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A PASSIVE BALANCER FOR A CLASS OF ROTATING SPACECRAFT

By C. William Martz and Carolyn Grantham
Langley Research Center

SUMMARY

Equations of motion have been derived for a flexibly connected dual-spin spacecraft
equipped with four pendulumlike "passive controllers" for mass balance and spin axis
control. The derived equations, simplified by eliminating hub and flexibility terms, were
analyzed to determine the conditions required for successful steady-state operation of the
controllers with a spinning, rigid-body spacecraft. Results indicated that spacecraft
inertia about the intended spin axis must be less than spacecraft inertia about the trans-
verse axes. Also, positive damping of controller motion relative to the body is required.

A generalized real-time computer simulation of a large, slowly spinning rigid-body
spacecraft equipped with passive controllers has also been presented. Numerical results
of this simulation show that passive controllers can successfully balance a class of rotat-
ing rigid bodies undergoing large internal mass and inertial disturbances. Results also
indicate a reduction in spacecraft attitude error due to the action of the controllers. The
ratio of total controller mass to spacecraft mass need not be greater than 1 to 2 percent.

INTRODUCTION

Man in space may be unable to function over extended time periods without artificial
gravity. A practical method for providing an artificial gravity environment, as well as a
means of stabilization, is that of rotating the entire spacecraft or an appreciable part of
the spacecraft, as is done in a dual-spin application. (See ref. 1.) It is anticipated that
rotating space stations will require a means of preserving both the location of their mass
center and the orientation of their axis of rotation. This requirement would insure that
docking ports remain centered, about the rotation axis and that steady, observations could
be made from any nonrotating part of the station.

The stabilization problem arises because of a necessity for crew members to move
about the station and for supplies and equipment to be distributed and relocated during
operation. Also, resupply vehicles occasionally will be coupled to the station. All these
activities alter the mass center of the station and thereby the location of the rotational
axis. Also, the mass redistribution introduces products of inertia that cause dynamic



unbalance. The resultant wobbling and circling motion of the station may interfere with
docking activities and pointing requirements.

Existing technology for unmanned satellites is not directly applicable for controlling
th-e axis of rotation and mass center of a manned space station. Wobbling of the station
can be prevented by an active momentum storage system, but the associated weight
increase may be prohibitive and such a system would be unable to prevent static unbal-
ance and unwanted circling of the nonrotating part of the station.

The proposed technique for spin axis and mass center control (that is, control of
static and dynamic balance) of manned rotating space stations uses two sets of "passive
controllers." Each set consists of two pendulumlike masses free to rotate concentrically
about the desired spin axis in planes perpendicular to the spin axis. See figure 1. If the
actual spin axis initially is not coincident with the desired spin axis, the centrifugal forces
generated by the spinning motion will automatically deflect the controllers in such a way
as to drive the actual spin axis toward the desired location. The passive controllers
should incorporate sufficient damping to minimize their settling time after introduction of
an unbalance. Once in operation, the controllers rotate with the spinning part of the sta-
tion and need only gradual relative movements to perform their function automatically.

As part of an overall study, this paper develops equations of motion for a flexibly
connected dual-spin spacecraft equipped with passive controllers. However, the intent of
this paper is to investigate controller and spacecraft dynamics for a rigid-body space-
craft. Thus, the derived equations of motion first were simplified by eliminating hub and
flexibility terms. A steady-state analysis of the resulting equations was performed to
define design conditions required for successful operation of the controllers with a rigid-
body spacecraft. Also, the simplified equations were used in a digital computer simula-
tion to obtain the dynamic response of the spacecraft and controller system to large crew
motion disturbances.

SYMBOLS

A bar over a symbol indicates a vector quantity. A dot over a symbol indicates a
derivative with respect to time. A prime with a symbol denotes a derivative with respect
to T. A symbol within braces { } also indicates a vector. A symbol within brackets [j J
indicates a square matrix. If this symbol is a vector quantity, however, its use in brackets
indicates a particular type of skew symmetric matrix as illustrated by the following
example:
Let

r = <r> = <ry



Then

0

rz

-ry

-rz

0

rx

ry
-rx

0
H-

sA> disk Euler rate vector,

I j location of total mass center in disk coordinates, |Aj i= |piJ |R
i-l

I 2 2
•^1 xv total mass center offset in x,y-plane, UAi x + Aj v

a1,b1,a2,b2 defined in equations (43) to (46), respectively

( \ r • • IT<B> hub Euler rate vector relative to disk, 0jj 0^ i//^

C translational damping constant matrix between disk and hub

Cj^ rotational damping constant matrix between disk and hub

Cj jth controller damping coefficient where j = 1, 2, 3, 4

p transformation matrix, disk Euler rates to disk body rates

|DI"| orthogonal transformation matrix, disk components to inertial components

orthogonal transformation matrix, hub components to disk components

1 orthogonal transformation matrix, controller components to disk components

transformation matrix, disk-relative hub Euler rates to disk-relative hub
body rates

JF \ components of total external force parallel to disk coordinate axes,

external force components applied to disk along x-, y-, and z-axes



external force components applied to hub along x^-, yn-, and z^-axes

F^ dissipation function

G dimensionless quantity (see eqs. (17) and (33))

'"h distance along z-axis from x,y,z origin to controller pivot point

h; z coordinate of jth controller mass center, (-l)-'h where j is an exponent

Ic I crew inertia matrix about x-, y-, and z-axes at the crew mass center

disk inertia matrix about x-, y-, and z-axes at disk mass center

hub inertia matrix about hub mass center referred to x^-, y^-, and z^-axes

L| jth controller inertia matrix about controller axes at jth controller mass
center

Ir z total dynamic unbalance of spacecraft without controllers,

K translational spring constant matrix between disk and hub

[KR 1 rotational spring constant matrix between disk and hub

•£ distance from controller pivot point to controller mass center

. m controller mass (see eqs. (10))

mc crew mass

i^ disk mass
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mh hub mass

rrij jth controller mass (j = 1, 2, 3, 4)

m^ mass of additional spacecraft crew members

4

m-p total spacecraft mass, ra^ + mc + m^ + y nij

j=l

Q^ generalized "force" associated with ith generalized coordinate

q^ ith generalized coordinate

R inertial coordinates of disk coordinate axes system relative to overall mass
center

Rc inertial coordinates of crew mass center relative to overall mass center

R(j inertial coordinates of disk mass center relative to overall mass center

Rg inertial coordinates of spacecraft mass center, jx' y' z'I

R^ inertial coordinates of hub mass center relative to overall mass center

R, inertial coordinates of jth controller relative to overall mass center

r disk coordinates of hub coordinate axis system

rc disk coordinates of crew mass center

r\ disk coordinates of disk mass center

rj hub coordinates of hub mass center

r, disk coordinates of hub mass center

?; disk coordinates of jth controller mass center
J

rkx'rkv'rkz spacecraft coordinates of crew mass



.

1e - tan"1

s( ),c( ) sin( ) and cos( ), respectively

<T \ components of total external torque along x-, y-, and z-axes, <T^\ + [D2| J

) ^dl external torque applied to disk about x-, y-, and z-axes

external torque applied to hub about xn-, yn-, and zn-axes

T kinetic energy; also nondimensional angle £t in equation (28)

t time, sec

V potential energy

x,y,z disk coordinate axes, with origin at center of figure of disk

x',y' ,z ' inertial coordinate axes

xn.yn!
zh hub coordinate axes, with origin at center of figure of hub

X;,y;,Z; coordinate axes of jth controller

a = &•[ + «2 + a3 + aA

a- angular location of jth controller in x,y-plane (see fig. (12(d))

ii jth controller rotation rate about z-axis with respect to disk coordinate system

Aa see equations (22)

incremental rotation of jth controller about its steady-state value

?7X principal axis misalinement in x,z-plane

r\ principal axis misalinement in y,z-plane



1 WV OX orientation of wxv in x,y-plane, tan"1 J'y wx,o

Az \£ coning rate less spin rate, wzl II

p^ vector from spacecraft mass center to jth controller expressed in spacecraft

coordinates

(t),8,i// disk Euler angles (see fig. 12(a))

^h'^h'^h huk Euler angle rotations with respect to disk axes x, y, and z (see

fig. 12 (b))

0j,0j,i^j hub Euler angle rotations with respect to inertial axes x', y', and z1 (see
fig. 12(c))

c/>j orientation of Ir z in x,y-plane

< u > > disk inertially referenced body rates |wx o>v wzi

rp

l^h). hub inertially referenced body rates /w^.^ wn v
 wh z}

| w.l inertial attitude rate of jth passive controller about controller axes

wx 0 initial attitude rate about x-axis

Wy o initial attitude rate about y-axis

U)xy -

d—( ) = ( ) + O( ), where fi is angular inertial rate vector of coordinate system used to
express ( )

[ |T transpose of bracketed matrix

inverse of bracketed matrix



transpose of braced vector

x indicates a vector cross product operation

Subscripts:

r

c crew

d rotor or disk

h hub

j jth controller (j = 1, 2, 3, 4)

o initial conditions

s steady-state value of subscripted quantity

x,y,z components of subscripted quantity along x-, y-, and z-axes

ANALYSIS

This section describes a mathematical model of a flexibly connected dual-spin
spacecraft equipped with four pendulus masses designed to provide passive balance and
spin axis control. Equations of motion, derived by the method of Lagrange, are pre-
sented. The derived equations of motion, simplified by eliminating hub and flexibility
terms, are then analyzed to define design conditions required for successful steady-state
operation of the controllers with a spinning rigid-body space station and crew. Finally,
controller sizing criteria are determined as a function of total static and dynamic
unbalance.

Mathematical Model

The schematic model of the dual-spin spacecraft used in this study is shown in fig-
ure 2. The model consists of a nonrotating (zero gravity) "hub," a slowly spinning rotor
'or "disk," and four pendulum-like arms (with end masses) free to rotate concentrically
about the desired spin axis (z-axis). The rotating arms or passive controllers are
deployed in two pairs on either side of the overall mass center along the z-axis. In nor-
mal operation the controllers rotate with the disk and exhibit gradual relative movements
only to counteract mass and/or inertial disturbances. Viscous dampers are incorporated
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between the controllers and the disk to minimize settling time of the controllers after the
introduction of a disturbance.

The hub mass is connected flexibly to the disk mass through an arrangement of
springs and dampers attached to the hub side of a bearing as shown in figure 3. Thus,
spring and damping restraint exists for relative translations of the hub and disk along the
x-, y-, and z-axes and for relative rotation of the hub and disk about the x- and y-axes.
Relative rotations about the z-axis are unrestrained because of the bearing; frictional
effects about the z-axis are assumed to be effectively compensated by application of an
internal torque between the hub and disk. Disk, hub, and controllers are assumed to be
rigid bodies. Flexibility exists only in the hub-disk connection previously described.
Gravity gradient effects are assumed to be negligible for this analysis.

Equations of Motion

The equations of motion for a dual-spin spacecraft equipped with four passive con-
trollers are derived in appendix A. The final form of these equations and the degrees of
freedom represented are summarized below.

x', y1, and z1 translational degrees of freedom of entire spacecraft:

•MM (i)

Equation (1) corresponds to equation (A24) and is written in the inertial system.

(b, 9, and i// rotational degrees of freedom of entire spacecraft:

MM -

+ K-R

+ nit, rv (2)

Equation (2) corresponds to equation (A30) and is written in the disk coordinate system.



rx, ry, and rz translational degrees of freedom of hub with respect to disk: These
equations are written in the disk coordinate system and correspond to equation (A25).

(3)

^h> fyv anc* ^h rotational degrees of freedom of hub with respect to disk: These equa-
tions are written in the hub coordinate system and correspond to equation (A31).

'hlM %1 + Mph])^ +[ih]j^hj
-i

Oh (4)

a;(i = 1, 2, 3, 4) rotational degree of freedom of jth passive controller relative to disk
coordinate system: This equation is written in the disk coordinate system and corre-
sponds to equation (A19).

Ij,z [«* + « < ] -

+ m

-S. sc

!L ca

0

i +Rg + CiOi - 0J & / J J
(j = 1, 2, 3, 4) (5)

Stability Analysis of Passive Controller Operation With

Rigid-Body Spacecraft

This analysis considers a rigid-body space station equipped with four passive con-
trollers. The steady-state controller response to static and dynamic unbalance of the
spacecraft is derived along with conditions required for stable controller operation. Also,
the effects of spacecraft coning on controller response are determined and controller siz-
ing criteria are developed for spinning rigid-body spacecraft.

A schematic of the space station is shown in figure 4 illustrating the vector location
of the jth passive controller and the overall mass center in disk body coordinates. The
three vectors have the relationship:

PJ =A! L 3
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The inertial acceleration of nij is

dt
-J. = p. + 0) X p. + 2w X p. + U> X fCL> X p
2 J J J

where u> is the inertial angular velocity of the disk coordinate system written in disk
coordinates. Substituting Aj and r. and their derivatives for p^, p., and p. and
writing the acceleration in matrix form yields

dt
+ rAI

The moment equation for the passive controller about the z-axis can be written

+ CjQf, = 0

z component

or

Ij)Z(^ + «j)

i -£ sa,

^ + mj< £ cot

>}))+ ̂ i - °

Substituting the components of < A i l , {Aj}, { A I > , f ^ l , { r, i, ( r . l , fj],
( j \ j \ i ( J) ( i i ( J j LJ

and [ojj in this equation and collecting terms yields the basic equation governing control-
ler motion

j z Aj

y

+ J? j jAj xl = 0 (6)
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Equation (6) will be used first to examine the stability of controller steady-state
response to spacecraft dynamic unbalance. Stability of controller response to static
unbalance or mass center offset will follow. Finally, the effects of coning on controller
response will be discussed.

Response to dynamic unbalance.- Equation (6) is simplified by limiting inputs to

pure inertia product disturbances (that is, AI = AI = AI = OJ. Also, in the solution area
of interest, wz ~ 0 and, since (wx,u>v) « coz, second-order terms of wx and u>y are
negligible. These conditions reduce equation (6) to

= 0 (7)

where the inertia products are defined as

(7a)

Equation (7) governs the motion of the jth controller as a function of the spacecraft
angular velocities and accelerations. The angular motion of the spacecraft, in turn, is
governed by other equations which depend upon controller motion. The simultaneous
solution of these equations is easily accomplished (for any particular set of conditions) by
numerical methods, but a general solution is very difficult to obtain analytically. For this
reason, a steady -state solution was sought analytically to determine the conditions required
for successful operation of the controllers.

The approximate spacecraft motion for fixed location of the controllers is given in
terms of the following body rates and accelerations (ref. 2):

U)
cos

sin

sin

cos

|--|- Ixz(cos - Iyz sin

sin & + Iyz(
cos

(8)

Sin

cos

o COS

sin cos

COS

sin
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where

I = Ix = ly

The quantities Ixz and Iyz are inertia products of the entire configuration.
Equation (7) can be written for each of the four controllers, and the equations summed
thusly:

5
By defining a = / ot; and stipulating that

II r» — Io „ — I1? r, — I/I rj — I, r
J.,^i ^)^ J ) J)*

Ci = Co = Co = CA = C

ml = m2 = m3 = m4 = m

equation (9) combined with equations (7a) becomes

II i z + mf^ja + Cot + m£h(c«j - ca^ + CQ!3 -

o1! - 8(^2 + so'3 - sa^/w-y + ^x^z) = 0 (11)

For the solution resulting from pure inertia product inputs, the initial attitude rates
/wx 0)wy o] °f equations (8) are set equal to zero and the following conditions apply:

a4 = al± 180°)
\ (12)

«2 = a3 ± 180°J

Equation (11) becomes

+ Ca + 2m£h/co!^ + co^ lux - a)yO)z] + 2mHh(soii + sagWcjy + wxojzj = 0

13



The steady-state solution to this equation will occur when the forcing terms are zero;
that is,

= 0 (13)

By combining equations (8) and (13) with cox o = ov, o = 0, the steady-state condition can
be written as

2m£h
I -Iz I

r2 + i2
XZ V2

where

e = tan-1(V\
axz

(14)

The inertia product terms include products of inertia of the spacecraft without controllers
and products of inertia of the controllers; thus,

4

*xz = *r,z

yz,j

Combining equations (14) and (15) yields

,. 2 ,

(16)

The first bracketed term of this equation cannot remain zero for steady-state ot
values, except for the trivial case of o^ = -0*3 and o^ = -#4 which applies only when
inertia products of the spacecraft (the controllers being neglected) are zero. However,
the radical can equal zero for Ixz = 0 and Iyz = 0. These conditions lead to the steady-
state requirement

14



= cos^G (17)

where

1 r z
G = [ ' 1 - 1

2\2meh/

An obvious constraint is

-1 ^G i 1 (18)

or

T* 7

0 ^
2m£h

This constraint can be written as

4

y irufh > Total dynamic unbalance (19)

The other steady-state requirement stems from setting the second term of equation (16)
to zero which leads to

= 2 sin -|2^>1 - aj - a3\ cos -/-aj +

The cosine term cannot be zero without violating equation (17). Setting the sine
term equal to zero results in the following additional requirement for steady state:

Combining the two requirements leads to

Q!i =
-1 2 /

(20)

and because of the angular relationships of the controllers for a pure inertia product input,

15



± 180°

± 180°

The quantities oij, o^, 0(3, and a 4 are the steady-state angular locations of the
four passive controllers in response to a pure inertia product disturbance to the rigid-
body spacecraft.

