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A PASSIVE BALANCER FOR A CLASS OF ROTATING SPACECRAFT

By C. William Martz and Carolyn Grantham
. Langley Research Center

" SUMMARY

Equations of motion have been derived for a flexibly connected dual-spin spacecraft
equipped with four pendulumlike "passive controllers' for mass balance and spin axis
control. The derived equations, simplified by eliminating hub and flexibility terms, were
analyzed to determine the conditions required for successful steady-state operation of the
controllers with a spinning, rigid-body spacecraft. Results indicated that spacecraft
inertia about the intended spin axis must be less than spacecraft inertia about the trans-
verse axes. Also, positive damping of controller motion relative to the body is required.

A generalized real-time computer simulation of a large, slowly spinning rigid-body
spacecraft equipped with passive controllers has also been presented. Numerical results
of this simulation show that passive controllers can successfully balance a class of rotat-
ing rigid bodies undergoing large internal mass and inertial disturbances. Results also
indicate a reduction in spacecraft attitude error due to the action of the controllers. The
ratio of total controller mass to spacecraft mass need not be-greater than 1 to 2 percent.

INTRODUCTION

Man in space may be unable to function over extended time periods without artificial
gravity. A practical method for providing an artificial gravity environment, as well as a
means of stabilization, is that of rotating the entire spacecraft or an appreciable part of
the spacecraft, as is done in a dual-spin application. (See ref. 1.) It is anticipated that
rotating space stations will require a means of preserving both the location of their mass
center and the orientation of their axis of rotation. This requirement vﬂoﬁld' insure that
docking ports remain centered about the rotation axis and that steady observations could
be made from any nonrotating part of the station.

The stabilization problem arises because of a necessity for crew members to move
about the station and for supplies and equipment to be distributed and relocated during
operation. Also, resupply vehicles occasionally will be coupled to the station. All these
activities alter the mass center of the station and thereby the location of the rotational
axis. Also, the mass redistribution introduces products of inertia that cause dynamic



unbalance. The resultant wobbling and circling motion of the station may interfere with
docking activities and pointing requirements.

Existing technology for unmanned satellites is not directly applicable for controlling
thre axis of rotation and mass center of a manned space station. Wobbling of the station
can be prevented by an active momentum storage system, but the associated weight
ipcrease may be prohibitive and such a system would be unable to prevent static unbal-
ance and unwanted circling of the nonrotating part of the station.

The proposed technique for spin axis and mass center control (that is, control of
static and dynamic balance) of manned rotating space stations uses two sets of "passive
controllers.” Each set consists of two pendulumlike masses free to rotate concentrically
about the desired spin axis in planes perpendicular to the spin axis. See figure 1. If the
actual spin axis initially is not coincident with the desired spin axis, the centrifugal forces
generated by the spinning motion will automatically deflect the controllers in such a way
as to drive the actual spin axis toward the desired location. The passive controllers
should incorporate sufficient damping to minimize their settling time after introduction of
an unbalance. Once in operation, the controllers rotate with the spinning part of the sta-
tion and need only gradual relative movements to perform their function automatically.

As part of an overall study, this paper develops equations of motion for a flexibly
connected dual-spin spacecraft equipped with passive controllers. However, the intent of
this paper is to investigate controller and spacecraft dynamics for a rigid-body space-
craft. Thus, the derived equations of motion first were simplified by eliminating hub and
flexibility terms. A steady-state analysis of the resulting equations was performed to
define design conditions required for successful operation of the controllers with a rigid-
body spacecraft. Also, the simplified equations were used in a digital computer simula-
tion to obtain the dynamic response of the spacecraft and controller system to large crew
motion disturbances,

SYMBOLS

A bar over a symbol indicates a vector quantity. A dot over a symbol indicates a
derivative with respect to time. A prime with a symbol denotes a derivative with respect
to T. A symbol within braces { } also indicates a vector. A symbol within brackets [J
indicates a square matrix. If this symbol is a vector quantity, however, its use in brackets
indicates a particular type of skew symmetric matrix as illustrated by the following

example:
Let
rx
r = {I‘} = ry
Ty,



Then

o

Alxy

ay,by,a9,b9

Sl e
ENNCHNG
Do -

. . 9T
disk Euler rate vector, [(,f) 6 1!/]
-1
location of total mass center in disk coordinates, {Al} = [Dl] {R}
: .2 2
total mass center offset in x,y-plane, \Al,x + Ay
defined in equations (43) to (46), respectively

e
hub Euler rate vector relative to disk, [¢h 6h z,bh]
translational damping constant matrix between disk and hub
rotational damping constant matrix between disk and hub
jth controller damping coefficient where j=1,2, 3,4
transformation matrix, disk Euler rates to disk body rates
orthogonal transformation matrix, disk components to inertial components
orthogonal transformation matrix, hub components to disk components
orthogonal transformation matrix, controller components to disk components

transformation matrix, disk-relative hub Euler rates to disk-relative hub
body rates

components of total external force parallel to disk coordinate axes,
{Fd} + [Dz] {Fh}

external force components applied to disk along x-, y-, and z-axes



external force components applied to hub along xy, -, Yh~, and zy -axes
dissipation function

dimensionless quantity (see egs. (17) and (33))

distance along z-axis from x,y,z origin to controller pivot point

z coordinate of jth controller mass center, (-l)jh where j is an exponent

-1 5 (Bl )

my

1

crew inertia matrix about x-, y-, and z-axes at the crew mass center
disk inertia matrix about x-, y-, and z-axes at disk mass center
hub inertia matrix about hub mass center referred to x,-, y,-, and zy-axes

jth controller inertia matrix about controller axes at jth controller mass
center

total dynamic unbalance of spacecraft without controllers,

4 2 4 2
Ixz - E Ixz,j- + Iyz - Z Iyz,j
i=1 j=1

translational spring constant matrix between disk and hub
rotational spring constant matrix between disk and hub
distance from controller pivot point to controller mass center
controller mass (see eqgs. (10))

crew mass

disk mass



mp, hub mass

m; jth controller mass (j = 1, 2, 3, 4)
my mass of additional spacecraft crew members -
4
mp total spacecraft mass, mgy + mg + my + Z m; v
j=1
Qi generalized "force' associated with ith generalized coordinate
94 ith generalized coordinate
R inertial coordinates of disk coordinate axes system relative to overall mass
center
ﬁc inertial coordinates of crew mass center relative to overall mass center
ﬁd inertial coordinates of disk mass center relative to overall mass center
ﬁg inertial coordinates of spacecraft mass center, {x' y' z' }T
-ﬁh inertial coordinates of hub mass center relative to overall mass center
-ﬁj inertial coordinates of jth controller relative to overall mass center
r disk coordinates of hub coordinate axis system
re disk coordinates of crew mass center
I:d disk coordinates of disk mass center
Iy hub coordinates of hub mass center
f'h disk coordinates of hub mass center
1'*]- disk coordinates of jth controller mass center
Ty TkysTkz spacecraft coordinates of crew mass my
5
-




s(),c() sin() and cos(), respectively

6

components of total external torque along x-, y-, and z-axes, {Td} + [Dz] {Th}
external torque applied to disk about x-, y-, and z-axes

external torque applied to hub about xy, -, y,-, and 2 -axes

T kinetic energy; also nondimensional angle £t in equation (28)
t time, sec
v potential energy
X,y,2 disk coordinate axes, with origin at center of figure of disk
x'y',z' inertial coordinate axes
XpsYhZh hub coordinate axes, with origin at center of figure of hub
X§,Y 02 coordinate axes of jth controller
O =0y +0g+ a3+ 0y
o angular location of jth controller in x,y-plane (see fig. (12(d))
c'yj jth controller rotation rate about z-axis with respect to disk coordinate system
Ax see equations (22)
Aozj incremental rotation of jth controller about its steady-state value
€= tan-1 ELZ
XZ
Ny principal axis misalinement in x,z-plane
Ny principal axis misalinement in y,z-plane



-1%,0

A orientation of wxy in X,y-plane, tan -
. . Iy
3 coning rate less spin rate, w, T 1
13]- vector from spacecraft mass center to jth controller expressed in spacecraft
coordinates
b,0,¢ disk Euler angles (see fig. 12(a))

®h,6h¥n  hub Euler angle rotations with respect to disk axes x, y, and z (see
fig. 12(b))

o1 0¥ hub Euler angle rotations with respect to inertial axes x', y',and z' (see

fig. 12(c))
®1 orientation of Ir,z in x,y-plane

R ; T
{w} disk inertially referenced body rates {wx Wy wz}

. . T
wp hub inertially referenced body rates {wh,x Why wh,z}
wj} inertial attitude-rate of jth passive controller about controller axes

Wx o initial attitude rate about x-axis

Wy o initial attitude rate about y-axis
2 2

wxy = |¥x,0 * ¥y o

%( ) = (') + Q( ), where  is angular inertial rate vector of coordinate system used to

express ()
[ ]T transpose of bracketed matrix
[ ]‘1 inverse of bracketed matrix



{ }T transpose of braced vector

X indicates a vector cross product operation

éubscripts:

rc crew

d : rotor or disk

h hub

j jth controller (j = 1, 2, 3, 4)

0 initial conditions

s steady-state value of subscripted quantity

X,y,2 components of subscripted quantity along x-, y~-, and z-axes
ANALYSIS

This section describes a mathematical model of a flexibly connected dual-spin
spacecraft equipped with four pendulus masses designed to provide passive balance and
spin axis control, Equations of motion, derived by the method of Lagrange, are pre-
sented. The derived equations of motion, simplified by eliminating hub and flexibility
terms, are then analyzed to define design conditions required for successful steady-state
operation of the controllers with a spinning rigid-body space station and crew. Finally,
controller sizing criteria are determined as a function of total static and dynamic
unbalance.

Mathematical Model

The schematic model of the dual-spin spacecraft used in this study is shown in fig-
ure 2. The model consists of a nonrotating (zero gravity) "hub,' a slowly spinning rotor
‘or "disk," and four pendulum-like arms (with end masses) free to rotate concentrically
about the desired spin axis (z-axis). The rotating arms or passive controllers are
deployed in two pairs on either side of the overall mass center along the z-axis. In nor-
mal operation the controllers rotate with the disk and exhibit gradual relative movements
only to counteract mass and/or inertial disturbances. Viscous dampers are incorporated
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between the controllers and the disk to minimize settling time of the controllers after the
introduction of a disturbance.

The hub mass is connected flexibly to the disk mass through an arrangement of
springs and dampers attached to the hub side of a bearing as shown in figure 3. Thus,
spring and damping restraint exists for relative translations of the hub and disk along the
X-, y-, and z-axes and for relative rotation of the hub and disk about the x- and y-axes.
Relative rotations about the z-axis are unrestrained because of the bearing; frictional
effects about the z-axis are assumed to be effectively compensated by application of an
internal torque between the hub and disk. Disk, hub, and controllers are assumed to be
rigid bodies. Flexibility exists only in the hub-disk connection previously described.
Gravity gradient effects are assumed to be negligible for this analysis.

Equations of Motion

The equations of motion for a dual-spin spacecraft equipped with four passive con-
trollers are derived in appendix A. The final form of these equations and the degrees of
freedom represented are summarized below.

x', y',and z' translational degrees of freedom of entire spacecraft:

5("

mrid - [D1]{¥} | (1

V4

Equation (1) corresponds to equation (A24) and is written in the inertial system.

¢, 6,and Y rotational degrees of freedom of entire spacecraft:

[k (1o} « Ll Rt - mafoaeoaloaf™{ - k- oo {on]"] e

+ [KR] Zl;l + md[rd"DllT{ﬁd} + j; <mj[rj”D1]_1{f{j}> + mC[rc][DI]'l{f{c}
o 3 e - () e et »

Equation (2) corresponds to equation (A30) and is written in the disk coordinate system.



ryx, Iy, and r, translational degrees of freedom of hub with respect to disk: These
equations are written in the disk coordinate system and correspond to equation (A25).

mh[DI]T{ﬁh + R} +[cl{r} + |%){r} - |D2) {Fn} (3)

®hs  Ono and Yy rotational degrees of freedom of hub with respect to disk: These equa-
tions are written in the hub coordinate system and correspond to equation-(A31).

ol

[ih] {wh} + mp [rf}[DZ}T[Dl]T{ﬁh + i'zg} + [wh] [IhJ 3wh
+ [[Dh}T}_l [CRBB_ " [KR} E{ = 3Th2 (4)

aj(j =1, 2, 3, 4) rotational degree of freedom of jth passive controller relative to disk
coordinate system: This equation is written in the disk coordinate system and corre-
sponds to equation (A19).

Ij,z(cbz + 'c'vj> - (Ij,x - 1j, >[<wy2 - wx2) sdj caj - wxwy(s%j - cza]->]

T

-0 de

+ my; /] cQj [DIJT<

0

Stability Analysis of Passive Controller Operation With
Rigid-Body Spacecraft

This analysis considers a rigid-body space station equipped with four passive con-
trollers. The steady-state controller response to static and dynamic unbalance of the
spacecraft is derived along with conditions required for stable controller operation. Also,
the effects of spacecraft coning on controller response are determined and controller siz-
ing criteria are developed for spinning rigid-body spacecraft.

A schematic of the space station is shown in figure 4 illustrating the vector location
of the jth passive controller and the overall mass center in disk body coordinates. The
three vectors have the relationship:

pj=A1+I‘j
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The inertial acceleration of m; is

C+ 20 X P + W X [@ X P;
]+2w>\p]+w (w pb

a®p -
_21=}jj+w><[)
dt

where o is the inertial angular velocity of the disk coordinate system written in disk
coordinates. Substituting ‘K*l and 1"]. and their derivatives for fJ]-, ;5]., and ,'d]. and
writing the acceleration in matrix form yields

B )2 ) R« o)

The moment equation for the passive controller about the z-axis can be written

dzpj % .
—2 = A
a2

+ grj + 3’rj

+ ;r]

sz].
Ij}z<wz + OlJ> + m][rj] —2—- ' + C]a] = 0
ot
z component

or

T

- sx
Ij,z(‘bz + éz'j> + m; { co <2A1
0

e[u]fw]({ar} + {r].})) + Cjéy = 0

Substituting the components of {Al }, {Al }, {Al }, {rj }, {i'j }, {r] }, I:w],
and [w:, in this equation and collecting terms yields the basic equation governing control-
ler motion

+ +

)il

T

g [@](?Al -

']

(I],z + m]2 )a]- + .C]a] + mJ< Al,xﬁ Say + Al,yﬁ ca]) + mJ(A].,Z + (-1) h)( wx ca;

. . . - 2 . - .
- wyl saj) + wylj 7 + m]wz<fz + Ay ylsay + Ap x({ caJ) + ijwZ(Al’yQ saj + Ap x! caj>
- 2mjA1’z(wyﬂ saj + wyl cozj)+ m]-wzz(Al’xﬂ saj - Apyl cozj) + mjwyzﬂ sajAg x
- miw,2 . 02 sars cos (w2 - w2 . 2(c2q. - s2q:) - .

mjwy 4 conAl’y + mjle saj con(wy wx )+ m]wxwy[ﬂ (c o5 -8 a]) L sajAly

+ 0 CajAl,x] + mj (Al,z + (-l)jh)(-wxwzﬁ Saj + wywy ! caj) =0 (6)
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Equation (6) will be used first to examine the stability of controller steady-state
response to spacecraft dynamic unbalance. Stability of controller response to static
unbalance or mass center offset will follow. Finally, the effects of coning on controller
response will be discussed.

Response to dynamic unbalance.- Equation (6) is simplified by limiting inputs to
pure inertia product disturbances (that is, A;j=Aj-= Kl = O). Also, in the solution area
of interest, w, =0 and, since (wx,wy) << wg, second-order terms of wy and wy are

negligible. These conditions reduce equation (6) to
(1,2 + my 2y + iy + Dy g (o + oy + Iy -y = sg) = 0 )
where the inertia products are defined as

I

. = M (-1)]
X2, j mlﬂca]( 1}’h

. (7a)
Iyz,j = mj¢ saj(-l)]h

Equation (7) governs the motion of the jth controller as a function of the spacecraft
angular velocities and accelerations. The angular motion of the spacecraft, in turn, is
governed by other equations which depend upon controller motion. The simultaneous
solution of these equations is easily accomplished (for any particular set of conditions) by
numerical methods, but a general solution is very difficult to obtain analytically. For this
reason, a steady-state solution was sought analytically to determine the conditions required
for successful operation of the controllers.

The approximate spacecraft motion for fixed location of the controllers is given in

terms of the following body rates and accelerations (ref. 2):
N

w .
wx = Wx o COS &t - Wy o sin &t - i—%—{lxz(cos ft-1) - Iyz sin gt]
-z
. Wz, ;
wy = Wx o Sin &t + Wy o €OS £t - -1, {Ixz sin £t + Iyz(cos £t - 1):|
(L)Z = wz,o (8)
. . fwy .
Wy = '5<wx,o sin £t + Wy o COS gt) + 1.7 (Ixz sin &t + Iyz cos gt)
- -z
vy = & cos £t - wy - si t) % 1. cos &t - I, si t)
wy = (“’x,o y,o Sin &t) - I——_—I—Z(xz cos &t - yz Sin £

12



where

I=Ix=Iy

g

The quantities I, and IyZ are inertia products of the entire configuration.

Equation (7) can be written for each of the four controllers, and the equations summed
thusly: '

4
Z [(] z + m )C!] + C]d] + IXZ,j (-CZ)X + wywz) + IYZ,j (—d)y - wxwz)] =0 (9)
j=1

By defining « = o and stipulating that

"LL\/]»

Il,z = I2,z = I3,z = I4,z = Ij,z
C;=Cy=C3=C4=C (10)
my =mg =mg =my =m

equation (9) combined with equations (7a) becomes

(Ij,z + mﬂz)b'e +Ca + m!lh(cozl - cag + cag - ca4)(cbx - wywz)
+ mth(say - sag + sag - sa4)<d)y + wxwz) =0 (11)

For the solution resulting from pure inertia product inputs, the initial attitude rates
(‘”x,o,wy ’0) of equations (8) are set equal to zero and the following conditions apply:

oy =gk 180°

(12)

ag = ag + 180°
Equation (11) becomes

(I]-’z + m(lz)& +Ca+ 2mﬁh(ca1 + ca3> (d)x - wywz) + ZmQh(sal + sa3)(d)y + wxwz) =0

13



.The steady-state solution to this equation will occur when the forcing terms are zero;
that is,

2mth(cay + ca3)(d)x - wywz) + ZmQh(sal + sa3) (d)y + wxwz) =0 (13)

By combining equations (8) and (13) with wx o = Wy o = 0, the steady-state condition can
be written as

2
Yz Iz)[\[2 2 I
2m(th i, T IXz + Iyz sin(ét + ¢€) - Iyz i; (cal + ca3)
1 :
- [ 1}2(Z + I%Z cos(&t + €) - Ixy I—Z-:}(sal + sa3)} =0 (14)

where

I
€ = fan” 1<_y_z_\)
Ixz

The inertia product terms include products of inertia of the spacecraft without controliers
and products of inertia of the controllers; thus,

4
| =Ir,z cop + Z Ixz,j = Ir,z coy - 2m£h(ca1 + ca3)

j=1
(15)
{L
Iyz =Ir z 591 + /, Iyz j=Ir z 801 - ZmQh(sal + sa3)
i=1
Combining equations (14) and (15) yields
wzz Iz~, 2 2 1. .
T T T IXZ + Iyz [sm(ozl - &t - 51) + sm(a3 - &t - 61)
wzz
oL Ir,z[sin(cbl - 0‘1) + sin(d)l -a )] =0 (16)

The first bracketed term of this equation cannot remain zero for steady-state «
values, except for the trivial case of @y = -a3 and oy =-a, which applies only when
inertia products of the spacecraft (the controllers being neglected) are zero. However,

the radical can equal zero for Iy, =0 and Iyz = 0. These conditions lead to the steady-
state requirement

14



oy -ag-= cos g (1

where
2

I
G :l r,z 1
2\2mth

An obvious constraint is

-1=G =1 : (18)

or

0 < L2

~2mth =2

This constraint can be written as

m; ¢h > Total dynamic unbalance (19)

(SR

]

The other steady-state requirement stems from setting the second term of equation (16)
to zero which leads to

sin(gbl - al) + sin(¢>1 - a3) =2 sin\:%(Zfbl - oy - asﬂcosg(—al + a3)} =0

| The cosine term cannot be zero without violating equation (17). Setting the sine
term equal to zero results in the following additional requirement for steady state:

o1+ a3 =2¢q
Combining the two requirements leads to

1 -1
= = G
ap=9o1+ 5 cos
(20)

ag = dq - % cos~1g

and because of the angular relationships of the controllers for a pure inertia product input,
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ay = ¢y ——21-COS"1G + 180°
(14 = ¢1 +% COS"]'G + 1800

The quantities «y, a9, ag,and «, are the steady-state angular locations of the
four passive controllers in response to a pure inertia product disturbance to the rigid-
body spacecraft.

