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STUDY OF AIRCRAFT-CENTERED NAVIGATION, GUIDANCE,

AND TRAFFIC SITUATION SYSTEM CONCEPT FOR

TERMINAL-AREA OPERATION

By Willard W. Anderson, Ralph W. Will,
and Carolyn Grantham

Langley Research Center

SUMMARY

A concept for automating the control of air traffic in the terminal area in which the
primary man-machine interface is in the cockpit is described. The ground and airborne
inputs required for implementing this concept are discussed. Digital data link require-
ments of 10 000 bits per second are explained. A particular implementation of this con-
cept including a sequencing and separation algorithm which generates flight paths and
implements a "natural order" landing sequence is presented. Onboard computer/display
avionics utilizing a traffic situation display is described. A preliminary simulation of
this concept has been developed which includes a simple, efficient sequencing algorithm
and a complete aircraft dynamics model. This simulated jet transport was flown through
automated terminal-area traffic situations by pilots using relatively sophisticated dis-
plays, and pilot performance and observations are discussed.

INTRODUCTION

Present-day equipment and controller procedures at aircraft terminals are not
meeting future - and, at many terminals, present - requirements for expeditious air-
craft landings (refs. 1, 2, and 3). Advances in digital computer hardware and the sys-
tems methodology required to design effective software offer the possibility of large-
scale automation of the terminal-area air traffic control system. This automation is
being introduced into the system as a direct aid to the controller (for example, the
Automated Radar Terminal System (ARTS HI)) in order to reduce controller information
processing workload. However, no comparable provision is being implemented to alleviate
the controller communications workload, although plans to expand the presently proposed
radio beacon system digital data link would permit much information to be transmitted
directly from ground computers to the cockpit.

The existence of an automated high-bit-rate data link could not only significantly
reduce controller communications workload, but could also further reduce the controller



workload associated with formulating aircraft control commands in order that aircraft
follow computer-generated flight paths along computer-generated time lines. This work-
load reduction could be accomplished by allowing the aircraft pilot to interact directly
with the ground computer system. One approach to this interaction is the pilot's use of
an aircraft situation display, which is formated by the ground computer and transmitted
over the data link and contains measured aircraft positions, computer-desired aircraft
positions, and supporting alphanumeric data. The display would allow the pilot to verify
the data qualitatively with onboard equipment and execute a four-dimensional computer-
generated flight path. He could also monitor the relative positions of other aircraft as
they execute computer-generated flight paths. This process would occur nominally with-
out direct participation of the ground controller. The function of the ground controller
would be to insure the correctness of the computer-generated flight paths, monitor the
execution of the flight paths, and participate during emergencies by direct communication
with aircraft and with full control over the ground computer and peripheral equipment.

The objective of this study is to examine an automated terminal-area air traffic
control concept in which the primary man-machine interface is in the cockpit. A simple,
efficient sequencing and separation algorithm was synthesized and mechanized in a real-
time digital simulation which was used to evaluate pilot performance by using several
computer-generated cockpit displays. This effort has resulted in preliminary sizing of
the data link and onboard digital computer.

This report comprises two sections: The first describes the general system con-
cept, and the second details a simulation of a particular application of this concept.

SYMBOLS

A arrival

D departure

E expected value

k landing slot number

L probability of delayed aircraft, limit of arrival-to-departure ratio

M limited number of delaying aircraft

m number of delaying aircraft



N number of possible classes of aircraft

n aircraft class, number of aircraft

P(n) probability of class n arrival

P(n,T) probability of n arriving aircraft in time interval T

T

V

V2

At

AtD

time interval, sec

aircraft speed, knots

entry speed, knots

speed prior to outer marker, knots

map coordinate, positive east with respect to O'Hare terminal, n. mi.

map coordinate, positive north with respect to O'Hare terminal, n. mi.

arrival spacing interval, sec

departure spacing interval, sec

runway arrival efficiency

expected aircraft arrival rate

Subscript:

max maximum

Abbreviations:

A/C aircraft

ARTS III Automated Radar Terminal System

ATC air traffic control



ATCRBS air traffic control radar beacon system

CDC Control Data Corporation

COMP computer

CRT cathode-ray tube

CTOL conventional take-off and landing
•

DME distance measuring equipment

EADI electronic attitude direction indicator

IFD integrated flight director

ILS instrument landing system

ESfSTR instrumentation

MLS microwave instrument landing system
"

NAV navigation
'

VOR very high frequency omnirange

SYSTEM CONCEPT

The basic concept discussed in this report is that of orienting the automation taking
place in the terminal-area air traffic control system directly toward the users of the
services, namely the aircraft pilots. An implementation of this concept is shown in fig-
ure 1. It utilizes a terminal-area computer which generates flight paths with traffic
sequencing and separation according to a programed strategy, a ground-air craft data
link, and a cockpit display showing actual and computer-desired aircraft positions over-
layed on a terminal-area video map with supporting alphanumeric information (fig. 2).
This concept does not require a controller as an active participant to control aircraft in
the system under nominal conditions. The controller functions in a parallel mode to
operate and monitor the ground computer systems and insure that the computer-generated
flight paths sent to and executed by the pilots are providing sufficient separation and effi-
cient sequencing. If a failure occurs in some portion of the aircraft ATC avionics, the



controller concentrates on controlling the aircraft using the radio voice link and/or the
radio beacon systems (ATCRBS). During failure of some portion of the ground system,
a set of emergency instructions previously loaded by the ground system as part of its
normal set of display instructions is presented to the pilot for execution until backup
ground procedures and equipment become available.

Implementation of this concept also requires that accurate aircraft locations and
altitudes be fed to the computer. As shown in figure 1, these inputs can be generated in
one of the following three ways or any combination of these:

1. By using the existing ATCRBS

2. By using aircraft-derived navigation information sent to the ground over the
data link

3. By using the planned microwave instrument landing system (MLS) to determine
the position and altitude onboard and then sending the position and altitude over
the data link

Ground-determined and onboard-determined aircraft positions are compared for failure
detection and then mixed in the computer by using estimation, filtering, and smoothing
techniques.

