obtained experimentally. The problem is so sensitive

that small inaccuracies in U(y) and U"(y) determinations

may cause significant discrepancies! For cases demon-

strated in the Portfolio, it is noted that differences

between the velocity profiles themselves are so small that

they could well be missed experimentally without special

precaution.

For instance, finite resolution of instruments could easily

change the curvature distribution (U") of the profile

(N = 0.075, X = 9.0, Q = 0) into that of (NA = 0.075,

X = 5.06, fQ = 0) as shown in Fig. V-9. This would induce

a change in log (R,,)
c
from 2.68 to 3.3 as shown in

Fig. V-10. Such an error is very sizable, and yet it arises

from an easily undetectable difference in curvature of the

velocity profile.
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One final point needs to be made; in view of the importance

of velocity profile and time development of a disturbance,

the transition predictor might wonder what is "the velocity

profile" in a transition region of turbulent bursts!
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Figure I-1: Transition Onset Reynolds Number Criterion:
from Pearce (1970).
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Synopsis by Mack of linear stability
theory for small sinusoidal disturbance
of given frequency in boundary layer:

f - Frequency,

r
= phase velocity,

r X = wave length

a = Wave number,

w = circular frequency

= f = = acr' r

I. Theory answers questions:

(1) Does disturbance damp or amplify?
(2) If the latter, at what Reynolds numbers,

by how much, and for what frequencies?

If the disturbance amplifies enough, it
may lead to transition.

Rapid amplification over short distance gives
large amplification rate

Large growth of small initial disturbance gives
large amplitude ratio

II. Theory relates instability, as measured by
amplification rate or amplitude ratio, to
parameters governing mean boundary layer.

e.g.: Mach number, Reynolds number

Wall temperature, pressure gradient

2 Note: This document uses a dimensional)

and a6 a6 = 2 (nondimensional)

See caution on Fig. II-2.

Figure II-1: Linear Stability Theory: from Mack (1969)
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Caution: Literature mixes notation, using
a, a6, and ad

6
interchangeably!

Re
cr Reynolds Number, Rex

X

(a) Inviscid stability

Stable

Note: (a
6
)s is neutral wave

number at infinite
Reynolds number

Stable

Reynolds Number. Re*--v~ ....

(b) Inviscid instability

Figure II-2: Typical Curves of Neutral Stability: from Mack (1969)
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Spatial amplification rate:

A= Amplitude of disturbance,

Frequency = Const.

'R,RL
Reynolds Number

Spatial amplitude ratio:

A =expj dA) dx
A(A dx

A
A

I

1

A1 = some initial amplitude, usually
at first neutral point, RL

L.

Reynolds Number

Figure II-3: Typical Results from Stability Analysis;
from Mack (1969)
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Mack discusses:

(1) Do instability waves exist in a laminar boundary layer?

(2) Does theory correctly describe their behavior?

Answer to (1) is YES from numerous observations.

Answer to (2) can be judged from following comparison of
theory and experiment.

Incompressible flow, temporal disturbance

*Schubauer - Skramstad (1947)

0.02

0.01

0

) Re * = 2200
1 dANote: w : ac A dt

j/ Theory: Kaplan (1964)

/.
-0.01 I I , \ ,

0 0.1 0.2 0.3 0.4
Dimensionless Wavenumber, ad

Compressible flow, spatial disturbance

*Kendall (1967)

0S0 0
* 0 :

M1 = 4.5; Re = 1550; § = 55 deg.

Theory: Mack
X f -Theory: Mack

-1 l I , --II ·I II.

0 0.2 0,4 0.6 0.8
Dimensionless Frequency,

WV1 

U2 X 14'x 10

Figure II-4: Experimental Support for Linear Stability
Theory: from Mack (1969)
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0

0 0

C. = 0
I

- Early numerical computations
(1959 - 1964)

o Measurements by
Schubauer & Skramstad (1947)

'0 10001 2000 3000 4000 5000 6000

Re

(a) Neutrally stable oscillations of the Blasius layer.