To determine stability conditions for the previous steady-state solution, each of the
controllers is given an incremental perturbation in angle, angular rate, and angular
acceleration from the steady-state condition and the system response is examined. By
using an additional subscript s to indicate the previous steady-state solution, controller
angles can be defined as

\
Olj = Oljs + Aa]-
&; = Ad; (i=1,2,3,4) (21)
o; = Ao,
j j
J

The pure dynamic unbalance condition is maintained with the relationships
3

Ao
Aal = —Aa2 = —Aa3 = Aa4 =—4—

Ag

~

AQ = -Ady = -Ad, = Ad, = =— 22
@y =-Aay = -Aag = Aoy == (22)
. . . » Ad

Ag, = -Ads = -A = Ao, = —

1 2 o3 477
J
Also, by considering equations (12) and (21),
sa =0
1s +S04g =0
Stgg + Sagg =0
$ (23) ,

cayg +' Chyg = 0

co + CQ =0
2s 3s y

16



Equations (21) are substituted into equation (7) to yield four moment equations — one
for each controller. The equations for controllers 2 and 3 are summed and subtracted
from the sum of the equations for controllers 1 and 4. This result is combined with equa-
tions (10), (22), and (23) with the result

(Ij,z + mQZ)A& + C Ad + 2m.ﬁh(c'ux - wywz) [(Cals - ca3s) - %Oi(sals + sa3s)}

. Aa
+ Zm.Qh(wy + wxwz)[(sals - SOZBS) + T(Cals + ca3s)i\ =0 (24)
where
. ™
Wy ~ WuW =w—ZZI—ZI sin £t + I, cos &t -1
(25)

wzz I_Z

. : 1
(L)y + wxwz = "'I—-—]E I |E[XZ CcOSs gt - Iyz Sin &t - I—Z- Ixz}

J

and during the perturbation about steady state,

Ixz = mﬁh Aa(sals - Sa3s)
(26)
mth
Iyz = Aoz(ca 1s - ca3s)
Substituting equations (25) and (26) into equation (24), ignoring the higher order (Aoz)2
term, and simplifying leads to
(Ij,z + maz)A& +C A + Aa(cl + Co COS gt) =0 (27
where
2
2w
¢ = —2—(mh)(1 - G)
1-1g
2
2w I
Co = -—2— Z(m(h)2(3 - G)
I1-1, 1

This nonlinear equation can be related to a Mathieu equation with known solutions by defin-
ing a new independent variable

17




T = &t

and a new dependent variable

P=Ax exp ...l __-.g.gl__ (28)
2 J(5; 5 + me?)e

with the result

r t
P+ KP+ (Kz cos T)P =0

where
2
c
K1+ : 2 2'?1' - 2
(Ij,z + m{ ).ﬁ (Ij,z + m{ )§
c
Kz = 2 5
2
(Ij,z + m{ )g
a() _
3T - )

The solution to this equation is discussed in reference 3. In general, the regions
for a stable solution are defined by the condition Kj 20 for small values of Kj. This
definition leads to

2
8w
c2 s 2 m2¢%2(1 - g) (29)
I-1,
Consideration of equations (18) and (29) indicates that G <1 f{for finite damping. Thus,
the vital condition for a stable solutionis I >1I,.

These conditions are for the P solution. Of more importance is the Aq@ solution
which is modified by a stabilizing exponential (eq. (28)). However, for normal values of
damping coefficient C, the exponential coefficient is much smaller than unity and the two
solutions will have about the same degree of stability and the same stability conditions.

Controller response to static unbalance.- Equation (6) can be simplified to determine
stability of controller response to static unbalance by setting Al,z = 0 and eliminating

18



other small terms involving wy, wy, @z, A, and Ay with the result
. 2 n . - s - l - 't . -_—
(Ij,z + m]Q )oz] + C]a]- + m]wzz(Al,X.ﬁ S0y - Al’yi ca]) =0

Conditions for a stable steady-state response of the controllers to static unbalance
were determined from this equation by the method of the previous section to be

C;>0

—

mjﬁ Z Total static unbalance
1

NS
—_
w
2

]

Effects of attitude rate on controller response.- The response of the controllers to
a coning motion can be examined by determining the steady-state a; response of equa-
tion (6) for the conditions of no unbalance and some initial attitude rate. For these con-
ditions with (wx,wy> << wy and @, =0, equation (6) reduces to

(Ij,z + mjﬁz)b}j + dej + meh; {(-d)x + wywz)caj - (wy + wxwz>saj}
02 sa; cosfw.2 - w2 . 2(c2q. - s2¢.) =
+ m]Q sa; ca](wy Wy )+ m]wxwy!z (c aj-s on) =0

Substituting wy = Wy o c(tt) - @y o s(¢t) and wy = Wy o s(&t) + wy o c(&t) into this equa-

tion and simplifying yields

L , + m;02)&: + C;&; + mlhjw, w I—Zs' £t A - ai)w2 __mg2 sin|2{&t + A =0 (31)
I N R IR i j@xy@z T SIAGHF j)xy 5 &1° +'°‘J‘)‘ .

where

A = tan-] ___wy,o
“x,0

The two forcing terms disappear for

w
aj = £t + tan-1 0
“x,0




That is, the coning motion generates controller forces and torques tending to stabilize
the location of the controllers along the cross spin rate vector wxy- This vector pre-

I
cesses in inertial space at the coning rate w, Tz The controllers cannot follow this

motion because the damping term Cjézj in equation (31) produces sufficiently large
moments to keep the controllers essentially rotating along with the spinning body. As the
body and controllers spin around the spin axis, the coning-generated forces in effect move
around the body at the rate ¢ (the coning rate less the spin rate). Thus, the controllers
experience a cyclic torque from these forces and respond with a small-amplitude oscilla-
tion of frequency £. An approximation of this amplitude was determined from equa-

tion (31) to be

mﬂhwxywz(lz/1> h I, “xy
Controller oscillation amplitude due to coning effect = + = iz Wy, T 3
(32)

This result is an important one as it represents the lower limit of controller activity dur-
ing spacecraft coning motions. This effect will be illustrated in the "Computer Simulation
Results' section. The trim value of this oscillation is determined by balance require-
ments as previously explained. Coning-induced controller oscillations cause only very
small variations in spacecraft balance (less than two parts per thousand of the initial
unbalance).

In the section entitled "Response to Dynamic Unbalance,"” conditions required to
counteract inertia product inputs were determined for Wy 0 = Wy o = 0, since the coning
effect on equations (12) was unknown. When the effect was determined to be small, the
analysis was repeated to include the coning effects. Results were basically the same
except that a new G incorporating attitude rates was defined

2
-1\ 5 5 I-1,
< @y > (.L)Xy + Ir,z - ZIr,Z T wxy COS (¢1 - K)

-1 (33)
2(2m th)2

G =

where Ir,z # 0 because equations (12) are not valid for Ir,z = 0. This value of G must
satisfy the inequality -1 =G =1 and equation (29).
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Steady-State Response of the Controllers to Combined
Static and Dynamic Crew Unbalance

The steady-state response of the controllers to combined static and dynamic crew
unbalance can be determined for steady spin about the desired spin axis as follows. The
addition of coning motion has little effect on these results because of the small coning
forces inherent in this application.

The condition of static balance about the x- and y-axes is given by

4

mele o + Ml o + Z mj,ﬂ cayg = 0 (34)
j=1

4
mere y + mkrk’y + Z m]-!Z SQjg = 0 (35)
=1

The dynamic balance conditions about the x- and y-axes are given by

4

mcrc,y(rC’Z + Al,z) + mkrk,y( +Aq Z> + Z {m { sa. (hj + Al,z)] =0 (36)
j=1
4

mcrc,x<rc’z + Aq z) + myr) x( kz * Aq z) Z {m { ca; (h]- + Al,z)] =0 (37
j=1

Let

m=m1=m2=m3=m4

(38)
h =-hy =hg = -hg =hy
From equations (34), (37), and (38),
Ca g - Chgg + Chgg = CUYyg = — (mcrc,xrc,z + mkrk,xrk,z) (39)
1
COyg + Clgg + CUge + CA (= '_m_g(mcrc,x + mkrk,x) (40)
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From equations (35), (36), and (38),

_ 1

1
Sals + Sazs + Sass + Sa4s = -—n';z(mcrc,y + mkrk’y)

Combining equations (39) and (40) yields

1 ‘ \
Chgg + COyg =2ay = g ‘:mcrc,x(h + rc,z> + mkrk,x(h + rk,z)

-
1
Cayg + Cagg =by = -—Zmﬂh[mcrcsx(h - rc,z) + mkrk,x(h - rk,z)

Combining equations (41) and (42) yields

7
- 1
sazs + SCY4S = az = -m{mcrc’y(h + rC,Z) + mkrk,y(h + rk,z)

1 . ]
SQqg + SQgg = b2 = ‘m[mcrc,y(h - rc,z) + mkrk,y(h - rk,z)

(41)

(42)

(43)

(44)

(45)

(46)

Finally, from equations (43) and (45), the steady-state responses of controllers 2

and 4 result

7

A \’ 2 .. 2
Agg = tan—l i_z_ i cos_l :2_1_:_2_[2_.
S al 2

1 2

2 2
_1<a2> -1 + al +az
a4 =tan |— |+ cOos \\——mmm——
S a

Similarly, from equations (44) and (46), the responses for controllers 1 and 3 result

N\

by 2

b + ,blz + bzz
¥y = tan-1 g cos~1

—~—

n. 2 2
b +|b1 + by
_ -1 -1
o = tan — | + COS —_——
s 2
b
S
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These results compare closely with the computer simulation of a spinning and con-
ing spacecraft reported in the "Computer Simulation Results' section.

Controller Sizing Criteria for Combined Static and Dynamic Unbalance

Coning motion is not considered in this analysis. However, the effects on control
sizing are negligible,

A diagram of mass centers and connective geometry showing the steady-state
response of the controllers to a combination static and dynamic unbalance imposed by
crew mass offsets, ey and regz,ona spinning spacecraft, is shown in figure 5. The
static balance equation (moments about the z-axis) is

Mele xy = (m1 + m3)Ax1 + (m2 + m4)Ax2

The dynamic balance equation (moments of centrifugal forces about an axis perpendicular
to the plane of fig. 5 through mTZ) is

mcwzzrc,xy<rc,z - Ah) + (ml + m3>wz2(Ax1)(h + Ah) = (mz + m4)w22(Ax2)(h - Ah)

Combining these equations with mj = mg = m3 = myg = m; results in

mcrc,xy(hj - rc,z)
4mjh

Axl =

_ rrlcrc,xy(hj + rc,z)

AXeo =
2 4mjh

For r¢z > 0, Ax9 islarger than Ax; and should be used to size the control-
lers.l Since, in the extreme case, Axg cannot exceed the controller length £, an
inequality can be written

mcrc,xy(h + rc,z)

4mjh

gz

and

1 1
mjﬁ z Z(mcrc,xy> + }ﬁ;(mcrc,xer,Z>

1For r

c.z =0, the Axy equation leads to the same result.
H
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or

m;jl 2 (Total static unbalance) + %(Total dynamic unbalance) (48)

I

This relation is the sum of the static criteria of inequality equations (30) and the dynamic
criteria of inequality (19) and shows that h controls the relative sensitivity' of the con-
trollers to dynamic unbalance and static unbalance. For example, increasing h
increases the effectiveness of the controllers to reduce or eliminate dynamic unbalance
without directly affecting their ability to control static unbalance. It should be pointed out
that a violation of inequality (48) means only that the controllers are unable to counteract
the excess of unbalance.

In summary, conditions required for successful operation of the controllers as static
and dynamic balancers of large rigid-body spacecraft include .

(1) Cj >0
(2) Ip<I

4
(3) Z mjﬂ z (Total static unbalance) + %(Total dynamic unbalance)
j=1

COMPUTER SIMULATION RESULTS

The computer simulation (appendix B) considered a large, rigid-body space vehicle
equipped with four controllers. Mass and inertial properties are presented in table I,
Initially, the vehicle is assumed to be spinning slowly about its axis of symmetry in a bal-
anced condition. At a given time (t = 10), 20 crew members (1500 kg) start moving radi-
ally outward from the mass center in a direction midway between the x- and y-axes at a
speed of about 0.85 m/s. Twenty seconds later they arrive at point x,y, z = 12, 12, 0.
They immediately change their motion to 0.6 m/s in the z-direction and continue for 20
more seconds at which time (t = 50) they stop at the spacecraft location x,y,z =12, 12, 12.
These motions of the crew introduce static and dynamic unbalance to the spacecraft.

Typical simulation results are shown in figures 6 to 10. Figure 6 presents the
angular motion history for each controller. To illustrate the frequency content of these
curves, the second derivative of «; is also given. A basic period of some 60 seconds
is evident throughout the simulation. This period represents the mass center translation
mode. More noticeable over the last 300 seconds is the precessional motion mode char-
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acterized by a period of about 25 seconds. This effect was described in the "Analysis"
section. The controller is being driven by the coning motion of the spacecraft. The
effect does not show up in the early part of the simulation because the restoring moments
on the controllers due to the balancing action are overpowering. Controller oscillation
amplitude associated with this response was measured to be about +0.037°. The computed
value from equation (32) is +0.03°. As previously mentioned, the coning motion effect on
the controllers is important in that it controls the lower limit of controller activity. The
controllers cannot come completely to rest with respect to the spacecraft until the con-
ing motion ceases.

Figure 7 presents mass center offset in the x- and y-directions from the desired
z-axis location. Also, the vector sum of these curves is shown to illustrate total offset
of the mass center. Mass center offset levels for the same simulation without control-
lers are also indicated for comparison on these plots. Comparisons show that the pas-
sive controllers effectively reduce the static unbalance throughout the simulation.

A similar result is evident from figure 8 which presents histories of principal-axis
misalinement about the x- and y-axes and total principal-axis misalinement. These quan-
tities are a measure of dynamic balance. Again, results of the same simulation with con-
trollers eliminated are shown for comparison. The ability of the controllers to simulta-
neously reduce or eliminate the static and dynamic unbalance is reflected in figures 7
and 8.

The inertial attitude response of the spacecraft to the crew motion disturbances is
presented in figure 9. Part (a) of figure 9 shows the trace of the z-axis in the ¢ 8-plane
for the spacecraft with controllers and for the spacecraft without controllers, both in the
interval 650 =t = 680. The presence of the controllers clearly has eliminated much of
the unwanted heading angle.

The ¢0-response for 'mo controllers’ in figure 9(a) is periodic and repeats every
precession cycle (about 25.5-second period). The response with controllers also is cyclic
at the precession frequency but changes from cycle to cycle due to movement of the con-
trollers and the resultant change in mass and inertial properties of the overall spacecraft.
This condition is evident from figure 9(b) which presents the history of the resultant head-
ing angle. By t = 700, this heading response has reached its steady-~state character (a
small-amplitude coning motion) since controller motion has essentially ceased.

Attitude Instability

Energy dissipation results in attitude instability for a torque-free gyroscopically
stabilized body if the spin axis is not the axis of maximum moment of inertia. (See ref. 4,
for example.) As pointed out in the analysis section, the use of passive controllers with a
rigid body is limited to the case where the moment of inertia about the spin axis is smaller
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than the moment of inertia about the transverse axes. Thus, in the rigid-body application,
the use of passive balancers implies a certain amount of attitude instability. Although
there was no indication of attitude instability (cone-angle growth) in the crew-motion dis-
turbance simulations, some of which extended up to 1200 seconds duration, the expected
instability is very slow acting and would likely require a small corrective control torque
over a long term history of disturbances.

This type of attitude instability can be passively controlled for the case of the dual-
spin vehicle previously described. Reference 1 shows that it is only necessary to provide
a wobble damper in the hub or hub side of the bearing which will have an energy dissipa-
tion rate sufficient to dominate the energy dissipation of the disk (structural plus control-
ler damping). The spacecraft motion will then be stable and cone angle will gradually
decrease.

System Time Constants

The computer simulation results presented in figures 6 to 9 represent a spacecraft,
crew, and controllers with properties listed in table I. Responses to a given disturbance
were plotted for some 700 seconds. The system time constant for this simulation was
about 200 seconds. The ratio of total controller mass to total spacecraft mass was about
3.5 pefcent. This ratio is unnecessarily large and can be reduced considerably. Fig-
ure 10 shows the effect of controller mass and length on the system time constant. The
upper plot illustrates a linear increase in the system time constant with controller length
and the lower plot a linear increase in time constant with controller mass. The relation-
ship in equation form is

System time constant = 86 + 10¢ + 0.0425m; (49)

Simulation results presented in previous figures are repi‘esented by a shaded symbol
in each of the plots in figure 10. Note that controller mass could have been halved (to
1600 kg) with an improved response time. Also, controller length can be decreased to
improve response time. The only disadvantage to reducing controller mass and/or length
is in violating the stability limits of equation {(48). These limits are indicated in both plots
of figure 10 by dashed curves developed from equations (48) and (49). These curves indi-
cate combinations of ¢ and m; for which two or more of the controllers are exercis-
ing all their balancing capacity. Operations beyond this limit are not desirable because
the excess of unbalance will cause small unwanted coning and nutational motions of the
spacecraft. However, these motions will cease when the excess unbalance is removed.

Ideally, controllers should be designed to operate near the dashed lines of figure 10
and at a minimum time constant. However, each unbalance input will have different limit-
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ing curves and the design may have to be based on the largest unbalance anticipated. This
condition could result in large system response times for applications having widely vary-
ing balance requirements.

A means of avoiding large response times and controller ineffectiveness is to design
the system for the relatively low levels of unbalance experienced in normal operations with
provision for temporarily increasing controller length (during operation) in preparation
for occasional activities requiring a relatively high level of balancing capability such as
docking and resupply operations. This provision could be accomplished with a controller
design incorporating telescoping arm sections. Variable controller mass would also be a
solution to this problem — possibly through fluid transfer.