After transmission of these data to the aircraft, a small onboard computer pro-
cesses the information and displays aircraft and map features near the aircraft position.
The onboard computer also formats the computer-desired position of the aircraft and all
desired flight-director information required to execute the computer-de sired flight path.
Major advantages associated with this system are:

1. Increased system capacity as a result of accurate execution of computer-
generated flight paths and reduced time dispersion at touchdown

2. Increased pilot awareness of local traffic situation and upcoming events

3. Increased flexibility, since the pilot can maneuver the aircraft laterally to avoid
weather if local traffic permits and if the flight-path end points and time line
can be maintained

The accuracy with which aircraft can follow computer-generated flight paths along
time lines and land at precise sequencing times determines, to a large degree, the sequenc-
ing and separation intervals used in the computer algorithms and, therefore, the ultimate
capacity of any automated terminal-area system. Thus, each aircraft in the system must
be supplied with a large amount of computer-determined information to enable the pilot
to execute a flight path accurately. This information gives the pilot increased flexibility
in compensating for system uncertainties. Much of this information is of little interest
to the ground controller monitoring the system, since his concern is the outcome of the



flight-path execution process, rather than the details of how they are being executed.
Also, the quantity of computer-determined information requiring transmission may exceed
that which a human can efficiently process and make judgments on, not to mention partici-
pate in its actual transmission. These reasons form the rationale for the pilot-oriented
approach toward automation discussed in this report.

System Operational Procedures

The nominal set of pilot actions expected to be involved in using this system for
landing is presented as a context for the detailed discussion of system elements that fol-
lows. The pilot initiates interaction with the ground computer by setting the aircraft
data link frequency at a standard frequency for the particular terminal. The pilot also
sets his radio (voice link) at a specific frequency allocated for emergency instructions
from the terminal area should they be necessary. The pilot then selects a terminal-
area entry mode using an alphanumeric keyboard on a cockpit display and thus informs
the terminal-area computer that he wishes to land. This action is necessary since desir-
able entry locations may be farther from the terminal than the terminal-area radar range.
Transmission of onboard-determined position and altitude, aircraft and display identifica-
tion, and aircraft status (normal or emergency) begins. The ground computer then
includes the aircraft in its situation display format, given that enroute radar (or, if pos-
sible, terminal-area radar) and onboard-determined position correlate. It also informs
the pilot, via the display, to call for the appropriate sector display. The pilot then uses
the alphanumeric keyboard to change from the entry mode to the verification mode and to
call for the appropriate sector. He verifies his position and altitude as shown on the dis-
play using onboard navigation equipment and comparing visual landmarks with those shown
on the display video map overlay. Having confirmed the computer estimate of his position,
the pilot verifies the relative positions of other aircraft local to his aircraft using the dis-
play to locate these aircraft visually or with onboard radar. Anything not verified is
reported to the ground by voice link.

Having verified his position and thus computer initialization, the pilot informs the
computer by changing the display mode to the approach mode. This action allows the
aircraft data to enter the ground computer sequencing algorithm. The sequencing algo-
rithm determines aircraft touchdown time and then determines a flight path for the air-
craft which insures separation. This flight path is presented to the pilot as a series of
computer-desired positions with supporting alphanumeric information. The pilot executes
this flight path by observing the position of his aircraft relative to the computer-de sired
position shown on the display. He also monitors his position relative to terrain and to
other aircraft as presented on the display and checks this presentation against possible
visual sightings and onboard navigation equipment. The approach mode allows for delay
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and merging of common-class aircraft until they are within the bounds of the scanning
microwave instrument landing system (MLS).

When the aircraft comes within the MLS bounds, the pilot changes the display mode
to MLS. The onboard avionics terminates navigation equipment (VOR, DME) computation
and transmission of aircraft position and possibly initiates MLS computation and trans-
mission of position. The pilot also changes voice-link frequency to MLS controller fre-
quency. He then verifies the continuity of his actual position as shown on the display and
begins his descent from the merging altitude to touchdown, using the display to insure
touchdown and runway exit at the correct time and location.

Flight-Path Generation

The primary function of the ground computer in this system is to generate aircraft
flight paths which insure separation of aircraft in the air and allow sequencing of aircraft
at touchdown and at runway exit. These flight paths are functions of aircraft position,
type, and performance characteristics; runway and terminal geometry; and terminal-area
routing as a function of terrain, population areas, noise abatement procedures, and air-
craft vortices. The flight paths are modified by any detected emergencies or equipment
failures. The function of the ground controller is to operate this computer system, verify
its proper functioning, and participate during emergencies or equipment failures. The
ground computer can either format the flight paths and send them over the data link as a
series of computer-desired aircraft positions or send parameters from which an aircraft
computer can format identical flight paths. The ground computer does not format speed
and heading commands but relies on the pilot or his onboard avionics to fly the aircraft
to match the computer-desired position with the actual position as a function of time.

Measured aircraft positions and altitudes are required computer inputs. In this
system ground tracking data via the radio beacon system and onboard-determined position
and altitude sent to the ground over the data link are compared for equipment failure
detection and then mixed in the computer by using smoothing, filtering, and estimation
algorithms. These estimated aircraft positions are compared to determine the relative
positions and altitudes of each aircraft with respect to all other aircraft. This monitoring
algorithm can inform the ground controllers and the aircraft pilots involved when two or
more aircraft are operating too closely. A collision-avoidance algorithm may be included
in the ground computer subroutines and called when a close situation is detected.

Estimated and computer-desired aircraft positions and altitudes are also compared,
and the differences are used to change the display format - increased deviation requires
more information to be displayed. When the deviation between the estimated and
computer-desired aircraft position or altitude exceeds a standard set for each aircraft
class, the aircraft is classified as an intruder. An aircraft which enters the terminal-



area air space without making proper contact with the ground is also classified as an
intruder. When an aircraft is classified as an intruder, the ground controller attempts to
contact the aircraft via the voice link. If this contact is made, the ground controller
assists the pilot in overcoming the difficulty. If no contact can be made with the aircraft,
intruder-avoidance algorithms are required within the computer to reroute aircraft local
to the intruder. These algorithms estimate the future flight path of the intruder, deter-
mine those aircraft whose normal flight paths bring them within unacceptable proximity
to the intruder, and reroute these identified aircraft.