To determine stability conditions for the previous steady-state solution, each of the
controllers is given an incremental perturbation in angle, angular rate, and angular
acceleration from the steady-state condition and the system response is examined. By
using an additional subscript s to indicate the previous steady-state solution, controller
angles can be defined as

(j = 1, 2, 3, 4) (21)

The pure dynamic unbalance condition is maintained with the relationships

Aa
T~

(22)

Also, by considering equations (12) and (21),

sals + sa4s = 0

SQ!2s + SQ!3s = 0
>

= 0

(23)
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Equations (21) are substituted into equation (7) to yield four moment equations — one
for each controller. The equations for controllers 2 and 3 are summed and subtracted
from the sum of the equations for controllers 1 and 4. This result is combined with equa-
tions (10), (22), and (23) with the result

n z +
J 3

2mGhc l )

where

a + C Ad + 2m.eh[cwx - coywz\ /(

Aa
!ls + ca3s)!•

i - Ixz sin £t + Iyz cos ^t - — I,

d)y + o)xwz = - frxz cos ^ " Iyz sin xz

(24)

(25)

and during the perturbation about steady state,

-\

(26)

Substituting equations (25) and (26) into equation (24), ignoring the higher order
term, and simplifying leads to

(lj ) a + C Aa + + C2 cos %i - 0 (27)

where

- G)

This nonlinear equation can be related to a Mathieu equation with known solutions by defin
ing a new independent variable

17



T =

and a new dependent variable

P = Aa exp

with the result

where

-C dT (28)

P + KiP + (Ko cos TIP = 0

cl

dT

The solution to this equation is discussed in reference 3. In general, the regions
for a stable solution are defined by the condition Kj = 0 for small values of K£. This
definition leads to

C 2 §
I -I,

- G)

Consideration of equations (18) and (29) indicates that
the vital condition for a stable solution is I > I.

(29)

G < 1 for finite damping. Thus,

These conditions are for the P solution. Of more importance is the Aa solution
which is modified by a stabilizing exponential (eq. (28)). However, for normal values of
damping coefficient C, the exponential coefficient is much smaller than unity and the two
solutions will have about the same degree of stability and the same stability conditions.

Controller response to static unbalance.- Equation (6) can be simplified to determine
stability of controller response to static unbalance by setting Aj z = 0 and eliminating

18



other small terms involving cox, coy, coz, A}, and AI with the result

mi) SO/J - Ai,y£ caj) = °

Conditions for a stable steady-state response of the controllers to static unbalance
were determined from this equation by the method of the previous section to be

> 0

hf = Total static unbalance
(30)

Effects of attitude rate on controller response.- The response of the controllers to
a coning motion can be examined by determining the steady-state a, response of equa-
tion (6) for the conditions of no unbalance and some initial attitude rate. For these con-
ditions with /cox,co \ « coz and cbz ~0, equation (6) reduces to

nii = 0

Substituting wx = wx Q c(^t) - o> s(^t) and
tion and simplifying yields

= cox 0 s(|t) + coy o c(£t) into this equa-

a)z y s i n t + X - sin X - a- =0 (31)

where

UX,Oy

The two forcing terms disappear for

19



That is, the coning motion generates controller forces and torques tending to stabilize
the location of the controllers along the cross spin rate vector u)xv. This vector pre-

Izcesses in inertial space at the coning rate wz — . The controllers cannot follow this

motion because the damping term Cj<i: in equation (31) produces sufficiently large
moments to keep the controllers essentially rotating along with the spinning body. As the
body and controllers spin around the spin axis, the coning-generated forces in effect move
around the body at the rate £ (the coning rate less the spin rate). Thus, the controllers
experience a cyclic torque from these forces and respond with a small -amplitude oscilla-
tion of frequency £. An approximation of this amplitude was determined from equa-
tion (31) to be

Controller oscillation amplitude due to coning effect
m£hwxyu>z(lz/l) . i w

= ± - - - - ~ ±— o> --
C

2

(32)

This result is an important one as it represents the lower limit of controller activity dur-
ing spacecraft coning motions. This effect will be illustrated in the "Computer Simulation
Results" section. The trim value of this oscillation is determined by balance require-
ments as previously explained. Coning-induced controller oscillations cause only very
small variations in spacecraft balance (less than two parts per thousand of the initial
unbalance).

In the section entitled "Response to Dynamic Unbalance," conditions required to
counteract inertia product inputs were determined for w = o\. _ = 0, since the coningA5u y )u

effect on equations (12) was unknown. When the effect was determined to be small, the
analysis was repeated to include the coning effects. Results were basically the same
except that a new G incorporating attitude rates was defined

/I - Iz\1 1\ wz i
G - X '

2
i 2 T2
| 0)xy H- Ir;

I ~ Il7 / \
OT /» r\i-\c+ I A*. \ \z r>z ^Z

 xy r1 /
- 1 (33)

where Ir z * 0 because equations (12) are not valid for Ir z = 0. This value of G must
satisfy the inequality -1 = G = 1 and equation (29).

20



Steady-State Response of the Controllers to Combined

Static and Dynamic Crew Unbalance

The steady-state response of the controllers to combined static and dynamic crew
unbalance can be determined for steady spin about the desired spin axis as follows. The
addition of coning motion has little effect on these results because of the small coning
forces inherent in this application.

The condition of static balance about the x- and y-axes is given by

mkrk -x + / mie cais = °K K,X l_! ] Jb (34)

mcrc,y = 0 (35)

The dynamic balance conditions about the x- and y-axes are given by

(rc,z + Al,z) + mkrk,y(rk,z + Al,z)v ' x
+ A ,z) (36)

mcrc,x(rc,z + Al,z) + mkrk,x(rk,z + Al,z) + . - i,,
i J-3

Let

m =

h = -h =

= IU3 IU4

= 0 (37)

(38)

From equations (34), (37), and (38),

ca1o - ca0c, + c«Qr. - caA^ =2s + CQ/3s - co/4s

cals + co'2s + CQ!3s+co '4s

;,x
rc,z + mkrk,xrk,z)

mkrk,x

(39)

(40)
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From equations (35), (36), and (38),

s als- s a2s + sa3s-SQ!4s =

sals + sa?2s

Combining equations (39) and (40) yields

;,z + mkrk,yrk,z)

' mkrk,y)

,x(h + rc,z) + mkrk,x(h + rk,z)

(41)

(42)

COf Is = bi = - mcrc,x(h - rc,z) + mkrk,x(h - rk,z)

(43)

(44)

Combining equations (41) and (42) yields

f2s

= b2 = - ,z) + mkrk,y(h - rk,z)

(45)

(46)

Finally, from equations (43) and (45), the steady-state responses of controllers 2
and 4 result

-\

.Ha 2 + a 2
al + a2

_i/a2\ , +\
a. = tan 1 — U '4s la

a 2 +a 2
al + a2

(47a)

Similarly, from equations (44) and (46), the responses for controllers 1 and 3 result

= tan >2\r1-^ ± cos

(47b)
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These results compare closely with the computer simulation of a spinning and con-
ing spacecraft reported in the "Computer Simulation Results" section.

Controller Sizing Criteria for Combined Static and Dynamic Unbalance

Coning motion is not considered in this analysis. However, the effects on control
sizing are negligible.

A diagram of mass centers and connective geometry showing the steady-state
response of the controllers to a combination static and dynamic unbalance imposed by
crew mass offsets, rc v and rc z, on a spinning spacecraft, is shown in figure 5. The
static balance equation (moments about the z-axis) is

m~r.crc,xy = (ml + m3JAxl + (m2 + m4JAx2

The dynamic balance equation (moments of centrifugal forces about an axis perpendicular
to the plane of fig. 5 through m-p2\ is

m w\cu)7 r Y,.(rr 7 - Ah) + (mi + mQ)o> z
2(Axi )(h + Ah) = Im2 + iruiu^/AxoHh - Ah){~,*y\ ^ I \ I \ I \ / \ I

Combining these equations with mj = m2 = ni3 = ni4 = nij results in

_ mcrc,xy(hj - rc,z)
4nijh

m rr r x v hi + r
Ax2 = ' Y^ J

4nijh

For rc z > 0, Ax2 is larger than Axj and should be used to size the control-
1 '

lers. Since, in the extreme case, Ax2 cannot exceed the controller length i, an
inequality can be written

mcrc ,*y(h

4mjh

and

m.\it = —

For rc z =0, the Ax^ equation leads to the same result.
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or

4,
) mj£ = (Total static unbalance) + —(Total dynamic unbalance) (48)

This relation is the sum of the static criteria of inequality equations (30) and the dynamic

criteria of inequality (19) and shows that h controls the relative sensitivity of the con-
trollers to dynamic unbalance and static unbalance. For example, increasing h
increases the effectiveness of the controllers to reduce or eliminate dynamic unbalance
without directly affecting their ability to control static unbalance. It should be pointed out

that a violation of inequality (48) means only that the controllers are unable to counteract
the excess of unbalance.

In summary, conditions required for successful operation of the controllers as static
and dynamic balancers of large rigid-body spacecraft include

(1) Cj > 0

(2) Iz < I

4

(3) / m-4 = (Total static unbalance) + -(Total dynamic unbalance)
t-j J h
i=i

COMPUTER SIMULATION RESULTS

The computer simulation (appendix B) considered a large, rigid-body space vehicle

equipped with four controllers. Mass and inertlal properties are presented in table I.
Initially, the vehicle is assumed to be spinning slowly about its axis of symmetry in a bal-

anced condition. At a given time (t = 10), 20 crew members (1500 kg) start moving radi-
ally outward from the mass center in a direction midway between the x- and y-axes at a
speed of about 0.85 m/s. Twenty seconds later they arrive at point x, y, z = 12, 12, 0.
They immediately change their motion to 0.6 m/s in the z-direction and continue for 20
more seconds at which time (t = 50) they stop at the spacecraft location x, y, z = 12, 12, 12.
These motions of the crew introduce static and dynamic unbalance to the spacecraft.

Typical simulation results are shown in figures 6 to 10. Figure 6 presents the

angular motion history for each controller. To illustrate the frequency content of these

curves, the second derivative of a\ is also given. A basic period of some 60 seconds
is evident throughout the simulation. This period represents the mass center translation
mode. More noticeable over the last 300 seconds is the precessional motion mode char-
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acterized by a period of about 25 seconds. This effect was described in the "Analysis"
section. The controller is being driven by the coning motion of the spacecraft. The
effect does not show up in the early part of the simulation because the restoring moments
on the controllers due to the balancing action are overpowering. Controller oscillation
amplitude associated with this response was measured to be about ±0.037°. The computed
value from equation (32) is ±0.03°. As previously mentioned, the coning motion effect on
the controllers is important in that it controls the lower limit of controller activity. The
controllers cannot come completely to rest with respect to the spacecraft until the con-
ing motion ceases.

Figure 7 presents mass center offset in the x- and y-directions from the desired
z-axis location. Also, the vector sum of these curves is shown to illustrate total offset
of the mass center. Mass center offset levels for the same simulation without control-
lers are also indicated for comparison on these plots. Comparisons show that the pas-
sive controllers effectively reduce the static unbalance throughout the simulation.

A similar result is evident from figure 8 which presents histories of principal-axis
misalinement about the x- and y-axes and total principal-axis misalinement. These quan-
tities are a measure of dynamic balance. Again, results of the same simulation with con-
trollers eliminated are shown for comparison. The ability of the controllers to simulta-
neously reduce or eliminate the static and dynamic unbalance is reflected in figures 7
and 8.

The inertial attitude response of the spacecraft to the crew motion disturbances is
presented in figure 9. Part (a) of figure 9 shows the trace of the z-axis in the 00-plane
for the spacecraft with controllers and for the spacecraft without controllers, both in the
interval 650 = t = 680. The presence of the controllers clearly has eliminated much of
the unwanted heading angle.

The $0-response for "no controllers" in figure 9(a) is periodic and repeats every
precession cycle (about 25.5-second period). The response with controllers also is cyclic
at the precession frequency but changes from cycle to cycle due to movement of the con-
trollers and the resultant change in mass and inertial properties of the overall spacecraft.
This condition is evident from figure 9(b) which presents the history of the resultant head-
ing angle. By t = 700, this heading response has reached its steady-state character (a
small-amplitude coning motion) since controller motion has essentially ceased.

Attitude Instability

Energy dissipation results in attitude instability for a torque-free gyroscopically
stabilized body if the spin axis is not the axis of maximum moment of inertia. (See ref. 4,
for example.) As pointed out in the analysis section, the use of passive controllers with a
rigid body is limited to the case where the moment of inertia about the spin axis is smaller
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than the moment of inertia about the transverse axes. Thus, in the rigid-body application,
the use of passive balancers implies a certain amount of attitude instability. Although
there was no indication of attitude instability (cone-angle growth) in the crew-motion dis-
turbance simulations, some of which extended up to 1200 seconds duration, the expected
instability is very slow acting and would likely require a small corrective control torque
over a long term history of disturbances.

This type 'of attitude instability can be passively controlled for the case of the dual-
spin vehicle previously described. Reference 1 shows that it is only necessary to provide
a wobble damper in the hub or hub side of the bearing which will have an energy dissipa-
tion rate sufficient to dominate the energy dissipation of the disk (structural plus control-
ler damping). The spacecraft motion will then be stable and cone angle will gradually
decrease.

System Time Constants

The computer simulation results presented in figures 6 to 9 represent a spacecraft,
crew, and controllers with properties listed in table I. Responses to a given disturbance
were plotted for some 700 seconds. The system time constant for this simulation was
about 200 seconds. The ratio of total controller mass to total spacecraft mass was about
3.5 percent. This ratio is unnecessarily large and can be reduced considerably. Fig-
ure 10 shows the effect of controller mass and length on the system time constant. The
upper plot illustrates a linear increase in the system time constant with controller length
and the lower plot a linear increase in time constant with controller mass. The relation-
ship in equation form is

System time constant = 86 + IOC + 0.0425m; (49)

Simulation results presented in previous figures are represented by a shaded symbol
in each of the plots in figure 10. Note that controller mass could have been halved (to
1600 kg) with an improved response time. Also, controller length can be decreased to
improve response time. The only disadvantage to reducing controller mass and/or length
is in violating the stability limits of equation (48). These limits are indicated in both plots
of figure 10 by dashed curves developed from equations (48) and (49). These curves indi-
cate combinations of S. and ni; for which two or more of the controllers are exercis-
ing all their balancing capacity. Operations beyond this limit are not desirable because
the excess of unbalance will cause small unwanted coning and nutational motions of the
spacecraft. However, these motions will cease when the excess unbalance is removed.

Ideally, controllers should be designed to operate near the dashed lines of figure 10
and at a minimum time constant. However, each unbalance input will have different limit-
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ing curves and the design may have to be based on the largest unbalance anticipated. This
condition could result in large system response times for applications having widely vary-
ing balance requirements.

A means of avoiding large response times and controller ineffectiveness is to design
the system for the relatively low levels of unbalance experienced in normal operations with
provision for temporarily increasing controller length (during operation) in preparation
for occasional activities requiring a relatively high level of balancing capability such as
docking and resupply operations. This provision could be accomplished with a controller
design incorporating telescoping arm sections. Variable controller mass would also be a
solution to this problem - possibly through fluid transfer.

The effect of controller damping on system time constant is presented in figure 11.
As would be expected, increased damping in the range of practical interest tends to reduce
the system time constant. For impractically large damping coefficients, however, the
effect reverses, especially at near steady-state controller angles where the corrective
centrifugal torques are relatively weak and unable to move the controllers against the
damping at an adequate rate.

CONCLUDING REMARKS

Equations of motion have been derived for a flexibly connected dual-spin spacecraft
equipped with four pendulumlike "passive controllers" for mass balance and spin axis con-
trol. The derived equations, simplified by eliminating hub and flexibility terms, were
analyzed to determine the conditions required for successful steady-state operation of the
controllers with a spinning, rigid-body spacecraft. Results indicated that spacecraft
inertia about the desired spin axis must be less than spacecraft inertia about the trans-
verse axes. Positive damping of controller motion relative to the spacecraft is also
required. The analysis also indicated that spacecraft coning motion induces very small
controller oscillations which prevent the controllers from eliminating about two parts per
thousand of the initial unbalance. Controller sizing criteria were determined as a function
of balance requirements and related to limiting values of system time constant for a given
unbalance condition.

A generalized real-time computer simulation of a large, slowly spinning rigid-body
spacecraft incorporating passive controllers has also been presented. Numerical results
of this simulation show that passive controllers can successfully balance a class (spin
inertia less than transverse inertia) of rotating rigid bodies undergoing large internal
mass and inertial disturbances. These results also indicate a large reduction in space-
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craft attitude error due to the action of the controllers. The ratio of total controller
mass to spacecraft mass need not be more than 1 or 2 percent.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., August 7, 1972.
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APPENDIX A

EQUATIONS OF MOTION

Mathematical Model

The mathematical model of a generalized dual-spin space station with passive con-
trollers is shown in figure 2. The model consists of a nonrotating hub, a slowly spinning
disk or rotor, and four pendulumlike arms (with end masses) constrained to rotational
freedom about the desired spin axis (z-axis). The rotating arms or passive controllers
are deployed in two pairs along the z-axis and their motions relative to the disk are
damped.

The hub mass is connected flexibly to the disk mass through an arrangement of
springs and viscous dampers attached to the inner race of a bearing as shown in figure 3.
Thus, spring and damping restraint exists for relative translations of the hub and disk
along the x-, y-, and z-axes and for relative rotation of the hub and disk about the x- and
y-axes. The presence of the bearing permits relative rotations about the z-axis to be
unrestrained; frictional effects about the z-axis are assumed to be effectively compensated
by application of an internal torque between the hub and disk. (See fig. 3.) Matrix repre-
sentation of the spring and damping constants is as follows:

Translational spring constant, newtons/meter:

Kx

0

0

0 0

0

Translational damping constant, newton-sec/meter:

[c]-
Cx

0

0

0

0

Rotational spring constant, newton-meters/radian:

KR,x KR,xy KR,xz

KR,xy KR,yz
KR,xz KR,yz °

29



APPENDIX A - Continued

Rotational damping constant, newton-meter-sec/radian:

[CK]-
CR,X

CR,xy

CR,XZ

cR,xy cR,xz
GR,y cR,yz

0

Although certain off-diagonal elements are listed as zeros, this is not a limitation
of the mathematical model. Other coefficients could easily be used in these locations.

