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FOREWORD

This interim report was prepared for the NASA Manned Spacecraft
Center, Houston, Texas, by Rocketdyne, a Division of North Amer-
ican Rockwell Corporation. The study was conducted in accordance

with contract NASw-2106 under Rocketdyne General Order 9308.

ABSTRACT

This interim report presents the results of the first-year efforts
of a design and experimental program to develop special instrumen-
tation systems, design engine hardware, and conduct tests using
LOX/GH2 propellants wherein the propellant flow stratification was-
controlled. The mixture ratio was varied from 4.6 to 6 overall.

The mixture ratios in the core and outer zone were varied from 3.5
to 6 and 5 to 8, respectively. The range in boundary layer coolant
was from O to 10 percent of the fuel. The nominal chamber pressure
and thrust were 225 psia and 7000 pounds, respectively. Pressure
and heat flux profiles as well as gas sampling of the exhaust pro-
ducts were obtained. Specific impulse efficiencies of approximately
94 percent and characteristic velocity efficiencies of approximately

97 percent were obtained during the experiments.
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INTRODUCTION AND SUMMARY

The initial effort of an analytical, design, and experimental program has
been conducted to document the effects of combustor flow striations on
rocket thrust chamber performance. The overall program is designed to
complement several analytical programs now in progress all in support of
the goals of the JANNAF sub-committee on Liquid Rocket Thrust Chamber
Performance. Analytical techniques for the performance prediction of

rocket engine nozzles for the case of efficient, homogeneous combustion

have reached a high degree of perfection over the past several years.

The JANNAF Performance Standardization Working Group has created a method-
ology and a group of computer programs that represent the best analytical
techniques available in the industry and show encouraging results when
compared with experimental data. However, many rocket engines have neither

efficient combustion nor uniformly distributed combustion products. The

effects of these two conditions on nozzle performance, which can total

several percent, are not well documented experimentally and are only now
becoming the subject of rigorous analytical.studies. The objectives of this
program are (1) to develop special instrumentation systems and eggine hardware,
and conduct tests using LOX/G-H2 propellants wherein the flow stratification is
controlled, (2) obtain sufficient experimental measurements to show that the
quality and completeness of experimental data are sufficient to characterize
the major physical processes occurring in the rocket thrust chamber from
injection to the exit plane, and (3) use the data as a check on the accuracy of

JANNAF combustion models at nonhomogeneous and low performance conditions.
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To meet this objective, a l6-moﬁth program, divided into the following four .
tasks was conducted: Task I was a deéign and fabrication effort to obtain

an injector containing provisions fdr three separate flow zones and a heavily
instrumented copper thrust chamber/nozzle‘éssembly; Task II was a cold flow
experimental effért to characterize the injection elements; Task III con-

sisted of developing a gas sampling system; Task IV was to conduct hot fire

experimental performance testing at altitude conditions.

In conjunction with this contract and as part of the samé project, a zone
radiometry system was used to analyze the thrust chamber exhaust gases.
Although this work was performed under NASA Contract NAS8-211LL, the two
programs were conducted as parts of a single project. A complete descrip-

tion of the zone radiometry effort can be found in Ref. 1. .

Specific impulse efficiencies of approximately 94 percent and characteristic
velocity efficiencies of about 97 percent were obtained during the experiments.
The mixture ratio was varied from 4.5 to 6 overall. The mixture ratios in the
core and outer zone were varied from 3.5 to 6 and 5 to 8, réspectively. The
range in boundary léyer cooling was from O to 10 percent of the fuel. Pres-
sure and heat flux'profiles'were obtained during all data tests. The nominal
operating point was:

Propellants = LOX/GHp

Mixture Ratio = §

BLC = 0 - 10%

Chamber Pressure = 225 psia

Thrust (eE = 25:1) = 7000 lb,
The feasibility of all systems was demonstrated; however some modifications

are required before further testing commences. .

R-8903
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TASK I: INJECTOR AND THRUST CHAMBER DESIGN AND FABRICATION

Since the primary objective of this program was to develop the capability for
acquiring high quality data, the engine design and operating parameters were
selected primarily on the basis of thelr ability to support that goal. Thrust
chamber simplicity and durability considerations also tended to exert a res-
training influence on the final choice. For example, both water cooled and
heat sink chamber designs were initially considered. Since accurate thrust
measurements were crucial to the program objective, a water cooled design
requiring a large number of water lines resulting in a large thrust bias

was rejected. A heat sink design was, therefore, selected.

The heat sink thrust chamber design selected placed limits on chamber pressure
and test duration. Since tests of 2-seconds duration wvere needed, the chamber
pressure was limited to a maximum of 300 psia. Consideration of performance,
heat transfer and sampling accuracy resulted in the following nominal design

operating conditions for the engine.

Propellants = LOX/GHé

Chamber pressure = 250 psia
Mixture ratio = 5

Boundary layer cooling = 0-10%
Expansion ratio = 4 and 25

Test duration = 2 seconds

R-8903



INJECTOR DESIGN

In order to obtain meaningful documentation over a range of mass and mixture
ratio distributions theAinjectbr was designed for precision control of the
oxidizer and fuel flow.in several individually supplied zones (i.e., "core",
"outer ring", and "film coolant ring"). By variation of the individual mix-
ture ratios and total flowrates within each zone, striated flows of differing
mass and mixture ratio distributions could be createdx. An injector assembly
drawing showing the element arrangement on the face and the manifold design

is shown in Fig. 1 . The major features are:

1. A 96-element injector arranged in four rings with the outer ring
propellant feed controlled separately from that of the inner three
rings. The element type. is an impinging triplet (oxidizer/fuel/

_oxidizer).

2. A 96-orifice film coolant ring controlled with flow separately

from the rest of the injector.

3. Manifolds with very low velocities feeding the elements to ensure

uniform feed to all elements within each zone.

*Considerable emphasis was placed on designing the injector such that injection
uniformity was maintained within each zone, i.e., equal fuel and oxidizer flow
rates to each element and elements spaced to provide uniform flow per unit
injector face area. It was recognized, however, that any real injection ele-
ment produces local inhomogeneities of mass flux and mixture ratio. Therefore
the Task II cold flow characterization (see later discussion) was conducted
(1) to obtain element design criteria for minimizing such non-uniformities
and (2) to acquire a quantitative measure of the "mixing" actually achieved.

R-8903
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A

4. A brazed assembly chosen to allow access to the entrances of all

orifices (except the film coolant orifices) for contouring.

5. Element and row spacing selected so that if the elements of
both zones are run at the same mixture ratic and element flowrate,

the mass flux will be constant across the injector face.

6. The film coolant orifices spaced so that every other one is

directly outboard of a corresponding outer row element.

Multiple inlets were selected for all but the core fuel to reduce the size

of the manifolds. The four injector rings have numbers of elements and relative
spacing designed to produce uniform mass flux across the injector face. All

of the rings contain identical triplet elements which are divided 48 in the

core (inner three rings) and 48 in the outer ring. When the total flows to

the core and outer region are equal, the average mass flux for each ring is

uniform within much less than 1% {see Table 1 ).

The {triplet) injector element is described in Fig. 2 and Table 2 . The
centerlines of the three (coplanar) streams describe an included impingement
sngle of 60 degrees and their impingement point is 0.3-inch from the injector
face, The orifices have length-to-diameter ratios of 14:1 and have contoured
inlets. The nominal orifice flow conditions for the oxidizer and fuel are also
summarized in TPable 2. The orifices were sized to maintain reasonasble velo-

cities, Mach numbers, and pressure drops throughout the test range.
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THRUST CHAMBER DESIGN | X ‘ ‘l'
The thrust chamber was designed as a heat sink calorimeter unitf It contains

provisions for extensive instrumentation and for cooling between tests. The

combustion chamber design including the nozzle skirt‘is presented in Fig. 3.

The chamber material is OFHC copper. The chamber is secured to the injector

by 12 bolts which screw into the threaded holes: the nozzle is attached in

a similar manner. The chamber L¥ is 20 inches and the contraction ratio is

2.0 (chamber area divided by‘nozzle throat area). The water cooling system,

used bétween tests, is not shown in the figure. With ldw pressure water

supply, the heat input to the chember in a 2-gecond test can be completely

removed in 15 to 20 seconds of cooling time.