SIMULATION DESCRIPTION

A preliminary digital computer simulation has been developed to investigate overall
operational aspects of the automated pilot-oriented ATC concept. The basic simulation
objectives are to mechanize this concept and to check basic pilot interactions with the
automated system. The simulation includes a simple, efficient sequencing algorithm, a
complete aircraft dynamics model, and relatively sophisticated computer-gene rated pilot
displays. Emphasis is placed on demonstrating the concept rather than on analyzing the
complete system operation; therefore, effects such as measurement and equipment errors,
atmospheric winds, and emergency procedures are not included. The rest of this report
deals with the sequencing algorithm, flight profiles, and pilot displays evolved during this
preliminary study of the pilot-oriented ATC concept.

-
Sequencing Algorithm and Flight Profiles

For the simulation study, computer-desired flight paths are determined automati-
cally from only the entry route, aircraft class, and runway touchdown time. The runway
touchdown time is the single output from a sequencing and separation algorithm (appen-
dix A). Thus, implementation of a minimum-data-link system requires the selective
transmission of only this parameter to individual aircraft, with onboard computation of
the flight path according to standard approach procedures. This flight path then assures
separation if all aircraft maintain the time lines on their flight paths. Results indicate
that time-line maintenance is not a significant problem with the displays provided in the
simulation used during this study.to J

Natural-order sequence.- The sequencing and separation algorithms are configured
to accept the "natural order" of incoming aircraft of different performance characteris-
tics (primarily speed) within limits dictated mainly by safety (>50-second range, >3 n. mi.
lateral, >300 meters (1000 ft) altitude). The natural order is defined as the landing
sequence that would occur if aircraft of different performance were allowed to fly
approaches with no delay, assuming no requirement for separation. The order of a 1-hour



sample of arriving aircraft for saturated runway conditions, for which the expected rate
of arrival (72 planes/hr) is equal to runway acceptance rate, is shown in column 2 of
table 1. Each aircraft belongs to one of three possible performance classes (table 2),
where higher performance indices n indicate higher operating speeds. The data in
column 2 of table 1 were generated by using the assumptions for a random process that
are the basis for the Poisson distribution and were chosen from many such sets because
the realized number of arrivals nearly equaled the expected number for the hour. The
probabilities of entry of the classes and the time from entry to touchdown are assumed
to be equal for all classes. This avoids the disadvantages to fast planes caused by entry
points of equal distance.

Runway spacing delay.- Obviously, aircraft may not be landed as shown in column 2
of table 1, since common occupancy of the runway would occur. Thus, an initial task for
the sequencing and separation algorithms is to introduce time separation at touchdown.
Column 3 of table 1 shows the random traffic input sample of column 2 with a 50-second
separation at touchdown. This process introduces delay whenever two or more arriving
aircraft could occupy the same landing slot. This type of delay is unavoidable for any
terminal-area sequencing algorithm which has the capability only to delay aircraft. The
minimum time criterion (no speedup required) is selected to simplify the algorithm;
therefore the aircraft fly at the nominal maximum speed dictated by safety. The expected
value of this delay as a function of time is shown in figure 3 for various percentages of
the saturation acceptance rate. If the algorithm is allowed to increase aircraft speed
above the nominal operating speed (up to the maximum speed dictated by safety), the air-
craft nominal operating speed will be lower than the maximum allowable. This would be
equivalent to assuming that the natural-order sequence had inherent delay. The data of
figure 3 were calculated according to the equations of appendix B. It is interesting to note
how quickly the delay for an arrival will increase with time, even when the expected value
for arrival rate equals or is less than runway capacity. In figure 3 the delay after only
1 hour of operation at capacity is shown to be greater than 5 minutes. The average num-
ber of arrivals for these 20 runs for the hour was 70.8. The standard deviation of system
delay time was 4.8 minutes.

Departure introduction.- The landing sequence of column 3 of table 1 would be
acceptable if all aircraft flew identical velocity profiles and if the effects of wake turbu-
lence, particularly on smaller aircraft, were negligible. One procedure that tends to
reduce these effects is the insertion of at least one departure between two arrivals when-
ever the earlier arrival is a faster and presumably larger aircraft. This procedure
groups arrivals (column 4 of table 1) into ascending speed sequences with departures
interspersed between sequences. This method inherently increases separation along any
common final approach. It also allows for the introduction of departures with no more
delay for arriving aircraft than that attributable to the obvious and required loss of some



percentage of a landing slot. For the simulation it is assumed that the insertion of a
departure requires at least one-half the time increment of a landing. An arbitrary
arrival-to-departure ratio for a given runway is obtained by increasing the number of
departures inserted in this manner. This procedure has the obvious limit, assuming full
runway utilization, that occurs when there are not enough departures to insert into the
departure slots. Equations which describe these limits are developed in appendix C.

Figure 4 shows the arrival-to-departure limit L plotted as a function of the
arrival probability of class 3 (highest speed) aircraft for various class 1 probabilities.
This limit L can also be interpreted as the average number of arrivals that became
grouped in ascending speed-class order. The locus of the plots illustrates the minimum
limit of 3 that occurs when the arrival probabilities of each class are equal. In figure 5
are plots of runway arrival efficiency 77^ as a function of class 3 arrival probability for
three values of departure-to-arrival spacing ratio. Class 1 and 2 probabilities are
assumed to be equal.

Full runway utilization occurs whenever sufficient departures are available. A
minimum arrival efficiency of 75 percent occurs at the equal-probability point
(P(l) = P(2) = P(3) = 1/3) for equal departure and arrival spacing.

Approach-path merging.- Lateral and/or altitude separation must be provided to
allow high-speed aircraft with early landing slots to pass slower aircraft. For example,
in the simulation three speed classes are assumed; each class is separated by at least
300 meters (1000 ft) of altitude at any common point along an arrival route to allow for
passing. Any restriction of this passing capability will add delay to the system. How-
ever, the arrival routes must merge at some point to allow a common, straight flight path
prior to landing. The previously described procedure of separating arrivals into ascend-
ing speed sequences separated by departures increases aircraft separation, and thus the
allowable length of common approach. This separation is to such an extent that variable
glide slopes can be used to merge arrivals. Figure 6 shows the ranges, altitudes, and
glide slopes used in the simulation for glide-slope arrival merging for the three aircraft
classes (designated by n). Lateral separation along the arrival routes or the straight
final approach is not included in the computer-calculated flight paths but is considered to
be a pilot decision. This capability allows the pilot to avoid weather along the arrival
route and to meet his requirements for the straight final approach.