Reference coordinates.- Four coordinate axis systems are used (fig. 12): Inertially
fixed reference axes x', y', and z'; disk body fixed axes x, y, and z (origin at disk
center of figure); hub body fixed axes xn, y^, and zn; and controller fixed axes Xj, y^,
and Z;. Origin of the hub axis system is fixed coincident with the disk axis system when
the spring-damper suspension system is undeflected. Disk angular motion is defined
relative to the inertial axes by successive Euler rotations <p, '9, and !//, as shown in fig-
ure 12(a). Similarly, hub angular motion is defined relative to the disk system by succes-
sive Euler rotations <p^, #n, and i//^ as shown in figure 12(b). Hub angular motion
relative to the inertial axes is also computed as discussed in the section entitled "Hub
Inertial Angles."

Transfer matrices.- Quantities expressed relative to disk body coordinates can be
referenced to the inertial coordinate system by premultiplication with the transfer matrix

]; that is,

rinertial (

where

ci// c8

c\f/ s9 s<p + sty c0

si// s0 - ci// s9 c<p

-si// c9 s9

ci// c0 - si// s9 s<p -c9 s

C!// s<p + si// s9 c<p c9 cc

Similarly, quantities expressed relative to the hub coordinate system are referred
to disk coordinates by the transfer matrix [02]; that is,

rdisk •M|' 'hub

30



APPENDIX A - Continued

where

s0

- ci//

Note that [02] is [DJ] with h-subscripted Euler angles.

Quantities expressed relative to controller coordinate systems are referred to disk
coordinates by the transfer matrix DS; that is,

rdisk -Mi Controller

where

C* fV • — CL /V *COfj Sfflj

0 0

0

0

1

the matrices I'D]], \ ^2 \ ) and [^SJ are &H orthogonal transformations and the matrix
inverse is equal to the matrix transpose.

The relationship between Euler rates and inertial body rates for the disk is

M-M
where

[„]-
C!// C0 SI// 0

-si// c9 c\l/ 0

s 6 0 1

The matrix transferring disk-relative hub Euler rates to disk-relative hub body
rates is
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N-
c0h 0

0

0 1

Note that fDh] is [D] with h-subscripted angles. Neither [D] nor [Dn] is
orthogonal.

Hub inertial body rates can be expressed in terms of Euler rates of the disk and hub
as follows:

Finally, controller inertial body rates are expressed in terms of disk rates and
controller rate relative to the disk as

CO +

U)x CQ!j + CJy SQfj

+ Q I
J

All transfer matrices, some of their derivatives, and their inverses are listed for
convenience in appendix C.

Position coordinates of mass centers.- The mass centers of the disk, hub, crew, and
individual balance masses are all located in disk coordinates as shown in figure 2 by the
subscripted r vectors. The same mass centers are located in inertial coordinates
relative to the total (or overall) mass center by the subscripted R vectors. The hub
mass center is also located in hub coordinates |rf 1, as shown in figure 2 where the
origin of the hub axis system is shown displaced from the disk axis system. The follow-
ing relationships can be determined from figure 2 and knowledge of the transformation
matrices

R y = < R rd

= R
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Rh = R

Taking derivatives ({rd [ = {rf f = 0) yield

Rd = R

= R + Pi

i r

Rh -

and

Rd = R + pi r

iRvh =

R

R + Dl r + D2 rf r U D2

r UD2

The mass balance equations for the entire spacecraft can be determined from fig-

ure 2. Taking mass moments about the disk origin and expressing quantities in inertial
coordinates results in

mr

or

R = DI
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and

R = D

R =

where

APPENDIX A - Continued

+ 2rDil Ai -Joi] Ai

m

the location of total mass center in disk coordinates. Also + mc + m^ +
<±

I mj'

and <rf | are given constants, and {rcl is input as a time function. For the

controllers,

SQf

-H

0

-a

-d

0

External forces and moments.- External forces are assumed to be zero during nor-
mal operation of the space station. However, there are occasional periods during which
orbit corrections, docking impacts, etc., will require application of external forces and
moments to the station. Therefore, terms have been included in the equations of motion
to supply external forces and moments both to the disk and to the hub.
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Inertia properties.- The hub, disk, crew, and passive controllers are assumed to
have constant inertial properties about their own axes as follows:

Hub:

Rotor or disk:

Controllers:

Crew:

h x

M,x

-I

-I

0

0

-I•h,xy

-i h,yz

-Ic

lrd,xy M,y

d,xz -Id,yz

0

0

-I,h,xz

-Ih,yz

~*d,xz

c,xy

-Ic,xy

Langrange's Equations of Motion

The space station with passive controllers has 16 degrees of freedom; one rotational
degree for each of the controllers and three translational and three rotational degrees for
both the disk and the hub. The analysis of this system has been simplified by choosing 16
independent generalized coordinates to represent it. These independent coordinates are
the controller rotation angles o^, o^, a3, and 01^, disk Euler angles <p, 6, and fy,
inertial coordinates of disk x', y', and z', disk coordinates of hub rx, ry, and rz,
and disk-relative hub Euler angles <£n, #h, and i//h.
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The equations of motion are derived by substitutions of the appropriate terms in
Lagrange's equations

Cl/C'J. l £7.1 O V Cl f\ /* 1 O 1 £?\ / A 1 \—K-) + + —r- = Qi (i = 1, 2, . . ., 16) (Al)

where the q^ represent the 16 generalized independent coordinates. Before illustrating
the method with an arbitrarily selected coordinate, it will be necessary to define T, V,
F^, and Q in terms of the basic physical quantities.

Kinetic energy.- The kinetic energy of the space station includes the translatory
and rotational kinetic energies of the disk; hub, crew, and passive controllers. It can be
written in the form

T i-

\

H MM *5

1 (-,{*.}TN) * \ (HTMH)
J J

For the rotational degrees of freedom, a more workable form of the energy equation will
be used; namely,

4
T / T T ^ / T \

j=l

4 (A3)

where

Potential energy.- The potential energy of the space station consists only of the
strain energy of the hub support springs due to relative displacement of the disk and hub.
The potential energy can be written as
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N

+ KR,xy<Vh (A4)

Dissipation function.- The dissipation function for the space base system involves
translational and rotational terms generated by the hub support dampers and a rotational
term for each of the passive controllers as follows:

+i
•i

lYc ,^
2 /; J J

(A5)

Generalized forces.- The generalized force
coordinate q is given by

associated with a generalized

(i = 1, 2, . . ., 16)

where the forces Fj are applied at and along the coordinates Xj. For the dual-spin
spacecraft application, the 16 independent generalized coordinates are a-^, 0.%, 01%, ot
<$, 0, i//, x', y1, z', rx, ry, rz, 0h, 0h, and i//h. The forces are components of
the external forces and torques applied to the disk and hub. The twelve Xj coordinates
are the inertial locations of the external force applications.

The generalized forces were determined to be

Qr m,.

-i sa

£ cot;

0

(j = 1, 2, 3, 4) (A6)
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Q^^•<p

Q ,

Qx,

Qy- •NM

(A7)

(A8)

Qr,x

Qr,y

Qr,z

(A9)

Q<

Qe,h (A10)

Selecting a- as the generalized coordinate to illustrate the Lagrange method of

derivation yields

9T

da.
J

+»iM' 90!.
+ m. + ; m T\ 8R

(AH)

By using the relationships

[Di]
9R
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8Rd

30!,

8*c
Ba:

8Rh

80,

8R

80,

and

equation (All) reduces to

8T

da-
]

8R

80,
J

T
/ \i- i ( )TrT- i .
\mTJ| j) + pjf [ jj

0

n\j

1

and the derivative is

, . = -mT —I
dt\8o,/ x dt - m

3R
8df.

(A12)

Evaluation of the next term in equation (Al) yields

8T
dot-

+ mv
8RV

+ mr

8R, 8R
So1.

+ m.; ^ + (A13)

By using the relations

6,1JJ

8Rd

8..

i

i

)rJ
)aj

i TD
L

8RC

8a.

.1
'J

.

i
*J
>a]

8Rj

""i
1

r

i

Hrj>

nj

8F
8a

8

8

I

R

aj

39



APPENDIX A - Continued

and

m {Rc} = 0

equation (A13) reduces to

8T = -mr
8R

For the potential functions,

8Q!j H (A14)

3V
Bat*

= 0 (A15)

and from the dissipation functions,

8Fd

7a~ = Cj^

The generalized force for this degree of freedom is

(A16)

mi
£ CQ!j

0

(A17)

Substituting equations (A12), (A14), (A15), (A16), and (A17) into equation (Al) and simpli-
fying yields

-Hlrr,—Tdt
8R 8R

mi
"

-C so:

(A18)
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By noting that

dt
8R

8R
CO!j

and from equation (A24)

'Kl
equation (A18) can be written as

T

ii

-I sat

(L ca

(j = 1, 2, 3, 4) (A19)

This equation is the equation of motion for each of the four passive controllers.

Equations of motion for the other 12 degrees of freedom, determined by the same
method, are as follows: For the disk rotational degree of freedom 0, the Lagrange
equation is

1 T / 8 D} UU 8D

i=i

iT^D,] 1

H^Fi+p)i
f

I

3D,

H l i , , l 1" A l + r i h " I" tT 8 Di ,c{Rc}

3D 8D 3D, SD.lj. . A
—i - < A l + } h }8* 8<*J y
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This equation can be shortened considerably by the use of the following equivalences:

_
dt \80

80 90

dt'
m R

1

d + I mjRj
mhRh = 0

The shortened equation with partial derivatives of the w terms expressed as functions
of the transformation matrices becomes

m.
•• ^T 8Di

90
{rd}

m L +

80

8Di

80

CO t 5

Combining this equation with similar equations obtained for the 6 and if/ degrees
of freedom results in the following matrix equation governing rotational motion about the
overall mass center:
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md[Md]{%l}

-hJ . ([D]T[D2]

\
where

8Di

3D.

8Di

with similar relationships for Mj , Mc L and j Mn . Also

9i//

(A20)

(A21)

(A22)
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Equation (A22) is derived from equation (A20) and the first of the derivative
equations:

(A23)

Expressions (A23) are pertinent applications of the general rule that the transformation
to inertial coordinates of the total derivative of a vector which is expressed in a rotating
coordinate system is equal to the derivative of the transformed (from rotating to inertial
coordinates) vector. The Lagrange equation for the x' coordinate is

mr

This equation plus similar equations obtained for the y' and z' degrees of freedom
are combined to yield the following matrix equation governing translational motions of
the overall mass center along the inertial axes:

(A24)

where

For the rx degree of freedom, the Lagrange equation is
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This equation and similar equations for ry and rz are combined to form the matrix
equation governing relative translation of the disk and hub

which because of equation (A24) can be written as

(A25)

The Lagrange equation derived for the hub-disk rotational degree of freedom 0^ is

m

(A26)

By using the identity

the equation can be combined.

9D 3D
and equation (A24), the first terms on both sides of

The resulting equation along with similar equations derived for the 9^ and
degrees of freedom can be written in the combined form

mhMJpi

rh

A

(A27)
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where

8Dr

fr - ^T
11 8Do r iTr -yrr 1 r ITrnr -I

= Ph P2 D2rfr N rf P2
L . J | _ — ! L —* L . - J L _J L - - J

(A28)

8D

8DV

8DV

9D

3D.

80h

8Dr

(A29)

H

Equation (A29) is derived from equation (A27) and the second of equations (A23).

Equation conditioning. - The 0, 9, and i// equations involve both disk and hub
angular acceleration terms. These terms must be separated for purposes of solution.
The hub acceleration term is eliminated by substitution of the 0h, 0h, and i//h equa-
tions as follows:
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Premultiplying equation (A27) by

and (A29), and solving for the |cl>h> term yield

-1
, combining with equations (A28)

[D]T[o2][ih]{,h} . -[of [D2][.h][ih]f h) - [D]T[D2] [Dh]
T [CR]{B> * [KR] L

\
'

h) * mh R

This relationship is substituted for the <ci>o term in equation (A20). The result-

ing equation is simplified by means of equations (A7), (A21), (A22), and the identities

[cJ] = pJ p! and Lh = D£ Pj DJD2+DJD2J developed from equations (A23)

with the result

^-1

l *h l
+ I Kw I < 0^ } ) +

I^V

mc|rc||
Dl

r T iTf-h rh pi \RhL JL J ^
\

h <A30>

Similarly, a combination of equations (A27), (A28), and (A29) allows the hub angular
degrees of freedom to be expressed simply by the matrix equation

47



APPENDIX A - Concluded

[CR] Irp i= Th (A31)

Hub inertial angles.- Hub angles with respect to an inertial frame of reference can
be determined by two methods. After establishing an ordered set of Euler rotations $•,,
0j, and i//j (see fig. 12(c)), the first method is to integrate the Euler inertial rates to
obtain inertial angles from the expression

\el > =
SJ//j

The second method, derived in reference 5, is the method used in the present investiga-
tion. A vector quantity expressed in hub coordinates is transformed to inertial coordi-
nates in terms of the $, 6, and i// and 0h, 6^, and ^ systems as indicated by the
equation

hub

This vector transformation can also be expressed as functions of the hub inertial Euler
angles 0j, 0j, and i//j. Equating the transformations yields

C0j -S1//J S0j

C0j

D2

Equating comparable elements on the right and left sides of the equal sign provides a
means of determining 0j, 0J, and i//j in terms of the angles 0, 9, i//, 0h> 0ji' and

^. These relationships are given in reference 5.
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DESCRIPTION AND LISTING OF SIMULATION PROGRAM

Computer Simulation

The simulation was programed on a CDC 6600 digital computer which operates in a
real-time mode and can be linked to actual control system or sensor hardware. The
simulation was controlled from a program control station shown in figure 13 which
includes a data entry keyboard, an on-line typewriter and time-history recorder, and a
cathode ray tube (CRT) display console.

The present program includes the spacecraft rotating element (disk) dynamics and
the dynamics of four passive controller masses. Equations pertaining to the zero-gravity
hub and isolation spring system are not included. These elements are being incorporated
into a more extensive program for further use in control studies. The simulation required
a storage of approximately 45 000 octal words and operated at 16 iterations (computer
cycles) per second. A fourth-order Runge-Kutta integration scheme was used for the
spacecraft and passive controller dynamics. A basic computing (integration) interval of
0.03125 second was used. A flow diagram of the simulation follows.
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INITIALIZATION

Setup output parameter table
Initialize input-output signals
Initialize scale factors and simulation parameters

RESET MODE

Resets t = 0.0
Resets derivative equations
Resets CRT plot
Unload CRT option
Insert new data from keyboard
Calculate initial TJ for use in disk equations

HOLD MODE

Derivative equations held at present values

OPERATE MODE

Mass and/or inertial disturbance
Option to erase and reset CRT display
Rotating element (disk) equations of motion

Compute disk Euler rates
Compute x', y', and z'
Compute {AI>
Compute total torques on disk
Compute Rd, Rc, and Rj
Compute total mass acceleration
Compute total inertia matrix
Solution of disk derivative equations or Euler

solution for disk (checkout option)
Runge-Kutta disk integration

Passive controller equations of motion

Compute FJ, fj, and fj
Compute &j
Runge-Kutta integration of _oti

Auxiliary calculation
Time-history recorder output
CRT plot
Real-time mode controls

> 4 pass integration loop

i 4 pass integration loop

PRINTER OUTPUT MODE
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Input

Input for the simulation was supplied by the operator from the program control
station through a data entry keyboard. The data entry keyboard provided capability to
change parameters in central memory without removing the program from the computer
and simultaneously displayed the value of the parameters on a digital display located on
the program control station. These input variables were defined in a specific array VAR
described in table II.

Output

Data output facilities included Brush time-history recorders, CRT display, and a
high-speed line printer. A parameter listing and description, output formats, and expla-
nations of output options are presented in tables III and IV.

Recorder output.- Time-history recordings of spacecraft parameters (figs. 6 to 9)
were generated by time-history recorders located adjacent to the program control station.
Each time-history recorder had eight analog and nine discrete (event) channels. The
analog channels were used to record desired data parameters. Time-history recorder
channel assignments are shown in table III.

Printer output.- A block of output data was stored on a disk file at specified time
intervals denoted by the integer variable NT in terms of iteration cycles. Upon com-
pletion of the run, all output was routed to the high-speed printer by depressing the
"PRINT" control button located on the program control station. Output variables are
identified by an asterisk in table IV which presents and defines all significant program
variables.

CRT output.- Another form of output was provided by a CRT display which gen-
erated x,y-plots of spacecraft angles 0 as functions of 6 as shown in figure 9. CRT
plotting was done while the simulation was in a real-time status with a plotting frequency
of FREQ in terms of iteration cycles. Since the amount of data required for a typical run
(=700 sec) exceeded the limit on the CRT controller instructions, an option was included
to erase the plot at any time and reinitialize the CRT so that only the desired part of the
run was displayed. A hard copy of the CRT plot could be obtained if desired.