The effect of controller damping on system time constant is presented in figure 11.
As would be expected, increased damping in the range of practical interest tends to reduce
the system time constant. For impractically large damping coefficients, however, the
effect reverses, especially at near steady-state controller angles where the corrective
centrifugal torques are relatively weak and unable to move the controllers against the
damping at an adequate rate.

CONCLUDING REMARKS

Equations of motion have been derived for a flexibly connected dual-spin spacecraft
equipped with four pendulumlike "passive controllers’ for mass balance and spin axis con-
trol. The derived equations, simplified by eliminating hub and flexibility terms, were
analyzed to determine the conditions required for successful steady-state operation of the
controllers with a spinning, rigid-body spacecraft. Results indicated that spacecraft
inertia about the desired spin axis must be less than spacecraft inertia about the trans-
verse axes. Positive damping of controller motion relative to the spacecraft is also
required. The analysis also indicated that spacecraft coning motion induces very small
controller oscillations which prevent the controllers from eliminating about two parts per
thousand of the initial unbalance. Controller sizing criteria were determined as a function
of balance requirements and related to limiting values of system time constant for a given
unbalance condition,

A generalized real-time computer simulation of a large, slowly spinning rigid-body
spacecraft incorporating passive controllers has also been presented. Numerical results
of this simulation show that passive controllers can successfully balance a class (spin
inertia less than transverse inertia) of rotating rigid bodies undergoing large internal
mass and inertial disturbances. These results also indicate a large reduction in space-
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craft attitude error due to the action of the controllers. The ratio of total controller
mass to spacecraft mass need not be more than 1 or 2 percent.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., August 7, 1972.
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APPENDIX A

EQUATIONS OF MOTION

/

Mathematical Model

The mathematical model of a generalized dual-spin space station with passive con-
trollers is shown in figure 2. The model consists of a nonrotating hub, a slowly spinning
disk or rotor, and four pendulumlike arms (with end masses) constrained to rotational
freedom about the desired spin axis (z-axis). The rotating arms or passive controllers
are deployed in two pairs along the z-axis and their motions relative to the disk are
damped.

The hub mass is connected flexibly to the disk mass through an arrangement of
springs and viscous dampers attached to the inner race of a bearing as shown in figure 3.
Thus, spring and damping restraint exists for relative translations of the hub and disk
along the x-, y-, and z-axes and for relative rotation of the hub and disk about the x~ and
y-axes. The presence of the bearing permits relative rotations about the z-axis to be
unrestrained; frictional effects about the z-axis are assumed to be effectively compensated
by application of an internal torque between the hub and disk. (See fig. 3.) Matrix repre-
sentation of the spring and damping constants is as follows:

Translational spring constant, newtons/meter:

Ky 0 0
[K] o x o0
0 0 K,

Cx 0 0
c]=f{o ¢y o
0 0 G

Rotational spring constant, newton-meters/radian:

KR,X KR,xy Kr ,XZ
[KR] = KR,xy KR,y KR,yZ
KR,xz KR,yz 0
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APPENDIX A — Continued

Rotational damping constant, newton-meter-sec/radian:

CR,x CR,xy CR,xz
[CR] =|°Rxy  CRy CRyz
CR,xz CR,yz 0

Although certain off-diagonal elements are listed as zeros, this is not a limitation
of the mathematical model. Other coefficients could easily be used in these locations.

Reference coordinates.- Four coordinate axis systems are used (fig. 12): Inertially

fixed reference axes X', y',and z';disk body fixed axes x, y,and z (origin at disk
center of figure); hub body fixed axes xp, yp, and z,; and controller fixed axes Xj, Vi
and Zj. Origin of the hub axis system is fixed coincident with the disk axis system when
the spring-damper suspension system is undeflected. Disk angular motion is defined
relative to the inertial axes by successive Euler rotations ¢, 8, and i, as shown in fig-
ure 12(a). Similarly, hub angular motion is defined relative to the disk system by succes-
sive Euler rotations ¢y, 6y, and Y}, as shown in figure 12(b). Hub angular motion
relative to the inertial axes is also computed as discussed in the section entitled '"Hub
Inertial Angles."

Transfer matrices.~ Quantities expressed relative to disk body coordinates can be
referenced to the inertial coordinate system by premultiplication with the transfer matrix

[Dl]; that is,
= [Dl] %rdisk§

%rinertial
where
cy co -sy ¢ sf

[D1]= cysBsp+sPcod cwcd-swsldsd  -ch S
sy s¢ -cysbfcod cy s +syYshcod cfcod

Similarly, quantities expressed relative to the hub coordinate system are referred
to disk coordinates by the transfer matrix [Dz]; that is,

[

Thub

;rdisk

30



APPENDIX A — Continued

where

CYp €Oy -Syp €Oy s6y

s;,bh s¢h - cd/h s@h cth cxph s<1>h + szph seh c¢h c@h cth

Note that [DZ] is [Dl] with h-subscripted Euler angles.

Quantities expressed relative to controller coordinate systems are referred to disk
coordinates by the transfer matrix [D3]; that is,

rdisk% = [DB} rcontrollerg
where
caj -850 0
{D3j| = soz] ca; 0
0 0 1

the matrices [D 1:', [Dz], and [Dg} are all orthogonal transformations and the matrix

inverse is equal to the matrix transpose.

The relationship between Euler rates and inertial body rates for the disk is

o} =[p)e
¥

cy ch sy O
[D] =|-sycld cy O
56 0 1

The matrix transferring disk-relative hub Euler rates to disk-relative hub body
rates is
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CyYy, Chp sypb O
[Dh] =|-s¥pcb, cyy, O
S6h 0 1

Note that [Dh] is [D] with h-subscripted angles. Neither [D] nor [Dh] is
orthogonal. :

~ Hub inertial body rates can be expressed in terms of Euler rates of the disk and hub
as follows;

NEN 33 i

Finally, controller inertial body rates are expressed in terms of disk rates and
controller rate relative to the disk as

wx Caj + Wy Saj4

3 %=D3 w -wxsa + W caj

wz+a

All transfer matrices, some of their derivatives, and their inverses are listed for
convenience in appendix C.

Position coordinates of mass centers.- The mass centers of the disk, hub, crew, and

individual balance masses are all located in disk coordinates as shown in figure 2 by the
subscripted r vectors. The same mass centers are located in inertial coordinates
relative to the total (or overall) mass center by the subscripted R vectors. The hub
mass center is also located in hub coordinates {I‘f , as shown in figure 2 where the
origin of the hub axis system is shown displaced from the disk axis system. The follow-
ing relationships can be determined from figure 2 and knowledge of the transformation
matrices
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APPENDIX A — Continued

and

where

4

)l

the location of total mass center in disk coordinates. .Also mp = mg + m¢e + mp + Z m;j,
j=1

ool =l

J:

{rd} and {rf} are given constants, and {rc} is input as a time function. For the

controllers,

rﬁ ca]-

irj¥=<£saj

External forces and moments.- External forces are assumed to be zero during nor-

mal operation of the space station. However, there are occasional periods during which
orbit corrections, docking impacts, etc., will require application of external forces and
moments to the station. Therefore, terms have been included in the equations of motion
to supply external forces and moments both to the disk and to the hub.

34




APPENDIX A — Continued

Inertia properties.- The hub, disk, crew, and passive controllers are assumed to
have constant inertial properties about their own axes as follows:

. Hub:

Ih,x ‘Ih,xy ’Ih,xz
[Ih] =|l-Thxy Ih,y -Ih,yz
‘Ih,xz -1 h,yz Ih,z

Rotor or disk:

Id,x ‘Id,xy 'Id,xz

[Id]= axy  ldy  la,yz

'Id,xz ‘Id,yz Id,z

Controllers:

0 0 Ij Z
Crew:
Ic,x -1 Xy 'Ic,xz
[IC] =[Texy Iy leyez
‘Ic,xz ~Ie ,VZ Ic,z

Langrange's Equations of Motion

The space station with passive controllers has 16 degrees of freedom; one rotational
degree for each of the controllers and three translational and three rotational degrees for
both the disk and the hub. The analysis of this system has been simplified by choosing 16
independent generalized coordinates to represent it. These independent coordinates are
the controller rotation angles ay, a9, «3, and @4, disk Euler angles ¢, 6, and Y,
inertial coordinates of disk x', y’, and z', disk coordinates of hub ry, and r,,
and disk-relative hub Euler angles ¢y, 6, and .

I‘y,
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The equations of motion are derived by substitutions of the appropriate terms in

Lagrange's equations

. OF
4T\ 2T, 2V, d.g G=1,2,.. .16 (A1)
dt\3q;) 9q; 9dq; 2

where the q; represent the 16 generalized independent coordinates. Before illustrating
the method with an arbitrarily selected coordinate, it will be necessary to define T, V,
F4, and Q in terms of the basic physical quantities.

Kinetic energy.- The kinetic energy of the space station includes the translatory
and rotational Kinetic energies of the disk, hub, crew, and passive controllers. It can be

o= bl i} Hel Pl o 3o ol )
3 mefid e} el ) 3 ).

+%mT{Rg}T{Rg} (A2)

For the rotational degrees of freedom, a more workable form of the energy equation will

be used; namely,

oAl i} i)+l )+ o)
Al 1 T T 4 s o) 0

(-0 + 6+ 2 (PP )

Potential energy.- The potential energy of the space station consists only of the
strain energy of the hub support springs due to relative displacement of the disk and hub.
The potential energy can be written as

+
e

]
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v =%{r}T[K] {r} +% 9: [<z] 9:
¥h ¥n

1 2 2 2 2 2
= E[erx + Kyry + Kyr,” + KR,x¢h + KR’yeh ]
+ KR xy®h6h + KR xz%n¥h + KR yzfh¥h (A4)

Dissipation function.- The dissipation function for the space base system involves

translational and rotational terms generated by the hub support dampers and a rotational
term for each of the passive controllers as follows:

) b (k)
Fq =5 {i} )} + 3 {én) [cr] {on = 21 Cjay? (A5)
¥ bp) 7

coordinate 9; is given by

n

9.
Q- (Fo (=12 16)
i ]aq' s 3 0 o ey
=\

where the forces Fj are applied at and along the coordinates X;. For the dual-spin
spacecraft application, the 16 independent generalized coordinates are aj, ag, ag, a4,
%, 6, ¥, x', ¥y, z', rx, Ty, Tz, ®h, 6nh,and Yy. The forces are components of
the external forces and torques applied to the disk and hub. The twelve Xj coordinates
are the inertial locations of the external force applications.

The generalized forces were determined to be

-1 say
m-.:
Qi =gy | o {7} G=1,2,34 (A6)
; _

Generalized forces.- The generalized force Q; associated with a generalized
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Q| =" (I} - [ e}« [ ) W

Q) = [Dl] {F} | (A8)

Q X

Qry = ‘%{F} + [DZJ {Fh} (A9)

Qr,z

Qp,h

R ONER ALY

Qg,h

Qb

Selecting aj as the generalized coordinate to illustrate the Lagrange method of

derivation yields

* i (mj{ﬁj}T)

j=1

j

- 0{ (A11)

By using the relationships

i

ar.
A
3 :
o

-mT

M

oR
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BRd aRc 8Rh 3R

dar. ao‘z]. a&j
and
&
md{f{d} + Z <m]{R]}) + mc{Rc} + mh{Rh} =0
j=1

equation (A11) reduces to

T

oT 3R | (. } T
sa (134 (mT){RJ ’“{“’J} [IJ] 0

] ] 1

and the derivative is
. T . T T
d/eT\ _ d/|oR { oR . } { []
——\=-mp =] ]— Ri» - mp ] — Rip + qw; [LiK O Al2
dt\od, T at bd; 3} T o, <J J} ) (A12)
1

Evaluation of the next term in equation (Al) yields

. . . 4
8T | { }T 9R4 {. T | 2Ry . 'T|9R, z ey T\| aR
o, [~ MaBdf (55 [+ ™Mh Rh} oa, | mC{RC'} e, | mJ{RJ} Ba,
j i i i) =1 i
. N 31‘]' 3i‘j T 9Dg T
+ m; {Rj}< [Dl — 4 [Dl] — U4 {w} [IJ-] — {w} (A13)

By using the relations

or. or. .
[ m 9
Dl] S-l + [Dl} 5 Jio . T BR
aRd _ 3Rc _ 3Rh _ 3f{
. o¢x. | %¢x. ow.
% % ¢ Y
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and

| mgfRa} + me{Re + my {Ry ) + =§1<mj {faj}) ~0

equation (A13) reduces to

% = -mnq :Tfj {f{j} + {wj}T[I]-] 571_]-- {w}

For the potential functions,

i’l:o
@

and from the dissipation functions,

oF
il C;é;
BOlj

The generalized force for this degree of freedom is

T
-{ sa
QC!,] = -r—n_,; 0 C(Yj {F}
0

(A14)

(A15)

(A16)

(A17)

Substituting equations (A12), (A14), (A15), (A16), and (A1l7) into equation (Al) and simpli-

fying yields

d 3R e 3R . 2T '

T
T -0 Saj
T aD m
- {w]} [IJ] —3 {w} +Cya; = R ca; {F}
801] mm .
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By noting that
doR | _|oR

dt 8aj 3(1j
5 -0 saj
m; r m;
8R | _ _ ][Dl] - ][Dl] 0 ca;
e mT 3 mT
] ] 0
and from equation (A24)
T (.
fr} - mafoi" i
equation (A18) can be written as
-0 saj
T
I Z(wz ¥ aj) +mj{ Ceaj D] ({Rj} ¥ {Rg}) + Cjdg
0
(A19)

2 i
= +<Ij,x - I]-, )[(wyz - Wy )saj cay - wxwy<s2aj - cza]-)] G=1,2,3,4)
This equation is the equation of motion for each of the four passive controllers

Equations of motion for the other 12 degrees of freedom, determined by the same
For the disk rotational degree of freedom ¢, the Lagrange

method, are as follows:
equation is
D . \T| 4 f2D;\ @D

1]{A1 + rd} + md{Rd} <[§<a¢1> a_(;]{Al ¥ rd} + [g - ey

il

D e R

3D 8D, @D . ;
—1. —IJ{M +1 }) * mh{“h}T[—.l
¢

T

Seil m< w) ) }TH{":} = }Ttilgs‘g}wwhm (—)—
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This equation can be shortened considerably by the use of the following equivalences:

d (°P1\ _ Dy

dt\eg | 29
3D1 aDl
3¢ 99
5 4
4 ded + Z ijj + meR, + mpRy | =0

dit2 j=1

The shortened equation with partial derivatives of the. w terms expressed as functions
of the transformation matrices becomes

R SRR R 1 RRBC N

IR+ 70600 - T o] )
ol (B Bl o+ o
_ {wh}T[Ih][DZ]T E—E]{A} s jzl[lj,z(&jé co+a s@)] = Qy

Combining this equation with similar equations obtained for the 6 and ¥ degrees
of freedom results in the following matrix equation governing rotational motion about the
overall mass center:

42



| g {fa) + §<mj[mj]{ﬁj}> - mefe]{ie} + o v e} + o] [} + ([D]T[i]
3] W o - [t « (o] ool ) - (15 I0e] < o] ol )
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Equation (A22) is derived from equation (A20) and the first of the derivative
equations:

(%([Dl]{r}) ] [Dl] {ﬁ (®)+ [« <r}}
4BR30)- B3 -+

Expressions (A23) are pertinent applications of the general rule that the transformation
to inertial coordinates of the total derivative of a vector which is expressed in a rotating
coordinate system is equal to the derivative of the transformed (from rotating to inertial

(A23)

coordinates) vector. The Lagrange equation for the x' coordinate is

T
1

mpx' = {0 [DIJ(F}

0

This equation plus similar equations obtained for the y' and z' degrees of freedom
are combined to yield the following matrix equation governing translational motions of
the overall mass center along the inertial axes:

mT{ﬁQ - E) 1]{1?} . (A29)

where

f.. .
SR
Ev

For the ry degree of freedom, the Lagrange equation is

T T
o] 3 ) « R+ o 5 (-® + 0] )
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APPENDIX A — Continued

This equation and similar equations for ry and ry are combined to form the matrix
equation governing relative translation of the disk and hub

thJI]T{'Rh}+|:C:|(i'}+[K]{r}_-—<F} [ ]{ }

which because of equation (A24) can be written as

th)ﬂT{ﬁh + ﬁg} +[C)E) + X)) = [Dz] @"h} (A25)

The Lagrange equation derived for the hub-disk rotational degree of freedom ¢h is

mh{f{ h}TE) = {} +,{w}} I, Dh {wh} [Ih Dy, {wh} I Dh
R J>

1
+ KR x%p + KR xyoh + KR xz¥h = '—‘< > {} 0 [Dh:] {Th} (A26)
0

oD aD

By using the identity —2 = —E and equation (A24), the first terms on both sides of
9o 9¢p

the equation can be combined.

The resultihg equation along with similar equations derived for the 6 and Yy
 degrees of freedom can be written in the combined form

o G- B (0T BBl

[ o) - ) e

¥n
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where

Equation (A29) is derived from equation (A27) and the second of equations (A23).

f —_—TN
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APPENDIX A - Continued

—

gl

) |2

—

B

(A28)

(A29)

Equation conditioning.- The ¢, 6, and ¥ équations involve both disk and hub

angular acceleration terms.
The hub acceleration term is eliminated by substitution of the ¢y,

tions as fcllows:

46
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. T
Premultiplying equation (A27) by @T E)g] {E)}q } , combining with equations (A28)

and (A29), and solving for the {d’h} term yield

Bl - Bl - BRI | o o H

o)) - b B o5 T )

This relationship is substituted for the {w@ term in equation (A20). The result-

ing equation is simplified by means of equations (A7), (A21), (A22), and the identities

T . T T[. .
[w] = [Dli] [Dl] and [wh] = [Dg] I:D;I EDIDZ + DIDZ:I developed from equations (A23)

with the result

16+ [16) « L) - mPaldfos) P (057 - P2 [[D}ﬂl exft®)
falln +mamw+§;<m{raw{ﬁj}>+mc[rc}ﬁ»ﬂﬁc}

g [ {R}} Z {Td} {Al F) + ]E)z]{f"h} (A30)

Similarly, a combination of equations (A27), (A28), and (A29) allows the hub angular
degrees of freedom to be expressed simply by the matrix equation
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)60 IR mEIBT )
BT Ee-paeh -6

Hub inertial angles.- Hub angles with respect to an inertial frame of reference can
" be determined by two methods. After establishing an ordered set of Euler rotations ¢>I,
61, and Yp (see fig. 12(c)), the first method is to integrate the Euler inertial rates to

obtain inertial angles from the expression

— -—

« ) ClPI -SWI r
—_ O |w

o1 coy cop 4 h”]

or V=| sy cyy 0| {wp y

. -cyy sé Sy S8

iy L I 19 I bz

LY o1 Ju)

The second method, derived in reference 5, is the method used in the present investiga-
tion. A vector quantity expressed in hub coordinates is transformed to inertial coordi-
nates in terms of the ¢, 6,and ¥ and ¢};’ 6h, and Y4, systems as indicated by the

equation
{r inertial} = [D 1] E) 2] {r hub}

This vector transformation can also be expressed as functions of the hub inertial Euler
angles ¢, 061, and yYg. Equating the transformations yields

[~ -

eyt cor -syg chf sy
cyy s6p sy +sypcoy  cypcop - sypsdysér  -chpsep =[D1J|iDZ]

sy s¢p - cypsbpcoy cypsPp+sypséredr  coycop

J

Equating comparable elements on the right and left sides of the equal sign provides a
means of determining ¢y, 61, and yYg interms of the angles ¢, 6, ¥, ¢y, 6y, and
Y. These relationships are given in reference 5.
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APPENDIX B
DESCRIPTION AND LISTING OF SIMULATION PROGRAM

Computer Simulation

The simulation was programed on a CDC 6600 digital computer which operates in a
real-time mode and can be linked to actual control system or sensor hardware. The
simulation was controlled from a program control station shown in figure 13 which
includes a data entry keyboai'd, an on-line typewriter and time-history recorder, and a
cathode ray tube (CRT) display console.