Figures 7 ,8 , and 9 illustrate worst case separation which occurs for the sequences
. . . 3D1 . . . . . . . 3D2 . . . . . . . 2D1 . . ., respectively (where 3D1 indicates class 3
aircraft, departure, class 1 aircraft), and for the speed profiles assumed in the simula-
tion. These speed profiles are summarized in table 2. These figures illustrate the
increased separation achieved by increasing the departure spacing interval Atj) from
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25 seconds (two departures per arrival interval) to 50 seconds (one departure per arrival
interval).

Delay introduction.- The capability to introduce an arbitrary delay for any arrival
and to do so with complete independence from other arrivals is required for expeditious
implementation of the natural-order landing sequence. One method of accomplishing this
is to separate aircraft into common speed-profile classes, separate these classes by
altitude along arrival routes, and then use speed control and flight-path extension to
achieve delay. Two methods of introducing delay along a given arrival route for common
speed-profile aircraft were used in the simulation studies and are illustrated in figures 10
and 11 and described in appendix A. The first method (fig. 10) allows the introduction of
continuous delay by flight-path extension and was used in the simulation algorithms as an
additional delay to the limited delay achieved by early speed reduction. This type of
delay can be accomplished at a single altitude and thus allows a large number of aircraft
classes (finer division of aircraft into common speed-profile classes) to be "stacked"
along a given route. However, the lateral space required is twice that of the second
method of flight-path extension (fig. 11). This method of delay introduction allows the
flight-path extension to proceed to 90° turns (fig. ll(d)), at which point further delay
requires a complete loop (fig. ll(e)). The step increase in delay time is accommodated
by a step decrease in the speed delay flown. This allows continuous delay capability but
reduces the possible division of aircraft into common speed-profile classes, since alti-
tude separation is required for a given class. It also requires that aircraft enter the
system at sufficient range to allow compensation for the step increase in delay when the
complete loop is flown.

Description of Pilot's Situation Display

The approach to direct interaction between pilot and ground computer used in the
simulation is the use of digitally generated displays such as the aircraft situation display
of figure 2. The main system advantage of this display is the reduced total data trans-
mission required since common data are shared by local aircraft. A typical system
requires ground format and transmission of the actual and computer-desired positions of
all aircraft in the terminal area, with alphanumeric tags, overlayed on a terminal-area
map. These data are transmitted at a single frequency determined by a bit rate of
approximately 10 000 bits per second for 200 aircraft with one update every 4 seconds.
This bit rate provides position information with 3-meter (10-ft) resolution within a
200- by 200-n. mi. sector, 3-meter (10-ft) altitude resolution, and 200 map features to
the same resolution with 10 percent information overhead. It should be noted that even
with position resolution of 3 meters (10 ft), the data-link size is reasonable.

The pilot's display is centered on the measured position of the aircraft. It presents
a plan view of the computer-desired position of the aircraft and projected flight path to

11



landing and actual positions of other aircraft overlayed on a video map of the terminal
area. The situation display is oriented "heading up" so that the entire display turns with
the aircraft, and therefore, the pilot has an out-the-window (inside-out) view. The
computer-desired position is represented by the inverted V-shaped symbol, and each air-
craft is represented by an arrowhead symbol. The nose of the symbol represents the
estimated position, and the direction of the arrowhead indicates heading. The correct
relative position is alinement of the nose of the aircraft symbol with the time line of the
symbol for the computer-desired position. Aircraft flight number (call letters), altitude
in tens of feet above the runway, and ground speed in tens of knots make up the ARTS HI
type label adjacent to the aircraft symbol.

The video map information consists of landmarks and navigation aids in the termi-
nal area (table 3). Navigation aids are represented by triangular symbols labeled with
their three-letter code (fig. 12). Landmarks such as the terminal runway system
(Chicago O'Hare International Airport), other local airport runway systems (MXT,
Midway), and the shoreline of Lake Michigan are displayed for the pilot's convenience.
In the final-approach pattern, the locations of high elevation points, with height indicated
in feet, may be displayed on option (fig. 13(a)). Another optional display is the range
mark aid, consisting of the marks depicting longitudinal and lateral range in nautical
miles (fig. 13(b)). The entire situation display has zoom capability with a radius of 5 to
60 n. mi. Aircraft within range are not necessarily displayed if altitude differences are
greater than a pilot-selected limit; thus a vertical-range display capability is allowed.

The aircraft may maneuver to the right or left of the computer-desired position to
avoid weather, if local air traffic permits, but must maintain proper altitude and correct
position relative to the time line. The time error in seconds is contained in the center
of the display.

The traffic situation display offers the following advantages:

1. Allows the pilot to avoid weather or turbulence conditions if local traffic
permits while maintaining his sequence (time line) position

2. Gives the pilot relative positions of local aircraft (currently a secondary
controller function)

3. Serves as an aid to navigation by indicating positions of landmarks

4. Allows the pilot to check functional operation of automated equipment

5. Provides the pilot with more background information when an emergency
develops

Description of integrated flight director.- Simulation runs were conducted princi-
pally with six conventional instruments (fig. 14) containing "zero reader" altitude and
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directional flight-director steering, with time-line error being read from the situation
display. In order to reduce required eye travel, an integrated flight director (IFD) was
developed along similar lines as the electronic attitude direction indicator (EADI) cur-
rently being examined by the industry.

Figures 15 and 16 illustrate the IFD. In figure 16 the double outer lines show raw
altitude error (high or low) and lateral position error (left or right). This raw error
information may come either from an ILS beam or be derived from computer-desired
position data received from the ground computer. In the region between the two circles,
a heading-error indicator moves with respect to a fixed pointer. The computer-desired
heading is derived from two or more successive computer-desired position coordinates
to provide the reference for this indicator. Also in this region, the pitch and roll air-
craft attitude is graphically displayed in an eight-ball-type format. The flight-director
steering information is contained within the inner circle of the IFD. The upper number
represents the time error in seconds (accurate to 0.1 second) with respect to the air-
craft time line. The lower number represents the velocity error with respect to a
computer-desired reference velocity, which may also be derived from two or more suc-
cessive position coordinates. Pitch and roll steering information is provided by the
"horizontal tail" symbol which moves in the vertical plane and the outer lines which roll
with respect to the horizontal reference. The roll steering information is given without
scaling so that leveling these indicators will produce the desired turn rate.