The wall radius of curvature upstream of the throat was set eqﬁal to 1.5 | ‘
times the throat radius. This valué was éelected as being representative of

many engine designs and is large endugh ﬁo facilitate a transonic analysis.

The large radius used to form the transition from the cylindrical cbmbustion

section to the throat circlet was selected to make the turn gradual enough

to prevent flow separation, whilé leaving enough cylindrical length to simplify

tﬁe interpretation of chamber pressure measurements. The transition circlet

from the throat to'the conical nozzle has a radius equal to thg.throat radius

in order to minimize'the shock at the tangent point. The conical nozzle

expansion angle was selected as 15 degrees to minimize contour related flow

nonuniformities and to simplify interpretation of flow stratification results.

R-8903
10




L

FOLDOUT FRAME

90

-”-

‘ .
o'

- — e e e

LOTLTEO NTD VIEN
N . . . o
AR Futy WLy ‘
BN
; L}\ '
.—..* = ‘:,
N '

FOLDOUT FRAME 2 FOLDOUT FRAME 3

FOLDOUT FRAME L

o WAL OxD INVET »\'\
QOCATED AT 13° ¢ 25%°)
-
OUTER Ox/D> /L€ .
(LOCATED AT w8 d28s°) \
|
BLC gLeT THERIIAL WAL ERS \
(wocated A3is® 4 195%) . .o '
(THEEMAL PLoG TyR | \
; 7T =3 ' A . S
e o -
\\\ \\\ \ \\\ \ \\\\// ; - o ' o L
+ \ \\ N \ T ° 2 . )
\ b : ) -
R \ \ ’ - 1 ) » ’ )
iy \\ ‘ €+ 230
[ v N ' I . N
.. —:’:’:1‘" _ | . - . .
= E7ER DiA. €-|/.-5 " €=30 ' €: 7o €- /50 £-23.5
> €.7¢3 Din : ' - 256 Ord (e‘=.4f)
: 1

N ol {
- T — N . vx\l\\\ \\\ \ ) ‘ D
. / L—zzz—f | 2 AR
CUTER FuLL MLET . ‘&éi \;—}/A \\x i )\ \\\\ \ \\ \ \\‘ . }\\ \ : o | | ) :
- LoD N L A \ .'- N, y ‘\_ - . ___<i..>__
Y \\\{r‘: T 7 [':.E\ ™ m\\ N\ \\/xkii\.ifﬁ»—_ i NS .
] TS
SNJECTOR !
7 gk oSt f/ipff;;oi”pr PRESSVRE PolTS

-

G
OF Poog QUA IEmlsﬁ

239/ 4(€=29)

\

B

N Figure 3.
5.
/ R-8903

Overall Engine
Assembly



PRECEDING PAGE BLANK NOT FILMED

The nozzle extension shown in Fig. 3 is made of mild steel. The expansion
is a l5-degree conical section starting at an expansion ratio of L4 and

terminating at 25.

The chamber and nozzle were fully instrumented for wall pressure and temperature
measurements. Tables 3 and 4 list the axial locations of all pressure taps
and heat flux gages, and Fig. 4 shows the corresponding circumferential

location of all measurements.

The thermal isolation plugs are incorporated into the combustion section

(Tl to T2h) by machining an annular groove in the bottom of a counter-based
hole leaving a small supporting web at the inner surface. The groove effec-
tively liﬁits heat conduction to a radial path through the wall. A schematic
of this type of'isolation slot ig shown in Fig. 5. The radial path length

(t) for all of these isolation segments is 0.5 inch.

The thermal plugs shown in Fig; 5 consist of small copper disks suspended in
an insulated environment resulting in fast response and relisble operation.
The radial path lengths for these isolation slots are listed in Table 5.
Note that the radigl path length is considerably smaller for these plugs

than for the isolation segments.

_I_’réceding pageblank
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TABLE 3. LOCATION OF PRESSURE TAPS ON '
CHAMBER/NOZZLE ASSEMBLY

Axial Distance
Pressure from Injector Face¥ _ Epsilon

Tap (inch)

1 1.125 2.0 (Cylindrical)
2 . ' : " . ’ . "

3 330 o

L " _ o

5 5.0 o "

6 " | "

7 6.865 "

8 ] v "
| 9 14,82 _ _ 1.5 (Divergent)
10 ' " o ' "

11 | 19.3k 3.0 "

12 B "

13 o 2L .63 s.uy "

1k 28.13 . | T 47 "

15 1 34,15 » | .72 "

16 : 38.7 : | - 15.54 "

17 46.78 - 23.70 "

18 M08 © 2k.ob "

*Throat at 12.5 inches
.R-8903
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TABLE 4. LOCATION OF TEMPERATURE MEASUREMENTS ON
CHAMBER/NOZZLE ASSEMBLY

Temperature ,
Measurenment Axial Distance
(Thermal ‘ from Injector Face¥ Epsilon
Isolation Plugs) (inch)
T-1 1.125 2.0 (Cylindrical)
2 " "
3 2.84 "
)." 1" "
5 5.51 "
6 1" "
7 6.85 "
8 " "
9 8.18 Convergent
10 R " "
11 9.52 "
12 1" 1"
13 10.86 "
1)4 " 1
15 12.19 "
16 " 1]
17 : - ’ ] 0
18 12.8 Divergent
19 " n
' 20 " "
21 o 14.82 "
22 1 [}
23 19.34 ‘ "
2k " "
25+ 2h.6 5.44
26+ " "
2T+ 34.2 11.71
2&_ " "
29+ 46.8 23.70
30+ ! 23.58
#Throat at 12.5 inches
+Heat flux wafers
R-8903
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TABLE 5 . RADIAL PATH LENGTHS FOR THERMAL PLUGS

Thermal Plug Designation#*

Radial Path Length, inch

25
26
27
28
29

30

0.021
0.020
0.016
0.021
0.035

0.028

*¥Refer to Table L for the corresponding axial location

of each thermal plug.

R-8903
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TASK II - INJECTOR COLD FLOW CHARACTERIZATION

Cold flow characterization of the injector was performed to provide an experimental
description of the actual mass flux and mixture ratio distributions produced by
the injector for comparison with sample and zone radiometric analysis of the

exhaust. It also will serve to provide input for combustion model analyses.

Utilization of the Distributed Energy Release (DER) JANNAF combustion model
computer program requires a description of the propellant mass and mixture
ratio distribution, and dropsize distribution at a start plane near the
injector. These can be obtained from either (1) a description of the mixing
and atomization characteristics of a single injection. element suitable for
inclusion into the Ligquid Injector Spray Pattern (LISP) sub-program, which then
defines the overall distributions, or (2) definition of the overall mixing

and dropsize distributions obtained from cold flow experiments using the full
scale injectors. Due to facility limitations at the time of initiation of this
program, testing to determine £he mixing characteristics using the full scale

injector was not possible.

Experimental characterization of a single element was conducted in two areas:

1. Mixing tests: to study the degree of mixing between the liquid

and gas streams.

2. Atomization tests: to establish the initial droplet size

distribution.

R-8903
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In addition, manifold flow distribution tests were made using the full
scale injector to establish the degree of uniformity of flow to each

element achieved with the final injector assembly.

SINGLE ELEMENT COLD FLOW TEST FACILITY

Mixing

In order fo describe the flowfield produced by & given injection element the
mass fraction of the total fuel and oxidizer.present at each point in the flow
field must be determined. A specially designed, two-phase impact probe

(Fig. 6 ) and pressurizing facility were employed to accomplish this task.
Development of the tesﬁ procedure is described in Ref. 2 and the probe devel-
opment is described in Ref. 3. A schematic of the overall facility is pre-
sented in Fig. 7 . Basically, the impact probe serves the function of
stagnating the gas component at the probe tip while allowing the liquid
droplets to proceed down the length of the probe. By measuring the stagna-
tion pressure at the probe tip (Baratron pressure indicator) and by collecting
liéuid in the probe for a known interval of time, both gas and liquid flow-
rates can be determined at each point. An oxygen/nitrogen mixture is used tq
simulate the injected fuel gas while water simulates the liquid oxidizer. As
the gas/liquid floﬁ field moves through the surrounding environment on its way

from the injector to the probe location, much of the gas in the environment*

*The environmental gas consists of pure nitrogen injected through a porous
plate at a very low velocity base bleed around the injection element. This
base bleed prevents excessive recirculation, allowing a much better simula-
tion of the near injector region under hot firing conditions.