51



C
C
C
C
C
C
C
C
C
C
C
C
C

APPENDIX B - Continued

Program Listing

The program listing is as follows:

PROGRAM SP8ASE( INPUT«OUTPUT )

***LDISI*»*
33
34 -
35
36 -
40 -
41
45 -
46

OPTION
ALPHA D DOTS = 0.0 TO LOCK BALANCE ARMS

CREW RATE * SRCDX
CRFW RATE * SRCDY
CRPW RATE * SRCDZ
EULER DISK EQUATIONS FOR CHECKOUT
OPTION TO PLOT ON CRT (PHDK VS THDK IN DECS)
SETUP CRT IN OPERATE
UNLODE CRT DISPLAY

COMMON/REALT1M/ANALGIN(32) . D I GOUT ( 64 ) .LDISI ( 1 08 > . LD I SO ( I 96 > .
1 NOPF.R « NHOLD » NRESET « NTERM , NPR I NT • NRE AD
LOGICAL LDISI .LDISO.LOGIC.VARCHNG
DIMENSION VAR (40) • INTEG( 1 ) « LOG 1C (4 ) . IVARBUF(S)
D I MENS I ON RR ( 6 . 24 ) , TxX ( 7 ) . TYY ( 7 > . TZZ ( 7 )
DIMENSION ARDDXC7) .ARDDY(7) .ARDDZC7) » BUFF ( 1 ) • T I M ( 3 )
DIMENSION I MAT (3. 3) »EIGV(3) «EVEC (3.3 )

,MT I , I I . I 2 . I 3, 14
REAL IMAT«IXYCG
REAL MASSD1 ,MC I .Ml I . M2 I . M3I . M4 I
REAL MASSD.MASSC.M1 .M2.M3.M4.MT
REAL IDXX« IDXY, IDXZ. IDYY. IDYZ. IDZZ. IDXXO. IDYYO. IDZZO, IDXYO
REAL I DDXX . I DD YY , I DDzZ « I DDXY , I DDYZ • I DDXZ
REAL M1O.M2O.M3O.M4O, I1O.I2O.I30.I40
REAL IZTOT, IYTOT. IXTOT. IDIFX. IDIFY, IXYTOT, IXZTOTf IYZTOT
REAL IDXZO»IDYZO. I xCG. I YCG • IZCG, I XZCG . I YZCG. MDUM
REAL I ix. I2x. I3X. I4x, i IY, I2Y.I3Y',
LOGICAL DUMCG

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EOUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(VAR( 1),PHDKO
<VAR< 4)«WXDKO
(VAR( 7 ) « XPRO
(VAR ( 1 0 ) ,XPRDO
(VAR (1 3 ) . I DXXO

) . ( VAR ( 3).PSDKO
) « < VAR ( 6)«WZDKO
) . ( VAR ( 9).ZPRO
) . ( VAR ( 1 2 ) .ZPRDO
) » ( VAR ( 1 5 ) . IDZZO

).(VAR( 2)«THDKO
)»(VAR( 5>.HfYDKO
)«(VAR( 8),YPRO
) » < VAR ( 1 1 ) . YPRDO
) . (VAR ( 1 4 ) « I DYYO

(VAR( 16) «A1O) « (VAR( 17) ,A2O> • (VAR( 18 ) .A3O) , (VAR( 19) «A4O)
(VAR (20) • I 1 O ) * ( VAR (21 ) , I2O) , (VAR (22) « I 3O ) , (VAR (23 ) « I4O)
(VAR (24) .Ml O ) . ( VAR (25 ) »M2O) . (VAR (26 ) »M3O) , (VAR (27) .M4O)
(VAR(28).EL ) « ( VAR(29 ) «D I STZ ) , ( VAR (30 ) .C JO )
( VAR (31 > , SRCDXO ) . ( VAR ( 32 ) . SRCDYO ) . ( VAR (33 ) .SRCDZO )
(VAR (34 ) «FREQ ) . ( VAR ( 35 ) «PLGA IN )
( VAR (37 ) . MASSDO ) . ( VAR (38 ) .MASSCO )

(RR(6.1 ). Al ).(RK(&«2 ). A2 ) . ( RR ( 6 » 3 M A3 )
(RR(6«4 ). A4 ).(RR(6.5 ) . ADOTl ) . ( RR (6 .6 ) . ADOT2 )
(RR(6.7 ) . ADOT3 ) » (RR (6. 8 )«ADOT4)
(RR (6. 1 3 ) .XPR ) . (RR ( 6. 1 4 ) .YPR ) . ( RR (6. 1 5 ) «ZPR )
(RR(6.16) .XPRD) . (RR(6.17) .YPRD) . (RR(6« 18) ,ZPRD>
(RR(6»19) .PHDK) . (RR(6.20) .THDK) . (RR(6.21 ) ,PSDK)
(RR(6.22) «WXDK) . (RR(6.23) .WYDK) . (RR(6«24 > .WZDK)
( INTEG ( 1 ) « I SCAN )
(LDI S I (48 ) » INTABLS )
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c
c**»* SECTION C,

CALL CYCLE
INITIALIZATION OF

(90006S)
REAL TIME SYSTEM

C
C**»*

85
C****

86
C****

87

CALL READOUT*4.NT.T. SRCX.SRCY.SRCZ)
CALL READOUT < 6.NT *WXOK « WYDK.WZDK.PHDK.THDK,PSDK)
CALL READOUT(6.NT *WXDOK.WYDDK t WZDDK.A1X.AIY.AIZ)
CALL READOUT(6,NT.A 1 A.A2A,A3A,A4A.ETAXZ,ETAYZ)
CALL READOUT(6,NT,ADoT1,ADOT2.ADOT3.AOOT4,DELE,ETAXYZ)
CALL READOUT(6,NT,ADDOT1,ADDOT2,ADDOT3,ADDOT4,CMO.CON)
CALL READOUT(6«NT.THFTH,DELH.THETZ«DELZ,THETI.DEL I )
CALL READOUT(3.NT,EIGV(1 > » EIGV(2 >.EIGV(3) )
CALL RTROUTE<MF»90034S)
CALL INOUT(ANALGIN,32»DIGOUT«42.LDIST.88.LDISO.196)
CALL XDSPLAY(LDISI.LDISO.VARCHNG.ITYPE,IVARBUF,INTABLS)
CALL DATABLXfVAR,40.INTEG.1 .LOGIC,4 ,ANALGIN,32.DI GOUT,42.

1 LDISI(1).88.LDISO(1),196)

CLEAP INDICATOR LI TEC
DO B* 1ND=1 .196
LDISO(IND) = .F.
CLEAP DISCRETE INPUTS
DO 8ft IND=I .108
LDISI ( IND) = .F.
CLEAR DA CONVERTERS
DO 8T IND=1 ,42
DIGOuT( IND) = 0.
CALL NAMECRT<6LCRTTPp.ERR)
ASSIGN 90001 TO NOPER
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

90002
90003
90004
90014
90015

TO
TO
TO
TO
TO

NHOLD
NRESFT
NTERM
NPR I NJT
NREAD

C
C****
C

16

CONSTANTS AND INITIAL PARAMETERSSECTION D,
PRINT 16
FORMATC6X* SPACE BASE SIMULATION*5X*JOB.43,77777,75OOO«

1 13043,1«C.W.MARTZ»Bl232 R125*)
TIM(1)=4RXTIM * TlM(2)=4RXE= S TIM(3)=4RX.
NUMBFR=INTEG=KOUNT=0
I SCAN = 32

RECORDER SCALE FACTORS
S SFAiZ=10. * SFA1X=10.

A2718<

*

******
SFAl Y=l 0
SFTH=5.
SFCON=5.
SFCMOa5.
SFETA=5.
SFETAX=5.
SFETAY=5.
SFCONE=5.
SFTHPTZ=2.5
SFMBA=1
SFCRFWs.Ol

SFTI=5 SFDELI=1 ./ISO.

SFACr*! OOO.
SFRATEol.
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r.
C ***************** INITIALIZATION

TINC*HH=.031 25
SX=1 ,/6.
BILL=50. * TMARTZ
TIMER=I o,
DUMCG=.F.

0.0

PLGAIN=.2
CTIMFolOO.
SRXO=SRYO=SRZO=0.0
SRDXO=SRDYO=SRDZO=0.0

C ***************** INITIALIZATION DISK **********
MASSOO=350OOO.
PHDKO=THOKO=PSDKO=O.n
WXDKO=WYDKO=0.0
WZDKO=.5
IDXXO= IDYYO=380OOOOOn«
IDZZO= t 900000OO •
IDXYO=JDXZO=IDYZO=0»n

IDXYO=0»
IDXY=IDYZaIOXZ=0,0
SRSX=SRSDX=SRSDDX=0 . n
SRSY=SRSOY=SRSODY=0«n
SRSZ=SRSDZ=SRSDDZ=0.n
RDDX=RDDY=RDDZ=0, 0
FXDK=FYDK=FZDK=O,O
TXDKsTYDK=TZDK=0.0

XPRO=YPRO=ZPRO=XPRDO=YPRDO=ZPRDO=0.0
XPRDn=YPRDD=ZPRDO=0.o

C **********************INITI ALIZATION FOR MASS BALANCE SYSTEM
A10=A20=1 .570796
A3O=A4O=-1 .570796
MIO=v2O=M3O=M4O=32nO.
CJO=40OO.
EL=1«. t DISTZ=7.5
I 1 X=I2X=I3X=I4X
I 1 Y=I2Y=I3Y=I4Y =
! 1 O= I 2O= I 3O= I 4O*7800.

C ****#*****************INITIALIZATION FOR CREW
MASSCO=1500.
SRCDXO=SRCDYO=SRCDZO=.6

C
9O003 CONTINUE

CALL READY
C**** SECTION E. INITIALI7ATION OF INTEGRALS
c ***************** RP«;ET LOOP

T = o.n
TINC=HH
NFREO=FREO
N2=t 0*NFREO
TCOUNT=0.

***

C
C ******

IF'(DuMCG>
CALL HALT
CALL ENDPLOT
CALL UNLODE
CALL CLRPLOT

SETUP CRT PLOT
GO TO 17

<PH VS TH )
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CALL CRTPLOT( 1 ,1 « NFRpQ . 0 * 0 » THDEG .PLGA I N» 0 . 10LTHDK .PHDEG.PLGA
1 IN.O, 10LPHDK )
CALL CRTPLOT( ! . 1 .N2.3OB, 1 , THDEG . PLGA IN. 0. l OLTHDK .PHDEG.PLGA

1 IN.O, 1 OLPHDK )
CALL READY

17 CONTINUE
DUMCr;=.T.

C
C ****** UNLODE CRT SCREEN

IF(»NOT» LDISM46M ^O TO 5OOO3
CALL HALT
CALL UNLODE
CALL READY

50O03 CONTINUE
C
C ****** SET IN INITIAL CONDITIONS

TMARTZ=T
XPR=XPRO S YPR=YPRO S ZPR=ZPRO
XPRD=XPRDO * YPRD=YPRDO $ ZPRD=ZPRDO
************************* DISK ***
PHDK=PHDKO I THD<=THDKO S PSDK=PSDKO
WXDK=WXDKO * WYDK=WYDKO S WZDK=WZD<O
SRX=SRXO £ SRY=SRYO S SRZ=SRZO
SRDXaSRDXO S SRDY = c;RDYO $ SRDZ = SRDZO
SRCX=SRCDX=SRCDDX=0.n
SRCY=SRCDY=SRCDDY=0.n
SRCZsSRCDZ=SRCDDZ=0»n
TXX(J ) = TXX(2)=TXX(3)xTXX{4 ) =TXX (5 ) =TXX (6 )=TXX(7)=O»0
TYY( 1 )=TYY(2)=TYY(3)=TYY(4)=TYY(5)=TYY(6 )=TYY(7)=0.0
TZZ ( 1 ) sTZZ ( 2 ) =TZZ ( 3 ) =TZZ ( 4 > =TZZ t 5 ) =TZZ (6 ) =TZZ ( 7 ) =0 . 0
************************* MASSBAL, ***

WXDDK=WYDD<=WZDDK=n.O
ADOT1=ADOT2=ADOT3=ADOT4=0.0
ADDOTl=ADDOT2aADDOT3sAODOT4=0,0
WXDHOLD=WYDHOLD=WZDHOLO=0.0
MASSn=MASSDO $ MAS«:C=MASSCO
A1=A1O S A2=A2O t A3=A3O * A4=A4O
I1 = I1O S I2«=I2O S I3=I3O S- I4=I4O
Ml=MlO S M2»M2O $ M3=M3O * M4=M4O
CJI =CJ2=CJ3=CJ4=CJO
I1X=!2XM3X=14X=710.
I 1 Y=I2Y = I3Y=I4Y=7BOO.
SR1X=SR1DX=SR1DDX=0»0
SRI Y=SR1OY=SRIDOY=O.O
SR1Z3SR1DZ=SR1DOZ=O.O
SR2X=SR2Dx=SR2DDX=O»0
SR2Y=SR2DY=SR2DDY=n,o
SR2Z=SR2DZ»SR2DOZaO.O
SR3X=SR3DX=SR3DDX=0 « n
SR3Y=SR3DY=SR3DDY=0»n

SR4X=SR4DX=SR4DOX=0« 0
SR4YsSR4DY = SR4DDY = 0. 0
SR4Z=SR4DZ=SR4DDZ=0.0
****** CALCULATE INITIAL CONDITIONS
CA1=COS(A1) $ CA2=COS(A2) % CA3=COS(A3) * CA4=COS(A4)
SA1=SIN(A1) $ SA2=STN(A2) S SA3=S!N(A3) * SA4sSlN(A4>
SR1X=EL*CA1
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c
c

SR1Y=EL*SA1
SRJZ=-OISTZ
SR2X=EL*CA2
SR2Y=EL*SA2
SR2Z= DISTZ
SR3X=EL*CA3
SR3Y=EL»SA3
SR3Z= -DISTZ
SR3Z=-DISTZ-5.
SR3Z=-DTSTZ*1.2
SR4X=EL*CA4
SR4Y=EL*SA4
SR4Z= DISTZ
SR4Z=DISTZ+5.
SR4Z=DISTZ*1.2
MT=MASSD
IF<MT »NE. 0.0)

CPSDK=COS(PSDK)
CTHD<=COS(THDK)
CPHDK=COSCPHOK)
SPHOK=SIN(PHDK)
STHDK=SIN(THDK)
SPSD<«=SIN(PSDK)
SECTHDK=1,/CTHDK
*»**#**** THE

DI1=CPSDK*CTHOK

+ MASSC +
MTI=1,/MT

Ml + M2 M3 + M4

MATRIX

D21=-SPSDK*CTHDK
D22=CPSD<
D31=STHDK
D33=l»0
********** THE D - 1 MATRIX
OO11=D11
DO12=D2l

DO13=STHDK
DO21 =CPSDK*STHDK*SPHOK + SPSDK*CPHDK
DO22=CPSDK*CPHDK - SPSDK*STHDK*SPHDK
DO23=-CTHOK*SPHDK
DO31=SPSDK*SPHDK - CPSDK*STHDK*CPHDK
DO32=CPSDK*SPHDK + SPSDK*STHDK*CPHDK
DO33=CTHOK*CPHDK

**»**»»»#*#*##****####«-»****#****** DISK EULER RATES »**»*»

DPHDK=CPSDK*SECTHDK*WXDK - SPSDK*SECTHDK»WYOK
DTHDK=SPSDK*WXDK + CPSDK*WYDK
OPSDK=-CPSDK*STHDK*SECTHDK*WXDK + SPSDK*STHDK»-SECTHDK*WYDK+WZDK
********** THE D - 1 -DOT MATRIX
DOD11=-DTHDK*CPSDK*STHDK - DPSDK*SPSDK*CTHOK
DOD12=+DTHDK*SPSDK*STHDK - DPSDK*CPSDK*CTHO<
DODI3=+DTHD«*CTHDK
DOD2l=+DPHDK*(CPSDK*STHOK*CPHDK: - SPSDK*SPHDK) + DTHOK*CPSDK*CTHDK

l*SPHD< - DPSDK*<SPSDK*STHOK*SPHDK - CPSDK*CPHDK)
= -DPHDK*(SPSDK*STHOK*CPHDK «• CPSDK»SPHDK> - DTHOK*SPSDK*CTHDK

- OPSOK*(CPSDK:*STHDK*SPHDK: + SPSDKT*CPHDK)
DOD23 = -DPHDKT*CTHDK*CPHDK + DTHDK*STHDK*SPHD<
DOD31= + DPHDK*(CPSDK*«?THDK*SPHDK + SPSDK*CPHDK) - DTHOK*CPSDK*CTHDK

3*CPHOK + DPSDK*(SPSDxr*STHDK*CPHDK + CPSDK*SPHDK)
DOD32=-DPHDK*(SPSDK*STHDK*SPHDK - CPSDK*CPHDK) > DTHDK*SPSDK*CTHOK

4*CPHDK + DPSDK*(CPSDK*STHDK*CPHDK - SPSDK*SPHDK)
J3=-DPHDK*CTHDK*SPHDK - DTHDK*STHDK*CPHO<
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c
c
90002 CONTINUE
C*»»* SECTION F. HOLD CONTROL

WXDOK=WXDHOLD
WYDOK»WYDHOL O
WZDDK = WZDHOL D

C
c
90006 CONTINUE
C**»* SECTION G. OPERATE LOOP

IF<LO!SI(17)> DUMCG=.F.
SRCDx=SRCDY«SRCDZ=0.n

****** CREW MOTION DISTURBANCE
IF(Lr»ISI (34)) SRCDXsSRCDXO
IF(LDISI(35)) SRCDYsSRCDYO
IF(LOI SI(36)) SRCDZ=SRCDZO

IF(T.GE.10..AND.T.LT.30.)SRCDX=.6
IF(T.GE»10..AND»T.LT.3O.)SRCDY=.6
IF(T.GE.30..AND.T.LT.50.)SRCDZ=.6
IF (.NOT. LDISK17)) GO TO 40
SRCX=SRCX + HH*SRCDX
SRCY = SRCY + HH*SRCDY
SRCZ=SRCZ + HH*SRCDZ
CONTINUE40