The down-link message column of figure 15 presents a summary of the information
being formated on the digital data link for transmission to the ground computer. This
is an option available to the pilot for verification purposes, both with his onboard instru-
mentation and with information actually being received by the ground. A similar verifica-
tion capability exists for up-link information.

In the simulation operation, with the CRT equipment time shared, a display update
rate of only three to four updates per second was achieved. The entire display was
updated at this rate, which proved to be adequate for all functions except the IFD steering
information. This update rate did not provide sufficiently smooth steering information
for more complex tasks such as turns and particularly during the final-approach opera-
tions. Because of the system restrictions of the real-time simulation setup, it was not
possible to determine minimum acceptable update rates for the steering information.

Simulation implementation.- The automated terminal air-traffic control system is
simulated on the Control Data series 6600 computer system at the Langley Research
Center. The simulation is programed to operate in a real-time mode for studies of pilot
interaction with the automated ATC system or to operate in fast time for analyses of sys-
tem operation. The simulation software is comprised of the same basic elements as the
actual system, as indicated by the simplified block diagram of figure 17. This schematic
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shows the system elements which are represented by various simulation software sub-
routines and by hardware. The ground-aircraft radio beacon system and ATC data links
are indicated in the figure but are not simulated.

The simulation is controlled from the program control station, shown in figure 18.
This location includes a data entry and simulation mode control console, an on-line type-
writer, several 8-channel strip chart recorders for data output, and the CRT display con-
sole, which is used for the computer-generated cockpit or ground controller displays
associated with the automated ATC system. Since the CRT cannot be mounted in a simu-
lator cockpit, the pilot seat and controls, shown in figure 19, are mounted on a mobile
base, which rolls up to the CRT console. This setup provides the cockpit environment
for these preliminary studies of cockpit ATC display requirements. The simulation
described herein is used to study ATC system interactions and to develop requirements
for onboard ATC displays, and will be used to develop more sophisticated simulation
programs and hardware for automated ATC system flight evaluations.

Simulation hardware.- The hardware used in the automated air-traffic control sys-
tem simulation consists of a general-purpose CRT display unit and a pilot seat with air-
craft controls mounted on a movable base (fig. 19). The display equipment is a CDC 250
Series CRT display system with approximately 25 cm by 25 cm (10 in. by 10 in.) of screen
area available for display. The CRT system configuration and computer link are shown
schematically in figure 20. In this system time and memory of each display controller
are shared by three CRT units and an on-line hardcopier. The controller memory con-
sists of 8192 words of 24 bits each. Each 24-bit word is an instruction to the display
logic to draw vectors or write characters on the CRT screen. The 6600 computer uses
60-bit words, and therefore the 24-bit display instructions are packed and stored by
control memory as five 24-bit words per two 60-bit words. The control processor
instructions are routed across the data channel and stored in sequential locations in the
controller memory. The instructions in the controller memory are repeatedly executed
by the controller logic; therefore a particular picture is repeatedly drawn on the CRT.
The refresh rate is fast enough so that, in most cases, the display on the CRT appears
to be at a constant level.

To produce the apparent real time CRT displays for the cockpit or traffic controller
stations, the simulation program updates the display instructions as rapidly as they can
be accepted by the peripheral and controller equipment and data channels. With normal
system loading, the lag between central memory and CRT display averages about
1/4 second. This means that for the pilot's display, where new CRT instructions from
the central memory are updated only at 4-second intervals, these random CRT lags cause
slight variations in the actual display update times.
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The pilot seat, cockpit controls, and instrumentation shown in figure 19 represent
the basic equipment available in a commercial transport cockpit. The input and output
of these devices are sequenced directly and do not exhibit the lag associated with the CRT
unit. Six basic aircraft instruments are included (fig. 14): altimeter, airspeed indicator,
heading indicator, vertical-speed indicator, rate-of-turn indicator, and an eight ball with
flight-director indicators. A two-axis side-arm controller is used for aircraft pitch and
roll control, rudder pedals control yaw. Throttle and flap setting levers are provided,
and microswitch buttons are available for mode control of the CRT display and the flight -
director steering commands.

Simulation software.- The computer program for ATC system simulation is com-
posed of two basic parts: the ATC system ground computer and an aircraft and its asso-
ciated avionics, as indicated in figure 17. The ATC ground computer part, containing the
sequencing and separation algorithms and on-line monitoring routines, does not require
real-time synchronization, and when used alone for system analyses, is usually run in
fast time. However, since the aircraft dynamics and avionics part links to the cockpit
controls and displays, it must maintain real-time synchronization, and therefore, for
piloted aircraft studies, the entire simulation must be run in real time. As previously
mentioned, the simulation program is modular in that various elements or subroutines
represent different parts of the ATC system. The two basic parts will be discussed
separately, the ground computer software routines first and then the simulated aircraft
and its associated avionics.

Ground computer software.- The ground computer routines perform two functions:
on-line monitoring of aircraft positions and status, and occasional calculations required
by special conditions such as sequencing of new aircraft. Again, display and data link
output functions which are tied to the cockpit are real time in that they require updates at
regular intervals and therefore are synchronized with time. All other calculations must
be performed on an "as available" basis and be fitted in between the required real-time
operations in a time-sharing mode. The simulation program is set up in this manner,
with all on-line functions being performed in the main program, with the exception of
routines to generate the fixed terminal-area maps required for the displays.

All aircraft under ATC system control, with the exception of the simulated aircraft
flown from the cockpit, are assumed to be in the position desired by the ground computer.
The times at which the aircraft shift from one portion of the trajectory or one maneuver
to another are determined and defined by simulated ground computer software when the
aircraft come under system control. The main program contains the equations for
desired aircraft positions as functions of time. The program solves for the position of
one aircraft per iteration, because of time considerations, and then stores that position
for comparison with the positions determined by the radar or radio beacon system and
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updated at 4-second intervals. The computer output to the controller and data link would
be based on these comparisons and updated measured data. In the simulation case, the
computer-desired positions at the output time are used.