R-8903
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Figure 6. Schematic of Concentric Tube
Two-FPhase Impact Probe
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is ingested into the flow field. Therefore, the gas flowrate measured at the
probe is composed of gas which was injected (nitrogen/oxygen mixture) and gas
which was ingested (nitrogen): These two components must be segregated to
determine the injected portion. To accomplish thils, the gas sample which
arrives at the probe is processed through an oiygen sampler. The concentra-
tion of oxygen in the sample can then be used to determine the concentration
of the original injectant. Finally, to provide a constant chamber pressure,
a gas/liquid separator tank (see schematic) is employed to maintain single

phase gas and single phase liquid exhaust flows.

Atomization

The molten wax atomization measurement technique has been utilized and refined
extensi&ely at Rocketdyne éver the past five years (see Ref. 2 for some
detailed descriptions). Bésically, the molten wax is injected as a simulant
of a liquid propellant forming a épray which freezes as it falls to a col-
lection surface thereby preserving its liquid dropsize distribution. The
frozen vax sample is washed doﬁn with water and collected. It is vacuum
dried and finally subjected to a.sieve analysis determining the mass dis-

tribution as a function of droplet diameter.

Under the subject program, atomization experiments with single-element gas/
liquid injector elements were performed in the apparatus shown schematically
in Fig. 8 . The apparatus consists of a large (600-gallon) pressurized

tank with an associated water injector which prevents hot-wax from impinging
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on the tank walls. The single-element gas/liquid injector is mounted at
the top of the tank and propellant simulants (hot wax, He or GNé) are
supplied from the hot wax supply facility. Hot wax and gas flows are made
for approximately 20 seconds and the resulting wax droplets are drained
and washed from the tank following éénk depressurization. The droplet
sample is then vacuum dried and subjected to sieve analysis in order to

determine the dropsize distribution and a mass median dropsize, D.

FULL SCALE INJECTOR MANIFOLD FLOW DISTRIBUTION SAMPLING FACILITY

The manifold flow distribution tests were designed to experimentally evaluate
how uniformly the various fuel and oxidizer manifolds in the full scale in-
Jjector distribute the propellants to each injectiqn element. It should be
noted tﬁat this is not the same as measuring the gas/liquid flow field pro-
duced by the full scale injector. Also, as a matter of clarification, it is
pointed out that gas flow measurements were used to evaiuate both fuel and

oxidizer manifold flows.

A schematic of the test apparatus used td determine the gaseous flowrate
through each orifice is shown in Fig. 9 . The gas flowrate through each
element was determined using the venturi shown downstream of the injector.

A Baratron pressure gage was used to measure the venturi upstream and throat
pressures. The total injector flowrate (into a given manifold) was determined
using the upstream venturi shown in Fig. 9 . A sectional view of the sampling
head for determination of the flowmeter through the oxidizer orifices of an

element is shown in Fig.1l0 . The head fits over a triplet element and the
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Figure 10, Injector Plug for Sampling
Two Impinging LOX Jets
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central jet is plugged. The flow through the sample head is that coming
through the two impinging oxidizer orifice Jets.v For the fuel orifice,a
single tube incorporating a seal at the end which fits over the fuel orifice

was used.

INJECTOR ELEMENT DESIGN

Successful cold flow modeling requires that the cold flow injector element

be an exact duplicate of the hot fire element geometry. Therefore, the single
element cold flow hardware was designed to mﬁtch the hot fire element geometry,
including orifice and free stream (L/D)'s and orifice inlet curvature. While
the gas and liquid feed manifolds are not exact duplicates of the full scale
injector, all feed velocities are similar to thése of thé hot fire injector.
As an added méasure to insure cold flow - hot fire similarity, the cold flow
and hot fire hardware were fabricated from the'samé material using the same

tooling.

Figure 1l shows the cold flow hardware assembly used for the mixing tests.
In this case, the injector flows into the centerlof'the mixing chamber and
is surrounded by a uniform base bleed gas flow (GNé) which prevents recircu-
lation of the injected simulant gasés. The same element hardware was used
for the atomization tests.’ However, for the atomization tests, the mixing
chamber is replaced by & 600-galloﬁ pressurized vessel (Fig. 8 ) which

collects the simulant (wax) droplets.
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SINGLE ELEMENT COLD FLOW EXPERIMENTS

Selection of Cold Flow Modeling Technique

Mathematical analysis of gas/liquid inipinging stream modeling criteria
suggests, for fixed element geometry, that the gas dynamic parameter

(;og VgQ)’ and the liquid/gas penetration parameter.,.'(x p/Dg) should control
element spray formation processes. The liquid/gas penetration parameter
may be physically interpreted as an index of the ability of the injected

liquid stream to penetrate the gas (fuel) stream and is defined as follows:

X | 1/2
i= 1.25 (T_rr%g_) (z—i) cos @
where © = angle between injec‘gor face and the. liquid Jet
D = orifice diameter -
p = density
MR = O/F mixﬁure ratio

Since mixing and atomization processes are inherently related, the same set

of variables is thought to control both mixing and atomization (dropsize).

g
can be used to characterize impinging type elements. In addition, atomiza-

Experimental tests have demonstrated that the variables X p/Dg, pg, and V

tion tests using gaseous nitrogen and helium have shown that the parameter
(pg ng) does correlate mass median dropsize data in terms of both Py and

Vg (experimental range: 2.5 < Py Vg2 < 18 psi). However, prior to this
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program, no gas/liquid imbinging elements had been cold flowed with the gas
dynamic parameter in the range of 60 to 260 psi which was planned for the
Task IV hot fire.testing. Furthermore, the dependence of mixing on (pé Vgg)
had not yet been confirmed due to insufficient test data. Therefore, as a
conservative approach to modeling, it was evident that all of the cold flow
variables (Xp/Dg), pg, and Vg should be equal to their respective hot-fire
values. Where it is not possible to experimentally match all of these vari-
ables, cold flow modeling can be accomplished using the parameters (Xp/Dg)
and (pé/Véz), but this latter method of modeling should be used only where

the deviation of pg and Vg from the hot~fire values is not great.

Since, in this program, the hot-fire values of Vg and (pg Vga) are much
greater than those that can be attained using GNé (due to sonic velocity
limitations) the injector characterization program was conducted using
gaseous helium as the fuel (Gﬂé) simulant. The back pressure was

selected so that the cold flow simulation tests matched the hot-fire values

g
since the hot~fire gas velocity for the 3:1 mixture ratio case exceeds the

of (Xp/Dg), p_ and Vé for the mixture ratio range of 5:1 to 8:1. However,

subsonic range of helium, cold flow simulation for this mixture ratio was

accomplished by matching hot-fire and cold flow (Xp/Dg) and (pg Vge).

Experiments
The single-element hot-fire test conditions are presented in Table 6.
Also presented in this table areAthe test conditions of the atomization

and mixing tests that were conducted. Note that the two major modeling
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variables, pé Vg2 and Xp/Dg, are nearly identical for both the expected
hot-fire conditions and the cold flow tests. The results of the single-

element tests are discussed below.

Atomization Test Results. Each of the atomization tests was run for a

duration of approximately 15 seconds of steady-state flow. Wax samples

were analyzed using the standard sieving technigue. The data are presented
in non-dimensional form in Fig. 12 . The data show that the distribution
normalized by D is essentially invariant, so that D alone is a good index of
the dropsize distribution. This normalized dropsize distribution curve is
similar to the data presented in Ref. 2 for large thrust-pef-element gas/
liquid triplet injectors. Figure 13 shows the variation of mass median
dropsize, fﬁ with element mixture ratio. The overall range in D was from

about 1l00u to 225y .