The present program includes the spacecraft rotating element (disk) dynamics and
the dynamics of four passive controller masses. Equations pertaining to the zero-gravity
hub and isolation spring system are not included. These elements are being incorporated
into a more extensive program for further use in control studies. The simulation required
a storage of approximately 45 000 octal words and operated at 16 iterations (computer
cycles) per second. A fourth-order Runge-Kutta integration scheme was used for the
spacecraft and passive controller dynamics. A basic computing (integration) interval of
0.03125 second was used. A flow diagram of the simulation follows.
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INITIALIZATION

Setup output parameter table
Initialize input-output signals

Initialize scale factors and simulation parameters

RESET MODE

Resets t =0.0

Resets derivative equations

Resets CRT plot

Unload CRT option

Insert new data from keyboard

Calculate initial ry for use in disk equations

HOLD MODE

Derivative equations held at present values

OPERATE MODE

Mass and/or inertial disturbance
Option to erase and reset CRT display
Rotating element (disk) equations of motion

Compute disk Euler rates

Compute X', y',and Z'

Compute {Al}

Compute total torques on disk

Compute ﬁd, f{c, and R]

Compute total mass acceleration

Compute total inertia matrix

Solution of disk derivative equations or Euler
solution for disk (checkout option)

Runge-Kutta disk integratioun

Passive controller equations of motion

Compute f'j, i"j, and 1"]
Compute b'zj
Runge-Kutta integration of _Zij

Auxiliary calculation
Time-history recorder output
CRT plot

Real-time mode controls

4 pass integration loop

4 pass integration loop

PRINTER OUTPUT MODE

L




APPENDIX B — Continued

Input

Input for the simulation was supplied by the operator from the program control
station through a data entry keyboard. The data entry keyboard provided capability to
change parameters in central memory without removing the program from the computer
and simultaneously displayed the value of the parameters on a digital display located on
the program control station. These input variables were defined in a specific array VAR
described in table II,

Output

Data output facilities included Brush time-history recorders, CRT display, and a
high-speed line printer. A parameter listing and description, output formats, and expla-
nations of output options are presented in tables III and IV.

Recorder output.- Time-history recordings of spacecraft parameters (figs. 6 to 9)

were generated by time-history recorders located adjacent to the program control station.
Each time-history recorder had eight analog and nine discrete (event) channels. The
analog channels were used to record desired data parameters. Time-history recorder
channel assignments are shown in table III.

Printer output.- A block of output data was stored on a disk file at specified time
intervals denoted by the integer variable NT in terms of iteration cycles. Upon com-

pletion of the run, all output was routed to the high-speed printer by depressing the
"PRINT' control button located on the program control station. Output variables are
identified by an asterisk in table IV which presents and defines all significant program
variables.

CRT output.- Another form of output was provided by a CRT display which gen-
erated x,y-plots of spacecraft angles ¢ as functions of 6 as shown in figure 9. CRT
plotting was done while the simulation was in a real-time status with a plotting frequency
of FREQ in terms of iteration cycles. Since the amount of data required for a typical run
(=700 sec) exceeded the limit on the CRT controller instructions, an option was included
to erase the plot at any time and reinitialize the CRT so that only the desired part of the
run was displayed. A hard copy of the CRT plot could be obtained if desired.
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Program Listing
The program listing is as follows:

PROGRAM SPBASE ( INPUT OUTPUT)

» *ERLDISI HER OPTION
33 - ALPHA D DOTS = 060 TO LOCK BALANCE ARMS
34 - CREW RATE * SRCDX
35 - CRFW RATE * SRCDY
36 - CRFwW RATE #* SRCDZ
A0 - EULER DISK EQUATIONS FOR CHECKOUT |
al - OPTION TO PLOT ON CRT (PHDK VS THDK IN DEGS)
A5 - SETUP CRT IN OPERATE
A6 - UN{LODE CRT DISPLAY

COMMON/REALTIM/ANALGIN(32)+sDIGOUT (64) ¢L.DISI(108)+LDISO(196)
1 NOPERNHOLD «NRESET ¢+ NTERM«NPRINT « NREAD

LOGICAL LDISI+LDISO+ OGIC«VARCHNG

DIMENSION VAR(40)+INTEG(1)+LOGIC(4)+ IVARBUF (5)

DIMENSION RR(6¢28 )¢ TXX(T)YsTYY(T7)eTZZ(T7)

DIMENSION ARDDX(7)¢ARDDY (7)+ARDDZ(7)s BUFF(1)TIM(3)
DIMENSION IMAT(343)+EIGVI(3)eEVEC(343)

REAL IMAT.IXYCG

REAL MASSDI ¢MCT eMI T ¢M21eM3IMALI MTI,11412413414
REAL MASSD s MASSCeM]l ¢M24M3 e M4 MT

REAL IDXXeIDXY ¢ IDXZ o IDYY o IDYZoIDZZ4I1DXXOs IDYYOsIDZZO61DXYO
REAL I1DDXXe IDDYY s IDD7Z,4 IDDXY«IDDYZ, IDDX2Z

REAL MI0OsM20eM30eMa0,1104120¢1304140

REAL IZTOT e IYTOT s IXTOTIDIFXAIDIFY s IXYTOTLIXZTOTIYZTOT
REAL IDXZOe IDYZO IXCGeIYCG2vIZCGs IXZCGa1YZCGsMDUM

REAL T11XeI12XeI3XelaX4I11YaI12Y+13Yv14Y

LOGICAL DUMCG

EQUIVALENCE (VAR ( 1) PHDKO Yo (VAR( 2)+THDKO )¢ (VAR( 3)+PSDKO
EQUIVALENCE. (VAR( 4)+WXDKO Ye (VAR( S5)+WYDKO )+ (VAR( 6&)+WZDKO
EQUIVALENCE (VAR ( 7)«XPRO )¢ (VAR( B)+YPRO Yo (VAR ( 9) «ZPRO
EQUIVALENCE (VAR (10)+XPRDO Ys(VAR(11)+YPRDO )4 (VAR(12)+ZPRDO
EQUIVvALENCE (VAR ({13) .+ 1DXX0 Yo (VAR(14)4IDYYDO )+(VAR(15).1DZZ0

- o e

)

EQUIVALENCE(VAR(16)+A10)e (VAR(17)4A20)¢(VAR(18)+¢A30)4(VAR(19).A40)
EQUIVALENCE (VAR (20)4110) 4 (VAR(21)+120)+(VAR(22)4+130)+(VAR(23)4+140)
EQUIVALENCE(VAR(24)+M10)+ (VAR(25)+M20)+ (VAR(26)+M30) s (VAR(27) Ma0)

EQUIVALENCE (VAR (28 )+EL Yo (VAR(29)+DISTZ )+ (VAR(30)4+CJO

EQUIVALENCE (VAR (31 )+ SRCDXO ) s (VAR(32)+SRCDYO )+ (VAR(33) +SRCDZO

EQUIVALENCE (VAR (34 ) FREQ Yo (VAR (35) «PLGAIN )
EQUIVALENCE (VAR (37)sMASSDO )+ (VAR(38)+MASSCO ) :
EQUIVALENCE (RR({6¢1 s Al ) e(RR(Es2 ) A2 (e (RR(G6e3 )9 A3 )
EQUIVALENCE (RR(6+4 )9 A4 ) e (RR(6+5S Y+ADOT1) e (RR(6+6 YeADOT2)
EQUIVALENCE (RR(6+¢7 )sADOT3)+(RR(648 )e:ADOTS)

EQUIVALENCE (RR(6413)eXPR )¢ (RR{(6¢14)3YPR )¢ (RR(6+15)4ZPR )
EQUIVALENCE (RR(6116)¢XPRD)I+ (RR(641T7)sYPRD)I Vv (RR(6418)+ZPRDY
EQUIVALENCE (RR(6+19)¢PHDK) ¢ (RR(6¢20)+THDK) ¢ (RR(6¢21)PSDK)
EQUIVALENCE (RR(6+22)+¢WXDK )+ (RR(6423)+WYDK) s (RR(6024)WZDK)
EQUIVALENCE (INTEG(1)sISCAN ) :

EQUIVALENCE (LDIS1(48)¢.INTABLS)

)
)
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ChEax SECTION Co INITIALIZATION OF REAL TIME SYSTEM

CREXR

85
CHR%

86
CHEX®

87

CHER®

16

CALL CYCLE (900065)

NT=32

CALL READOUT (4 eNTeTe SRCXeSRCY«SRCZ)

CALL READOUT (& ¢NT sWXNK s WYDK ¢« WZDK « PHDK ¢ THDK 4« PSDK)

CALL READOUTI(GE«NT+WXNDK e WYDDK s WZDDK s Al XeAlYWALZ)

CALL READOUT(6«NTA1AA2ALA3AJAAAETAXZETAYZ)

CALL READOUT(6+NTADOTI1+ADOT2+ADOT34ADOTA +DELE JETAXYZ)
CALL READOUT(6+NT+ADDOT]1 +ADDOT24+ ADDOT34ADDOT A+ CMO, CON)
CALL READOUTI(O«NT s THETHDELH s THETZ «DELZWTHETI «DEL 1)
CALL READOUT(3NTIEIGVI(I)IEIGVI(2)+EIGV(3))

CALL RTROUTE (MF+900345)

CALL INOUT(ANALGINs32+DIGOUT+42+LD1IST1488+LD1S0+196)
CALL XDSPLAY(LDISI«LDISO«VARCHNG: ITYPE+ IVARBUF o INTABLS)

CALL. DATABLX(VARG QD+ INTEGe1 LOGICes+4 ANALGING32.DIGOUT 42

LDIST(1)+488+LDISO(1)4196)

CLEAR INDICATOR LITEc
DO 85 IND=1.196
LDISACIND) = oFs
CLEAR DISCRETE INPUT<

‘DO 86 IND=1,108

LODIST(IND)Y = oFe

CLEAR DA CONVERTERS

DO 87 IND=1442
DIGOUT(IND) = O

CALL NAMECRT(6LCRTTPE+ERR)
ASSIGN 90001 TO NOPER
ASSIGN 90002 TO NHOLN
ASSIGN 90003 TO NRESFT
ASSIGN 90004 TO NTERM
ASSIGN 90014 TO NPRINT
ASSIGN 90015 TO NREAND

SECTION De CONSTANTS AND INITIAL PARAMETERS
PRINT 16 ‘
FORMAT (6X* SPACE BASE SIMULATION®SX#J0B 43477777+ 75000.
13043+1+CeWeMARTZ B1232 R125%)
TIM(1)=4RXTIM $ TImM(2)=4RXE= $ TIM(3)=4RXe
NUMBER=INTEG=KOUNT=0
1SCAN = 32
REERRR RECORDER SCALE FACTORS
SFA1Y=10, 3 SFA1Z=10. s SFA1X=10.
SFTH=5, 3 SFTI=5, 3 SFDELI=14/180
SFCONZ=S
SFCMO=S,
SFETA=S»
SFETAX=Se
SFETAY=Se
SFCONE=5Se
SFTHFTZ=2,5
SFMBA=1/180
SFCRFWze01
SFANG=1 e
SFACC=1000
SFRATE=®1.

A2718,
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C
TINC=HH=e¢03125%
SX=1e/60
BILL=50¢ $ TMARTZ=0.0
TIMER=10,
DUMCG=eF o
FREQ=16e
PLGAIN=.2
CTIMF=100.
SRX0=SRY0O=SRZ0=0,0
SRDXNO=SRDYO=SRDZ0=0enNn
c ERRERRRERRERBRERE  [INJTTIALIZATION DISK FRERREERER

MASSNHO=350000.
-PHDKO=THDKO=zPSDKO=0en
WXDOKO=WYDKO=00
WZDKN=e5
1DXX0=1DYYO=38000000n
IDZZ0=190000000
IDXYO=]IDXZO=1IDYZO=0en
1DOXYO=0e
IDXY=IDYZ=1DXZ=0,0
SRSX=SRSDX=SRSDDX=0en
SRSY=SRSDY=SRSDDY=0e0Nn
SRSZ=SRSDZ=SRSDDZ=0en
RDDX=RDDY=RDDZ=0,0
FXDKz2F YDK=FZDK=0,40
TXDK=TYDK=TZDK=0,0
XPRO=YPRO=ZPRO=XPRDO=YPRDO=ZPRDO =040
XPRON=YPRDD=ZPRDD=0en

C REARFXERRERFERARRERARERINITIALIZATION FOR MASS BALANCE SYSTEM %%
A10=A20=1570796
A30=p40=-1,570796
M1 0=M20=M30=M40=3200,
CJ0=4000,
EL=1&, $ DISTZ=7e5
11X=12X=13X=14X=710e"
l11Y=12Y=13Y=14Y=7800,
110=120=130=140=7800,

C RN RERRERRERERARERXXEINITIALIZATION FOR CREW
MASSCO=1500.
SRCDX0O=SRCDYO=SRCDZ0O=e6

C

90003 CONTINUE
CALL READY

CH#%#%% SECTION Ee INITIALIZATION OF INTEGRALS

Cc LA 22222 22 S22 T2 LS ReEeFET LOOP
T=0e0
TINC=HH
NFREON=FREQ
N2=10#NFREQ
TCOUNT=0,.

C 39335 % % SETUP CRT PLOT (PH vsS TH)
IF(DUYMCGY GO TO 17
CALL HALT
CALL ENDPLOT
CALL UNLODE
CALL CLRPLOT
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CALL CQTPLOT(IclcNFREQoOoOoTHDEG-PLGAINoO.IOLTHDK

1 IN«O,410LPHDK )
CALL CRTPLOT(1+1¢N2¢30Bs1+ THDEG«PLGAIN«Os [ OLTHDK
1IN«O¢10LPHDK )
CALL READY
CONT INUE
DUMCG= eTe
% 3% % UNLODE ¢~RT SCREEN

IF (eNOTe LDISI(46)) O TO S0003
CALL HALT

CALL UNLODE

CALL READyY

CONT INUE

LE 2 2 22 SET IN INITIAL CONDITIONS
TSAVF=T

TMARTZ=T

XPR=xPRO $ YPR=YPRO $ ZPR=ZPRO

XPRD=XPRDO $ YPRNH=YPRDO $ ZPRD=ZPRDO

96 96 3 J 53 2 T BT W I XE DISK W%
PHDOK=PHDKO $ THOK=THDKO & PSDK=PSDKO
WXxXDOK=WXDKO $ WYDK=wYDKO $ WZDK=wZDKO
SRX=SRX0O $ SRY=SRYN $ SRZ=SRZ0
SRDX=SRDX0O $ SRDY=cRDYO $ SRDZ=SRDZO
SRCX=SRCDX=SRCDDOX=0en
SRCY=SRCOY=SRCDOY=0en
SRCZ=SRCDZ=SRCDDZ=0e0N

TXX(1)STXX(2)=TXX(3)=TXX(4)}=TXX{S)I=TXX(E6)=TXX{7)=0De0
TYY (1) =TYY(2)=TYY(3)1=TYY(4)=TYY(S)=TYY(E)=TYY(T7)=0e0
T2Z(1)=T2Z12)=T2Z13)=T2Z(4)=TZ2(5)=T2Z16)1=TZZ2(7)=00
(2222222222 T2 LI LTE LSS MASSBAL * %%

WXDDK=WYDDK=WZDDK=0en

ADOT 1=ADOT2=ADOT 3=AD0T4=040
ADDOT1=ADDOT2=ADDOT3=ADDOT4=040

WXDHOL D=WYDHOL D=WZDHALD=04+0
MASSH=MASSDO $ MAScC=MASSCO

A1=A10 $ A2=A20 $ A3=A30 $ A4=A40
I11=110 $ 12=120 $ 13=130 $ 14=140
M1=M1O0 $ M2=M20 $ M3z=M30 $ Ma=M4aO
€CJ1=6J2=CU3=CU4=CJO
11X=12XE13X=14X=710,
11Y=12Y=13Y=14Y=7800,
SR1X=SR1DX=SR1DDX=0e0
SR1Y=SR1DY=SRIDOY=0en
SR1Z2SR1DZ=SR1DDZ=0en
SR2X=SR2DX=SR2DDX=0en
SR2Y=SR2DY=SR2DDY=Nen
SR2Z=SR2DZ3SR2DDZ=0en

SR3X=SR3DX=SR3DOX=0n
SR3Y=SR3DY=SR3DDY=0eN

SR3Z=SR3DZ=SR3DDZ=z0NenN
SR4X=SR4DX=SR4D0OX=0e0
SR4Y=SRA4DY=SRADDY=0enN
SR4Z=SR4DZ=SRaDDZ=0en

Wk E CALCULATE INITIAL CONDITIONS
CA1=CcOS(A1) $ CA2=COS(A2) $ CA3=COS(A3)
SA1=SIN(A]1) $ SA2=SIN(A2) 3 SA3=SIN(A3)
SRIX=EL*#CA1

$ CA4=C0OS(A4)
$ SA4=SIN(A4L)

+PHDEG+PLGA

+PHDEG ¢PLGA
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SR1Y=FL#SA1

SR1Z=-DI1STZ

SR2X=EL#CA2

SR2Y=FL#SA2

SR2Z= DIsSTZ

SR3X=EL#CA3

SR3Y=EL#SA3

SR3Z2= -DISTZ

SR3Z=~-DISTZ~S,

SR3Z=-DISTZ#1,2

SRAX=EL*#CA4

SRAY=EL#SA4

SR4Z= D1sSTZ

SRAZ=DISTZ+5.