C
C
C

****** ERASE AND SETUP CRT DISPLAY

IF(.NOT. LDISI (45))

CALL HALT
CALL ENDPLOT
CALL UNLODE
CALL CLRPLOT

TO 42

JTIM=(T+HH - ITIM)*100.
41 CONTINUE

CALL ENABLE (41 S)
CALL CRTCODE(2«TIM( 1 )• 100., 990. )
CALL ENCODE I ( ITIM«4« 150. «990» )
CALL CRTCODE( 1 .T IM ( 3 ) , 190. «990. )
CALL ENCODE I ( JTIM.2. 1 96. « 990. )
CALL MARK250
CALL CRTPLOT( 1 «1 «NFRFQ,0« 1 • THO£G«PLGA IN. 0« 1 OLTHDK

1 IN.0.10LPHDK )
CALL CRTPLOTd ,1 »N2.30B«1

1 IN.O, 10LPHDK )
CALL READY

42 CONTINUE

THDEG»PLGAIN,0,1OLTHDK

,PHDEG«PLGA

,PHDEG«PLGA

C
C ******

INT=i
27 CONTINUE

MASSOI=1./MASSD
CPSDK=COS(PSDK)
CTHDK=COS (THDO
CPHD«- = COS (PHDK )
SPHDK = SIN(PHDK )
STHDK=S1N(THDK)

BEGIN DISK CALCULATIONS
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SPSDK»SIN(PSDK)

SECTHOK=1 ./CTHDK
i ********* THE O MATRIX

I DI1«CPSDK'*CTHDK
D12=SPSDK
D21 «-SPSDK*CTHDK

O22-CPSDK

D33«l »0
********** THE 0- DOT MATRIX
OO1 I =-CPSDK*DTHDK*STHDK - CTHDK*DPSDK*SPSDK
DO 1 2=OPSDK*CPSDK
DD21=SPSDK*DTHDK*STHDK - CTHD**DPSDK*CPSDK
DD22=-DPSDK*SPSDK
DD31=DTHDK*CTHDK -
********** THE D - INVERSE MATRIX
Dill =CPSDK*SECTHDK
DI 12=-SPSDK*SECTHDK
DI2l=SPSDK
DI22=CPSDK
DI31=-CPSDK*STHDK*SECTHDK

- DI32=SPSDK*STHOK*SECTHOK
DI33=1 .0
*»**#*»*****»*#*****#*»**##*1HHHK***»**** DISK EULER RATES
OPHDK= DM1*WXDK+ DI12*WYD<
DTHDK= DI21*WXDK + nI22*WYDK
DPSD<= OI31*WXDK + pI32*WYDK + WZDK
OTHD<2=DTHDK*DTHD<
DPHOK2=DPHDK»DPHDK
DPSD<2=OPSDK*DPSDK
PDAl=DOl 1*DPHDK + DDl2*DTHDK
PDA2=DD21*DPHOK + DD?2*DTHOK
PDA3=DD31 *DPHDK
DDPHDK= DI 1 1* (WXDDK-pDAI )+DI 1 2* ( WYDDK-PDA2 )
DDTHOK= DI2I*(WXDDK-PDA1 )+DI 22* ( WYDDK-PDA2 )
DDPSDK= DI31* (WXDDK-pDAI ) -f DI 32* ( WYDDK-PDAa )+WZDD<-PDA3
»#******** THE D - 1 MATRIX
OOlIaDl I
OO12=D21
DO13=STHDK
DO21=CPSDK*STHDK*SPHDK + SPSDK*CPHDK
DO22=CPSDK*CPHDK - SPSDK*STHDK*SPHOK
DO23=-CTHDK*SPHDK
DO31=SPSDK*SPHOK - CPSOK*STHDK»CPHO<
DO32=CPSDK*SPHDK + SPSDK*STHDK*CPHO<
DO33=CTHOK*CPHDK
********** THE D - I -DOT MATRIX

Dooi I=-DTHDK*CPSDK*STHDK - DPSDK*SPSDK*CTHDK
OOD12=+DTHOK*SPSDK*STHDK - DPSDK*pPSDK*CTHD<
DOD1 3=+DTHOK*CTHOK \
DOD21 =+DPHDK* (CPSDK*cTHD<*CPHOK - SPSDK*SPHDK ) + DTHDK*CPSDK*CTHDK

1*SPHQK - DPSDK*(SPSDKr*STHDK*SPHDK ^- CPSDK*CPHDK)
DOD22=-DPHD<* (SPSDK*sTHD<*CPHDK + CPSDK*SPHDK) - DTHDK*SPSDK*CTHDK

2*SPHD< - DPSDK*(CPSDKr*STHDK*SPHDK + SPSDK*CPHDK )

DOD2l=-DPHDK*CTHOK*CpHDK + DTHDK*STHDK*SPHD<
DOD31=+DPHDK* (CPSDK*cTHDK*SPHDK + SPSDK*CPHD<) - DTHDK*CPSDK*CTHDK

3*CPHD< + DPSDK*{SPSD«r*STHDK*CPHOK + CPSDK*SPHDK)
-DPHDK* (SPSDK*?THDK*SPHDK - CPSDK*CPHD<) -f- DTHOK*SPSDK*CTHOK

58



APPENDIX B - Continued

4*CPHD< + DPSDK*(CPSDK*STHOK*CPHDK - SPSDK*SPHDK)
DOD33=-DPHDK*CTHDK*SPHDK - DTHDK*STHDK*CPHO<
********** THE D - 1 - DOUBLE DOT MATRIX
DODDl1=-DDTHDK*CPSDK*STHDK - DDPSDK*SPSDK*CTHDK + 2«*DTHDK*DPSD«*
1SPSDK*STHDK - (DTHDK? + DPSD<2 )*CPSDK*CTHDK
DODDl2=+DDTHDK*SPSDK*STHDK - DDPSDK*CPSDK*CTHDK + 2.*DPSDK*DTHDK*
2CPSDK*STHDK •+• CDTHDK? + DPSDK2)*SPSDK*CTHDK
DODDl3=+DDTHDK*CTHDK - DTHDK2*STHDK
DODD?1=+DOPHDK*(CPSDK*STHDK*CPHDK - SPSD«*SPHDK) + DDTHDK*CPSDK*
3CTHDK*SPHDK - DDPSDK*(SPSDK*STHDK*SPHDK - CPSDK*CPHDK) -(DPHDK2 +
4DPSDK2)*<CPSDK*STHDK*SPHDK + SPSDK*CPHDK) - DTHDK2*CPSDK*STHDK*
5SPHDK + 2.*DPHDK*DTHDK*CPSDK*CTHDK*CPHDK - 2.*DTHDK*DPSDK*SPSDK
6*CTHD<*SPHDK - 2 • *DPSDK*DPHDK* (SPSDK*STHDK*CPHDK -»• CPSDK*SPHDK)
DODD22=-DDPHDK*(SPSDK*STHDK*CPHDK + CPSDK*SPHDK) - DDTHDK*SPSDK*
7CTHDK*SPHDK - DDPSDK*(CPSDK*STHDK*SPHDK + SPSDK*CPHDK) + (DPHDK2 +
8DPSDK2 )*(SPSDK*STHDK*SPHDK - CPSDK*CPHD<) •»• DTHDK2*SPSDK*STHDK*
9SPHDK - 2.*DPHDK*DTHnK*SPSDK*CTHDK*CPHDK - 2.*DTHDK*DPSDK*CPSDK*
ACTHDK*SPHDK - 2.*DPHD<*DPSDK*(CPSDK*STHDK*CPHDK - SPSDK*SPHDK:)
DODD?3=-DDPHDK*CTHDK*CPHDK + DDTHDK*STHDK*SPHDK + (DPHDK2+ DTHDK2)
B*CTHDK*SPHDK + 2.*DPHDK*DTHDK*STHDK*CPHDK
DODDT1=+DDPHDK*(CPHDK*STHD<*SPHDK -f SPSDK*CPHDK) - DDTHDK*CPSDK*

CCTHDK*CPHDK + DDPSDK# (SPSDK*STHDK*CPHDK -f CPSD<*SPHDK ) + (DPHDK2 +
DDPSD<2)*(CPSDK*STHDK»CPHDK - SPSDK*SPHDK) 4- DTHDK2*CPSDK*STHDK*
ECPHDK + 2«*DPHDK*DTHDK*CPSDK*CTHOK*SPHDK - 2«*DPHDK*DPSDK*(SPSDK*
FSTHDK*SPHDK - CPSDK*cPHDK) -1- 2.*DTHDK*DPSDK*SPSDK*CTHDK*CPHDK
DODD32 = -DDPHDK*(SPSDK-*STHDK*SPHDK - CPSDK*CPHDK) + DDTHDK*SPSDK*

GCTHDK*CPHDK + DDPSDK*(CPSDK*STHDK*CPHDK - SPSDK*SPHDK) - (DPHDK2 +
HDPSDK2)*(SPSDK*STHDK*CPHDK + CPSDK*SPHDK) - DTHDK2*SPSD<*STHDK*
ICPHDK - 2»*DPHDK*DTHnK*SPSDK*CTHDK*SPHDK + 2.*DTHDK*DPSDK*CPSDK*
JCTHDK*CPHDK - 2 • *DPHr>K*DPSDK# (CPSDK*STHDK*SPHDK -I- SPSDK*CPHDK )
DODDT3=-DDPHDK*CTHDK#SPHDK - DDTHDK*STHD<*CPHDK - (DPHDK2 + DTHDK2

K)*CTHOK*CPHDK + 2.*DPHDK*DTHDK*STHDK*SPHDK
********** THE PARTIAL OF D - 1 - DOT WRT PHI DOT
DODPr>21=+CPSDK*STHDK*CPHDK - SPSDK*SPHDK
DODP022=-SPSDK*STHDK*CPHDK - CPSDK*SPHDK
DODPn23=-CTHDK*CPHDK
DODPD3!=+CPSDK*STHDK*SPHDK + SPSDK*CPHDK
DOOPD32=-SPSDK*STHDK*SPHDK + CPSDK*CPHDK
DODPn33=-CTHDK*SPHDK
********** THE PARTIAL OF D - 1 - DOT WRT THETA DOT
DODTD11=-CPSDK*STHDK
DODTD12=+SPSDK*STHD<
DODTO1 3=-t-CTHOKT
DODTD2I=+CPSDK*CTHDK*SPHDK
DODTn22--SPSDK*CTHDK*SPHDK
DODTO23=+STHDK*SPHDK
OOOTO31=-CPSDK*CTHDK*CPHDK
DODTD32«+SPSDK*CTHDK*CPHDK
DODTD33=-STHDK*CPHOK
********** THE PARTIAL OF D - 1 - DOT WRT PS I DOT
DODSD11»-SPSDK*CTHDK
DODSD12»-CPSDK*CTHDK
DODSD21»-SPSDK*STHDK*SPHOK + CPSDK*CPHDK
DODSD22=-CPSDK*STHDK*SPHDK - SPSDK*CPHDK
DODSD31=+SPSDK*STHDK*CPHDK •»• CPSDK*SPHDK
DODSD32=+CPSDK*STHDK*CPHDK - SPSDK*SPHDK
*********************
XPRDD= (DO1 l*FXDK+DO12*FYDK-»-DOl3*F2DK>*MTI
YPRDD= (DO21*FXDK+DO2?*FYDK4-DO23*FZDK)*MTI
2PRDD=(DO31*FXDK+DO32*FYDK+DO33*FZDK)*MTI
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C **********»*# A 1
A!X=-MTI*(MASSD*SRSX + MASSC*SRCX + M1*SRIX +

1 M2*SR2X + M3*SR3X + M4*SR4X )
Al Y=-MTI*(MASSD*SRSY + MASSC*SRCY + M1*SR1Y +
2 M2*SR2Y + M3*SR3Y + M4*SR4Y)
A1Z=-MTI*(MASSD*SRSZ + MASSC*SRC2 + M1*SR1Z +
3 M2*SR2Z + M3*SR3Z + M4#SR4Z )

C #******»**»** A 1 DOT
AIDX=-MTI*( MASSC*SRCOX + M1*SR1DX + M2*SR2DX +

1 M3*SR3DX + M4*SR4DX)
AlDY=-MTI#f MASSC*SRCDY + M1*SRIDY + M2*SR2DY +
2 M3*SR3DY + M4*SR4DY)
A1DZ=-MTI*( MASSC*SRCDZ + M1*SR1DZ + M2*SR2OZ +
3 M3*SR3DZ + M4*SR4DZ)

C ************* A 1 DOUBLE DOT
A1DDXI=-MTI*( MASSC*SRCOOX + M1*SR1DDX + M2*SR2DDX +

1 M3*SR3DDX + M4*SR4DDX)
A1DDY=-MTI*( MASSC*SRCDDY + M1*SR1DDY + M2»SR2DDY +
2 M3*SR3DDY + M4*SR4DDY)

AIDDZ=-MTI*( MASSC*SRCDDZ + M1*SRIDDZ + M2*SR2ODZ +
3 M3*SR3DDZ + M4*SR4DDZ)

C
C
C #****»**»* TORQUE TRANSFORMATION
C ***»»*»** TOTAL TORQUES ON DISK IN EULER COORDINATES

CSTORX=(TXDK - FYDK*A1Z +• FZDK*A I Y )*CPSDK»CTHDK -
1 (TYDK + FXOIC*A1Z - FZDK*A1 X )*SPSDK*CTHDK +
2 (TZDK - FXDK*A1Y + FYDK*A 1 X )*STHDK
CSTORY=CPSDK* (TYDK + FXDK*AlZ - FZDK*A1X) + SPSDK* CTXDK - FYDK*A1Z

1 -f F7DK*A1Y)
CSTORZ = FYDK*AJX -FXDKT*A1Y + TZDK

C *********#*#*»**»***#**»****«******#*** MASS ACCELERATIONS CALCULATIONS

200 IFCMASSD »EQ. 0.6) GO TO 201
RDUMX=SRSX $ RDUMY=SRSY * RDUMZ=SRSZ
RDUMDX=SRSDX S RDUMDY=SRSDY * RDUMDZ=SRSDZ
RDUMDDX=SRSDDX S RDUMDDY = SRSDDY. $ RDUMDDZ = SRSDDZ
MDUM=MASSD
ICK = ?
GO TO 207

201 CONTINUE
202 IFCMASSC »EQ. O.O) GO TO 203

RDUMX=SRCX $ RDUMY=SRCY * RDUMZ»SRCZ
RDUMDX=SRCDX $ RDUMOY=SRCDY S RDUMDZ»SRCDZ
RDUMDDX=SRCDDX * RDUMDDY=SRCDOY $ RDUMDDZ=SRCDDZ
MOUM=MASSC

GO TO 207
203 IF(M1 «EQ. 0.0) GO TO 204

RDUMX=SR1X $ RDUMYsSRIY S RDUMZ=SR1Z
RDUMDX=SR1DX S RDUMDY=SR1DY S. RDUMDZ=SR1DZ
RDUMDDX=SR1DDX * RDUMDDY=SR1DDY $ RDUMDDZ=SR1 DDZ
MDUMsMl

ADOT 1 SEsADOT 1 *ADOT1 *PL
TERX=-ADOTISE*CA1
TERY = -ADOT 1 SE*S A 1
GO TO 207

2O4 IF(M? .EQ. O.O) GO TO 205
RDUMX=SR2X * RDUMY=SR2Y S RDUMZ»SR2Z
RDUMDX=SR2DX * RDUMDY*SR2DY S RDUMDZ=SR2DZ
RDUMDDX=SR2DDX $ ROUMDDY=SR2DDY $ RDUMDDZ=SR2DDZ
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205

ADOT2SE«ADOT2*ADOT2*frU
TERX=-AOOT2SE*CA2
TERY=-ADOT2SE*SA2
GO TO 207
ir<M3 ,eo. o.O) GO TO 206
RDUMX=SR3X * RDUWY=SR3Y * RDUMZ=SR3Z
RDUMDX=SR3DX S RDUMDY=SR3DY * RDUMDZ=SR3D2
RDUMDOX=SR3DDX S ROUMDDY=SR3DOY » RDUMDDZeSR3DDZ
MDUM=M3

206

ADOT3SE»ADOT3*ADOT3*EL
TERX=-ADOT3SE*CA3
TERY=-AOOT3SE*SA3
GO TO 207
IF(M4 »EO« O.O) GO TO 208
RDUMx=SR4X * RDUMY=SR4Y $ RDUMZ=SR4Z
RDUMDX=SR4DX S RDUMDY=SR4DY S ROUMDZ=SR4DZ
RDUMDDX=SR4ODX $ RDUMDOY=SR4DDY $ RDUMDDZ=SR4DDZ
MOUM=M4

ADOT4SE«ADOT4*ADOT4*EU
TERX=-ADOT4SE*CA4
TERY=-ADOT4SE*SA4

207 CONTINUE

ANX=A1X + ROUMX
ANYxAIY + RDUMY
ANZ=AtZ + ROUMZ
PARTlXaDODDl
PARTlYaDOOD21*ANX-«-
PARTlZ=DOOD31*ANX+

DOOD12*ANY
DoDD22*ANY
DODD32*ANY

DODD13*ANZ
DOOD23*ANZ
DOOD33*ANZ

RDU.MDX
ANDY=A1OY +• RDUMDY
ANDZxAlDZ + RDUMOZ
PART2X=2.*(DOD11*ANDX
PART2Y=2.*(OOD21*ANDx
PART2Z=2.*(DOD31*ANDx

DOD12*ANOY
DOO22*ANDY
DOD32*ANDY

DODI3*ANDZ)
DOD23*ANDZ)
DOD33*ANOZ)