The dropsize data of Fig.1l3 are replotted in Fig.l4 where D is shown as a
function of the gas dynamic parameter, pg Vge. Mehegan, et al, found (Ref. 2)
that the mass median dropsize for impinging type elements (1.5 < ;% Vé2 < 17 psi)
was inversely proportional to a power of /Z Véz. Although the penetration
parameter, Xp/Dg, is also a variable for the data shown in Fig. 1L, additional
data presented in Ref. 2 show that the mass median dropsize is insensitive

to XP/Dg over the range 0.2 to 0.7. Since the subject tests fall within this
range of pénetration, Fig. 1% shows that the inverse power relationship also

holds for the range 505@ v: < 260 psi.
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Mixing Test Results. Four mixing tests were conducted. All three of the

test conditions listed in Table 6 were run at a collection distance of
2-inches (Runs 5, 6 and 7) and the low mixture ratio case conditions were
repeated using a collection distance of 5 inches (Run 4). Measurement at
two distances is required for development of the GLISP program¥* since knowl-

edge of variation of spray patterns with axial distance is required.

Mixing data can be presented in several useful forms. Normalized mass flux
profiles (local mass flux/total injected flowrate) are particularly

valuable when comparing data from several tests in which the injected mixture
was Qaried. This is because the total volume under each profile (extended to
three dimensions) is equal to unity. Therefore, changes in the location of gas
and liquid flux concentrations can be easily seen by direct comparison of

normalized mass flux profiles.

Figures 15 through 18 present thé normalized profiles for the four tests con-
ducted. On each of these figures, the four separate graphs are cross-sections
taken at 11, 33, 56, and 70 degrees from the diemeter containing the two oxi-
dizer orifices. Note that the intersection of the gas and liquid curves cor-
respond& to locations where the local mixture ratio is equal to the injected

ratio; where the liquid mass flux curve 1s higher the mixture ratio is above

*Data from the mixing tests were reduced to a form which may be used for the
development of the Gas Liquid Injection Spray Pattern (GLISP) program, which
is part of the overall DER program.
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that injected and vice versa. For example, in Fig. 15 where the liquid
penetration parameter is low, the center portion of the flowfield is a

region of low (below injected) mixture ratio. Beyond about O.4 inch
(radial position), the mixture ratio is above the injected value (liquid

curve above gas curve).

Comparing Figures 15,16, and 17, the effects of'increasing vrenetration varam-
eter (increasing Xp/Dg) and decreasing gas dynamic paramgter (/% ng) can be
seen. As would be expected, the increase in liquid penetration (with corres-
ponding decrease in gas dynamic pressure) results in a splitting of the gas
stream close to the injector as the gas flows around the liquid jets. In

all cases the location of maximum normalized liquid flux is along the injector
axis. However, the effect of increasing the liquid penetration parameter
(Xp/Dg) is shown by the increasing value of this maximum and by the fact that
the liquid flux profiles (at high penetration) begin to look like those of a

liquid like-doublet injector element (i.e., elliptical),

Since optimum mixing occurs when the normalized gas and liquid profiles are
equal, a comparison of Fig. 15 through 17 shows that the best single element
mixing probably occﬁrs between the hot fire mixture ratios of43 and 5. This
conclusion is verified by Fig. 19, in which the mixing efficiency (nmix)and
mixing parameter, (%m) have been ﬁlotted for the four tests. Also shown in
this figure is the increase in both qmtxand Eh with increasing collection

distance at the mixture ratio equals 3 condition. Figures 15 and 18 show that
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the reason for improvement is that the gas flowfield has expanded more
rapidly than the liquid spray, partially counteracting the initial high

'~ concentration of gas near the center.
Another presentation of the data is given in Fig. 20 through 23 where
lines of constant mixture ratio and total mass flux have been plotted at

the collection plane.

Comments on the Single-Element Cold-Flow Test Results. The single-element

cold-flow testing results havé shown that over the range of anticipated hot
fire test conditions the mixing and atomization of the propellants will vary
significantly. All of the observed trends were expected and can be explained
by considering the variation of the physical parameters liquid penetration

2
X /D and gas momentum flux \'s .
(x,/D,) gas 1 (A Vg )

Because the single-element, cold-flow data were run to model a specific hot-
fire test matrix, all of the data has been presented as a function of single-
element hot-fire mixture ratio. For the purpose of physical understanding of

the flowfield,the same data can be replotted as a function of the two modeling

2
t v and X /D ).
parsmeters (pé g o p/ g)

FULL SCALE INJECTOR MANIFOLD TESTS
Measurements were made of the flows through each orifice to determine the
maximum flow variation between elements. It was desirable that the injector

be designed such that all orifices flowed full and the overall pressure drops
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Figure 20. Total Mass Flux and Mixture Ratio Contours for Run #7:
High Gas Dynamic Parameter, Low Liquid Penetration,
2" Collection Distance
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Pigure 21. Total Mass Flux and Mixture Ratio Contours for Run #5:
Medium Gas Dynamic Parameter, Medium Liquid Penetration,
2" Collection Distance
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Figure 22. Total Mass Flux and Mixture Ratio Contours for Run #6:
Lov Gas Dynamic Parameter, High Liquid Penetration, 2" Collection
Distance

R-8903
47



Total Mags Flux Contours
s (1om/1in.“/sec) x 10

Mixing Chamber Walls
3" Diameter

Mixture Ratio Contours
I'( l inch

Element
Orientation

Equivalent Hot-Fire MR = 3.0 (g Vg = 252 psi
Collection Distance = 5" xp/ng = 0.25
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(including manifold pressure drops) for each element be identical. This
would ensure that the overall distributions in each zone would be equal to -

that specified by orifice area and manifold pressure.

The results of the tests are presented in Table 7 . The data are separated
into zone and propellant. The element numbers start in the inner ring and

are succegsively numbered as listed below.

Ring Orifice Numbers
1% 1 through 8

2 9 through 24
3 25 through 48
N 1 through 48
S** 1 through 48

*1 is the inner ring containing 8 elements.
*%5 is the BLC ring.

Note that the pressure difference between that upstfeam of the venturi and that
at the venturi throat is - listed. The injector manifold pressure was

2.72 psig, wvhich results in a pressure ratio which is less than critical.

For constant total pressure upstream of the venturi the maximum deviation in

flows are defined approximately by:
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TABLE 7. SUMMARY OF MANIFOLD DISTRIBUTION MEASUREMENTS
Main Fuel Outer Fuel BLC Oxidizer Outer
Menifolad* Manifold Manifol @&¥* Core¥¥*¥ Oxidizer
Element (core) AP, mm Hg AP, mm Hg Manifold Manifold
No. AP, mm Hg AP, mmHg | AP, mmHg
1 81.3 66.4 76.0 103.2 99.5
2 92.0 65.0 8.4 101.8 98.5
3 82.0 69.2 Th.1 102.5 9lL.0
i 98.0 67.1 6.4 101.3 9k.0
5 4.0 69.2 79.7 102.1 oL .k
6 89.0 66 .4 5.5 100.1 94.8
7 76.0 69.7' 72.2 101.2 99.8
8 88.0 69.9 82.1 100.3 107.6
9 72.0 65.6 77.6 100.0 116.2
10 71.0 67.6 83.1 104.3 102.3
11. 79.1 70.1 79.3 102.8 108.4
12 82.1 71.5 109.0 101.3 100.5
13 71.5 71.0 60.2 99.0 100.0
1k T70.5 72.0 80.2 102.0 103.0
15 76.3 64.0 90.3 lok.0 100.2
16 78.4 72.0 86.5 101.5 103.3
17 72.3 69.5 95.5 100.8 108.4
18 70.1 70.0 82.2 103.0 9k.5
19 T2.5 71.0 85.3 107.7 105.3
20 73.4 70.0 84.3 101.5 99.5
21 65.5 65.6 70.1 101.2 103.5
22 70.5 67.0 9L.2 10k4.3 101.4
23 79.3 69.5 85.2 101.0 101.2
2L 80.3 67.5 11k.2 100.0 100.0
25 66.3 67.2 99.8 100.7 87.0
26 69.0 68.2 98.9 101.2 101.4
27 66.4 67.5 Th. b © 100.0 100.6 .
28 67.3 69.8 96.5 99.5 10k4.0
29 66.3 70.1 97.5 10k,.2 100.0 -
30 67.2 69.5 70.0 102.8 10k.1
31 69.0 68.2 80.0 102.5 99.5
32 67.4 7040 100.0 106.3 105.2
33 67.2 70.5 98.2 10k4.1 104.2
3L 69.2 70.5 86.4 102.1 99.5
35 72.4 70.5 96.5 101.4 103.5
36 67.4 70.5 72.3 105.0 - 101.4
37 64.3 69.5 79.3 106.8 106.4
38 68.14 69.4 82.4 101.1 99.5
39 67.6 69.9 8k.5 103.3 92.4
Lo 66 .14 69.5 2.l 101.1 101.2
L1 67.6 68.4 92.k4 109.5 109.5
L2 66.5 69.0 81.4 10L.0 102.4
L3 66.5 69.8 90.3 103.2 99.5
L 66 .4 69.0 90.0 100.5 100.0
L5 65.0 68.0 88.5 103.3 101.0
L6 68.3 69.6 99.0 102.6 100.1
L7 69.4 68.5 82.5 106.8 90.0
18 66k 69.0 99.6 102.1 93.1
*Inj. Press. - 12.L4 psig
**Inj. Press. - 13.2 psig R-8903
#¥*xInj. Press. - 15.6 psig 50

#x%*Tnj. Press.