SRAZ=DISTZ*1.2

MT=MASSD + MASSC + M1 + M2 + M3 + M4
IF(MT oeNEs 0s0) MTI=1e/MT

CPSDK=CO0S (PSDK)

CTHDK=COS (THDK )

CPHDK=COS (PHDK )

SPHOK =S IN(PHDK )

STHDK=S IN(THDK }

SPSDk=SIN(PSDK)

SECTHDK =1 ¢ /CTHDK

36 3¢ 5% X 2% THE D MATRIX
D11=CPSDK#CTHOK

D12=SPSDK

D21=-SPSDK#CTHDK

D22=CcPSDK

D31=5THDK

D33=1.0
RRERXERRRE THE D - 1 MATRIX
DO11=D11

" DO12=D21

DO13=STHOK

D021 =CPSDK*STHDK#SPHDK + SPSDK*¥CPHDK
DO22=CPSOK¥CPHDK ~ SPSDK#STHDK*SPHDK
D023=~C THDK#SPHDK

DO31=SPSDK*SPHDK ~ CPSDK#STHOK*CPHDK
DO32=CPSDK#SPHDK + SPSDK*STHDK®*CPHDK
DO33=CTHOK*CPHDK

HERFEEREEREENFREREERE R FERRRREEERERE DISK EULER RATES HHEE%R
DPHDK=CPSDK*SECTHDK#wXDK ~ SPSOK#SECTHOK*WwyDK

DTHDK=SPSOK#*WXDK + CPSDK*WYDK

DPSDK=-CPSDK¥*STHDOK#SEC THDK#WXDK + SPSDK#STHDK®HSECTHDK®*wYDK+WZDK
HRRRRXRRERE THE D - 1 -DOT MATRIX

DOD1 1 =—~DTHDK*#CPSDK%#STHDK — DPSDK#SPSOK#CTHDK
DOD12=+DTHOK#SPSDK#STHDK ~ DPSDK*CPSDK#CTHOK

DOD13=+DTHDK#CTHDK

DOD21 =+DPHDK#%* (CPSDK#STHOK®#CPHDK — SPSDK#SPHDK) + DTHDK*CPSDK*CTHDK
1 #SPHDK -~ DPSDK# (SPSDK*STHDK#SPHDK - CPSDK#CPHDK)

DOD22=-DPHDOK#* (SPSDK#STHDK#CPHDK + CPSDK¥SPHDK) - DTHDK#SPSDK#CTHDK
2%#SPHDK -~ DPSOK# (CPSDK®STHOK®*SPHDK + SPSDK#CPHDK)

DOD23=~DPHDK¥* CTHDOK#CPHDK + DTHDK#STHDK#SPHDK

DOD3 1 =4+DPHDK#* (CPSDK#aTHDK#SPHDK + SPSDK#CPHDK) = DTHDK#CPSDK#CTHDK
3#CPHNK + DPSDK* (SPSDK*STHDOK*¥CPHDK 4 CPSDK#SPHDK)

DOD32=—-DPHDK* (SPSDK#STHDOK#SPHDK — CPSDK¥#CPHDK) + DTHDK#SPSDKACTHOK |
4*CPHDK + DPSDK# (CPSDK*#STHDK#CPHOK - SPSOK#SPHDK)
DOD33=-DPHDK*CTHDK#SPHDK - DTHDK#STHOK#*CPHDK
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APPENDIX B - Continued

CONT INUE
SECTION Fo HOLD CONTROL
WXDDK =WXDHOL D
WYDDK =WYDHOL D
WZDDK=WZDHOLD

CONT INUE

SECTION Ge OPERATE (OOP
IF(LPDISI(17)) DUMCG=,Fe
SRCDX=SRCDY=SRCDZ=0en

* R 3532 CREW MOTION DISTURBANCE
IF(LNISI(34)) SRCDHX=SRCDOXO
IFILDISI(35)) SRCDY=SRCDYO
IF(LDISI(36)) SRCDZ=zSRCDZ20
IF(T ¢GE 1 0e e ANDeT e T ¢30¢ )SRCDX=0e 6
IF(ToGEe1OeeANDeT oL T,30+)SRCDY=6e6
IF(T¢GE e300 eAND T oL T (506 ISRCDZ=46
IF (oNOTe LDISI(17)) GO TO 40
SRCX=SRCX + HHESRCDX
SRCY=SRCY + HHESRCDY
SRCZ=SRCZ + HH®#SRCDZ
CONT INUE

LAz 212 ERASE AND SETUP CRT DISPLAY

IF(eNOTe LDISI(45))Y GO TO 42
CALL HALT
CALL ENDPLOT
CALL UNLODE
CALL CLRPLOT
ITIM=T
JTIM=(T+HH - ITIM)I®100.
CONT INUE
CALL ENABLE(41S)
CALL CRTCODE(2+TIM({19¢1004¢990e)
CALL ENCODEI(ITIM484150649906)
CALL CRTCODE(1+TIM(3)419046¢990¢)
CALL ENCODE1 (JUTIMe2¢19669990,)
CALL MARK250
CALL CRTPLOT(141+NFREQeDe1 s THDEGIPLLGAINGO 41 OL THDK
1 INsO 41 0LPHDK )
CALL CRTPLOT(1+41¢N2+30Bele THDEG+PLGAIN+O4+10LTHDOK
1IN¢O4 1 0LPHDK )
CALL READY
CONT INUE

La s X 24 BEGIN D1SK CALCULATIONS
INT=1

CONT INUE

MASSNTI=1./MASSD

CPSDK=COS (PSDK)

CTHDK=COS (THDK)

CPHDK=COS (PHDK)

SPHDK=S IN(PHDK )

STHOX=S IN(THDK)

+PHDEG «PLGA

+PHDEG+PLGA
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APPENDIX B — Continued

SPSDK=S IN(PSDK)

SECTHOK =1 ¢ /CTHDK

RBERRRERRR THE D w#~ATRIX

D11 =CPSDK#CTHDK

D12=SPSDK

D21=-SPSDK#CTHDK

D22=CPSDK

D31 =S THDK

DA3A3=x160
ARRARHRRBRRE THE D- DOT MATRIX
DD11=~CPSDK#DTHDK#STHDK — CTHDK#*DPSDK#SPSDK
DD12=DPSDK#CPSDK

DD21=SPSDK*DTHDK#STHDK - CTHDK®DPSDK#CPSDK
DD22=-DPSDK*SPSDK

DD31=DTHDK*CTHOK .
HRREREREXRE THE D = INVERSE MATRIX
D111=CPSDK*SECTHDK

DI12=—-SPSDK#SECTHDK

D121=SPSDK

‘D122=CPSDK

D131=-CPSDK*#STHDK*SE ¢ THDK
D132=SPSDK#STHOK#SEC THDK

D133=1.0

P22l 222l 2SRRI 2R A e a2 YL LS D1SK
DPHDK= DI11%#WXDK+ D{12%#WYDK

DTHDK= DI21#WXDK + pnl22%wYDK

DPSDK= DI3I*#WXDK + pIl32*WYDK + WZDK
DTHDK2=DTHDK®*DTHDK

DPHDK 2= DPHDK #DPHDK

DPSDK2=DPSDK#DPSDK

PDA1=DD11%#DPHDK + DD12#DTHDK

PDA2=DD21 #DPHDOK + DD22#DTHDK

PDA3=DD31 #DPHDK

DDPHDK= DI11% (WXDDK~pDA1)+D112% (WYDDK=PDA2)
DDTHDK= D121 * (WXDDK-PDA1)+D122% (WYDDK-PDA2)

EULER RATES

DDPSDK= DI31 % (WXDDK~pDA1)+D132% (WYDDK~-PDA2)+WZDDK~-PDA3

tZ 2222222 L] THE D - 1 MATRIX
DO11=D11
Do12=D21
DO13=STHDK
D021 =CPSDK#STHDK#SPHNK + SPSDK®*CPHDK
D022=CPSDK*CPHDK - SPpSDK¥*STHDK#SPHDK
D023=~C THDK#SPHDK
DO31=SPSDK#SPHDK - CPSDK*STHDK#CPHDK
DO32=CPSDK#SPHDK + SPSDKXSTHDK*CPHDK
DO33=CTHDK*CPHDK
RRERREEAERRE THE D - 1| =-DOT MATRIX
DOD11=-DTHDK#CPSDK*#STHDK ~ DPSDK*SPSDK*CTHDK
DOD12=+DTHDK*SPSDK#STHDK ~ DPSDK#*CPSDK*CTHDK
DOD1 3=4+DTHDK#CTHDK !
DOD21=+DPHDK* (CPSDK %< THDK#CPHDK - SPSDK¥*SPHDK) +
1 #SPHDK — DPSDK#* {SPSDK#*STHDK#*#SPHDK = CPSDK#CPHDK)
DOD22=-DPHDK ¥ (SPSDK#gTHDK*¥CPHDK + CPSDK#SPHDK) -
2%¥SPHDK - DPSDK# (CPSDK*STHOK*SPHDK + SPSDK*CPHDK)
DOD23=~DPHDK#CTHDK*CPHDK 4+ DTHDK*STHDK#SPHDK
DOD31 = +DPHDK* (CPSDK2cTHDK#SPHDK + SPSDK¥*CPHDK) -~
3%#CPHDK + DPSDK¥* (SPSDi*STHDK®*CPHDK 4+ CPSDK*SPHDK)
DOD32=~-DPHDK#* (SPSDK#aTHDK#SPHDK — CPSDK*CPHDK) +

D THDK*CPSDK #CTHDK

DTHOK#SPSDK#CTHDK

DTHOKR*CPSDK*CTHDK

DTHDK#SPSDK#CTHDK



APPENDIX B - Continued

4¥CPHDK + DPSDK¥* (CPSDK*STHDK®#CPHDK - SPSDK%#SPHDK)

DOD33=-DPHDK*¥ CTHDK¥#SPHDK - DTHDK#STHDK#CPHDK
XXX HEXEX THE D - t - DOUBLE DOT MATRIX
DODD11=~-DDTHDK2CPSDK#STHDK — DDOPSDK®*SPSDKRCTHDK + Z2+¥DTHDK#DPSDKH*
1 SPSDK®#STHDK ~ (DTHDK?2 + DPSDK2)®*CPSDK®#CTHDK
DODD12=+DDTHDK#SPSDK#STHDK =~ DDPSDKRCPSDKH#CTHDK + 2¢*DPSDK*DTHDKH
2CPSDK*STHDK + (DTHDK?2 + DPSDK2)*SPSDK¥CTHDK

DODD13=+DDTHDKRCTHDK - DTHDK2%#STHDK

DODD21 =+DOPHDK % (CPSDK®#STHDK#CPHDK - SPSDK®#SPHDK)Y + DDTHDKR*CPSDK %
B3CTHDOK®*SPHDK = DDPSDK# (SPSDK¥#STHDK#SPHDK ~ CPSDK®¥CPHDK) - (DPHDK2 +
ADPSDK2 ) * (CPSDK#STHDK #SPHDK 4 SPSDK#CPHDK ) - DTHDKZ#CPSDK*STHOKH*
SSPHDK 4+ 2+ *DPHDK¥DTHNK¥CPSDKA*CTHDK#CPHDK — 24 #DTHDK®#DPSDK*#SPSDK
EHCTHDKRESPHDK =~ 2¢*DPSDK*DPHOK* (SPSDK®*STHDK*CPHDK 4+ CPSDK*SPHDK)
DODD22=-DDPHDK®* (SPSDK*STHDK#CPHDK + CPSDK#SPHDK) ~ DDTHDK®*SPSDK#*
TCTHDK®*SPHDK - DDPSDKX (CPSDK¥STHOK%#SPHDK + SPSDK#CPHDK ) + (DPHDKZ2 +
BDPSDK2 ) *# (SPSDKRASTHDK#SPHDK — CPSDK¥CPHDK ) + DTHDK2%*SPSDK*STHDK*
GSPHDK = 2¢XDPHDK*¥DTHNKESPSDK¥CTHDKRCPHDK - 24 %*DTHDK*¥DPSDK#CPSDK*
ACTHDK ¥SPHDK = 2e¢#DPHDK*DPSDK* (CPSDK*STHOK#CPHDK -~ SPSDK#SPHDK)
DODD23=~-DDPHDK#CTHOK%CPHDK + DDTHOK*#STHDK*#SPHDK + (DPHDKZ2+ DTHDK2)
BRCTHOKXSPHDK + 2 *DPHDOK*DTHDK*STHDK *CPHDK

DODD21 =+DDPHOK* (CPHDKK®#STHDK ¥ SPHDK 4+ SPSDK#CPHDK)Y) ~ DDTHDKXCPSDK*
CCTHDKk#CPHDK + DDPSDK* (SPSDK*#STHOK®#CPHDK + CPSDK®SPHDK) 4+ (DPHDK2 +
DDPSDK2)* (CPSDK*STHDK2CPHDK — SPSDK%SPHDK) + DTHDK2*CPSDK#STHDKH*
ECPHDK + 2e¢*DPHOKX®*DTHNKXCPSOK*CTHDK¥®SPHDK ~ 24 #*DPHDKRDPSDK* (SPSDK*
FSTHDOK*SPHDK — CPSDK¥CPHDK) 4+ 2¢#DTHDK*DPSDK*SPSDK#CTHDK*CPHDK
DODD32=-DDOPHDK* (SPSDOK*#STHDK*SPHDK ~ CPSDK®#CPHDK) + DDTHDK*SPSDK#*
GCTHDK®*CPHDK 4+ DDPSDK#* (CPRSDK¥*STHDKXCPHDK - SPSDK¥SPHDK) - (DPHDK2 +
HOPSDK2 )} * (SPSDK*#STHDK#CPHDK 4+ CPSDOK¥SPHDK) — DTHDK2*SPSDK¥STHDK*
JICPHDK - Z2+*DPHDK#DTHPK*SPSDK®#CTHDK®#SPHDK 4+ 24 #DTHDKADPSDHKRCPSDK #
JCTHDK ¥ CPHDK = 2+ #DPHNK*¥DPSDK# (CPSOK*STHDK#SPHDK + SPSDK¥#CPHDK)
DODD33=-DOPHDOK*CTHDK % SPHDK ~ DDTHDK¥STHDKX#CPHDK - (DPHDKZ2 + DTHDKZ
K)®¥CTHOK®¥CPHDK + 2+ #DPHDKE¥DTHOK¥STHDK®#SPHDK

*EERERXAERRE THE PARTIAL OF D - 1 - DOT WwWRT PHI DOT

DODPN21 =+CPSDKASTHDOK #CPHDK SPSDK#SPHDK
DODPDN22=~SPSDK*STHDK2#CPHDK -~ CPSDK¥#SPHDK

DODPN23=~CTHOK®CPHDK

DODPN3 1 =+CPSDK*#S THDK#SPHDK SPSDK#CPHDK
DODPN32=-SPSDK*#STHOK*SPHDK + CPSDK#CPHDK

DODPNA3=~CTHDK*#SPHDK
ERRRRRAERERE THE PARTIAL OF D - 1 - DOT WRT THETA DOT
DODTN11=2-CPSDK®*STHDK

DODTN1 2=+SPSDKX*STHDK

DODTN13=+CTHDK

DODTN21 =+CPSDK#CTHDK X SPHDK

DODTN22=-SPSDK*CTHDK 2SPHDK

DODTN23=+STHDOK#SPHDK

DODTN31 =—CPSDK®CTHOK#CPHDK

DODTN32=+SPSOKECTHDK#CPHDK

DODTD33=~STHDK#CPHDK
FRERERERER THE PARTIAL OF D - 1 - DOT WRT PSI DoT
DODSN1 1 =—SPSOK#CTHDK

DODSN12=-CPSDKR#CTHDK

+

DODSD21 =-SPSDK#STHOK #SPHOK + CPSDK#CPHDK
DODSN22=—CPSOK#STHOK#SPHDK -~ SPSDK*#CPHDK
DODSN31 =+SPSDOK#*STHDK #CPHDK + CPSDK#SPHDK
DODSN32=+CPSDKXSTHDKR#CPHDK -~ SPSDK#SPHDK

3 3 3% I 38 35 3 % 98 3 B 3 E X %

XPRDD= (D011 #¥FXDK+DO 1 2#FYOK+DO1 3#FZDK ) #MT |
YPRDD= (D021 #¥FXDK+DO22RF YOK+DO23*FZDK Y #¥MT |
ZPROD= (DO31 #F XDK+DO 32 #FYDK+DOIZIRFZDK ) #MT 1
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APPENDIX B — Continued

L2 T2 2R L ST S A1

Al X==MT]# (MASSD#*SRSX + MASSCRSRCX + MI1#SRIX +
1 M2#SR2X + M3XSR3X + Ma#SRAX) ‘
AlY=-MT I # (MASSD#SRSY + MASSCR#SRCY + M1%SR1Y +
2 M2%*SR2Y + M3%SR3Y 4+ MA#SRAY)
A1 Z==MT I # (MASSD*SRSZ + MASSC#SRCZ + MI%*#SR1Z +
3 M2%#SR2Z + M3I®SR3Z + M4aXSR4Z)
ERFERREREREREE A | DOT
A DX=~MT1*( MASSCH#SRCDX + MIXSRIDX 4+ M2#¥SR2DX +
1 M3#SR3DX + MAXSR4DX)
A1DY=—-MTI#( MASSC®*SRCDY + MI®#SRIDY + M2%SR20Y +
2 M3¥SR3DY + MAa®RSR4DY)
A1DZ=-MTI*{ MASSC®#SRCDZ + MI%#SRIDZ + M2#SR2D0Z +
3 M3*SR3IDZ + MARSREDZ)
FREREREXRERRERRERX A | DOUBLE DOT .
Al1DDX=-MT 1% ( MASSC#SRCDODX + MI#SRIDDX + M2#SR2DDX +
1 M2#SR3DDX + MaA#*SRADDX)
A1 DDY=-MTI %*( MASSC#SRCDDY + MI#SRIDDY + M2%#SR2DOY +
2 M3IRSRIDDY + M4aXSRADDY)
A1DDZ=-MT]*( MASSC®*SRCDDZ + MI1%#SRIDDZ + M2%#SR2DDZ +

3 M3#SR3DDZ + M4a#SR4DDZ)H

EERRERR XX  TORQUE TRANSFORMATION
FRRRRHRER  TOTAL TORQUES ON DISK IN EULER COORDINATES
CSTORX=(TXDK -~ FYDK#A1Z + FZDK*A1Y)#CPSDK#CTHDK -
1 (TYDK + FXDK®A1Z - FZDK¥A1X)*SPSOK#CTHDK +
2 (TZDK -~ FXDK*AlY + FYDK¥A1X)*STHDK _
CSTORY=CPSDK* (TYDK + FXDK#A1Z — FZDK#A1X) + SPSDK#* (TXDK - FYDK#A1Z
1 + FZDK¥*A1Y) '
CSTORZ=FYDK¥A]1X -FXDx#Al1lY + TZDK
*}***il*******li*l}}***!l***f****il**** MASS ACCELERAT[ONS CALCULATIONS
200 IF(MASSD +EQe 0De0) GO TO 201
RDUMX=SRSX $ RDUMYzSRSY $ RDUMZ=SRSZ
RDUMDX=SRSDX & RDUMDY=SRSDY $ RDUMDZ=SRSDZ
RDUMDDX=SRSDDX $ RpUMDDY=SRSDDY. $ RDUMDDZ=SRSDDZ
MDUM=MASSH : :
ICK=2
GO Ton 207
201 CONTINUE
202 IF(MASSC oEQe 0e0) GO TO 203
ROUMX=SRCX % RDUMY=SRCY $ RDUMZ=2SRCZ
RDUMDX=SRCOX € RDUMDY=SRCDY $ RDUMDZ=SRCDZ
RDUMDDX=SRCDDX $ RNPUMDDY=SRCDDY $ RDUMDDZ=SRCDDZ
MDUM=MASS(C
1CK="
GO TO 207
203 IF(M]1 ¢EQe 0e0) GO TH 204
RDUMX=SRIX $ RDUMY=SRiY $ RDUMZ=SR1Z
RDUMDX=SR10X % RDUMDY=SRIDY $ RDUMDZ=SR1DZ
RDUMDDX=SR1DDX $ RPUMDDY=SRI1DDY $. RDUMDDZ=SR1DDZ
MDUM=M 1
1CK=4
ADOT1SE=ADOT1 #ADOT] *FL
TERX=—=ADOT1SE#CA1
TERY=-ADOTISE#SA1
GO Tn 207
204 IF(M? +EQs 0e0) GO TO 205
RDUMX=SR2X $ RDUMY=SR2Y & RDUMZ=SR2Z
RDUMDX=SR2DX $ RDUMDY=SR2DY % RDUMDZ=SR2DZ
RDUMDDX=SR2DDX % RNUMDDY=SR2DDY $ RDUMDDZ=SR2DDZ
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MDUM=M2
ICK=&
ADOT2SE=ADOT2#ADOT2#EL
TERX=-ADOT2SE#CA2
TERY==ADOT2SE#SA2
GO To 207
20S IF (M3 «EQe 0e0) GO TO 206
RDUMX=SR3X $ RDUMY=SR3Y & RDUMZ=SR3Z
ROUMDX=SR3DX $ RDUMDY=SR3DY $ RDUMDZ=SR3DZ
RDUMDDX=SR3DDX $ RpPUMDDY=SR3DDY $ RDUMDDZ=SR3DDZ
MDUM=M3
1CK=g
ADOTASE=ADOT3#ADOTI*EL
TERX=-ADOT3SE#CA3
TERY==-ADOT3SE#SA3
GO TO 207 .
206 IF(Ma +EQe 0e¢0) GO TO 208
RDUMX=SR4aX € RDUMY=SR4Y $ RDUMZ=SRaZz
RDUMDX=SR4ADX $ RDUMDY=SR4DY $ RDUMDZ=SR4DZ
ROUMDDX=SR4DDX $ RPUMDDY=SR4DDY $ ROUMDDZ=SR4DDZ
MDUM=M4a
1CK=7
ADOTASE=zADOTA#ADOTA*EL
TERX=~ADOTASE*CA4
TERY=~ADOTASE#SA4
207 CONTINUE