- Numerical calculations
by Mack

o Measurements by
Laufer & Vrebalovich

°° 00 0

0 0
0e 0

200 400 600 800 1000 1200
Re

(b) Neutral stability curve for compressible boundary
layer at Mach 2.2 (insulated wall).

M =4.5 n = 2

200 400 600 800 1000 -

- Numerical computations
by Mack

Note change in nature of the
curves at these higher Mach;
above about Mach 3, no longer
have pronounced hairpin shape.

Re

(c) Neutral stability curves for compressible boundary
layer at Mach 4.5 and 4.8 (insulated wall).

Figure II-5: Experimental and Theoretical Neutral Stability
Curves: from Betchov and Criminale (1967).
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Figure II-6: Effect of Mach Number on Maximum Temporal
Amplification; from Mack (1969).
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Insulated wall
5.0

A r'
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1.
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o.0
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Figure II-7: Effect of Wave Angle on Maximum Temporal
Amplification; from Mack (1965b).
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Figure II-10: Instantaneous Velocity Profiles Across Boundary
Layer and Contour of High-Shear Layer Superposed Upon Lines
of Constant Instantaneous Velocity; from Tani (1967).
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Figure II-11: Contours of Equal Mean Streamwise Velocity;
from Tani (1967)
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Figure II-12: Plan and Elevation Views of Typical Spark-
Induced Turbulent Spot; from Tani (1967)
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Figure III-1: Non-Newtonian Viscous Behavior;
from Bogue & White (1970).
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Figure III-2: Thixotropic Fluid Sheared at
Different Times; from Bogue & White (1970)

Figure III-3: Hysteresis Loops for a Thixotropic
Fluid; from Bogue & White (1970).
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Weissenberg effect

Fluid at rest Newtonian
fluid in
Couette flow

Viscoelastic
fluid in
Couette flow

Fluid at rest Newtonian
/fluid in
ITorsional flow

Viscoelastic
'fluid in
Torsional flow

Figure III-4: Fluid Behavior in Rotated Devices;
from Bogue & White (1970)
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Figure III-5: Viscoelastic Depression of the Turbulent
Friction Factor (Toms Effect); from
Bogue & White (1970).

Figure III-6: Neutrally Stable Oscillations of a Blasius
Boundary Layer with Viscoelastic Effects;
from Betchov & Criminale (1967).
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X.

Unit Re = 2.03 x 105, per cm.

.0020 -
O
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Flow - -0
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(b) Rex,k = 2.57 x 105; Rek =- 1.61 x 1041

Figure V-1: Effect of Tripped Transition on Heat Transfer;
from Morisetti (1968).
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Measurement of Mateer, and Polek.
Ames 3.5 - foot wind tunnel

Model M
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Figure V-2: Effect of Natural Transition on Heat
Transfer; from Hopkins (1968)
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Note for all figures:

I I I I I. I

I ( = 0 deg) Rex (
~tr . I Xtr

I II I--

0 = 180 deg)

�oC J'~te (
= 180 d e )

'

I - =180
-0 - tr I Xtr ( 0 = 1 deg)tr

-- I J I I I I1 l I I I I I I I I I

Left side:

o -= 0 deg

of ~= 180 deg

Right side:

a : = 0 deg

4 q = 180 deg

2 4 6810 2

Re x 10- 6
x

2 4 6810 2

Re x 10- 6
x

Left side:

o0 = 0 deg (leeward)
·¢ = 180 deg (windward)

Right side:

~ = 0 deg (leeward)
.· = 180 deg (windward)

4 6810

Figure V-3: Effect of Orientation on Heat Transfer;
from DiCristina (1970).
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4 6 810 2

Re x 10- 6
x

4 6810 2

Re x 10- 6

x

Left side:

of = 36 deg (leeward)
*f ~= 216 deg (windward)

Right side:

= 36 deg (leeward)
A, = 216 deg (windward)

Left side:

of = 72 deg (leeward)

= 252 deg (windward)

Right side:

&of = 72 deg (leeward)

A~ = 252 deg (windward)

Figure V-3 Contd: Effect of Orientation on Heat Transfer.
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Local

Left side:
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*· += 270 deg (windward)

Note: See Morkovin (1969)
regarding caution
as to this type of
correlation.