- 13.6 psig




min _ min
Ymax max (1)

The percent deviation from the maximum value is defined as:

% Dev = 1 - _:15291_
2P ax (2)

Using Eq.(2) the maximum flow deviation for earh manifold is listed below

‘Manifold % Dev
Outer oxidizer 11
Core oxidizer b
Outer fuel 3
Core fuel 18
BLC | 16

Tt should be noted that the average deviation is much less than the values
listed above. Those represent only the maximum value measured. Comparing
all the average deviations for all manifolds, the overall average deviation

is about 5 percent. This value is acceptable.
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TASK III. EXHAUST GAS SAMPLING SYSTEM DEVELOPMENT

SAMPLING SYSTEM DESIGN

The exhaust gas sampling and analysis system consists of exhaust gas sampling
probes, sample collection banks, and the analysis unit. The function of the
probe 1s to collect a sample of the combustion gas in a supersonic rocket
exhaust environment. The sample collection bank stores the samples for later
analysis and has both heating and cooling provisions to allow the gas sample to
be held at any desired temperature, a capability which is needed during analysis.

The analysis unit consists of pressure gauges and a gas chromatograph.

Probe Design

Three probes of the same type were designed by the Greyrad Corporation. A
sketch of the design is shown in Fig. 24. The tip is able to reach any‘point
in the nozzle exit plane. Two water cooling circuits are included, one for
the centerbody and one for the cowl. The probe has sufficient strength to

support 1tself in the exhaust stream when mounted by the terminal block.

The probe capabilities are:

1. Location: All three probes are capable of sampling any streamline from

the nozzle centerline to a point 13.1 inches radially from the centerline.

2. Orientation: BEach probe tip is capable of being oriented parallel

to the local theoretical streamlines.

3. Traversing: The probes are not designed to be traversed during a
test but may be moved, repositioned, and fastened manually between

tests.
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4. Recovery: At a chamber pressure of 250 psia and nozzle expansion
ratio ¢ = 25, the steady-state pressure recovery of the probes,
when the gas collection system is filled, will be approximately

15 psia.

5. Response: A sample volume of 20 cubic inches will be filled in

one second or less.

The size of the probe was determined by two considerations. First, an adequate
size sample must be acquired in 1 second of sampling time. Second, the unit
must be large enough to have space for the internal cooling passages. In this

case, cooling and fabrication were the critical criteria.

The capturedlstreamtube has a maximum diameter of approximately 0.28 inch.
Because of the overall diameter of the probe the centerline of the captured
streamtube can be within 0.35 inch of the wall. For the case of film cool-

ing with 5% total flow, assuming that there is nb mixing between the film

and core (as a worst case), in the 25:1 area ratio case the film at the

nozzle exit would occupy a zone approximately 0.5-inch thick. (For more realis-
tic mixing assumptions, the zone will be much thicker.) Therefore, the

probe allows méaningful sampling of the film/core interaction at the 25:1

area ratio. Mixing between the two mixture ratio zones within the core

can be studied at either area ratio of 25:1 or L:1.

R-8903
55



The key heat transfer areas in the probe are the tip and shank, which must
be protected from the impinging hot gas stream, and the gas sample extrac-
tion tube, which must cool the sample while preventing condensation of

the water.

In the probe design, cold incoming coolant is fed up the outside of the
shank, returning through the inner passage. Heated water is used to cool
the sample while ensuring that its temperature cannot be reduced below the

temperature of the coolant. The same heated water protects the probe leading

edge.

Hot gas and coolant side heat transfer analyses were conducted to select the

coolant conditions to ensure survivability of the probe's leading edge. From ‘

the results of the analysis the flow conditions summarized in.Table 8 were
selected. In addition to the inlet conditions, the resulting temperature at
various locations on the probe_ is presented. It is seen that at these
modest coolant flowrates and»pressures,peak temperatu;es are at acceptable
levels. Coolant bulk temperature rise 1is small_in each case, on the order
of 100 F. Cooling seems to pose no particular problems for the probe but

it is clear from the heat flux levels that cooling is essential.

Since there are no heat transfer difficulties, the simplest method for
assuring non-condensation of ﬁhe combustion-generated water was to preheat
the coolant so that its temperature is above that of the sample saturation

temperature. Assuming that the maximum sample water content is 100%, and
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TABLE 8

SAMPLING PROBE HEAT TRANSFER SUMMARY

€= L4:1 e= 25:1
Assumed Probe Inlet Temperature, F 200 250
Assumed Probe Inlet Pressure, psig 500 500
Calculated Tip Temperature, F 1465 65L
Calculated Tip Heat Flux, Btu/in.e-sec 7.85 2.31
Calculated Tip Inner Passage Flowrate, lbm/sec 0.25 0.25
Calculated Cowl Temperature, F 1600 360
Calculated Cowl Flowrate, lbm/sec 0.7 0.35
Assumed Cowl Inlet Temperature, F 50-80 50-80
Assumed Cowl Inlet Pressure, psig 500 500
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the maximum pressure achieved is 30 pgia, the minimum wall temperature at
the probe exit should be 250 F. :Since there is no heat transfer difficulty,
the eoolant water was pfeheated to 250 F to completely avoid condensation
problems. For the L4:1 expansion ratio, however, the water inlet cannot be
250 P due to excessive heat loads. For this condition the water can be pre-

heated to only 200 F.

The support structure is shown in Fig. 25. It provides continuously-adjustable
probe-tip location at ény point between the centerline and the € = 25 nozzle
exit boundary, and can keep the probe aligned with the theoretical (conical-

flow) streamlines.

After recelving the probes from Greyvrad they were flow checked to determine
the AP versus w chargcteristics. The results of these tests are presented
in Fig. 26 . Note that probe #l and #3 had similar characteristics while
probe #2 yielded in a.much higher pressure drop fof the same flowrate (WLO%).
Subsequenﬁ testing at higher pressure Cv 1100 psi) resulted in a crack in.the
tip weld on probe #2. This can be repaired but there was no time to do so
before the initial testing (Task IV). Therefore probes #1 and #3 were used
in the hot~fire testing. In order to ensure that the probes would not ex-
perience heat transfer problems the actual flowrates selected for the initial
test series were higher than theSevlisted in the previous table. For the

actual tests the nominal coolant flowrates were
w - 0.98 1b/sec

Wooul = 201 1b/sec
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Sample Block Design

The sample collection unit is shown in Fig.27. Each of the three units is
constructed from a solid block of aluminum and contains 10 sample cylinders.
Heating capability is provided by six 2-kw heaters, which can raise the block
temperature by 400 F in approximately 15 minutes. Cooling is provided by LN2
flow through 6 passages and can cool the block 400 F in less than 10 minutes.
The temperature range of O F to 400 F allows freezing or full vaporization of
the water in the samples. A photograph showing an assembly view of the sample

blocks is shown in Fig. 28.

Sample Procedure for Analysis of Hydrogen, Oxygen and
Water Combustion Products ‘

The analysis of hydrogen, oxygen and water is accomplished by a combination of

P, V, T measurements and gas chromatography following a twb-step procedure.

In the first step, the pressure of an individual sample is measured as it is
drawn into a calibrated volume at a known, elevated temperature. Assuming
ideal gas relationships, the total number of moles of gas in the ssmple vessel

is calculated from PV = nRT.