ANX=AIX + RDUMX
ANY=AlY + RDUMY
ANZ=A1Z + RDUMZ
PART 1 XzDODD1 1 #ANX+ DODD12#ANY + DODD13#ANZ
PART1Y=DODD21 #ANX+ DODD22#ANY + DODD23#ANZ
PART1Z=DODD31 #ANX+ DODD32%#ANY + DODDI3#ANZ

ANDX=A1DX + RDUMDX
ANDY=A1D0Y + RDUMDY

ANDZ=A1DZ + RDUMDZ .
PART2X=2.#(DOD11#ANDX + DOD12%ANDY + DOD13%AND2Z)

PART2Y=2+#% (DOD21%#ANDX + DOD22#ANDY + DOD23#ANDZ)
PART2Z=2+% (DOD31%ANDX + DOD32%ANDY + DOD33%ANDZ)

ANDDX=A1DDX + RDUMDDY
ANDDY=A10DY + RDUMDDY
ANDDZ=A1DDZ + RDUMDDY
PART3X=DO11#ANDDX + NO12%ANDDY DO 13#ANDDZ
PART3Y=D0O21#ANDDX + DO22#ANDDY DO23#ANDDZ
PART3Z=D031#ANDDX + NO32#ANDDY + DO33#ANDDZ

++

IF(ICK oLEe 3) GO TO 210
ANEWX=A1D0DX + TERX
ANEWY=A1DDY + TERY

ANEW3X=DO1 1 #ANEWX + NO12#ANEWY + DO13%#A10DZ
ANEW3Y=DO21#ANEWX + NO22#ANEWY + DO23#A1D0DZ
ANEW3Z=DO31 #ANEWX + DO32*#ANEWY + DO33#A10DZ
ARDDX( ICK)=PARTIX + PART2X + ANEW3X
ARDDY( ICK1=PART1Y + PART2Y + ANEW3Y
ARDDZ (ICK)=PART1Z + PART2Z + ANEW3Z

210 CONTINUE
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*&###TE# PARTIAL OF D1 DOT WRT PHI DOT # Af VECTOR
RDDXA= PARTIX + PART2X + PART3X

RDDYA= PARTL1Y + PART2Y + PART3Y

RDDZA= PART1Z + PART2Z + PART3Z

TOTX=MDUM*RDDXA

TOTY=MDUMXRDDYA

TOTZ=MODUMXRDDZA

PART4AY=DODPD21#RDUMX + DODPD22%RDUMY + DODPD23%*¥RDUMZ
PARTA4Z=DODPD31 #RDUMX + DODPD32%¥RDUMY + DODPD33#*RDUMZ
PARTsX=DODTD11#RDUMX + DODTD12*RDUMY + DODTD13#RDUMZ
PARTSY=DODTD21#RDUMX + DODTD22¥RDUMY + DODTD23#RDUMZ
PARTSZ=DODTD31 #RDUMX + DODTD32¥RDUMY + DODTD33%*RDUMZ
PART&X=DODSD11¥RDUMX + DODSDI12#RDUMY
PARTSY=DODSDZ21%RDUMX + DODSD22%RDUMY

PARTAZ=DODSD31 #RDUMX + DODSD32#RDUMY
TXX(ICK)I=TOTY#PARTAY + TOTZ*PART4Z
TYY(ICK)=TOTX®PARTSX + TOTY*¥PARTSY + TOTZ#PARTS5Z

TZZ(ICK)=TOTX®*PARTE6X + TOTY#PARTEY + TOTZ#PARTEZ

GO TO(201¢2024203¢204¢205,206¢208)41CK

208 CONTINUE
ERRRERBARRERRRERRERERZRERERARERRARRXERNR  TOTAL MASS ACCEL. TERMS
TX= TXX(1)+TXX2) +TXXL3)I4+TXXCA)I+TXX(S)I+TXX(6)+TXX(7)
TY=TYY (1 )14TYY(2)+TYY(3)+TYY(4)+TYY(S)+TYY(8)+TYY(7)
TZ=TZZ(1)4TZZ(2V4TZZ(3V+TZZ(4)+TZZ(S)+TZZ(6)+TZ2( 7).

EEEREN TOTAL INFRTIA MATRIX
IDXX=1DXXO+I 1 X*¥CAI*CAI+T 1 YXSAIHSA]+I2XHCAZHCAZ+I2YXSAZESAR
1+ 13X*%CA3ZXCA3+I3YASAINSAI+TAXFCAL*CAA+TAYXSA4RSAL

IDYY=IDYYO+I IX¥SAI*SATI+I1Y#CAIRCAL+I2XHSAZHSA2+[2YRCA2RCAR
1+ I3X*#SA3XSA3+I3Y#CAIRCAZ+I4AXHSAAXSAL+IAYRCALGRCAL
IDZZ=1DZZ0+11+12+13+14
IDOXY=IDXYO+(11Y~T1X)%SAI#CAI+(I12Y=-I2X )IRSA2%CA2
1+ (13Y-13X)#SA3%CAI+ ([4Y-14X)*SAA*CAS

IDXZ=IDXZO & 1DYZ=1DYZ0

1DDXX=2 ¢ ¥ (ADOT1 ¥CAI¥SAI¥ (11Y=11X)+ADOT2R#CAZRSAZ* ([2Y~12X)
1+ADOT3RCA3RSA3R (I 3Y~13X)+ADOTARCAGRSAL* (14Y=14X))

1DDYY=-1DDXX

I1DDXY=ADOT1 ¥ (CA1#CA1-SAI1*SA1 )% (11Y=I1X)+ADOT2% (CA2#CA2-SAR¥SAZ}*
1 (12Y=-12X)+ADOT3*# (CA3XCA3-SAIXSA3Z IR (13Y-13X)+ADOTa*

1 (CAG#CAA—SAS%SA4Y¥(1aY~-14X)

*ERRRR SOLUTION OF DISK DERIVATIVE EQUATIONS

YOX=WXDK#* (+1DDXX#Dt1 - I1DDXY#D2! - IDDXZ*D31) +

1 WwYDK#* (- 1DDXY#D11 + IDDYY*#D21 - IDDYZ*D31)+
2 WwZDK* (~IDDXZ¥*¥D11 - IDDYZ#D21 + IDDZZ*D31)

YDY=wXDK# (+1DDXX#D12 IDDXY*#D22) + WYDK¥# (~IDDXY®*D12 + IDDYY*D22)+
1 WZDK* (-1DDXZ%*D12 I1DDYZ*D22)

YDZ=wXDK#* (-1DDXZ) + wYDK¥* (-1DDYZ) + WZDK*IDDZZ

COMPX=+WZDK* ( IDYYRWYNDK—~IDYZRWZDK-IDXY*WXDK) —-WYDK*({IDZZ¥WwZDK~IDXZ*

1 WXDik=1DYZ¥WYDK)
COMPYz=+WXDK#% ( IDZZAWZDK—-1DXZRAWXDK=~1DYZ*¥WYDK) ~WZDK¥* ( IDXX*WXDK~IDXY#

2 WYDK-IDXZ®WZDK )
COMPZ=+WYDK#* ( IDXXE¥WXDK~IDXY#WYDK=~IDXZ*WZDK) —WXDK* (IDYYAWYDK~1DYZ¥*

3 WZDKx-1DXY#*#WXDK)
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COAl=+1DXX*D11 -~ 1DXY¥D21 -~ IDXZ#*D31
CoBl=-1DXY®*0D11 + IDYY*#D21 -~ [DYZ#D31
COC1=~1DxZ%*D11 ~ 1DYZ®*#D21 + 1DZZ*D31
COA2=+1DXX*¥D12 - IDXY¥®D22
COB2=—~1DXY#D12 + 1DYY®*D22
CoC2=-1DxZ*D12 - 1DYZ®D22
COA3=-1DX2

coB83=-1DYZ

COC3=+1D22

XX R% EULER SOLUTION CHECKOUT OPTION
IF(eNOTe LDISI(40)) GO TO 2
COA1=1DXX

coB1=-1DXY
coCl1=-1DX2
COA2=-1DXY

coB2=1DYY
coC2=-1DYZ
GO Tn 3

2 CONT INUE
FuL1=D12%COMPX
FUL2=D22%COMPY
COMPXx=CSTORX - TX =YDX + D11%#COMPX + D21#COMPY + D31¥COMPZ
1-(D1 1 #WYDK+D21#WXDK I ([ 1 #ADOTI+I2#ADOT2+13#ADOT3+14MADOTE )-DIL S
2 (ADDOT1+ADDOT2+ADDOT3+ADDOTS )

COMPY=CSTORY - Ty -YDY + FUL1 + D22#COMPY
1-(D12%wWYDK+D22%WXDIK )% (11 #ADOTI+12#ADOT2+13#ADOT3+14*ADOTS)
COMPZ7Z=CSTORZ = TZ - YDZ + COmMPZ

1-D33x% (ADDOT1 +ADDOT24+ADDOT3I+ADDOTAE )

3 CONTINUE ’
DET=COAI#(COB2#COC3—-CcOC2%#COB3) —-COB1# (COA2¥COC3-COA3XCOC2) +

1 COC1# (COA2#COB3-COA3#COB2)
DET1x=1e/DET

936695 36 96 36 369696 6969696 3096 96 3 96 % CRAMER$S RULFE RRENEERR
WXDDK= (COMPX#* (COB2#C0OC3-COC2#C0OB3) ~COB1* (COMPYXCOCI3-COMPZ¥#COC2) +
1 COC1#(COMPY®#COB3-COMPZXCOB2)YI*DETI
WYDDK=(COA1 ¥ (COMPYRCOCA-COC2#COMPZ)=COMPX % (COA2RCOC3-COA3XRCOC2) +
1 COC1#*(COAZ2#COMPZ-COA3RCOMPY ))IHDET!
WODDK=(COA 1 * (COB2#¥COMPZ-COMPY®#COB3) —~-COB1* (COA2ECOMPQO~-COAJRCOMPY )+
1 COMPX®* (COA2*¥COB3~COA3#COB2))I*DET!
WXDHOLD=WwXDDK
WYDHOL D=WYDDK
WZDHNLD=WZDDOK

BRERRERERRRER D1SK EQUATIONS  #¥#EEEax
RERRERRRERRERE RUNGE KUTTA INTEGRATION SCHEME #X%HQM
IF( oNOTe LDISI(17)) GO TO 301
GO TO(16141504¢1510¢152)«INT
161 RR(1413) = XPR

RR(1,14) = YPR

RR(1415) = ZPR

RR(1416) = XPRD
RR(1,17) = YPRD
RR{1,18) = ZPRD
RR(1,4,19) = PHDK
RR(14,20) = THDK
RR(1,21) = PSDK
RR(1.22) = wxDK
RR(1,23) = wYDK
RR(1,24) = WZDK

63
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160

1S4

150

151

152

153

301
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XY = 05

L =2

INT = 2

RR(L,13) = XPRD¥*HH

RR(L,14) = YPRD¥HH

RR(L,15) = ZPRD¥*MHH

RR(L.16) = XPRDD*HH

RR(Le+17) = YPRDD#MH

RR(L.18) = ZPRDD*HH

RR(L+19) = DPHDK®MHM

RR(L¢20) = DTHDK®HH

RR(L+21) = DPSDK#HH

RR(L+22) = WXDDK®*HH

RR(L+23) = WYDDK#HH

RR(L+24) = WZDDK¥*HH

IF(LsEQeS)Y GO TO 157

RR(6+s13) =2 RR(1+I3I+XYH*RR(L+13)
RR(6414) = RR(1+14)4+XYARR(L¢14)
RR(£415) = RR{1+1S)+XY#RR(L+15)
RR(64168) = RR(1¢16)+XYRRR(L+16)
RR(6,17) = RR(1¢1TI+XY*RR(L+17)
RR(6418) = RR(1+18)+XY#RR(L +18)
RR(6,19) = RR(1+19)1+XY#RR(L+19)
RR(6:¢20) =z RR(1¢20)4+XY#RR (L +20)
RR(6421) = RR(1¢21)+XY*#RR(L+21)
RR(6422) = RR(1+22)4+XY#RR (L +22)
RR(6+¢23) = RR(1+23)4+XYHRR(L ¢23)
RR(6¢28) = RR(1+24)+XYHRR(L ¢+24)
1A = L '

GO To 27

L =3

INT = 3

GO TO 160

L =4

INT = 4

XY = 10

GO TN 160

L =8

GO TO 160

RR(6+13)1ZAR(1¢13)14+(RR(2:13)142eFRR (3413142 #RR (4413 )+RR (B4 13) ) #SX
RR(6+,14)1=RR(1+18)+(RR(2:18)1+2:%RR(3+14)42.#RR(4,+18)4+RR(K914))%#SX
RR(6415)1=RR(1+15)1+(RR(2:15)42¢*RR (3415142 #RNR(4:¢15)4+RR(B+15))%SX
RR(6+16)=RR(1+16)4+(RR(2:16)+2+¥RR(3:16)+2+#RR(4:+16)I+RR(S5+16))%#SX
RR(6¢17)=RR(1+17)+(RR(2¢1T7)}+2e#RR(3¢1T7)42+#RR(2+17)+RR(S5e¢17) I #SX
RR(6¢18)=RR(1+1B)+(RR(2:18)4+2+FRR(3418)1+2+%¥RR(4+18)+RR(F5¢18) ) #SX
RR(6¢19)=RR (1 ¢19)4+(RR(2:¢19)1+2sFRR(2419)14+2+ RN (4 419)I+RR(S5¢19) ) #SX
RR(6420)1=RR (142014 (RR(2¢20)4+2s*#RR(3¢20)4+2s#RR(4+20)+RR(B+20) )IXSX
RR(6¢21)1=RR(1¢2114(RR(2¢21)142¢¥RR(3¢21)1+2+¢#¥RR(4+21)1+RR(5e21))#SX
RR(6422)12RR (1 422)+(RR(2+22)42+F¥RR(3422)+2+¥RNR (422 )+RR{5+22) )IWSX
RR (6423 )=RR (1 4231+ (RR(2¢23)+2e¢F RR (3423 )42+ XRR (4 +23)+RR(S5+¢23) )#SX
RR(6:28)=RR(1+24)+(RR(2+28)42e*RR (3428142 #RR (4424 )+RR (5424 ) )I#SX

1A = L

T=T+HH

CONTINUE

SUBW=WYDK*WY DK ~WXDK#wXDK

WXWY =WXDIK #WYDK

ARENRRERER CAP R , R-DOT « R-DDOT *ARBER (D]#A1)

RDOD1 X=ARDDX (4) $ RDOD1Y=ARDDY (4) $ RDD1Z=ARDDZ (4)
RDD2Xx=ARDDX(5) $ RDD2Y=ARDDY (5) $ RDD2Z=ARDDZ (S5}
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RDD3X=ARDDX(6) $ RDD3Y=ARDDY (6) $ RDD3Z=ARDDZ (6)
RDD4X=ARDDX(7) $ RDD4Y=ARDDY (7) $ RDDAZ=ARDDZ (7)

RRERERFEARRRRFRLERRERRRRREER MASS BALANCE SYSTEM EQUATIONS #»

INT=1

CONT INUE

IF(LDISI(19)) ADDOT1=ADDOT2=ADDOT3=ADDOT4=0+0

IF(eNOTe LDISI(18)) GO TO 77

ADDOT1=ADDHLD1

ADDOT2=ADOHLD2

ADDOT3=ADDHLD3

ADDOTA=ADDHL DA

CONT INUE

CA1=COS(A}Y) ¢ CAZ2=C0OS(A2) & CA3=COS(A3) & CAa=COS (A4

SAl=<IN(Al) $ SA2=SIN(A2) $ SA3=SIN(A3) $ SAa=SIN(A4)

IF(EL oEQe 0Oe0y GO T 227

IF (M1 oEQs 00 ) GO TO 29 :

ERARBEEERERERRARERXRRERRE MBS — MASS | =%

ADOT1S=ADOT1#ADOT1 '

EREFRRERERER SMALL R

SR1X=EL #CAl

SR1Y=EL #SA1L

SR1Z==-D1S7T2Z

RERERERRFXRER SMALL R-DOT

SR1DX=—-EL#ADOT1*#SA1

SR1DY=+4+EL #ADOT 1 #CA1

REXERRXEEXRERE SMALL R-DOUBLFE DOT

SRIDNX==-EL.#ADOTIS#CA1~-EL*¥ADDOT1 #SA1

SR1DDY=-EL*ADOT1S#SA 1 +EL*ADDOT1#CA1

HREERRRERREEE TERM 2 OF EQe 4

ARIDNX=RDOD1IX + XPRDD

ARIDNY=RDD1Y + YPRDD

AR1DNZ=RDD1Z + ZPRDD

FINAI=M1*# (-EL¥*¥SA1%#(DO11%AR1 DDX+D021 #*ARI1DDY+DO31 #ARIDDZ) +
EL#CA1#(D0O12%#AR1 DDX+D0O22%¥AR1DDY+D0O32%#ARIDDZ Y

ARERRERERRERE COEFFs OF ALPHA DOUBe DOTS

FINNAI=M] #EL®EL

IF(FINNAL o+EQe 0,0y GO TO 29

RIGHTI=(IIX=11Y)%* (SURWHSAI#CA1-WXWY* (SAI1#SA1—-CA1#CA1))

ADDOT1= (~WZDDK%11 - FINALl - CJU1#ADOTI + RIGHTI)I/( I1 + FINNAL)