ANDDX=A1DDX + RDUMDDX
ANDOY=A1DOY + RDUMDDY
ANODZ^AIDDZ + RDUMDD?
PART3X = DO1 1*ANODX + OO12*ANDDY +• DO13*ANDDZ
PART3Y=DO21*ANDDX + D022*ANDDY + DO23*ANDDZ
PART3Z=D031*ANDDX + O032*ANDOY + DO33*ANODZ

IF(ICK .LE. 3) GO TO 210
ANEWX=AIDDX + TERX
ANEWY=A1DDY + TERY
ANEW3X = DO1 1*ANEWX + n012*ANEWY •»• DO13*A1DOZ
ANEW3Y=O021*ANEWX + nO22*ANEWY + DO23*A1OOZ
ANEW3Z=D031*ANEWX + OO32*ANEWY + DO33*A1DDZ
ARDOX< ICK )=PART1X + PART2X ' + ANEW3X
ARODY( ICK J=PART1 Y + PART2Y + ANEW3Y
ARDD7( ICK)=PART1Z + PART2Z + ANEW3Z

210 CONTINUE
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*»**•}** PARTIAL OF Dl DOT WRT PHI DOT * Al VECTOR
RDDXA= PARTI X + PART2X
RDDYA= PARTIY + PART?Y
RDDZA= PARTI 2 + PARTj»Z
TOTX=MDUfS*RDDXA
TOTY=MDUM*RDOYA
TOTZ=MDUM*ROOZA
PART4YaDODPD21*RDUMX +
PART4Z=DODPD31*RDUMx +
PART5X=DODTD11*RDUMX +
PARTSY=DODTD21*RDUMX +
PART5Z=DODTD31*RDUMX +
PART6X=DODSD11*RDUMX +
PART6Y=DODSD21*RDUMX +
PART6Z=DODSD31*RDUMX +

+ PART3X
+ PART3Y
+ PART3Z

DOOPD22»RDUMY
DODPD32*RDUMY
DODTD12*RDUMY
DODTD22*RDUMY
OODTD32*RDUMY
DODSD12»RDUMY
DODSD22*RDUMY
DODSD32*RDUMY

DODPD23*RDUMZ
DODPD33*RDUMZ
DODTD13*RDUMZ
DODTD23*RDUMZ
DODTD33*RDUMZ

TXX(!CK)=TOTY*PART4Y
TYY( ICK )=TOTX*PART5X
TZZ( ICK )=TOTX*PART6X

C
C

TOTZ*PART4Z
TOTY*PART5Y
TOTY*PART6Y

TOTZ*PART5Z
TOTZ»PART6Z

C
C

C
C

GO T0(201 .202. 203. 204*205, 206*208). ICK
208 CONTINUE

****»**********###*»»*»***#**#****##** TOTAL WASS ACCEL. TERMS

TX= T X X C 1 )+TXX(2) +TxX ( 3 ) +TXX 14 )+TXX ( 5 J4TXX ( 6 > +TXX ( 7 )
TY=TYY< 1 )+TYY(2 ) + T Y Y ( 3 ) + T Y Y ( 4 )+TYY(5 )+TYY (6 )+TYY(7)
TZ=TZZ ( 1 ) + TZZ (2 WTZZ (3 ) + TZZ ( 4 ) +TZZ ( 5 ) +TZZ (6 )+TZZ ( 7 )

***.*** TOTAL INPRTIA MATRIX
IDXX=IDXXO-t-I 1X*CA1*CA1+I 1 Y*SA 1 *SA 1 + I2X*CA2*CA2-f- 1 2Y*SA2*SA2

1+I3X*CA3*CA3+I3Y*SA3*SA3+!4X*CA4*CA4+I4Y*SA4*SA4

IDYY=IDYYO-M1X*SAI*SAI+I1Y*CA1*CA1-H2X*SA2*SA2+I2Y*CA2*CA2
1 +1 3X*SA3*SA3+ t 3Y*CA3*CA3+ I 4X*SA4*SA4-H4Y*CA4*CA4

IOZZ=IDZZO+I 1+12+ I 3+1 4
I DXY= I DXYO+ < I 1 Y- 1 1 X )*S A I *CA 1 + ( I 2Y- I 2X )*SA2*CA2

l+( I3Y-I3X)*SA3*CA3+ ( I4Y- I4X >*SA4*CA4

IDXZ=IDXZO S IOYZ=IOYZO
IODXX=2.*(ADOT1*CAI*SA1*( I 1Y-I 1 X )+ADOT2*CA2*SA2* ( t2Y-I2X)

1 +ADOT3*CA3*S A3* ( I 3Y- 1 3X ) + ADOT4*CA4*SA4* ( I 4Y- 1 4X ) )
IDDYY=-IDOXX
IDDXY=ADOT1*(CA1*CA1-SA1*SA1 )*(! 1 Y-I 1 X )+ADOT2* (CA2#CA2-SA2*SA2)»

1 ( I2Y-I2X)+ADOT3*(CA3*CA3-SA3*SA3)*( I3Y-1 3X )+AbOT4*
1 (CA4*CA4-SA4*SA4)*( I4Y-14X)

****** SOLUTION OF DISK DERIVATIVE EQUATIONS
YDX=WXDK*(+IDDXX*D11

1 WYDK* <-IDOXY»D1 I
2 WZDK*(-IDDXZ*D1I
YDY=WXDK*(+IDDXX*D12

1 WZDK*(-IDDXZ*D12

IDDXY#D21 - IDDXZ*D31 ) +
IDOYY*D21 - IDDYZ*D31 )+
IDDYZ*D2I + IDDZZ*D31 )
IDDXY*D22) + WYDK*(-IDDXY*DI2
IDDYZ*D22 )

IDDYY*D22

YDZ=WXDK*(-IDDXZ) + WYDK» (- IDDYZ WZDK*IDDZZ

COMPX=+WZDK*(IDYY*WYDK-IDYZ*WZDK-IDXY*WXDK) -WYDK*{IDZZ*WZDK-IOXZ*
1 WXDK-IDYZ*WYDK)
COMPY=+WXDK*(IDZZ*WZDK-IDXZ*WXDK-IDYZ*WYDK) -WZDK*{IDXX*WXOK~IDXY*
2 WYDK-IDXZ*WZDK)
COMPZ=+WYDK*(IDXX*WXDK-IDXY*WYDK-IDXZ*WZDK) -WXDK*(IDYY*WYDK-1DYZ*
3 WZDK-IDXY*WXDK)
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COA1=+IDXX*D11 - IDXY*D21 - IOXZ*D31
COBle-IDXY*Dll + 1DYY*D21 - IOYZ*D31
COCls-1 OX2*D11 - 1DYZ*D2I + IDZZ*D31
COA2=+IDXX*D12 - IDXY*D22
COB2=-IDXY*D12 + !DYY*O22
COC2x-IDXZ*D12 - IDYZ*D22
COA3=-IDXZ
COB3=-IDYZ
COC3s+!DZZ
****** EULER SOLUTION CHECKOUT OPTION

IF(.NOT« LDISM40M GO TO 2
COAla lDXX
COB1=-IDXY
COClx-IDXZ
COA2x-IDXY

COB2=IDYY
COC2x-IDYZ
GO TO 3

2 CONTINUE
FUL1=DI2*COMPX
FUL2=D22*COMPY
COMPX=CSTORX - TX -YOX + DIKCOMPX + D21*COMPY + D31*COMPZ

1-(D1l*WYDK+D21*WXDK)*(I1*ADOT1+12*ADOT2-H 3*ADOT3+I4MADOT4)-D31*

2(AOOOTl-«-AODOT2+ADDOT3 + AODOT4 )
COMPY=CSTORY - TY -YDY + FUL1 + D22*COMPY

1-(D12*WYDK+D22*WXDK)*(I 1*ADOT1+12*ADOT2+13*ADOT3-H 4*ADOT4)

COMPZ=CSTORZ - T7 - YDZ + COMPZ
1-D33*(ADOOT1+ADDOT2+ADDOT3+ADDOT4)

3 CONTINUE
D£T=cOAI*(COB2*COC3-COC2*COB3> -GOBI *(COA2*COC3-COA3*COC2) +

1 COC1*(COA2*COB3-COA3*COB2)
DETIsl./DET
********************** CRAMER*S RULE ********
WXDD<=(COMPX*(COB2*COC3-COC2*COB3) -COB 1 *(CO«PY*COC3-COMPZ*COC2) +

1 COC1*(COMPY*COB3-COMPZ*COB2))*DETI
WYDDK =(COA1 *(COMPY*COC3-COC2*COMPZ)-COMPX*(COA2*COC3-COA3*COC2) +

1 COC1 *(COA2*COMPZ-COA3*COMPY))*DETI
WODD<=(COAl*(COB2*COMPZ-COMPY*COB3) -COB1*(COA2*COMPO-COA3*COMPY)+

1 COMPX*(COA2*COB3-COA3*CO82»*DETI
WXDHOLD=WXDDK
WYDHOt-D=WYDDK
WZDHOLD=WZDDK

************ DISK EQUATIONS *******
************** RUNGE KTUTTA INTEGRATION SCHEME ***OM

IF< .NOT. LD IS r ( I 7 )> GO TO 301
GO TQ<161.150»151«15?)• INT

161 RRU
RRU
RRU
RR( 1
RRU
RRU
RRU
RRU
RRU
RRU
RRU
RR( 1

,13)
,14)
,15)
.16)
,17)
,18)
,19)
,20)
,21 )
,22)
,23)
,24)

s

X

a

X

X

X

«

X

X

o

X

X

XPR
YPR
ZPR
XPRO
YPRD
ZPRO
PHDK
THOK
PSDK
WXDK
WYDK
WZDK
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160

154

XY = 0.5
L = ?
INT s 2
RR(L« 3) =
RR(L, 4) =
RR(L, 5) s
RR(L. 6) *
Rfl(L» 7) »
RR(t_. 8) =
RR(L. 9) «
RR(L«20) =
RR(L«2I ) =
RR(Lf22) =
RR(l_,23) =
RR(L.24) c
IF(L.EO.S)
RP
RR
RR
RR
RR

(6*
(6,
(6*
(6.
(6*

RR(6«
RR(6.
RR
RR
RR

(6.

13) »
14
15
16
17
18
19
20

)s

7 .

s

s

s

a

XPRD
YPRD
ZPRO
XPRD
YPRD
ZPRD
DPHO
DTHO
DPSD
WXDD
WYOD
WZDO
GO
RR
RR
RR
RR
RR

( 1
(
(
(
(

RR(
RR(

s RR(
(6.21 *
(6,22 «

RR(6»23
RR(6«24

150

IA
GO
L-

=
TO

* .1
INT =

151
GO
L

TO
= 4

INT =

152

153

XY
GO
L
GO
RR
RR
RR
RR

=
TO

= *
TO
(6,
(6*
( 6 ,
(6,

RR(6«
RR(6<
RR(6«
RR
RR
RR
RR
RR

(6,

U

)
)
s

c

RR(
RR(
RR
RR

(1
( 1

27

3
1

4
1.
1

1
13
1 4
15
16
17
18
19
20

(6,21
(6,
(6,
(6,

22
23
24

60

O
60

60
) =
) =
) =
) e

) s

RR
RR
RR
RR
RR

)=RR

( 1
( 1
( 1
( 1
( 1
( 1

,1
,1
, 1
• 1
,1
, ]

)=RR( 1 , 1
) sRR
)=RR
)*RR

( 1
( 1
( 1

) =RR ( 1
) =RR ( 1

,2
,2
, 2
,2
,2

301

TO
»13)+XY*RR(L»13)
»14)+XY*RR(L»14)
,15)+XY*RR(L.15)
«16)+XY*RR(L»16)
,17)+XY*RR(L,17)
»18)+XY*RR(L,18)
,19)-fXY*RR(L,19)
«20)+XY*RR(L,20)
,21)+XY*RR(L,21)
«22)+XY*RR(L«22>
,23)+XY*RR(L»23)
,24)+XY*RR(L,24)

.13)-KRR<2« 13)+2.»RR(3«
14)-KRR(2« 14)+2»*RR(3»

1.15)-KRR(2.15)+2.*RR(3.
16)+(RR(2. 16)+2»*RR(3.
«17)+(RR(2«17)+2.*RR(3»

13)+2.*RR(3«
19)+2.*RR(3«

«20)+<RR<2«20 )+2»*RR(3«
t21 )-KRR(2.2l >+2«*RR(3.

2)̂ -2. *RR ( 3 »
,23 )=RR( 1 ,23 )+ (RR ( 2 • 23 )+2»*RR (3«
,24 )=RR( 1 ,24 )+ (RR ( 2, 24 >+2«*RR<3,

IA = L
T=T+HH
CONTINUE
SUBWsWYDK*WYDK-WXDK*WXDK
WXWYaWXDK*WYDK
»***«*»*** CAP R , R-OOT * R-DOOT
ROD1X»AROOX(4) S ROD1Y=ARODY<4)
RDD2X=ARDOX(5) * RDD2Y»ARDDY (5 )

13)+2.*RR(4,13)+RR<5«13))*SX
14)-f2»»RR(4,14 )+RR(!5» 14) )*SX
15)-f2»*RR(4.15)+RR(5« 15) )*SX
16>+2»*RR(4tl6)+RR<5«16))*SX
17)+2»*RR(4,17)+RR(5«17))*SX
18)+2»*RR(4.18)+RR(5«18))*SX
19)+2»*RR(4«19)-»-RR(5« 19) )*SX
2O)+2»*RR(4»20)+RR(5«20))#SX
21 )+2»*RR(4»21 )+RR(5»21))*SX
22 )+2.*RR(4.22)+RR(5•22))*SX
23)+2.*RR(4.23)+RR(5«23))*SX
24)+2.*RR(4»24)+RR(5»24))*SX

****** (D1*A1)
$ RDD12=ARDOZ(4I
$ RDO2ZBARDOZ(5)
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RDD3X»ARDDX<6) S RDD3Y=ARODY(6) * RDD3Z=ARDD2(6)
RDD4xaARDDX<7) $ RDD4Y=ARDDY<7) $ RDD4Z=ARDDZ(7)

C
C
C ***********#************#** MASS BALANCE SYSTEM EQUATIONS **

INT=l
9G CONTINUE

1F(LDISI(19)) ADDOTl=ADDOT2=ADDOT3=ADDOT4sO.O
IF(.NOT. LOIS I(18)) GO TO 77
ADOOT1=ADDHUO1
ADOOT2=ADOHLD2
ADDOT3=ADDHLD3
AOOOT4=AODHLD4

77 CONTINUE
CA1=COS(A1) $ CA2*COS<A2) S CA3=COS(A3) S CA4*COS(A4)
SA1=MN(A1) $ SA2 = StN(A2) S SA3 = S!N(A3) S SA4=S1N(A4)
IF(EL .EG. 0.0) GO TO 227
IF(M1 .EG. 0.0 ) GO TO 29

C ***********#********»**** MBS — MASS 1 **
ADOT1S=ADOT1*ADOT1

C ************ SMALL R
SR1X=EL*CA1
SR1Y=EL*SA1
SR1Z=-DISTZ

C ************ SMALL R-DOT
SR1OX=-EL*ADOT1*SA1
SRIDY=+EL*AOOTi*cAi

C ************ SMALL R-DOUBLE DOT
SRIDOX = -EL*ADOTIS*CAi-EL*ADOOT1*SA I

SRIDDYa-EL*ADOT1S*SA1+EL*AOOOT1*CA1
C ************ TERM 2 OF EO. 4

AR1DOX=RDD1X + XPRDD
ARlDHYsRDOlY + YPRDO
AR1DOZ«RDDIZ + ZPRDO
Ft NA1=M1 *(-EL*SA1 *(DQ11*AR1DOX+OO21*AR1 DOY+DO31*AR1DOZ > +

I EL*CA I * ( DO1 2*AR 1 DOX+DO22*ARlDOY-fOO32*ARl OOZ ) )
C ************ COEFF. OF ALPHA DOUB. DOTS

FiNNAi=M!*EL*EL
1FCFINNA1 .FQ. 0.0) C-,0 TO 29
F?IGHT1 = ( I1X-I 1 Y)*(SURW*SA1*CA1-WXWY*(SA1*SA1-CA1*CA1 ) )
ADDOTl=(-WZDDK*Il - FlNAl - CJl*ADOT1 + RIGHT1)X< II + FINNAl)

29 CONTINUE
C
C ************************* MBS - MASS 2 **

IF(M? .EO. 0.0 ) GO TO 30
ADOT?S=ADOT2*AOOT2
SR2XsEL*CA2
SR2YaEL*SA2
SR2Z= D1STZ
SR2DX=-EL*AOOT2*SA2
SR2DY = -»-EL*ADOT2*CA2
SR2DDX"-EL*AOOT2S*CA?-EL*ADDOT2*SA2
SR2DDY=-EL*ADOT2S*SA?+EL*ADOOT2*CA2
AR2DDX=RDD2X + XPRDD
AR2DHY=RDD2Y + YPRDD
AR2DOZ=RDD2Z + ZPRDD
FINA2=M2*(-EL*SA2*(DOJ1*AR2DDX+DO21*AR2DDY+DO31*AR2DDZ) +

1 EL*CA2* ( DQ1 2*'AR2DDX+DO22*AR2DOY+D032*AR2DDZ ) )
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FINNA2=M2*EL*EL
IF<FINNA2 .EQ. 0.0) GO TO 30
RIGHTS" ( I2X-I2Y)* CSUBW*SA2*CA2~WXWY* (SA2*SA2-CA2*CA2 ) )
AOOOT2= (-WZDDK*I2 - FINA2 - CJ2*ADOT2 + RIGHT2)/< 12 + FINNA2)