Secondly, the sample vessel is cooled to a known temperature permitting con-
densation of water. The remdining gases are then expanded into the precalibrated
analyzer system. A portion of the expanded sample is injected into a gas chroma-

tograph for determination of the hydrogen/oxygen concentrations.
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Given the system temperature, the concentrations of all three species may be

calculated for the original sample, again using PVT relationships shown below:

1. Total moles of combustion gases, pressuré measured at known

elevated temperature:

ST

n_ = —— : : ’
Total R'l‘l (3)

2. Moles of hydrogen and/or oxygen are calculated from the calibrated

gas chromatographic pressure value as determined (PH ) and the final

2
system temperature (Tf):
PH2 Vl Pb2 Vl
n = n E e—————
A o, = R ()

3. Water is calculated by difference:

n = - +n

H,0 4nTotal (n32 02) (5)
Tﬁe gas chromatographic analysis system shown in Fig{ 29 was utilized for
examination of gaseous propellant residuals.in post-combustion samples. The
system used a Beckﬁan gas sampling valve and Heise gauge. A silica gel pre-
column was installed'to remove water in the sample. All system componenis,
including the recorder,were mounted on a large cart for portability at the
test sité (cTL 4). 1In checkout tests instrumental sensitivity and separations
for hydrogen, oxygen, and nitrdgen were found to be adequate. It was found,

however, that peak height measurements could not be used for quantification
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Figure 28. Sample Collection Unit
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because of spreading of the hydrogen peak at high concentrations, requiring
use of slower integration methods. Response ratio calibrations were per-
formed in the laboratory to minimize the final calibration requirements at

the test site.

Calibration of Sample Blocks

The volumes of the 10 samplers in each block and the manifold associated with
the samplers were determined manometrically using a calibrated volume and a
vacuum system. The volumes obtained are shown in Tables 9 and 10 . Data

on block #2 are omitted becaﬁse they were not used in the subsequent tests.
Difficulty in getting the sampler valves to seat properly was encountered.
Typical valves were found to leak approximately 2 mm Hg pressure per minute
from a sampler and 50-100 mm,Hg/minute from a manifold at 1 atmosphere into an
evacuated sampler. Because of this condition, certain steps not ordinarily
performed with leak-free systems were taken during the on-site analysis and

certain pre-analysis leak checkouts had to be eliminated.
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TABLE 9

MEASURED VOLUMES OF SAMPLERS AND MANIFOLD OF BIOCK #1

SAMPLER NUMBER VOLUME, cc
1-1 230
1-2 226
1= 225
1=k 232
1-5 230
1-6 228
1-7 242
1-8 232
1-9 230
1-10 229

Manifold ; 83
TABLE 10

MEASURED VOLUMES OF SAMPLERS AND MANIFOLD OF BLOCK #3

SAMPLER NUMBER VOLUME, cc
=l 229
3-2% 22U
3-3% 215
3-k 229
3=h 230
3-6 228
3-7 230
3-8 , 228
3-9 228
3-10 230

Manifold 70

*Valve leaks badly from menifold into sampler.
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TASK IV. ENGINE PERFORMANCE TESTS

The engine characterization tests were planned to provide sufficient data
for improved understanding of the physical vprocesses occurring in rocket

engines. This required testing in en altitude chamber sufficient for flow
at 25:1 expansion ratio for a total pressure of 250 psia. The overall in-

stallation of the engine is shown in Fig. 30.

HOT-FIRE FACIIITY (CTL IV - CELL 29B)

Propellant and Water Systems

The 29B test position consists of LOX, GOQ, and GH2 propellant supply systems,

altitude simulation systems, and instrumentation systems.

The test hardware is located in a l6-foot-diameter by 30-foot-long vacuum
chamber and exhaustshorizontally. A single-stage steam driven ejector system
is piped to the capsule. The ejector system is capable of sustaining simul-

ated altitude in excess of 23 kilometers in the vacuum chamber.

The vrovellant supply systems include temperature, pressure and flow control
systems necessary for testing. The LOX tank and feed system is shown in Fig. 31.
LOX is supplied to the injector from a 3000-psi, 600-gal uninsulated tank.

Note that the LOX flows through the main line to a flowmeter, then divides

into two branches. One branch feeds LOX to the core of the injector while the
other provides propellant to the outer zone. Each branch is fitted with a

flowmeter. In this way redundant measurements are made. The flowrates through
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each branch are controlled with orifices as shown. The LOX core feed has

a #7/16 (.L375 in. dia.) orifice upstream of the main valve. Two other
orifices were a #29 (.136 dia) in the outer zone through line and a #25/6L
(.3906 dia.) in the outer zone bypass line (with the shutoff valve). The
nitrogen purge, as vart of this system,is plumbed downstream of all main
valves. This system provides both liquid and gaseous nitrogen. The liquid
nitrogen is utilized to temperature condition the hardware before the firing
to énsure that the LOX will not boil before injection into the combustion

chamber.

The GH2 is supplied from a h?O-ft3, 3000 -psi storage vessel as shown in
Fig. 32. For this system,the total provellant flow is divided into three
zones; feeding (1) the BLC, (2) the core, and (3) the outer zone of the

injector. The initial temperature of the hydrogen gas is ambient.

The chamber is water-cooled between tests and water is required to cool the
probes. The entire water system is shown in Fig. 33 . Note that two tanks
are used. The tank that supplies water to the cowl passages of the probes
comes from a 360-gal, 2000=psi tank flowing ambient water. This tank also
supplies water for cooling the chamber between runs. The other system is
also a 360-gal, 2000 -psi tank; however, this tank is heated by means of the
heater shown in the sketch to about 250 F. Heated water from this tank

supplies water to the probe center body annuli.
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Finally, the propellants were ignited with gaseous fluorine. The GF2 system
is shown in Fig. 34 . One fluorine K bottle was used and it is plumbed
directly to the LOX system downstream of the LOX main valves. The pressure

at the bottle is ~ 250 psia and the nominal flowrate is 0.17 1b/sec.

The overall instrumentation for all systems is shown on their respective

schematics. The instrumentation within the blockhouse is listed in Table 11.

~ Sampling System

The probes are subplied with high pressure water in the manner illustrated
in Fig. 35 . The heated water supply is approximately 250 F at the probe
inlet and operated at maximum system capability. This pressure requirement
is a result of choked flow areas in the probe tip flow passages. The cowl
water supply pressure is 800 -~ 840 psi. Design water flow is 1.65 lb/sec

and 1.38 lb/sec for the cowl and tip, respectively, through each probe.

The sample blocks utilized to capture the probe samples are also illustrated

in Fig. 35 . The sequencing required during test operation is as follows:

l. Probe limreheaters and block heaters on - off at 350 F; 300 F

steady-state anticipated.

2. All samples valves and B&C identified valves open - evacuate system

by vacﬁum pumping - open all valves.
3. Pressurize water system and establish flow.
k. Hyperflow start to stable operation.

5. Oﬁen Bl-38ndS1-1,52~-1,and S3 -1
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TABLE -11

INSTRUMENTATION CAPABILITIES AT CELL 29A

Location Instrumentation
Instrumentation 56 channels for pressure, thrust, RTD, flow
inside of
altitude can 6 channels for accelerometers

34 channels iron/constantan only
12 channels iron/constantan or chromel/alumel

3 channels 2 psia pressure systems

Instrumentation 12 channels for pressure, thrust, RTD, flow
outside of ' .

altitude can 20 channels iron/constantan or chromel/alumel
Recording 100 channels digital system with sample rate up
capabilities . to 4O KC

36 channels direct write oscillograph frequency
response 240 cps 15%

8 channels Brush recording, 80 mm full scale
frequency response of 30 cps. 200 cps at
reduced amplitude

8 channels Brush recording, 40 mm full scale
frequency response of 55 cps. 200 cps at
reduced amplitude

54 channels direct inking graphic recorders
frequency response of 1l cps

LO channels 28 VDC event; Signal recordings
frequency response 10 cps

2h.channels 28 VDC event; Signal recordings
on 8 channels of direct write oscillograph

48 channels 28 VDC event; Signal recordings
on digital system

42 channels of high frequency analog recording
up to 20 KC ’
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6. Engine start + 850 msecs close Al - A3

7. Engine start + 1850 msecs open Al - A3 and

S1 -1,8 -1andS3 -1
8. Open Cl - C3 and S1 - 2, and S3 - 2

9. Repeat #6, 7, and 8, increasing sample number until test

series is complete.