The controller's situation display (fig. 21) and the plot of flight path against time
(fig. 22), used for system analysis purposes, are generated from the aircraft position
data. The terminal-area maps in figures 21 and 22, which indicate landmarks such as
the airport runway and navigation aids and controller operational cues such as flight
corridors and range markers, are generated by subroutine CHICAGO. The controller's
display includes provisions for manually slewing the display and zooming in on points of
interest by using potentiometer controls. Another potentiometer is used to vary the
simulation time increment so that particular events may be analyzed in real time or time
may be reversed for restudy of an event.

The main program also contains the system mode controls, provisions for insertion
of additional aircraft of a selected type on a selected route, and initialization loops for
both the ATC system and the simulated aircraft. The system itself may be initialized
and loaded in two ways. The aircraft type and route numbers may be individually selected
and manually inserted under system control. A second option permits the selection of a
system acceptance or aircraft arrival rate in planes per hour and the total number of air-
craft desired. The individual aircraft type, route numbers, and arrival times are ran-
domly selected to be delivered to the system at the specified arrival rate. Weightings
can be imposed on the aircraft type selection to produce any desired traffic mix.

The simulated aircraft may also be initialized in several ways. The first is simply
to initialize the aircraft with the conditions of any aircraft already under system control.
The second is to introduce the simulated aircraft at any point along any route and let the
sequencing and separation algorithm (NEWAC) schedule the landing in the traffic pres-
ently under system control. The third, and probably most important, initialization for
piloted aircraft display studies, involves specifying a landing traffic load (aircraft occupy-
ing every landing slot, every other slot, etc.), selecting this traffic randomly, and ini-
tializing the simulated aircraft at any flight condition, which may include errors in posi-
tion and time. This initialization technique is particularly useful in evaluating critical
maneuvers or conditions and in providing the pilot with a. realistic traffic situation dis-
play. In all cases, when the aircraft is initialized, a trim circuit in a hold mode is
initiated to allow the pilot to adjust his trim and throttle settings for the flight conditions
specified.

Simulated aircraft.- The simulated aircraft model used for the ATC system evalua-
tion and pilot display studies is representative of large commercial jet transports. This
type of aircraft was selected as being typical of the traffic coming under ATC system
control. Other types and classes of aircraft may be readily incorporated by simply
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changing the aircraft characteristics which are stored as data. The aircraft dynamics
equations and aerodynamic coefficient calculations are in general form (ref. 4) and are
included in subroutine ATC707. Engine thrust is interpolated from thrust curves stored
as a function of throttle setting. A four-pass Runge-Kutta integration scheme with a
computing interval of 0.0625 second is used to solve the aircraft dynamics equations.
The resulting position and attitude information is used in generating the simulated air-
craft situation and flight-director displays.

Display software.- The remaining information on the situation display includes the
positions of other air traffic. In the simulation the position coordinates are assumed to
be received over the ATC system data link and the symbols generated by the aircraft
avionics. The onboard avionic software is represented by subroutine PILDIS. This
routine receives the data generated by the ground computer and transmitted over the data
link, performs several simple calculations, and generates the CRT display commands.
The estimated actual position of the simulated aircraft is subtracted from the coordi-
nates for the other traffic in order to center the situation display on the actual position
of the simulated aircraft. The desired position of the simulated aircraft is also plotted
on this display. Ground computer outputs such as speed, heading, and altitude for the
simulated aircraft are used to generate the flight-director display and alphanumeric ref-
erence information on the display. Fixed landmarks in the terminal area such as runway
and navigation aids, which are loaded into the aircraft avionics when the aircraft enters
ATC system control, are also drawn on the situation display. Momentary switch controls
are used to zoom the situation display, with the range marks being plotted at integer
multiples of one-quarter of the lateral range at the limits of the plotting area.

Since the display software represents the routines for the onboard control computer,
particular attention has been given to programing techniques for the pilot displays. The
display software should be optimized with respect to time and memory, and programing
techniques such as the use of scaled fixed-point arithmetic should be incorporated. These
routines should then be implemented on a smaller general-purpose digital computer and
eventually to an onboard digital computer to demonstrate the feasibility of the onboard
avionics associated with the pilot-oriented ATC concept.

RESULTS AND OBSERVATIONS

This study was conducted to examine the automated terminal-area air traffic con-
trol system concept described in this report in which the primary man-machine interface
is in the cockpit. A terminal-area sequencing and flow management concept was devel-
oped, and preliminary sizing of the required data interface was made. Certain aspects
of the system operation, using error-free measurements, were simulated to mechanize
this concept. A study of the pilot interface with the automated system was then performed.
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In general, this initial simplified simulation study has shown the concept to offer the
potential for a significant increase in ATC system capacity, safety, and flexibility when
compared with a system in which the primary man-machine interface is on the ground.
The following specific results detail this finding based on this initial simplified
simulation:

1. Ground computer algorithms which output computer-desired positions and alti-
tudes as functions of time according to simple standard rules appear easy to design and
implement for the case studied in the simulation, namely random entry of three classes
of arriving aircraft from known routes to an arbitrary but unchanging dual runway. Com-
puter time and memory requirements for the case studied increase significantly when a
ground-generated guidance function is added to the algorithms which compute the aircraft
speed and heading on the basis of actual and computer-desired aircraft positions. The
data base required of the ground computer in order to perform this function safely and
efficiently for arbitrary aircraft increases prohibitively.

2. The relative position comparisons required for automatic monitoring of the flight
paths of an aircraft are reduced from n(n - l)/2 (19 900 for 200 aircraft) to n (200 for
200 aircraft) when computer-desired positions are compared with measured aircraft
positions (the difference required to be within certain bounds), rather than comparing
measured positions of all aircraft with each other.