CONT INUE

RRREERRBREXERRLRRERARIREL MBS = MASS 2 #¥%

IF (M2 o¢EQe 040 )Y GO TO 30

ADOT2S=ADOT2#ADO0OT2

SR2X=EL #CA2

SR2Y=EL#SA2

SR2Z= D1SsTZ

SR2Dx=~EL #ADOT2%#SA2

SREZDY=4+EL#ADOT2%#CA2

SR2DDX=-EL®ADOT2S#CA2-EL#ADDOT2#SA2

SR2DDY=-EL#ADOT2S*#SA>+EL*ADDOT2%#CA2

AR2DDX=RDD2X + XPRDD

AR2DNY=RDD2Y + YPRDD

AR20DZ=RDD2Z + ZPRDD

FINAP=M2* (-EL%SA2¥ (D011 #AR2DDX+D021 #AR2DDY+D0O31 *AR2DDZ) +
EL*CAZ*(Dol2¥AR2DDX+0022*ARZDDY+DO32*ARZDDZ))

65
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30

31

32
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FINNAZ=M2REL #EL

IF(FINNA2 +EQe 040y GO TO 30
RIGHT2z (I12X—-12Y ) # (SUBWXSA2¥CA2-WXWYH* (SA2#SA2-CA2#CA2))

ADDOT2= (-WZDDK#[2 - FINA2
CONT INUE

8 T3 BT B IE B g R
IF (M3 ¢EQe 0.0 ) GO TO 31
ADOT23S=ADOT3#ADOT3
SR3X=EL #CA3

SR3Y=EL#SA3

SR3Z= -DISTZ
SR3Z=-DISTZ-5.
SR3Z=-DISTZ*1,.2
SR3Dx=-EL®#ADOT3#SA3
SR3DY=+EL*#ADOT3*#CA3

CJU2*%ADOT2 + RIGHT2)/(

MBS - MASS 3 *»

SR3DNX=~EL#ADOT3S*¥CA3-EL*ADDOT3*SA3
SR3DDY=~EL #*ADOT3S*#SA+EL *ADDOT3*CA3

AR3DNX=RDD3X+ XPRDD
AR3DNY=RDOD3Y+ YPRDD
AR3DDZ=RDD3Z+ ZPRDD

I2 + FINNA2)

FINA3=M3% (-FI #SA3% (D01 1*#AR3DDOX+D021#AR3DDY+D0O31*AR3DDZ) +
EL#CA3%(D0O12%AR3DDX+D0O22*AR3DDY+D0O32#AR3DDZY)

FINNAS=M3REL*EL

IF(FINNA3 «EQe 0e0) GO TO 31 .
RIGHT3= (I3X-13Y)* (SURW¥SA3HCAZ~WXWY* (SA3*¥SA3-CA3%CA3))

ADDOT3= (-wZDDK#%*13 - FINA3
CONT INUE

LI 2 22t sl 2 e s )
IF(Ma +EQe 00 ) GO TO 32
ADOTAS=ADOT4*ADOTAS
SRaAxX=EL#CA4

SRAY=EL#SA4 -

SR4Z= D1sTZ
SRAZ=DI1STZ+S5e
SR4Z=DISTZ*1.2

SR4Dx=~EL #ADOTA4*SAA
SRADV=+EL#ADOTA*CA4

CJU3*ADOT3 + RIGHT3)/(

MBS - MASS 4 **%

SRADNDX=—-EL®ADOTA4S*CA4-EL*ADDOT4*#SA4
SRADDY=—-EL®ADOTAS*SA4+EL #*ADDOT4*#CA4

ARADNX=RDDAX + XPRDD
ARADNY=RDDAY + YPRDD
ARADNZ=RDD4Z + ZPRDD

I3 + FINNA3)

FINAA=MAR (—EL¥#SAA* (DO 1 *#AR4DDOX+D021#AR4DDY+DO31*ARADDZ) +
EL*#CA4* (DO12#AR4DDX+D022%#AR4DDY+D0O32%AR4DDZ )Y )

FINNAA=MAREL *EL

IF(FINNAG +FQe 0.0) GO TO 232
RIGHTA= (I4X-1aY)I*# (SUBWHSAQGHCAG~WXWY* (SA4*SA4~-CAL*¥CA4Q)Y)

ADDOTA= (—WwZDDK®*14 - FINA4
CONT INUE

IF(LDIST (33))1ADDOT1=ADDOT2=ADDOT3=ADDOT4=ADOT1=ADOT2=ADOT3=AD0OT4=0

ADDHL D1 =ADDOT!
ADDH|I_D2=ADNOT2
ADOHLD3=ADDOT3
ADDHL_ D4A=ADDOTA

RERREREERREREXZRERERER INTEGRATION SCHEME FOR MASS BALANCING SYSTEM

CJU4A*¥ADOT4 + RIGHT4)/ ¢

I4 + FINNAG)
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lF(M’.EQ.0.0.ANDQMZ.FQ.0.0.AND.M3QEQ.0.0.AND.MA.EQ.O’.O) GO TO 227
IF(aNOTe LDISTI(17)) <O TO 227
GO TO (12141104111 ¢112)¢INT
RR(1, 1)=A1

RR(1, 2)=A2

RR(14 3)=A3

RR(1, 4)=A4

RR(1, $5)=ADOTI1

RR(1, 6)=ADOT2

RR(1, 7)=ADOT3

RR(1, 8)=ADOTA4

XY = 085

L =2

INT = 2

RR(Le 1)1=ADOTI*HH

RR(Le 21=ADOT2¥MHH

RR(L, 3)=ADOT3®HH

RRI(Le 4)=ADOTARMH

RRI(Ls S)=ADDOT1 #HH

RR(Ly 6)=ADDOT2%HH

RR((Le 7)=ADDOTIHHH

RR(Les 8)=ADDOTA*HH
IF(LJEQe5) GO TO 1113

RR(6, 1) RR(1s 1)+XY*RR(L
RR(6s 2) RR(1e 2)+XY*RR(L
RR(&, 3) RR(1e 3Y+XY*RR(L
RR(6, &) RR(1e 4)+XY*RR(L s
RR(6, 5) RR(1e SHI+XYRRR (L »
RR(64 6) RR(1e 6)4+XY*RR (L o
RR(6+ .7) RR(1e 7Y+XY*RR (L
RR(6, 8) RR(1e BY+XY*RR (L o
1A = L

GO Tn 28

L =3

INT = 3

GO TO 120

L = a

INT = 4

XY = 140

GO Tn 120

L =5
GO ToO

121

120

1)
2)
3)
4)
5)
6)
7
8)

now

oo

120

227

RR (6,
RR (6,
RR (6,
RR (6.,
RR (6,
RR (6.
RR (6
RR (6

1)¥=RR(1.,
2)1=RR (1.,
3)=RR (1,
4)1=RR (1.
S5)=RR (1,
6)=RR (1.
TI=RR (1
8)=RR (1,

1A = L
CONT INUE

L2 2. 2 3 2

1)1+ (RR(2
21+ (RR(2
3)+(RR(2
4)+ (RR(2.
SI+(RR(2
6)+(RR(2
TI+(RR(2
BI+(RR(2

LDISO(31)=LDISO(103)=eFe
IF(T ¢EQe 040) LDISO(31)=LLDISO(103)=0eTe

IF ((T~-TSAVE)

oLTe

TIMER)

LDISO(31)=LDISO(103)=eTe

TSAVE

=T

1)+2e#RR (3,

2142+ *RR (3,

3)+2«*RR (3,

4142 ¥RR (3

S5)4+2e#RR (3
6)+2e*¥RR (3 s
Tr+2e%#RR (3
8)42e#RR (3

GO TO 90

1)142«%RR (4,
2)+2e¥RR (4
3)+2e#RR (4,
4142 %¥RR (4,
S)+42e%¥RR (4
6142 *RR (4,
TI42e¥RR (4
B)+2+%RR (4,

TIC MARKS FOR ACTUAL PROGRAM TIME

1)4+RR (S
2)4+RR (S
3)4RR (S
8 HY4+RR (54
S)I+RR (5
6I14RR (S
TIHRR (S
8I1I+RR (S

1))%SX
2))%¥SX
3))I#SX
4) )*#SX
S))%SX
6))%SX
7)I%SX
B8) ) *%SX
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90 CONTINUE

3% 5% AUXILLIARY CALCULATIONS

CMO=SORT (AIX*AIX+A1YRALY)
IXCG=1OXX+MASSD®( (A1 Y4+SRSY)I* (ALY+SRSY)I+ (A1Z+SRSZI*#(A1Z+SRSZ)Y

1+MASSCH ((ATY+SRCY)I* (A1 Y+SRCY I+ (A1 Z+SRCZHI* (A1 Z+SRCZ)Y )

2+MI%((AIY+SRIY)I*(A1Y+SRIY)I+(A1Z+SRIZ)I*(A1Z+SR12Z))

3+M2R((AIY+SR2Y)I*# (A1 Y+SR2Y )1+ (A1 Z+SR2Z 1 *(A1Z+SR2Z))

44M3% ( (A1Y+SRIY)IH (A1Y+SR3Y)I+ (A1Z+SR3Z)I*(A1Z+5R32Z))

S+MAR((A1Y+SRAY)I*(A1Y+SRAY)I+ (A1Z+SRAZ)I*(A1Z+5R4Z))
1YCG=IDYY+MASSD®# ( (A] X+SRSX)* (A1X+SRSX)I+(A1Z+SRSZ)*(A1Z+SRSZ))

1+MASCCHR ((AIX+SRCXIF (A1 X+SRCX)I+(A1Z+SRCZ)I*(A1Z+SRCZ)Y)

24+MI¥ ( (AIX+SRIXIF(AIX4+SRIXI+(AIZ+SRIZI*(A1Z+SR12Z))

B+M2E ((AIX+SR2X I (A X+SR2X I+ (A1Z+SR2Z)HI*(A1Z+5R22) )

4+M3R ¢ (AIX+SR3X)* (A1 X+SR3X1+(A1Z+SRIZy*(A1Z+SR32Z))

S+MAX ((AIX+SRAXIF (A1 X+SRAX)I+(A1Z+SRAZIY* (A1Z+SRAZ))
1ZCG=1DZZ4+MASSD* ( (A1 X+SRSX)* (AIX+SRSX)I+(A1Y+SRSY)I* (A1 Y+SRSY))

1 +MASSCR ( (A1 X+SRCXI*® (A1 X+SRCX I+ (A1Y+SRCY)*#(A1Y+SRCY))

2+M1% ( (AIX+SRIX)I*# (A1 X+SRIXI+(A1Y+SRIYI®(ATY+SR1Y))

34M2R ((AIX+SR2X I (AL X+SR2X)I+ (Al Y+5R2Y ) * (A1 Y+SR2Y))

A+M3H ( (AIX+SRIXHIF(AIX+SRIAXI+ (AL Y+SRIY I (A1 Y+SR3Y))

5+M4*((A1X+SRax)*(A1x+SQ4X)+(A1Y+SR4Y)*(A1Y+SR4Y))

IXYCGS IDXY+MASSD* ( (A1 X+SRSX)I* (A1Y+SRSY))

1 +MASSCH* ( (A1 X+SRCX)* (A1 Y+SRCY))

2+M1I# ¢ (AIX+SRIX)I*(A1Y+SRIY))I+M2* ( (AIX+SR2X)I*¥ (A1Y+SR2Y))

3+M3*((A1X+SR3X)*(A1Y+SR3Y))+M4*((A1X+SR4X)*(AIY+SRAY))
IXZCG=IDXZ+MASSD* ({AIX+SRSX)*# (A1 Z+SRSZ)Y)

1 +MASSC*({ (AIX+SRCX)*(A1Z+SRCZ))

24+4MI X (AIX+SRIXI* (A1 Z4SR1ZII+M2R( (AIX+SR2X)I*#(A1Z+SR2Z))

3+MIR((AIX+SRIXIF (A1 Z+SRIZII+MAX ((AIX+SRAX)I* (A1 Z+SREZ))
1YZCG=IDYZ+MASSD* ( (A1 Y+SRSY)* (A1 Z+SRSZ))

1 +MASSCR((A]JY+SRCY)*# (A1Z+SRCZY)Y

2+MI X ((A1Y+SRIY)I* (A} Z4+SRI1Z)II+M2R ((A[Y+SR_Y)*(a Z-SR. Z))
3+M3% ((A1Y+SRIY )X (A1Z+SR3Z))+MA*( (A1Y+SRAY)I*(A1Z+SRAZ))
IMAT(1419=IXCG $ IMAT(1,2)==IXYCG $ IMAT(1.3)=-IXZCGC
IMAT(2+1)=-IXYCG $ [IMAT(2,2)= IYCG $ [MAT(2.3)=-1YZCG
IMAT(341)=~IXZCG $ IMAT(3,2)= -1YZCG $ [MAT(3+3)= [ZCG
CALL JACTV(34341¢IMATIEIGVI+EVECsBsCoWl +W2NERR
IF(NFRR oEQe 1) PRINT 100

100 FORMAT (1 OX*NON CONVERGENCE AFTER 100 ITERATIONSH*)

ETAXZ=e15514022 $ ETAYZ=415514022

IF(EVEC(3e¢3) eNEes 0e0) ETAXZ=ATANZ2(EVEC(1¢3)+EVEC(3e3))
IF(EVEC(34¢3) eNEe 0OenN) ETAYZ=ATANZ2(EVEC(24+3)+EVEC(343))
ETAXYZ=SQRT(ETAXZ*ETAXZ+ ETAYZ*ETAYZ)

DELE=¢15514022

IF(ETAXZsNEs 040) DELE=ATAN2(ETAYZ.ETAXZ)
TIAD=11#ADOT1+12#ADOT2+!3%ADOT3+14%ADOTS
ATwX=IXCGHWXDK«IXYCGRWYDK~IXZCG*WZDK
1-(AIX+SRIX)I*¥(A1Z+SR1Z)#ADOTI #MI —(AIX+SR2X)I* (A1 Z+SR2Z ) #ADOT2%¥M2
1-(A1X+SR3X)*(A1Z+SR3IZ)IHADOTIAM3I - (AIX+SREAX)I* (A1 Z+SRAZ)I*ADOTA*M4
ATWwY=—IXYCGRWXDK+IYCG*WYDK-1YZCG#WZDK
1-(A1Y+SR1Y)I®(A1Z+SR1 Z)*ADOT1 #M1 - (A1Y+SR2Y)I* (A1 Z+SR2Z)*ADOT2%M2
1= (A1Y+SR3Y)# (A1 Z+SRIZ)I*ADOTI#M3I— (A]Y+SRAY)I* (A1 Z+SR4Z)*ADOTA%MS
AIWZ==-1XZCGHWXDK~1YZCGCRWYDK+1ZCG#WZDK

I+ ((AIX+SRIX)I* (AIX+SRIX)+ (A1Y+SR1Y)*(ALY+SR1Y)I*ADOT] *M]

1+ C(AIX+SR2X ) ¥ (AIX+SR2X)I+ (A1Y+SR2Y)#(A1Y+SR2Y ) ) #ADOT2¥#M2

1+ (A1 X+SR3IX)* (A1X+SR3IX)I+ (A1 Y+SRIY)%(A1Y+SR3Y))*ADOT3I*M3

1+ (A1 X+SRAX)I® (AIX+SRAX)I+ (AIY+SRAY)I*(A1Y+SRaY ) I*ADOTA*Ma+ TIAD



APPENDIX B — Continued

ATWX2=ATWX®ATIWX

AlWY2=AlWY#AlWY

ASOR=SQRT(AIWX2+AIWY2)

THETH=+15514022

IF(ATWZ oeNEe O )THETH=ATAN2(ASQRAIWZ)

DELH=¢ 15514022

IF(WXDK oNEe OeOIDELH=ATAN2 (AIWYALIWX)
THETZ=SQRT (PHDK*PHDK + THDK#*THDK)
DELZ=e15514022

IF(PHOK e NE e Qe O )DELZ=ATAN2 (THDK s PHDK )+ 1 « 570795
BIwX=WXDK#WXDK

BlwY=WYDK#WYDK

BSOR=SQRT(BIWX+BIwY)

THET1=415514022

IF(WZDK oNEe O)YTHETI=zATAN2 (BSOR«WZDK)

DELI=e 15514022

IF (WXDKeNE«QO¢O)DELI=ATAN2 (WYDK ¢ WXDK ) :
CONSQ=THETH®THETH + ETAXYZX*ETAXYZ - 2*THETH*ETAXYZ*COS (DELH-DELE)
CON=57-295780*SORT(CONSO)

DELE=DELE *#57 295780

ETAXZ=ETAXZ #57.295780

ETAYZ=ZETAYZ #57.295780

ETAXYZ=ETAXYZ*#57 4295780

THETH=S7 295782 THETH

DELH=ST e 29578 *DELH

THETZ=ST7,29578#THETZ

DELZ=57¢295ST7TB%*DELZ

THET 1357295782 THET!

DEL1=5729578% DEL!

AIA=RT 4 29578%A

A2A=KT ¢4 295 78%#A2
AJACR7 ¢ 298T8#A3
AQA=RT ¢ 29578%A4
C
c 3% XX RECORDER CHANNEL OUTPUTS

DIGOUIT( 1)=CMO%SFCMO
DIGOUT(2)=AIX*SFALX
DIGOUT( 3)=A1Y%SFALY
DIGOUT( 4)=ETAXYZ*SFFTA
DIGOUT( S)I=ETAXZ #*SFETAX
DIGOUT( 6)=ETAYZ RSFreTAY
DIGOUT( 7)=THETZ®SFTHETZ
DIGOUT( 8)=CON%SFCON
GOUT(9)Y=THETH*SFTH

DIGOUT(10)=THETI*SFT1
DIGOUT (11 )=ADDOT 1 #SFACC
DIGOUT(12)=00
DIGOUT(13)=A1A%SFMBA
DIGOUT (14 )=A2AXRSFMBA
DIGOUT(15)=A3A%SFMBA
DIGOUT(18)=AAARSFMBA

C *% % SCANNER FUNCT I ONE® 3 33 36 3 % ¥

90047 LDISO(124)Y=.DISI(22)

CHaax COMMUNICATION WITH RFEAL TIME DISPLAY
IF(LNISTI(22)) CALL SCANNFR(ISCAN)
CALL DSPLAY
IFLDISTI(17)Y) GO TO 90050
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Crrus

c
90050

50002

CHERE
90001

CHEXH
9n01a

89

130

132

133

131

90030
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RETURN TO MODE CONTROL SUBROUTINE
LOISO(59)=eF e