The sample blocks use six heaters each. It takes approximately 15 minutes

té heat each block to 350 F. Control of this heating circuit is in the
control block house. DIGR readout to monitor the respective temperatures in
each block is also available in the blockhouse. A firex water supply to cool
the sample blocks for posttest analysis was also used. This supply is
controlled manually at the sample site and was used to condense the water

from the sample specimens.

Valve Sequence

Using the line lengths and sizes for the individual systems per the schematics,
the individual line volumes differ bya factor of 5. The fuel side line volume
is much larger. Converting this to fill times, the fuel side primes in approxi-
mately 15 msec while the oxidizer side requires about 330 msecs. Therefore, the

operational sequence is:
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1. Probe water supply on - both coolants .
2. Engine start

3. LOX purge on (pressure check off)

L, +100 msec GH, main open

5. +130 msec GF, main open

2
6. +200 msec LOX main open - GF, main closed
7. +600 msec P, verification (75 psi)

8. +850 msec record gas -samples to +1850 msec

9. +2000 msec engine cut. - all purges onns/5 secs

10. Engine coolant water supply on

This operation is repeated throughout the test series until all scheduled

tests are completed.

TESTING

A total of 15 tests was bbtained during four hyperflows. While a maximum
8-10 tests are possible during each hyperflow, system malfunctions during the
initial three hyperflqws resulted in fewer tests. The maximuzﬁ hyperflow
duration is 10-14 minutes. This maximum duration limitation is due to pro-

pellant tank capacities. The test sequence is summarized in Table 12 .

The first two hyperflows are designated as checkout tests and no useful data

were obtained. Two facility problems were encountered:(1) the GH, main valve .
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TABLE 12

TEST SEQUENCE SUMMARY

Test Series Run No. Remarks
Series #1 Checkout 538 GH% main valve malfunctioned and
(2 Hyperflows) 539 water in probe passages froze
540 during chilldown
541
Series #2 Checkout 5h2 Data obtained
(1 Byperflow) 543 Water in coolant passages froze
5L Data obtained
\
Series #3 Checkout 545
(1 Hyperflow) 546
sk
548
549 >All tests yielded data
550
551
552 - J
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did not open,and (2) the water in the probe passages froze during chilldown. .
The valve malfunction was due to a faulty solenoid valve.The probe water

freezing problem was overcome by continuously flowing water through the probes

during the chilldown operation. The third hyperflow is designated as series

#2. Only three runs were obtained during this series due to the excessive

time required to unfreeze the water in the coolant passages between runs 5h2

énd 544, Data were not obtained for run 543 because the run was terminated

before mainstage was achieved. Test series #3 included 8 tests and all

yielded satisfactory data. All tests were run at apprpximately 225 psia

chamber pressure using the nozzle area ratio 25:1.

Performance

Typical time histories of several key parameters are presented in Figs. 36 .

through 38 . Figure ¥ shows that the total LOX flowrate was just achieving
steady-state at test termination. Consequently, both the chamber pressure and
the thrust are also varying during the entire run, as shown on Figs. 37 and 38.
Here again the chamber pressure and thrust have just about achieved steady'
state by the termination of the test. The time histories suggest that all
tests were stable. Isp and C¥* performance were calculated for each test

based on flowrate, chamber pressure and thrust near the end of each run.

A summary of the perfbrmance data for all tests is contained in Table 13,

Note that the efficiencies are about 97%,which suggests that

the chamber is sufficiently long fof near complete (or complete) vaporization
of the LOX. In addition to performance, this table lists otner per--

tinent data for each test. The overall ranges in BLC and mixture ratio achieved

were within the i-anges desired. .
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Pressure Profiles ':E)

A summary of the static pressures measured along the wall of the chamber and

nozzle are listed in Table 14. Axial station locations for all of the measure-
ments were presented in Table 3. A comparison of the static pressures measured
for test 547 with those calculated from the Rocketdyne N-element model for full
shifting equilibrium is presented in Fig. 39. Note that all of the data follow

the full shiting equilibrium line very closely.

Heat Flux Profiles

Transient temperature histories were obtaiﬁed during all runs at the axial
locations shown on Table 15. The actual temperature-time histories for all
runs are not included in this report due to size considerations (i.e., 30
femperatures per test = 300 additional pages). This information is available i:) A
at Rocketdyne. Analysis of these results will yield the heat flux as a function
of axial distance. The analysis requires a two-dimensional flat plate analysis

which is not within the scope of this portion of the program.

In order to check the data, a simplified analysis was conducted to calculate the
apparent heat flux for all measurements. The analysis assumes that the segment
thicknesses are small enough so that the hot side temperature essentially

follows the cold side (i.e., infinite conductivity).
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The resulting heat.balance on the segment provides the relationship shown

below:
Qy _ A
(§) = PecC dr/de (6)
P
where %-: heat flux
P = density of material (copper)
£ = thickness of heat path
Cp = gpecific heat at constant .pressure of material
dT/dQ = glope of temperature-time history

The accuracy of this approach depends oﬁ'the magnitude of the Biot number,
h®/K, where h is the hpt gas heat transfer coefficient and K is the thermal
conductivity of the material. Assuming that the heat transfer coefficient
‘calculated from the Bartz equation is reasonably accurate, the Biot number
was calculated for each heat flux segment. The results are presented in
Fig. U4O. Note that the segments in the throat region are much too thick
resulting in a Biot number of ~ 0.26. Consequently, the magnitude of the
calculations in the throaf region are expected to be in considerable error

(~20 to 30%). Trends in the data however, should be accurate.

The results of calculating Q/A from Eq. ( 6) for all tests are listed in
Table 15 . The results from test 547 are plotted in Fig. 41 as a function
of chamber length. Also shown on this figure is the heat flux profile pre-
dicted from the Bartz equation. Note that the trend in heat flux with nozzle
dimension is as anticipated. All data show reasonable trends in Q/A versus

chamber length. Conseguently, no apparent error is seen in the data.

i

R-8903
100




0s

ya3ua] Jaquey) JO UOTIOUNY B S8 Joquny 3014

‘ul ‘y3duel Iaquey)
of of 02 o1

*Off @34

e

" ——T—=< T _
. N\
JOdJIY \
Suyssaxosq

ITWTT JOXIF %G —

Joxxyg \ /
Butsesaoul \

Zaqumy 3074

R-8903

101



uoiglsnby zqaeg ayjy

suisn paloTpaad 1%Ul Y3ITA XNTJ 3834 paInsesl Jo uostIredwo) *Th SInITd

*uy foouwlsig TVIXY Jaqusy)d
oY ot o2 018 0

o
ﬂ
q

(LnG# 3sal) ®3sg TeN3oy
WoIy STTIOId XnTd 389H

Ah 005 = "L) *ba z3aed :\\\W\\xx

WoxJ STTJOIJ XNTd 38SH

\O

@

Q
—

N

=
—

098~-_°*Uu

I/nag ‘v/o ‘xnrd 483H

2

R-8903

102



Exhaust Gas Sampling

The two functicnal probes were positioned at an expansion ratio of 25:1 and

wvere angled parallel to the theoretical stream line direction. One probe was
positioned along the axial centerline of the nozzle to record the mixture ratio
of the central zone. The second probe was positioned at the center of the outer

zone between the inner core and BLC rings.

Ten of the test firings provided samples. The samples were obtained at tempera-
tures sufficiently high (nJ3OO'F) to maintain the products in the gaseous state.
There was & series of three tests (two of which provided samples) followed some
L5 minutes later by & series of 8 tests. Between tests, the manifolds were
evacuated and maintained at vacuum. After test completion, the manifolds were
again evacuated and maintained at vacuum until the éampling inlet of the gas
analyzer could be connected to the back of the manifold (a period of approxi-

mately 15-30 minutes).