3. The "natural order" spaced arrival sequence (i.e., the landing sequence that
occurs if aircraft of different performance are allowed to fly approaches with no delay,
assuming no requirement for separation) interrupted with departure insertion(s) (between
any two arrivals whenever the earlier arrival is of higher speed) sufficiently increases
final longitudinal spacing so that three classes of aircraft can use a common straight
approach path. This assumes approach speeds varying from 85 to 140 knots and the alti-
tude profiles shown in figure 6. Verification of these initial results requires a combined
single- and multiple-aircraft simulation and flight program.

4. A requirement for a data link common to all aircraft was determined to be
10 000 bits per second for the simulated system on the basis of the following conditions:
a sector 200 by 200 n. mi., a maximum of 200 aircraft, plan position resolution of
3 meters (10 ft), altitude resolution (6-km (20 000-ft) maximum) of 3 meters (10 ft),
200 video map features with the above resolutions, a 4-second repeat rate, and assuming
a 10-percent information overhead.

In addition, the following observations were made during the simulation study:

1. Dispersion times for touchdown for the simulated jet transport with no stability
augmentation and under no influence of winds were small (less than 1 second) for pilots
with minimal training with the system when concentrating on the four-dimensional guid-
ance aspect of the system. This negligible error in actual touchdown time compared with
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computer-desired touchdown time allows a single runway capacity of 72 aircraft per hour
assuming a runway occupancy of 35 seconds and a 15-second go-around decision time
prior to touchdown (50-second total aircraft spacing).

2. Classification of participatory CTOL aircraft into three classes by speed per-
formance appears to allow sufficient latitude for small dispersions in the time error at
touchdown when the data for the simulated jet transport are extrapolated to cover all
three classes.

3. Time-line errors as large as ±10 seconds at the outer marker could be nulled by
the time touchdown occurs with the aircraft properly trimmed for landing, although a far
more detailed pilot and copilot workload and task studies are required to refine these
initial results.

4. Lateral deviations of several miles from the computer-desired flight path are
within the capability of the piloted aircraft, including the last 40 km (25 miles) prior to
touchdown, in order to avoid weather or intruder aircraft and yet safely enter the final-
approach pattern and land on time. This flexibility of use of the system is possible only
if the pilot generates the guidance and control commands in order to meet the situation
constraints presented to him by onboard-generated displays based on ground-generated
situation data.

5. The increased safety of this system is attributable to several factors. The pilot
is aware of the local traffic. The number of people monitoring the operation of the sys-
tem (all concerned pilots in addition to the ground controllers) is increased. The video
map has safety-related aspects such as high elevation points. The workload of the ground
controller is lower and thus he can concentrate on monitoring the system for unsafe devel-
opments rather than being concerned with the generation and transmission of aircraft
guidance and control information. The pilot is aware of his situation when an emergency
occurs or equipment fails.

6. In actual practice, traffic position information in the terminal area would proba-
bly be updated at intervals of up to 4 seconds (the present surveillance radar rate). This
rate is believed to be adequate for the situation map display, provided that the reference
aircraft heading is used to rotate the entire situation display more frequently. On this
display runs were made with an update rate of one per second, which was deemed ade-
quate by NASA research pilots.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., September 29, 1972.
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APPENDIX A

SEQUENCING AND SEPARATION ALGORITHM

A complete flow diagram of the automated sequencing and separation algorithm
simulated is shown in figure 23. It should first be noted that the landing slot assignments
are coded by denoting the route and class of the assigned aircraft and stored as a list
within the computer. Unassigned slots are denoted by zeros, and assigned slot values
are given by two digits: the first indicates the aircraft route and the second, the aircraft
class, for example,

Aircraft , Aircraft
route ^ / class

When a new aircraft enters the terminal area and requests a landing slot assign-
ment, its route number and class are used to calculate the time remaining to touchdown
with no delay. This determines the earliest possible landing slot which the aircraft may
use. All later landing slots are checked for aircraft with common route and class to
avoid passing of delayed aircraft at the same altitude along a particular route. The
resulting landing slot is then checked for availability, and the first available slot is ten-
tatively assigned.

To avoid the situation where an aircraft immediately precedes a slower aircraft
(figs. 7 ,8 , and 9), this combination is separated by one or more departures. The next
two checks in the sequencing and separation algorithm provide this separation by check-
ing ahead and behind the assigned landing slot for NSEP slots. The check ahead looks
for faster aircraft, and if one is found, the assigned landing slot is moved back so that it
is separated from the faster aircraft by NSEP landing slots. The check behind looks for
slower aircraft and the landing slot is reassigned to immediately follow the slower air-
craft. After any landing slot reassignment, the availability of that slot is checked and
both speed class separation checks are repeated.

The final landing slot assigned to the aircraft is then used to determine the amount
of time which the aircraft must be delayed and thus the type of delay (early deceleration
or flight-path extension) which must be performed.
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APPENDIX B

DERIVATION OF RECURSIVE EQUATIONS FOR

RUNWAY SPACING DELAY

Aircraft are assumed to have possible landing times satisfying conditions which
lead to the Poisson distribution (ref. 5):

P(n,T) = e"XT(XT)n

n!
(n = 0, 1,2, . . .) (Bl)

where n is the number of aircraft that could land in time interval T and X is the
expected rate of arrival.

If the time interval T is taken as the required time spacing at the runway and
m(k) is defined as the number of delaying aircraft after k possible landing slots have
occurred,then

m(k + 1) = m(k) + n(k) - 1 ( k = l , 2, . . . ) (B2)

describes the accumulation process.