30 CONTINUE

#»****»*#******#****#»»** MBS - MASS 3 **

IF<M3 .EO. 0.0 ) GO TO 31
AOOT3S=AOOT3*ADOT3

SR3X=EL*CA3
SR3Y=EL*SA3
SR3Z» -DISTZ
SR3Z=-DISTZ-5.
SR3Z=-DISTZ*1 .2
SR3OX»-EL*AOOT3*SA3

SR3DY»+EL*AOOT3*CA3
SR3DDX=-EL*ADOT3S*CA^-EL*ADOOT3*SA3
SR3DDY=-EL*ADOT3S*SA^+EL*ADDOT3*CA3

XPRDO
YPRDD

AR3DOZ=RDO3Z+ ZPRDD
FINA3=M3*(-EL*SA3*(DO1 1 *AR3DDX+DO21 *AR3DDY+D031 *AR3DDZ ) +

I EL*CA3*(DO12*AR3DDX+DO22*AR3DDY+DO32*AR3DDZ> )

IF(FIIMNA3 .EO. 0.0) GO TO 31
RIGHTS* ( I3X-I3Y)* (SUBW*SA3*CA3-WXWY*(SA3*SA3-CA3*CA3) )
ADDOT3= (-WZDDK*I3 - FINA3 - CJ3*ADOT3 + RIGHT3)/( 13 + FINNA3)

31 CONTINUE
C
C *##*#******»************* MBS - MASS 4 **

IF(M4 .EQ. 0.0 ) GO TO 32
ADOT4S=ADOT4*ADOT4
SR4X=EL*CA4
SR4Y=EL*SA4
SR4Z= DISTZ
SR4Z=DISTZ+5.
SR4Z=DISTZ*1 .2
SR4Dy=-EL*ADOT4*SA4
SR4Dv«+EL*ADOT4*CA4
SR4DDX=-EL»ADOT4S*CA4-EL*ADDOT4*SA4
SR4ODY=-EL*ADOT4S*SA4+EL*ADOOT4*CA4
AR4Dnx=ROO4X 4 XPROD
AR4Or»Y = RDO4Y + YPRDD
AR4DOZ = RDD4Z •»- ZPRDD
FINA4=«4*(-EL*SA4*CD01 1 *AR4DDX+D021 *AR4DDY+D031 *AR4DDZ ) +

1 EL*CA4*(DOI2*AR4DDX+D022*AR4DDY+D032*AR4DDZ) )
FINNfl4»M4*EL*EL
IF(FINNA4 .EO. 0.0) GO TO 32
RIGHT4" < I4X- IAY)* <SUBW*SA4*CA4-WXWY* (SA4*SA4-CA4*CA4 ) )
AODOT4= (-WZDD<*I4 - FINA4 - CJ4*ADOT4 + RIGHT4)/( 14 + FINNA4)

32 CONTINUE
C

IF(LDISI (33 ) )ADDOT1 = ADDOT2=ADDOT3=ADDOT4= ADOT1 =ADOT2=ADOT3=ADOT4=0
ADOHLD1=ADDOT1
ADOHLD2=ADDOT2
ADOHLD3=ADOOT3
ADDHLD4=ADDOT4

C
C **************#*****#1NTEGRATION SCHEME FOR MASS BALANCING SYSTEM
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IF(Ml.EQ.O.O»AND«M2»FO.O»O.AND«M3.EQ.O,
IF'.NOT. LOTSK17)) C-O TO 227

O.AND»M4.EG»0*»0 ) GO TO 227

121

120

114

110

111

112

113

227

GO TO < 121 , 110,1 11 ,1 12) , I NT
RRCl , 1 )=A1
RRC , 2 ) = A 2
RRC , 3 ) = A 3
RRC , 4 ) = A 4
RRC . 5)=ADOTI
RRC , 6)=ADOT2
R R C l , 7)»ADOT3
RR C 1 , 8 ) = ADOT4
XY = 0.5
L = ?
INT = 2
RRCL, 1 )*ADOT1*HH
RRCL, 2)=ADOT2*HH
RRCL, 3)=AOOT3*HH
RRCL, 4>=ADOT4*HH
RRCL, 5)=AOOOT1*HH
RRCL, 6)=ADDOT2*HH
RRCL, 7)=ADOOT3*HH
RR<L» 8)=ADDOT4*HH

IFCL.EQ.5) GO TO 113

RRC6, 1) = R R C 1 , 1>+XY*RRCL» 1)
RRC6. 2) = R R C l , 2)+XY*RRCL, 2)
RRC6, 3) = RR(1, 3)+XY*RRCL, 3)
RRC6, 4) = R R ( 1 « 4)+XY*RRCL, 4)
RRC6, 5) = R R C l , 5 )-*-XY*RR CL • 5)
RR(6, 6) = R R C l , 6)-*-XY*RR(L, 6)
RRC6, 7) = R R C l , 7)+XY*RRCL, 7)
RRC6, 8) = R R C l , 8)-t-XY*RRCL, 8)

IA = L
GO TO 28

L = 3
INT s 3
GO TO 120
L = 4
INT = 4
XY = 1.0
GO TO 1 20
L = 1
GO TO 120
RR C6, 1 )=RRC 1 , 1 ) -MRR(2« . 1 )+2«*RR
RRC6, 2 ) = R R C 1 , 2 ) + ( R R ( 2 « 2)+2.*RR
RRC6, 3 ) = R R C 1 , 3 ) + C R R C 2 , 3)+2.*RR
RRC6, 4 ) = R R C 1 , 4 ) 4 - C R R C 2 . 4)+2«*RR
RRC6, 5 ) = R R C 1 , 5 ) + C R R ( 2 , 5)+2.*RR
RRC6, 6 > = R R C 1 , 6 ) - l -CRR(2 , 6)-t-2.*RR
RRC6, 7 > = R R C 1 , 7 ) + C R R < 2 * 7)+2.*RR

RRC6, 8 )=RRC1, 8 H - C R R C 2 , 8)-t-2.*RR
ra « L
CONTINUE

C3,
C 3 ,
C3 ,
C 3 ,
(3,
(3,
C3 .

C 3 ,

C
c

1)+2»*RR<4. 1
2)+2«*RR(4« 2
3)+2.*RR(4, 3
4)+2«*RR(4« 4
5)+2»*RR(4, 5
6 )+2»*RR(4, 6
7>+2»*RR(4, 7
8)+2.*RR(4, 8

****** TIC MARtcS FOR ACTUAL PROGRAM TIME
LOISOC31)sLD15OC103)=.F.
IFCT .EO. 0.0) LDISOC31)=LDISOC103)=.T.
IFC(T-TSAVE) .LT. TIMER) GO TO 90
LDISOC31)=LDISOC103)=.T,
TSAVE=T

)+RR(5
)+RR<5
)-fRR(5,

)+RR(5
)+RR (

1 ) )*SX
2 ) )*SX
3) )*SX
4) )*SX
5) )*SX
6) )*SX
7) )*SX
8) )*SX
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90 CONTINUE
C
C
C **##** AUXILLIAPY CALCULATIONS

CMO=SORT (A 1 X*A 1 X-f A 1 Y#A 1 Y )
IXCG=1OXX+MASSD*< < A 1 Y+SRSY ) * ( Al Y+SRSY > + ( Al Z+SRSZ ) * ( A 1 Z+SRSZ ) )

H-MASSC*(<A1Y+SRCY)*(AlY+SRCY) +<A 1Z+SRCZ)*(A 1Z+SRCZ) )
2+Ml*((A 1Y+SRlY)*<AlY+SRlY) +(A 1Z + SR1Z)*(A 1Z+SRl21 )
3+M2*((A 1Y+SR2Y)* < A 1Y+SR2Y> +(A1Z+SR2Z> * ( A 1Z+SR2Z) )
4+M3*C(AlY+SR3Y)*(A1Y+SR3Y)+(A1Z+SR3Z)*< AlZ+SR3Z))
5+M4*( (A1Y+SR4Y)*(A1 Y+SRA Y)+(A1Z+SR4Z )*<A1 Z+SR4Z) )
IYCG*IDYY+MASSD*( (Alx+SRSX)*(A1X+SRSX )+( A1Z+SRSZ)*(A 1Z+SRSZ))

1+MASsC*(<A1X+SRCX)*(A1X+SRCX)+(A 1Z+SRCZ)*(AlZ+SRCZ) )
2+Ml*((A1X+SR1X)*(A1X+SR1X)+(A1Z+SR1Z )*(A1Z+SR1Z))
3+M2*( (A1X+SR2X )*(A1X+SR2X)+(A1Z+SR2Z )*(A1Z+SR2Z) )
4+M3*<(A!X+SR3X)*(AJX+SR3X) + (A1Z + SR3Z >*(AIZ+SR3Z) >
5+M4*f(AlX+SR4X)*(AlX+SR4X)+(A1Z+SR4Z)*(A1Z+SR4Z))
IZCG=IDZZ+MASSD*( (AlX+SRSX)*(A 1X+SRSX)+(A 1Y + SRSY)*(AlY + SRSY) )

1+MASSC*< (A1X+SRCX)*(A1X+SRCX)+(A 1Y + SRCY)*(AlY+SRCY) )
2+Ml*{(AlX+SRlX)*(AlX+SRlX)+(AlY+SRlY)*(A1Y+SR1Y))
3+M2*((A1X+SR2X)*(A1X+SR2X)+(AIY+SR2Y)*(A1Y+SR2Y))
4+M3*((A 1X+SR3X)*(AlX+SR3X) + (A 1Y + SR3Y)*(A 1Y+SR3Y) )
5+M4*((AlX+SR4X)*(AlX+SR4X)+{AlY+SR4Y)*(A1Y+SR4Y))
IXYCG=>IDXY+MASSD*( ( A 1 X + SRSX )*( A 1 Y+SRSY ) )

1 +MASSC*((AlX+SRCX)*(AlY+SRCY))
2+Ml*( (A1X+SR1X )*(AlY+SRlY) )+M2*( (A 1X+SR2X)*(A 1Y+SR2Y ) )
3+M3*{(A1X+SR3X)*(A1Y+SR3Y) ) + M4*( <A 1X + SR4X)*(A 1Y+SR4Y ) )
IXZCG= f DXZ+MASSD*(f A j X+SRSX)* f A 1Z+SRSZ))

1 +MASSC#((AiX+SRCX)*(AlZ+SRCZ))
2+Ml*((AlX+SRlX)*(A1Z+SRlZ))+M2*( (A 1X+SR2X)*(AlZ+SR2Z))
3+M3*((A1X+SR3X)*(A1Z+SR3Z) ) + M4*( <A 1X+SR4X)*(A 1Z+SR4Z))
IYZCG=IDYZ+MASSD*( (AlY + SRSY)*(A 1Z+SRSZ) )

1 +MASSC*((AlY+SRCY)*(A1Z+SRCZ))
2+Ml*{ < Al Y+SRl Y)*(Al Z+SRl Z) ) + M,i*( ( A i Y+SR^Y ) * ( M Z-. SR Z) )
3+M3*f{AlY+SR3Y)*(A1Z+SR3Z)) + M4*( (AiY+SR4Y)*(A 1Z+SR4Z) )
IMATC 1 » 1 ) = IXCG $ IM.ATC 1 ,2 )=-IXYCG * I MAT ( 1 . 3 ) =- I XZCG
IMAT(2« 1 )=-IXYCG $ !MAT(2«2)= IYCG S> I MAT (2 « 3 ) =-I YZCG
IMAT(3«1)=-IXZCG S IMAT(3.2)= -IYZCG S IMAT(3.3)= IZCG
CALL JACTV(3.3,1•IMAT.EIGV»EVEC.B,C.Wl»W2.NERRf
rF(NPRR .EXJ. 1 ) PRINT 100

100 FORMAT(10X*NON CONVERGENCE AFTER 1OO ITERATIONS*)
ETAXZ=»15514022 * ETAYZ=.15514022
IF(EVEC(3»3) .NE. 0»0) ETAXZ=ATAN2(EVEC(1.3).EVEC(3.3))
IF<EVEC<3»3> .NE. 0.0) ETAYZ=ATAN2(EVEC(2«3).EVEC(3.3>)
ETAXYZ«SORT(ETAXZ*ET/VXZ+ ETAYZ*ETAYZ )
DELE=.15514022
IFfETAXZ.NE. 0.0) DELE=ATAN2(ETAYZ.ETAxZ>
TIAQ=I 1*ADOT1 + 12*ADOT2+I3*ADOT3+I4*AOOT4
A IWX=IXCG*WXDK-IXYCG*WYDK-IXZCG*WZDK

1 -(Alx+SR1X)*(A 1Z+SRlZ)#ADOT1*M1-f A 1X+SR2X)*(A 1Z+SR2Z)*ADOT2*M2
l-(Alx+SR3X)*(AlZ+SR3Z)*ADOT3*M3-(AlX+SR4X)*(AlZ+SR4Z>*ADOT4*M4
A IWY = -IXYCG*WXOK+IYCG*WYDK-IYZCG*WZDK
l-(Alv+SRlY)*(AlZ+SRlZ)*ADOT1*M1-(AlY+SR2Y)*(AlZ+SR2Z)#ADOT2*M2
l-(AlY+SR3Y)*(A1Z+SR3Z)*ADOT3*M3-(AJY+SR4Y)*(A1Z+SR4Z)*ADOT4*M4
A IWZ = -IXZCG*WXDK-IYZcG*WYDK+IZCG*WZDK

1+((AiX+SRlX)*(AlX+SRlX)+(AlY+SRlY)*(A1Y+SRlY))*ADOT1*M1
l+((A1X+SR2X)*(A1X+SR2X)+(A1Y+SR2Y)*(AlY+SR2Y))*ADOT2*M2
1 + ((A 1X+SR3X)*(A 1X+SR3X)+(A 1Y + SR3Y)*(A1Y+SR3Y) )*AOOT3*M3
1 + r (A1X+SR4X>*(A1X+SR4X)+(A1Y'+SR4Y)*(A1Y+SR4Y> )*ADOT4*M4+ TIAO
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=A 1WX*AIWX
AIWY?=AIWY*A1WY
ASGP=SQRT{AIWX2+AIWY? )
THETH=. 15*514022
IF(AIWZ .NE. 0. >THETH=ATAN2(ASQR.AIWZ>
DELH=. 15514022
IFCWXDK .NE. 0.0)DELH=ATAN2< A1WY.A1WX >
THETZ=SQRT(PHDK*PHDK + THDK*THDK )
DELZ=« 15514022
IF(PHOK.N£.0.0)DF.LZ = ATAN2(THDK«PHDK )-+! .570795
B I WX=WXDK*WXDK
B I WY=WYDK*WYDK

BSOR = SQRT I.B I WX+B ! WY )

THETI=. 15514022
IFtWZDK .NE. 0>THFT!=ATAN2(BSOR,WZDK)
DEI_I=. 15514022
IF (WXDK.NE«0.0)OELI=ATAN2(WYDK.WXD< )
CONSQ=THETH*THETH + FT AXYZ*ETAXYZ - 2 .*THETH*ETAXYZ*COS ( DELH-DELE
CON=«57. 295780*SQRT (CONSQ )
DEI_e=DEl_E *57. 295780
ETAXZ=ETAXZ *57. 295780
ETAYZ=ETAYZ *57.2957PO
ETAXYZ=ETAXYZ*57. 295780
THETH=57.29578*THETH
DELH=57.29578*DELH
THETZ=57.29578#THETZ
OELZ =57 . 29578 *DEL Z
THET I =57.29578*THET I
DEL I =57. 29578* DELI
Al Aa«S7.29578*Al
A2As«S7.29578*A2

C
c »#**** RECORDER CHANNEL OUTPUTS

DIGOUT( 1)=CMO*SFCMO
D1GOUT(2)=A1 X*SFA1X

DIGOuTf 3)*A I Y*SFA1 Y

DIGOtlT( 4 )=ETAXYZ#SFFTA

DIGO(JT( 5 )=ETAXZ *SFcrTAX

DIGOUT( 6)=ETAYZ *SFFTAY
DIGOUT( 7)=THETZ*SFTHETZ
OI GOUT ( 8)*CON*SFCON
Cn GOUT ( 9 ) =THETH*SFTH

DIGOUT( 10)=THETI*SFTT

DIGOUTdl )=ADDOT1#SFACC
.DIGOUT ( 12 )=0.0
DIGOUT( I3)=A1A*SFMBA
DIGOUT ( 14)=A2A*SFMBA
DIGOI>T( 15)=A3A#SFMBA

DIGOUTt 16)=A4A*SFMBA

C *** SCANNER FUNCTION**********
90047 LDISO< 124 )=LDISI (22 )
C*»»* COMMUNICATION WITH RFAL TIME DISPLAY

IF(LnISI (22) ) CALL SCANNER ( I SCAN )
CALL D SPLAY
IF (LDISI ( 17) ) GO TO 90050
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c***»

c
90050
C
C

RETURN TO MODE
LDISO(59)=.F.
LDISO(60)=.F.
LDISO(102)=.F.
LDISCH 110) = .F.