The analysis for hydrogen, oxygen, and water was accomplished by a combination
of PVT measurements and gas chromatography (GC). From the recorded pressure
and temperature of each sample and the known volume of each sampler, the total
moles of gas in each sample vessel wore calculated. The samplers were cooled
to condense all-water and the remaining gases from each sample were expanded
into the precalibrated analyzer system. A portion of the expanded gas was
injected into the gas chromatograph for determination of hydrogen, oxygen,
and/or air. Using PVT data, the total moles of hydrogen and/or ox&gen in the

sample were calculated. The presence of nitrogen indicated air leaks into the
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sample and only excess oxygen was used in the calculations. Water was

mass oxygen

e hydrogen) were then cal-

obtained by difference. Mixture ratios (

culated for each of the samples.

The GC analyses were begun within 40 minutes after the test firings and
completed within six hours. Calibrations using known quantities of air

were performed three times; before, during, and after sample analyses.
Table 16 lists the experimentally obtained data and the'results of the GC
analyses. The following equations were used to calculate results

Total moles Sample = Vsampler,cc X P X k92
© P2 = %k co/mw * IL.T * T°R (7)

Using the linear coefficient of heat expansion of aluminum of
23.6 in./in./c  x 10'6, the volumes of the samplers were corrected from
76 to 300 F. This was a 1% increase in volume.

Total V
mn H, (or 02) in Sample = mm H, in GC x T

sampler (8)

mm Hé in GC = Calculated mm H2 obtained from the GC curves

Total V = Volumesampler + Volumemanifold + VolumeGC inlet and line
\' mm
_ _sampler(76°F) 5 273
moles H, (or 02) = RN X g5 X F (9)
R-8903
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TABLE 16

SUMMARY OF SAMPLING TEST DATA

v Total

Block | Block,cc | mMoles| mMoles| mMoles | mMoles % Air
Sample | Psia |T F T6F Gas H, XS 0, H,0 In Sample
3-1% 13.2 | 285 229 6.11 L,76 -~ 1.35 10
3-2 - - o2l
3-3 12.1 | 266 215 5.40 1.89 0.015 3.49 32
3=k 13.3 | 318 229 5.90 4L.68 0.015 1.20 7
3-5 1h.5 | 314 230 6.49 5.37 - 1.12 14
3-6 16.1 | 309 228 7.20 5.30 -- 1.90 11
3-7 15.0 | 306 230 6.79 3.77 -- 3.02 L
3-8 16.0 | 303 228 7.21 | 1.82 - 5.39 32
3-9 14,1 | 300 228 6.38 | 6.04 - 0.3k 8
3-10 16.2 | 296 230 7.43 0.30 - 7.13 20
1-1%% 4.93| 2.93 230 2.27 0.08 0.46 1.73 72
1-2 -- - 226 -
1-3 4,29 275 225 1.98 0.09 0.71 1.18 66
1-h 5.53| 332 232 2.44 | 0.06 1.3k 1.04 Lo
1-5 “7.95] 328 230 3.50 lost sample - --
1-6 3.37| 323 228 1.48 0.28 0.28 0.92 82
1.7 3.63| 320 242 1.70 0.11 0.28 1.31 T4
1-8 L,L8) 316 232 2.02 0.02 1.39 0.61 70
1-9 2.70 31& 230 1.21 | 0.03 0.4 0.77 85
1-10 4.80| 310 229 2.13 -- - 2.13 N.A.

*Probe located on centerline of nozzle
¥*Probe located on centerline of outer zone.
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Using the results of Table 16, the mixture ratios were calculated and are °
shown in Table 17 . When calculating the amount of gaseous oxygen found in

the cooled samples, the following assumptions were made:

1. The total pressure in a sample recorded at test time was composed

only of Hé, 02, and H20. All air leakage into samples was posttest.

2. The presence of nitrogen represented air leakage from the manifold
into the sampler and only oxygen in excess of air was used in the

calculations.

Tt was found that samples from probe 3 contained from 4 to 32% air, while
samples from probe 1 ranged from 42 to 85% air. This is shown in the last

column of Table 1l7. This is logical since samples from probe 3 were three

times as large as samples from probe 1 and all latter'samples were signifi-

cantly below atmospheric.

Additional error could have occurred because the calculations were performed
without regard to the amount of sample loss that might have occurred whenever
the manifold was evacuated. All of the problems are the result of leakage
through the valves when a large AP occurs. This problem must be eliminated

in order to obtain meaningful sample data.

Comparison of the results with the actual flowed mixture ratio from Table 17
shows that no correlation or trend exists. This result is thought not to be
related to the gas chromatographic approach but rather to the presence of

faulty valves.
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TABLE 17

MIXTURE RATIOS ( MR ) OF EXHAUST SAMPLES

a0 By %
wt. wt.,
Sample mMole w;g ; w;éo mMole wt. mMole| wt. 02 H2 MR
3-1 1.35 | 2.72 21.6 | 4.76 | 9.60 - -- | 21.6 12.3 1.76
3-3 3.49 | 7.04 55.8 | 1.89 | 3.81 | 0.015 | 0.2 | 56.0 10.8 5.18
3=k 1.20 | 2.42 19.2 | 4.68 | 9.43 0151 0.2 | 19.4 11.8 1.6L
3-5 1.12 | 2.26 17.9 | 5.37 |10.83 - -~ | 17.9 13.09 | 1.37
3-6 1.90 | 3.83 30.4 | 5.30 |10.68 - -- | 30.k4 14,51 | 2.10
3-7 3.02 | 6.09 48.3 | 3.77 | 7.60 - -- | 48.3 13.69 | 3.53
3-8 5.39 |10.87 86.2 | 1.82 | 3.67 -- -~ | 86.2 ik.sk | 5,93
3-9 0.34 | 0.69 5.44) 6.04 [12.18 -- - 5.4l | 12.87 | o.42
3-10 7.13 (14,37 [114.1 | 0.30 | 0.60 -- -- |11h.1 14,97 | T7.62
1-1 1.73 | 3.49 27.7 | 0.08 | 0.16 | o0.46 | 7.36] 35.1 3.65 | 9.62
1-3 1.18 | 2.38 18.9 | 0.09 | 0.18 | 0.71 |1ll.4 | 30.3 2.56 | 11.8
1-k 1.0k | 2.10 16.6 | 0.06 | 0.12 | 1.34 [|21.hk4| 38.0 2.22 | 17.1
1-5 - - ' - - -- --
1-6 0.92 | 1.85 ik.7 | 0.28 | 0.56 | 0.28 L.481] 19.2 2.41 | 7.97
1-7 1.31 | 2.64 21.0 | 0.11 | 0.22 | 0.28 L. 48| 25.5 2.86 | 8.92
1-8 0.61 | 1.23 9.76f 0.02 | 0.0k | 1.39 |22.2 | 32.2 1.27 | 25.2
1-9 0.77 | 1.55 12.3 | 0.03 | 0.06 | 0.41 6.56| 18.9 1.61 | 11.7
1-10 2.13 | k.29 34.1 | 0.0 0.00 | 0.0 0.0 | 34.1 L.29 | 7.95
Mass O
MR = Mass H
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Consequently, efforts to demonstrate reproducibility; or to demonstrate that .
the sampling probe obtained a representative sample, were not possible. 1In
addition, the magnitude of air leakage into the samplers and possible sample

leakage out prevents any determination of the accuracy of the results.
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CONCLUSIONS AND RECOMMENDATIONS

The experimental results of this initial phase of the program clearly
demonstrate that all systems are functional and will provide accurate
detailed data to characterize the major physical processes occurring in

the rocket engine.

Although all systems functioned,it is recommended that several modifications

and checkouts be conducted before additional testing commences. These are:

l.\ Install an additional static pressure tap between an expansion
ratio of 1.5 and 3.0. This will aid in better definition of the

pressure profile in the region where dp/dx is large.

2. Modify all of the heat flux segments with Biot numbers greater

than 0.1 so that the data reduction can be greatly simplified.

3. Recalibrate the probe sampling system by introducing known
‘'samples at the probe inlet and proceding through the entire

sampling collection and analysis procedure.
k., 1Install better valves on the sample blocks to prevent leaksage.
5. Test duration should be increased sufficiently to ensure steady-

state operation (~0.5 to 1.0 sec).

Several stand modifications are also necessary in order to operate the

stand more efficiently.
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