The expected value of m(k) can be found from the probability distribution of m(k).
The following table includes the initial recursive terms required to determine this
distribution:

m

0

1

2

3

Lm(k) for k equal to -

1

P(0,T)+P(1,T)

P(2,T)

P(3,T)

2

L0(1)[P(0,T)

L0(1)P(2,T) +

L0(1)P(3,T) +

+ P(1,TJ] + Li(l)P(0,T)

L!(I)P(I,T) + L2(1)P(0,T)

L1(1)P(2,T)+L2(1)P(1,T) -

3

hL3(l)P(0,T)

By defining Lm(k) as the probability of m accumulated or delaying aircraft at
iteration k, the following recursive equations can be written from inspection of the table:
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APPENDIX B - Concluded

L0(k + 1) = L0(k)[P(0,T)
-

i=m+l } (B3)
Lm(k + 1) = ̂ >~ Li(k)P(m+l-i,T) (m = 1, 2, 3, . . .)

i=0

The expected value of m(k) is

M
E{m(k)}= ^ m(k)Lm(k) (B4)

m=0

where the series is truncated at M terms.
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APPENDIX C

DERIVATION OF ARRIVAL-TO-DEPARTURE LIMIT

AND RUNWAY ARRIVAL EFFICIENCY

It is defined that aircraft of different speed classes, designated in ascending speed
order by the integer n, can land in a continuous spaced sequence and that one departure
is to be inserted whenever a high-speed aircraft precedes a slower aircraft. Since only
one departure is to be inserted, the probability of this event is

P(D) = P(A)P(D/A) (Cl)

where P(A) is the probability that the preceding aircraft was an arrival and P(D/A)
is the conditional probability that a departure will be required given that the preceding
aircraft was an arrival.

Since the sequence is defined as continuous, the only events that can occur are a
departure or an arrival. Therefore,

P(A) = 1 - P(D) (C2)

Combining equations (Cl) and (C2) yields

<C3)

The conditions for inserting a departure between two arrivals yield

P(D/A) = P(N)[P(1) + P(2) + . . . P(N-l)] + P(N-1)[P(1) + P(2)

+ . . . P(N-2)] + . . . + P(2)P(1) (C4)

where P(n) is the probability that a given arrival is of speed class n of N total
possible classes.

The arrival-to-departure limit is defined as

- P(D)

and is interpreted as the average number of arrivals before a departure is required for
continuous use of the runway.

Runway arrival efficiency is defined as the average percentage of time that the run-
way could be devoted to arrivals and is expressed as
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APPENDIX C - Concluded

P(A) AtA

'A p(A) AtA + P(D) AtD i p(p/A) Atp

AtA

where At A and Atp refer to arrival and departure spacing times, respectively.

(C6)
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TABLE 1.- SEQUENCING ALGORITHM OUTPUT

Allowable
runway
sequence
number

1
2
3
4
5

1 =
It
I V
18
19
20
21
22
23
2",
25
20
27
20
29
30
31
32
?3
34
3i

43
44
45
4t
-.7
46
49
50
51
52
53
54
53
54
57
58
5<i
to
t l
t2
t3
t4
t'.
et
67
66
45
70
71
72
73

7t
17
76
75
f[)
H
02

"•
91
v

9C
97
98
99

100
101

Minimum
Natural- Spaced departure

order sequence introduction
sequence sequence

1
c
2

C
C
0
C
C
c

21
2
0

11
0

c
32

112
C

131
1
1

11
21

2
1
1
0

C
121

22
1
C
1
.

11
2 12

0
0

11
C

21

23
C
C
2
1

12111
C

31
C

I
31

C
1
C
1
2
C

23
C
C
1
C
1

131
2 3

1
0
2
2
a
a
0
0
0
0
2
1
2
1
1
3
0
3
2
1
1
2
1

1
1
1
3
1
1
2
1
2
1
1
1
1
2
1
2
2
1
1
3
1
1
2
1
2
1
1
2
1
3
2
3

1
1
2
1
1
1
3
1
3
1
1
1
2
2
3
1
1
1
3
1
2

1 3
0a
0
0
0
0
0
0
2 3
0
ii
2j
0

0
0
23
T

ll(J0 _

I]
0

0
0ni
2 - 1
0n
2J
0

1
iJ
J

0
011
3j
0
IT
1
2j
0
1-1
zJ
0I]
0n
0

0
0
2 2
0
11
1
2 J
0

!)
]
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TABLE 2.- SPEED-PROFILE SUMMARY

Aircraft
class

1
2
3

Speed, knots

Entry

150
250
350

Prior to
outer

marker

123.5
153.5
195

After
outer

marker

118.5
143.5
175

At
glide -slope

change

115
135
160

Approach

85
110
140
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TABLE 3.- ASSUMED COORDINATES OF NAVIGATIONAL AIDS

Map
symbol

ORD
MKE
RFD
PLL
BDF
PNT
EON
JOT

API
CGT
OXI
GSH
SEN

ELX

PMM
MKG
FWA
PIA

LAP
OBK
CVA
MXT
JVL

Navigation stations

Chicago (O'Hare)
Milwaukee
Rockford
Polo
Bradford
Pontiac
Peotone
Joliet
Naperville
Chicago Heights

Knox
Goshen
South Bend
Keeler
Pullman
Muskegon
Fort Wayne
Peoria
Lafayette
Northbrook
Cordova
Midway
Janesville

Coordinates from
O'Hare, n. mi.

X

0
-19.5
-58.7
-71.8
-74.0
-35.4

6.5

-17.7
-9.0
18.2
57.0
84.8
71.0
78.2
78.2
78.8

125.0
-83.0
41.3
-2.1

-114.3
10.0

-54.0

y
0

66.5
13.0
-3.3

-51.3
-70.8
-42.3
-27.0
-13.0
-28.0
-18.0
-24.0
-10.5
12.1
31.8
74.0

-55.0
-80.0
-83.0
11.8

-19.0
-14.2
32.5
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Figure 2.- Pilot's situation display.
L-71-8539
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Figure 4.- Arrival-to-departure limit for full runway utilization.
P(2) = 1 - P(l) - P(3).
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Figure 7.- Approach time sequence showing worst case separation for
3D1 landing sequence.
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Figure 9.- Approach time sequence showing worst case separation for
2D1 landing sequence.
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(a) No delay.

Deceleration

(b) Early speed reduction.

ENTRY

Vl

(c) Maximum speed delay and various flight-path extensions.

Figure 10.- Delay of aircraft with common altitude, route, and speed.
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(a) With high elevation points.

Figure 13.- Pilot's situation display.

41



H43I 13

^ XOfl
142 It

IS

(b) With range marks.

Figure 13.- Concluded.
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L-72-5871
Figure 15.- Pilot's display with integrated flight director.
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Figure 16.- Nomenclature for integrated flight director.
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Figure 20.- CRT system schematic.
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L-72-6514
Figure 22.- Plot of flight path against time.
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Figure 23.- Flow diagram of sequencing and separation algorithm.
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