4 6 8 1012 14 16

Edge Mach Number, M

Figure V-3 Contd: Effect of Orientation on Heat Transfer.
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Configuration
O Straight tube

) IStraight tube
o iPencil model

--- 25" Cone-cylinder
i Flat plate
O Flat plate
OP Flat plate
e Flat plate

-+- 20" Cone-ogive-cyl
x-- 20" Cone-ogive-cyl
Ol 10" Cone
A Hollow cylinder
-- Hollow cylinder

M

6.8
5.1
7.0
3.24
1.97
2.57
3.70
4.54
1.63
4.09
3.12
3.12
3.12

Faci 1li ty

Ames SSFFWT
Ames SSFFWT
Ames SSFFWT
NOL pressurized range
CIT-JPL 20" WT
CIT-JPL 20" WT
CIT-JPL 20" WT
CIT-JPL 20" WT
CIT-JPL 20" WT
CIT-JPL 20" WT
Lewis 1' x 1' WT
Lewis 1' x 1' WT
Lewis 1' x l' WT

,/7

,'

. . I

10 5

Unit Reynolds number, (U/v), per in.

Figure V-5: Typical Comparison of Transition Reynolds Numbers for
Variety of Model Configurations; from Nagel (1967).
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Figure V-6: Comparison of Optical and Gage Measured Boundary-
Layer Transition; from DiCristina (1970).

a = 0 deg

a = 1 deg

a = 2 deg

Unit Re = 2.1

...... Unit Re = 1.5

a = 3 deg_

V 1a = 4 deg

a =-2 deg

x 106, per ft.

x 106, per ft.

Figure V-7: Spacial Distribution of Boundary Layer Transition
with Angle of Attack; from DiCristina (1970).
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Optical transition measurement

------- Beginning of transition from heat
transfer data
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Fi gutransitio -
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2 Beginning of

f= transition

'O 2 4 6, 8 10 12 14 16 18
Mach number

Figure V-8: Mach Bucket Trend Reversal; from Heller (1969).
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Freestream unsteadiness N = 0.075
A

(0.075, 5.06, 0)

XL = 0.8
60

(U,y)
Tr/2 ,

II IT 

37rr/2

7~/4

Lt

K

(0.24, 0.15)

(0.30, 0.16)

(0.25, 0.14)

, K[ I

-5 0 I

-5 0t 5

1.4 2.5

-5 0 5
U"

(0.075, 9.0, 0)

5.06 9.

(Uy) 

/(0.23, 0.18) 

- .

(0.35, 0.20)

(0.33, 0.22)

(0.41, 0.22)

(0.21, 0.11)

/ 

.0

(U,y)

(0.25, 0.14)

(0.31, 0.17)

·-A--

/ (0.38, 0.21)

< (0.44, 0.23)

(0.18, 0.08)

-5 0 5

Note: Compare curvature distributions designated
(0.075, 5.06, 0) and (0.075, 9.0, 0);
then note change in critical Reynolds
number shown in Figure V-10. Triplet
designations are (NA, X

w
, Q).

Figure V-9: Mosaic of Instantaneous Velocity Profile
Curvature Distributions; from Obremski (1969).
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Freestream unsteadiness NA = 0.075

^ 3 4
ad

'O

r- 3.2
O

_J

- 3.0
a)

E

V 2.8
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0
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2.6

co

- 2.4

L..)

2.2.

Frequency Parameter XX

Figure V-10: Critical Reynolds Number Versus Frequency
Parameter; from Obremski (1969).
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