CONTINUE

CONTROL SUBROUTINE

CRT PLUI i I - 1 IX

0. ) GO TO 50002

C****
90001

C****
90014

89

130

****** REAL TIME
THOEG=THDK*57. 295780
PHDEGsPHDK:*57. 295780
IF(THOEG ,EO. 0« .ANn.PHDEG .EQ»
IF( .NOT. LDISI(41>) GO TO 50002
CALL RITECRTCLDISI (17) t.T., 10)

50002 CONTINUE
CALL RTMODE
RETURN FROM MODE CONTROL INTO OPERATE LOOP
CONTINUE
LDISO(59)=.T.
LD!SO(60)=.T.
LDISO( 102)=.T.
LDISOC 1 10 ) = .T.
IZZ = .F.
CALL RECORD
CALL RECYCLE
GO To 90006
SECTION H. PRINT CONTROL
CONTINUE
NUMBFR= ( NUMBER* 1 )

WR I TF < MF . 89 ) NUMBER
FORM AT ( 1HO. 1 2HRUN NUMBER =.2X«I5)
WRITECMF, 130) HH. ( VAR ( I ) » I = 1 «38 )
FORMAT(5X*HH = *E12.4« 1 OX*VAR BLOCK (1 THRu 38 ) */ ( 1 OE I 3 . ii ) )
WRITF(MF. 132 )RFX«TXDK«MASSD«'IDXYOtSRSX»SRCX»RFY«T YDK,MASSD«

1 IDXZO«SRSY.SRCY.RFZ.TZDK.MAS5C« I DYZO , SRSZ , SRCZ .FXDK . FYDK , FZD<
132 FORMAT<///2X*RFX=*E12»5,2X*TXDK=*E12.5,2X*MASSD=*E12.5.

A 9X* IDXYO=*El2.4.2X*RSX=*E12.4,2X*RCX=*E12.4/
1 2X*RFY=*E1 ?.5.2X*TYDK=*E12.5,2X*MASSD=*E12.5.
B 9X*IDXZO=*El2.4«2X*RSY=*F:i2.4.2X*RCY = *E12.4/
2 2X*RFZ=*El?.5t2X*TZDK=*E12.5«2X#MASSC=*E12.5.
C 9X*IDYZO=*El2.4.2X*RSZ=*E12.4,2X*RCZ=*E12.4//
D 2X*FXDK=*E1?.4.2X*FYDK=*E12.4,2X#FZDK=*E12.4 )
WRITE(MF,133) I 1 X » I 2X« I 3X . I 4X . I 1 Y . I 2 Y. I 3Y , I 4Y
FORMAT <2X* I 1 X=*E 12 . 5 ,2X* I 2X = *E 1 2.5 , 3X* I 3X = *E 1 3 .S , 4X* I 4X = *E 1 2 .5/

2X*I 1 Y=*E12.5»2X*I2Y=*E12.5«3X*I3Y=*E12.5,4X*I4Y=*E12.5///)
WRITr(MF, 1 31 )
FORMAT ( 26X*T I ME*44X**RCX* 1 2X*SRCY* 1 2X*SRCZ*/

1 26X*WXDK*1 2X*WYDK* 1 2X*WZDK*1 2X*PHD<*1 2X*THDK*1 2X*PSDK*/
1 26X*WXDDK*1 1 X*WYDD<»! 1 X*WZDD<*1 1 X*A1 X*l 3X*A1 y*I 3X*A 1 Z* /
1 26X*AI*14X*A2*14X*A3*14X*A4*14X*ETAY*12X*ETAX*/
1 26X*ADOT1»1 1X*ADOT2*1 1X*ADOT3*1 1X*ADOT4*1 1 X*CMO*/
1 26X*ADDOT 1*1 Ox* ADDOT2*! OX*ADDOT3* 1 OX*ADDOT4* 1 OX*ET A* 1 3X*DEL
2TA*/?6X*THETH*1 1 X*DE|_H* 1 2X*THETZ* 1 1 X*DhLZ*l 2X*TH£T I* 1 lX*D£LT*///i

90030 CALL PLAYBAK ( 90032S . NF I LE )
WRITE(MF, 1800 ) T« SRCX . SRCY • SRCZ
WRITF(MF,180l ) WXDK , WYDK , WZDK.PHDK , THDK , PSD<
WR1TP(MF. 1801 ) WXDDK ,WYDD<tWZDDK« Al X. Al Y. Al Z
WRITE(MF, 1801 ) A 1 A . A2A . A3A « A4 A ,ET AXZ . ETAYZ

133

1 31
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WRITEfMF,1801) AOOT1, ADOT2.ADOT3,ADOT4•DELE.ETAXYZ
WRITFCMF,1801) ADOOT1.ADDOT2.ADDOT3,ADDOT4.CMO.CON
WRITF(MF,1801)THETH.nELH,THETZ.DELZ.THET1.DELI
WRITF(MF,180l) ElGVfl),EIGV(2),EIGV(3)

1800 FORM*T(/23XE12.5.32X«3(4XE12,5)>
1801 FO-MAT(!9X.6(4XE12.5))

GO TO 90030
90032 CALL APR INT
C**»* SECTION I. READ CONTROL
90015 CONTINUE
C**** ANY READ STATEMENTS CAN BE PLACED HERE TO INITIALIZE FOR A NEW RUN
C*** READ **.A,B»C
C ** FORMAT (8E16»8)

CALL AREAO
C***» SECTION J. TERMINATE
90004 CONTINUE
C**»* ANY POST PROCESSING

CALL ATERM
90034 FORMAT<6X* SPACE BASE SIMULATION*5X*JOB.43,77777*75000. A2718.

1 13043,1.C.W.MARTZ.B1232 R125*)
END
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TRANSFORMATION MATRICES AND DERIVATIVES

The following transfer matrices and derivatives, collected for convenience, are
used in the simulation. For identification or explanations, see section of appendix A
entitled "Transfer Matrices."

ci// c0 -si// c8 s

c\(/ s6 s0 + si// c<p ci// c</> - si// s6 s(p -c6

si// scj) - ci// s6 c(p ci// s0 + si// s0 c0 c0

[D,].is the same as with subscript h on angles.

ci// c9

-si// c9

S0

si// 0

ci// 0

0 1

is the same as D wiwith subscript h on angles.

CO!: -SO!. 0

SQ!j CQIj 0

0 0 1

D =

-i// si// c0 - 0 ci// s0 i// ci// 0

-»// cj// ce + 0 si// s0 -i// s«// 0

0 c 0 0 0

is the same as with subscript h on angles.

"~ t
Q j ̂

1
d21

_d31

dJ2
d22

d32

dl3"

d23

d33
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where

dj , = -0 ci// s9 - i// si// c6

d'12 = 0 s;// s0 - i// ci// c0

d^3 = 0 c0

d21 = 0(ci// s0 c0 - si// s0

d' £ = -0(si// s0 c<p + c\l/ s

0 ci// c6 s<p -

- 6 s\js c6 s<p

s0 s0 - ci// c

s6 s0 + si//

d23 = "

oi

oo

sQ s<p + si// ci// c

9 si//

= -0 c6 S(f> - 6 s8

is the same as DI with h subscripted angles and angular rates.

11 U12 U13
d21 d22 d23
," j" j"
d31 d32 d33

where

se ~

= B" si// s0 - i//" ci// c0 + (02 + ^/

= 0" C0 - 02 S0

S0

si// 2

?" C!// C0 S0 - i//"(S!// S0 S0 - CI//

:i// c0 c0 - 20i// si// c0 s0 -

- (02

ci//
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j"d22 =

APPENDIX C - Continued

|0 C0 + Cl// S0) - 0" SI// C0 S0 - l//"(ci// S9 S0 + SI// C0) + (0"

- ci// c0) + 02 si// s0 s0 - 200 si// C0-C0 - 20i// ci// c0

0 + 0" s0 s0 + (02 + 02)C0 S0 •

s0 s0

- si//

d31 =

- si// s$) + 02

s0 s0 - ci//

ci// c0

0" si// c0

^ + ci//

s0 s0 - ci//

s0 c0 - si// s0)

20i// si// c0

ci// s0) - 0 si// s0 c0 - 200 si// c0 s0 + 20i// ci// c0 c0 -

= -0" c0 s0 - 0" s0 c0 - (02 + 0~2)C0 C0 + 200 s0 s0

[„]->.
Cl//

C0

SI//

-Cl// S0

C0

-SI//

c0

Cl//

SI// S0

C0

0

1

is the same as |D| with h subscripted angles.

[03] -1. fef
-ci// s0 0 0

si// s 0 0 0

c 0 0 0

8Dh

90v
is the same as

80
with h subscripted angles.

s0 s0 + si// c0)

74



APPENDIX C - Continued

Dh

9D

°

i// cB ci// 0

i// cB -si// 0

0 0 OJ

the same as

3D
80

8D

8 0h

8D

8D

= 0

with h subscripted angles.

-c^ s0

Cl// C0 S0

-c\l/ cB c0

-Si}/ C0 S0

si// c9 c0

cB

0 S0

0 c0

the same as
80

with h subscripted angles.

8Di
0

is the same as

80

3Di

30

is the same as
80

^/ S0 S0 + Cfy C0 -CJ// SO S0 - SI// C0 0

^/ S0 C0 + C^ S0 Cl// S0 C0 - SI// S0 0

with h subscripted angles.

0 0 0

C1// S0 C0 - SI// S0 -SI// S0 C0 - CI// S0 -C0 C0

C«// S0 S0 + Sty C0 -Si// S9 S0 + Cl// C0 -C0 S0

with h subscripted angles.
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APPENDIX C - Concluded
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TABLE I.- PHYSICAL CONSTANTS USED IN BASIC COMPUTER SIMULATION

Constants:

md = 350 000 kg
mc = 1500 kg

1113 = m^ = 3200 kg

'd.x - Id,y = 3'8 X

Id)Z = 1.9 x 108 kg-m2

(j = 1, 2, 3, 4)

j g-m2 (j = l, 2, 3, 4)

6. '= 15 m

HI = -7.5 m^j
h2 = 7.5 m I (Note the separation of controllers along the

hs = -9 m | z-axis for collision avoidance purposes)

h4 = 9 m -J
cl = C2 = C3 = C4 = 400° N-m-s

Initial conditions:

Wx = OJy = 0

o>z = 0.5 rad/s

aj = 012 = 1-57080 rad

ag zz 04 = -1.57080 rad

«1 = «2 = "3 = "4 = °
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TABLE II.- KEYBOARD INPUT VARIABLES

Variable (VAR) Variable name

1
2
3

4

5
6

7
8
9

10
11
12

13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28

29

30

PHDK0 ^

THDK0 >

PSDK0 J

-WXDK0 ^
WYDK0 >
WZDK0 J

XPR0 ^

YPR0 >
ZPR0 J

XPRD0 |̂

YPRD0 >

ZPRD0 J

IDXX0 •>

IDYY0 >
IDZZ0 J

>

A20 I

A30 [

A40 J
>

120 I

130 f

140 J

M10 "^

M20 1

M30 |

M40 J

EL

DISTZ

CJ0

Symbol or Description

e0, and

Initial value of

and zo

and z

Initial disk inertias about x-, y-, and
z-axes

Initial values of a.

Initial controller inertias about z-axis

Initial values of ITU

a
h

Initial damping coefficient for jth controller
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TABLE II.- KEYBOARD INPUT VARIABLES - Concluded

Variable (VAR)

31
32
33

34

35

36

37

38

Variable name

SRCDY0
SRCDZ0J

FREQ

PLGAIN

MASSD0

MASSC0

Symbol or Description

Initial value of

CRT real-time plotting frequency (number
of iterations per plot point)

CRT plot x- and y-axis gain (units of x
and y, full scale)

Disk mass

Crew mass
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TABLE m.- TIME-HISTORY RECORDER OUTPUT

. Recorder channel

1

2

3

4

5

6

7

9

10

11

19

13

14

15

16

Symbol

I / A 2 ^ A2

VAl,x + Al,y

Al,x
Ai,y
•n

TJX

TJy

ez

eh

h
a1

a\
Ct<)

CKo

«4

Parameter

CMO

A1X

A1Y

ETA

ETAX

ETAY

THETZ

THETH

THETI

ADDOT1

A1A

A2A

ASA

A4A

Scale factor

SFCMO

SFA1X

SFA1Y

SFETA

SFETAX

SFETAY

SFTHETZ

SFTH

SFTI

SFACC

SFMBA

SFMBA

SFMBA

SFMBA

Range

0 to 0.1 m

±0.1 m

±0.1 m

0 to 0.1°

±0.1°

±0.1°

0 to 0.2°

0 to 0.2°

0 to 0.2°

±0.001 rad/sec2

±180°

±180°

±180°

±180°
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TABLE IV.- PROGRAM SYMBOL LISTING

[An asterisk denotes printed output]

FORTRAN notation

*T
*PHDK, THDK, PSDK
*WXDK, WYDK, WZDK

*WXDDK, WYDDK, WZDDK

SRX, SRY, SRZ

SRSX, SRSY, SRSZ

*SRCX, SRCY, SRCZ

SR1X, SR1Y, SRIZ^I

SR2X, SR2Y, SR2Z I
SR3X, SRSY, SRSZ f

SR4X, SR4Y, SR4ZJ

SRDX, SRDY, SRDZ
SRSDX, SRSDY, SRSDZ

SRCDX,SRCDY,SRCDZ

SR1DX, SR1DY, SR1DZ~1

SR2DX, SR2DY, SR2DZ 1
SRSDX, SRSDY, SRSDZ f
SR4DX, SR4DY, SR4DZJ

SRSDDX, SRSDDY, SRSDDZ
SRCDDX, SRCDDY, SRCDDZ

SR1DDX, SR1DDY, SRlDDZ^l
SR2DDX, SR2DDY, SR2DDZ [
SRSDDX, SRSDDY, SRSDDZ f
SR4DDX, SR4DDY, SR4DDZJ

*A1, A2, A3, A4
*ADOT1, ADOT2, ADOT3, ADOT4

*ADDOT1, ADDOT2, ADDOT3, ADDOT4
Ml, M2, M3, M4

CJ1, CJ2, CJ3, CJ4
MASSD
MASSC

MT

Symbol definition

Time (sec)

<£, 6, and

f r . \

J
md

mc

m-p
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TABLE IV.- PROGRAM SYMBOL LISTING - Continued

[An asterisk denotes printed output]

FORTRAN notation Symbol definition

D11,D12, etc.

D011, 0012, etc.

DD11, DD12, etc.

Dill, DI12, etc. [D]"1

DOD11, DQ(D12, etc.

D0DD11, DOt>D12, etc.

DgtoPDll, DQ±>PD12, etc.

D0DTD11, D0DTD12, etc.

DQIDSDll, DOt)SD12, etc.
ti\[/

XPR, YPR, ZPR x', y', and z'

XPRD, YPRD, ZPRD x', y', and z'
XPRDD, YPRDD, ZPRDD x1, yf, z', and {Rg}

*A1X, A1Y, A1Z

A1DX, A1DY, A1DZ

A1DDX, A1DDY, A1DDZ

TXDK, TYDK, TZDK (Td)

FXDK, FYDK, FZDK (Fd)

RODIX, RDD1Y, RDDIZ"!
RDD2X, RDD2Y, RDD2Z I
RDD3X, RDD3Y, RDD3Z [
RDD4X, RDD4Y, RDD4Z J

ARDDX(l), ARDDY(l), ARDDZ(l)

ARDDX(3), ARDDY(3), ARDDZ(3)
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TABLE IV.- PROGRAM SYMBOL LISTING - Concluded

[An asterisk denotes printed output]

FORTRAN notation

TXX(l), TYY(l), TZZ(l)

TXX(3), TYY(3), TZZ(3)

TXX(4), TYY(4), TZZ(4)1
TXX(5), TYY(5), TZZ(5) I
TXX(6), TYY(6), TZZ(6) f
TXX(7), TYY(7), TZZ(7)J

IDXX, IDYY, etc.

IDDXX, IDDYY, etc.

PHDEG, THDEG
EL
DISTZ

KX, KY, KZ

KRX, KRY, KRZ

CX, CY, CZ

CRX,CRY, CRZ

II, 12, 13, 14

I1X, I2X, I3X, I4X

I1Y, I2Y, I3Y, I4Y

*ETA
*ETAX
*ETAY

Symbol definition

m.

90
(re) > (See eq. (A21))

. -xT

H
D]

and 6 in degrees for CRT plot

[c]
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Circular bearing-outer race
connected to disk and inner
race connected to hub

-Bearing friction
torque compensated
by internal torque
between disk and hub

Figure 3.- Schematic showing hub and disk connected through springs, dampers,
and a bearing. Note that y,z-plane is similar to x,z-plane shown.
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Mass center of jth controller

•Disk coordinate
system

Spacecraft less jth
passive controller

Figure 4.- Vector relationship of jth controller, overall mass center, and
disk coordinate axes.
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-rcz—H_/~mCi Crew unbalance mass
-HE

^

h

LAxi 1

„ h rcxyi -

Rjr !
t^ ^\
m-r-i m-ro

Combined mass center
of controllers I and 3

t- z axis

Axp

>'-Combined mass center
of controllers 2 and 4

m ji - Spacecraft mass center for controllers balanced about z axis
and crew undeployed UZ = rxy =0)

mT2~ Spacecraft mass center with crew unbalance counteracted by
controllers

cxy =

mT

Figure 5.- Mass center geometry of controller steady-state response to
combined static and dynamic crew unbalance.
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Figure 6.- Angular response of controllers during simulation.
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. I2r-

deg

No controllers
'Controllers

-.12 -.08 ^04 0 .04 .08 .12 .16

0, deg

(a) 0 as a function of B for 650 i T § 680.

deg

1 .08

200 600400

Time, sec

(b) Resultant heading angle (with controllers).

Figure 9.- Spacecraft inertial pointing response to crew motion disturbances.
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400r-

0 8 16 24

Controller length, m

mj = 3200,

m, =1600,

Equations

(48) and (49)

32

= .0351

= .0179

400r-

uo>
"-300
c
o
CO

8 200
<D

6 100
Sit)

1

Equotions
(48) and (49)

I
0 800 1600 2400 3200

Mass of each controller, kg

Figure 10.- Effect of controller mass and length on system time constant.
See table I for system constants.
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