LDISO(60 )= eFe

LDISO(102)=eF e

LDISO(110)=eF e

CONT INUE

I 9336 % % REAL TIME CRT PLO! (FH v> H - IN DEGKREEDS)
THDEG=THDK#57 295780
PHDEG=PHDK¥*57 6295780
IF(THDEG oEQe Do ¢ANNPHDFG +EQe 0e¢) GO TO 50002
IF( +NOTe. LDISI(41)) GO TO 50002
CALL RITECRT(LDISI(17)eeTes10)
CONT INUE
CALL RTMODE
RETURN FROM MODE CONTROL INTO OPERATE LOOP
CONT INUE
LDISO(S9)=eTe
LDISO(60)Y=0eTe
LDISO(102)=eToe
LDISO(110)=eTe
!ZZ = .F.
CALL. RECORD
CALL RECYCLE
GO To 90006
SECTION He PRINT CONTROL
CONT INUE
NUMBFR= (NUMBER+1)
WRITF (MF 89 )NUMBFER
FORMAT ( 1HO+ 1 2HRUN NUMBER =+2Xe¢15)
WRITE (MF+130) HHe (VAR (1) I=1438)
FORMAT (SX*¥HH=®E 1244+ 10X*¥VAR BLOCK (1 THRU 3B)*/(10EI3e%))
WRITE(MF 132 )RFX+TXDKeMASSD s IDXYO4SRSXsSRCXIRFY s TYDKIMASSD
1 IDXZOeSREYeSRCY s RFZ«TZDKeMASSCe IDYZO « SRSZ ySRCZ +FXDK«FYDK ¢ FZDK
FORMAT(///2X*RFX=#E 1254 2X*TXDK=#E 12 ¢ S+ 2X¥MASSD=*#E 125+
OX# IDXYO=¥E12e4 s 2XX¥RSX=¥E 12 e84 42XURCX=%E12e4/
PXRRFY=ZHE12 eS¢ 2XHTYDK=RE 12 ¢S5+ 2XH¥MASSD=%*E 125
OXHIDXZO=HE 1264 ¢ 2X¥RSY=XE 1264 2X¥RCY=HE1 24/
PXRRFZ=HE12eF 12X ¥ TZOK=%E 12 ¢S54 2X#MASSC=%#E 1205+
OX®*IDYZO=%#E12e4 ¢ 2XHRSZ=HFE 12 04 2XHRCZ=#E12e4//
2XAFXDK=z%E 1204 ¢+ 2XEF YDK=#E12 e 4 ¢ 2X¥FZDK=¥F 1204
WRITE(MF«133) 11XeI2XeI3XelaXel1YeI2YeI3Ys14Y
FORMAT(ZX*I1X=*5120592X*lZX=*ElZoS.3X*13X=*El2.%.4X*IAX=*E!2.5/‘

1 2X* I IY=RE12e5¢2XHI2Y=HE12e5¢3XHIIY=RHE12e5,4X*4AY=%E1245///)
WRITF(MF,131)
FORMAT (26X*¥TIME#34X*#*cRCX* 1 2X¥#SRCY* 12 XR*SRCZ*/
P2EXHWXDKH] 2 RWYDK* | 2XEWZDKX* 1 2X¥PHDK ¥ 1 2X ¥ THOK*1 2 X #PSDK* /
26XAWXDDK#1 | X*EWYDDK* 11 X¥WZDDK*]1 I X*¥A I X#] IXFALIYR]IXHALZ¥/
POEXHATIH1AXHAZSH I AXFABRIAXHAG R 4XHETAY R 1 2X*ETAXS/
2EX*ADOTI#1 I X*#ADOT2%1 1 X*¥ADOT3#]1 I XXADOTA %1 1 X*CMO*/
26X*ADDOT 1 #10x*ADDOT2#1 OX*¥ADDOT3#1 OX*ADDOTA* ] OX#ETA* ) 3X*DEL
2TAR/2EXRTHETH® | | X*DE|LH® 1 2XHTHETZ#1 1 X*¥DELZ* 1 2X*THETI* 1 I X*DELI*// /)
CALL PLAYBAK (90032S+NFILE)
WRITE(MF,1800) T, SRCX«SRCYsSRCZ
WRITE(MF 1801 ) WXDKslyYDK ¢ WZDK ¢ PHDK o THDK 4 PSDK
WRITE(MF 1801 ) WXDDK WYDDK ¢ WZDDK s+ AIXeAlYeAL2Z
WRITE(MF,1801) Al AWAZAA3AWAAAETAXZETAYZ

SOND~—~ D>

-t bt b pee



1800
1801

9N032
CrExx
900185
CHERR
Ca¥n

C *=

CHERn
90004
CRERR

90034

1

APPENDIX B — Concluded

WRITE(MF,1801) ADOT1+ADOT24ADOT3+ADOTS «DELE «ETAXYZ
WRITE(MF,1801) ADDOT] +ADDOT2 +ADDOT34ADDOT 4+ CMO - CON
WRITE(MF 41801 )THETH«NELH THETZDELZ«THETT «DELT
WRITE(MF,.1801) EIGVIL)EIGV(2)eELIGVI3)

FORMAT (/23XE12e5¢e32X43(4XE1265))
FO-MAT(19Xe6(4XEL12:5))

GO To 90030

CALL APRINT

SECTION e READ CONTROL

CONT INUE

ANY READ STATEMENTS CAN BE PLACED HERE TO INITIALIZE FOR A NEW RUN

READ #%#4A,84C

FORMAT (8E1648)

CALL AREAD

SECTION Jes TERMINATE

CONT INUE

ANY POST PROCESSING

CALL ATERM

FORMAT (6X* SPACE BASE SIMULATION#SX*#¥J0BeA434,77777475000¢
13043+1¢CeWeMARTZ,B1232 R125%)

END

A2718,
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APPENDIX C
TRANSFORMATION MATRICES AND DERIVATIVES
The following transfer matrices and derivatives, collected for convenience, are

used in the simulation. For identification or explanations, see section of appendix A
entitled "Transfer Matrices."

cy ch -sy cb sé
[Dl] =lcysfdsp+syced cYycod-syYysdsp -cdso
sy sp-cysfcy cyYyso+sysfcod clco

[Dg:] is the same as [Dl:l with subscript h on angles.
cy ch sy 0

(:D] =i1-s¢cl cy 0

s6 0 1

[Dh] is the same as [D] with subscript h on angles,

con -saj 0
[Dg] = sozJ ca; 0
0 0 1

-Ysycl-Gceyss Yoy O
[f)}: -z,'bczpc€+éswse —z.psw 0
0 co 0 0

v

[Dh] is the same as [:D] with subscript h on angles.

\ ] . t
di1 dia dg3

hd - 1 1] ]
I:D1] =1921 Yp2 a3

d3; d3g dj3
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APPENDIX C - Continued

where
dj;=-6cyso-ysyco
djp =6 s¥s0 - Yy co
djg=6co
dyy = $lcy s6 c¢ - sy s0) + § cy co 5 - U(sy s8 s¢ - ¢ co)
cl'22 = -¢(sY SO co + cyY sp) - 8 sy ch sP - Ylcy SO 8P + SY cP)
d:23=-q'>cec¢+é_ses¢
dyy = plcy 56 56 + sy o) - 6 cy ¢ cd + Y(sY 56 CP + Y 5¢)
dyy = ~b(sw 58 s¢ - e cg) + 6 sy cO ¢ + Yley s6 ¢ - SY 5¢)

dgs = -$ cO 8¢ - & 56 cp

[f) ] is the same as [:D] with h subscripted angles and angular rates.

r 1" 1
41 412 Y3
[Dl] =|%1 92 a3

1" 1" 1"

d3; d3p d33
where
dy;=-6"cyso - Y syco+ 20y sy s6 - (62 + ¥2)cy co
dyy = 0" s S0 - Y ey e + (62 + Y2)sy 6 + 290 cy 56
djs = 6" 6 - 62 s¢
dyy = ¢"(c¥ 6 cP - s S9) + 6" ¢y cO 5 - Y'(sy s05¢ - e cg) - (2 + Y2)(cy s6 s¢
+ sy cg) - §2 cy sOS¢ + 2p8 ey ch cg - 200 sy cO s¢ - 2UP(sY S0 ¢ + Y SP)
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APPENDIX C - Continued

d'2'2 =-¢'(sysfcop +cysp) -0"sychdso - Y'(cy sbso+sycod)+ (<Z>2 + fpz)(sw sf s¢
-cyco) + 2 sYshsd - 240 sYched - 200 cy c8 s¢ - 20Y(cy SO cP - SY sP)

dyg = -9 cO co + 6" 50 56 + (p2 + 82)cO s¢ + 2¢0 56 c¢

Tt

dyy = ¢"(cy s8¢ +sY cP) - 6" cy cO cd + Y"(sY SO cP + ey s¢) + (62 + 42)(cy 6 c¢

-sYse)+ 82 cyshce + 200 e ch.sd - 20U(sY 56 5P - P cd) + 26 sy ch co

d‘.'s'2 = -¢p"(sy s6s¢p - cyycd) + 0" syYchcd + Y'(cysbcd - sy so) - ({bz + J2)(sy s co
+cY sg) - 62 sy shcd - 200 sy cl sé + 280 ey ch cd - 2dP(cy S0 5P + sy co)

dyg = -¢" cOs¢ ~ 8" 50 cd - ($2 + 62)co c¢ + 206 56 5¢

~ w i _
% <

[D}-l =| sy ey 0
-cyy s sy séb 1

L co co ]

-1 -
[D] is the same as [D] 1 with h subscripted angles.

T
1"y
KNl
3.

-1

lwIm
1]
It
7))
<
wn
SN
o
o

(¢}
=)
o
o

with h subscripted angles.

3D
—h is the same as D
60h LX)
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APPENDIX C — Continued

-sy ¢ cy 0
99]: —cychd  -sy O

v 0 0
9Dp | . .
—~——1| is the same as |—| with h subscripted angles,
By, oy
| _ B_D_h .
|20 3¢h
-cy sf sy s8 ch
aD
691 cy ¢l so -sy ¢ s¢ 56 s8¢
— -cy cl co sy co co ~sf co
8D
%6—2-} is the same as } with h subscripted angles.
h
-sy cf -cy cf 0
aD
1 =|——l=|-sysfsp+cycp -cysfsp-syce O
3!# aq/

sy sfcop +cyY so ey sfco - sYyso 0

8D aD
2 is the same as with h subscripted angles.
%yn aw

0 0
8D1 8
a(p a cysfcop-sysp -sysfcp-cysg -chco
cysfsp+sycyp -sysdsp+cycd -chHso
8D2

——| is the same as with h subscripted angles.
9¢n 3¢




APPENDIX C - Concluded

262 ¢ -~ dsgs g
¢sgo P+ Pogsg
0

0
0
0

(s Mo + ¢ gs %&@ - ¢s g0 am,@ ~ (¢o s + ¢s g5 %ov&-
{($2 #o ~ &5 55 M) + 0 g As § ~ (P5 s - P2 g8 Ad)p-
0

(o s + $5 s AP ~ $3 g0 A3 g + (Ps AD + D gs amva-
(¢s s ~ 99 g5 A2)G - bs 93 A0 § - (30 A - s g5 AS)p
g8 £0 g + 62 s 4

(s fs - ¢o gs \\SX.V + e,m 99 h0 o+ (po MO - ¢s ¢S %&AT
(P As + ¢S gs a.éZ.w - @23 92 Mo g+ (¢s Ao + ¢o gs smv&T
0

(P2 o - 5 g8 hS)p ~ $2 gd As g + ($s ~s ~ ¢ g5 AP
(ds mo + 9o gs %mvnmv - ¢899 s @ - ($2 s + ¢S 89S aoXT
mm\»mmw+39u¢.f

$sps G +9o$29- PSgARS P - POgS MAS P - PO GIRI L PSEO RO+ PO gs AV g + $I O A5 A
98P+ ¢5g0g G2gIMS G - PSGS RS G+ PS PO MO A~ D g0 AI ¢ + ¢S5 gS 42 g - b8 @D /A -
9s o~ ga ks g + s M 4 62 /2 ¢ - gs As A

_(T2ele [ 2e]

Tqe| [P Tgef

fe [\ | e
Tae|/®  |'qe
ge \w _| ge
Tae{[P {Tae
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TABLE I.- PHYSICAL CONSTANTS USED IN BASIC COMPUTER SIMULATION

Constants:

350 000 kg

1500 kg

mj = mg = mg = my = 3200 kg

Iq x = Igy = 3.8 x 108 kg-m2

Ig 7 = 1.9 x 108 kg-m?2

Id,xy = Id,xz = Id,yz =0

Ic,x = Ic,y = Ic,z = Ic,xy = Ic,xz = Ic,yz =0

fl

mg

me

Ij x = 710 km2 (G=1,2,3,4)
L y =1j ; = 7800 kg-m2 (G=1,2,3,4)
¢=15m

h{=-7.5m

hg = 7.5 m (Note the separation of controllers along the
hg =-9m z-axis for collision avoidance purposes)

hg =9 m A

Cj=Cg =C3=Cq = 4000 N-m-s

Initial conditions:

wy = wy =0
0.5 rad/s
a1 = ag = 1.57080 rad
ag = ayg = -1.57080 rad
Gy =dg=dg=d4=0

Wz,

i}



TABLE II.- KEYBOARD INPUT VARIABLES

Variable (VAR) Variable name Symbol or Description
1 PHDK@
2 THDK@ g, 6o, and yYg
3 PSDK@
4 -WXDKQ@
5 WYDKQ@ Initial value of wqy
6 WZDKQ@
7 XPRQ@
8 YPR@ Xy, ¥, and z}
9 ZPR{Y
10 XPRDY
11 YPRD( %5, o, and z}
12 ZPRDQY
13 IDXXQ
14 IDYYQ Initial disk inertias about x-, y-, and
15 IDZZJY z-axes
N
16 AlQ
17 A20 Initial values of o
18 A3Q
19 A4Q )
20 11¢ b
21 12¢ Initial controller inertias about z-axis
22 139
23 ug
24 M1Qg
25 M2
¢ Initial values of m;
26 M3Q )
27 M4Q
28 "EL I}
29 DISTZ h
30 cJg@ Initial damping coefficient for jth controller
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Variable (VAR)

80

31
32
33

34

35

36
31
38

TABLE II.- KEYBOARD INPUT VARIABLES — Concluded

Variable name

SRCDXQ |
SRCDY(
SRCDZQ

FREQ

PLGAIN

MASSD@
MASSCQ

Symbol or Description

Initial value of {rc}

CRT real-time plotting frequency (number
of iterations per plot point)

CRT plot x- and y-axis gain (units of x
and y, full scale)

Disk mass

Crew mass



TABLE III.- TIME-HISTORY RECORDER OUTPUT

. Recorder channel Symbol Parameter Scale factor Range
1 A2+ A2 CMO SFCMO 0to0.1m
1,x " ly

2 Al x AlX SFA1X +0.1 m

3 Ay AlY SFAlY +0.1 m

4 n ETA SFETA 0 to 0.1°

5 Mg ETAX SFETAX £0.1°

6 ly ETAY SFETAY +0.1°

7 0y, THETZ SFTHETZ 0 to 0.2°

8 00 | cmmmmmmmmane | mcmmcmee | mmmmmmcce | mmmmmcmaeae -
9 6 THETH SFTH 0 to 0.2°
10 61 THETI SFTI 0 to 0.2°
11 &y ADDOT1 SFACC £0.001 rad/sec?
Y Ry e v
13 ay AlA SFMBA +180°
14 @y A2A SFMBA +180°
15 ag A3A SFMBA +180°
16 ay A4A SFMBA +180°
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TABLE 1V.- PROGRAM SYMBOL LISTING

[An asterisk denotes printed outpu’g—_l

FORTRAN notation Symbol definition

* Time (sec)
*PHDK, THDK, PSDK $, 6,and Y
*WXDK, WYDK, WZDK . wg
*WXDDK, WYDDK, WZDDK wgq

SRX, SRY, SRZ {r}

SRSX, SRSY, SRSZ {ra)
*SRCX, SRCY, SRCZ (rc)

SR1X, SR1Y, SR1Z

SR2X, SR2Y, SR2Z '

H ’ {r]}

SR3X, SR3Y, SR3Z
SR4X, SR4Y, SR4Z

SRDX, SRDY, SRDZ. ()
SRSDX, SRSDY, SRSDZ {trq)
SRCDX, SRCDY, SRCDZ {tc)

SRIDX, SRIDY, SR1DZ
SR2DX, SR2DY, SR2DZ ,
SR3DX, SR3DY, SR3DZ {¥3)
SR4DX, SRADY, SRADZ

SRSDDX, SRSDDY, SRSDDZ 34>
SRCDDX, SRCDDY, SRCDDZ {¥c)
SR1DDX, SR1DDY, SR1DDZ
SR2DDX, SR2DDY, SR2DDZ P
SR3DDX, SR3DDY, SR3DDZ s
SR4DDX, SR4DDY, SR4DDZJ
*Al, A2, A3, A4 aj
*ADOT1, ADOT2, ADOT3, ADOT4 @
*ADDOT1, ADDOT2, ADDOT3, ADDOT4 &;
M1, M2, M3, M4 m;
CJ1, CJ2, CJ3, CJ4 ¢
MASSD mgy
MASSC me
MT mr
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TABLE IV.- PROGRAM SYMBOL LISTING — Continued

[:An asterisk denotes printed output]

FORTRAN notation Symbol definition
D11, D12, etc. [D:]
D@11, DG12, etc. [Dy]
DD11, DD12, etc. D]
DI11, DI12, etc. [o]?

D@D11, DYD12, etc.
D@DD11, DEDD12, etc.

D@DPD11, DYDPD12, etc
D@DTD11, D@GDTDI12, etc

D@DSD11, DYDSD12, etc.

XPR, YPR, ZPR

XPRD, YPRD, ZPRD
XPRDD, YPRDD, ZPRDD
*AlX, AlY, Al1Z

AIDX, AIDY, AIDZ
AIDDX, A1DDY, A1DDZ
TXDK, TYDK, TZDK
FXDK, FYDK, FZDK

RDD1X, RDD1Y, RDD1Z
RDD2X, RDD2Y, RDD27Z
RDD3X, RDD3Y, RDD3Z
RDD4X, RDD4Y, RDD4Z

[D1]
[D1]
B
0%
oy

a6
3151]
1V

X', y',and z'

X', y',and Z'

i', y', 'Z", and {Rg}
(a1}

(A1}

(A1)

(Ta)

{Fa)

(&

ARDDX(1), ARDDY(1), ARDDZ(1) {f*d}
ARDDX(3), ARDDY(3), ARDDZ(3) {Re)
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TABLE IV.- PROGRAM SYMBOL LISTING — Concluded

[An asterisk denotes printed output]

FORTRAN notation Symbol definition
- - 3
.. T|aD
TXX(1), TYY(1), TZZ(1) my(Re) | —=|&rq)
| Y
. T_al.)l—‘
TXX(3), TYY(3), TZZ(3) m Ry |—=|&
’ (e 86 {C}> (See eq. (A21))

TXX(4), TYY(4), TZZ(4)

TXX(5), TYY(5), TZZ(5) " - {ﬁ_}T 2D 5
TXX(6), TYY(6), TZZ(6) ; IV g (VY
TXX(7), TYY(7), TZZ(7) )
IDXX, IDYY, etc. ' (1]

IDDXX, IDDYY, etc. [i]

PHDEG, THDEG ¢ and 6 in degrees for CRT plot
EL 2

DISTZ hj

KX, KY, KZ (K]

KRX, KRY, KRZ Xr)

CX, CY, CZ ic]

CRX, CRY, CRZ (Cr]

I1, 12, 13, 14 Lz

11X, I2X, 13X, 14X Ij x

1Y, 12Y, I3Y, 14Y Iy

*ETA n
*ETAX ' g

*

ETAY Ty

* 2 2

CM@ Al x + AT
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Circular bearing-outer race
connected to disk and inner
race connected to hub

[T

Hub

J Disk

o
O Disk\

©
-

Motor |

ZBeclring friction

torque compensated
by internal torque e
between disk and hub

¥4

Figure 3.~ Schematic showing hub and disk connected through springs, dampers,
and a bearing. Note that y,z-plane is similar to x,z-plane shown.
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Figure 4.- Vector relationship of jth controller, overall mass center, and
disk coordinate axes,
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Figure 5.- Mass center geometry of controller steady-state response to
combined static and dynamic crew unbalance.
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Figure 6.- Angular response of controllers during simulation.
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Figure 9.- Spacecraft inertial pointing response to crew motion disturbances.
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Figure 10.- Effect of controller mass and length on system time constant.
See table I for system constants,
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Figure 11.- Effect of controller damping on system time constant.
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